INTERIM REPORT

Accession No._____ LTR 1111-65

Contract Program or Project Title: LOFT PROGRAM

Subject of this Document: (Title) "LOFT Fuel Bundle Structural Response to Mechanical Loads During Subcooled LOCE"

Type of Document: Analysis

Author(s): J. S. Martinell

Date of Document: April 1980

8006020144 ---

Responsible NRC Individual and NRC Office or Division: G. D. Mc Pherson

-

This document was prepared primarily for preliminary or internal use. It has not received full review and approval. Since there may be substantive changes, this document should not be considered final.

Prepared for U.S. Nuclear Regulatory Commission Washington, D.C. 20555

INTERIM REPORT

NRC Research and Technical Assistance Report

subject

INTEROFFICE CORRESPONDENCE

R-5492

date	10 1989
to	DISTRIBUTION
from	LOFT CDCS, TAN 602, Ext. 6177 St Hathaway

DOCUMENT TRANSMITTAL

The following documents released by LOFT CDCS, are hereby transmitted for your use and information:

DOCUMENT NO.	REV	CHG	DATE
LTR 1111-65	1		4-2-80
"LOFT Fuel Bundle Structural Response t	to Mechanica	al Load	s During
Subcooled LOCE" J. S. Martinel	1		

REMARKS: No disposition required. This revision completely supersedes all previous issues of LTR 1111-65.

D. B. Jarrell	W. A. Spencer
N. C. Kaufman w/o Att.	J. C. Stachew w/o Att.
S. T. Kelppe	K. C. Sumpter
J. L. Liebenthal	T. Sudoh - 2
A. S. Lockhart	R. E. Tiller
J. H. Linebarger	S. R. Wagoner w/o Att.
D. W. Marshall w/o Att.	G. Weimann
S. Matovich	L. Winters
G. D. McPherson	B. J. Yohn
J. C. Morrow	M. L. Russell H. R. In MLI
S. A. Naff	J. R. Barker - 3
N. E. Pace w/o Att.	M. M. Laughlin - 3
T. F. Pointer	R. G. Rahl
G. Rieger	E. D. Uldrich
P. Schally	H. A. Rau
D. G. Satterwhite w/o Att.	
	 D. B. Jarrell N. C. Kaufman w/o Att. S. T. Kelppe J. L. Liebenthal A. S. Lockhart J. H. Linebarger D. W. Marshall w/o Att. S. Matovich G. D. McPherson J. C. Morrow S. A. Naff N. E. Pace w/o Att. T. F. Pointer G. Rieger P. Schally D. G. Satterwhite w/o Att.

R)	Report No.	1111-65, Rev.	1
	Date:	April 2, 1980	An
	RELEASED	BY LOFT CDCS	sh
	Report N	lo. RE-A-79-120	Rev. 1

USNRC-P-394

INTERNAL TECHNICAL REPORT

Title: LOFT FUEL BUNDLE STRUCTURAL RESPONSE TO MECHANICAL LOADS DURING SUBCOOLED LOCE

NRC Research and Technical

Author: J. S. Martinell/ & Mertinell by RA

(LT

Organization: Applied Mechanics Branch

THIS REVISION COMPLETELY SUPERSEDES ALL PREVIOUS ISSUES OF LTR 1111-65

Approved By: R. C. Guenzler/R.C. Suend Checked By: R. G. Rahl/ RA Rahl Courtesy release to the public on request. cc: J. G. Arendts J. R. Barker (3) This document was prepared primarily for R. C. Guenzler Internal use. Citation or quotation of this M. M. Laughlin (3) document or its contents is incopropriate. J. S. Martinell R. G. Rahl

EGEG Idatio Inc

FORM EG&G-229 (Rev. 01-80) LOFT TECHNICAL REPORT

TITIE LOFT FUEL BUNDLE STRUCTURAL RESPONSE TO MECHANICAL LOADS	LTR No. 1111-65 Rev. 1	
DURING SUBCOOLED LOCE	RE-A-79-120 Rev. 1	
Author J. S. Martinell	Released By LOFT CDCS	
Performing Organization Applied Mechanics Rollmon & 2/15/82	Date April 2, 1980	
A Ban M & Rusell S.a. nellera	M. L. Russell	
LTSD FE&OB Mgr. FD&AB Mgr. LEPD Mgr. RSB M	Agr. See incorporated DRR-L- 4063	

ABSTRACT

A structural analysis of the LOFT type 'A', 'D', and 'E' fuel bundle assemblies was conducted to predict the response to combined axial and lateral loads experienced during the subcooled portion of a 5-inch, 15-msec loss-ofcoolant experiment (LOCE). The fuel bundle assemblies were modeled with a linear elastic finite element technique. Dynamic loads predicted in previous dynamic analyses were applied. Worst case misalignment of the upper and lower end boxes were assumed due to allowable tolerances within the flow skirt. This analysis yields maximum axial deflection, internal loads, and subsequent stress intensities in the fuel bundle structural components.

Results indicate that stresses in the tuel bundle structural components, with the exception of the grid spacer intersection welds, are within ASME Section I I allowable limits for reaction of mechanical dynamic loads. Overconservative assumptions at the spacer grid to fuel rod and guide tube interfaces causes the predicted spacer gird intersection weld stresses to exceed allowable limits. The conservative modeling at the spacer grid to fuel rod and guide tube interfaces does not adversely affect the results for the remainder of the structure.

DISPOSITION OF RECOMMENDATIONS

No disposition required.

RIR/SA per telecon 4.2.80

NRC Research and Technical Assistance Report

TABLE OF CONTENTS

*

1.0	INTR	ODU	CTION	/
2.0	ANAL	YSI	5	8
	2.1 2.2 2.3	Mor For St	del Development ce and Imposed Displacement Development ress Analysis	9 10 11
3.0	RESU	LTS		14
4.0	CONC	LUS	IONS	15
5.0	REFE	REN	CES	16
APPE	NDIX	A	Finite Element Models of Type 'A' and 'D' Fuel Bundles	A-1
APPE	NDIX	в -	Finite Element Model of Type 'E' Fuel Bundle	B-1
APPE	NDIX	С -	Calculations for Maximum Stress Intensities, Loads and Allowables	C-1
APPE	NDIX	D -	Computer Listings of Finite Element Analysis Results	D-1

LIST OF FIGURES

1.	LOFT reactor core	23
2,	Type 'A' fuel bundle assembly	24
3.	Type 'A' fuel bundle cross section	25
4.	Type 'D' fuel bundle assembly	26
5.	Type 'D' fuel bundle cross section	27
6.	Type 'E' fuel bundle assembly	28
7.	Type 'E' fuel bundle cross section	29
8.	Lateral deflection of 'D' type fuel bundle	30
9.	LOFT 'A' and 'D' type fuel bundle models node numbers, Z=0.0	31
10.	LOFT 'A' and 'D' type fuel bundle models node numbers, Z=1.5	32
11.	LOFT 'A' and 'D' type fuel bundle models node	33

