# A Methodology for Evaluating Safeguards Capabilities for Licensed Nuclear Facilities <br> - Final Report 

Harold A. Bennett, M. Teresa Olascoaga, Sandia National Lal -ratories Alan Sicherman, Gary Smith, Woodward-Clyde Consultants

Printed March 1980
U. S. NUCLEAR REGULATORY COMMISSION 8005290006

## NOTICE

> This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

The views expressed in this report are not necessarily those of the U. S. Nuclear Regulatory Commission

Available from<br>GPO Sales Program

Division of Technical Information and Document Control
U.S. Nuclear Regulatory Commission Washington, D.C. 20555
and
National Technical Information Service Springfield, Virginia 22161

```
    NUREG/CR-1381
    SAND80-7`28
Unlimited kelease
```

A METHODOLOGY FOR EVALUATING SAFEGUARDS CAPABILITIES FOR LICENSED NUCLEAR FACILITIES - FINAL REPORT

H. A. Bennett, M. T. Olascoaga<br>Sandia National Laboratories Albuquerque, NM 87185<br>A. Sicherman, G. Smith Woodward-Clyde Consultants San Francisco, CA 94111

Date Published: March 1980
Submitted by
Woodward-clyde Consultants
San Francisco, CA 94111
under
Contract Document No. $13-2215$
to
Sandia National Laboratories
Albuquerque, New Mexico 87185
operated by
Sandia Corporation
for the
U.S. Department of Energy

Prepared tor
Division of Safeguards
Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission

Washington, DC 20555
Under Interagency Agreement DOE 40-550-75
NRC FIN No. Al 153
ABSTRACT
This report describes work performed by Woodiward-clyde Consultants under contract to Sandia Laboratories for assistance in the development and implementation of an evaluation methodology. This methodology was developed to aid the NRC in its evaluation of fixed-site physical protection syster performance relative to the Physical Protection Upgrade Rule, 10 CFR Part 73.45
Section Page
1.0 EXECUTIVE SUMMARY ..... 1-1
1.1 Tasks ..... 1-2
1.2 Summary ..... 1-8
1.3 Outline of Report ..... 1-11
2.0 TECHNICAL SUMMARY OF EVALUATION METHODOLOGY ..... 2-1
2.1 Introduction ..... 2-1
2.2 Component Evaluation ..... 2-6
2.3 Low Level System Task (Performance Characteristic) ..... 2-14
Evaluation
2.4 Higher Level Aggregation, Delay/Response and ..... 2-15
Multiple Access Points
2.5 Capabilities Evaluation ..... 2-18
3.0 IMPLEMENTATION GUIDELINES ..... 3-1
3.1 Introduction ..... 3-1
3.2 Development of Hiprarchies ..... 3-1
3.? Development of Questionnaires ..... 3-3
3.4 Assessing Weights and Agrregation Rules: ..... 3-5
Introduction
3.5 Assessing Weights and Aggregation Rules ..... 3-6for Questions on Component Questionnaires
36 Interpretation of Component Scores and Ag- ..... 3-12gregation Parameters
3.7 Assessing Aggregation Rules for Higher Level ..... 3-14Elements of the Hierarchy
Section Page
4.0 SAFEGUARDS EVALUATION COMP UTER PROGRAM ..... 4-1
4.1 Introduction ..... 4-1
4.2 Use of the Evaluation Program ..... 4-2
4.3 Example of Algorithm and Computer Program Use ..... 4-14
5.0 SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK ..... 5-1
5.1 Strengths of the Methodology ..... 5-1
5.2 Limitations of the Methodology ..... 5-3
5.3 Recommendations for Future Work ..... 5-4
6.0 GLOSSARY ..... $6-1$
APPENDIX AI FUNCTIONAL FORM FOR SAFEGUARDS EVALUATIO: ..... Al-1ALGORITHM
APPENDIX A2 ASSESSING ALGORITHM PARAMETERS ..... A2-1
APPENDIX A3 COMPUTER PROGRAM DOCUMENTATION ..... A3-1
APPENDIX A4 DATA FOR EVALUATION EXAMPLE ..... A4-1
Table ..... Page
2-1 COMPONENT SCORING FORMULAS ..... 2-13
4-1 DATA BASE DEFINITIONS ..... 4-8
A3-1 PROGRAM ROUTINES AND DATA FILES ..... A3-3
LIST OF FIGURES
Figure Page
1-1 HIERARCHY FOR SAFEGUARDS EVALUATION ..... 1-3
2-1 COMPONENT SELECTION MATRIX EXAMPLE ..... 2-2
2-2 ADVERSARY PATH ..... 2-21
3-1 SYSTEM QUESTIONNAIRE EXAMPLE: MULTIPLE SENSORS ..... 3-16
3-2 EXAMPLE QUESTION TO AID IN ASSESSING A DELAY- ..... 3-17 RESPONSE TYPE SCORE
4-1 MNEMONICS FOR ALGORITHM EXAMPLE ..... 4-16
4-2 READING IN THE HIERARCHY STRUCTURE ..... 4-17
4-3 COMPUTING QUESTIONNAIRE SCORES ..... 4-18
4-4 DISPLAYING QUESTIONNAIRES ..... 4-19
4-5 HIERARCHY DISPLAY ..... 4-20
4-6 HIERARCHY GRAPHICAL DISPLAY ..... 4-22
4-7 AGGREGATION EXIMPLE ..... 4-24
6-1 DISAGGREGATION STRUCTURE ..... 6-2
Sandia Laboratories contracted with Woodward-Clyde Consultants (WCC) to assist in developing a methodology for evaluating safeguards capabilities at licensed nuclear facilities. The total effort was divided into two phases. Phase I was concerned primarily with the development of a preliminary evaluation algorithm. The results of this effort were described in [1]. Phase II which is reported here was devoted to completing and refining the algorithm. The evaluation $m$ thodology is to aid in the implementation of new NRC regulations (the Physical Protection Upgrade Rule), which are designed to upgrade the physical security of fuel cycle facilities. The methodology could also be used to provide guidance to licensees in meeting the safeguard system capability requirements.
Five perfo mance capabilities ${ }^{1}$ of physical protection systems were specified by ie NRC in the Physical Protection Upgrade Rule, 10 CFR Part 73.45, paragraphs (b) - (f):

1. Prevent unauthorized access of persons and materials into Mater al Access Areas (MAAs) and Vital Areas (VAs).
2. Permit orly authorized activities and conditions within Protected Areas (PAs), MAAs, and VAs.

[^0]3. Permit only authorized placement and movement of Strategic Special Nuclear Material (SSNM) within MAAs.
4. Permit remuval of only authorized and confirmed forms and amounts of SSNM from MAAs.
5. Provide for authorized access and assure detection of and response to unauthorized penetration of the PA.

To evaluate these five capabilities in a logical manner, the disaggregation structure shown in Figures 1-1 (1) through 1-1 (5) was developed by Sandia Laboratories with the cooperation of the NRC. WCC was to assist in formulating an algorithm by which individual safeguard system component (equipment and/or procedure) assessments could be combined into a meaningful score or series of scores indicating the total adequacy of safeguards at a particular facility.
1.1 TASKS

Foir tasks were specified by Sandia Laboratories for Phase II.

Task 1: Assist Sandia personnel in defining the remaining performance characteristics not defined in Phase $I$.

Task 2: Assist Sandia in developing the remaining effectiveness test questionnaires (for assessing particular components) not defined in Phase I.

Task 3: Assist Sandia personnel in developing the remaining component combination scoring rules not developed in Phase I for jobs identified in single performance characteristics.

Figure 1 -1 (2)

Figure $1-1$ (3)

Figure $1-1$ (4)



A FUNCTIONAL HIERARCHY FOR PROPOSED RULE PART 73.45 in

Task 4: Assist Sandia personnel in developing che aggregat ${ }^{\circ} \mathrm{m}$ algorithm in detail and provide an illustration of its implementation using h;oothetical data provided by Sandia.

An ANSI standard FORTRAN computer program which would exercise the aggregation algorithm was to be provided.

WCC was to furnish a comprehensive document describing the algorithm and its development. Detailed guidelines for implementing the algorithm were to be provided along with documentation and instructions on the use of the computer program.

### 1.2 SUMMARY

The work done by WCC focused on the following areas:

- Providing an algorithm for combining component questionnaire responses to obtain an overall component effectiveness score.
- Providing an algorithm fur combining component effectiveness scores to obtain an overall score for the performance characteristic for which the components wore selected.
- Providing an algorithm for combining delay/response type scores.
- Providing an algorithm for combining the higher levels of the hierarchy for any particular porformance capability.
- Providing a computer program for synthesizing these algorithms to evaluate portions of or an entire performance capability.
- Providing implementation guidelines for the entire methodology.
- Providing recommendations for future work.

Each of these areas is now briefly summarized.

1. Aggregating Component Questionnaire Responses

A methodology for aggregating questionnaire responses has been developed (primarily in Phase I) that is logical and defensible and yet practical to implement. The basic aggregation formula has a theoretical basis in both utility and probability theory, thus aiding defensibility. The evaluator's task is simplified by only requiring responses to multiple choice questions that concern the description of the component. The methodology allows for individual weighting of questions to reflect their relative importance and also for varying types of interaction (e.g., non-additive, additive) among question responses to yield an overall score for any individual component. The basic formula can also be used at higher levels of the evaluation hierarchy.

## 2. Aggregating Components to Evaluate Performance Characteristics

A methodology that indicates how several components coordinate with each other in addressing a performance characteristic has been developed. An evaluator answers multiple choice questions that determines how the component scores should be combined. The evaluator's responses can reflect facility dependent implementation of components.

## 3. Aggregating Delay/Response Type Scores

A methodology that allows for the direct comparison of delay times and response, monitoring, or assessment times has been developed to allow meaningful evaluations of delay/response type elements of a safeguard system.

## 4. Aggregating Higher Levels of the Hierarchy

The same methodology elements developed for the lower levels of the hierarchy are used to complete the evaluation of the hierarchy. Such aspects as multiple access points are addressed in these aggregations.
5. Computer Program Implementation

A computer program that performs the safeguards evaluation computations has been developed. The program takes as input questionnaire and hierarchy formats and the evaluator's responses to the multiple choice questionnaires. The program computes the scores for all components, performance characteristics and higher level elements of a capability hierarchy. It provides for sensitivity analysis on questionnaire weights and responses, and on the interaction of hierarchy elements. The pragram is interactive and has hierarchy display features.
6. Methodology Implementation Guidelines

Guidelines for developing component questionnaires, and assessing scoring rules and weights have been developed. Data requirements for the algorithm are specified and ways of interpreting evaluation and sensitivity analysis results are described.
7. Recommendations for Future Work

Suggestions for improving the implementation of the algorithm are presented. Ways of extending the algorithm to combine capabilities across facility area boundaries (e.g., PA and MAA) to evaluate an overall safeguards capability are discussed. Limitations of the methodology and general approach are reviewed.

All of these points are discussed in detail in the various sections and appendices of the report.

## 1. 3 OUTLINE OF REPORT

Section 2 of this report contains a technical summary of the general methodology. Section 3 contains a discussion of how the methodology is implemented. Section 4 describes the computer program that performs the computations specified by the algorithm. A single capability for a safeguards facility using hypothetical data is evaluated to provide an illustration of how the algorithm and computer program work. Section 5 contains a critical summary of the methodology and recommendations for future work. The appendices provide supplementary technical information and data used in the computer example.

### 2.1 INTRODUCTION


#### Abstract

In order to address the specifics of the Physical Protection Upgrade Rule the capabilities hierarchy (or disaggregation structure) shown in Figures $1-1(1)$ through $1-1(5)$ was developed by the NRC and Sandia Laboratories. Each of the five performance capabilities is treated as a separate objective, with its own independent hierarchy or disaggregation structure.


The upper level of each separate structure is the performance capability, as specified by the NRC Upgrade Rule. These are followed by system functions, which a system must perform in order to meet the specified capability. The major functions are further broken down into system subfunctions, which identify specific tasks to be performed by the system.

Each system subfunction is isaggregated into specific low-level system tasks which form the lowest level of the hierarchy. Performance characteristics relate these low-level system tasks to components. These performance characteristics correspond to the rows of the Component Selection Matrices (Figure 2.1 ), while the columns of the matrix represent specific components (equipment and procedures). Thus the Component Selection Matrices describe what approaches (equipment and procedures) are acceptable to perform specific tasks (performance characteristics).


WCC's contract required that a set of aggregation schemes or algorithms be developed with which one could work back up the nierarchy to arrive at a single score for each capability. To do this, individual components (the lowest hierarchy level) must be assigned an overall score based on evaluators' responses to questionnaires. In the case of equipment, this single score must reflect such factors as general pcrformance, installation, maintenance, reliability, and vulnerability. For procedures, the score should encompass aspects of craining, vulnerability, and contingencies. All of these issues ar』 addressed in the component questionnaires.

Once each component has received a score, scores for those components that address an individual performance characteristic must be aggregated to arrive at a single score for the appropriate low-level system task via the performance characteristic. Continuing up the hierarchy, scores on low-level system tasks are combined into system subfunction scores, which are then aggregated into system function scores, and finally, into an overall score for each performance capability.

## General Aggregation Concepts

To be practical in terms of input requirements, an algorithm needs to operate with input consisting of subjective responses (using descriptive multiple choice response scales) to a large number of questions. Specifically, there are questionnaires for each component or procedure and system questionnaires addressing the interaction between low-level tasks and between components.

Care must be taken when using the responses to these questions. A practical evaluation algorithm cannot require information that is unrealistic to obtain from these questionnaire responses. Because of the large number of questions and their potential modifications, it also should not require a lengthy calibration procedure for each question.

In addition, the rarge of possible responses to these questions is not uniform, and the questions can differ in $r{ }^{\circ}$ lative importance.

Within these practical constraints, an algorithm must still produce meaningfui results. The computational rules and assumptions must not be arbitrary. The algorithm should be capable of providing the correct answer where inputs and their interactions are precisely known, since this is a primary means of checking the reasonableness of the algorithm.

Because of the need ior meaningful and defensible results, it is desirable to use aggregation schemes based on well-developed methodologies. Two such nethodologies are multiattribute utility analysis (decision analysis), and probability analysis. The former provides mechanisms for aggregating multiple criteria into a single overall score, and is particularly useful when subjective considerations are involved. Probability analysis also specifies how to derive a measure for a system in terms of its components and their interactions.

In the safeguards problem, both decision analysis and probability analysis appear desirał 1 . The latter addresses the probability that the system will perform adequately in the event of specific types of adversary actions. This must be the underlying concern when evaluating capabilities and when characterizing interactions between system elements. Individual component successes or failures have different impacts on the probability of total system success or failure depending on system interactions. An algorithm should produce meaningful results if probabilities and system interactions (e.g., fault trees) could be specified. On the other hand, the requirements for practical inputs using subjective questionnaires and responses make it too restrictive to assume that such probabilities can be derived from the input data. The input may be related to probabilities but a direct quantitative relationship cannot be assumed. An alternate approach is to combine
subjective scales using decision analysis preference functions. These do not need to assume a one-to-one correspondence between response scales and probabilities, but rather reflect judgments as to the relative comparison of alternative components and systems. Still, it is desirable that if the probabilities were actually known, the scheme used to combine scores would give the correct results.

The algorithms to be presented in the following paragraphs are based on aggregation rules specified by decision analysis under certain assumptions. The assumptions are made in order to make the implementation procedures as practical as possible, hopefully without omitting any important features of the problem. These assumptions could be relaxed, but more calibration effort would be required. The aggregation models used allow for differential weightings of elements, and can reflect different interactions among elements. The results of the aggregation can be used as part of a logical and consistent judgmental comparison of alternative systems. In addition, the algorithms to be presented yield the correct results when certain assumptions and actual probabilities are used in the computation. Thus the aggregation logic can be interpreted using probability notions as well as preference concepts. The use of both analytical approaches helps to give the algorithm its practical and defensible characteristics.

The algorithms for the specific types of aggregations required to evaluate a capability hierarchy will now be individually discussed. For each case, the algorithm is described in terms of what features can be reflected by the computation. Implementation guidelines, discussed in Section 3 of this report, include further discussion of how certain parameters are assessed and interpreted.

### 2.2 COMP ONENT EVALUATION

The algorithm for evaluating components was developed in Phase I and is discussed in detail in the Phase I report [1]. The discussion here reviews the main assumptions and results.

The response scale for each individual question on a component questionnaire is considered to be an attribute or measure. These measures have been developed with an orientation towards aspects of a component that can hinder its performance. The highest response on a question connotes that the factor being considered will not be compromised because of the particular component. A lower response connotes that the factor will have a certain degree of compromise depending upon the range of the response scale. The methodology allows a scaling parameter or weight to be applied to each question. This weight essentially normalizes response scales whose ranges cause them to differ in relative importance. For implementation practicality, relative preferences over individual response scales are assumed to be linear. We now define the following notation for question "i":

```
\(X_{i}=\) unadjusted question response normalized to go between 0 and 1.
\(W_{i}=\) weight asigned to reflect total range of the response scale.
\(S_{j}=\) adjusted question response or question score.
```

The formula connecting these three quantities is:

$$
S_{i}=1-W_{i}\left(1-X_{i}\right)
$$

where all three quantities are restricted to the range between 0 and 1 as a scaling convention, with 1 being the best. ${ }^{1}$ Note that if $X_{i}=1$

[^1]then $S_{i}=1$ and if $X_{i}=0$, then $S_{i}=1-W_{i}$. Thus, only if $W_{i}=1$, can $S_{i}=0$. $W_{1}=.2$, for example, implies a minimum possible score of $S_{i}$ equal to .8. Thus, a question with little importance with respect to a particular factor can have only a small effect on the score.

The scores for the questions can be thought of as simplified single-attribute utility functions that have been normalized so that they have equal importance. For a particular group of N attributes, we will make the assumption that they are mutually utility independent. ${ }^{2}$ The results of multiattribute utility theory [2] allows us (if certain assumptions are made) to define an overall group score S normalized between 0 and 1 as:

$$
\begin{equation*}
S=c \sum_{i=1}^{N} S_{i}+K C^{2} \sum_{i=1}^{N} \sum_{j>i} S_{1} S_{j}+\ldots+k^{N-1} c^{N} \prod_{i=1}^{N} S_{1} \tag{1}
\end{equation*}
$$

where $1+K=(1+K C)^{N}$
If we define $V=K C$ then

$$
\begin{equation*}
S=\frac{1}{K}\left[v \sum_{i=1}^{N} S_{i}+v^{2} \sum_{i=1}^{N} \sum_{j>1}^{N} S_{i} S_{j}+\ldots+v^{N} \prod_{i=1}^{N} S_{i}\right] \tag{3}
\end{equation*}
$$

where $K=(1+V)^{N}-1$

This leaves us with only one scaling constant $(V)$ to evaluate.

[^2]Before proceeding further, however, we briefly review the results to this point. The necessity of handling large numbers of questions and questionnaires imposes a practicality constraint on the complexity of the aggregation algorithm that can be realistically used. The assumpt. uns leading to the above formula essentially allow us to decompose the problem into considering individual questions somewhat in isolation and then to combine the results. With all the simplified assumptions, the algorithm still reflects the key aspects of the importance range of the questions via the $W_{i}$ and the way in which factors interact via V. Decision analysis enables the use of the formula above to compare different sets of responses. A set with $t$. higher score is preferred to one with a lower score. The consequences of assigning different values of $V$ with respect to both peference and probability interpretations will now be examined. In the discussion to follow, the entire set of questions for a particular component will be referred to as belonging to one group with a single interaction coefficient $V$. A general case of considering each component questionnaire as a "mini hierarchy" in itself will be discussed in Section 3 under implementation guidelines.
A. $V=0$. If we take limits as $V+0$ in (3) we get $S=\sum_{1=1}^{N} S_{i} / N$.

Thus the overall score $S$ is the mean of the individual scores. This is appropriate if an individual score makes the same incremental contribution to component quality regardless of the fixed levels of the other scores. It is also appropriate if the component behaves in a way such that one factor is chosen at random, and the component as a whole succeeds or fails on the basis of the one factor.
B. $V=-1$. If we substitute $V=-1$ into (3) we get

```
    N
\(S=1-\Pi\left(1-S_{1}\right)\).
\(i=1\)
```

This is appropriate if each factor can substitute completely for another factor in order for the component to work. A factor contributes incrementally more when other factors are low (e.g., this one is needed) than when other factors are high (this one is not really needed).

In fault tree theory, this is interpreted as the computation for an $O R$ gate. If $S_{i}$ is the probability that the factor associated with question $i$ works, and the overall component works if any of the individual factors works, then the probability of overall sucess is given by $S$.

```
C. V+\infty. If we take limits as V+\infty, we get
    N
    s}=|\mp@subsup{\textrm{s}}{1}{}
    i=1
```

This is appropriate if a stor contributes incrementally more when other factors are high rather than low, and does not contribute at all if any of the other factor scores is zero.

In fault tree theory, this is as the computation for an AND gate. In this case, every factor must succeed for the overall component to succeed.
D. $V=1$. If we substitute $V=1$ into (3) we get
$S=\frac{1}{{ }_{2} N_{-1}}\left[\sum S_{i}+\sum_{i=1}^{N} \sum_{j>1} S_{i} S_{j}+\ldots+\prod_{i=1}^{N} S_{i}\right]$
$=\frac{1}{2^{N}-1}\left[\prod_{1=1}^{N}\left(S_{i}+1\right)-1\right]$

In examining (5) (if the $S_{i}$ are assumed to be appropriate probabilities, e.g., factors are mutually probabilistically independent or the $S_{i}$ are appropriate conditional probabilities) it can be seen that this is the average of the probabilities that each factor succeeds in a particular subset of the $\mathrm{S}_{i}$ taken over all possible subsets. Thus S can be interpreted as the probability that all factors will succeed in a subset of the $S_{i}$ chosen at random. This is appropriate if the factors are related in a way that requires success on each, but it is possible that not all will be relevant in a given situation. This situation represents an intermediate case between the AND gate $(V=\infty)$ where all factors are always relevant and the average ( $\mathrm{V}=0$ ) where exactly one factor (chosen at random) determines the outcome. We will call this case a "soft AND" gate.

$$
\begin{align*}
& \text { E. } V=-1 / 2 \text {. If we substitute } V=-1 / 2 \text { into (3) we get } \\
& S=\frac{1}{2^{N}-1}\left[\sum_{1=1}^{N}\left(1-\left(1-S_{1}\right)\right)+\sum_{\substack{1=1, n \\
j>1}}\left(1-\left(1-S_{1}\right)\left(1-S_{j}\right)\right)+\ldots+\left(1-\prod_{1=1}^{N}\left(1-S_{i}\right)\right)\right] \tag{7}
\end{align*}
$$

$$
\begin{equation*}
=\frac{2^{N}}{2^{N}-1}\left(1-\prod_{i=1}^{N}\left(1-1 / 2 S_{1}\right)\right. \tag{8}
\end{equation*}
$$

In examining (7) it can be seen that this is the average of the probabilities that at least one factor succeeds over all possible subsets of the set $\left\{S_{i} \mid i=1, \ldots, N\right\}$. The value $S$ can be interpreted as the probability of at least one success in a subset chosen at random. This is an appropriate rule if the factors can substitute for each other but it is possible that not all factors will be relevant in a given situation. This represents an intermediate case between the strict OR calculation ( $V=-1$ ), where all factors are relevant and the average $(V=0)$, which can be interpreted as only one factor chosen at random being relevant. We will call this case a "soft OR" gate.

Thus as the constant $V$ ranges from -1 to infinity, the scoring formula (3) covers a complete range of possible factor interactions. The most severe is when questions must all have high scores for an overall high score $(V=\infty)$. The least severe is when a high score on any question gives a high overall score $(V=-1)$. For $-1<V<\infty$ there is a complete range of intermediate interactions including the mean when $V=0$. These possible interactions have the property that if $V>V^{\prime}$, then $S<S^{\prime}$. As the constant $V$ increases, the score from its related formula decreases. Thus $V$ can be interpreted as a "strength of interrelation" coefficient that ranges from complete redundancy ("parallel circuitry") $V=-1$ Lo complete interdependence ("series circuitry") at $V=\infty$.

The set of algorithms using the 5 values of $V$ just described is the basis for the aggregation scheme that is used to evaluate component questionnaires and different levels of the capability hierarchy. In principle, the parameters involved in calibrating the evaluation formula can be assessed rigorously, both by multiattribute utility theory methods and/or probability modeling. In practice, less involved calibration methods can be employed as are discussed in Section 3 .

In sumary, the important features to note about the component evaluation algorithm are:

1) The formula can be derived axiomatically from a set of clearly stated assumptions and is defensible in being theoretically sound from a preference function viewpoint.
2) The formula reflects the key concepts of weighting questions based on their ranges as to importance and of allowing for a variety of interaction between factors. Although simplified
for practical impiementation, the formula still provides much flexibility with respect to modeling safeguard features.
3) The formula can yield the correct results when exact probabilities are known and substituted into the computation formula, given that the fault-tree like gates are assumed appropriate from a probabilistic viewpoint.

Table 2-1 simmarizes the algorithm for evaluating components.

Table 2-1. COMP ONENT SCORING FORMULAS

$$
S_{i}=1-w_{i}\left(1-x_{i}\right)
$$

$$
\mathrm{N}=\text { number of questions }
$$

v
Formula
Interpretation

$$
-1 \quad S=1-\prod_{i=1}^{N}\left(1-s_{1}\right)
$$

N
$-1 / 2$
$S=\left(\prod\left(1-1 / 2 S_{i}\right)-1\right) /\left(2^{N} /\left(2^{N}-1\right)\right)$ $1=1$

0

$$
S=\sum_{i=1}^{N}\left(S_{i}\right) / N
$$

Average

$$
\mathrm{N}
$$

1
$s=\left(\prod\left(S_{1}+1\right)-1\right) /\left(2^{N}-1\right) \quad$ Soft AND Gate $1=1$

$$
=\prod_{1=1}^{N}
$$

$$
\infty \quad s=\prod\left(s_{1}\right)
$$

AND Gate

### 2.3 LOW LEVEL SYSTEM TASK (PERFORMANCE CHARACTERISTIC) EVALUATION

Because of the flexibility of the set of aggregation rules described in Section 2.2 , it is possible to use these same rules to aggregate scores all the way up to the top of the hierarchy. A performance characteristic evaluation consists of taking the scores of several components and aggregating them to get an overall score. The con; onents themselves may interact with each other in a fashion analogous to the way factors interact as described in Section 2.2. In general, it is not possible to select an interaction rule independently of the specific components and facility features involved. It is also desirable that an evaluator or designer should not have to select an interaction coefficient but rather, as with components, provide responses to some multiple choice questions. "System effectiveness test questionnaires" are used to decide what type of inter ction is appropriate for a particular combination of components. This concept of system questionnaire will now be discussed in more detail.

Just as there are factors that affect how a component performs, so there are system factors that affect the way a combination of components performs. Questions can be developed that address each particular system factor. Since they are multiple choice, they are given weights. An interaction rule that is generic to system factors can be selected (e.g. soft AND) and an overall "compatibility" score can be computed for any set of components. This score can be interpreted in a consistent preference function viewpoint manner to determine an appropriate interaction rule with which to combine component effectiveness scores. Appendix Al discusses this interpretation in more detail. Thus, evaluators can use system test questionnaires to provide input to the algorithm as to which interaction rule is most appropriate for combining component effectiveness scores to produce an overall score for a low-level system task. (Section 3 will discuss the implementation of
system questionnaires in more detail.) An example of several components performing a low-level system task can be multiple sensors to detect boundary penetrations. If each sensor is independent and they act as substitutes for each other (high redundancy or "parallel circuitry") a system questionnaire would indicate that their component scores should be oRed together to produce an overall score for the low-level system task. (Of course, certain performance characteristics may not require system questionnaires if it appears that a fixed interaction rule can be assigned; e.g., multiple components always soft $O R$ for a particular characteristic.)

The system effectiveness test qut stionnaire is also a possible format for factoring in supplementary information about a facility where that is necessary for evaluation. Such information can include features not addressed by any particular component questionnaire but still necessary to properly evaluate a performance characteristic. In this case, the systen questionnaire is analogous to a component questionnaire where some of the questions involve using calculated scores for other components. The system questionnaire can also contain questions pertaining to delay/response type scores and multiple access points, when it is natural to do so in terms of the subject matter in rolved in the questionnaire. These issues are the subject of the following paragrap's.

## 2. 4 HICAER LEVEL AGGREGATION, DELAY/RESPONSE AND MULTIPLE ACCESS POINTS

At higher levels in the hierarchy, the aggregation should proceed in a straightforward manner. Since the hierarchy is fixed in advance, the appropriate interaction for combining low level task scores into subfunction scores etc., into an overall capability score can be specified before a evaluation is made. Since these hierarchy elements are more generic in nature, the interaction rule for combining elements should not require system questionnaires.

There are two aggregation issues, however that need further discussion. These are multiple access point type concerns and delay-response type evaluations. Multiple access points refers to the fact that different parts of the facility can each be viewed individually with respect to certain elements of the generic hierarchy. These parts then need to be aggregated together. For example, in the "Prevent Unauthorized Access of Persons and Introduction of Material into the MAA" capability hierarchy, one segment refers to denying access through the remaining (non-portal) area boundary. If a building forms part of the boundary, possible access points could include windows, walls, floors, roofs, vents, etc. Each of these access points may have its own sensor system. Conceptually, the algorithm can treat each access point individually and then use an interaction rule to combine the scores of all access points. Thus, the hierarchy segment on denying access through the area boundary could multiply into denying access through walls, floors, vents, etc. In practice (see Section 3) it may be possible to avoid subdividing the boundary into many smaller units and thus avoid proliferating hierarchy elements. These same concepts just discussed can apply to multiple portals, or multiple MAAs, etc.

The second issue requiring discussion is the evaluation of delayresponse, delay-detect, delay-assess relationships of a facilty. (Hereafter, delay-response will be used as an example. The treatment is analogous for all three). For delay-response components or procedures, two types of information are provided in the component questionnaires. The first type is subjective or qualitative information that refers to evaluating the generic implementation of delay or response components. This information is somewhat component independent, For example, in implementing a barrier for delay, there are a set of questions that help evaluate how well the barrier has been installed. These questions need not refer to the material of which the barrier is made or how much of a delay the barrier provides. The second type of
information is quantitative. It consists of a mean and range of delay times depending upon the type of barrier and type of adversary tools used. Delay-response type components differ from others in this quantitative aspect. With other components and with the "implementation" portion of delay-response components, the basic evaluation concept is one of whether the component "works or doesn't work". With delay and response, however, a "good response" really depends on how much delay is available. Thus a mechanism is needed whereby delay and response times can be compared before an evaluation of a delay-response hierarchy element can be done.

The algorithm provides for such a comparison during the evaluation in the following manner. First, the "qualitative" portion of each delay-response component is scored in the usual manner. Then, at the part of the hierarchy requiring an evaluation of the delay and response, the evaluator is asked to compare the quantitative delay times and response times provided by the system. In theory, this comparison can be done in a variety of ways ranging from using detailed probability models to a subjective preference judgement (Section 3 discusses one way of implementing this comparison using a multiple choice question). The result of the comparison is a score reflecting how well the basic design of the delay-response system works. If actual probabilities could be obtained, this score could be the probability that the delay time is greater than or equal to the response time. From a preference viewpoint, a score between 0 and 1 would be an indication of the utility of the delay-response system relative to some best and wozst systems.

The design score or rating described in the last paragraph is then combined with the implementation scores of the delay-response components using one of the possible interaction rules. For example, if the "lard AND" rule were selected, one interpretation could be that if either the implementation , ff delay or response fails, (e.g. faulty implementation


#### Abstract

cruses the barrier to be essentially ineffective), or the basic design fails because the response forces would not arrive in time, the entire delay-response element fails. A "soft AND" rule could be interpreted as providing for such possibilities as an adversary not realizing that a barrier could be negated by a particular tool or the deterrence value of a response force that may cause an adversary to flee rather than attempt access even though the access might be successful.