10		LTR	IIII 65 REV 1
12.	numbers, Z=31.20	34	
13.	LOFT 'A' and 'D' type fuel bundle models node numbers, Z=46.05	35	
14.	LOFT 'A' and 'D' type fuel bundle models node numbers, Z=60.90	36	
15.	LOFT 'A' and 'D' type fuel bundle models node numbers, Z=62.63	37	
16.	LOFT 'A' and 'D' type fuel bundle models node fixities, Z=0.0	38	
17.	LOFT 'A' type fuel bundle model node fixities, Z=62.63	39	
18.	LOFT 'D' type fuel bundle model node fixities, Z=62.63	40	
19.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=0.0	41	
20.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=0.562	42	
21.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=1.124	43	
22.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=1.686	44	
23.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=2.248	45	
24.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=2.810	- 46	
25.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=3.372	47	
26.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=3.934	48	
27.	LOSIC 'A' and 'D' type fuel bundle models element numbers, X=4.496	49	
28.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=5.058	50	
29.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=5.620	51	
30.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=6.182	52	

		LTR	1111 65
31.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=6.744	. 53	REV 1
32.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=7.306	. 54	
33.	LOFT 'A' and 'D' type fuel bundle models element numbers, X=7.868	55	
34.	LOFT 'A' and 'D' type fuel bundle models element numbers, Z=1.50	56	
35.	LOFT 'A' and 'D' type fuel bundle models element numbers, Z=16.35	57	
36.	LOFT 'A' and 'D' type fuel bundle models element numbers, Z=31.20	58	
37,	LOFT 'A' and 'D' type fuel bundle models element numbers, Z=46.05	59	
38.	LOFT 'A' and 'D' type fuel bundle models element numbers, Z=60.90	60	
39.	LOFT 'A' and D' type fuel bundle models element numbers, Z=0.0	61	
40.	LOFT 'A' and 'D' type fuel bundle models element numbers, Z=1.50	62	
41.	LOFT 'A' and 'D' type fuel bundle models element numbers, Z=16.35	63	
42.	LOFT 'A' and 'D' type fuel bundle models element numbers, Z=31.20	64	
43.	LOFT 'A' and 'D' type fuel bundle models element numbers, Z=46.05	65	
44.	LOFT 'A' and 'D' type fuel bundle models element numbers, Z=60.90	66	
45.	LOFT 'E' type fuel bundle model node numbers, Z=0.0	67	
46.	LOFT 'E' type fuel bundle model node numbers, Z=1.50	68	
47.	LOFT 'E' type fuel bundle model node numbers, Z=16.35	69	
48.	LOFT 'E' type fuel bundle model node numbers, Z=31.20	70	
49.	LOFT 'E' type fuel bundle model node numbers, Z=46.05	71	
50.	LOFT 'E' type fuel bundle model node numbers, Z=60.90	72	

8	nam .	-
14		0
Sec.		93

51.	LOFT	'E	' type	e fue	l bundl	e mode	1 node r	numbers, Z	=62.63		73	REV 1
52.	LOFT	'E	' type	e fue	1 bund1	e mode	1 node f	fixities,	Z=0.0		74	
53.	LOFT	'E	type	e fue	1 bund1	e mode	l node f	fixities,	Z=62.63.		75	
54.	LOFT	١E	' type	e fue	1 bundl	e mode	1 elemen	it numbers	, Column	L	76	
55.	LOFT	'E	type	e fue	1 bund1	e mode	l elemen	t numbers	, Column	к	77	
56.	LOFT	'E	' type	fue	l bundl	e mode	l elemen	t numbers	, Column	J	78	
57.	LOFT	'E'	type	fue	l bund l	e mode	l elemen	t numbers	, Column	I	79	
58.	LOFT	'E'	type	fue	l bundle	e mode	l elemen	t numbers.	, Column	н	80	
59.	LOFT	'E'	type	fue	bundle	e mode	l elemen	t numbers,	, Column	G	81	
60.	LOFT	'E'	type	fuel	bundle	e mode	l elemen	t numbers,	Column	F	82	-
61.	LOFT	'E'	type	fuel	bundle	e mode	lelemen	t numbers,	Column	Ε	83	
62.	LOFT	'E'	type	fue 1	bund le	e mode	lelement	t numbers,	Column	D	84	
63.	LOFT	'E'	type	fuel	bund le	e mode	element	t numbers,	Column	c	85	
64.	LOFT	'E'	type	fue 1	bundle	model	element	numbers,	Column	в	86	
65.	LOFT	'E'	type	fuel	bund le	model	element	numbers,	Column	A	87	
66.	LOFT	'E'	type	fuel	bundle	mode]	element	numbers,	Z=1.50.		88	
67.	LOFT	'E'	type	fuel	bund le	mode]	element	numbers,	Z=16.35		89	
68.	LOFT	'E'	type	fuel	bundle	mode 1	element	numbers.	Z=31.20		90	
69.	LOFT	'E'	type	fuel	bund le	model	element	numbers.	Z=46.05		91	
70.	LOFT	'E'	type	fue1	bundle	mode 1	element	numbers.	Z=60.90		92	
71.	LOFT	'E'	type	fuel	bund le	model	element	numbers.	Z=0.0		93	
72.	LOFT	'E'	type	fuel	bund le	model	element	numbers.	Z=1.50.		94	
73.	LOFT	'E'	type	fuel	bund le	model	element	numbers.	Z=16.35		95	
74.	LOFT	E	type	fuel	bundle	mode 1	element	numbers.	Z=31,20		96	
75.	LOFT	'E'	type	fuel	bund le	mode]	element	numbers.	Z=46.05		97	
76.	LOFT '	E'	type	fuel	bundle	mode1	element	numbers.	Z=60.90.		98	

LTR IIII 65

LIST OF TABLES

1.	Finite Element Model Characteristics	16
2.	Axial Loads and Lateral Deflections Imposed on Models	17
3.	Maximum Axial Displacements and Element Loads	18
4.	Maximum Element Loads	19
5.	Maximum and Allowable Stress Intensities for Reaction of Mechanical Loads by Guide Tubes	20
6.	Maximum and Allowable Stress Intensities for Reaction of Mechanical Loads by Fuel Rods	21
7.	Maximum and Allowable Stress Intensities and Loads for Reaction of Mechanical Loads by Spacer Grid Structures	22

6.

REV IL

1.0 INTRODUCTION

LTR IIII 05

This analysis was performed to demonstrate the structural integrity of the LOFT fuel bundles during loss-of-coolant experiments (LOCE's) as recommended in resolution of comments concerning a previous analyses¹. The analysis includes prediction of the axial displacement and internal loads and stresses for type 'A', 'D', and 'E' fuel bundles subjected to LOCE loads which are calculated in previous analyses^{2,3}. The mechanical response is predicted using the SAP IV⁴ computer code with finite element models of the fuel bundles, as described in Section 2.0. Evaluation of the fuel bundles for mechanical loads is done in accordance with ASME Section III, Subsection NG, of the Boiler and Pressure Vessel Code⁵. Results are presented in Section 3.0 and conclusions are included in Section 4.0.

Detailed illustrations of the models are included in Appendices A and B. Equations used for determining maximum stresses and loads, and allowable stresses and loads are summarized in Appendix C. Finally, computer output for the finite element analysis is included in entirety in Appendix D.

2.0 ANALYSIS

Analysis for prediction of the response of the type 'A', 'D', and 'E' fuel bundles, to maximum loads occuring during subcooled blowdown involved the following:

- (1) development of finite element models of the bundles.
- (2) development of maximum loads and boundary conditions as a result of dynamic loads occuring during a 5"-1 msec cold leg LOCE (subcooled portion only).
- (3) application of loads and boundary conditions to finite element models using the SAP IV computer code to predict displacement response and distribution of loads within the fuel bundle structure.
- (4) reduction of internal loads to stresses and combining stresses to determine stress intensities in fuel bundle structural members.
- (5) evaluation of fuel bundle structural members using allowable stress intensities and loads c⁻¹ ulated from ASME Section III, Subsection NG.

Model development is discussed in Subsection 2.1, and details are presented in Appendices A and B. Development of loads and boundary conditions is presented in Subsection 2.2. The finite element analysis is presented as computer output in Appendix D. Procedures for calculating maximum stress intensities, loads, allowable stress intensities and allowable loads are discussed in Subsection 2.3, with supporting information in Appendix C. REV 1

LTR IIII 65

2.1 Model Development

A cross section of the LOFT reactor core is shown in Figure 1. This analysis concerns response of the type 'A', 'D', and 'E' fuel bundles, as illustrated in Figures 2-7. For detailed discussion of the fuel bundle assemblies, and structural components (guide tubes, fuel rods, etc.), refer to MPR-509⁶, a previous dynamic analysis of the fuel.

The procedures for construction of finite element models of the fuel bundles include:

(1) node placement - nodes are placed at every guide tube to spacer grid interface and every fuel rod to spacer grid interface as well as at the fuel rod ends, and junction of guide tubes to upper and lower tie plates.

Vertical node spacing (along fuel bundle axes) is equal to the distance between grid spacers, and grid spacers to tie plates. Horizontal node spacing (in a cross section at the grid spacers) is equal to the distance between grid strips. Nodes defining the top and bottom of the guide tubes, and the top of the instrumented fuel rods are fixed (i.e., no motion allowed). All other nodes are allowed to move vertically, horizontally in a direction parallel to the minor principal axis of the fuel bundle cross section, and to rotate about the major principal axis of the cross section.

(2) element definition - the structural members of the LOFT fuel bundles are modeled using linear elastic beams. Material and section properties are developed in Appendices A and B. Beam properties for the elements representing guide tubes, instrumented guide tubes, instrumentation tubes, fuel rods, instrumented fuel rods, and dummy half rods are based on cross-sectional properties of single rods or tubes. Beam properties for the elements representing the grid spacer 9

TR III 65

REV 1

strips, springs, and dimples are developed using parallel and/or series linear springs. In addition, a parametric study of the effect of bending stiffness of the modeled grid structure on overall lateral stiffness of a type 'D' assembly was performed. The results, as shown in Figure 8, allowed evaluation of the model's lateral response compared to experimentally determined lateral response⁷. The bending stiffness (about both horizontal axes) of the elements representing the fuel rod to fuel rod interfaces in the model are based on the results of the lateral response comparison, which showed excellent agreement between predicted and experimentally determined lateral response.

(3) boundary conditions - boundary conditions on the models include the node fixities discussed above as well as provisions for applying lateral and axial loads. Axial loads are applied at the top of the guide tubes in a vertical direction. 'Effective' lateral loads are applied by imposing lateral deflections at the spacer grid and lower end box locations with boundary elements. These elements lie in horizontal planes at the spacer grids and lower end box, and define the lateral displacements of the guide tubes in a direction parallel to the minor principal axes of the fuel bundle cross section.

A summary of the type 'A', 'D', and 'E' model characteristics is given in Table 1. A complete model for each type is presented in Appendices A and B.

2.2 Force and Imposed Displacement Development

Loads applied to the finite element models consist of maximum forces predicted for dynamic response of the fuel^{2,3}. These loads are applied simultaneously and statically to the models in an attempt to predict the most severe state of stress which could occur during the dynamic transient. No attempt was made to perform a detailed time history stress analysis accounting for response to less severe loads at varying frequencies. Loads used include:

LTR IIII 65 REV 1

- axial axial loads are applied vertically downward at the top of the guide tubes. Values are summarized in Table 2.
- lateral 'effective' lateral loads on the fuel bundle are (2)imposed by using boundary elements to force the guide tubes into a predetermined shape. This shape is predicted by combining results of lateral dynamic analysis³ with lateral displacements calculated by assuming the fuel bundles are installed so that the upper and lower end boxes are misaliqued by maximum clearance values within the flow skirts. The lateral deflections due to dynamic reponse are taken at a time when moments in the fuel bundle are at a maximum. The lateral deflections due to misalignment are calculated from clearance values on fuel and flow skirt drawings. The combined lateral deflections are summarized in Table 2. Note that two cases exist since values due to dynamic response can be either added or subtracted from the misaligned lateral deflection values. Both cases were examined in this analysis.

2.3 Stress Analysis

Stress analysis of the fuel bundle structural elements involves reducing element axial, shear, and moment loads to stresses and stress intensities for comparison to Section III allowables. For the case of the grid strip intersection welds, allowables consist of both code material allowables, and test load⁸ allowables. Equations for stress analysis and evaluation are summarized in Appendix C. REV 1

LTR 111 65

(7) Results for the 'D' and 'E' type assemblies are representative of the response of the 'B' and 'C' type assemblies as well.

The above constraints provide the means for a conservative approach to predict the response of the fuel assemblies to the worst case mechanical loads associated with a 5"-15 msec cold leg LOCE. Internal loads and stresses within the fuel bundle will be conservative estimates of the actual response.

Predicted axial end bos to end box deformations are;

- (1) type 'A' 0.0097 inch
- (2) type 'D' 0.0079 inch
- (3) type 'E' 0.0053 inch

Maximum loads in the guide tubes, instrumented guide tubes, and instrumentation tubes give rise to stress intensities within Section III code allowables Maximum stresses in the fuel rods, instrumented fuel rods and dummy half rods are also within the allowable limits. However, due to linear modeling of the fuel rod to fuel rod interfaces (i.e., no slippage of rods), and conservative values for shear area and bending stiffness of grid spacer structure, loads transmitted from guide tubes through grid structure to fuel rods are conservatively high. This conservatism leads to prediction of stresses and loads which exceed allowable limits in the grid strip intersection walds. This is judged to be a modeling problem since the predicted loads transferred from the spacer grid to the fuel rods exceed the maximum friction loads which can be carried at the spacer grid spring to fuel rod interfaces. The problem results from modeling the interfaces with single, linear type beam elements used in SAP IV. Adjusting section properties of these beam elements (i.e., shear area and moment of inertia) may lead to less conservative results for the

LTR 111.65 REV 1 grid spacer strip welds. This is not deemed advisable with these models since results may still be overconservative, and/or the change in lateral stiffness of the fuel bundle may be reflected in a poor comparison between predicted and experimentally determined response to lateral loads. 13

REV 1

LTR 1111.65

Reanalysis of the spacer grid strip intersection welds using a more refined model and/or review of existing analysis would be necessary in order to demonstrate structural integrity of the welds. Spacer grid welds will be examined as part of the fuel bundle posttest examination program.