For the cases of multiple barriers or response forces, a preference interpretation would allow the combination of implementation scores for the like multiple components via a system questionnaire that would specify an aggregation rule depending upon how well the multiple components coordinated with each other. Sums of delay times could then be compared to response times to arrive at a system design score and the computation would proceed as above. A detailed probability interpretation or computation for multiple barriers recomes fairly complev This issue is discusssed further in Section 3 of this report.

In summary, the algorithm provides mechanisms for dealing with the delay-response evaluation in a manner that allows for explicit comparison of delay times with response times.

### 2.5 CAPABILITIES EVALUATION

The previous discussion described the methodology for developing a score for a single capability hierarchy. The disaggregation structure with its five capabilities or objectives directly corresponds to the NRC's Physical Protection Upgrade Rule. As the hierarchies stand, each capability is evaluated independently of the others. Several issues that pertain to evaluating overall safeguards capabilities with respect to this disagregation structure are discussed in the following paragraphs.


#### Abstract

Multiple Objectives In one sense, the structure implicity overdesigns for physical security by evaluating each capability independently of the others. For example, in preventing theft, the only capability that must be arhieved in an absolute sense is, "Permit removal of only authorized and confirmed forms and amounts of SSNM from MAAs." Thus, theoretically it might not matter if the facility fails to "prevent unauthorized access of persons and materials into MAAs and VAs" as long as no unauthorized SSNM is permitted to leave the MAA. However, separate evaluation of capabilities implies that the ability to prevent unauthorized access is important independent of the ability to prevent theft. Thus, the five capabilities represent multiple objectives for a safeguards syetem rather than a single prevent theft (or sabotage) objective. Multiple objectives call address important policy issues. For instince, in order to decrease the amount of risk as perceived Dy the public, a facility can be evaluated on how well it prevents unauthorized access to the PA and MAA--not only on how well it ultimately prevents theft and sabotage.


The algorithm that has been developed currently provides separate scores only for each of the five capabilities. The particular disaggregation structure was provided as a "given" with the requirement for independent evaluation. Section 5 of this report discusses recommendations for combining capabilities.

## Types of Adversary

An adversary may be an outsider or an insider with respect to certain areas of the facility, where "outsider" implies that either stealth or force would have to be used in order to gain access to that area. For example, a guard at the PA boundary would be an insider with respect to the PA, but an outsider with respect to the MAA (i.e., access not permitted). The nature of the adversary will
determine which saf ~ urds can first be expected to be needed. For example, $-\eta$ insider wit respect to the PA (but not the MAA) whose purpose is theft vill have access to the entire protected area. Thus procedures a.. equi pment associated with entry through the PA boundary will be ineffective in stopping an insider with respect to the PA from gaining access to the PA. However, boundary controls at the MAA should be effective, as should procedures and equipment for preventing removai of SSNM from the PA boundary. The importance of the type of adversa:y and its effect on detection and the timeliness of a response is shown in the adversary path diagram of Figure $2-2$.

An cggregation scheme for evaluating overall safeguards can be complicated by consideration of different types of adversaries. For example, to evaluate how well a facility prevents theft by an outsider would seem to require knowing how well it prevented unauthorized access to the PA and MAA. The current disaggregation structure does not ma re an explicit formal connection between capabilities. kather, the implication is that of an adversary attempt ariginating (for all practical purposes) in the particular area addressed by the particular hierarchy with the requirement of preventing the attempt before it succeeds in involving another capability. This condition appears to be reasonable for, say, an MA. insider with respect to moving SSNM. But it becomes awkward to consider the "permit only authorized placement and movement of SSMM within MAAs" hierarchy for the case of an outsider who has arrived there by force. Since the hierarchy treats the attempt as beginning inside the MAA, it is much more natural to view the attempt as coming from an apparent insider and thus have questionnaires tailored to that situation.

The previous discussion serves to describe some of the complexities of safeguards evaluation. It may be desirable to decompose the problem by evaluating separate independent capabilities. This separation may have connotations concerning "overdesigning security"

and "typical threats". While overall safeguards evaluation seems to require combining capabilities, the possible consideration of multiple adversary "modes of attack" (stealth, force, deceit and combinations there of), insider-outsider combinations, adversary tools and pathways can make this a difficult task. Section 5 discusses what types of information can be reasonably expected from a "disaggregation structure-questionnaire" evaluation method in view of the practical constraints on the method's implementation and the complexity of the evaluation.

### 3.1 INTRODUCTION

The previous section described the methodology in terms of its capabilities for aggregating safeguard system elements. The algorithms that were developed are flexible enough in terms of the parameters provided to reflect a variety of element interrelationships. This section describes guidelines for the implementation of the methodology in terms of techniques for setting the required parameters. The discussion does not focus on what specific material shoulc be contained in component questionnaires or capability hierarchies. Rather, guidelines are given concerning the general nature of questionnaires and hierarchies and how information in a particular format can be used in a practical manner to assess algorithn parameters. The previous section described the algorithm in a somewhat bottom to top order reflecting the actual computation that would be done. In "starting from scratch," a capabilities hierarchy would be formulated first and probably revised after the lower levels had been defined in a firstcut manner.

### 3.2 DEVELOPMENT OF HIERARCHIES

The objectives of a safeguard system are defined and the objectives or capability hierarchies developed to indicate how well any particular system achieves those objectives. This kind of evaluation structure is typical of multiobjective evaluation problems. There are some general guidelines for developing these hierarchy structures and these are now discussed.

Typically, hierarchy development proceeds by subdividing a major objective into subobjectives and continuing this process until a fine enough subdivision has occurred so one can evaluate in a specific fashion the lowest level subobjective. The safeguards hierarchies exhibit a natural subdivision of objectives corresponding to different portions of a nuclear facility that continues down until the component level is reached.

Some desirable properties for such hierarchies are the following:

Completeness: All of the essential features of the system are addressed.

Non-Redundancy: The hierarchy should not double-count by aggregating more than once how a system achieves the same subob lective.

Reasonable Size: The hicrarchy should not proliferate both vertically and laterally to where features are being examined that cuuld more usefully be lumped together or ignored.

Operational: The structure should have a logical flow from bottom to top so that knowing the bottom levels enables one to proceed easily to evaluate higher levels.

There is not necessarily any unique way of developing a structure for a particular problem. The structure to be used can depend on the evaluation orientation that is desired. In the safeguards evaluation problem, there are at least two orientations that seem useful. One is a fault-tree like orientation from either a facility or an adversary viewpoint. This orientation focuses on sequences that must take place for the safeguard system to succeed or fail in achieving a particular objective. The strength of this approach is in the strong direction it provides in terms of how elements should be aggregated. However,
it must be recognized that the nature of the evaluation information may not enable a fault-tree type analysis to be conducted. Analogs to probabilities and conditional probabilities may not be readily obtainabie from very qualitative data or it may be too difficult to begin modeling a complex system using probability related computations. A second orientation is one of a checklist of all the features recognized as important to a safeguard system. The strength of this approach is its focus on completeness. Aggregations, however, may need to be done on a more subjective basis since the grouping of elements may not be done with a strong aggregation emphasis in mind. In practice, a hierarchy may contain a blend of both orientations.

### 3.3 DEVELOPMENT OF QUESTIONNAIRES

A questionnaire can be viewed as a mini-hierarchy that relates fairly specific features that can be assessed by an evaluator to an overall objective of having a component or procedure work as well as possible. As a hierarchy, the same guidelines that were discussed in Section 3.2 apply to questionnaires as well. However, because questionnaires are at the most specific level of the hierarchy, more specific guidelines can be discussed.

Each question on a questionnaire addresses a specific factor related to how well a component works. To make evaluations practical and consistent, each question has a response scale consisting of a set of multiple choices. The questions should be complete in addressing all important factors, non-redundant in not double-counting the same factor effect on the component and minimal in number so that very minor or irrelevant questions are weeded out.

Each specific question response scale should have the following desirable properties:

Comprehensiveness: The score on the scale should adequately reflect the component performance relative to the factor in question. The scale should be applicable in most situations and for most adversary actions.

Operational: The scales should minimize ambiguity by providing a) a sufficient number of possible responses to discriminate between most situations, b) meaningful scale point definitions that include examples for each point on the scale and use specific quantitative units where possible.

The scales may be objective such as "inches of clearance" or subjective such as a series of examples of different features that may be absent or present. Proxy scales may also be used such as "number of drills held per year" as a proxy for response force training.

For algorithm purposes, it is also desirable that response scales be defined so that the following are reasonable approximations:

Linearity of preferences over the scale responses. If two responses are almost equally desirable they should be put as alternatives for the same scale point. Extreme responses that connote an unacceptable facility should not be on a scale but rather should be noted separately for mandatory remedial action.

Utility and Preferential Independence Assumptions Hold (see Appendix Al). These are assumptions underlying the algorithm computations. In general, if the response scales do not include extreme points, these assumptions are more reasonable.

The previous discussion on hierarchies and questionnaires provide suggestions for developing structures that are anenaide to formal evaluation by the methodology. The following paragrapis discuss techniques for calibrating the parameters of the aggregation algorithms.

### 3.4 ASSESSING WEIGEIS AND AGGREGATION RULES: INTRODUCTION

The aggregation of any group of "elements", in general, requires $t$ wo types of parameters to be set. For each element a weight ( $W_{1}$ ) can be assigned to indicate its relative importance. Then an "interaction coefficient" (v) is assigned to the group as a whole. Ideally, these parameters wuld be assessed using formal techniques of utility theor, or subjective probability. However, due to the large number of assessments to be made, some simplified procedures are described both in the remainder of this section and in Appendix A. 2 .

The general procedure for implementing the algorithm is as follows:

1. Divide elements into groups such that the elements in any particular group can be aggregated using one rule.
2. Assign a weight (this can be a relative weight) to each element.
3. Assign aggregation rules for each group of elements and calibrate each group's evaluation function.

Note that in general, the term "element" above could range from being a question on a questionnaire to a higher level hierarchy box. Techniques for assessing weights and aggregation rules for different elements of the hierarchy will now be discussed.

### 3.5 ASSESSING WEIGHTS AND AGGREGATION RULES FOR QUESTIONS ON COMPONENT QUESTIONNAIRES

## Divide the Questions into Groups.

Sections 3.2 and 3.3 have already discussed how a questionnaire can be viewed as a mini-hierarchy. Conceptually, an objectives structure can be developed using the notions of "checklists" and/or "fault-trees." The groupings of questions for assigning an interaction rule need not exactly correspond to the groupings of questions for checklists, although maintaining two sets of mini-hierarchies can be confusing. The Phase I report [1] contains an example of a fault-tree for a hypothetical component questionnaire. In practice, due to the large number of questionnaires and the prospect of their revision after some trial implementati ns, all questions can be grouped togethe: in one single group for assigning an interaction coefficient. If the ranges on response scales are not too extreme, this approximation can be a reasonable one.

Assign Weights and an Aggregation Rule.

Conceptually, from the multiattribute utility point of view, all weights and the interaction rule are assessed relative to the best and worst levels of each of the questions on a questionnaire. There are techniques for assessing relative weights for different questions as well as an overall "interaction" constant. [2] The use of typical techniques, however, becomes difficult because of the size of the safeguards assessment problem. There are, on the average, about fifteen questions per questionnaire and on the order of one hundred questionnaires. The questionnaires can conceivably be modified further as the algorithm is tested (see Section 5). Also, because component questionnaires are used as input to higher levels of the hierarchy, keeping in mind the
ranges of a ayriad of questions when assessing upper level parameters
becomes very complex.

To assess parameters in a practical yet systematic manner, techniques to be described shortly have been formulated. They allow relative weights to be assigned quickly and require, one assessment question per questionnaire to consistently link the interaction coefficient with the determination of absolute weights. (When all questions on such questionnaires are assumed to have the same relative weight, this is the only question that needs to be asked to calibrate the entire questionnaire evaluation function.)

The assessment techniques recognize that there are two natural performance level "ranges" to be considered when assessing parameters. The first is the range between the highest and lowest possible responses to a question. The weight $W_{i}$ must reflect this range for a meaningful parameter calibration. The second is the implicit range that is natural when considering assigning an interaction rule. In this case, one cannot easily keep in mind all the varying question ranges. However, the endpcints of "component is not compromised" (best point) and "component is ineffective" (worst point) provide a somewhat "standardized" range that can be considered in assigning an interaction rule. The assessment techniques to follow connect these two ranges in a logical manner. Question weights are assigned to reflect the relative importance of questions based on their response scale ringes. An interaction rule is assigned based on the best-worst endpoints and is tied into determining the absolute weights for each question.

## Assign Relative Weights.

As was discussed earlier, rigorous utility theory techniques for assessing relative weights are not practical for tne safeguards problem.

A pructical procedure for assigning relative weights to individual questions emphasizes distinguishing between relatively important and unimportant questions. The procedure is as follows:

For each question the following heuristic is posed: What is the maximum possible degradation of component quality that can occur as a result of changing from a maximum to a minimum response to the question?

1. A severe degradation in quality could occur, rendering the component ineffective in performing its function.
2. A moderate degradation in quality could occur, resulting in a likelihood that the component would be ineffective.
3. Only a minor degradation in quality could occur, with the component still likely to function properly.
4. A very minor degradation in quality could occur, with only a minimal effect on component quality.

Note that the weight is assigned on the basis of the range between the highest and lowest possible responses to the question. For example if $a$ question has five possible responses (a-e) the question should b: assigned a weight on the basis of the relative desirability of a com ponent with a response of "a" versus one with a response of "e."

The content of this question should be such that influence from other questions or components is ignored. For example, if answers to other questions can aggravate an effect, they should be thought of as being at their best levels. If answers to other questions can mitigate an effect, they should be thought of as being at their worst values.

It remains to assign the relative $W_{1}$ to be associated with the response to the above heuristic. Reasonable values might be (1) $W_{1}=1$, (2) $W_{i}=.5,(3) W_{i}=.25$, and $(4) W_{i}=.1$. Note that technically, at this stage, these $W_{i}$ are relative and could all get multiplied by a constant depending on the interaction rule assessment.

In practice, one might choose to treat all the questions as being of roughly equal importance. This is more reasonable after relatively minor questions have been deleted. In this case, one can proceed directly to the next step, which is assessing the interaction rule and absolute weight.

Assign Interaction Coefficient and Absolute Weights.

A question for determining the interaction coefficient for a group of questions is as follows:

In general, how do the factors interact with one another?

1. They interact in a "strong]y interdependent" manner, with a weakness on any one factor negating the strength of the other factors. Or, factors interact destructively, tending to degrade each other's performance.
2. They interact in an "interdependent manner," with weaknesses accumulating to degrade the overall effectiveness of the other factors.
3. They interact in a neutral manner, with the contribution of each individual factor being unaffected by the contributions of others.
4. They interact in a redundant manner, with factors acting as layers of depth of defense, or making up each other's deficiencies.
5. They interact in a strongly redundart manner such that if any one question gets a high score, the group score should also be high.

These five levels have natural interpretations in terms of the constant $V$. Specifically, we can assign (5) $V=-1$ (OR gate), (4) $V=-1 / 2$ (soft OR gate), (3) $V=0$ (average), (2) $V=1$ (soft AND gate), and (1) $V=+B \quad$ (AND gate).

Note that in answering this question, there can be a tendency to have a concept of "weakness" in a factor that does not necessarily correspond to the range between best and worst on some of the questions. That is to say, there is an implicit worst point for each factor that makes it intuitively easier to assign an interaction coefficient than to explicitly consider all the best-worst points of each question. To logically connect the explicit and implicit ranges, the following question can be asked:

Given a set of $N$ questions, with $n$ of them having equal $W_{j}$, receiving their worst scores, and the other $N-n$ their best, what must $n$ be for the following situations to be about equally preferred:
[*This probability can be changed and in general can be set to $P$ where $0 \leq P \leq 1.1$
Here choice $B$ represents a hypothetical $50-50$ gamble between getting a component that scores the best possible on all questions and one which is "ineffective." An "ineffective" component is one which receives a score of 0 using the scoring formula, and the best possible component receives a score of 1 .
Appendix A2 shows that the absolute weight $W$ (corresponding to $W_{j}$ ) is computed as follows:

$$
W=((1+V) / V)\left[1-\left(P+(1-P)(1+V)^{-N}\right)^{1 / n}\right]
$$

$-1<V<\infty, V \neq 0$
For $V=0, W=(1-P) N / n$; for $V \rightarrow \infty, W \rightarrow 1-p^{1 / n}$; for $V=-1$, $\mathrm{n}=\mathrm{N}$ and $\mathrm{W}=(1-\mathrm{P})^{1 / \mathrm{N}}$
In essence, the calibration above measures how a component is perceived relative to an "ineffective" component given that it scores
the worst responses on a certain number of questions. This computation links together the concept of factors making a component ineffective which is used to assign an interaction rule, and the weights $W_{i}$ that indicate what range of factor "compromise" the questions actually span.

The calibration procedure for $W$ provides a consistency adjustment that connects the orisinal assignment of weights $W_{i}$, to the overall interaction coefficient $V$, so that they are assessed consistently. As an illustration of a typical case of $V=i$ (soft AND gate), several absolute $W^{\prime}$ 's are shown as a function of $n$. Note that for $N>5$, the formula for $W$ is well approximated by the following:

$$
W=2\left[1-.5^{1 / n}\right] \text { when } P=.5
$$

| $\mathrm{n}=1$ | $\mathrm{~W}=1$ | $\mathrm{n}=5$ | $\mathrm{~W}=.26$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{n}=2$ | $\mathrm{~W}=.59$ | $\mathrm{n}=7$ | $\mathrm{~W}=.19$ |
| $\mathrm{n}=3$ | $\mathrm{~W}=.41$ | $\mathrm{n}=9$ | $\mathrm{~W}=.15$ |
| $\mathrm{n}=4$ | $\mathrm{~W}=.32$ | $\mathrm{n}=13$ | $\mathrm{~W}=.10$ |

### 3.6 INTERPRETATION OF COMPONENT SCORES AND AGG: EGATION PARAMETERS

Interpretations for the interaction coefficient have already been presented in Section 2. The interpretations concerning the weights invo ${ }^{1}$ ve interpretations of what is meant by a factor "failing." Having a factor "fail" would ideally be defined by a specific scale point. However, for many factors, such a point is awkward to express in terms of what a facility may be expected to provide. Technically, a $h_{i}$ represents the probability for which one is indifferent between the following:


#### Abstract

P factor not compromised question has worst response $1-P$ factor fails

Because factor "fails" is hard to explicitly define (though easy to work with implicitly when assigning an interaction rule) and because assessing this lottery is difficult enough without doing it fifteen times per questionnaire, the heuristic mentioned earlier referring to overall component quality is used to assess relative $W_{i}$ 's and an additional assessment is made to assess the absolute $W_{i}$ 's.


The component score that is finally computed is the "indifference" probability that the component is "not compromised" in its performance. The terms in quotations refer to the fact that the evaluation is considered as a judgemental subjective preference assessment.

A perceived "risk" need not be the same as a calculated one, and yet still have validity in terms of its impact on decisions. Similarly, an "ineffective" component is a judgmental term that need not imply the component fails with probability equal to 1 , or that the component is effectively non-existent. It simply connotes a perception of ineffectiveness. If one does equate ineffectiveness with worthlessness and indifference probabilities with actual probabilities, then the component score could represent the conditional probability that the component is effective, given the responses to the questions on the questionnaire.

### 3.7 ASSESSING AGGREGATION RULES FOR HIGHER LEVEL ELEMENTS OF THE HIERARCHY

## Weighting Elements

For higher level elements of the hierarchy, the same basic concepts apply as they did for the component questionnaires. For these higher level elements, however, there is currently no provision for assigning an absolute weight other than 1 . One reason for assuming a weight equal to 1 is the fact that an implicit normalization has already taken place in deriving the score for upper level boxes. That is, a score of 0 already connotes an ineffective box. To explicitly weight the box again would be difficult because no easy description could be given as to what the new zero point might mean. Implicit weighting actually occurs when boxes are gr nped. As an analogy, consider the case where one component (say tamper protection) feeds into another component (say a sensor). All questions have weights equal to 1 and we soft AND to compute the scores for both components. If the sensor component has one response at its worst level and all others at their best, it would receive a score of about . 5 (when $\mathrm{N}>5$ ). However, if one tamper protection response was at its worst level, the tamper protection eleaent would receive a score of .5 , but the sensor would receive a score of .75 if all other responses besides tamper protection were at their best. Thus a tamper protection question inplicitly has less effect on the sensor score than a sensor question: This illustrates how the grouping of elements can implicitly give less weight to those factors that affect only a relatively narrow segment of the overall hierarchy. In essence, relative weighting is automatically taking place via grouping of the elements.

## Assigning Interaction Rules - System Questionnaires

To assign the interaction coefficient for a group, the same heuristic discussed in section 3.5 can be used. Another approach to
assigning an :nteraction coefficient is thet of the syster questiornaire discussed in secticn 2.3. An exarple of this concept is shown in Figure 3-1. Instead of using a very general heuristic such as that in section 3.5, zr: єvzluetor enswerf rore sfecific questions euch es those ghown in Eigure 3-1. The syster questionnaire in Figure $3-1$ is treated just like e cosponent questionneire. Veighte can be assigned and a rule specified for combining question scores. As section 2.3 and Appendix Al explein, the overall score is used tc epecify the rule for combining rultiple sensore. A high score means thet the multiple sensors are reduncint éne frcvice cefenze in defth. \& low ecore means that one roor senscr can negate the strengthe of the others.

## Nultigle Accese Points and Deley-Response

section 2.4 disc ssed the issue of multiple access points. For inplerentation $f$ urposes, it is sirflest to aggregate such points at the lowest possible level of the hierarchy.* for example, if there are eeveral possible entry points, each presenting a terrier to adversary Fenetration, it is simplest to aggregate all the barriers using some rule tather than to analyze ezch barrier-access point individually up zo the highest level of the hierarchy and then combine access points at the highest level. Asioe from proliferating hierarchy elements, this latter approech tries to define the entire pathway that an edversary might take in trying to gain access to a facility. The algorithm and euestiont aires were not intended for such detailed system modeling.

[^3]1. Will each sensor type be selected to minimize the susceptibility of any two or more sensor types to the same local envircnmental (natural or man-made) source of nuisance alarms?
2. Will each sensor type be selected to minimize the likel hood that two or more sensor types will be affected by the simultaneous occurrence of environmental (natural or man-made) sources of nuisance alarms, e.g., wind and rain?
3. What provisions will be made to minimize the likelihood of false or nuisance alarms?
4. Will collocated sensors be installed to provide mutual tamper protection for the sensors and processors?
5. Will collocated sensors be selected to provide coverage over a wide range of intrusion methods, (e.g., microwave to sense surface intrusion and buried cable to sense tunneling or crawling under the microwave bean or balanced magnetic switch to sense door opening and breakwire system to sense cutting through the door)?
6. Will collocated sensors be selected to minimize operational performance incompatabilities?

Using data from the questionnaires pertaining to the barrier(s) and the type of monitoring that will be used, how will the adversary boundary penetration and/or introduction of materials time compare with time between monitoring observations?
a. Adversary penetration and/or introduction of material time will exceed twice the time betwe $\cdot$.. sbservations
b. Adversary penetration and/or introduction of material time will be less than twice but greater than the time between oiservations
c. Adversary penetration and/or introduction of material time will be equal to th time between observations
d. Adversary penetration and/or introduction of material time will be less than the time between observations


#### Abstract

Similerl;, it is complex to do scfarate delay-response type analyses of every fathway an aciveraary might pursue. A more subjective evaluation of delay-response is possible as described in section 2.4. For implementation purfoses, a multifle-choice question such as the one shown in Figure $3-2$ can aid in assessing a delay-response score that consicere multifle berriers/eccess points. (This cuestion cen have a weight.) Alterratively, the celay-response score can be directly essigned using whatever meens is aprropriete. (See those suggestec in section 2.3.)


## Guestionnaires Ingut to Other Questionnaires

The isfue of cuesticrnaires being used es input to other cuestionraires has alreddy been discussed in tems of component questionnaires (e.g. tamrer protection input to sensors) and system questionneires (components combined with other information, such es described in eection 2.3). Two effecte occur wher this is done. First, as was described in the beginning of this sectior, the questions on questionneires feeciing into others gener ally have implicitly much less weight, Second, a questicnnaire is always the lowest level the hierarchy algo$r$ itho can consider. A systers questionnaire must be completec manually with other component scores being input manually (after a first pass computction). If eensitivity analysis is ciesire o cr input-type questionnaire responses, a manual update muet be done before the algorithm can be run. Furthermore, in crier to input one questionnaire into enother, the score of 'e input ouvestionraire must be discretized to be in the froper mulliple choice format. Because of thesc effects, we $r \in c o r m e n c$ the following:

- Elimincte as much as possible all input-type questionnaire situations. For example, tamper protection hes a small influence on the scores of components to which it is input. One cuestion with many multiple choice responses should be used to replace the ertire tamper protection questionnaire, or

```
else it should be treated as a component that coes not feed into another questionnaire.*
```

- Compose system questionnaires so that they only determine the way in which components combire to perform a function. When other information is mixed in on a system ouestionnaire, it makes the enclysis complex and also "cuts off" the algorithm from tracing results down to components below the system cuestionnaire level.

Sections 3.6 and 3.7 have described techniques for calibrating the Ferametere of the algorithm. The following subsections describe the besic eteps for exercising the elgorithm, interpreting the evaluation results and performing sensitivity analysis.

```
3.8 INSPECTION (DESICN) STEPS - LATA RECUIREMENTS
```

The stepe ferformed in exercising the algorithm are now summarizea. The essumptions are thet a capability hierarchy is defined and all component anc systen questionnaires required for the onalysis have been cevelofed. In addition, all the fixed interaction coefficients for hierarchy bcxcs and cuestionneires and the weights for ouestions ere assumed to be assigned.

Step 1. Identify all the components to be used for accomplishing lowlevel syeter tasks (Ferformance characteristics) using the corponert selection matrices.

[^4]Step 2. Answer all of the questionnaires for the components above. Questionnaires that feed into others need to be scored first before this can be done. See Step 5.)

Step 3. Using the component selection matrices, identify those components that are used to perform the same low level system task. Answer any system questionnaire required to indicate how well these components coordinate with each other.

Step 4. Compose computer input. (See Section 4 for details.) Select questionnaire input for those components involved and compose File 1. Organize questionnaire responses in File 2. Indicate which questionnaires feed into which hierarchy elements in File 3.

Step 5. Use the algorithm to score all questionnaires.

Step 6. Assign scores to delay-response hierarchy boxes if they do not have questionnaires determining their scores. (Note whether the same barriers are being used both to help detect and/or assess as well as delay. If so, the delay-response score shouid take into account the fact that the barrier is doing "double or triple" duty.)

Step 7. Score capability hierarchy.

Step 8. Evaluate results and perform sensitivity analysis.

A capability is scored for a single set of evaluatoz responses. (Multiple evaluators are not currently handled by the algorithm in terms of such possibilities as averaging evaluator scores or consistency checking them.) The following paragraphs discuss Step 8 in more detail.

### 3.9 EVALUATION OF RESULTS - SENSITIVITY ANALYSIS

Once a capability is evaluated, the results can be interpreted in a comparative sense. As an illustration of this, suppose the algorithm is used to evaluate systems $A$ and $B$ and system $A$ scores higher than $B$. The implication is that system $A$ is preferred to system B. If system A is considered a barely acceptable facility, then system B might be considered unacceptable. Whatever score system A received is then consilered a threshhold score.

Another interpretation can be given in terms of an "ideal" system versus an "ineffective" system. Theoretically, a facility receiving a score of .5 on a capability is considered equally preferred to a 50-50 gamble between an ideal system getting perfect responses on all questionnaires and an "ineffective system" receiving an overall score of 0. (A system receiving the worst response to all questionnaires will probably have a score very close to 0). A score below .5 indicates that one is willing to take such a gamble. This does not indicate much faith in the facility to perform the capability. On the other hand, a score of above . 5 indicates that at least one would rather stay with such a facility than take an even chance at "perfecting it" versus losing its effectiveness. (This same interpretation can be applied to individual components and lower level boxes.)

The computer proczam described in section 4 provides the routines for tracing the capability score computation down through lower level boxes all the way to the component level and to questionnaire responses. It provides displays that help to pinpoint particularly low scores, or situations where many elements are "ANDing" together to produce a lower score than may be desired. The designer or inspector can then see whether improving a component, adding a component or improving the way components coordinate can help improve the facility score.

## Sensitivity Analysis

The computer program enables the user to change the following parameters to see how the results are affected:

- questionnaire weights and responses
- all aggregation rules
- scores for any box or questionnaire

With these features, a user can examine what "improvements" will cause one facility to be at least as preferred as another. Changing weignts and aggregation rules also allows the evaluation to span a range of relatively more conservative assumptions (e.g. larger weights and more AND operators) to relatively less conservative assumptions (e.g. smaller weights and fewer AND operators). In this way, the algorithm is a useful tool that can help analyze what set of assumptions cause a facility to be evaluated as relatively acceptable or not.

In summary, section 3 has discussed how the algorithm can be implemented and used. Section 4 describes the computer program that facilitates this implementation. (Hand calculations and programmable calculators can be used to compute scores for individual elements since the scoring algorithms are straightforward. But the computer program greatly facilitates the handling of hierarchies and large numbers of questionnaires). An example presented in section 4.3 illustrates the algorithm implementation.

## SAFEGUARDS EVALUATION COMPUTER PROGRAM

### 4.1 INTRODUCTION

To implement the algorithm described in previous sections, an evalution computer program has been developed. This program is designed to automate the scoring of evaluation questionnaires and hiersrchy elements and to provide maximum flexibility to the user for sensitivity analysis and other changes.

The program uses two basic types of input. The first type provides the structure of the questionnaires and hierarchies, including the number of questions (or inputs to a hierarchy element) weights and the scoring rules to be used. This data is independent of any particular evaluation and can be developed and stored on the computer before an evaluation is done. The secont type of input is the responses to the questionnaires. These are the answers to the questionnaires filled out by an evaluator.

To compute the score for a hierarchy, the program first looks at questionnaires. The questionnaire structure (number of questions, weights, lowest values for each question, etc.) is read from one disk file and responses are read off another. The routine then automatically computes and saves the questionnaire score. After the questionnaires have been scored the program can be switched into hierarchy mode. To score a hierarchy element (box) its name is entered. If the scores for all the boxes leading into the box have been computed it scores the box using
the appropriate rule. If not, the program attempts to score lower level boxes, gradually working down in the hierarchy until a box whose score can be computed is found. The program then works back up the hierarchy until the original box's score can be computed. Low level boxes (with component questionnaires) are scored in the same way except that the program assumes that all questionnaires have been scored.

The rest of this chapter describes the structure and operation of the evaluation computer program in more detail. Section 4.2 describes the use of the program and the format of the associated input files. Section 4.3 provides an example of the program's use. Listings of the program are presented in Appendix A3.

### 4.2 USE OF THE EVALUATION PROGRAM

This section describes how the evaluation computer program can be used to evaluate questionnaires and hierarchies. First the data base is described in detail, then the operation of the program, including the various options available and the flow of the program, is described. The use of the program is demonstrated in section 4.3.

DATA BASE

The input to the program consists of four "files" (sets of data stored on cards or disk):

1. Questionnaire structures
2. Questionnaire responses
3. Hierarchy structure
4. Hierarchy initial scores

The content and format of these files is described in more detail below. The program is written in FORTRAN and FORTRAN formats are listed where appropriate.

## Questionnaire Structures

This file contains information on the questionnaires to be evaluated. The data for each questionnaire includes:

- Name
- Number of questions
- Number of subgroupings (if any)
- Weight for each question
- Lowest possible response for each question
- Scoring rules for overall group and subgroups

The specific layout is as follows:

Card (record) 1: Number of questionnaires in file (1I2 format)

Card 2: First card number for each questionnaire (i.e. the number of the card where the questionnaire starts). (20I4 format) This card is repeated as necessary to specify the first record of all questionnaires in the file.

Cird 3: Questionnaire title. Contains the questionnaire name (maximum of four characters) the number of questions (maximum of 40 ) and the number of subgroups (counting the overall questionnaire as 1). The inital implementation of the algorithm will not use subgoups, but the program has the ability to process them. Format $(1 \mathrm{~A} 4,6 \mathrm{X}, 1 \mathrm{I} 2,8 \mathrm{X}, 1 \mathrm{I} 2)$.