3.0 RESULTS

The results of this analysis include predicted maximum axial displacements, loads, and stress levels in the fuel bundle structural elements for worst case LOFT L1-5 LOCE conditions. The results are summarized in Tables 3-7 as reduced from the SAP IV finite element analysis output included in Appendix D.

Constraints imposed on the fuel bundle models for this analysis include the following:

- response is predicted for the worst combination of dynamic loads, and is assumed to be linear elastic (no permanent deformation is allowed).
- (2) response is predicted assuming lateral motion parallel to the minor principal axes of the fuel cross sections only.
- (3) the upper and lower tie plates and end boxes are assumed rigid and are not allowed to rotate, thus providing a clamped type support for the guide tubes and instrumented fuel rods.
- (4) the interface between the fuel rods and grid spacer structure is modeled using a linear spring, and fuel rods are not allowed to slip vertically.
- (5) loads and stresses are predicted for guide tubes, instrumented guide tubes, instrumentation tubes, fuel rods, instrumented fuel rods, dummy half rods, and grid spacer structure and strip intersection welds for mechanical loads arising from reaction to the worst case dynamic load condition.
- (6) internal loads in the upper and lower tie plates and end boxes are not addressed in this analysis.

14

REV 1

ITR 1111 65

4.0 CONCLUSIONS

The following conclusions are drawn based on the analysis presented herein:

- axial deformations presented in Section 3.0 should be the maximum response to axial dynamic mechanical loads arising during the subcooled portion of a 5"-15 msec LOCE,
- (2) stresses due to combined axial and lateral dynamic mechanical loads are within ASME Section III allowables for the guide tubes, instrumented guide tubes, instrumentation tubes, fuel rods, instrumented fuel rods and dummy half rods in the type 'A', 'D', and 'E' assemblies,
- (3) predicted stresses and loads in the grid spacer strip intersection welds exceed allowables, however, this is due to overconservative model limitations in the grid spacer to fuel rod and guide tube interfaces,
- (4) conservative modeling of the grid spacer to fuel rod and guide tube interfaces does not adversely affect the results for the remainder of the fuel bundle structure. This is because maximum guide tube loads occur at the ends near the upper and lower end boxes, and maximum fuel rod loads occur near the center of the rods. The predicted stress levels are within allowable limits for these components.
- (5) with the exception of the spacer grid welds, the components in the LOFT fuel bundles addressed in this report are structurally adequate to withstand mechanical LOCE loads.
- (6) further analysis of LOFT fuel using the models presented herein is subject to the same limitations at the grid spacer to rod and tube interfaces as discussed above.

15

REV 1

LTR 111.65

16 LTR 1111.65 REV 1

-	-	1000		-	
- 10	n -	D		- C	
10.0	<i>F</i> 4	n.		m -	
18.7			-	have a	

Model Type	Nodes	Degrees of Freedom	Beam Elements	Boundary Elements	Specific Data
'A'	1575	4607	3450	120	Bandwidth = 318, includes instrumented guide tubes and fuel rods
'D'	1575	4645	3450	120	Bandwidth = 318, no instrumented guide tubes or fuel rods
Έ'	623	1837	1354	48	Bandwidth = 255, no instrumented guide tubes or fuel rods

FINITE FLEMENT MODEL CHARACTERISTICS

GENERAL DATA

Guide tubes fixed in rotation about an axes at each end of models

Motion allowed vertically, horizontally in a direction parallel to the minor principal axis of the cross section, and about the major principal axis of the cross section

Upper and lower tie plates and end boxes are assumed rigid (i.e., provide clamped type support of guide tubes).

LTR IIII-65

REV 1

TABLE 2

AXIAL LOADS AND LATER AL DEFLECTIONS IMPOSED ON MODELS

Mar. 4 1	Axial	Guide	Posi*i Along	on	Lateral Def	lection(c)	
Mode I Type	(1b)	Tubes Loaded	Fuel Axis ^b	Clear nce A led	Dynamic Response ^e		
-				8 C	δd	δc - δd	δc + δd ^f
			6	0.0002	-0.0001	0.0003	0.0001
			5	0.0056	0.0003	0.0053	0.0059
			4	0.0114	0.0010	0.0104	0.0124
'A'	235	18	3	0.0163	0.0014	0.0149	0.0177
			2	0.0195	0.0011	0.0184	0.0195
			1	0.0195	0.0011	0.0184	0.0195
			6	0.0003	-0.0002	0.0005	0.0001
			5	0.0082	0.0003	0.0079	0.0085
'D'	191	20	4	0.0168	0.0011	0.0157	0.0179
			3	0.0244	0.0015	0.0229	0.0259
			2	0.0293	0.0012	0.0281	0.0293
			1	0.0293	0.0011	0.0282	0,0293
			6	0.0003	-0.0002	0.0005	0.0001
			5	0.0097	0.0003	0.0094	0.0100
'E'	198	8	4	0.0202	0.0010	0.0192	0.0210
			3	0.0311	0.0014	0.0207	0.0212
			2	0.0417	0.0010	0.0237	0.0325
			1	0.0426	0.0009	0.0407	0.0426

a From axial dynamic analysis (LTR 1111-31), per Guide Tube.

b 6 - Top grid spacer; 5, 4, 3 - Intermediate grid spacers; 2 - bottom grid spacer; 1 - lower end box.

c Relative to upper end box.

d Calculated from fuel and flow skirt drawings.

e From Lateral Dynamic Analysis (LTR 1115-34).

f δ c $^+\delta$ d $<\delta c$ due to contact with the flow skirt.

TABLE 3

MAXIMUM AXIAL DISPLACEMENTS AND ELEMENT LOADS

Model Type	Max. Axial Disp.	Load Type		Guide Tube			Instrumented Guide Tube			Instrumentation Tube		
	(inch)	1910	El. No,	Run ^a No	Load	El. No.	Run No.	Load	El. No.	Run No.	Load	
		Axial (1b)	193	2	239	697	1	233	676	2	24.4	
'A'	0.0097	Shear (1b)	198	2	7.03	697	1	50.7	674	2	1.32	
			Moment (in-1b)	198	2	9.64	697	1	50.7	674	2	10.8
		Axial (1b)	193	2	196	None	1	/	676	2	0.9	
'D'	0.0079	Shear (1b)	240	2	10.3	None	1	1	676	2	0.2	
		Moment (in-1b)	240	2	15.2	None	/	/	676	2	1.7	
		Axial (1b)	199	1	382	None	1	1	None	1	1	
"E'	0.0053	Shear (1b)	199	1	62.5	None	1	1	None	1	1	
		Moment (in-1b)	199	1	56.0	None	1	1	None	1	1	

a Run No. 1 uses lateral deflection calculated by subtracting lateral dynamic response from clearance values (Table 2).

۲

Run No. 2 uses lateral deflection calculated by adding lateral dynamic response to clearance values (Table 2).

REV 1

Model Type		Fuel Rod			Instrumented Fuel Rod			Dummy Half Rod		Gr	Grid Spacer Structure		
	Load Type	El. No.	Run(a) No.	Load	El. No.	Run No	Load	El. No.	Run No.	Load	El. No.	Run No.	Load
'A'	Axial (1b)	207	2	58.8	878	1	42.4	None	1	1	2299	2	4.6
	Shear (1b)	522	2	9,94	330	1	14.9	None	1	1	2299	2	95.8
	Moment (in-1b)	522	2	9.94	330	1	17.8	None	/	7	2299	2	62.6
	Axial (1b)	188	2	48.8	None	1	1	None	/	1	2119	2	0.18
'D'	Shear (15)	689	2	0.20	None	1	/	None	1	1	1520	2	54.5
	Moment (in-1b)	689	2	1,97	None	/	1	None	1	1	1520	2	32,4
*****	Axial (1b)	182	2	32.7	None	/	1	266	1	70.8	985	1	0.34
'E'	Shear (1b)	194	2	0.19	None	7	7	320	1	1.24	993	1	175
	Moment (in-1b)	194	2	1.54	None	1	1	320	1	9.59	993	1	84.3

TABLE 4 MAXIMUM ELEMENT LOADS

(a) See Table 2 footnotes.

LTR IIII-65

TABL	Ξ	5	

MAXIMUM AND ALLOWABLE STRESS INTENSITIES FOR REACTION OF MECHANICAL LOADS BY GUIDE TUBES

	Guide Tubes			Instrumented Guide Tubes			Instrumentation Tube		
Mode 1 Type	(psi) (si) S _a ^(a) 23,300	$P_m + P_b$ (psi) $S_a^{(b)} = 34,950$	$P_{m} = P_{b} + F_{(pSi)}$ $S_{a}^{(c)} = 300,000$	(psi) S _a = 23,300	P _m + P _b (ps1) S _a = 34,950	P _m + P _b + F (ps1) S _a = 300,000	(psi) S _a = 23,300	$p_m + P_b$ (ps1) S _a = 34,950	P _m * P _b * F (psi) S _d = 300,000
A	8,330	11,000	44,000	8,830	30,100	120,400	865	3,550	14,200
D	6,950	11,000	44,000	None	None	None	31.0	512	2,050
'E'	13,550	29,110	116,400	None	None	None	None	None	None

(a) S_a = S_m.

(b) $S_a = 1.5 \times S_m$.

(c) $S_a = 2$ Salt for 200 cycles.

Refer to Section III, ASME Code for Definition of Terms.

LTR IIII-65 REV 1

-	n -	Di	er	10
- 80	Ω.	HCI -	F. 1	6
- 81	rn.	UL.		0.
			-	

MAXIMUM	AND ALLOWABLE STRESS INTENSITIES	FOR
	REACTION OF MECHANICAL LOADS	1 901
	BY FUEL RODS	

	Fuel Rods		Instrum Fuel R	nen ted Rod s	Dummy Half Rods	
Mode 1 Type	P_{m} (psi) (a) S _a = 10,000	$P_{m} + P_{b}$ (psi) (b) S ₂ 15,000	(psi)	$P_m + P_b$ (psi)	P _m (psi)	Pm + Pb (psi)
'A'	1,960	3,470	1 410	$S_a = 15,000$	S _a = 13,400	S _a = 20,100
D'	1,630	1,700	None	None	None	None
E'	1,090	1,340	None	None	770	2,980

a) $S_a = S_m$. b) $S_a = 1.5 \times S_m$.

LTR IIII-65 REV 1

TABLE 7

MAXIMUM AND ALLOWABLE STRESS INTENSITIES AND LOADS FOR REACTION OF MECHANICAL LOADS BY SPACER GRID STRUCTURES

	Spacer Gr	id Structure	Spacer Grid Strip Intersection Welds		
Mode 1 Type	(psi) (a) S _a + 61,700	P _m + P _b (psi) (b) S _a = 92,550	Q (psi) (c) S _a = 185,000	(1b) (d) F _{va} = 108	
' A '	153	9,680	953,000	111	
'D'	6.0	5,500	520,000	63.0	
'E'	11.3	17,680	1,200,000	203	

(a) $S_a = S_m$.

(b)
$$S_a = 1.5 \times S_m$$
.

(c)
$$S_a = 3.0 \times S_m$$
.

(d) F_{va} Based on Exxon Analysis (JN-72-9).

FIGURE 1 LOFT REACTOR CORE CROSS SECTION

BUNDLE ASSEMBLY FUEL

E.

200 - A. K.

FIGURE 4 TYPE

D' FUEL BUNDLE ASSEMBLY

FUEL BUNDLE CROSS SECTION

FUEL BUNDLE ASSEMBLY

SCHOLT

UEL BUNDLE CROSS SECTION

FIGURE & LATERAL DEFLECTION OF 'D' TYPE FUEL BUNDLE

461510

Kor 10 x 10 TO THE CENTIMETER 10 x 10 CM

LTR IIII 65

FIGURE 9 LOFT 'A'+'D' TYPE FUEL BUNDLE MUDELS

NODE NUMBERS, Z= 0.0

32 LTR 1111.65

REV 1

FIGURE 10 LOFT 'A' +'D' TYPE FUEL BUNDLE MODELS

NODE NUMBERS, Z= 1.50

33 LTR IIII-65

REV 1

FIGURE 11 LOFT 'A' + D' TYPE FUEL BUNDLE MODELS NODE NUMBERS, Z = 16.35

LTR 111.65 REV 1

FGHI

J

K

L

M

N

CDE

A

в

NODE NUMBERS, Z= 31.20

34

ø

LTR IIII.65

REV 1

FIGURE 13 LOFT 'A'+'D' TYPE FUEL BUNDLE MODELS NODE NUMBERS, Z = 46.05

. .

FIGURE 14 LOFT 'A'+'D' TYPE FUEL BUNDLE MODELS NODE NUMBERS, Z=60.90

36

FIGURE 15 LOFT 'A' +'D' TYPE FUEL BUNDLE MODELS

NODE NUMBERS, Z = 62.63

38

NODE FIXITIES, Z= 0.0

A 15

FIGURE 17 LOFT 'A' TYPE FUEL BUNDLE MODEL

NODE FINITIES , Z=62.63

REV 1

Y

A 15

40

÷

56

FIGURE 34 LOFT 'A' + 'D' TYPE FUEL BUNDLE MODELS

ELEMENT NUMBERS, Z= 1.50

LTR III.65

REV 1

FIGURE 35 LOFT 'A' + D' TYPE FUEL BUNDLE MODELS ELEMENT NUMBERS, Z = 16.35

A15

58

ABCDEFGHIJKLMNØ

FIGURE 36 LOFT 'A' + D' TYPE FUEL BUNDLE MODELS ELEMENT NUMBERS, Z = 31.20

LTR 1111-65 REV 1

FIGURE 37 LOFT 'A' +'D' TYPE FUEL BUNDLE MODELS

ELEMENT NUMBERS, Z = 46.05

60

FIGURE 38 LOFT 'A'+'D' TYPE FUEL BUNDLE MODELS ELEMENT NUMBERS, Z = 60.90

LTR IIII.65

REV 1

FIGURE 39 LOFT 'A' + 'D' TYPE FUEL BUNDLE MODELS

PAP.