Card 4: Worst Response. The letter corresponding to the worst response is given for each question. (The best response is always assumed to be "A".) (40(1X,1A1)).

Card 5: Group Information. Group number. (The group number for the overall questionnaire is always 50). Additional groups are numbered $51,52 \ldots$ etc. The number of questions (and subgroups) to be aggregated and the rule to be used is also given. The codes for rules are $H A=$ hard $A N D, S A=$ soft $A N D, A V=$ average, $S O=$ soft $O R, O R=$ hard $O R$. Format $(1 I 2,8 X, 1 I 2,8 \mathrm{X}, 1 \mathrm{~A} 2)$.

Card 6: Group Inputs. The questions (or subgroups) to be aggregated as part of the group are given in (40I2) format.

Card 7: Question Weights. contains the weight (between 0 and 1) assigned to each question. Initially the questions will be equally weighted at 0.5 , but the program can accept differential weights. (8F5.3) This card is repeated until a weight is specified for each question. A convenience option allows one weight for all questions to be set by specifying 2. as the first "weight" and the assigned weight for all as the second weight.

Cards 5 and 6 are repeated for each group.
Cards 3 through 7 are repcated for each questionnaire.

## Questionnaire Reponses

This file contains the responses to the various questionnaires (the results of the evaluation). The format is as follows:

Card 1: The number of questionnaires evaluated. (1I2) format.

Card 2: The first card number for each questionnaire. (2014) format. The questionnaires must be in the same order as in the questionnaire structures file. This card is repeated as many times as necessary to identify the first record for each questionnaire.

Card 3: The name of a questionnaire. (1A4) format

Card 4: The score for each question on the questionnaire. In alphabetic format ( $40(1 \mathrm{X}, 1 \mathrm{~A} 1)$ ).

Cards 3 and 4 are repeated for each questionnaire.

Hierarchy Structures
This file contains structural data about the organization and scoring of hierarchies. The format is as follows:

Card 1: The number of complete hierarchies in the file. Format (1I2), maximum value $=5$. (Typically, there is only one hierarchy in a file)

Card 2: The first card number for each hierarchy (5I4) format.

Card 3: Box Data Card. This card includes the name of a box, the number of subelements to be aggregated and the scoring rule to be used. If the elements to be aggregated are questionnaires instead of boxes then 50 is added to the number of subelements. If a questionnaire is to be used to determine the scoring rule the questionnaire name also appears on the card. The order is: box name, number of elements, rule, questionnaire name (if any). The format is (1A6, 4X, 1I2 $, 8 \mathrm{X}, 1 \mathrm{~A} 2,8 \mathrm{X}, 1 \mathrm{~A} 4$ ).

Card 4: Input Box Data Card. This card contains the name of an input subelement (box or questionnaire) in (1A6) format.

Card 4 is repeaied for each input subelement. Cards 3 and 4 are repeated for each hiezarchy box having sub-elements. The only restriction of the ordering of the boxes is that a box name must not appear or a number 4 card after it has appeared on a number 3 card, (i.e, go from top to bottom).

Card 5: The last card for each hierarchy is a card with the word "NOMORE" in the first six columns.

## Hierarchy Initial Scores

This file contains values for any initial scores to be sec for hierarchy boxes. The file is structured as follows:

Card 1: The number of hierarchies in (1I2) format. (Typically, this number is 1)

Card 2: The initial card for each hierarchy in (5I4) format.

Card 3: The names of boxes to be set followed by the initial score. If the score is set at -1 , the initial score is free. (Otherwi se scores must be between 0 and 1). There are no restrictions on the order of the boxes. If a box does not appear its initial score is assumed to be -1 . The format is (5 (1A6, 1F6.3)).

Card 3 is repeated until all set scores have been read in.

Card 4: Questionnaire scores in (10F8.5) format. Ten cards (they may all be blank) are required for each hierarchy.

This file is used primarily by the program to store the results of an evaluation so that they need not all be computed each

> time the program is run. Initially, the file can be set with the first two cards specified as above, and 18 blank lines following the first two cards.

## INTERACTIVE PROGRAM OPERATION

Questionnaires and hierarchy elements are evaluated using an interactive computer program. This program uses the data files described in the previous section as input and provides the user with a wide variety of evaluation and sensitivity analysis options. The following paragraphs describe the relationship of the program elements and data files and the options available to the user.

Input/Output Considerations
The evaluation program is designed to be used interactively at a timesharing terminal. In addition, four disk storage files are needed. These files were described previously. They interface with the program as shown in Table 4-1.

## Program Cperation: General Features

When the evaluation program is called, it first initializes the major variables and then prompts the user with the following question:

SELECT 1-HIERARCHIES 2-QUESTIONNAIRES 3-STOP -

Typing " 1 " in response to this question initiates the hierarchy manipulation portion of the program. A second list of options will be printed to allow the user to control the manipulation. These options are described shortly. Similarly, if the user responds with " 2 ", a set of options relating to questionnaires is printed. Typing " 3 " stope the program. If the user is familiar with the program options described

Table 4-1. DATA BASE DEFINITIONS

| File | Unit | Type | Record Length <br> (Characters) | Maximum Number of Records |
| :---: | :---: | :---: | :---: | :---: |
| 1. Questionnaire Structures | 1 | Random Access | 80 | 300 |
| 2. Questionnaire Responses | 2 | Random Access | 80 | 150 |
| 3. Hierarchy Structure | 3 | Random Access | 80 | 200 |
| 4. Hierarchy Scores | 4 | Random Access | 80 | 50 |

below, any valid option number can be typed and the program will branch directly to that option.

Program Operation: Questionnaire Manipulation
Selecting the questionnaire option causes the following table to be printed.

SELECT ONE:

21-COMPUTE SCORES 22-PRINT SCORES
23-SET SCORES 24-REVISE WEIGHTS
25-REVISE RULES 26-REVISE RESPONSES
29-NO MORE REVISIONS
WHICH?

The user simply types in the number corresponding to the desired option and the computer will initiate the option and ask additional questions to enable its completion. The options are described in more detail below.

Option 21 - Compute Scores. This option computes the score for a questionnaire. When the option is selected the prompt "ENTER QUESTIONNAIRE NAME -- " is given. If the name is valid, the questionnaire's information is retrieved from the questionnaire structure and response files and the score is printed and stored. If "ALT" is typed in response to the name prompt, all the currently stored questionnaires are scored and printed. The user is then asked to select another option.

Option 22 - Print Scores. This option prints the data associated with a questionnaire. A name is entered as in Option 21 and the computer prints a table of information for the questionnaire. The information
includes the scoring rule and score and a diagram of the questionnaire structure. The structure shows the subgroups (if any) used in scoring the questionnaire, the scoring rules used for the subgroups and the individual questions included in each group along with their associated raw scores, weights and adjusted scores.

Option 23 - Set Scores. This option allows the user to directly specify a score for a questionnaire. In response to a prompt the user enters a questionnaire name. The prompt "SCORE $=$ " is printed and the user may enter any value between 0 and 1.0 . This score is saved until the score is recomputed or reset.

Option 24 - Revise Weights. The option allows the user to revise the weight assigned to a given question or questions. After the questionnaire naue is entered, the prompt "NUMBER OF QUESTIONS TO BE REVISED $=$ " is given. If the weight has been assigned using the brief form, the common weight assigned to all questions must be revised. For each question to be revised, the prompts "QUESTION NUMBER $=$ " and "WEIGHT $=$ " allow the new weight to be assigned to the appropriate question. After this option is completed the score is recomputed and printed.

Option 25 - Revise Rules. This option allows the user to revise the scoring rule used to score a questionnaire or subgroup. After the questionnaire name is entered, the computer asks for the "group number" to be changed. Group " 50 " corresponds to the overall questionnaire and 51,52 , etc., correspond to the subgroups (if any). Next the revised rule is requested, using the following abbreviations:

HA-Hard AND
SA-Soft AND
AV-AVERAGE
SO-Soft OR
OR- OR

The revised score is computed after the desired number of changes has been made.

Option 26 - Revise Responses. This option allows the user to revise the responses associated with particular questions. The procedure is similar to that for revising weights, in that the questionnaire name and number of questions to be revised initializes a loop for entering revised responses. For each question, a prompt asks for the question number and then the user is prompted "ENTER REVISED RESPONSE (A to WORST) --". WORST is the letter of the alphabet corresponding to the worst answer on the question. The user enters the letter of the alphabet corresponding to the revised response. After all desired changes have been completed the questionnaire score is recomputed and printed.

Option 29 - No More Revisions. This simply returns the program to the original hierarchy/questionnaire/stop choice. These options represent all of the interactive routines relating to questionnaires. Other changes (e.g., revisions to questionnaire structure) must be made using a text editor on the appropriate files.

## Program Operation: Hierarchy Manipulation

When the hierarchy manipulation option of the program is first initiated, the computer requests "ENTER HIERARCHY NUMBER --". The user enters the number of the hierarchy to be manipulated in the current session. The computer then retrieves the data corresponding to that hierarchy from the disk files. Next the following table is printed:

SELECT ONE:

41-COMP UTE SCORES
43-ASSIGN SCORES
45-REVISE RULES
47-PRINT BOX NAMES
49-CHANGE BOX NAMES

- PRING DATA

44-REVISE DELAY/RESP
46-SELECT NEW HIERARCHY
48-FILE HIERARCHY DATA
50-PRINT HIERARCHY

51-NO MORE REVISIONS

## WHICH?

Typing the number corresponding to an option initiates the option. As described below, the computer asks additional questions as necessary to allow completion of the option.

Option 41 - Compute Scores. This option allows the user to compute the score for a hierarchy box. Of course, if the top box of the hierarchy is scored, the overall score will be computed. After the box name is requested and entered, the computer automatically searches as far down in the hierarchy as is necessary (up to a maximum of five levels) to identify boxes which can be scored, (i.e., boxes for which scores are available for each lower level box or questionnaire). Then the computer works back up the hierarchy, scoring higher level boxes until it is possible to compute the score for the requested box. This score is printed. (Note: The scores for all higher level boxes are reinitialized to -1 when a lower level score has been changed.)

Option 42 - Print Data. This option allows the user tu obtain a simplified diagram of the hierarchy structure beneath a specified box. Up to four levels of boxes are printed. The information for each box includes the box name, its score, ( -1 is shown if the score has not been computed) and scoring rule and scoring questionnaire (if any). The table is printed in outline style, with lower level boxes being indented beneath higher level boxes.

Option 43 - Assign Scores. This option allows the user to assign a score to a specified box. The computer first prompts for the box name and then requests the score, which must be between 0.0 and 1.0 . The scores for all higher level boxes are reinitialized to show that a lower level score has been changed.

Option 44 - Revise Delay/Response. This option is not used at the current time.

Option 45 - Revise Scoring Rule. This option allows the user to change the scoring rule associated with a box. The computer first requests the box name and then the rule. The rule is entered using the following abbreviations.

```
    HA-Hard AND
    SA-Soft AND
    AV-Average
    SO-Soft OR
    OR-OR
    Q -Scoring rule determined by questionnaire
```

If $Q$ (Questionnaire Scoring) is entered, the computer will prompt for the questionnaire name.

Option 46 - Select New Hierarchy. This option reinitializes the program by allowing the user to reencer the data for the current hierarchy or another stored in Disk File 3. The only prompt is "EN' R HIERARCHY NUMBER".

Option 47 - Print Box Names. This option causes a list of the current box names to be printed.

Option 48 - File Hierarchy Data. This option saves all revisions and scores for the hierarchy (including questionnaire scores) during the current session on Disk File 3 and 4 respectively. The original data is overwritten. This option is done automatically at the termination of a session if Options 45 or 49 have been used.

Option 49 - Change Box Name. The computer first prompts for the original box name and then for a revised name. Names are allowed to be a maximum of 6 characters long.

Option 50 - Print Hierarchy. This option is similar to option 42 except that the structure is printed in a more easy to follow graphical form. One to five hierarchy levels are printed starting with a box name entered with the computer prompt. Warning: If you are in a hurry or conserving paper it is test to use Option 42 for viewing hierarchy data.

Option S - No More Revisions. This option reverts the program back to the ori ;inal questionnaire/hierarchy/stop choice.

### 4.3 F ZAMPLE OF ALGORITHM AND COMPUTER PROGRAM USE

To illustrate the algorithm and computer program, hypothetical data wa: provided by Sandia concerning the capebility of "prevent unauthorized access of persons and materials into tbe MAA" (see Figure 1-1(1)). A set of component questionnaires was filled out corresponding to several, but not all of the low-level system tasls. The weight on each question in every component questionnaire was set equal to .5 . Each component's score was computed by using a soft AND operator on the question scores. (Some questionnaires that were input to others were scored in a "first pass".) A total of 38 questionnaires appear directly in the computer program input data which can be found in Appendix A4.

Interaction coefficients were assigned for all hierarchy boxes requiring them. All boxes without appropriate component questionnaire input were ass: oned arbitrary scores (e.g., a 1 in most cases).

The example is developed in terms of the commands that would be issued ' a user to the computer and the resulting output. Appendix A4 contains computer input and additional computer output for the entina capability. In this example, lowever, the focus is on that segment of the capability hierarchy concr rned with "detect access/ introduction of material through remainder c. area boundary." (This is the only segment of the example with reasorably complete questionnaire input data.)

Each questionnaire was given an identifying number and each hierarchy box was given a mnemonic identifier. Appendix A4 lists the component corresponding to each questionnaire number. The mnemonics for this example are shown in Figure $4-1$.

In exercising the algorithm, the first command to the computer should be to read in the hierarchy structure (and any initializing information). This step is shown in Figure $4-2$. The next step is to score all the questionnaire (if such scores have not been computed and stored previously). The appropriate option for this is 21 . Figure 4-3 shows how all the questionnaire scores can be computed. Figure 4-4 shows an example of how a more detailed printout for the annunciator systems component questionnaire can be displayed.

The next step is to evaluate the capability hierarchy. (First, boxes requiring assigned scores should be given these scores using option 43.) The computer is capable of evaluating up to five hierarchy levels down. Therefore, lower level boxes must be evaluated first if the top box has more than five levels beneath it. In this example, the right side of Figure $1-1(1)$, "Deny Access" (DENACC) can be evaluated directly using option 41. One form of computer display of the hierarchy results is shown in Figure $4-5$. By using a series of display commands, the user can focus on different segments of the hierarchy. For example, in Figure $4-5$, the DETACC display shows a trace of the scoring down to the questionnaire level for some boxes. The second page of Figure $4-5$ illustrates how one can obtain a more detailed look at lower level boxes such as INDM1.

A second way of displaying hierarchy data is shown in Figure $4-6$. This type of display does not contain questionnaire scores explicitly, but does give a pictorial view of hierarchy relationships. Figure

## Figure 4-1. MNEMONICS FOR ALGORITHM EXAMPLE

```
DETACC - Detect Access
SENSE - Sense Attempt
REPALR - Report Alarm
ASSESS - Assess Alarm
MULTS - Multiple Components for Sensing Attempts
INDIMl - Indirect Monitoring to Sense Attempts
TSIG - Transmit Signal
ANALRM - Anunciate Alarm
MULTA - Single or Multiple Componer s for Assessing Alarms
INDA1 - Indirect Assessment of Al: ;
CASSAS - Central and Secondary Alarin Stations Score
DDS - Delay/Detection Score (based on time comparisons)
GP - Guard Patrol Score
BARR - Barriers (multiple access points)
DDA - Delay/Assessment Score (based on time comparisons)
ALAS - Alarm Assessment System Questionnaire (not actually used in
    capability evaluation)
PNSS - Multiple Sensor Penetration Sensing System Questionnaire (not
    actually used in capability evaluation).
```

Figure $4-2$. READING IN THE HIERARCHY STRUCTURE

```
EXECUTIDN:
    SELECT 1- HIERARCHIES, 2- QUESTIDNAIRES, 3- STDP -- 1
ENTER HIERARCHY NUMBER -- 1
SELECT DME:
41- CDMPUTE SCDRES 42- PRINT DATA
43- ASSIGN SCDRES 44- REVISE DELAY/RESP
45- REVISE RULES 46- SELECT NEW HIERARCHY'
47- PRINT BUX NAMES 43- FILE HIERARCHY DATA
49- CHANGE BDX NAME 50- PRINT HIERARCHY
    51- NU MDRE REVISIUNS
```

| QUESTIDANAIRE | 4 | THE | SCDRE $=0.755$ |
| :---: | :---: | :---: | :---: |
| QUESTIDNNAIRE | 6 | THE | SCDRE $=0.766$ |
| QUESTIDNNAIRE | 10 | THE | SCARE $=0.670$ |
| QUESTIDNNAIRE | 47 | THE | SCORE $=0.320$ |
| QUESTIUNTAIRE | 57 | THE | SCURE $=0.579$ |
| IESTIINNAIRE | 1 | THE | SCDRE $=1.000$ |
| QUESTIDNNAIRE | 2 | THE | SCORE $=0.917$ |
| QUESTIDNMAIRE | 3 | THE | SCDRE $=0.606$ |
| QUESTIDNNAIRE | 11 | THE | SCDRE $=0.820$ |
| QUESTIUNMAIRE | 14 | THE | SCDRE $=1.000$ |
| QUESTIINNAIRE | 16 | THE | SCDRE $=1.000$ |
| QUESTIDNNAIRE | 21 | THE | SCDRE $=0.911$ |
| QUESTIUNNAIRE | 22 | THE | SCARE $=0.237$ |
| OUESTIDNMAIRE | 25 | This | SCDRE $=0.562$ |
| QUESTIINNAIRE | 28 | THE | SCORE $=0.516$ |
| QUESTIDNNAIRE | 32 | THE | SCORE $=0.750$ |
| QUESTIINNAIRE | 36 | THE | SCARE $=0.375$ |
| QUESTIUNNAIRE | 33 | THE | SCIRE $=1.000$ |
| QUESTIDNNAIRE | 43 | THE | SCDRE $=1.000$ |
| QUESTIUNNAIRE | 51 | THE | SCDRE $=0.766$ |
| QUESTIINMAIRE | 60 | THE | SCDRE $=0.516$ |
| QUESTIUNNAIRE | 63 | THE | SCDRE $=0.337$ |
| QUESTIDNNAIRE | 66 | THE | SCDRE $=1.000$ |
| IESTIIMNAIRE | 68 | THE | SCDRE $=1.000$ |
| QUESTIDNNAIRE | 69 | THE | SCDRE $=0.548$ |
| QUESTIDNMAIRE | 74 | THE | SCDRE $=1.000$ |
| QUESTIDNNAIRE | 75 | THE | SCORE $=1.000$ |
| QUESTIDNMAIRE | 33 | THE | SCDRE $=0.746$ |
| QUESTIIANMAIRE | 34 | THE | SCDRE $=0.637$ |
| QUESTIDNNAIRE | 87 | THE | SCARE $=0.733$ |
| QUESTIUNNAIRE | 90 | THE | SCDRE $=0.667$ |
| QUESTIINNAIRE | 95 | THE | SCDRE $=0.337$ |
| QUESTIDNMAIRE | 12 | THE | SCURE $=0.333$ |
| QUESTIDNMAIRE | 33 : | THE | SCDRE $=1.000$ |
| QUESTIDNNAIRE | ALAS: | THE | SCDRE $=0.598$ |
| QUESTIDNNAIRE | PNSS: | THE | SCDRE $=1.000$ |
| QUESTIDNMAIRE | 17 | THE | SCORE $=1.000$ |
| QUESTIDNNAIRE | 18 | THE | SCORE $=1.000$ |

SELECT 21-59-- 25
ENTER QUESTIDNAIRE NAME - 4

QUESTIDNAIRE DATA FIR QUESTIDNAIRE 4
QVERALL SCDRE $=0.75493$ RULE : SA

```
BDK: 50 RULE: SA
    Q=1 RESP=1.000 W=0.500 S=1.000
    Q=2 RESP=0.667 W=0.500 S=0.833
    Q=3 RESP=1.000 W= 0.500 S=1.000
    Q=4 RESP=1.000 W=0.500 S=1.000
    Q=5 RESP=1.000 W=0.500 S=1.000
    Q=6 RESP=1.000 W= 0.500 S=1.000
    Q=7 RESP=1.000 W=0.500 S=1.000
    Q=8 RESP=1.000 W}=0.500 S=1.00
    Q=9 RESP=1.000 w = 0.500 S=1.000
    Q=10 RESP=1.000 W = 0.500 S=1.000
    Q=11 RESP=1.000 W = 0.500 S=1.000
    Q=12 RESP=1.000 W}=0.500S=1.00
    Q=13 RESP=0.833 W}=0.500 S=0.91
    Q=14 RESP=1.000 W = 0.500 S=1.000
    Q=15 RESP=0.667 W }=0.500 S=0.83
    Q=16 RESP=0.750 W W = 0.500 S=0.875
```


## WHICH? 42

ENTER BDX NAME -- DENACC
HIERARCHY DATH FDR BDX DENACC


SELECT 41-51 -- 42
ENTER BDX NAME -- DETACC
HIERARCHY DATA FDR BD $\times$ DETACC


```
SELECT 41-51 - 42
ENTER BDX NAME -- INDMI
HIERARCHY DATA FDR BDX INDMI
```

BDK: INDIA RULE:SA SCDRE: 0.575 Q:
BDX:DDS RULE: SCDRE: 0.833 Q:
BDX:GP RULE:AV SCDRE: 1.000 Q:
QUESTIDNARIRE: 43 SCDRE: 1.000
BIX:BARR RULE:SA SCURE: 0.370 Q:
QUESTIUNMAIRE: 3 SCDRE: 0.606
QUESTIDNNAIRE: 21 SCDRE: 0.911
QUESTIIAMNAIRE: 28 SCDRE: 0.516
QUESTIDNNAIRE: 38 SCDRE: 1.000
QUESTIDNAAIRE: 68 SCDRE: 1.000
QUESTIDMNAIRE: 69 SCDRE: 0.543
QUESTIUNNAIRE: 90 SCDRE: 0.66 ?
SELECT 41-51 -- 42
ENTER BDX NAME -- RESP
HIERARCHY DATA FDR BDX RESP
BDK:RESP RULE:SA SCDRE: 0.730 Q:
BDK: PELRSP RULE:SD SCDRE: 0.790 Q:
IDX:BRRR RULE:SA SCDRE: 0.370 O:
QUESTIDNNAIRE: 3 SCIRE: 0.606
QUESTIDANAIRE: 21 SCORE: 0.911
QUESTIDNNAIRE: 23 SCDRE: 0.516
QUESTIDNNAIRE: 33 SCDRE: 1.000
QUESTIDNMAIRE: 63 SCORE: 1.000
QUESTIDNMAIRE: 69 SCDRE: 0.548
QUESTIDNNAIRE: 90 SCDRE: 0.667
BDX:GP RULE:AV SCDRE: 1.000 Q:
QUESTIDNNAIRE: 4 SCDRE: 1.000
BOX:EFFRSP RULE:SA SCDRE: 0.706 Q:
BIX: ONSITE RULE:SA SCDRE: 0.559 Q:
BDX:REQDFF RULE:HA SCDRE: 0.333 Q:
BOX: CONADV RULE:SA SCDRE: 1.000 Q:
BOX:OFFSIT RULE:SA SCDRE: 1.000
BOX:RSPREQ RULE:HA SCDRE: 1.000 Q:
BIX:ENGADV RULE:SA SCORE: 1.000 Q:
BOK:DRRSP RULE: SCURE: 1.000 Q:
SELECT 41-51 -- 42
ENTER BAX NAME -- EFFRSP
HIERARCHY DATA FDR BZX EFFRSP
BEX:EFFRSP RULE:SA SCORE: 0.706 Q:
BDX: INSITE RULE:SA SCDRE: 0.559 Q:
BDX:REQDFF RULE:HA SCDRE: 0.333 Q
QUESTIDNNAIRE: 12 SCDRE: 0.333
QUESTIDNNAIRE: 16 SCDRE: 1.000
BIX:CONADV RULE:SA SCDRE: 1.000 Q:
QUESTIDNNAIRE: 16 SCDRE: 1.000
QUESTIIANAARE: 43 SCDRE: 1.000
BDX: DFFSIT RULE:SA SCDRE: 1.000 Q:
BUX:RSPREQ RULE:HA SCDRE: 1.000 Q:
QUESTIUNNRIRE: 16 SCDRE: 1.000
BDX:ENGADY RULE:SA SCORE: 1.000 Q:
QUESTIDNNAIRE: 16 SCDRE: 1.000

Figure 4-6. HIERARCHY GRAPHICAL DISPLAY


4-7 (not produced by the computer) illustrates the level by level evaluation taking place for the entire capability.

The following discussion illustrates a hypothetical analysis of how the computer output might aid an evaluator or designer in recommending upgrade procedures for a facility. Let us assume that it is desired to upgrade the facility capability score from a .4 to a .5 by improving the "deny access" portion of the hierarchy. The upper portions of the iiiezzrchy evaluation involve AND type interactions. From descriptions in Section 2, (and also from formal computations with the algorithm formula in Appendix Al/, the greatest improvement to an overall score per unit improvement of scores directly beneath it comes from improving the worst score when an AND type operation is involved. In looking at Figure $4-7$, we first look at improving the DETACC score (the smaller of the two scores immediately below DENACC). We then look at improving the SENSE and ASSESS boxes to at least the same level as the REPALR box.

Figure $4-5$ shows that the ASSESS box is evaluated by averaging the scores of the direct and indirect assessment techniques with the alarm station score. The alarm station score (\#12) appears quite low. In addition, the techniques only average together reflecting a not especially well coordinated group of elements in performing the assessment task.

The questionnaire for the alarm stations (\#12), indicates that the responses to several of the questions are at their worst levels. If these were changed to their best levels, the component would score .802 instead of .338. If, in addition, the ASSESS elements were coordinated so that a soft OR were appropriate, the total ASSESS score would become . 838 .


In examining the SENSE box, we note two techniques are used. Since the SENSE box is evaluated using an OR rather than an AND, the most improvement is gained by improving the best technique beneath it rather than the worst. This refers to the box labeled MULTS. In Figure 4-5, MULTS is evaluated by averaging a group of components. This reflects the situation that the components do not especially provide defense in depth; e.g., when one component is active another is not. If these components coordinated together more closely, (e.g., all were always active providing some defense in the depth), so that a soft OR were appropriate, the score for MULTS would become .808 . Finally, if the direct and indirect assessment techniques were made to provide completely independent, redundant systems so that a hard $O R$ were appropriate, the total score for the SENSE box would be .918 .

Working the improved scores up through the hierarct yields improved scores for the following elements:

SENSE: . 918
ASSESS: . 838
DETACC: . 668
DENACC: . 629
Capability: . 506

The above discussion and example serves to illustrate how the algorithm is implemented using the computer program and how the resulting output can be analyzed to provide insight into and to explore different safeguard strategies.

### 5.1 STRENGTHS OF THE METHODOLOGY

The evaluation methodology presented in this report was designed to have certain desirable properties as outlined in Section 2.1. These strengths of the methodology are now summarized.

- Defensibility of Computational Formulas: The computational rules that are used are not arbitrary. They can be derived formally from a set of assumptions that allow the problem to be decomposed into simpler parts and then logically connected together. Whether the assumptions that justify the use of the computational formulas are valid for a particular component questionnaire or capability hierarchy depends a great deal upon the nature and interpretation of all the elements and factors involved. Because the formulas can be related to specific assumptions, however, the motivation for choosing a particular aggregation rule in a given situation can be explained. The rules have a basis in both probability and utility theory. Both theories provide orientations that appear useful for the safequards evaluation problem.

Flexibility of Aggregation Rules: The algorithms are capable of modeling several types of interactions using relatively simple functional forms. The rules were developed to address all thr elements of a capability hierarchy including component questicanaires, component combinations, delay-response elements and higher level hierarchy elements.

- Practicality: The methodology can be implemented in a practical fashion using a framework consisting of multiple choice questionnaires and a hierarchy structure. The effort required to specify the parameters of the algorithms is reasonable. Both interaction rules and weighting factors can be assigned in a practical and systematic manner with a provision for some consistency checking.

Traceability: The computer program allows a user to trace an overall capability score all the way down to a score on an individual component or question. Thus, the reasons why sacility received a particular score can be specified. The computer program has interactive capabilities that especially facilitate such tracing displays.

- Aid to Evaluators: In addition to traceability, the computer program can aid evaluators via sensitivity analysis. By varying the algorithm parame ers and/or element scores, evaluators can examine the range of assumptions under which a facility receives an overall score within a certain range, or for which it is less "preferred" than another facility. This type of analysis can provide useful insight into the critical elements affecting a facility's overall evaluation.

Aid to Designers: Sensitivity analysis can also aid designers. By testing out combinations of potential components, or by adding or upgrading components, a designer can gain insight into what the strengths and weaknesses of a design might be and into what changes can most improve the design score.

In summary, the methodology has the potential for providing, in a practical manner, useful evaluations of safeguards facilities to both evaluators and designers.

### 5.2 LINITATIONS OF THE METHOLOLOCY

## The methodology hes limitations steming from the complexity of sefeguarce evaluation. Limitotions of the rethodology and apprcach are now summerized.

- Multiple-Choice Questionnaire, Capability Hierarchy Framework: An afproach selected to characterize a facility shoulo be fractical to implement and yet still reflect in a reasonable way essential feetures of the safeguards system. The questionnaire hierarchy frewework is an approach that addresses the evaluation prcblem, not from the standpoint of providing a detailed model or simulation of $f$ safeguerás operation, but rather of provicing a large "checklist" of aspects that should be examined in inspecting a desigr cr facility. Information that can be cbtaineá via ouestionnaires is very diverse in both subject matter and precision. This makes it difficalt to hendle such ouestionnaires in a systematic, cuantitative fashion. This should be remembered when interpreting an єvaluation sccre. While giving useful insight into a facility, such an evaluation should not be the sole input to a complete safequards capebility evaluation. It should not be expected that this particuler approach could aderess all the complex features of a facility and potential adversary actions.
- Methodology Assumptions: In order to quantitatively evaluate a hiererchy ceperility, several simplifying assumptions were made in developing the aggregation algorithms. It must be recognized that these assumptions are approximate at best. Careful design of questionnaires and hierarchy structure can help make these assumptione मore reasonable approximatione. The methodology, like the ouestionraire-hierarchy framework, has had to consider the conpromise between practical implementation ard the ability to eddress complex features of the problem.
- Methodology Implementation: The current capability hierarchies and questionnaires and the methodology itself have had very little testing in terms of sample or hypothetical facility information. The preliminary testing that has been done has served to point out areas for improvement, further implications of setting certain algorith parameters and potential redundancies or double-counting in both questionnaires and hierarchies. This issue will be discussed further in the paragraphs to follow.


### 5.3 RECOMMENDATIONS FOR FUTURE WORK

While it is difficult to address all of the limitations discussed above, there are several areas where additional work could improve the framework and methodology presented in this report. These recommendations are discussed below.

- Design Methodology Testing: Further testing of the methodology is strongly recommended. Availability of the computer program will greatly facilitate this testing. The testing should include:

1) Evaluating component questionnaires and deciding what question weights and interaction rule can most reasonably reflect the effectiveness of individual components.
2) Evaluating component combinations and devising, if necessary, improved system questionnaires to deal with this issue.
3) Evaluating higher level system tasks, whether the current hierarchy structures are appropriate and what interaction coefficients should be assigned to higher levels.

Formal assessments and consistency checking of algorithm parameters is recommended as part of this testing.

This evaluation and testing should be carried out under as realistic conditions as possible. Several existing facilities may provide useful data to help evaluate whether computed scores correspond to an intuitive evaluation of the quality of safeguards. After this testing procedure has been completed, an effort should be made to further simplify the use of the methodology for designers and evaluators.

- Extending the Methodology to Evaluate Overall Safeguards Capabi1ities: As was mentioned in Section 2.5 , the current hierarchy structure does not reflect the concept of several safeguard capabilities working together to provide more complete safeguards than an individual capability considered in isolation could provide. There are possibilities for using the questionnaire information assessed for individual capabilities to evaluate overall safeguards. These may involve restructuring hierarchies especially for this purpose and also devising questionnaires that consider how capabilities coordinate with each other. Since some safegrard systems may be designed with an overall concept in mind, it would be useful to be able to evaluate overall safeguards in addition to individual capabilities.

Disaggregation Structure: The capabilities hierarchy that specifies required safeguard capabilities and defines the functions that a system must perform in order to meet these capabilities (see Figure 6-1).

Performance Capabilities: The five major objectives specified by the NRC that form the highest level of the disaggregation structure.

System Functions: The second level of the disaggregation structure. Those functions that contribute directly to a system capability.

System Subfunctions: All disaggregation levels below the system functions (excluding the lowest levels), which identify specific tasks to be performed by the system.

Low-level System Tasks: Those specific tasks or jobs which follow from the system subfunctions and which correspond to the Performance Characteristics in the Component Selection Matrix

Performance Characteristics: Constrained low-level system tasks.

Component Selection Matrices: Matrices that indicate correlations betheen specific tasks via performance characteristics and feasible approaches (equípment and procedures).

SSNM: Strategic Special Nuclear Material.


MAA: Materials Access Area. Any area containing SSNM.

VA: Vital Area. Any area containing equipment that could be sabotaged.

PA: Protected Area. Area surrounding a VA and/or MAA, up to the perimeter of the facility.

ETQ: Effectiveness Test Questionnaire. A set of multiple choice questions that provides information used by the algorithm to evaluate an overall component effectiveness score.

IRS: Information Request Sheet. A more expansive description of a component or safeguard system that provides additional information to evaluators. The algorithm uses only the multiple choice responses and direct scoring information provided by the evaluator in its computations.

System Effectiveness Test Questionnaire: A set of multiple choice questions that provides information used by the algorithm to decide what type of computation is appropriate to combine certain component scores. The questionnaire may also provide the information necessary to combine delay-response type scores, treat multiple access points and factor in facility information not covered in any particlar component questionnaire.

Delay-Response Type Elements: Elements that require a synthesis of delay and response/assessment/monitoring capabilities by comparing delay and response/assessment/monitoring times.

1. Woodward-Clyde Consultants. A Methodology for Evaluating Safeguards Capability for Licensed Nuclear Facilities. Prepared for Sandia Laboratories, December 1978
2. Keeney, R.L. and H. Raiffa, Decisions with Multiple Objectives. New York: Wiley, 1976

Appendix Al
FUNCTIONAL FORM FOR SAFEGUARDS EVALUATION ALGORITHM

In Section 2.2, the utility function structure used in safeguards evaluation computations was briefly presented. In this appendix, the underlying assumptions made in that structure are described. In addition, further properties of the evaluation function are discussed.

Al. 1 Utility Theory
The axioms of decision analysis [1] define a formal logic for evaluating alternatives where the consequences of those alternatives may be uncertain. Specifically, the assumptions utilized in this study imply the existence of a utility function to model the preferences of the evaluators.

Before stating the axioms of utility theory, we define our notation. A simple lottery, written $L\left(x_{1}, p, x\right)$, is a probabilistic evet.t characterized by two possible consequences, which will be designated by $x_{1}$ and $x_{2}$, and by their respective probabilities of occurrence, designated by $p$ and $1-\mathrm{p}$. The symbols >, $\sim$, and < will be read "is preferred to, " "is indifferent to," and "is less preferred than," respectively. ${ }^{1}$ Thus, $X_{1} \sim L\left(x_{2}, p, x_{3}\right)$ says that $x_{1}$ is indifferent to the lottery which yields either $x_{2}$ with probability $p$ or $x_{3}$ with probability $1-p$.

[^5]The axioms stated here which imply the existence of a utility function are only slightly modified from the formulation of Pratt, Raiffa, and Schlaifer [1].

Axiom ul: Existence of Relative Preferences. For every pair of consequences $x_{1}$ and $x_{2}$, preferences exist such that either $\mathrm{x}_{1} \sim \mathrm{x}_{2}, \mathrm{x}_{1}>\mathrm{x}_{2}$, or $\mathrm{x}_{2}<\mathrm{x}_{1}$.

Axiom u2: Transitivity. For any lotteries $L_{1}, L_{2}$, and $L_{3}$, the following hold:
i) $\mathrm{L}_{1} \sim \mathrm{~L}_{2}$ and $\mathrm{L}_{2} \sim \mathrm{~L}_{3}$ implies that $\mathrm{L}_{1} \sim \mathrm{~L}_{3}$
ii) $\mathrm{L}_{1}>\mathrm{L}_{2}$ and $\mathrm{L}_{2} \sim \mathrm{~L}_{3}$ implies that $\mathrm{L}_{1}>\mathrm{L}_{3}$, etc.

Since a consequence can be interpreted as a degenerate lottery (i.e., $p=1$ ), axioms $u l$ and $u 2$ together imply the existence of a ranking of the relative desirabilii es of the various possible consequences. They do not say that an individual can articulate this, nor do they require that this ranking be stationary over time. Let us designate as $x^{\circ}$ a insequence which is not preferred to any of the other consequenc ${ }^{\text {f }}$, $r$ a problem and as ${ }^{*}$ a consequence which is at least as preferr as each of the other consequences. Therefore, one possiblity is that $x^{\circ}$ and $x^{*}$ designate the least and most preferred consequences, although they may represent hypothetical conseouences such that $x^{*}>x$ and $x>x^{\circ}$ for all possible $x$.

Axiom u3. Comparison of Simple Lotteries. Given the preference order $x_{1}>x_{2}$, then
i) $\mathrm{L}_{1}\left(\mathrm{x}_{1}, \mathrm{p}_{1}, \mathrm{x}_{2}\right)>\mathrm{L}_{2}\left(\mathrm{x}_{1}, \mathrm{p}_{2}, \mathrm{x}_{2}\right)$ if $\mathrm{p}_{1}>\mathrm{p}_{2}$,
ii) $L_{1}\left(\mathrm{x}_{1}, \mathrm{p}_{1}, \mathrm{x}_{2}\right) \sim \mathrm{L}_{2}\left(\mathrm{x}_{1}, \mathrm{p}_{2}, \mathrm{x}_{2}\right)$ if $\mathrm{p}_{1}=\mathrm{p}_{2}$.

Axiom u4. Quantification of Preference. For each possible consequence $x$, the evaluator can $s$ pecify a number $\pi(x)$, where

$$
0 \leq \pi(x) \leq 1 \text {, such that } x \sim L\left(x^{\star}, \pi(x), x^{\circ}\right) .
$$

Axioms $u 3$ and $u 4$ taken together establish a mieasure of the relative desirabilities of the various consequences to the evaluator. The $\pi(x)$ value - or indifference probability, as it is cailed - is that measure.

Clearly, since the standards $x^{\circ}$ and $x^{*}$ for measuring $\pi(x)$ are somewhat arbitrary, different $\pi$ functions may he assess or a specific individual in a particular situation. To be consistent with these axioms, however, all possible functions must be positive linear transformations of each other. Any positive linear transformation of $\pi$ of the form

$$
u(x)=a+b \pi(x), \quad v>0
$$

is referred to as a utility function. The quantity $u(x)$ is said to be the utility of consequence $x$. If onc accepts the above axioms, one should always prefer alternatives that maximize expected utility. There are no alternative procedures for making decisions consistent with these axioms.

Since maximiving expected utility is equivalent to maximizing the expected value of ${ }^{*}$, the arbitrary choice of $x^{*}$ and $x^{\circ}$ has no influence on the actual decision. Utility provides a relative scale analogous to the temperature scales, and two scales which are posizive linear transformations of each other are identical for decision-making pu:poses.

## A1. 2 INDEPENDENCE ASSUMPTICNS

The theory underlying multiattribute utility functions is presented in detail in [21. Here we briefly present the theoretical results that anderlie the utility functions used in the evaluation methodology presented this report. Suppose $\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$ are the attributes of an evaluation problem. For notational convenience let $X_{I}$ be any specified subset of $\left\{X_{1}, x_{2}, \ldots, X_{N}\right\}$ and $\bar{X}_{I}$ be the complement of $X_{I}$. Then $X_{I}$ is utility independent of $\bar{X}_{I}$ if preferences for risky choices (lotteries) over $X_{I}$ with the value of $\bar{X}$ held $f i x e d$ do not depend on the fixed value of $\bar{X}_{I}$. If $X_{I}$ is utility independent of $\bar{x}_{I}$ for all $X_{I}$ then
$\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are mutually utility independent.

Theorem $\left\{2\right.$, Theorem 6.1]. If $\left\{X_{1}, X_{2} \ldots, X_{N}\right\}$ are mutually ut ility independent then either

$$
\begin{equation*}
u\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\sum_{n=1}^{N} k_{n} u_{n}\left(x_{n}\right) \tag{A1.la}
\end{equation*}
$$

or

$$
\begin{equation*}
1+K u\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\prod_{n=1}\left[1+K k_{n} u_{n}\left(x_{n}\right)\right] \tag{A1.1b}
\end{equation*}
$$

where $x_{n}$ represents a specific value of $X_{n}$, $u$ and the $u_{n}$ 's are utility functions scaled from zero to one, the $k_{n}$ 's are scaling constants with $0<6<1$, and $K>-1$ is a nonzero scaling constant which is the solution to

$$
\begin{equation*}
k+1=\prod_{n=1}^{N}\left(k k_{n}+1\right) \tag{A1.1C}
\end{equation*}
$$

Note that in the derivation of the utility function for the safeguards evaluation, some or all of the attributes may be vectors.

In Section 2.2 , the expanded expression for the utility function is given with the following relationships:

```
S = u ( }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
C = k for all N attributes
\mp@subsup{u}{n}{}}=\mp@subsup{S}{n}{}\mathrm{ for all N attributes
```

Thus, in simplifying the expression for the aggregation algorithm,

$$
S=\sum_{i=1}^{N} S_{i} / N \quad \text { or }
$$

$$
\begin{equation*}
S=\prod^{N}\left(1+V S_{i}\right)-1 \tag{A,3}
\end{equation*}
$$

$$
i=1
$$

$$
(1+v)^{N}-1
$$

## A1. 3 SYSTEM QUESTIONNAIRES FOR DETERMINING CONDITTONAL UTILITY FUNCTIONS

The parameter $V$ in (Al.3) can be considered to be conditional upon other factors that are assumed fixed for a particular evaluation. If such factors change, it is possible that $V$ might change. A system questionnaire provides the mechanism for assigning $V$ conditional upon how well a group of elements coordinate with one another.

Specifically, in the Phase 1 report in Appendix A3 [3], it was shown how the interaction coefficient was related to the value $C: Y$ that would make a decision maker indifferent between the following:
A. Element 1, Element 2

$$
\left(\mathrm{s}_{1}=1, \mathrm{~s}_{2}=0\right)
$$

B. Element 1, Element 2
( $S_{1}=\mathrm{Y}, \mathrm{S}_{2}=.5$ )

It was shown there, that $V=(1 / Y)-2$

A value of $Y$ near 1 would indicate that $S_{1}$ and $S_{2}$ were redundant or substitutes for each other. A value of $Y$ near 0 would show that a fatal flaw in either one would cause the other to be almost worthless. A system questionnaire provides a mechanism for computing more formally what value of $Y$ a decision maker would feel to be appropriate for the above tradeoff. Specifically, $Y$ is set equal to the score on the system questionnaire. To simplify the algorithm, the following correspondences between $Y$ and $V$ are used:

$$
\begin{array}{cll}
\underline{Y} & \underline{V} \\
.8-1 . & V=-1 & \text { (OR) } \\
.6-.8 & V=-1 / 2 & \text { (SOFT OR) } \\
.4-.6 & V=0 & \text { (AVERAGE) } \\
.2-.4 & V=1 & \text { (SOFT AND) } \\
0-.2 & V=\infty & \text { (AND) }
\end{array}
$$

In summary, $V$ is conditional upon the score of the system questionnaire in the manner indcated above. In these instances, (Al.j) with the appropriate value of $V$ is a conditional evaluation or utility function based on howe well the elements coordinate with each other as determined by the system questionnaire.

## A1. 4 SOME PROPERTIES OF THE FUNCTIONAL FORM

If we take the partial derivative of $S$ with respect to $S_{i}$ in (A1.2) and (Al.3) we obtain the following:

$$
\begin{align*}
& \frac{\partial S}{\partial S_{i}}=\frac{1}{N} \text { for } V=0  \tag{A1.4}\\
& \frac{\partial S}{\partial S_{i}}=\left(\prod_{j=1}^{N \neq i}\right. \tag{A1.5}
\end{align*}
$$

In (Al.5) the quality $V / K$ is always positive. In examining (Al.5), when $-1 \leq V<0$, the product term is largest when the $S_{i}$ excluded is the largest. This implies that for an OR type aqgregation, the greatest gain per unit increase in an $S_{i}$ is achieved when the largest $S_{i}$ element is selected. In other words, to upgrade a combination of components which OR together, it would pay to improve the best element further, if possible. When $0<V<\infty$, the product term is largest when the $S_{i}$ excluded is the smallest. Thus for an AND type aggregation, it would "pay" to improve the worst element further, if possible. ${ }^{1}$

Of course, there are other factors which would influence those elements to be selected for potential upgrading; e.g., cost, feasibility of improvement, etc., But the algorithm's functional form does provide some guidance on this issue.

[^6]
## REFERENCES

1. Pratt, J.W., Raiffa, H., and Schlaifer., R. 1964. The Foundations of Decision under Uncertainty: an Elementary Xxposition. Journal of the American Statistical Association 59:353-357.
2. Keeney, K.L. and H. Raiffa, Decisions with Multiple Objectives; Preferences and Value Tradeoffs. New York: Wiley, 1976
3. Woodward-Cl/de Consultants, A Methodology for Evaluating Safeguards Capabjlity for Licensed Nuclear Facilities, prepared for Sandia Laboratories, December 1978.

# Appendix <br> A2 <br> ASSESSING ALGORITHM PARAMETERS 

In Section 3.5, a technique was presented with which the parameters of the algorithm could be assessed in a consistent manner. The derivation of the formulas shown in that section are now presented.

To review, to calibrate the weight $W$ for a group of equally weighted elements in a manner consistent with the selected aggregation coefficient, one should choose n and P for which the followign two situations are equally preferred:

A
( $\mathrm{N}-\mathrm{n}$ elements at their best, n elements at their worst)


All elcments at their best (i.e., S=1)
$S=0$

In practice, P is sometimes set to .5 , and n is then determined. The formulas for $u$ in terms of $N, n$ and $P$ are now derived.

The basic equations used are the formulas (Al.2) and (Al.3). As appendix Al explained, the expected utility or score for situations $A$ and $B$ above should be set equal to each other since they are equally preferred. In terms of formula (Al.2), the expected utility for situation $A$ is equal to $(N-n+n(1-W)) / N$. The expected utility for situation $B$ is P. Equating these two scores, yields:

$$
W=(1-P) N / n
$$

There is a transformation of formula (Al.3) that is useful in deriving expressions for $W$. It is a noormalization scheme that has the scores going from -1 to 0 rather than 0 to 1 . To make this transformation, the following quantities are defined:

$$
\begin{aligned}
& V^{\prime}=V /(1+V) \rightarrow V=V^{\prime} /\left(1-V^{\prime}\right) \\
& S_{i}^{\prime}=S_{i}-1+S_{1}=1+S_{1}^{\prime} \\
& S^{\prime}=S-1+S=1+S^{\prime}
\end{aligned}
$$

In terms of the new quantities, (using formula (Al.3) and reducing),

N
$S^{\prime}=\prod\left(1+V^{\prime} S_{i}{ }^{\prime}\right)-1$
$i=1$

$$
1-\left(1-V^{\prime}\right)^{N}
$$

Both formulas (A1.3) and (A2.1) will now be used to derive expressions for $W$.

The expected utility for $B$ in the new variable system is $P(0)+(1-P)(-1$ or $\mathrm{P}-1$. The expected utility for A using formula (A2.1) is simply:

$$
\frac{\left(1-V^{\prime} W\right)^{n}-1}{1-\left(1-V^{\prime}\right)^{N}} \quad(A 2.2) \quad-\infty<V^{\prime} \leq 1, V^{\prime} \neq 1
$$

( $S_{i}$ ' if $r$ a perfect element is 0 in the new system). Equating (A2.2) with $\mathrm{P}-1$ yields the following for w :

$$
\begin{equation*}
W=\left(1-\left(P+(1-F)\left(1-V^{\prime}\right)^{N}\right)^{1 / n} / V^{\prime}\right. \tag{A2.3}
\end{equation*}
$$

The formula in the original variable system is shown in Section 3.5 .

$$
\text { For } \mathrm{V}+\infty, \mathrm{V}^{\prime}+1 \text {, and formula (A2.3) becomes } \mathrm{W}=1-\mathrm{P}^{1 / \mathrm{n}} \text {. }
$$

For $V=1, V^{\prime}=1 / 2$ (soft AND). For $N$ large, the term containing $\left(1-V^{\prime}\right)^{N}$ is multiplied by $(1 / 2)^{N}$ and can be ignored in (A2.3) for $N>5$.

For $V=-1$ (hard OR), the use of formula (Al.3) yields an expected utility for $A$ of $1-W^{N}$ for the case where sil elements are at their worst. (Even one at its best will yield a utility of 1 ). Solving for $W$ in this case yields $W=(1-P)^{1 / N}$.

## A3. 1 GENERAL OVERVIEW

Two versions of the safeguards evaluation computer program were written in FORTRAN IV. This appendix contains listings of both versions. An interactive program design was chosen because (1) it facilitates easy use of the program by providing easy to understand dialogue and (2) it greatly facilitates sensitivity analysis as well as fine tuning of algorithm parameters. The first version has more interactive options than the second, but may require more modifications to implement on non-IBM systems. This version is not strictly 1966 ANSI standard[1]. However, it has been recognized that the 1966 standard is quite limited in certain respects. Specifically, no random access input-output is allowed by the 1966 standards. A new standard (FORTRAN 77) [2] has been published, but as yet is not implemented on most systems.

The second version is less interactive and replaces all the random access input-output statements with sequential input-output statements. This second version is intended to comply with the 1966 standard and should be easy to implement most systems. It has the following limitations: Options 21 and 48 may only be done once in a run and options 22 through 29 are not available.

## A3.2 LANGUAGE AND OPERATING SYSTEM CHARACTERISTICS

Both programs do not require large amounts of core, but do utilize four disk files for input and output as explained in Section 4 of the
main report. Currently, there is room for 100 questionnaires with up to 40 questions each, and 40 "boxes" per capability. These dimensions can be changed if necessary. With the current dimensions, it is sometimes necessary to evaluate an entire capability in two pieces. This was done for the example discussed in Section 4 and presented in more detail in Appendix A4.

Some features that may require modification when implementing the program on different systems are now discussed. DOUBLE PRECISION statements are necessary to accommodate label variables of more than 4 characters on IBM machines. DOUBLE PRECISION statements should be removed for CDC machines. All random access input-output related statements are usually different for different computer systems. The current fully interactive version is IBM compatible only. The hierarchy graphical display routine utilizes certain carriage control characters that may be different or not present on some systems. The graphical display option 50 should not be used on systems that do not support a control character that allows the printer to remain on the same line with no carriage return and no line feed. Finally, CDC systems require a PROGRAM CARD to appear as the first card in the main program.

The mnemonic QUEAS (Quantitative Evaluation of safeguards) is given to the program files which contain the routines implementing the algorithm. The program routines and data files are described in Table A3-1. The program listings follows the table. The routines with a " $B$ " appended to the file name replace their counterparts to compose version $B$ of the program.

## REFERENCES

> 1. American Standard FORTRAN, New York: American Standards Association, Inc., 1966 .

[^7]Table A3-1. PROGRAM ROUTINES AND DATA FILES

QUEASI (FORTRAN): Main Program File
QUEAS1 (FORTRAN): First Subroutine File
SUBROUTINE GETHN : Interactively requests a nieraıchy box name and returns the corresponding number

SUBROUTINE ATGET : Accepts a hierarchy box name and returns the corresponding number

SUBROUTINE SCREH : Accepts a box number and returns the box score
SUBROUTINE BOX : Computes score for a box with questionnaires as input

SUBROUTINE MULTEV: First level of recursive scoring routine. Tries to compute box score

SUBROUTINE GETQN : Interactively requests a questionnaire name and returns the corresponding number

FUNCTION YESNO : Accepts an interactive answer to a yes/no question and returns 0 for no, 1 for yes

FUNCTION GETNUM : Accepts a number from within a specific range interactively

SUBROUTINE TXTURE: Combines a group of numbers using a scoring rule

SUBROUTINE MULTE1: Second level of recursive box scoring routine
SUBROUTINE MULTE2: Third level of recursive box scoring routine
SUBROUTINE MULTE3: Fourth level of recursive box scoring routine
SUBROUTINE MULTE4: Fifth level of recursive box scoring routine
SUBROUTINE MULTE5: Final level of recursive box scoring routine
SUBROUTINE GETR : Reads a questionnaire's responses

QUEAS2 (FORTRAN): Second Subroutine File
SUBROUTINE PRINTH: Prints short version of hierarchy structure starting with specified box

SUBROUTINE SETH : Resets higher score values when a box score is set

Table A3-1. (Continued)


```
QUEASI FORTRAN P IDZVCCVR 16.19.58 THURSOAY 6 DECEMBER 1979 PAGE I
    NATIONAL CSS, INC. ISUNNYVALE DATA CENTER) SUNY
```



```
QUEASI FORTRAN P ID=HCCUR 16.19.5B TMURSDAY 6 DECEMBER 1979 PAGE &
```

```
    VRITE(6.3205) QUEO2560
    9200 FCPMAT (/,14H SELECT ONE: ,1) QUEJO57G
    9201 FCRMAT(51H 21- COMPUTE SCORES 22-PRINT SCORES QUSOC580
    9202 FCRMAT (51H 23- SET SCORES 24- REVISE YEIGHTS
    9202 FORMAT(51H 25- REVISE RULES 26-REVISE RESPONSES
    9207 FCRMAT 151H 27-REVISE NAMES 28-PKINT NAMES
    QUEOO590
    QUEOC600
    QUS00610
    QUEC062.
    QUECO635
    QUE20640
    QL こO6650
    QUECC662
    QUEOCSTO
    QUECC682
    QUEOO690
    QUEOC7.2
    QUEOC716
    QUE00720
    QUEOC732
QUEO074C
QUEOO750
QUE20760
QUEC2770
QUEOJ78L
3UE00790
QUEOOSOC
QUEOJE1C
QUE0082J
QUEOOR3?
QUEOQ840
C =- CDTION 21 TO CONPUTE A QUESTIONNAIRE SCORE =-
    2CO1 GCTO 213
    214 OC 211 I=1,NUMG
        YRITE(6.9301) GNAME(I)
    9?C1 FORMAT(1GH? QUESTIONNAIRE,1A4.1H:)
        2:2 CALL SCOREQ(I)
        GOTO 2:OO
    21% CALL GETQN(ID,QNAME, NUMQU)
                IF(ID.EQ.-1) GCTO 214
                CALL SCOREQ(ID)
                    60TO 2000
C * CPTION 23 TO SET A QUESTIONNAIRE SCORE .- 
    2LOT CALL GETQN(ID,QNAME,NUMQU)
        URITE(6.9300)
9300 FORMAT (3OH? ENTER QUESTIONAIRE SCORE *)
        GSCCRE(ID)=GETAUM(O..1..1.)
        6CTO 2COO
C - OPTION 24 TO REVISE QUESTION WEIGHTS .- 
2CO4 CALL GETQNIID,QNAME, NUMQU)
        QS(ORE (ID) =-1.
        MRITE (6,9240)
9240 FCRMAT (39H? NUMBER OF QUESTIONS TO BE REVISED - - )
        NUF=GETNUM(1.,FLOAT(NUKQU),O.)
        LCC=LOCQ(1D)
```

QUE 0.0560
QUE20576
QUEOC5 80
QUE 00590
QUE OC600
QUE00610
QUE：062．
QUEC9630
QUE 20640
QL 20650
QuEC：66？
QUEDC670
QUECC68？
QUEOO690
がプラ
QUEDC71S
QUEOC732
QUE 0074 C
QUEOOT50
QUEC2770
UUEDO79
3UE00790
OUEOS
QUE0．825
QUEOOR30
QUECCR50
QUE 0086 ？
QUEO9870 QUEOORBO
QUECO892
QUECO90L
QUE00910
QUEOO920
QUE 20930
QUEOO94？
QUEOC950
QUE 00960
QUEOC970
QUEOU986
QUEUCS9C
QUEO106O
GUE01010
GUE 21020
QUE 21630
QUEO1640
QUEO1056
QUE01060
QUEO1C7？
QUECI U8O
QUE01090
QUEOLIOC

```
    REAO(1*LOC,9500) R,NQQQ,N6RP QUEO11110
    LCC=LOC+2+2*NGRP
    REAC(1'LOC,9243)(WEI6HT(K), K=1,8)
    &FGNEIGHT(1).LE.1) GOTO 241
    |RITE(E.9244)
    9244 FCRMAT (47H? MUST REVISE ALL VEIGHTS. ENTER NEV YEIGHT -- )
        WE16HT (2)=6ETNUM(0..1..,1.)
        URITE(1*LOC,9243)(*EI6HT(K),K=1,8)
        60T0 20LO
    241 LOC=LOC+1
        IF (NUMGU.LE.8) GOTO 243
        READ(1.LOC,9243) (*E1GHT(K),K=9,NUMQU)
    24: DO 2*0 1=1,NUN
        WRIlE(6,9241)
    9241 FCRMATLSOH? GUESTION NLMBER = )
        NUNQ=GETNUM(1.,90.,0.)
        #RITE(6,9:42)
    9242 FCRMAT(IIH? NEIGHT & :
        v=GETNL +15.,1.,1.)
    24C VEIGHT(NUMQ)=.
9243 FORMAT (8F5.3)
        LOC=LOCQ(1D)*2*NGRP*2
        *RITE(1.LOC,9243)(*EIGHT(K),K=1,NUMQU)
        CALL SCOREG(ID)
        COTO 2000
C -- CPTICA 25 10 REVISE SCCRING RULES .-
    2COE CALL GETQN(ID,GNAME,NUMGU)
        QSCORE(10)=-1.
        LOC=LOCG:IDO)
        REAC(1,LOC,950G) R,NQQQ,NGRP
    $EOC FORMAT(142,2(8X,1121)
    251 WRITE(6.95C2)
    95C2 FCRMATI24H? ENTER GROUP NUMBER --)
        N=GETNUM(50.,FLOAT (NGRP)*49.,0.)
        VRIIE (6,9503)
    950: FORMAT(33H? ENTER RULE (HA,SA,AV,SO,OR) =-)
    254 RENO(5.9504) R
    95:) F(RMAT (1A2)
        OC 252 1=1.5
        IF(R.EG.TEXTS(1)) ECTO 253
    252 COATINLE
        #RITE(E,9505)
    95CE FORMAT (25M? BAD RULE, TRY AGAIN -- )
        G010 254
    25% L=LOC*2
        OU 255 I=1,NGRP
        READ(1*L,9506) 1(RP,M*Z
950t FORMAT(2(112,8x),142)
        IF(IGRP.EQ.N) GRITE(1*L,9506) IGRP,M,R
    <55 L=L*2
        CALL SCOREQ(ID)
        GCTO 2000
C -. CPTICN 26 TO REVISE QUESTION RESPONSES .-
QUEO1120
QUE01130
GUE0114*
QUEJ1156
QUEC1160
QuE01170
QuE01186
quEC1150
QuEこ:200
QUE01210
QUE01222
QuE01230
GuE0124%
QUEO1250
GUE01260
GUE:1273
GUE01280
GUED129
QUE゙N136S
GUEC1310
GUE:132C
GUE01330
QUE01340
QUEC1350
QUED1360
QUE0137%
GJEO1380
OU[J139?
QUEC1403
QUE01413
GUE01420
GuEC143:
QUE:144:
Ou501450
GUE:146%
OUEC147C
QuE0148:
QuE01450
aUE01こ06
GUEC151C
GUE0152C
QUEO:53%
QUEC1540
GUEJ1E5:
QUEO156C
GuE01570
GUEC150C
GUEG159%
QUEJ160%
QuESi\in12
GUEO1E20
GuEj1630
GUE0164J
QUEC1E5%
```

```
QUEASI FORTRAN P IT=UCCER 16.19.58 THURSOAY G DECEMBER 1979 PAGE 4
200E CALL GETQN(ID.QNAME,NUMQU)
    OS CORE (ID)=-1.
    LCC=LOCR(ID) +1
    REAO(2*LOC,960t) IRESP
9600 FQRMAT(4O(1x,1A1))
    L=LOCO(IL) +1
    READ(1*L.9600) 1BEST
    WRITE (6,9240)
    N=GETNLM(0.,40.*O.)
    DC 260 I=1 *N
    *RITE(6.9241)
    NUM=GETNUM(0.,40.,0.)
    261 URITE (6.9603) IBEST(NUN)
960: FORHAT (16H? KESPONSE (A TO * 2X,1A1,4H)=)
    26( READ(5.9260) IRESP(NUM)
9260 FCRMAT (1A1)
    x=1-(AAA-FLOAT(IRESP(NUM)))/(AAA-FLOAT(IEEST(NUM)))
    IF(X.LT.O..OR,X,GT.1.) GCTO 261
    |RITE(2*LOC,96C0) IRESF
    CALL SCOREQ(1D)
    GOTO 2COO
C = CPTICN 27 TO REVISE QUESTIONNAIRE NAMES
    2007 CILL GETQN(ID,GNAME, NUMQU)
    VRITE(6.9271)
9271 FORMAT (15H? ENTER MAME - - )
    READ(5,9272) QNAME (10)
    9%7% FORMAT (1A4)
    GCTO 26OO
C =- PRINT AND SELECT HIERARCFY MANIPULATION OPIIONS --
2COB CALL PGNAME(QNAME,NUMQ)
    60TO 2000
C6OO IF (FLAG(5).EQ.O) GOTC 4OUG
    IF(FLAG(4).EQ.1) 60TO 401
    402 WRITE(6.9400)
        URITE(6,9421)
        YRITE(6,9402)
        UR1TE(6.9403)
        URITE (6,9404)
        *RITE(6,94 i5)
        WRITE(6,9407)
        *RITE (6.9205)
9400 FCRMAT (/,14H SELECT ONE: ,/)
9401 FCRMAT(5IH 41-COMPUTE SCORES 42-PRINTOATA )
94:2 FCRMATI51H 43- ASSIGNSCORES 44-REVISE DELAY/RESP,
```




```
9405 FQRMAT(51H 49- CHANGE BOX NAME 50- PRINT HIERARCHY, 51- NO MORE REVISIONS ,
9405 FORMAT(51H 49- CHANGE BOX NAME 50- PRINT HIERARCHY, 51- NO MORE REVISIONS (
    GCTC 4C3
401 URITE(6,9406)
9406 FCRMAT (18H? SELECT 41-51 - - )
4C% IOPT=6ETNUM(41,*47*,2.)
```

QUE 21660
QUEC1670
GUEO168？
GUEE1695
QUミここてしう
QUEむi710
QUEV：720
QUEO1730
QUE01740
GUEO175J
QUE 9176J
QUE 1770
QUEO1780
QUEC175t
QUES 18 CO
QUE 2： 1 1
QUEO：520
GUEG183C
GUEO184C
QUEU1850
QUE01850
QUEO1670
QUEC1880
GUEO：890
GUEO196：
QUEU1910
QUEO1920
QUE01932
GUEO194～
QUEO195
QUEU1960
QUE 21970
QUEO1960
むUE0199J
QUE 22000
GUEO2018
QUEU2 220
GUEO2030
QUE 22 24J
QUEこ2050
QUE 02060
QUEC207E
QUEO208
QUEO2090
QUEO210
QUEC 2110
QUEO2120
UUE 02130 QUEO2140
QUEC 2156
QUE02160
GUE02170
QUEO2180
QUEO2190
GUEO2200

```
QUEASI FORTKAN P IE=YCCYR 16.19.58 THURSDAY 6 DECEMBER 1979 PAGE S
```

```
    IFI1OPT.LT.41.OR.IOPT.GT.51) GOTO 1100 QUEO2210
```