ELEMENT NUMBERS, Z= 0.0

FIGURE 40 LOFT 'A' +'D' TYPE FUEL BUNDLE MODELS ELEMENT NUMBERS, Z = 1.50

Y

FIGURE 41 LOFT 'A' +'D' TYPE FUEL BUNDLE MODELS

A.S.

ELEMENT NUMBERS, Z= 16.35

FIGURE 42 LOFT 'A' +'D' TYPE FUEL BUNDLE MODELS ELEMENT NUMBERS, Z= 31.20

64

LTR IIII-65

FIGURE 43 LOFT 'A' +'D' TYPE FUEL BUNDLE MODELS

ELEMENT NUMBERS, Z= 46.05

FIGURE 44 LOFT 'A' + 'D' TYPE FUEL BUNDLE MODELS

ELEMENT NUMBERS, Z= 60.90

LTR 111.65

67

REV 1

FIGURE 45 LOFT 'E' TYPE FUEL BUNDLE MODEL NODE NUMBERS, Z = 0.0

FIGURE 46 LOFT 'E' TYPE FUEL BUNDLE MODEL

NODE NUMBERS, Z = 1.50

FIGURE 47 LOFT 'E' TYPE FUEL BUNDLE MODEL NODE NUMBERS, Z = 16.35

FIGURE 48 LOFT 'E' TYPE FUEL BUNDLE MODEL

NODE NUMBERS, Z = 31.20

LTR 1111-65

71

REV 1

FIGURE 49 LOFT 'E' TYPE FUEL BUNDLE MODEL NODE NUMBERS, Z = 46.05

.

FIGURE 50 LOFT 'E' TYPE FUEL BUNDLE MODEL

NODE NUMBERS, Z = 60.90

LTR IIII-65

73

REV 1

FIGURE 51 LOFT 'E' TYPE FUEL BUNDLE MODEL NODE NUMBERS, Z = 62.63

Par

FIGURE S! LOFT 'E' TYPE FUEL BUNDLE MODEL

NODE FIXITIES , Z = 0.0

74 .

A F

C

D

ε

F

FIGURE 53 LOFT 'E' TYPE FUEL BUNDLE MODEL

NODE FIXITIES 7 = 62.63

COLUMN L

COLUMN K

COLUMN I

COLUMN G

COLUMN E

COLUMN D

NJ ELEMENT NUMBERS, 486 485 484 483 482 481 492 482 478 483 SHG 205 ŝ 504 464 200 201 FUEL BUNDLE MODEL FIGURE 63 LOFT 'E' TYPE 62.63--06.09 1.50-3120-16.35-4.05-

67

LTR IIII-65 REV 1

U

COLUMN

86

COLUMN

N ELEMENT NUMBERS 526 S24 528 527 525 523 534 533 532 231 530 529 DAR FUEL BUNDLE MODEL FIGURE 65 LOFT 'E' TYPE -06.09 1.50-16.35-3120-62.63-44.05-0.0

LTR IIII-65 REV 1

<

COLUMN

FIGURE 66 LOFT 'E' TYPE FUEL BUNDLE MODEL

ELEMENT NUMBERS, Z = 1.50

FIGURE 67 LOFT 'E' TYPE FUEL BUNDLE MODEL

ELEMENT NUMBERS, Z = 16.35

ABCDEFGHIJKL

FIGURE 68 LOFT 'E' TYPE FUEL BUNDLE MODEL

ELEMENT NUMBERS, Z = 31.20

FIGURE 69 LOFT 'S' TYPE FUEL BUNDLE MODEL

ELEMENT NUMBERS, Z = 46.05

FIGURE 70 LOFT 'E' TYPE FUEL BUNDLE MODEL

ELEMENT NUMBERS, Z = 60.90

FIGURE 71 LOFT 'E' TYPE FUEL BUNDLE MODEL ELEMENT NUMBERS, Z = 0.0

LTR 1111-65 REV 1

F

C

FIGURE 72 LOFT 'E' TYPE FUEL BUNDLE MODEL

ELEMENT NUMBERS, Z = 1.50

94

L

K

LTR IIII.65

L

K

REV 1

I

J

H

A

В

C

D

ε

F

G

FIGURE 73 LOFT 'E' TYPE FUEL BUNDLE MODEL

ELEMENT NUMBERS, Z = 16.35

FIGURE 74 LOFT 'E' TYPE FUEL BUNDLE MODEL

ELEMENT NUMBERS, Z = 31.20

A

В

C

D

ε

FIGURE 75 LOFT 'E' TYPE FUEL BUNDLE MODEL ELEMENT NUMBERS, Z = 46.05

FIGURE 76 LOFT 'E' TYPE FUEL BUNDLE MODEL

ELEMENT NUMBERS, Z = 60.90

5.0 REFERENCES

- B. F. Saffell, Jr., Letter to File, SAFF-37-76, Resolution of Comments on MPR-509, November 8, 1976.
- B. F. Saffell, Jr., <u>Dynamic Analysis of the LOFT Reactor Fuel</u> <u>Modules for Subcooled Blowdown Loads</u>, LTR 1111-31, December 21, 1976.
- T. R. Thompson, <u>Mechanical Analysis of LOFT Reactor Internals Due</u> to Loss-of-Coolant Experiments, LTR 1115-34, April 28, 1977.
- K. J. Bathe, E. L. Wilson, F. E. Peterson, <u>SAP IV, a Structural</u> <u>Analysis Program for Static and Dynamic Response of Linear</u> <u>Systems</u>, EERC 73-11, Earthquake Engineering Research Center, University of California, Berkely, California, June 1973.
- ASME Boiler and Pressure Vessel Code, Section III, Subsection NG, 1974.
- Report of LOFT Fuel Module Dynamic Analysis, Vol. I and Vol. II, MPR-509 (March 1976).
- <u>LOFT Fuel Assembly Strength Test, Test Report</u>, XN-74-28, Exxon Nuclear Company, Inc., July 15, 1974.
- "Aerospace Structural Metals Handbook, Vol. IIA, Non-Ferrous Heat Resistant Alloys," Alloy Code 4103 (Inconel 718).
LTR IIII.65 REV 1

APPENDIX A

.

FINITE ELEMENT MODELS OF TYPE 'A' AND 'D' FUEL BUNDLES

APPENDIX A

FINITE ELEMENT MODELS OF TYPE 'A' AND 'D' FUEL BUNDLES

Included in this Appendix is a summary of material and section properties for beam elements in the type 'A' and 'D' fuel bundle models as well as complete summary of models in Figures 9-44.

- Guide tubes, instrumented guide tubes, instrumentation tube (304 L stainless)
 - E = 28.3 x 10⁶ psi (modulus of elasticity) v = 0.3 (Poisson's ratio)

(density)

- A = 0.0282 in² (neglects slots) (cross-sectional area)
- $A_{shear} = 0.0 \text{ in}^2$ (shear area) J* = 1.967 x 10⁻³ in⁴ (polar moment of inertia)
- $I_2^* = 9.837 \times 10^{-4} \text{ in}^4$

 $= 0.295 \text{ lb/in}^3$

D.