    IFI1OPT.LT.41.OR.IOPT.GT.51) GOTO 1100 QUEO2210
    ICPT=1OPT=40 QUEO2220
    ICPT=1OPT=40 QUEO2220
    \triangleC4 FLAG(A)=1
    \triangleC4 FLAG(A)=1
    C RRAACH TO PROPER HIERARCHY CFTION QUEO224O
C RRAACH TO PROPER HIERARCHY CFTION QUEO224O
IF(FLAG(5),EG.6) 6CTC 4OOG GUEO2250
IF(FLAG(5),EG.6) 6CTC 4OOG GUEO2250
G0T0(4001,4002,4003,4034,4005,4006,4007,4008,4009,4002,1000) IOPTQUEO2260
G0T0(4001,4002,4003,4034,4005,4006,4007,4008,4009,4002,1000) IOPTQUEO2260
QUEU2270
QUEU2270
C = OPTION 41 TO SCORE A HIERARCHY BOX =- QUEO228D
C = OPTION 41 TO SCORE A HIERARCHY BOX =- QUEO228D
COI CALL GETHNITOGHNANEO
COI CALL GETHNITOGHNANEO
CALL EETHNIIDAHNAME)
CALL EETHNIIDAHNAME)
CALL SETH(ID,ISET)
CALL SETH(ID,ISET)
ISET(IE)=0
ISET(IE)=0
GOTO 400O
GOTO 400O
C =- CPTICN 42 TO PRINT HIERARCHY DATA =-
C =- CPTICN 42 TO PRINT HIERARCHY DATA =-
4CO2 CALL GETHN(ID,HNAME)
4CO2 CALL GETHN(ID,HNAME)
IF(IOPT.EQ.2) (ALL PRINTH(IC.HNAME)
IF(IOPT.EQ.2) (ALL PRINTH(IC.HNAME)
IF (IOPT.EQ.1O) CALL HPR(ID,HNAME)
IF (IOPT.EQ.1O) CALL HPR(ID,HNAME)
60T0 4%OO
60T0 4%OO
C - CPTICN 43 TO ASSIGN WIERARCHY BOX SCORES - -
C - CPTICN 43 TO ASSIGN WIERARCHY BOX SCORES - -
400? CALL GETHN(ID,HNAME)
400? CALL GETHN(ID,HNAME)
WRITE(6.9436)
WRITE(6.9436)
CALL SETH(ID.ISET)
CALL SETH(ID.ISET)
9430 FORMAT(1OH? SCCRE = )
9430 FORMAT(1OH? SCCRE = )
SCCREH(ID)=GETNUN(-1..1..1.)
SCCREH(ID)=GETNUN(-1..1..1.)
IF(SCOREN(ID).LT.U) ISET(ID)=0
IF(SCOREN(ID).LT.U) ISET(ID)=0
IF (SCOREH(ID).GE.O) ISET (ID)=1
IF (SCOREH(ID).GE.O) ISET (ID)=1
GOTO 40OC
GOTO 40OC
C = CPTION 44 TO REVISE DELAY/RESPONSE RULE. NOT CURRENTLY LSED
C = CPTION 44 TO REVISE DELAY/RESPONSE RULE. NOT CURRENTLY LSED
4CG4 CALL GETMN(ID,HNAN:)
4CG4 CALL GETMN(ID,HNAN:)
IF(RULEH(ID) FG.TEXTS(7)) 60TO 440
IF(RULEH(ID) FG.TEXTS(7)) 60TO 440
WH1TE (6,9440)
WH1TE (6,9440)
9440 FORMAT(28H BOX DOES NOT USE DELAY/RESP)
9440 FORMAT(28H BOX DOES NOT USE DELAY/RESP)
GOTO 4COL
GOTO 4COL
440 CCNTINUE
440 CCNTINUE
COTO 4COO
COTO 4COO
C =- CPTICN 45 TO REVISE SCORING RULES *-
C =- CPTICN 45 TO REVISE SCORING RULES *-
4GCS CALL GETHN(ID,HNAME)
4GCS CALL GETHN(ID,HNAME)
URITE (6,9503)
URITE (6,9503)
45( REN(5.9504) R
45( REN(5.9504) R
DO 45: I =1,6
DO 45: I =1,6
IF (R.EQ,TEXTS(I)) GOTC 452
IF (R.EQ,TEXTS(I)) GOTC 452
451 CONTINUE
451 CONTINUE
URITE(6,9505)
URITE(6,9505)
6010450
6010450
452 RULEH(1D)=反
452 RULEH(1D)=反
SCOREH(ID)=-1.
SCOREH(ID)=-1.
CALL SETH(ID,ISET) JUEC2710
CALL SETH(ID,ISET) JUEC2710
GOTO 400O
GOTO 400O
C * CPTICN 46 TO ENTER NEY HIERARCHY INTO TKE SYSTEM = - GUEO274J
C * CPTICN 46 TO ENTER NEY HIERARCHY INTO TKE SYSTEM = - GUEO274J
4CO6 URITE(6.9469)

```
    4CO6 URITE(6.9469)
```



```
QUEASI FORTRAN P IDFUCCUR 16.19.58 THURSDAY 6 DECEMBER 1979 PAGE 7
```

```
    READ(4*J,9463)((8NAME(I1),SCORE(I1)),I1=1,L) QUEO3310
```

    READ(4*J,9463)((8NAME(I1),SCORE(I1)),I1=1,L) QUEO3310
    J=J*L/5*1 QUEU3320
    J=J*L/5*1 QUEU3320
    READ(4*J.9480) QSCORE
    READ(4*J.9480) QSCORE
    9463 FORMAT(5(1A6,1F6.3))
9463 FORMAT(5(1A6,1F6.3))
DO 469 K=1.L
DO 469 K=1.L
CALL ATGET(BNAPE(K) \& ID*HNAME)
CALL ATGET(BNAPE(K) \& ID*HNAME)
IF (ID.EQ.U) 6CTO 469
IF (ID.EQ.U) 6CTO 469
SCOREH(ID)=SCORE (K)
SCOREH(ID)=SCORE (K)
46S CONTINUE
46S CONTINUE
00 459 I=1.40
00 459 I=1.40
459 IF (IDEX(I,1).EQ.O) RULEH(I)=BLANK QUEC3410
459 IF (IDEX(I,1).EQ.O) RULEH(I)=BLANK QUEC3410
GC10 4i00
GC10 4i00
C = CPTION 4 TO PRIAT CURRENT BOX NAMES =-
C = CPTION 4 TO PRIAT CURRENT BOX NAMES =-
4CC7 CALL PNAME(HNANE)
4CC7 CALL PNAME(HNANE)
GCTO 4000
GCTO 4000
C =* CPTICN 4E TO FILE HIERARLHY DATA -.
C =* CPTICN 4E TO FILE HIERARLHY DATA -.
400E LOCFLOCH(HNUM)
400E LOCFLOCH(HNUM)
DC 48C I=1,L
DC 48C I=1,L
IF(HIVAME(I), EQ.BLANK) GOTO 48%
IF(HIVAME(I), EQ.BLANK) GOTO 48%
URITE{3*LOC,94G1) KAAME(I),ICEX(I,1),RLLEH(I),QDEX(I)
URITE{3*LOC,94G1) KAAME(I),ICEX(I,1),RLLEH(I),QDEX(I)
I 4=IDEX(I,1)
I 4=IDEX(I,1)
IF(I4.EQ.O) GOTO 480
IF(I4.EQ.O) GOTO 480
LOC=LOC+1
LOC=LOC+1
11 =MOD(1DE ( (1,1),50)+1
11 =MOD(1DE ( (1,1),50)+1
CC 481 12=2,11
CC 481 12=2,11
13=10E\times(1,12)
13=10E\times(1,12)
IF(14.LE.50) GCTO 483
IF(14.LE.50) GCTO 483
WRITE(3*LOC,9272) QNAME(13)
WRITE(3*LOC,9272) QNAME(13)
GOTC 481
GOTC 481
482 URITE(3*LOC,94E2) HNAME(I3)
482 URITE(3*LOC,94E2) HNAME(I3)
481 LOC=LUC*1
481 LOC=LUC*1
486 CCNTINUE
486 CCNTINUE
\RITE(3*LOC,9462) NOMO
\RITE(3*LOC,9462) NOMO
J=LOCHS(HNUM)
J=LOCHS(HNUM)
*R1TE (4*J.9463)(HNAME(I3) , SCOREH(13), 13=1,L)
*R1TE (4*J.9463)(HNAME(I3) , SCOREH(13), 13=1,L)
JこJ*L/5*1
JこJ*L/5*1
UR1TE(4*J.9480) QSCORE
UR1TE(4*J.9480) QSCORE
9480 FORHAT (1CF8.5)
9480 FORHAT (1CF8.5)
GOTO 4COU
GOTO 4COU
C = CPTICN 49 TO CHANGE NAME OF BOX =-
C = CPTICN 49 TO CHANGE NAME OF BOX =-
4609 (ALL GETHN(ID, HNAME)
4609 (ALL GETHN(ID, HNAME)
VRITE(6.9271)
VRITE(6.9271)
REAO(5,9462) HNAME (ID)
REAO(5,9462) HNAME (ID)
GOTC 4COO
GOTC 4COO
ENC
ENC
QUE03330
QUE03330
QUEL3340
QUEL3340
QUED3350
QUED3350
GUEL3360
GUEL3360
QUEこ3370
QUEこ3370
QUEこころ80
QUEこころ80
GUEC3390
GUEC3390
QUED3400
QUED3400
QUEC3410
QUEC3410
QUEJ342J
QUEJ342J
GUEJ3430
GUEJ3430
GUEJこ44:
GUEJこ44:
QUEこ345%
QUEこ345%
QUE23460
QUE23460
QUEO3470
QUEO3470
GUE03482
GUE03482
QUEJ3490
QUEJ3490
QUEE3500
QUEE3500
QUE2351:
QUE2351:
QUEO352C
QUEO352C
QUEO3530
QUEO3530
QUEC354:
QUEC354:
QUEO3550
QUEO3550
QUEO3560
QUEO3560
QUEC357C
QUEC357C
GUEC358%
GUEC358%
QUES359:
QUES359:
QUEU360C
QUEU360C
GUE03612
GUE03612
QUEC3620
QUEC3620
GUE2363C
GUE2363C
QUEO364:
QUEO364:
GUEOSE50
GUEOSE50
QUE03660
QUE03660
QUE:3676
QUE:3676
GUE23586
GUE23586
QUEJ3690
QUEJ3690
QUEOS700
QUEOS700
QUE23713
QUE23713
QUE2こ720
QUE2こ720
QUE23736
QUE23736
QJEJ3740
QJEJ3740
QUEUS750
QUEUS750
QUEC376:
QUEC376:
GUE0377:
GUE0377:
quE03785

```
quE03785
```

```
QUEAS1 FORTRAN P IEFWCCUR 16.20.08 THURSDAY 6 DECEMBER 1979 PAGE 1
    HATIONAL CSS, INC. (SUWNYVALE DATA CENTER) SUAY
C SURROUTINE GETHN INTERACTIVELY REQUESTS A BOX NAME AND RETLRNS ITS
C IO AUMEER.
                DOUBLE PRECISION ALL ,HNAME(40),A
    DATA ALL/GHALL !
        IO=1
    10 WRITE (6,9000)
    9COG FORMAT (2OH? ENTER BOX WAME - )
    READ(5.9001) A
9001 FORMAT(146)
    IF(A.EQ.ALL) RETURK
        CALL ATGET(A.IO,HNAME)
        IF(ID.EG.O) 6010 20
        RETURN
    20 HRITE(E,9002)
9CO2 FORMAT (11H? BAD NAME)
        CALL PNAME (HNAME)
        GCTC IC
        END
        SUZROUTINE ATGET (ANAME,ID, HNAME)
C SURROUTINE ATGET CHECKS A BOX NAME AGAINST THCSE CURRENTLY IN
C THE SYSTEM AND RETURNS ITS ID NUMBER (O IF NOT VALID).
        DOUBLE PRECISION ANAME, HNAME (AC)
        OC 10 I=1.40
        IF (ANAME.EG.HNAME(1)) GOTO 20
        10 CONTINLE
        IC=O
        RETURN
    20 1D=I
        RETURN
        ENL
        SUEROUTINE こrREH(ID)
C SURRQUTINE SCREH IS N... O.STER SUBROUTINE FCR SCORING ROXES
        COMPON L1(100),QSCORE (100),L2(100),SCJREH(40), RULEH(40)
        COMMON IDEX(40,10)
        CALL MULTEV(ID)
    102 VRITE(6.90 WU) SCOREHEIC)
9000 FORMAT (13H THE SCORE 15.1F10.5)
        RETURN
        ENC
        SUEROUTINE BOX(ID)
C SHERQUTINE BCX SCORES BOXES WHICH NAVE QUESTIONNAIRES AS IADUT.
        COMMON LI(100),QSCORE(100),L2(100),SCOREH(42)
        COMMON RULEH(4C),ICEX(40,10)
        DIFENSION INDEX(40), RESP (100)
        NAT=1DEX(ID,1)=49
        DO 101 I=2,NAT
101 IMCEX(I) =IDEX(10,1)
        INCEX(1)=NAT-1
        DO 102 I=1.100
102 RESP(I)=QSCORE(I)
QUEOO010
SUBROUTINE GETHN(ID,HNAME)
QUE:OO2C
QUE:0C36
C IO AUNEER.
    QUEOC042
    GUEOCJ50
    QUE20.46
    QUE:C270
    QUEO2J80
    QUEO:092
    QUEDO100
    QUEOD:10
    GUEOこ:20
    QUEOUS3*
    QUEOO14C
    QUEOC156
    QUEJ316.
    QUEON170
    QUECO:&
    QUEOO19:
    GuECO2CO
    QUE:C21:
    GUEGO220
    GUEGJ235
    QUEOC24C
    QUES225:
    QUEJC26%
    QUEU2270
    QUEOC2OJ
    QUEOE29?
    GUESO3CC
    QUECOS10
    QUECC320
    QUEJOS3O
    QUEU033\hat{*}
    GJEOO340
    QUECO35%
    QUECこ36:
    QUELO370
    QUECO38C
    GUECC39%
    QUEOO4CL
    QUEOO410
    QUECO420
    QUEOC430
    QUE20442
    GUEOO450
    QUEOO460
    QUEOO47C
GUEOC4E:
GUE00493
QUEOO500
QUEOC510
QUEOO522
QUE26530
QUE0054J
GUEOO550
```

```
    RULE=RULEH(IO) QUEDOS6?
    CALL TXTURE(ID,RULE,INDEX,RESP,SCORE) QUEODE70
    SCOREH(ID)=SCORE QUECJEB:
    RETURN
    ENC
    SUBROUTIME MULTEV(ID)
c sueroutine multev is the mighest leEvel of the
C NESTED BOX SCORING ROUTINE
    COMMON LL(300),SCOREH(40), RULEH(40), IDEX(40,10)
    OIMENSION INDEX(4O)
    NUMAT-1DEX(10,1)
    IF(NUNAT.EQ.O) RETURN
    IF (NUMLT.GT.5U) GOTC 40
    CO 10 I=1, NUMAT
    1:=1+1
    L=10EX(ID,I1)
    IF(SCOREH(L).6E.0) 60TO 10
    CALL MULTELIL)
    1f continue
    J1=NUM 2T +1
    co 30 J=1, Jl
    30 INDEX(v)=1DEX(10,N)
    CALL TXTURE(ID,RULEH(IO),INDEX,SCOREH,SCORE)
    SCCREH(ID) = SCORE
    RETURN
    4O CALL BCX(ID)
    RETURN
    ENC
    SUEROUTINE GETGN(ID,QNAME,NUMQ)
C SUBROUTINE GETQN INTERACTIVEL Y ACCEPTS A QUESTIONNAIRE NANE
C ANE RETURNS ITS NUMBER
            COMMON LOCE(IOC)
            [IMENSION QNAME(ICO)
    4C GRITE(6,906U)
9000 FORMATI29H? ENTER QUESTIONAIRE NAME - - )
    READ(5,9001) A
9:O1 FCRMAT (144)
    IC=NG(A)
    IF(10.EQ.O) GOTO 10
    IF(ID.LT.O) RETURH
    I=LOCQ (ID)
    READ(1.1,9002) NUMG
    9CO2 FORMAT(10x,112)
    RETURI/
    10 CALL PQNAME (QNAME, NUNQ)
        GCTO 4O
        RETURN
        EA[
        FUACTION YESNO(Z)
C FUACTION YESNO RETURNS THE ANSUER TO A YES-NO QUESTION
C E FCR NC, 1 FOR YES.
    DATA */1HN/
```

QUE 0056 ？
QuE00570
QuEC JE8：
QUE00593
QUEOC60
QUEOU610
QUEこう623
QUECJ630
QUEOO64
QUEJO656
QUE 00660
QUES0673
QuEO $=680$
GUEUC6 70
QUECOTES
GUECC71：
QUE 20722
GUECLT30
QUEOC74C
QUED：759
QuEG0760
GUEGCT7C
QUE0078？
QUE00790
GUECD800
QUEOU810
QUECO82：
Quescoso
GUEOO840
GUECO85
QUEOU86C
QUEうCRT3
QUE0268
QuECCs93
QuEUCSTU
GuE0う910
GUESCO20
GUEOC930
QUECC． 40
QUEOC950
GUECC960
QUE 02975
QUE：こ：95
QUEOD970
QUEO1020
GuEDIC10
QUEこ1：2？
QUED 1036
GUE01043
QUEO1050
QUEO1060 QUE01070
QUEOICSO
que01c93
GUEO1100

```
        OATA Y/1HY/ QUEO1112
        YESNO=0.
    QUE21:126
    20 REAO(5,9000) A
9(OC FORMAT(1A1)
IF(X,EG.A) RETURN
        IF (Y,NE,A) GOTO 10
        YESNC=1.
        RETURN
    10 VRITE(6,9001)
9001 FCRMAT (2OH? TYPE YES CR NO =-)
        60TO 26
        ENC
        FUNCTION GETNUM(ALOH,ANIGH,TYPE)
C FUNGTICN GETNUM RETURNS A NUMBER ENTERED INTERACTIVELY
C AFTER CHECKINC FOR THE APPRCPRIATE RANGE AND TYPE.
        REAL GETNUM
    10 READ (5,*,ERR=20) GETNUM
        IF (TYPE.EQ.O.AND.UETNUM.NE.,AINT(GETNUM)) GOTO 5:
        IF (GETNUM.GE.A,ON.AND.GETNUM.LE.AHIGH) RETURN*
        IF (TYPE.EQ.2) GCTO 4O
        3C YRITE(6,100) ALOW,AHIGH
    1CO FCRMAT 126H? ENTER NUNBER BETUEEN ,1G10.5,4HAND ,161E.5,3H =.) QUEU:330
        GOTO 10
    2C IF (TYPE.NE.2) GOTO 3C SUELI35S
        4C CONTINUE
        RETURN
    50 \RITL(6,101) ALOW,AHIGH
101 FCRMAT(26H? ENTER AN INTEGER BETUEEN,G10.5,4HAND,G15.5.3H=-) QUELI390
    GOTO 1J OHF ENTER AN INTEGER BETVEEN.GIO.5,4HAND ,G1.2.5.3HN-)
        ENL
        SUEROUTINE TXTURE (NUM,RULE, INDEX,RESP,SCORE)
C SUEROUTINE TXTURE COMPUTES A SCORE USINO A SPECIFIED
C SCORIAG RULE.
        COYMON LL(1OO),QSCCRE(100) ,LL1(580),QOEX(40)
        DIMENSION INDEX(1),RESP(1),TEXTS(6)
        DATA TEXTS/*HA*,*SA*,*AV***SC***OR***Q*/
        M=INOEX(1)
        N=M+1
        DC 5 I =1.6
        IF(RULE.EQ.TEXTS(1)) GOTO 6
    5 CONTINLE
        WRITE(6,900)
        SCO FCRMATISBH BAE RULE ENCOUNTERED COMPUTING SCORE,
        RETURN
    E GOTO (10,20,30,40,50,70) I
10 SCORE=1.
        CO 11 I=2,N
11 SCCRE=SCORE*NESP(INDEX(I))
RETURN
RETURN
DO 21 I =2,N
21 SCORE=SCORE=(TESP(INDEX(I))+1*) QUEO164J
    C=1.f(2***M-1*) QUEO1650
QUEO113%
    QUEO1140
    QUEう115C
    QUE01160
    QUE01170
    GUEJ1180
    QUE<1190
    QUEJ:250
    QUEC:212
    QUEC122T
    OUEこ:23:
    GUE:1242
QUEO1250
    GUE2125%
    GUEC:27C
    QUE2128?
    QUE0129?
    QUEC1こう0
    QUEj131C
    GUEL1320
    QJEU1340
    GUEL1350
    GUE:1362
    S0.FR(RHATR6H2, GUEO1382
    QUEO1400
    QUEC1410
    GUEO142C
    QUEU1440
    GUEO145C
    QUE01460
    QUEO1470
    GUE0148C
    QUEO14:0
    GuEJ5500
    QUEO1510
    QUE31520
    QUEO1530
    QUEO1542
    QUEC155C
    QJE0156G
    QUEC1570
    WUEC158C
    QUEO1590
    QUEC16CO
    QUEO1610
GUEU1620
QUE0:630
```

```
    SCORE=C*(SCORE-1.) QUE01660
    RETURN QUEO1E7,
    30 SCCRE=0.
DO 31 I=2,N
31 SCORE=SCORE&RESP (IMDEX(1))
    SCCRE=SCORE* (1./M)
    RETURN
    40 SCCRE=1.
    DO 41 1=2,h
    41 SCORE=SCORE*(1.**5*RESP(INDEX(I)))
    SCCRE=(2.**M/(2***M-1*))*(1.*SCORE)
    6O CONTINUE
    RETURN
    50 SCCRE=1.
    DC 51 1=2,N
    E1 SCCRE=SCORE*(1, -RESP(INDEX(I)))
    SCCRE=1.-SCORE
    RETURN
    7C Q =QDEX(NUM)
    1C=NQ(0)
    A=6SCORE(1D)
    B=C.2
    DC 65 J=1,5
    IF(A.LT.8) GCTC 66
    B=8+0.2
    6E CORTINUE
    6E RULE=TEXTS(U)
    I=
    GOTO 6
    END
    SUEROUTINE MULTEL:ID)
C SURROUTINE MULTEI IS THE SECOND LEVEL OF THE EOX SCCRING
C SYSTEM. IT IS A CLONE OF MJLTEV, AS ARE MULTE2, MULTE3, ANL MULTEA. QUEO2OUO
    CCHMON LL(300),SCOREH(40)RULEH(4C),IDEX(40,10)
    CIFENSION INDEX(4C)
***UNAT=10EX(10.1)
    IF (WUMA).EQ.O) RETLRA
    IF(NUMAT.GT.5U) GOTO 40
    DO 10 I=1, NUMAT
    II=1+1
    L=1DEX(ID,11)
    IF(SCOKEH(L).GE.O) GOTC 10
    CALL MULTE2(L)
10 CONTINLE
    JI: NUMAT & 
    DO 30 J=1.J1
30 IN~EX(J)=1DEX(1D,J)
    CALL TXTURE(ID,RULEH(ID),INDEX,SCOREH,SCORE)
    SCCREH(IO)=SCORE
    RETURN
40 CALL BOX(ID)
    RETURN
    END
GUEC169C
QUEO109:
QUE0:7% 
|5:.
QUE:こi720
QUEC1730
GUEO174%
QUEU1750
QUEN1760
QUE\1760
QUEこ:77%
QUES176i
GUEO179%
QUEJIVSC
QUEว16こC
QUEu181J
QUE:182%
GコこC183C
GUE21840
GUEC18も心
QUE&186&
QUEこ1870
GuEこ188:
QUEこ1&9:
OU5こ19CL
QUEC1910
QUEU152%
QUE0153)
GUEC194.
QUE0:95C
QUEこ1962
QUE\157J
GUEO1980
GUEC:590
QUEC2J10
QUEO202%
GJE0203S
QUEO2\4C
QUE0205?
QUEU2C6?
QUEO2070
GUEC2080
QUEJ2090
QUEJ21OC
QUEO2116
QUE゙2120
QUEO?130
QUEC214i
QUE02150
QUE02160
QUEO2175
QUEL2182
QUEO2190
```



```
QUEAS1 FORTRAN P IOFWCCUR 16.20.08 THURSDAY 6 DECEMBER 1979 PAGE 6
```

```
    11=1+1 QUEO276C
    L=IDEX(ID,11) QUEO277L
    - IF(SCOREH(L).6E.O) 60TO 10 QUEO2760
    CALL MULTES(L) QUEO2790
    IC CONTINLE GUEO2ANO
        JI=NUMAT+1 QUEO2810
        DC 30 J=1.J1 GUEJ2O20
        30 INCEX(J)=1OEX(ID,J) QUEJ2030
        CALL TXTURE(ID,RULEH(ID),INDEX,SCOREH*SCCRE) QUES284O
        SCCREH(ID)=SCORE QUEO2R5O
        RETURN
    * CALL BOX(ID)
        RE,URN
        END
    SUEROUTINE GETR(ILOC,RESP)
    GUE02512
C SUEROUTINE GETR RETRIEVES THE RESPONSES FROM A SPECIFIED QLESTIONASIREQUEV293O
C LOCATICA.
    TATEGER
    J=1LOC+1 QUEO29E?
    READ(2:J.9000) RESP GUEC297J
900C FCRMAT(4O(1X,1A1)) QUEU2980
    RETURN QUEC299J
    E^[ QUEJ30CC
    SUEROUTINE MULTE5(IC)
C SUBROUTINE MULTES SIMPLY PRINTS AN ERROR MESSAGE AND RETURNS. 2UEO3030
    \bulletRITE(E.900) QUEJ3040
    VRITE(6.901) GUEJ3059
    SOG FCRMAT(54H YOU HAVE HIT THE LOUEST LEVEL IN THE SCORING ROUTINE)GJE(3OEO
    S01 FCRMAT {45H PLEASE TRY SCORING LONER LEVEL BOXES FIRST, ) QUE23(70
    RETURN QUEC3:8? 
    END QUE:3290
```

```
QUEAS2 FORTRAN P IDFYCCUR 16.20.19 THURSDAY G DECEMBER 1979 PAGE I
    NATIONAL CSS, INC. (SUNNYYALE OATA (ENTER) SUNY
        SUEROUTINE PRINTH(ID,HMAME)
C SUEROUTINE PRINTH PRINTS A GRAPHICAL DESCRIPTION OF THE HIERARCHY
C EELGY A GIVEN BOX.
            COMMON LXX(100), QSCORE (100), LXXX(100), SCOREH(40), RULEH(40)
    CCMMON IDEX(40,10),QDEX(40),QNAME(100)
    COUELE PRECISION HAAME (46)
            DATA Q/IMQ/
    WRITE(6,9000) HNAME(1D)
9000 FGRMAT (/,25H HIERARCHY DATA FOR BOX ,1A6,/)
            11=10EX(10,1):
            I1=MOD(11,50)
            URITE(6,90G1) HNAME (ID),RULEH(ID),SCOREH(ID),QDEX(IO)
9CO1 FORMAT (5H BOX:,146,7H RULE:,1A2,8H SCORE:,1F6.3,
        15m Q:,144)
            IF (IB.EQ.1) RETURN
            OC 10 12 =2, K1
            WRITE (6,9002)
9CO2 FORMAT(7H? )
            I 3}=10E\times(ID,12
            IF(KI.EQ.II) GCTO 15
            YRITE(E,90U3) GNANE(I3),QSCORE(I3)
9003 FORMAT(17H QUESTIONNAIRE: 144.8H SCORE:,1F6.3)
            6010 10
        IE WRITE(6,90(1) HNAME(I3),RULEH(I3),SCOREH(I3),QDEX(13)
            14=1DE X(13,1)+1
            K2=MOD (14,50)
            IF(I4.EQ.1) GOTO 10
            DO 40 15=2,\times2
            YRITE (6,9002)
            *RITE(E,9002)
            18=1DEX(13,15)
            IF(K2.EG.I4) G(TO 25
            YRITE(E,90C3) QNAME(I8),QSCORE(I8)
            GCTO 4:
        2E WRITE(E,90C1) HNAME(18), KULEH(I8),SCOREH(IB),QDEX(I8)
            16=10EX(18,1)+1
            K }3=HOD(16,50
            IF(I6.EQ.1) GCTO 45
            OC 30 IT F 2, k3
            DC 11 N1=1,3
    11 URITE (6.90C2)
            」9=1DEX(18,17)
            IF(K3.EQ.IG) GCTO 35
            URITE(6,90(3) GNAME(J9),QSCORE(J9)
            GCTO 30
        35 HRITE(6,9061) HNAME (J9),RULEH(J9),SCOREH(J9),QDEX(J9)
        30 CONTINUE
        45 CONTINUE
    4% COATINUE
    46 COATINUE
        RETURN
        END
            SUEROUTINE SETH(ID,ISET)
C SUBROUTINE SETH IDENTIFIES WHAT BCX SCORES YILL BE CHANGED GUEOCSSO
QUEC0:10
QUEJOE2%
QUE0023J
GUEO:C4O
GUEO:OSO
QUEGOOEO
QUECOOTJ
GUECCOES
QUESCS90
QUECこ150
GuEここ11?
GuEO0111%
QuFJC120
QuEJN13:
QUEO014%
GUEOC150
GUEJ:16:
GUEOO17:
QUEJこ182
QUE:219:
QUEOO2L:
GUEOS215
GUEOS22J
QUEOJ23S
GUEJ624.
QUEOC250
QUECO260
QUEOC275
QUEi:280
QUEO029:
GUEOOSOC
QUEOO312
QUEOC320
QUEi:330
GUECこ340
QU50U350
QUEOC36:
QUE2637:
QUEOU3E:
QUE:こ390
GUE2:40:
GUE00410
QUECO42:
QUEOCA3C
QUE:2440
GUEGO450
QUEJC40%
QUE20470
QUEON4DR
QUEO?4RO
QUEOU490
GUECOS6O
QUEODS10
QUEOC52J
QUEOU530
QUEOU530
QUEOO540
```

```
QUEASE FORTRAN P IDEVCCUR 16.20.19 THURSDAY 6 DECEMBER 1979 PAGE 2
C UHEN A LOW LOVEL BOX*S SCURE IS CHANGED AND REINITIALIZES THEM. QUEOC5GO
    CCPMON LXX(300), SCOREH(40),RULEH(40), ICEX(40.10) QUEOZ570
    DIMENSION ISET(4D)
    IE=ID
    QUEOO58J
    QUEJ!59?
    DO 20 13=1.10
    ICK=S
    CC 4% 11=1,40
    12=10Ex(11+1)+1
    IF (I2.EQ.1.OR.I2.GE.50) GOTO 40
    DC 10 14=2,12
    I5=1DE ( (11,14)
    IF(15.NE.IE) GCTO 1C
    SCCREH(II)=-1.
        IE=11
        GOTO 2J
    10 CCNTINUE
    4C CCATINUE
    IF (ICK.EQ.O) GOTO 50
    20 CONTINLE
    5C RETURN
    END
    FUNCTION NQ(ANANE)
C FUNCTICA NG RETURNS THE NUMEER OF THE PASSED QUESTIONAAIRE NAME.
            CCMMON LL(8<O),QNARE (100)
            DATA ALL/4HALL!
            OC 10 I=1.100
        IF (ANAME.EG.GNAME(I)) GOTO 20
    16 CONTINUE
        IF (ANAME.NE.ALL) GOTO SC
        NQ = - 1
        RETURN
    30 WRITE(6,9003)
9002 FORMAT(1OH BAL NAME)
    NQ=0
    RETURN
    2C NQ=1
    RETURN
    ENO
QUE(06)C
1CK=0
    QUES\610
    GUEOS630
    I5=10E\times(1),14
GUEC2640
QUE:CESO
GUE:3660
QUE~067%
GUEO0682
GUEiO69?
QUECOTNC
QUE00715
QUE00720
GUE0073C
GUE:2742
QUEOCTSO
QUECJ760
GUECOTTJ
QUE0078:
QUECOT98
QUECOSOC
OUEOJE1?
QUE00820
GuたJCs30
GUEOCO4C
OUEOO85C
QUEご086?
GUEJJR7O
QUEJJ380
QuEuJB90
QuEuJ890
QUELC9CS
QUEごび1C
GuEJ3920
OUECO93C
GUEJO94C
```

```
QUEAE? FORTRAN P ID=YCCUR 16.20.27 THURSDAY 6 OECEMBER 1979 PAGE 1
    MATIONAL (SS, INC. (SUNNYYALE DATA CENTER) SUAY
    QUEO0010
    QUE0202%
    SUEROUTINE SCOREG(ID)
C SURROUTINE SCOREQ SCORES QUESTIONNAIRES.
    COMMON LOCQ(100), QSCCRE(100),LOCR(100)
    OIMENSION IRESF(4\dot{u}),RESP(4D),RULE (IC), IWRST(40), VEIGHT(4O)
        CIMENSION SCORE(4C),SCC(40),INDEX(40)
        INTEGER QDEX(:C,4D)
        DATA IBEST/IHA/
        BEST =FLOAT (IEEST)
        CALL GETG(LOCQ(ID), RULE,IURST, WEIGHT, NUMQ,NUMGP,QDEX)
        CALL GETR(LOCR(ID),IRESP)
        OO 10 I=1,NUMG
        IF (IWRST(I).EG.IBEST) GOTO 10
        RESP(I)=(BEST-FLOAT(IKESP(1)))/(BEST-FLOAT(IVRST(I)))
        RESP(I)=1.*|EIGHT(I)*RESP(I)
    10 CCNTINLE
    OC 15U I=1.10
    150 SCCRE(I)=-1.
        DC 140 11=1.10
        FLAG=0.
        CO 1CJ I=1,NUMEP
        N1=QOEX(1,1)+1
        OC 110 J2=2, J1
        J3=QDEX(1, J2)
        IF(J3.GE.100) EOTO 115
        IF(SCORE (J3).LT.O) GCTC 120
    1IE CONTINUE
    11C CONTINUE
        OC 13J J4=2.J1
        \checkmark =QDE X (I* J4)
        IF(J5.LT.100) COTO 160
        \sqrt{}{5}=\sqrt{}{5}-100
        SCC(J4)=RESP(J5)
        GOTO 170
    16( SCC(J4)=SCORE(\sqrt{N}{*}
    170 1ADEX(v4)=J4
    13C CONTINLE
        FLAG=1.
        INCEX(1)=QDEX(I_1)
        CALL TXTURE(I,RULE(I),INDEX,SCO,SCORE(I))
        IF(I.EG.1) GOTO 145
    120 CONTINUE
    100 CONTINUE
        IF(FLAE.EQ.O) EOTO 145
        1F(SCORE(1).GE.O) ECTO 145
    140 CONTINUE
    145 QSCORE (ID)=SCORE (1)
        VRITE(6.900E) OSCORE(ID)
9COE FORMAT(13H THE SCORE =,1F6.3)
    RETURN
        END
        SUEROUTINE GETGILOC,RULE,IERST, WEIGHT,NUMQU,NUMGP,QDEX)
    QUE03:36
    GUECSS4?
    QUED2050
    GUEこここ60
    QUEうつこ70
    GUEOJORO
    QUECOLSO
    QUEU010J
    QUECO11:
    QUEOO12C
    OUEGU136
    QUESこ14C
    QUE: 1 50
    QUECO1o6
    QJEO:17i
    GUEC:15C
    QUEこう190
    GUEO020%
    QUEしう21?
    QUEO022.
    GUEDO23:
    QUES624
    QUEC2250
    QUE:C260
    QUEO027S
    GUEOO2&?
    QUE(229.
    QUE2つ30%
    QUEOJ31:
    QUEOO320
    QUEOO332
    GUETO34J
    QUE0う35C
    QUEOE360
    GUEOU370
    QUEOOJRO
    QUEJ239i
    QUEO240:
    QUEOO4:C
    GJEOO420
    QUE20430
    QUEO2442
    QUEO2450
    QUE 0046C
    QUEC:47J
    QUEGO4ES
    QUEO0490
9COC FORMAT(13H THE SCORE =,1F6.3) GUEJCSOJ
    QUEOC510
    QUE0052S
    QUES0530
QUEOO540
C SUBROUTINE GETQ REACS TME STRUCTURE OF A QUESTIONNAIRE OFF DISC FILE IGUEO2S5O
```

```
    INTEGER QDEX(10,40), ISAVE(40), INRST(40) QUEON560
    OIMENSION RULE (1 () , WEIGHT (40)
    N=LOC
    READ{1: J.9000) X,NUMQU,NUMGP
90CO FORMAT(1A4,6x,112,8x,112)
    J=\+1
    READ(1*J,9002) IWRST
9(OG FCRKAT (40 (1x,111))
9001 FORMAT (8F5.3)
    DO 50 12=1, NUMGP
    J=J*1
    READ(1*J,9003) NAME,NUM,R
9(COE FORHAT(2(112,8X),142)
    NANE=NAME-49
    QEEX(NAME,1)=NUM
    RULE(NAME)=R
    Jこル+1
    REECI1*J.90(4) (ISAVE(~2), J2=1,NUM)
    DC 50 I=1,NUM
    11 = I +1
    IF(ISAYE(I).LT.50) QDEX(NAME,I1)=ISAVE(I)+100
    IF(ISAVE(1).GE.5u) QOEX(NAME,II)=ISAVE(I)-49
    5C CORTINUE
    J=\+1
    READ (1*J.90U1)(WE.IGHT(12), 12=1,8)
    IF(WEIGHT(1).GT.1) GCTC 70
    IF(NUMGU.LE,8) RETURN
    N1=\+1
    READ(1*J1,9001)($EIGHT(12),12=9,NUMQU)
        RETURN
    7 0 ~ D O ~ 1 0 U ~ J 2 = 1 , N U M Q U
    1CO \E1GHT (J2)=WE1GHT(2)
9004 FCRMAT(40I2)
    RETURN
    END
    SUEROUTINE PRINTQ(ID,QNAME)
C SUEROLTINE PRINTG PRINTS THE STRUCTURE FOR A GUESTIONNAIRE.
    CONMON LOCQ(102), QSCORE(10:) ,LOCR(109)
    INTEGER QOEX(10,40)
    DIMENSION RULE (20), RESF(40), QNAME(200),IWRST(40), WEIGHT (4J)
    DIMENSION IRESP (40), X (40),Y(40)
    DATA IBEST/1HA/
    CALL GETQ(LQCG(ID), RULE,IHRST, VEIGHT, NUMQU,NUMGP,QDEX)
    REST=FLOAT (IBEST)
    CALL GETR(LOCR(ID), IRESP)
    URITE(6.8999)
    WRITE(6,90U0) QNAME(ID)
8999 FORMAT (///:20x+22H QUESTIONAIRE OATA FOR)
9COO FORMAT (23x,13HQUESTIONAIRE ,1A4)
    YRITE(E.9002) QSCORE(IC),RUUL(1)
9002 FQRMAT (8X,16HOVERALL SCORE = 1F10.5,5x,7HRULE: ,144,1/1)
    DC 5 I =1,40
    OC 5 I=1,40
QUEO057J
QUEO2580
QUEOO590
QUEO0600
QUE00610
QUEL2620
QUEO26SO
QUE00640
GUE 30650
QUEO0660
QUE:OETJ
QUEOU6R?
QUECZE9j
QUEOC7CJ
QUEUOT10
QUEO072?
GUEC273:
QUEC374:
QUE }2075
QUECOT6O
QJE02770
QリECO780
GUEJこ799
QUEOOLEO
6L
QUEO0810
QUEOO82S
GuECC83C
QUECO84:
QUESJE50
ЗUEOC86?
QUEJ037:
QuミC:8si
GUEOSR9C
GUEOL&9C
QUEOO90*
GUEこ391J
JUEOO920
QUEOC930
QUEO2940
QUEUL95O
QUEC:962
QUES2970
QUES2970
QUE0098?
QUECO99?
QUE010E?
GUEO1010
QUEO1020
QUE{103j
QUE91:4%?
QUEC1050
QUEO1U60
GUEO1CTO
QUEC1080
QUEO1093
QUEC:110J
```

```
    x(1)=0. QUE21110
    60T0 6
    4. x(I)=1-{BEST-FLOAT(IRESP(I)))/(BEST-FLOAT(IURST(I)))
    6 (1) =1.*WEI6HT(I)*(2-x(1))
    5 CONTINUE
    I=1
    J1=50
    URITE(6,9004) N1,RULE(1)
9(04 FORMAT (7H BOX: ,112,8H RULE: ,142)
    11=QDEX(1,1)+1
    IF(11.EQ.1) GOTO 10
    OO 20 12=2.11
    bRITE (6,9005)
9COE FORMAT(7H? )
    I2=uOEX(1.12)
    IF(I3.GE.100) GOTO 30
    J1=13+49
    |RITE(6,9004) \1,RULE(I3)
    14=QDEX(I3,1)+1
    IF(I4.EG.1) GOTO 20
    OC 40 I5=2,14
    WRITE(6,9005)
    WRITE (E,9005)
    18=QDE A (13,15)
    IF(18.GE.100) GOTO 50
    J1 =18+49
    |ITE(6,9004) J1,RULE(I8)
    16=QDEX(18,1) +1
    1F(16.EQ.1) GOTO 45
    DO 60 17=2,16
    DO 11 J2=1,3
    1 1 \text { WRITE(6,90し5)}
        J9=QDEX(18,17)
        1F(J9.EE.100) EOTO 7E
        J1=\sqrt{}{9+49}
        WRITE(6.90.4) N1,RLLE(v9)
        GOTO b
    76 J1= J9-100
        WRITE(6,9066) ,1,X(N1),WEIGHT(J1),Y(J1)
9COE FORMAT(4H G=,112,7H RESP=,1F6.3,3H w=,1F6.3,3H S=,1F6.3)
    6C CCNTINUE
        GCTO 45
    5c v1=18-100
        YRITE(6.9006) J1,X(J1),WEI6HT(J1),Y(J1)
    4F CORTINUE
    -c CONTINUE
        GOTO 2C
    30 v1=13-100
        WRIIE(6,9006) &1,X(J1), YEIGHT(J1),Y(J1)
    20 CONTINLE
    1C RETURN
    END
GUEO1120
QUEU113%
QUEO1143
GUE0:15%
QUES1160
QUE:1:70
QUEO:180
QUEC1190
GUEJ1200
GUEJ1210
QUEJ1220
QUEO123:
GUEO1240
QUEO125%
QUEJ126J
QUEi:27J
QU52128%
QuE01270
QUEJ130J
QUEU1311
QUE0:32)
QUEC1330
GUEC1340
QUEO:35%
QUEこ13GC
QUE\mathrm{ \1370}
GUEO1360
QUEO139C
GUEC14CO
QUEO:41:
QUEC1420
QUEJ:430
QUE0:440
QUE2145J
QUE0146J
QUEO1470
QUEO1480
QUEC1490
QUEC1500
QU5.151%
2UEO152G
QUE\1532
GUEJ154C
QUSC155:
QUE0156C
QUEC1570
QUEC1E& 
QUE015%2
0いこ016C0
QUEO1660
GUED1610
Qu5i162J
```

NATIOMAL CSS，INC．ESUNNYVALE DATA CENTER）SUNY

```
SUBROUTINE HPR（ID，HNAME）
QUEONO1：
```

C SUEROUTINE HPR PRINTS A PICTURE OF A PORTION OF THE HIERARCHY． COMMON LXX $(300)$ ，SCCKEH $(40)$ ，TULEH $(40), 1 D E X(40,10)$
DIMENSION DOT $(20,5)$, IPR（20．5）
DOUBLE PRECISION HNAME（40）
OLTA STAR／4H＊＊＊／BLANK／4H／
CC $1 \quad 1=1.20$
DO I $J=1,5$
$1 P R(1, J)=0$
$1 \operatorname{DOT}(1, J)=B L A M K$
LEV＝1
$11=10 E \times(10,1)+1$
1 PR（LEV，1）$=10$
IF（11．EQ．1．CR．1）．GT．50）GOTO 5
6 CO $10 \quad 12=2,11$
$13=10 E \times(10,12)$
$1 P R(L E V+2)=13$
$I A=10 E X(13,1)+1$
IF（I4．EQ．I．OR．14．GT．5J）GOTO 15
$1 \epsilon\left[\begin{array}{lll}16 & 20 & 15 \\ 15 & 14\end{array}\right.$
$16=10 E \times(13,15)$
1PR（LEV，3）＝16
$I 7=10 E \times(16,1)+1$
IF（I7．EQ．1．OR．17．GT．50）60TO 25
26 DC $30 \quad 18=2,17$
$19=10 E \times(16,18)$
IFR（LEV，4）$=19$
$110=10 E X(I y+1)+1$
IF（I1O．EQ．1．OR．I10．GT．50）GOTO 501
DO $500 \quad 111=2,110$
1PR $($ LEV，5 $)=10 E \times(19,111)$
EOC LEV＝LEV＋1
COTO 3：
© 01 LEV＝LEV＋1
30 CONTINUE
GOTO 2 E
25 LEV＝LEV＋1
20 CONTINUE
GOTO 10
15 LEV＝LEV＊1
16 CONTINUE
COBTINUE
DC $60 \quad 1=1.19$
DO $60 \quad \mathrm{~J}=1,4$
$11=I P R(1, J)$ IF（11．EQ．0） 601060 $12=10[\times(11,1)+1$
IF（I2．LE．2．OR．12．6T．50）GOTO 60 $15=1+1$
DO $61 \quad 13=15,19$

## $\sqrt{1}=\mathrm{J}+1$

## CCT（13．J）＝STAR

IF（IPR（13，J1）．EQ．IDEX（11，12）） 60 TO 62
61 CONTINJE
62 CONTIN UE QUE？CO20 QUEOL：30 QUEJCO4O QUEOU250 QUEしこうに？ QUEODO70 GUEVOOSO QUEOC 29 ？
QUEOC1 13
QUECO110
QUEJこ：26
QUEGO13？
QUEO 114：
QUECC15
QUE 0163
QUEこた17C
QUEOC18：
GUEOC190
QUE 2020 O
QUE252：
GUET：22
QUEOC23
GUEU024C
GUE：2250
QUECこ26
QUEUこくT0
GUECL280
QUEJごく9C
QUEC O3：
QUEEJ31：
GUEOL32L
GUECO33？
QUELC34：
QUEGC35
QUEUO360
QUEこ5370
QUEOO380
QUECころ3C
QUELCHCT
QUEJこ416
QUEこO42C
GUEOO430
QUECO440
QUEJO450
GUEOO46C
QUEOC470
QUEOO485
QUEOC490
QUEOO500
QUEOOS：
QUECO520
GUEOO530
GUECこ540
QUEOO550

```
QUEAS& FORTRAN P IDFVCCUR 16.2C.36 THURSDAY 6 DECEMBER 1979 PAGE 2
```

OUEOOS6
QUEOO570 QUEOO580
QUEう」596
QUECLEDC
QUEOC610
QUEu $6 \in 20$
QUE？ 6530
QUE 30640
QUE0J650
QUEDOE6O
QUEうC670
QUE Uつらと？
QUEOC69：
QUEOUTC：
GUECC716
QUEC072
QUEOC730
QUEここ74C
GUEOこ75：
QUECO76
GUEV0770
QuE027る
QUEOU790
QUE：CSOC
QUECOb10
QUEOC820
GUEOU930
GUEOO845
QUEO2850
QUEC Ü6？
QUEVOS76
GUEOU986
GUEOC890
QUEJC900
QUEOOS10
QUE0J920
QUE 22932
QUEJC940
GUE0095：
QUEUU960
QUEOC975
QUEOU9R
QUE0099i
GUEO1000
QUE01616
GUEO1420
QUEO1C30
QUEC1240
QUEOLO50
QUES1060
QUES1070
QUEO 1080
QUEO1090
QUEO1100

```
    6C CONTINUE QUEOO562
```

    6C CONTINUE QUEOO562
    YRITE(6,9006) HNAME(ID) QUEOO570
    YRITE(6,9006) HNAME(ID) QUEOO570
    FGRMAT(32H NIERARCHY INFORMATION FOR BOX ,1AE,/1) QUEJ05QO
    FGRMAT(32H NIERARCHY INFORMATION FOR BOX ,1AE,/1) QUEJ05QO
    FORMAT(11H?**********)
    FORMAT(11H?**********)
    FOKMAT (3H?* ,1 06,2H *)
    FOKMAT (3H?* ,1 06,2H *)
    FORMAT (4H?*S=,1F6.3.1H*)
    FORMAT (4H?*S=,1F6.3.1H*)
    FORMAT(6H?*RULE: ,142,1H*)
    FORMAT(6H?*RULE: ,142,1H*)
    FORMAT (3H?**)
    FORMAT (3H?**)
    FCRMAT(1H?1A1)
    FCRMAT(1H?1A1)
    FCRHAT (3M? )
    FCRHAT (3M? )
    FORMAT(2H?)
    FORMAT(2H?)
    FGRMAT(11H? )
    FGRMAT(11H? )
    FORMAT{3H? ,1AL.2H )
    FORMAT{3H? ,1AL.2H )
    FORMAT(, 2H? )
    FORMAT(, 2H? )
    I=LEV-1
    I=LEV-1
    YRITE{E*9006)
    YRITE{E*9006)
    DO 40 LEV=1.1
    DO 40 LEV=1.1
    LE=LEV+1
    LE=LEV+1
    *AX=1
    *AX=1
    OO 101 1II =1,5
    OO 101 1II =1,5
    101 IF(IPR(LEV,III).NE.O.OR.DOT(LEV,III).EG.STAR) MAX=III
101 IF(IPR(LEV,III).NE.O.OR.DOT(LEV,III).EG.STAR) MAX=III
DO 41 IL=1,MAX
DO 41 IL=1,MAX
IF(IPR(LEV,I1).NE.0) GCTO 39
IF(IPR(LEV,I1).NE.0) GCTO 39
URITE(6.9009)
URITE(6.9009)
GCTU 41
GCTU 41
35 URITE(6.9061)
35 URITE(6.9061)
41 URITE (6.9011) DOT(LEV,11)
41 URITE (6.9011) DOT(LEV,11)
VRITE (E.9012)
VRITE (E.9012)
CO 42 12=1,MAX
CO 42 12=1,MAX
I3=1PR(LEV\&I2)
I3=1PR(LEV\&I2)
IF(13.EQ.O) GOTO 43
IF(13.EQ.O) GOTO 43
VRITE(6,90U2) HNAME(13)
VRITE(6,90U2) HNAME(13)
GOTO 38
GOTO 38
YRITE (6.9009)
YRITE (6.9009)
38 VRITE (6,9011) DOTILEZ,12)
38 VRITE (6,9011) DOTILEZ,12)
44 CONTINUE
44 CONTINUE
42 CONTINUE
42 CONTINUE
URITE(6.9012)
URITE(6.9012)
CO 66 111=1,4
CO 66 111=1,4
IF(DOT(2,I1).EG.STAR) DOT(1,I1)=STAR
IF(DOT(2,I1).EG.STAR) DOT(1,I1)=STAR
66 IF(OOT(1,11).EQ.STAR.AND.MAX.LT.I1) MAX=11
66 IF(OOT(1,11).EQ.STAR.AND.MAX.LT.I1) MAX=11
DO 45 12=1,MAX
DO 45 12=1,MAX
12=IPR(LEV.I2)
12=IPR(LEV.I2)
IF(I3.EQ.0) GOTO 47
IF(I3.EQ.0) GOTO 47
IF(12.GT.1) \forallRITE(6.9005)
IF(12.GT.1) \forallRITE(6.9005)
YRITE(6.9003) SCOREH(13)
YRITE(6.9003) SCOREH(13)
IF(I2.EQ.4) GOTO 45
IF(I2.EQ.4) GOTO 45
14=12+1
14=12+1
IF(IPR(LEV +I4).GT. ©) GCTO 46
IF(IPR(LEV +I4).GT. ©) GCTO 46
URITE(6.9007)
URITE(6.9007)
GOTO 65
GOTO 65
46 URITE(6,9005)
46 URITE(6,9005)
WRITE(6,9006) STAR
WRITE(6,9006) STAR
GOTO 45
GOTO 45
47 WRITE(6.9009)

```
47 WRITE(6.9009)
```

```
QUEAS4 FORTRAN P IO=WCCVR
```

    MRITE(E,9007) QUEO1112
    ```
    MRITE(E,9007) QUEO1112
    IF(12.GT.1) WRITE(6.9007) QUEC11< 
    IF(12.GT.1) WRITE(6.9007) QUEC11< 
    65 YRITE(6,9006) COT(LEV,12)
    65 YRITE(6,9006) COT(LEV,12)
    45 CONTIL&E
    45 CONTIL&E
    YRITE (E.9012)
    YRITE (E.9012)
    OC 49 12=1, kax
    OC 49 12=1, kax
    I3=1PR(LEV,12)
    I3=1PR(LEV,12)
    IFII3.EQ.0) GOTO 50
    IFII3.EQ.0) GOTO 50
    URITE(E.9004) RULEH(I3)
    URITE(E.9004) RULEH(I3)
    GOTO S1
    GOTO S1
    URITE(6.9009)
    URITE(6.9009)
    51 URITE(6.9011) COT(LE,I2)
    51 URITE(6.9011) COT(LE,I2)
    4 9 ~ C O N T I N U E ~
    4 9 ~ C O N T I N U E ~
        URITE(6.9012)
        URITE(6.9012)
        DC 52 11=1,MAX
        DC 52 11=1,MAX
        IF(IPR(LEV,I1) *NE.O) GCTO 53
        IF(IPR(LEV,I1) *NE.O) GCTO 53
        WRITE(6.90 U9)
        WRITE(6.90 U9)
        GCTO 55
        GCTO 55
    5 3 ~ W R I T E ~ ( 6 . 9 0 6 1 ) ~
    5 3 ~ W R I T E ~ ( 6 . 9 0 6 1 ) ~
    55 YRITE(6.9411) COT(LE.I1)
    55 YRITE(6.9411) COT(LE.I1)
    52 CCNTINUE
    52 CCNTINUE
        URITE(6.9012)
        URITE(6.9012)
        CC 54 11=1:4
        CC 54 11=1:4
        VRITE(6.9009)
        VRITE(6.9009)
    54 URITE(6,9011) COT(LE,11)
    54 URITE(6,9011) COT(LE,11)
    WRITE (6.9012)
    WRITE (6.9012)
    4C CCNTINLE
    4C CCNTINLE
        RETURN
        RETURN
        END
        END
        SUEROUTINE PNAME(HNAME)
        SUEROUTINE PNAME(HNAME)
C SUEROUTINE PNAME PRINTS THE NAME OF THE CURRENT HIERARCHY ECXES.
C SUEROUTINE PNAME PRINTS THE NAME OF THE CURRENT HIERARCHY ECXES.
        DCLELE PRECISICN HNAYE (AC)
        DCLELE PRECISICN HNAYE (AC)
        WRITE(6.947C)
        WRITE(6.947C)
947E FORMAT(38H THE CURRENT HIERARCHY INCLUDES BCXES , '1)
947E FORMAT(38H THE CURRENT HIERARCHY INCLUDES BCXES , '1)
        DO 470 1=1.5
        DO 470 1=1.5
        I 1 = 8* (I-1) +1
        I 1 = 8* (I-1) +1
        12=11+7
        12=11+7
    470 URITE(6.9471)(MNAME(13),13=11,I2)
    470 URITE(6.9471)(MNAME(13),13=11,I2)
9471 FCRPAT(8(1X,1AE,1X))
9471 FCRPAT(8(1X,1AE,1X))
    RETUKN
    RETUKN
    END
    END
        SUBROUTINE PQNAME (QNAME,NUMQ)
        SUBROUTINE PQNAME (QNAME,NUMQ)
C SUEROUTINE PQNAME PRINTS THE NAMES OF THE CURRENT QUESTIONNAIRES.
C SUEROUTINE PQNAME PRINTS THE NAMES OF THE CURRENT QUESTIONNAIRES.
        LIMENSION QNAME(1OC)
        LIMENSION QNAME(1OC)
        WRITE(6.9000)
        WRITE(6.9000)
9000 FCRMAT(33H TME CURRENT QUESTIONNAIRES ARE: ,1)
9000 FCRMAT(33H TME CURRENT QUESTIONNAIRES ARE: ,1)
    10 VRITE (6,9001)(QNAME (12),12=1,NUMG)
    10 VRITE (6,9001)(QNAME (12),12=1,NUMG)
9001 FCRMAT (2x,10 (1A4;2X))
9001 FCRMAT (2x,10 (1A4;2X))
        RETURN
        RETURN
        END
        END
    QUEO2130
    QUEO2130
    QUE0114C
    QUE0114C
    QUED1250
    QUED1250
    QUE01:60
    QUE01:60
    QUEC1170
    QUEC1170
    QUEC1180
    QUEC1180
    QUE01190
    QUE01190
    QUEJ1200
    QUEJ1200
    QUE01210
    QUE01210
    QUE0122S
    QUE0122S
    QUEO1232
    QUEO1232
    QUE01240
    QUE01240
    QUEO1250
    QUEO1250
    GUEC1262
    GUEC1262
    QUEC1276
    QUEC1276
    QUE0128C
    QUE0128C
    QUE01290
    QUE01290
    GUEO1300
    GUEO1300
    QuEJ1310
    QuEJ1310
    QUEC:32%
    QUEC:32%
    QUEJ133?
    QUEJ133?
    QUEC134%
    QUEC134%
    QUEO1350
    QUEO1350
    GUEこ136J
    GUEこ136J
    QUE0137t
    QUE0137t
    QUES1360
    QUES1360
    QUEC139S
    QUEC139S
    QUEO1400
    QUEO1400
    QUEこ1410
    QUEこ1410
    QUEJ1420
    QUEJ1420
    QUEO1430
    QUEO1430
    QUEO1440
    QUEO1440
    QUEO1460
    QUEO1460
    QUEC147C
    QUEC147C
    QUEO1480
    QUEO1480
    QUEO1490
    QUEO1490
    GUE01500
    GUE01500
    GUE21510
    GUE21510
    QUEO1520
    QUEO1520
    QUEO1536
    QUEO1536
    QUE01540
    QUE01540
    QUEO1550
    QUEO1550
    GUE01560
    GUE01560
    QUEJ1570
    QUEJ1570
    QUE21590
    QUE21590
    GUE01590
    GUE01590
    QUE01600
    QUE01600
    QUE01610
    QUE01610
    QUE01620
```

    QUE01620
    ```
```

    GUEASIB FORTRAF P IC=|CCUR 12,4F.56 THURSDAY 13 CECEMEER 1979 PLGE I
    AATIONDL CSS, INC. (SUNNYVALE DATA CENTEK) SLAY
    C GUEASI - A PROGRAN FGR EYALUATION OF SAFEGUARDS QUESTIONNAIRES QUEOOU1O
    C ANC HIERARCFIES QUEJCR2N
C(NMON LCCQ(1CC), USCCRE(1CC), LOCR(1GN)
COMMON SCOREH(40), RULEF(40),IDEX(45,10),QDEX(40),GNAME(1C(C)
DOUBLE PKECISION ENAM[ (40), ELANK,NCMO, HNANE (4 O), GNANE
INTEGER LCCHS(E), ISET(4)), FLAG(1O),LOCH(5),IKESP(4:`),IEEST(4()
REAL SCOKE (40), NEIGHT(4U), RULE (10),TEXTS(7)
DETA TEXTS/2HHA, 2HSA, 2HAV, 2HSO, 2HOQ,1Ha,2H2R/
C\&TA IAA/IHA/,NJMO/EHNONORE/ELAVK/GH,
AAA=FLCAT(IAA)
DO 399 I=1.40
399 SCCREM(1)=-1.
J=2
O RELE QUESTIONNAIRE LOCLTIONS ANJ NANES
REA[(2,5464* N(1MN
REA[(2,9465) (LSCR(1P),12=1,NUM(,)
REAC(1,9464) NUN:
REAC(1,9465) (LCCQ(11), I1=1,NUNG)
CC ?C J=1,NUN4
IC REA[(2.9727) GNAME(J)
97:7 FOR*AT(144!)
RE.1NU \&
RELC(2,9464) NUNG
REAL(2,5465) (LCCK(12),12=1,NUNG)
OC 10 I=1,100
Ic QSCONE(I)=-1.
DO 20 1=1.10
\&G FLAG(1)=j
C SELECT INITINL CPTICN
1626 WDITE(0.910L)
91GL FGRMATI54H SELLCT 1- FIERGPCHIES, 2-GUESTIONAIRES, I- STOR - ) IUUEONIS

```


```

GOTO (406U,20:O) 1LP QUSJJ34E
C REVIEV CPTICN SLLECTIOIN AKJ BRANCH TO PROPER OPTIUN
IOPT=1 SP
110% CONTINUE
IF (IOFT.GE.1.2NC.IOFT.LE.3) GOTO 11C1
IF IIOFT*WE.21.AND.ICPT.LE.2G) GOTO 11N2
IF (IOFT.GE.41.AND.IOPT.LE.5U) GOTC 11:2
GOTO (1000.23(1, LJC,422) IOP
1101 10P=10PT
COTO 1'O1
1102 ICF=1NT(FLCAT(IOPT)/1し.)
IF(IOP.1O.EG.ICPT) GOTC 1:21
ICPT=ICPT-1OP = 10
GOTO (100U.201,100~,4C4) IOP
GCTO 1COL
C PRINT MENU AND GET GUESTIONNAIRE OFTION
2COO IF (FLAG(2).ET.1) GUTO 210 JUEONSOJ
2 3 6 ~ W R I T E ( 6 . 9 2 0 0 ) ,
VRITE(6,92:2)
WRITE(6,9202)
WRITE(6.9203)
WRITE(6.9204)
QUEJE「20
OUEC:C30
GUEO(C4)
GUEOC:ES
QUEこう:ல?
QUEV5:0?
2UEL5:7?
QUEこここにコ
QU[C+J90
QUEC:ICJ
QuE22112
अUE:::26
QUELJ13:
QUEOI14C
OUELC15G
QUEJうこもこ
ZUEUC17G
QUECL18!
GUECG193
QUE SC2OL
QUEOS21:
QUEOC22C
QUEC:23S
QUEOL24%
QUEOC2E:
QUECC2E?
QUEOO27?
GUEJこ26:
QU5C:29i
GUEE SO0
1CO1 IF (IOF.EQ.3) STOP
6UE:ころ3!
QUENU34!
QUEJ0350
GUEOC36:
QUESC37C
QUEOC38G
QUEOC3OE
GUEUこ4:S
QUEJ:410
\mathrm{ QUEJC420}
QUEO:43i
GUECC44?
QUEO045?
QUEUD46?
3UEこ547C
GUEOL4EE
QUECC49C
23C VRITE(6.920() ,
JUEJOE02
QUEURS10
GUEUD52J
GUE0053 C
GUEOC540
QUECP55:

```
```