(moment of inertia about element axis 2)

- I_3 * =9.837 x 10⁻⁴ in⁴ (moment of inertia about element axis 3)
- * calculated from mean dimensions, neglects slots

LTR IIII 65 REV 1

A-2 . LTR IIII 65 REV 1

(2) Fuel rods, instrumented fuel rods (Zr - 4)

E =
$$13 \times 10^{6} \text{ psi}$$

v = 0.3
p = 1.618 lb/in³ (includes fuel weight)
A = 0.0306 in²
A_{shear} = 0.0 in²
J = 1.204 × 10⁻³ in⁴
I₂ = 6.02 × 10⁻⁴ in⁴
I₃ = 6.02 × 10⁻⁴ in⁴

(3) Grid spacer structure (fuel to fuel interface) parallel to lateral deflection

$$= 29.6 \times 10^6$$

1

0

= 0.3

(distributes weight of grid structure evenly in elements)

$$A_{S2} = 0.0248 \text{ in}^2 = \frac{A}{1.2}$$

 $A_{S3} = 0.0 \text{ in}^2$

A-3 LTR 1111 55 REV 1

$$= 1.0 \times 10^{-8} \text{ in}^4$$

J

 $I_2 = 1.0 \times 10^{-8} \text{ in}^4$ $I_3 = 1.0 \times 10^{-6} \text{ in}^4$ beam not loaded in these directions

from overlay of analytical model and experimental response to 50 lb lateral load (XN-74-28)

 (4) Grid spacer structure (guide tube and instrumented fuel rod to fuel interface) parallel to lateral deflection (Inconel 718)

E = 29.6 x 10⁶ psi

v = 0.3

p = 0.349 lb/in³

(distributes weight of grid structure evenly in elements)

A = 0.0298 in²
A_{S2} = 0.0248 in² =
$$\frac{A}{1.2}$$

A_{S3} = 0.0 in²
J = 1.0 x 10⁻⁸ in⁴
I₂ = 1.0 x 10⁻⁸ in⁴

beam not loaded in these directions

$$I_3 = 2.16 \times 10^{-3} \text{ in}^4$$

based on load being carried in grid structure between welded tubes with at most three fuel rods between

(5) Grid spacer structure (all locations) direction normal to lateral deflection (Inconel 718)

E	= 29.6 x 10 ⁶ psi	
v	= 0.3	
p.	= 0.349 lb/in ³	(distributes weight of grid structure evenly ir
		elements)
A	= 0.0298 in ²	
A _{S2}	= 0.0248 $in^2 = \frac{A}{1.2}$	
A _{S3}	= 0.0 in ²	
J	$= 1.0 \times 10^{-8} \text{ in}^4$	(no load)
I ₂	$= 2.35 \times 10^{-3} \text{ in}^4$	(based on I = ξ_{I_0} + ξ_{Ad^2})
I ₃	$= 2.16 \times 10^{-3} \text{ in}^4$	(same as I ₃ for previous case)

LTR III 65 REV 1

LTR IIII 65 REV 1

APPENDIX B

FINITE ELEMENT MODEL OF TYPE 'E' FUEL BUNDLE

LTR III 65 REV 1

APPENDIX B

FINITE ELEMENT MODEL OF TYPE 'E' FUEL BUNDLE

This Appendix includes a summary of material and section properties for beam elements, and a complete summary of the type 'E' model in Figures 45-76.

(1) Guide tubes (304 L stainless)

= 28.3 x 10⁶ psi

= 0.3

E

ŵ.

b.

= 0.295 lb/in³

 $A = 0.0282 \text{ in}^2$

 $A_{shear} = 0.0 \text{ in}^2$

 $J = 1.967 \times 10^{-3} \text{ in}^{4}$ $I_{2} = 9.84 \times 10^{-4} \text{ in}^{4}$

 $I_3 = 9.84 \times 10^{-4} \text{ in}^4$

calculated from mean dimensions

(2) Fuel rods (Zr - 4)

A

E = $13. \times 10^6$ psi v = 0.3p = 1.618 lb/in^3

(includes fuel weight)

 $= 0.0306 \text{ in}^2$

B-2 LTR IIII 65 REV 1

$$\begin{cases} A_{shear} = 0.0 \text{ in}^{2} \\ J = 1.204 \times 10^{-3} \text{ in}^{4} \\ I_{2} = 6.02 \times 10^{-4} \text{ in}^{4} \\ I_{3} = 6.02 \times 10^{-4} \text{ in}^{4} \\ \end{cases}$$

$$\begin{array}{c} \text{calculated from mean} \\ \text{dimensions} \\ \end{array}$$

$$\begin{array}{c} I_{3} = 6.02 \times 10^{-4} \text{ in}^{4} \\ I_{3} = 6.02 \times 10^{-4} \text{ in}^{4} \\ \end{array} \\ \end{array}$$

$$\begin{array}{c} \text{calculated from mean} \\ \text{dimensions} \\ \end{array}$$

$$\begin{array}{c} I_{3} = 6.02 \times 10^{-6} \text{ psi} \\ v = 0.3 \\ \end{array} \\ \begin{array}{c} I_{2} = 8.3 \times 10^{6} \text{ psi} \\ I_{3} = 1.07 \times 10^{-3} \text{ in}^{4} \\ \end{array} \\ \begin{array}{c} I_{3} = 1.07 \times 10^{-3} \text{ in}^{4} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{calculated from mean} \\ \text{dimensions} \\ \end{array} \\ \begin{array}{c} I_{2} = 8.3 \times 10^{-4} \\ I_{3} = 1.07 \times 10^{-3} \text{ in}^{4} \\ \end{array} \\ \end{array} \\ \begin{array}{c} I_{3} = 1.07 \times 10^{-3} \text{ in}^{4} \\ \end{array} \\ \end{array} \\ \begin{array}{c} I_{3} = 0.349 \text{ lb/in}^{3} \\ 0 \text{ (distributes grid structure weight evenly)} \\ I \\ A \\ \end{array} \\ \begin{array}{c} I_{3} = 0.0298 \text{ in}^{2} \\ I_{3} \\ \end{array}$$

B-3 LTR IIII 65 REV 1

A _{S3}	= 0.0 in ²	
J	$= 1.0 \times 10^{-8} \text{ in}^4$	(not loaded in this direction)
1 ₂	$= 2.35 \times 10^{-3} \text{ in}^4$	(based on I = Z I ₀ + Z Ad ²)
I ₃	= 1.0 x 10 ⁻⁶ in ⁴	(see fuel to fuel location in Appendix A)
Grid str (Inconel	ucture (guide tube to fuel 718)	rod locations)
E	= 29.6 x 10 ⁶ psi	
v	= 0.3	
ρ	= 0.349 lb/in ³	(distributes grid structure weight evenly)
А	= 0.0298 in ²	
A _{S2}	= 0.0248 in ² = $\frac{A}{1.2}$	
A _{S3}	= 0.0 in ²	
J	= $1.0 \times 10^{-8} \text{ in}^4$	(not loaded in this direction)
I ₂	= 0.00235 in ⁴	(based on I = ≾ I _o + 초 Ad ²)
I ₃	$= 2.16 \times 10^{-3} \text{ in}^4$	(see guide tube to fuel rod location in Appendix A)