QUEASIB FORTRAN P ID=\triangleCCUR 12.48.56 THURSDAY 13 [ECENEER 1E7G
PAGE 2

```

```

QUEASIE FORTRAN P ID=WCCER 12.48.56 TMURSCAY 13 CECEMEER 1975 PAGE 3
40% ICPT=GETNUM(41.,4.7.02.)
IFIIOPT.LT.41.CR.ICPT.GT.51) GOTO 110G
IOPT=1OPT =40
404 FLAG(4)=1
C ERANCF IO PRGPER HIERLRCHY CPTION
IF(FLAG(5).EQ.C) GCTC 4006
GOTO14001,46C2.4063,46,4,4065,4006.4027,4008,4209,4006.1C2C) 1CPTSUE=21170
QUEJ1180
C = CPTICN 4I TO SIODE A HIERARCHY BOX .-
4CO1 CALL GETHN(ID,HNAME)
CALL SCREH(IC)
CALL SETH(IC,ISET)
ISET(ID)=0
GOTO 4:OO
C * CFTION 42 TO PRINT MIERLRCHY DLTA =-
4CUA CALL GETHN(ID, HNLMME)
IF(IOFT.EQ.2) CALL PRINTH(IO,H'AMM)
IF (IUPT.EQ.10) (ALL HPK(10,HI,ANE)
ECTC 4CON
C = CPTICN 4I TO ASSIGI, HIEPANCHY EOX SCORES .-
4CUZ CALL GETHN(IO,TINANE)
WFITE(E,9430)
(ALL SETH(ID,1SET)
9430 FSFMAT(1OH SCCRL = )
SCCREH(ID) =GETAUN(-1, 1., 1.,)
IF(SCOREH(ID), LT, U) ISET(ID)=C
IF(SCOREH(IO).SE,O) ISET (IO)=1
GCTO 4.OO
C * CPTICN 44 TJ REVISE DELAYIRESPONSE RULE. NDT CURRENTLY USED
4004 CALL GETHN(ID,HVANE)
IF(RULEH(1D).EG.TEXTS(7)) CCTC 44:
VRITE(E,9440)
944% FCRMAT(2EH EOX DOES NOT USE DELAY/RESD)
6CTO 4:00
44i CCNTINUE
ECTO 4COO
C * CPTICN 45 TO REVISE SCORING RULES .-
4LOE CALL GETHN(ID,HNAME)
\#RITE(6,9503)
456 REtO(5,9504) R
OC <51 1=1,6
IF (R.EQ.TEXTS(I)) GOTC 452
451 CONTINUE
WR1TE(6,9505)
6CTO 450
452 RULEH(ID) =R
SCCREH(ID) =-1.
CALL SETH(ID,ISET) QUE:162?
CALL SETH(ID,ISET) OUE:162?
f = CPTICN 46 TO ENTER A NEN HIERARCHY INTO THE SYSTEN .-
QUEO1110
0u%2120
QUEC1130
QUEC114%
QUE 1150
QUEv1:9C
QUES1200
GUE01210
QUEO122?
QUEJ1230
QUE21246
QUEO:25J
GUE0126.
QUEO1270
QUEO1260
OUE0129:
QUEJ13:0
QUEO1312
QUEO:32C
QUE21330
QUEN134)
QUEC1350
QUE[:36)
QUEこ1373
GUEU13E:
QUE[137%
QU5014CC
OUEV1412
QUE2142:
QUE2143i
GUEO:44.
OUE01450
GUE:1463
QUEC1472
QUEJ14\&0
QUEJ14C0
QUED:560
GUEC151:
GUEC1=2?
QUEO2530
QUEC:54:
QUEO155\
QUEJ156%
QUEO:57C
QUEQ15E?
JUEO159?
QJEU1650
CALLSETHISDOUEL1619
QUE:1623
QUE:1640

```
```

4C06 WQ1TE(6.946t) QUEJ1EGJ
FLAG(5)=1
READ(3,9464) TIUMH
REAC(3,9465) (LOCH(I), I=1,NUMH)
9464 FCKM4T(112)
9465 FCRMAT (2O14)
READ(4.9464) NLMH
READ(4,9465)(LCCHS (1), I=1, F.UMH)
946: FJRMAT (2BH ENTER HIERARCHY NUMBER -- )
HNUM=UETNUK(1, FLCAT (NUMH),1,)
CC 465 I=1.42
ISET(1)=0
DC 466 11=1.1.
4EE ICEX(1,11)=0
HI,LME (I)=BLA:K
4\leqslant5 SCCREH(I)=-1.
L= :
LCCELCCH(HNUN)
C ELGIT, EY READINS IIFO FOR FIRST BUY
4EG REAC(3,94E1) LAAML,NUM,R,Q
946: FCKNA1 (146,4x,112,8x,142,8x,144)
IF(AVAML.EG_ivNOC) GCTO 468
(LLL ATGET(ANANE,1U,HNLNE)
IF(10.6T.0) GCTO 464
L=L+1
15:L
H!, ANE (1J)=AT,ANZ
464 1F(NUN.EO.() GCTU 463 GUE0193?
QDEX(10)=0
RULEH(IU)=R
4\&1 I[Ex(I[,1)=1.U.
IF(NUN.EQ. S) 3CTO 4\in3
IF(NUN.OT.5U) GOTC 46T1
DC 402 J=1,NJN
J1= j+1
LCC=LOC+1
REFD(3.9462) -NAME
CALL ATGET(ANLNE, IE,HIGMME)
IF(IE.GT.O) GOTO 462
L=L+1
IE=L
HN,GME(L)=AN,AME
462 1LEx(10,J1)=1E
94E2 FCR4/T(1AG)
46? LCC=LOC+1
GOTO 4GL
4EG1 NUMzivUN=50
DC 46[2 J=1,NUN
J1 = J+1
LCC=LOC+1
REED(3,9272) ANAM
4\inO\& IDEX(1DQ, 11)=NQ(ANAN)
LOC=LOC+1
6CTO 4EJ
QUEC1672
QUEC1690
QUEC1694
QUEJ1695
QUE\1700
QUE01710
QUEO1720
QUEO1730
QUES174,
QUE01750
QUEO:763
GUEO177C
GUEC17tJ
QUE 3179?
QUEC13レO
QUEO18:S
GUE02920
GUEO:O3:
QUE゙\&4?
QUE:1\&50
QUES1EE:
QUEC1870
QUEJ158?
SUES139.)
ひUご:9(つ
QUE:191J
QUEO1920
QUEC1942
QUEO195:
QUE0:963
QUEU197%
GUEO19RS
QUEO199?
GuEU200?
QUEG201J
QUEO2:20
QUEJ2J30
QUEJ214.5
GUEJ2ここ0
GUE02062
GUE6207J
QUEう2こ\&:
QUES229J
QUEこ21^O
QUEC2:10
QUE02:22
GUES2130
QUEड2142
QUEC215%
QUE0216J
QUEC{170
QUE0218J
QUEJ2190
468 CCNTINUE
QUE022C2

```
```

    J#LOCHS(HNUM) QUED2210
    READ(4.9463)((ENAME(I1),SCORE(I1)),I1=1,L)
    Jこし*L/5+1
    KEAC(4.948C) USCORE
    946) FORMGT(5(1A6.1F6.3))
        CC 469 K=1.L
        CALL ATGET (BNANE (K),ID,HNAME)
        IF (10.EG.C) 6CTO 469
        SCCREH(IL)=SCCRL (K)
    4ES CCNTINUE
    Du 459 1=1,40
    45s IF(IDEX(I,1),EU*G) RULEH(I)=RLANK
        6C1C41OC
    C * GPTICF, \&7 TO FHIAT CURRENT BOX NAMES =-
4LO7 CZLL PNANE (HNLNE)
GCTO 4 IVO
C =- CPTIGA 4E TO FILE HIERAKCHY DATA ..
4:UE LDC=LOCH(HNLM)
RE.INO 3
RE=INS 4
REAC(3,4464) NUNH
REA[(3.9405) (LOCH(I),I=1,NUMH)
REA[(4,5464) NJMH
RELC(4,9465) (LOCTIS(I),I=1,NUNH)
CC 480 1=1.L
IF (HVANE(1).EG.E(AAK) EDTO 4EN
\&ITE(3,9461) HNAME(1),IDEX(I,1),RULEH(I), OCEX(I)
14=10L\times(I+1)
IF(14.EQ.0) GJTO 4EO
LCC=LCC+1
11=M\cupC(1DEX(1,1),50)+1
OC 4e1 I<=2.1目
I 3=1DEX(1,12)
IF(14.LE.50) ECTO 4Ez
bん1TE(3.9272) GNANE(13)
GOTO 481
4ह? WRITE(3,9462) HNANE(13)
4BL LCC=LOC*1
4FJ CCNTINUE
6F1TE(3.9462) NOM)
J=LCCHS(HNUM)
*RITE(4,9463) (HNAME(I3),SCOREH(I3),13=1,L)
JこJ+L/5+1
WHITE(4.9480) GSCORE
9456 FCRMAT(1OF8.5)
GOTO 4CDO
C =- CPTICN 49 TO CHANGE NAME OF BOX .-
4OL5 CALL GETHN(ID.HNAME)
*R1TE(6,927i)
READ(5,9462) HVAME (ID)
GOTO 4 L0O
END
QUE22223
QUEL2232
QUE0224J
QUEO2250
QUEJ2260
QUE02270
QUEE2280
GUEC2250
QUE22300
GUE0231?
GUEO232%
QUEC233J
QUEJ234J
GUE0235J
QUEO2360
QUEG237%
QUET23%0
QUE2239J
QUEC24CD
QUEJ\hat{L}+10
QuE02422
QUE0243%
QUEO2445
GUEJ2450
QUEOC460
QUE02472
QUEC248J
QUE0249J
QUEC250j
QUEC251J
QUE:2E20
JUE02530
GUEO2540
GUEO2550
QUE02SEU
GUE!2570
QUE0258?
GUE:25SO
QUEG265J
QUEこ2610
QUE02E27
QUE02\&30
QUEJ2\&4:
QUEO2b5O
QUEO26EO
QUE02670
GUEJ2680
QUE 22670
QUEU27CO
QUE02710
QUEO272J
QUE02730
QUEC2740
QUEO2750

```
```

QUEAS1B FORTRAN P IDFUCCUR 12.27.28 NEONESLAY 12 DECENEER 1975 PAGE 1
NATIOKAL CSS, INC. (SUNNYVALE DATA CENTER) SUNY
SUBRJUTINE GETHN(ID,HNAME)
c. SUEROLTINE GETHN INTERACTIVELY REQUESTS A ROX NAME AND RETLKNS ITS
C IO AUMEER.
DOUELE PRECISION ALL,HNAME (40),A
DATA ALL/GHALL f
ID=1
10 WRITE(E*90OC)
9COL FCRMAT (2OH ENTER BOX NAME ~ )
READ(5,9002) A
9(01 FORMAT(146)
IF(A*EQ*ALL) RETURF
CALL ATGET (A,ID,HNAME)
IF(IO.EQ.O) GOTO 2C
RETURN
2. VRITE66.9002)
9002 FGRMAZ(11H BAC NAME)
CGLL PNAME (HNANE)
GCTO 1%
ENO
SUEROUTINE ATGET(ANAME,ID,HNAME)
C SUEROUTINE ATGET CHECKS A BOX NAME AGAINST THOSE CUPRENTLY IA
( THE SYSTEM ANC RETURNS ITS IO NUMEER (O IF NOT VALIC).
COLELE PRECISION ANAML,HNAME(4C)
CO 10 1=1.40
IF (ANAME OEG.HAAME(I)) GOTO 2?
IF CONTINUE
IC=0
RETURN
20 ID=1
RETURN
ENC
SUEROUTINE SCREH(ID)
C SUEROUTINE SCREH IS THE MASTER SUEROUTINE FCR SCORING ECXES
CCMMON LI(100),QSEOPE(1CO),L2(100),SCOREH(40), RULEH(4Z)
CCMMON 1DEX(4,.10)
CALL MLLTEV(IC)
10\& YRITE(6,9000) SCOREF(ID)
9CCC FJRMAT(13H THE SCORE IS.1F1O.5)
RETURN
ENC
SUEROUTINE BOX(ID)
C SUEROUTINE BOX SCORES BOXES UHICH HLVE QUESTIONNAIRES AS INPUT.
C(FMON L1(100),QSCORE (100),L2(100),SCJREN!40)
COMMUN RULEH(4O),IDEX(40,10)
DIMENSION INDEX(4O), RESP(ICO)
NAT=1DEX(10.1)-49
DO 1C1 I=2,NAT
101 INCEX(I)=1DEX(ID,I)
INCEX(1) =NAT-1
OC 102 I=1,10C
102 RESP(I)=QSCCRE(I)
QuE 20010
QuEt:020
QuEO:530
QUELJO4O
QUE:0550
QUEこNitS
QUEし:070
QUE0:O80
GUE0:090
GUECJ100
OUE:0112
QUELC120
GuErj136
QuECS14:
QUE:2150
QuEJiIES
QUEJC170
QuEjこ18C
QUE03192
QuEOLZOD
QuEC:21*
JUEuC220
QUEJJ236
GuEOS24%
GuE05250
QUESO26?
JuES「270
SUEO:280
QUEO,290
GUEO:300
QuE:0310
GUEV:2322
QUE?こ330
QUE05340
QuE:C35*
QUEOJ360
QUE ~2370
QUEJO38S
QUEOC39%
GUE:S4C2
QUEVO410
QUEJ042C
QUE30430
GuT0044C
QuE6>450
JUE10460
GUE00472
QUEOS485
QUE0こ492
QUECOSOO
QUEOC510
QUE:0520
QUE:0530
QUE0054C
QUECC550

```
```

QUEASIB FORTRAN P ID=VCCUR 12.27.28 HEDNESCAY 12 CECEFBER 1979 PAGE 2
RULE=FULEH(ID) QUEGC5EO
CALL TXTURE(ID,RULE,INDEX,RESP,SCORE) QUEOCS7C
SCCREH(ID)=SCORE
RETURN
END
SURROUTINE MULTEV(ID)
C SUPROUTINE MULTEV IS THE HIGHEST LEVEL OF THE
C MESTED BOX SCJRING ROUTINE
COMMON LL( }3CO),SCOREH(4G),RULEH(4O), IDEX(4C,1C
CIMENSION INDEX(4.J)
NUFAT=10LX(10,1)
IF (NUMAT.EQ.O) RETURN
IF(NUMAT.GT.5U) GOTO 4C
DC IC I=1,NUMAT
I2=1+1
L=10Lx(10,11)
IF(SCOKEH(L).GE.D) GOTC 10
CALL MULTEI(L)
If CONTINUE
NI=NUMAT +1
DO 30 J=1, J1
36 INEEX(J)=1DEX(1D:J)
(ALL TXTURE(ID,RULEH(ID),INDEX,SCOREH,SCORE)
SCCREM(ID) =SCCKE
RETURN.
4O CALL EOX(IO)
RETURN
EI.O
SUEROUTINE GETQN(ID,QNAME ,NUNG)
C SUERCLTINE GETQN IHTERACTIVEL Y ACCEPTS A QUESTIONIVAIRE NANE
C AND RETURNS ITS IL NUMEER
CCMMON LOCO(ICi)
CINEASION GNAME(ICO)
4C WRITE(6.9060)
9CO\& FCRMAT(29H ENTER QUESTIONAIRE NAME - - )
READ(5.9001) A
9(O1 FCRMAT (1A4)
IC=NG(A)
IF(10.EQ.O) GCTC 1C
IF(10.LT.2) RETURI,
I=LOCG(ID)
REWIND 1
REAC(1.9002) NUMG
9CO2 FCRMAT(10X,112)
RETURN
1% CALL PQNAME(QNAME, NUMQ)
GOTO AC
RETURN
END
FUNCTION YESNO(Z)
C FUNCTICR YESNO RETURNS THE ANSUER TO A YES - NO QUESTION
C O FGR AC. I FQR YES.

```

QUEOC570
QUECO58 J
QUEJ0590
QUE：O6OC
QUEOOE10
QUEO 0520
QUES 630
QUE 0064 ？
QUETO650
QUE 0.6660
GUE： 2670
コUẼCGES
QUECC690
QUE 2070
QUECOT1C
GUE 00720
QUEJへ73C
QUEO674 ：
QUEDOT5 2
GUECう76：
GUE 25772
QUEう0780
QUEC（790
QUE92800
QUEOC810
GUEO0622
QUE 2Cと30
QUE： 0 － 4
QUEこころ5こ
QUEOCES6
QUEC0 072
QUEち0880
QUE JC590
QUE 2.396
GUEOC910
QUEU092：
QUEOS930
QUEO0940
QUEEL．952
QUE 03962
QUE：097ン
コUE0こ98
QUEOC99～
QUED1000
QUEO1010
QUE J1J2
QUEO1030
QUECI24：
QUEO 0105 i
QUED1C6O
QUEDIC70
QUEJ1085
QUE 0169 ©
QUE01100
```

QUEASIB FORTKAN P IDEYCCVR
12.27.28 GEDNESDAY 12 EECENBER 1975 PLGE 3

```
```

        DATA X/IHN/ QUECI11C
    ```
        DATA X/IHN/ QUECI11C
        CATA Y/AHY/ QUEJ1122
        CATA Y/AHY/ QUEJ1122
        YESNO=U. QUEO1136
        YESNO=U. QUEO1136
    2(READ(5,9000) A QUEJ1:4. 
    2(READ(5,9000) A QUEJ1:4. 
    2( READ(5,9000) GUEN12.4J 
    2( READ(5,9000) GUEN12.4J 
IF(X,EQ.A) RETURN
IF(X,EQ.A) RETURN
    IF (Y,NE.A) GOTO 1[
    IF (Y,NE.A) GOTO 1[
    YESNO=1.
    YESNO=1.
    RETURN
    RETURN
    10 VRITE(6,9001)
    10 VRITE(6,9001)
9001 FORMAT (2CH TYPE YES OR NO - O) QUE21210
9001 FORMAT (2CH TYPE YES OR NO - O) QUE21210
    GCTO 2C
    GCTO 2C
    ENC
    ENC
    FUNCTION GETNUF(ALON,AHIGH,TYPE)
    FUNCTION GETNUF(ALON,AHIGH,TYPE)
C FUNGTICN GETNUM RETURNS A NUPEER ENTERED INTERACTIVELY
C FUNGTICN GETNUM RETURNS A NUPEER ENTERED INTERACTIVELY
C AFTER CHECKING FOR THE APPRCPKIATE RANSE ANL TYFE.
C AFTER CHECKING FOR THE APPRCPKIATE RANSE ANL TYFE.
            REAL GETIUUM
            REAL GETIUUM
    10 REAC (E,*,ERQ=2G) GETNUY
    10 REAC (E,*,ERQ=2G) GETNUY
    IF (TYFE.EQ.O.AND.GETNUM.NE.AINT(GETNUM)) GOTO 5:
    IF (TYFE.EQ.O.AND.GETNUM.NE.AINT(GETNUM)) GOTO 5:
            IF (GETNUM.GE,ALOW.AND.GETNUM.LE,AHIGH) RETUKIV
            IF (GETNUM.GE,ALOW.AND.GETNUM.LE,AHIGH) RETUKIV
    IF (TYPE,EG.2) GOTO 4O
    IF (TYPE,EG.2) GOTO 4O
    XG WRITE(6,10O) ALO.,AHIGH
    XG WRITE(6,10O) ALO.,AHIGH
    1CG FCRMAT(2GH ENTER A NUMBER BETUEEN , 1G10.5,4HANS ,1G1E.5,3H --) 2UEU134C
    1CG FCRMAT(2GH ENTER A NUMBER BETUEEN , 1G10.5,4HANS ,1G1E.5,3H --) 2UEU134C
    GCTJ 10
    GCTJ 10
    2F IF (TYHE.NE.2) GOTC 3L QUEJ1363
    2F IF (TYHE.NE.2) GOTC 3L QUEJ1363
        4& CCNTITLE
        4& CCNTITLE
    RETURI,
    RETURI,
    50 \RITE(6,101) ALON,AHIGH
```

    50 \RITE(6,101) ALON,AHIGH
    ```


```

            CCTO 16
    ```
            CCTO 16
            EN.C
            EN.C
            SUEROUTINE TXTURE (NUM,RULE,INDEX,RESP,SSORE)
            SUEROUTINE TXTURE (NUM,RULE,INDEX,RESP,SSORE)
C SUEROLTINE TXTURE CCMPUTES A SCORE USIIGG A SPECIFIED
C SUEROLTINE TXTURE CCMPUTES A SCORE USIIGG A SPECIFIED
C SCCRINO RULE.
C SCCRINO RULE.
(CMMON LL(102),QSCCRE(100),LL1(5EO),QOEX(4C)
(CMMON LL(102),QSCCRE(100),LL1(5EO),QOEX(4C)
            CINENSION INDEX(1), RESP(1),TEXTS(6)
            CINENSION INDEX(1), RESP(1),TEXTS(6)
        DATA TEXTS/2HHA, 2HSA, 2HAV, 2HSO, 2HOR, 1HO/
        DATA TEXTS/2HHA, 2HSA, 2HAV, 2HSO, 2HOR, 1HO/
            M=1NDEX(1)
            M=1NDEX(1)
            A=r*1
            A=r*1
            DC 5 1=1.6
            DC 5 1=1.6
            IF(RULE.EG.TEXTS(I)) GCTO 6
            IF(RULE.EG.TEXTS(I)) GCTO 6
    5 CONTINUE
    5 CONTINUE
    WRITE (6.900)
    WRITE (6.900)
SCL FCRMATG3BH EAD RULE EACCUNTERED COMPUTING SCORE,
SCL FCRMATG3BH EAD RULE EACCUNTERED COMPUTING SCORE,
    RETURN
    RETURN
            6 GOTO (10,20,30,40,50,70) I
            6 GOTO (10,20,30,40,50,70) I
10 SCCRE=1.
10 SCCRE=1.
DC 11 I=2,N
DC 11 I=2,N
11 SCORE=SCOR[ *RESP(INDEX(I))
11 SCORE=SCOR[ *RESP(INDEX(I))
RETURN
RETURN
20 SCCRE=1.
20 SCCRE=1.
    CO 21 I=2,N
    CO 21 I=2,N
21 S(CRE=SCJRE*(RESP(INCEX(I))+1.)
21 S(CRE=SCJRE*(RESP(INCEX(I))+1.)
    QUE?115:
    QUE?115:
    QUEO:160
    QUEO:160
    QUEL1:70
    QUEL1:70
    GUE:1160
    GUE:1160
    QUES115%
    QUES115%
    ひUE:1260
    ひUE:1260
    QUE21210
    QUE21210
    QUEC1220
    QUEC1220
    QUE:1230
    QUE:1230
    QUE:1232
    QUE:1232
    QUEC1240
    QUEC1240
    QUEO1250
    QUEO1250
    GUEU126?
    GUEU126?
    QUEO1270
    QUEO1270
    QUEO1270
    QUEO1270
    QUE 31280
    QUE 31280
    QuEC129j
    QuEC129j
    ひUSこ1300
    ひUSこ1300
    WUE:1312
    WUE:1312
    QUEO132L
    QUEO132L
    GU501330
    GU501330
    QUE[135S
    QUE[135S
    IFCNT1MLC
    IFCNT1MLC
    QUE21363
    QUE21363
    QUEC:37C
    QUEC:37C
    GUEO136?
    GUEO136?
    JUE:1390
    JUE:1390
            EN.C
            EN.C
    QUE:1410
    QUE:1410
    GUEC1420
    GUEC1420
    GUEO143C
    GUEO143C
    QUEC144%
    QUEC144%
    QUEC1450
    QUEC1450
    ZUEO1456
    ZUEO1456
    QUEO147%
    QUEO147%
    QUEOI4EO
    QUEOI4EO
    QUE01490
    QUE01490
    QUEO15:0
    QUEO15:0
    GUE0151C
    GUE0151C
    QUE0:52C
    QUE0:52C
    QUEC153:
    QUEC153:
    QUE01540
    QUE01540
    QUEU155%
    QUEU155%
    QUEC156C
    QUEC156C
    6 6OTO (10,20,30,40,50,70) I GUE01562
    6 6OTO (10,20,30,40,50,70) I GUE01562
    3UE01590
    3UE01590
    QUE01600
    QUE01600
QUE01610
QUE01610
    QUEJ1620
    QUEJ1620
    QUEO1630
    QUEO1630
    QUE01640
    QUE01640
    QUE21650
```

    QUE21650
    ```
```

QUEASIE FORTRGN P ICSUCC\#R 12.27.2G YLUNLSUAY 12 DLLLMELM IYIt raUL 4

```
```

    C=1.f(2***H-1*) QUE0166%
    SCORE=C*(SCORE-1*) QUE:N167G
    RETURN
    3C SCCRE=0.
        OC 31 122,N
    31 SCORE=SCORE+RESP(INCEX(I))
        SCCRE = SCORE*(1.AM)
        RETUMF
    4F SCORE=1.
        OC & I I=2,N
    41 SCCRE=SCORE*(1.* * *RESP(I/*DEX(1)) )
        SCCRE= (2,**N/(2***N-1*))*(1.*-SCORE)
    6C CCATINLE
        RCTURN
    50 SCORL=1.
        CO 51 I=2.N
    E1 SCCRE=SCORE*(1.-RESF(INDEX(I)))
        SCCRE= I.*SCOKE
        F:TURI.
    7C Q=GDEX (NUM)
        I[=kG(G)
        A=GSCOR[(10)
        E=6.2
        OO 65 J=2.5
        IF(A.LT.E) GOTC 66
        E=E+0.2
    65 CCATIl.UL
    6t RULE=TEXTS(J)
        I=v
        GCT2 6
        ENL
        SUFROUTINE MULTEI(IL)
    C SUERCUTINE MULTEI IS THE SECORD LEVEL OF THE BOX SCORING
C SYSTEF. IT IS A CLONE OF MULTEV, AS ARE MULTEZ, MULTES, ANE MULTE4. QUEO2DIO
CCNMON LL(3CO),SCOREH(4O)RULEH(4D), IDEX(4C,12)
DINENSIOIV INDEY(4O)
NUNKT=1D[X(ID,1)
IF (NUNAT, EQ*O) RETURN
LF (NUMAT.GT.50) GOTO 4O
CC 1L I=1,NUNAT
i 1 = 1 +1
L=IOEX(10,11)
IF(SCOREH(L).GE.0) GOTO 10
CALL MULTE2(L)
IC CCATINUE
J1=NUMAT+1
DO 30 J=1;N1
30 IAOEX(N)=1DEX(10,J)
CALL TXTURE (ID,RULEH(IC), INDEX,SCOREH,SCORE)
S(CREH(ID) = SCORE
RETURN
40 CALL BOX(ID)
R\&TURN
QUEDTGBO
GUECI69%
QUE0:760
QuEL1712
QUEG:720
GUE01730
QUES1740
QUEC175?
QUEO:76J
QUE:1770
GUEU:78G
QUEJ:79%
QUES18OC
QUEU1S1:
QUE:1826
QUE0183:
QUE:1.94?
QUEJ1\&50
GUE::86%
QUE:1\&75
GUEこ188C
GUEU1880
QUE:1900
QUES1916
QUES192%
GJE01936
QUE0194:
QUEO1920
QUEU196)
2UEU1979
QUEジ1980
QUEO1990
QUEGSTGO
QUES2C2C
OUEJ2035
GUEO2040
QUEL2U50
QUEO2C60
QUEO2C7E
GUEC2086
QUEO2990
QUE62100
QUEC2115
QUEC2119
QUE0<120
QUEO2:30
QUE0214?
QUEG2154
QUEU2160
GUEO2170
QUECFIBC
QUED, gi

```
```

    ENL
    SUPROUTINE MULTEZ(10)
    c sueroutine multez is the thikd level of the box scorine systek
COHMON LL(3OU),SCOREH(4O)RULEH(40),1DEX(4C.16)
DIPENSION INDEX(4C)
MUNAT = 1DEX(1D,1)
IF (NUMAT.EG.0) RETURN
IF(NUMAT.GT.50) GOTO 4[
DO 10 I=1,NUMAT
11=1+1
L=10Ex(10,I1)
IFISCOREN(L).GE.O) 6OTO 10
Call mulTE3(l)
16 cCATINUE
J1=NUMAT*1
OO 3u j=1.j!
3C INDEX(J)=IDEX(10,j)
(ALL TATURE(ID,RULEH(IC), INDEX,SCOREH,SCORE)
SCOREH(ID) = SCORE
RETURN
4C CALL BOX(ID)
RETURi*
ENC
SUEROUTINE MULTE3(ID)
C SUBROUTINE MULTES IS THE FOURTH LEVEL OF THE ROX SCORINS SYSTEM.
CCNMON LL(3CO),SCOREH(40)RULEH(4C),1DEX(4C,1O)
DINENSION INCEX(4U)
NUMAT=1DE X (10,1)
IF(NUMLT.EG.O) RETLRN
IF (NUMAT.डT.50) GCTO 4C
CO 10 I=1,NUNAT
I1 =1+1
L=10E ( (10,11)
IF(SCORET(L),GE.O) 6OTO 10
CALL MULTE4(L)
1c CEATINUE
J1=NUMAT+1
DO 30 J=1.j1
3C 1NLEX(J)=1DEEX(10,N)
CALL TXTURE(ID,RULEHIID),INDEX,SCODEF,SCORE)
SCCREH(ID) = SCORE
RETURN
40 CALL EOX(ID)
RETURN
END
SURROUTINE MULTE*:"?)
C SUBROUTINE MULTEA IS FIFTH LEVEL OF THE BOX SCORING SYSTEM.
CCMMON LL( }300),S\mathrm{ UREH(40)RULEH(40),1DEX(40,10)
CINENSION INDEX(Sう)
NUNAT = IDEX(10.1)
IF(NUKAT.EQ.0) RETURN
IF (NUMAT.GT.50) GOTO 40

```

QuE02＜12
QUEC2220
QUE02230
QUEしく240
OUEG2250
QUE 22263
aUE 22273
QUE C22E
QUE 0：290
QuE023：0
วUE02313
QuÉ 2320
QUEJ2T3C
QUE02340
QUE 1235 ©
GUEP2360
QUE 22375
QUEC2350
QUEC：390
GUEO24CC
QuEj2412
QuE02420
QUEこ2420
QUE 02442
QUE C 245 S
QUE 2246：
QUEO267i
QUES24R
QUE 02492
QUE： 2500
QuE02510
QUEこ2ミ25
QUE： 2530
GUEC2540
GuEL2550
QuED2560
GUE：2576
GUE0255？
QUE02593
GUE22600
QUE02610
QUE 02620
QuE32630
GUE 02640
GUE22650
QUEG2660
GUE 22672
GUE02656
QUE02692
QUEC27CO
QUE 02710
QUE：2720
QUEう2730
GUE02743
QUE 02750
```

QUEASIB FORTRAN P IDEVCGWR 12.27.28 WEDNESDAY 22 DECEVJER 1979 PAGE G

```
```

        OC 10 I=2,NUMAT
        11=1+1
        L=10Ex(10.11)
        IF ISCOREN(L).6E.O) GOTC IC
        CALL MULTES(L)
        1% CCNTINUL
        J1=NUMAT+1
        CC 30 J=1, J1
    30 INDEX(J)=1DEX(ID.J)
        CALL TXTURE(1D,RULEH(IC), INOEX,SCOREH,SCOKE)
        SCCREH(ID) =SCORE
        RETURR
    40 (ALL BOX(ID)
    RETUR N
    ENC
    SULROUIINE GETF(ILOC,RESP)
    C SUEROUTINE GETR RETRIEVES TME KESPONSES FRCM A SPZCIFIEDMOUEST
GETROESN:CIFILD QUESTICSNAIRESUE:2G4?
C LOCATICF.. JUEO2950
INTEGER RESP(4C) GUEO2960
J=1LOC+1 GUEO2970
REAC(2.9000) RESP QUEO296:
900C FORMLT(/4C(1X,1A1)) OUE:2790
RETUKIV
END
SUEROUTINE MULTES(ID)

```

```

    *)1TE(6.9)1)
    ```

```

    ORMAT (45H PLIASE TRY SCORING LOUER LEVEL BOXES FIRST,) 2UEC3?8:
    RETURA GUECZU9?
    ENE
    GUE:316:
    ```
```

QUEASIB FORTRAN P ITZ\#CCHR 12.27.38 UEDNESDAY 12 CELENEER 197S PAGE 1

```
    MATIONAL CSS, INC. ISUNNYVALE DATA CENTER) SUNY

```

    IATESER QOEX(10,40),ISAVE(40),IURST(4L) QUEOC560
    OIFENSION RULE(10)SNEIGHT(40) QUEOC57C
    N=LOC
    RE DO(1,9000) X,NUMQU,NUMGP
    9060 FORMAT (1A4,6x,112,6x,112)
J=N+1
REAO(1.9002) I\&RST
9002 FCRMAT(40 (1),141))
9001 FORMAT(EF5.3)
DO 50 12=1,NUM UF
j=J+1
READ(1,9003) NAME,NUM,R
9003 FCPNAT (2(112,8x),1:2)
AAFE=NAME-49
QLEX(NAML,1)=NUM
RULE(NAME)=R
J=J*!
READ(1,9C(4) (ISAVE(J2)*N2=1,NUM)
DC 50 I=1,NUM
I1=1+1
IF(ISAVE(I).LT.5C) QDEX(NAME,I1)=1SAVE(1)+10J
IF(ISAVE(I) \&SE.5C) GCEX(NAME゙,I1)=ISAVE(I)-4%
5% CCNTINUE
J=J+1
READ (1,9001)(WEIGHT(12),12=1,8)
IF(WEIGHT(1).GT.1) GOTO 70
IF (NUMGU.LE.8) RETURN
\1 = J +1
READ(1,9001)(WEI6तT(12), 12=9,NUMQU)
RETURN
7C OO 100 J2=1,NUMOU
10C -EIGHT (J2)=WEIEHT (2)
9(04 FORYAT(4012)
RETUKN
END
SUEROUTINE PRINTQ(ID,QNAME)
C SUBROUTINE PRINTG PRINTS THE STRUCTURE FOR A QUESTIONNAIRE.
CONMON LOCQ(102),QSCORE(100),LOCR(100)
INTEGER QDEX(1U.4N)
CIFENSION RULE(2U),RESP(40), QNAME(1OD),IWRST(4C),VEIGH*(4()
DIFENSION IRESF(4L),X(40),Y(40)
DATA IBEST/IHA/
CALL GETQ(LOCQ(ID), RULE,IVRST, WEIGHT,NUMQU,NUNGP,QDEX)
BEST=FLOAT(IBEST)
CALL GETR(LOCR(IO),IRESP)
WRITE(6.8999)
WRITE(6.9060) QNAME(ID)
8995 FORMAT (///.20X,22H QUESTIONAIRE DATA FOR)
9COO FCRMAT(23X,13HQUESTICNAIRE , 1A4)
VRITE(6,9002) QSCORE(10),RULE(1)
9002 FORMAT (8X,16HCVERALL SCORE = 1F10.5.5x,7HRULE: , 1A4,1/1)
DC 5 I=1,40
IF (IURST(I).NE.IBEST) GOTO *
QUE:256%
QUECO590
QUEDOS:S
GUE:C6:2
QUECC62O
ZUE:6630
GUEOC640
OUEOC650
QUEJOGEC
QUEC=670
QUES:S80
GUEOC69J
QUE:2700
GUEOC710
GUEON720
GUE:0732
GUE:0:74C
GUEこ:756
QUECS76?
QUEうC770
WUE:978%
GUE0:79:
QUEO28CO
QUECOE1:
\UEOJ32C
QUENG830
GUEC:O4C
GUEOOE5O
QUEJ?86C
QUEOC87C
QUEO068:
QUECJ89:
QUE)(900
QUE.0910
GUE:0920
QUESC930
GUECC940
GUEこ!950
QUE:296?
QUECこ970
GUELGGRO
QUE OC990
QUEOICDE
QUE01010
QUEC1022
GUEC1C3C
QUEO1040
QUEJ105O
QUEO1060
Qu5こ127う
GUECLO\&O
QUEO1C9S
QUES1100

```
```

    x(1)=0. GUEO111T
    GOTO 6 GUCC112S
    4 (1) ב1-(BEST-FLOAT(IRESP(1)))/(BBEST-FLOAT(IWRST(1)))
    (Y(1)=1,-wEI6HT(1)*(1-X(I))
    5 CONTINUE
    I=1
    J1=50
    URITE(6,90G4) ,1, RULE(1)
    9004 FORMAT(7H BCX: ,112.8F RULE: *1A2)
11=GDEX(1,1)*2
IF(11.EG.1) GOTO 10
DO 20 12=2,11
*N1TE(6.90:5)
9[US FCRMAT (7H??
13=60[x(1,12)
IF(13.GL.1(O) COTO 3C
J1=13+49
*R1TE(6.9004) \1,RULE(I3)
I4=QDEX(13,1)*1
IF(14.EQ.1) 6UTO 2L
[C 40 15=2,14
|ITE(6,90し5)
VRITE(6,95し5)
1\&=ODEX(13,15)
1) (8.CE.10C) CCTO 52
N1-1 s*49
URITE(6.9004) J1,PULE(IE)
16=QDEX(1a,1)+1
IF(16.EQ.1) 60T0 45
OC 6% 17=2,16
DO 11 J2=1,3
11 जRITE(6,90しょ)
Jy=QOEx(IE,17)
IF(J9.GE.160) GOTO 70
\1= ل9*49
\RITE(E.9004) \&2,RULE(J9)
GOTO 6:
70 J1 = \ヲ-1.?
WRIYE(6,90(6) di, X(N1), WEIGHT(J1), Y(Ji)
9COE FCRM4T(4H G=,1I2,7H RESP=,1F6.3.3H v=,1F6.3.3H S=,1F6.?)
6: CONTINLE
GOTO 4S
50 J1=18-100
\&RITE(6.9006) \& . X(N1), WEIGHT(J1),Y(J1)
* CCATINUE
4O CCATINLE
GOTO 2F
3C }\quad\1=13-16
WRITE(6.9006) \&1, X(J1),WEIGHT(J1),Y(J1) GUEG1590
20 CONTINUE
10 RETURN
END
QUE:1132
GUE\1140
GUEC:150
GUEO11601
QUE21175
QUEC1180
QUEC1600
GUE0161C
QUEU1620

```

This appendix contains additional information concerning the input and output for the example shown in Section 4.3. First, a table of component effectiveness test questionnaires is presented. Second, a sample questionnaice showing the questions and multiple choice responses is illustrated. Third, the disk files for the computer program are listed. FILEl contains the questionnaire structures. FILE2 contains the questionnaire responses. FILE3 contains the hierarchy structure for the right side of the capability. FILE4 contains the results of the computer run for the right side. FILL3 contains the hierarchy structure for the left side of the capability. FIL4 contains the results of the computer run for the left side. The mnemonics for the eft side correspond directly to the hierarchy boxes shown in Figure 1-. (1). Finally, additional output is presented for the left side of the capability hierarchy. (Note that the computer program simply references units \(1,2,3\) and 4 . The user via computer system commands can make these units correspond to any file of his choosing).
1. Admittance Authorization Criteria and Schedules
2. Admittance Authorization/Verification Procedures
3. Air and Utility Inlet Barriers
4. Annunciation Systems - Computer Assisted Annunciation Individual Alarm Annunciation Multiplex Alarm Annunciation
5. Area Zoning
6. Balanced Magnetic Switches
7. Breakwire Systems (Foil Strip and Grif Wire)
8. Buried Line Sensors - Seismic

Magnetic
Geophone String
Piezo-electric String
9. Capacitance Alarms
10. CCTV Monitoring/Surveillance
11. CCTV Systems
12. Central and Secondary Alaim Stations
13. Close out Inspection by Third Party
14. Coded Credential System - Active Electronic Badge Reader Capacitance Coded Badge Reader Electric Circuit Badge Reader Magnetic Coded Badge Reader Magnetic Stripe Badge Reader Magnetic Strip Badge Reader Optical Coded Badge Reader Passive Electric Badge Reader
15. Commercial Telephone System
16. Contingency Plans and Procedures
17. Controlled Security Lighting
18. Data Link Via Radio Frequency
19. Direct-Line Telephone/Intercom
20. Direct Monitoring/Surveillance
21. Doors and Associated Hardware
22. Duress Alarms
23. E-Field Fence
24. Electret Cable and Tilt Switch Fence Systems
25. Emergency Access/Egress Procedures
26. Emergency Battery System
27. Emergency Evacuation Procedures
28. Emergency Exits
29. Emergency Generator Systems
30. Equipment Checks/Maintenance
31. Escorts
32. Explosive Detector - Hand Held Package Search
33. Explosive Detector - Hand Held Personnel Search
34. Explosive Detector - Hand Held Vehicle Search
35. Explosive Detector - Volume
36. Explosive Detector - Walk Through
37. Fence Systems
38. Floors
39. Functional 2 oning
40. Gates and Associated Hardware
41. Guard Force Personal Equipment
42. Guard Force Qualification
43. Guard Patrols/Intervention
44. Guard Post Assignments
45. Hardware Video Systems
46. Infrared Beam Systems, Exterior
47. Interface Between Alarm Station and Sensors
    - Individual Hardwire Alarms
    - Multiple Hardwire Alarms
    - Hardwire Command Signals
48. Isolation Zones
49. K-9s, Use of - Package Search
50. K-9s, Use of - Vehicle Search
51. Local Audible/Visible Alarms
52. Locks - (Key Locks, Keyless Locks)
53. Manual Alarm Recording
54. Master Fixed Radio
55. Microwave Systems, Exterior
56. Mobile Radio
57. Motion Detectors - Infrared Systems, Interior
                                    Microwave Systems, Interior
                                    Ultrasonic and Sonic Systems
58. Multi-Man Rule
59. Night Vision Devices
60. Package Search - Visual Inspection
61. Pat-Down Search
62. Personal Identification Numbers/Passwords
63. Photo Identification Badges
64. Physical Controls and Procedures for Keys, Locks, Combina-
    tions, and Cipher Systems
    65. Portable Radio
66. Positive Personnel Identification
    - Fingerprint Personnel I.D. Verification
    - Handwriting Personnel I.D. Verification
    - Hand Geometry Personnel I.D. Verification
    - Voice Print Personnel I.E. Verification
67. Response Vehicles
68. Roof
69. Sally Ports, Pedestrian

\section*{-3-}
70. Sally Ports, Vehicular
71. Shielding Detector - Volum
72. Shielding Detector - Walk Through
73. SNM Containers
74. SNM Detector - Hand Held Package Search
75. SNM Detector - Hand Held Personnel Search
76. SNM Detector = Volume
77. SNM Detector - Walk Through
78. SNM Holding/Storage Area
79. SNM Identification/Authorization Procedures
80. SNM Liquid and Solid Waste Handing Procedures
81. SNM Scrap Removal Procedures
82. SNM Shipping/'Receiving Procedures
83. Tamper Indicating Circuitry
84. Tamper Indicating Seals and Tamper Seal Inspection
85. Team zoning
86. Uninterruptible Power System
87. Vaults
88. Vehicle Search - Visual Inspection
89. Vibration Sensors
90. Walls
91. Weapons - Handgun

Semi-Automatic
Shotgun
92. Weapons Detector - Hand Held Package Search
93. Weapons Detector - Hand Held Personnel Search
94. Weapors Detector . Volume
95. Weapons Detector - Walk Through
96. Windows and Associated Hardware
97. X-Ray Package/Container Search

ANNUNCIATION SYSTEMS -- COMPUTERKSSISTEL RNNUNCIRTION, INDIVIDUAL ALARM ANNUNCIATION, MULTIPLEX ALARE ANNUNCIATION

\section*{EFFECTIVENESS TES?}

\section*{FUNCTION}
```

The function of the annunciation system will be to alert security
personnel to alarm activation.
CONDITIONS
Performance Conditions
Installation

1. Where will peripheral equipment such as computers and conumunica-
tions electronics be located?
```

\section*{Operation}
```

2. How much console space will be occupied by primary controls and displays that require observation or action several times per shift?
3. Where will the primary control and display area be situated with respect to the operator?
4. Where will all primary controls be located with respect to their accessability to the operator?
5. How will the operator's attention be directed to the annunciators?
6. Will security annunciators be monitored by the same operator who monitors other annunciators?
7. Will the status of sensors (secure/access/alarm/tamper) within a security zone be available to the operator?
8. How will the importance or priority of an alarm be determined?
9. When an alarm occurs, to what extent will the sensor's location be available to the operator?
10. What additional information will be available to the operator if an alarm occure?
11. To what extent will the annunciation system indicate multiple concurrent alarms?
12. How will significant events be recorded?
```

\title{
ANNUNCIATION SYSTEMS -- COMPUTERASSISTED ANNUNCIATION, INDIVIDUAL ALARM ANNUNCIATION, MULTIPLEX ALARM ANNUNCIATION
}
```

    Relialility
    13. How frequently will the system be checked for proper operation?
14. What provisions will be made to maintain operational capabilities
when critical elements, i.e., CPU, CRT, audio and visual devices,
etc., fail?
15. If the system is equipped with self-test capability, what will be
the test frequency?
```

\section*{Vulnerabilities}
```

16. What techniques will be used to deter unauthorized modification of programs or data?
```
```

ANNUNCIATION SYSTEMS -- COMPUTER-
ASSISTED ANNUNCIRTION, INDIVIDUAL
ALARM ANNUNCIATION, MULTIPLEX
ALARM ANNUNCIATION

```

\section*{ANSWERS}

\section*{CONDITIONS}
```

Performance Conditions
Installation

1. a. In a separate access-controlled room,
b. In the same room but away from primary display and control
area.
c. In the same console area as the primary displays and con-
trols.
```

\section*{Operat:~n}
```

2. a. Less than 250 square inches.
b. 250 to 700 square inches.
c. 700 to 1700 square inches.
d. More than 1700 square inches.
3. a. Approximately perpendicular to a seated operator's line of sight.
b. In a vertical plane.
c. In a horizontal plane.
4. a. Completely within convenient reach of the operator.
b. Partially within the operator's reach.
c. Not within reach from the operator's normal location and will require the operator to move from his location.
5. a. By an audible signal which varies depending on type of alarm plus visual indicators.
b. By an unchanging audible signal plus visual indicators.
c. By visual indicators only.
6. a. No.
b. Yes.
7. a. The status of each sensor will be available.
b. The most significant status within a group of sensors will be available.
c. The most significant status within the security zone will be indicated.
d. Only the occurrence of an alarm will be indicated.
8. a. Autanatically, by a hardware or software priority structure.
b. By the operator in a predetermined priority structure.
c. By the operator using real-time judgment.
9. a. The location of the specific sensor in alarm will be available.
```

\section*{ANNUNCIATION SYSTEMS -- COMPUTERASSISTED ANNLNCIATION, INDIVIDUAL ALARM ANNUNCIATION, MULTIPLEX ALARM ANNUNCIATION}
```

    b. The location of the sensor group containing the specific
    sensor in alarm will be available.
    c. The location of the general area containing the specific
    sensor in alarm will be available.
    10. a. 1. The time of alarm,
2. The priority of alarm,
3. Emergency telephone numbers,
4. Special precautionary instructions associated with a
zone, and
5. Area maps.
b. 1., 2., 3., and 4. above.
c. 1., 2., and 3. above.
d. 1. and 2. above.
e. Only 2. above.
11. B. It will advise the operator of multiple concurrent alarms.
b. It will permit only a sequential display of multiple con-
current alarms.
c. It will display only one of multiple concurrent alarms.
12. a. They will be automatically printed out.
b. They will be recorded sutomatically and manually in combina-
tion.
c. They will be manually recorded.
d. They will not be recorded.
```

\section*{Reliability}
```

13. a. Every few seconds.
b. Every few minutes.
c. Every few hours.
d. Once per shift.
e. Once per day.
f. Onse per week.
g. Less than once per week.
14. a. A fully redundant system of annunciation is to be provided.
b. Full redundancy is to be provided for all critical subsystems and computers.
c. Significant increase of patrols will be provided.
15. a. At $10-$ to $30-$ secon intervals.
b. At 30- to 60-second intervals.
c. At 1-to 5 -minute intervals.
d. The system will not have self-test capability.
16. a. By encryption.
b. By multiple passwords.
c. By single password.
d. By administrative controls.
e. None.
```

FILEI CATA P IC=VCCYR 16.20 .50 THURSDAY 6 DECEMBER 1979 PLGE 1





```

38
4 4, 6
4
ABAAAAMAAAAAABABB
tABAAAAAABBAAAAAG
10
A A AAEAABAA
\&7
AANANCAAAHAACCHAAAAA
1
A A A A A
2,AAAAGBAAAHAAAAAAA
3
CA EAB
AB B ABAAAAAAAAAAAAA
14
A A A A A ARAA
16 A A A
21
A A A E
22
A A EBALCECEL
A5AAAAAAAAAAABAAACAA
28
A A A A A A ABABEBAK
32
A A A A EAAAAAAA
36
ABAAAAAAAAAAAAAAAA
38
4 3
AAAAAAAAAAAAHAA
5 1
A A E A B A A A A A A
6
DAAAAAAACCAAABA
6 3
CC E AA A A A A A A A A ACAAA
A A A A A A A A A A A A
68
A A
6 9
ABCAD
7 4
A A A A AAAAAAAA

```
```

FILE 2 OATA P IDEVCCUR
15.27.48 UEDNESDAY 12 DEGEMBER 1975

```
75
```

75
A A A A A A A A A A A A A A
A A A A A A A A A A A A A A
83
83
ABEBAB
ABEBAB
A A A B A CAC
A A A B A CAC
87
87
A A A B
A A A B
A B
A B
95
95
A A A EBBAAA ABAAAAAAABBAAAAABABAAAAA
A A A EBBAAA ABAAAAAAABBAAAAABABAAAAA
ABEAAA A A A A ABBBBAAAAAAAAAAABAAAAAAAAA
ABEAAA A A A A ABBBBAAAAAAAAAAABAAAAAAAAA
33
33
A A A A A A A A A A A A A
A A A A A A A A A A A A A
ALAS
ALAS
D A e a a a
D A e a a a
PNSS
PNSS
A A A A A
A A A A A
17
17
A A A A A A A A A A
A A A A A A A A A A
A A A A A A A A A A A A A

```
A A A A A A A A A A A A A
```

FILL CATA P ID=WCCVR 16.21 .11 THURSDAY 6 OECEMBER 979 PAEE 1 NATIONAL CSS, INC. (SUNNYVALE DATA CENTER) SUNY

## 02

COO3
DENACC 2 St
DETACC
RESACC
DETACC 3 HA

SEASE
REPALR
ASSESS
RESACC $2 \quad \mathrm{HB}$

COYRSF
RESP
SENSE $2 \quad$ SC

VULTS
INCNI
REPALR 2 HA
TSIC
ANALRP
ASSESE 3 AV

MULTA
INOAI
CASSAS
COKRSF 4 SE

EETGCS
GDSSTA
EETSTA
ONLFF
PESP
DELRSF
EFFRSF
DRRSP
MULTS 53 AV

6
57
10
INCMI 3 SA

DDS
6P

| BARR |  |  |
| :--- | :--- | :--- |
| TSIG | 52 |  |

47
18
ANALRF 53 SO
5
51
MULTA 51 aV

16
3 SA
INDAI 3
DDA
GP
BARR

| CASSAS | 51 | AV |
| :--- | :--- | :--- |
| 12 |  |  |
| CDSSTA | 51 | HA |


| 43 |  |  |
| :---: | :---: | :---: |
| DELRSP <br> BARR | 2 | so |
| GP |  |  |
| EFFRSP | 2 | St |
| ONSITE |  |  |
| CFFSIT |  |  |
| BARR | 57 | SA |
| 3 |  |  |
| 21 |  |  |
| 28 |  |  |
| 38 |  |  |
| 68 |  |  |
| 69 |  |  |
| 96 |  |  |
| GF | 51 | AV |
| 43 |  |  |
| ONSITE | 2 | SA |
| REQOFF |  |  |
| COMADY |  |  |
| OFFS 11 | 2 | 51 |
| RSPREG |  |  |
| ENGACY |  |  |
| REQCFF | 52 | Ha |
| 12 |  |  |
| 16 |  |  |
| conacy | 52 | SA |
| 16 |  |  |
| 43 |  |  |
| RSPRE 6 | 51 | HA |
| 16 |  |  |
| ENGRDY | 51 | S4 |
| 16 |  |  |
| NOKORE |  |  |

```
FILE4 CATA P IDEYCCHR 16.21.19 THURSDAY 6 DECEMBER 1979 PAGE 1
    WATICNAL CSS, INC, (SUANYVALE DATA CENTER) SUNY
```

01
COCS
DENACE 0.436DETACC 0. 3 I35RESACC 0.730SENSE 0.702REPALR O.868
ASSESS O.E49COMRSP 1.OUCRESP C.73 JMULTS 0.671INDMI O.575
TSIG 0.94DANALRM O.523MULTA 0.6721NDA1 0.640CASSAS 0.338
EETGCS 1.OUCGCSSTN $1.620 P E T S T N ~ 1.0000 N O F F 1 . C O O D E L R S F ~ 0.790$
EFFRSF 0.7CGORRSP 1.000BARR 0.37JGP 1. UCCONSITE 0.559
OFFSIT 1. DOOREQOFF 0.338 CONADV 1.000 RSPREQ 1. COOEKGADV 1.006
DOS 0.833DDA 1.CUO
$0.75493 \quad 0.765620 .669920 .820140 .578731 .00600 \quad 0.916670 .66556 \quad 6.820311 .05000$
$1.00600 \quad 0.9111110 .23693 \quad 0.56250 \quad 3.51551 \quad 0.749980 .875001 .020001 .000000 .76566$
$0.51559 \quad 0.386721 .0 C C O Q 1.00600 \quad 0.548391 .60 C O 01.60350 \quad 0.74639 \quad 0.63731 \quad 6.73333$
$6.066670 .336660 .338381 .060060 .596421 .000001 .060001 .0 C C C C \quad 0 . C \quad 0.0$

$0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0$
$0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 1.0 \quad 1.0$
$0.0 \quad 0.20 .0 \quad 0.0 \quad 0.0 \quad 0.0$ 0.2 0.0 0.0 0.0


```
FIL3E DATA P IOEYCCYR 16.21.26 THURSDAY 6 DECEMBER 1979 PAGE I
    NATIONAL CSS. ING. (SUNNYVALE DATA CENTER)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{0003} \\
\hline CONACC & 2 & SA \\
\hline \multicolumn{3}{|l|}{NORMAL} \\
\hline \multicolumn{3}{|l|}{EMERGE} \\
\hline AORMAL & 2 & HA \\
\hline \multicolumn{3}{|l|}{AUAUTF} \\
\hline \multicolumn{3}{|l|}{PRCCON} \\
\hline ADAUTH & 51 & Av \\
\hline \multicolumn{3}{|l|}{2} \\
\hline FRCCCA & 2 & St \\
\hline \multicolumn{3}{|l|}{PERSCA} \\
\hline \multicolumn{3}{|l|}{MATERI} \\
\hline PERSOA & 3 & SA \\
\hline \multicolumn{3}{|l|}{VERIF} \\
\hline \multicolumn{3}{|l|}{CONTKA} \\
\hline \multicolumn{3}{|l|}{K CSP - I} \\
\hline MATERI & 3 & St \\
\hline \multicolumn{3}{|l|}{VERIF 2} \\
\hline \multicolumn{3}{|l|}{CONTRE} \\
\hline \multicolumn{3}{|l|}{RESPVI} \\
\hline VEKIF & 54 & Av \\
\hline \multicolumn{3}{|l|}{14} \\
\hline \multicolumn{3}{|l|}{63} \\
\hline \multicolumn{3}{|l|}{2} \\
\hline \multicolumn{3}{|l|}{66} \\
\hline CONTPA & 51 & A4 \\
\hline \multicolumn{3}{|l|}{55} \\
\hline RESPVI & 2 & HA \\
\hline \multicolumn{3}{|l|}{COVRSP} \\
\hline \multicolumn{3}{|l|}{RESP} \\
\hline VSRIF2 & 51 & AV \\
\hline \multicolumn{3}{|l|}{2} \\
\hline COATRE & 52 & S: \\
\hline \multicolumn{3}{|l|}{32 边} \\
\hline \multicolumn{3}{|l|}{6 C} \\
\hline RESP & 3 & St \\
\hline \multicolumn{3}{|l|}{DELRSP} \\
\hline \multicolumn{3}{|l|}{EFFRSF} \\
\hline \multicolumn{3}{|l|}{CRRSF} \\
\hline NOMORE & & \\
\hline
\end{tabular}
```

FIL4 CATA P IE=VCCVR 16.21.34 THURSDAY 6 DECEMBER 1979 PAGE 1
MATIOMAL CSS, INC. (SUNNYVALE DATA CENTER) SUAY

```
\(t 1\)
0003
CONACS O.EATNORMAL O.442EMERGE 0.832ADAUTH 0.917PROCON 0.482
PERSCA C.A96MATERI G.E35VERIF O.826CCNTKA O.337RESPVI 0.83?
VERIF 2 C.S17CONTK 2 O. 551 COMRSP \(1.000 R E S P\) C. 832DELRSF 1.000
EFFRSP 0.7060 RRSP 1.00 C
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0.75493 & 0.76562 & 0.66992 & 0.82014 & 0.57870 & 1.04000 & 0.91667 & 0.65556 & 0.82631 & 1.00020 \\
\hline 1.00000 & 6.91111 & 0.23693 & 0.56250 & 0.51551 & 0.74998 & 0.87500 & \(1.06 C C C\) & 1.10000 & \(0.7 \in 563\) \\
\hline 0.51559 & 0.38672 & 1.06600 & 1.00000 & 0.54839 & 1.00000 & 1.00000 & 0.74639 & 0.63731 & 0.73333 \\
\hline 0.66667 & C.33660 & 0.33830 & 1.06000 & 0.59842 & 1.00006 & 1.00000 & 1.0060 & C. 1 & 0.0 \\
\hline 0.0 & c. 0 & c. 6 & 0.0 & c. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.6 \\
\hline 0.0 & 0.0 & 0.0 & 6.0 & 0.0 & 0.0 & 0.0 & 0.0 & 6.0 & 0.0 \\
\hline 0.0 & c. \({ }^{0}\) & \(0 . i\) & O.. & c. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & C. 0 & 0.6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.6 & 0.1 & 0.0 & c. 0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & S. 0 & c. 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.1 & C. C \\
\hline
\end{tabular}
```

    WHICH7 42
    ENTEF ED: NAME -- CDIAAC:
    HIERAFCHY DATA FDF BOX CONACC
    EJ:CDNACC RULE:SA SCOFE: 0.547 Q:
EDS:NDFMML RULE:HA SCDFE: 0.442 Q:
BJS:ADH:ITH RULE:HV SCDFE: 0.917 O:
QUESTIDTHAIRE: }2\mathrm{ SCOFE: 0.917
ED:FRDCDM RULE:SA SCORE: 0.4S2 D:
FD<:PEFZDH RULE:SA SCDFE: 0.496 Q:
BD<:MATEFI RUEE:SA SCJFE: 0.ESE O:
EJ\EMEFGE RULE: SCJFE: 0.832 0:
ZELECT 41-51 m 42
ENTER EJ: NAME -- PRJCJ:4
HIEFARCHY IHTA FDF EDX FRDCO*
ED:FRDCIN RULE:SA SCDRE: 0.4S2 Q:
BD::PEFSDN RULE:SA SCDFE: 0.496 0:
BL::VERIF RULE:HY SCDFE: 0.826 0:
QUESTIDN:4AIRE: 14 SCDFE: 1.000
QUESTIJHTAIRE: 63 SCDRE: 0.337
QUESTIDザHINE: 2 SCSFE: 0.917
QUESTIDNNAIFE: 6S SCDFE: 1.000
BD/CDITRA FULE:HV SCDFE: 0.337 Q:
OUESTID<br>\MIPE: 95 SCDPE: 0.337
BJ\:RESPYI RULE:HA SCDFE: 0.832 Q:
ED:CDMESF RULE: SCDFE: 1.000 0:
BJKNESF FULE:SN SCDFE: 0.832 O:
BDX:MATER1 RULE:SA SCOFE: 0.635 O:
BD\&:VEFIFE FULE:AV SCDRE: 0.917 0:
QUESTIDTHAIRE: }2\mathrm{ SCDFE: 0.917
RO.:CDNTRE RULE:SA SCDRE: 0.551 Q:
QUESTIDVNAIFE: 32 SCDFE: 0.750
QUESTIDNNAIRE: 60 SCDFE: 0.51E
BDK:RESPYI RULE:HA SCDRE: 0.332 Q:
BDX:CDMFSP RULE: SCDFE: 1.000 0:
BDX:RESF RULE:SN SCURE: 0.832 O:
SELECT 41-51 -- 42
ENTER BDX NAME -- RESPVI
HIERARCHY DATR FOR BDX RESPVI
BOK:RESPVI RULE:HA SCDRE: 0.332 Q:
BDK:CDMRSP RULE: SCDRE: 1.000 Q:
BDX:RESP RULE:SA SCORE: 0.832 Q:
BDK:DELRSP RULE: SCDFE: 1.000 Q:
BDK:EFFRSP RULE: SCORE: 0.705 0:
BDX:DRRSF RULE: SCDRE: 1.000 Q:

```


\footnotetext{
SE:ECT 41-51 -- 3
}

A4-21
```

DISTRIBUTION:
U.S. Nuclear Pegulatory Commission (50 copies for Att)
Division of Document Control
Distribution Services Eranch
7920 Norfolk Avenue
Eethesde, MD 20014
Attn: F. Larkins
U.S. Nuclear Regulatory Cormission
Divizion of Safeguarós
MSSS881
7 9 1 5 ~ E a s t e r n ~ A v e n u e ~
Silver Spring, MD 20852
Attn: P. A. Dwjer (5)
Woodwarc-Clycue Consultants
Three Eabarcadero Center
Suite 700
San Francisco, CA 94111
Attn: A. Eicherman (5)
400 C. WHater
1000 C. A. Fowler
1230 W. L. Stevens, Attr: R. E. Smith, 1233
1700 W. C. Myre
1 7 1 0 ~ V . ~ E . ~ E l a k e ~
1720 C. H. Mauney
1730 J. D. Kennedy
1750 J. E.Stiegler
1760 J. Jacobs
4400 A. W. Snycer
4410 D. J. McCloskey
4 4 1 2 ~ J . ~ K . ~ H i c k m a n ~
4 4 1 3 ~ N . ~ F . ~ O r t i z
4414 C. E. Varnado
4416 L. D. Chapman (5)
4416 K. G. Adams
4416 J. A. Allensworth
4416 H. A. Eenrett (7)
4416 D. Eng i
4416 L. M. Grady
4416 C. P.Harlan
4416 R. [. Jones
4416 M. T. Olasccaga (7)
4416 C. J. Pavlakos
4416 D. W. Sasser
4416 D. R. Strip
8266 E. A. Aas
3141 T. L. Wicrner (5
3151 W. L. Garner (3)
FOr: DOE/TIC (Unlimited Relecse)
3154-3 R. F. Campbell (25)
For NRC Listribution to NTIE

```
```


[^0]:    $1_{\text {Throughout }}$ this report, certain terms are used that have a particular meaning in the context of the evaluation procedures. To avoid confusion, these terms are defined in Section 6.0 (glossary).

[^1]:    ${ }^{1}$ Note that if any other range is used (say 1 to 5 ) it is trivial to normalize this to the range 0,1 . This also allows direct comparison between questions with differing numbers of possible responses.

[^2]:    ${ }^{2}$ See, for example, R.L. Keeney and H. Raiffa, Decisions with Multiple objectives; Preferences and Value Tradeoffs. New York: Wiley, 1976. Also see Appendix Al.

[^3]:    *NOTE: It is the Sancia authcrs' view that aggregating each low-leve? task over all eccess points and subsequently combining the resultant reasures at each level of the hierarchy fails to reflect the essential secuence of events for detection and resporse functions and fails to identify the locations where these functions are of concern. A test prostam shoulo helf. -sclve the ovestior 0 . correctness vs. fracticality.

[^4]:    *NOTE: The ofposing view taken by the Sandio authore is that to evalluate such comfonents as tamper protecticn, erergency fower supplies, etc. indefencently ano then corbine resultz with those from components such es sensors, cCTV, etc. effectively places equal importence on tamper frotection as on the curbined effect of all the other sensor ferfortiance facters.

[^5]:    ${ }^{1}$ These designations are only for section Al.1.

[^6]:    In this sense, the maximum and minimum element scores have the greatest influence respectively on $O R$ and $A N D$ type aggregations. But, unlike using a MAX or MIN operator, their influence need not completely over$r$ ide the contribution of the other elements.

[^7]:    2. Harry Katzan Jr., FORTRAN 77. New York: Van Nostrand Reinhold Company, 1978.