(5)

(6)	Grid stru (Inconel	rid structure (dummy half rod to dummy half rod) Inconel 718)		
	E	= 29.6 x 10 ⁶ psi		
	v	= 0.3		
	Q	= 0.349 lb/in ³	(distributes grid structure weight evenly in elements)	
	A	= 0.0298 in ²		
	A _{S2}	= 0.0 in ²		
	A _{S3}	$0.0248 \text{ in}^2 = \frac{A}{1.2}$		
	J	$= 1.0 \times 10^{-8} \text{ in}^4$	(no load)	
	1 ₂	= 0.0076 in ⁴	$\left(\frac{bh^3}{12} \text{ for grid}\right)$	
	I3	$= 1.0 \times 10^{-8}$ in 4	(no load)	

B-4

LTR IIII 65

REV 1

APPENDIX C

CALCULATIONS FOR MAXIMUM STRESS INTENSITIES, LOADS, AND ALLOWABLES

APPENDIX C

CALCULATIONS FOR MAXIMUM STRESS INTENSITIES, LOADS, AND ALLOWABLES

This Appendix summarizes the equations used for predicting stresses and loads, as well as allowables for the fuel bundle structural components. (Refer to MPR-509 for calculations.)

(1) Guide Tubes (304 L stainless, 20% cold worked)

$$P_{m} = \frac{Axial load}{Area} = \frac{F_{A}}{0.0282} \qquad (primary membrane stress)$$

$$P_{b} = \frac{Moment}{Section Modulus} = \frac{M}{0.0036} \qquad (primary bending stress)$$

$$T = \frac{Shear Load}{Section Shear Modulus} = \frac{F_{V}}{0.00706} \qquad (shear stress)$$

$$S_{m} = 23,300 \text{ psi } @ 650^{\circ}\text{F} \qquad (design stress intensity)$$

Salt = 150,000 psi (200 cycles) (alternating stress intensity)

(2) Instrumented Guide Tubes (304 L stainless, 20% cold worked)

$$P_{m} = \frac{F_{A}}{0.0264}$$

 $P_{b} = \frac{M}{0.0032}$
 $\tau = \frac{F_{V}}{0.00352}$
 $S_{m} = 23,300 \text{ psi } @ 650^{\circ}\text{F}$

Salt = 150,000 psi (200 cycles)

LTR IIII 65 REV 1 (3) Instrumentation Tubes (304 L stainless, 20% cold worked)

 $P_m = \frac{F_A}{0.0282}$ $P_{b} = \frac{M}{0.0036}$ $\tau = \frac{F_V}{0.00706}$ S_m = 23,300 psi @ 650⁰F Salt = 150,000 psi (200 cycles) (4) Fuel Rod (standard and instrumented) (Zr - 4) $P_{m} = \frac{F_{A}}{0.030}$ $P_{b} = \frac{M}{0.00285}$ $\tau = \frac{F_V}{0.0076}$ $S_{m} = 20,000 \text{ psi } @ 720^{\circ}\text{F} (coid worked)$ $S_{m} = 10,000 \text{ psi } @ 720^{\circ}\text{F} (annealed)$ (5) Dummy Half Rod (304 L stainless, annealed) $P_{m} = \frac{F_{A}}{0.0917}$ $P_{b} = \frac{M}{0.00393}$ $\tau = \frac{F_V}{0.0175}$ P_m = 13,400 psi @ 700°F

C-2

LTR IIII 55

REV 1

LTR III 55 REV 1

(6) Grid Spacer Structure (Inconel 718) $P_{m} = \frac{F_{A}}{0.030}$ $P_{b} = \frac{M}{0.0087}$ $\tau = \frac{F_{V}}{0.0198}$ $S_{m} = 61,700 \text{ psi @ }700^{\circ}\text{F}$

(7) Grid Strip Intersection Welds

(internal load due to axial force)

Assumes axial load and moment equally carried at guide tube interfaces with top and bottom of grid spacer strip

$$F_{M} = \frac{M}{1.75}$$

 $F_A = \frac{F_A}{2}$

(internal load due to moment)

$$F_{i} = F_A + F_M$$

 $\sigma = 75,000 \left(\frac{F_T}{3}\right)$ (stress in weld)

 a^{σ} = 3Sm = 185,000 psi @ 700° F (allowable stress)

(8) Grid Strip Intersection Welds (shear load in model)

 $F_{eq} = \frac{F_V}{12} \times 13.9$ (equivalent load in weld)

LTR IIII 65 REV 1

C-4

(allowable equivalent load in weld)

 $F_{eqA} = 108$ 1b 0 600°F

LTR IIII 65 REV 1

APPENDIX D

COMPUTER LISTINGS OF FINITE ELEMENT ANALYSIS RESULTS

APPENDIX D

COMPUTER LISTINGS OF FINITE ELEMENT ANALYSIS RESULTS

Included in this Appendix are microfiche copies of the finite element analysis results for use in determining axial displacement and maximum loads and stresses in the type 'A', 'D', and 'E' fuel bundle assemblies.

LOFT A Assembly, Run 1 (JZMAB17)*

LOFT D Assembly, Run 1 (JZMDB2M)

LOFT E Assembly, Run 1 (JZMEB6D)

LOFT A Assembly, Run 2 (JZMABQ2)

LOFT D Assembly, Run 2 (JZMDBRB)

LOFT E Assembly, Run 2 (JZMEBQW)

NOTES: (1) Run 1 includes lateral displacement formed by subtracting dynamic response values from clearance values at maximum end box misalignment.

Run 2 includes lateral displacements formed by adding the dynamic response values to the clearance values at maximum end box misalignment.

(2) These runs were made on the CDC 7600 on a module called SAP4LCM. The FORTRAN source copy for this module is attached.

* Job name on microfiche.

LTR IIII 65 REV 1

LTR IIII 65

REV 1

TABLE 1

FINITE ELEMENT MODEL CHARACTERISTICS

Model Type	Nodes	Degrees of Freedom	Beam Elements	Boundary Elements	Specific Data
'A'	1575	4607	3450	120	Bandwidth = 318, includes instrumented guide tubes and fuel rods
'D'	1575	4645	3450	120	Bandwidth = 318, no instrumented guide tubes or fuel rods
'Ε'	623	1837	1354	48	Bandwidth = 255, no instrumented guide tubes or fuel rods

GENERAL DATA

Guide tubes fixed in rotation about all axes at each end of models

Motion allowed vertically, horizontally in a direction parallel to the minor principal axis of the cross section, and about the major principal axis of the cross section

Upper and lower tie plates and end boxes are assumed rigid (i.e., provide clamped type support of guide tubes).

D-2

COMPUTER OUTPUT RUN 1

