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A Simplified Game Theory Model for the Optimum

Alarn Level from Nuclear Material Accounting Data

M. Dresher, M. Messinger and S. Moglewer

*
1. Introduction

Threshold discriminants are the standard procedure employed by the

nuclear industry for detection of anomalies in the analysis of nuclear

material accounting data in an attempt to provide assurance that no loss or

diversion of material has occurred. The fundamental decision in this type of

analysis is to determine a suitable value fct the alarm level or threshold.

The classical approach is generally based upon a statistical hypothesis
~

testing model. Standard procedure is to arbitrarily establish an alarm level

at some " reasonable" number, for example the upper limit of a 95% confidence

interval based on the null hypothesis of no loss or diversion, and to accept

the alternative hypothesis of nuclear material loss, i.e., reject the null,

for realizations of the random variable which is usually inventory difference

or MUF outside this arbitrary threshold. Type I and Type II error analysis
1

and Or? rating Characteristic curves are then evaluated for sensitivity tc |

different alternative hypotheses, i.e. , statements of the amount lost or

diverted [ 1 ]. ;

Unfortunately there are a number of value judgments, or decision-maker

utilities, that are implicit in such a model. Consequently these utilities c

|
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may not be known to the decision-maker. This would reduce the validity of the

.

classical approach for solution of real-world problems.

The theory of games, by requiring explicit formulation of the decision-maker

utilities for establishment of a payoff function, can be useful in providing

information on the utilities inherent in alternative alarm thresholds. This
~

should provide the capabili,ty for more efficient auditing of accounting data.

This paper will present a model that develops optimum alarm levels from

nuclear material accounting data. The model will be concerned with detectinr.

of unauthorized diversion from inventory data.

2. Discussion of the Prablem
_

The nuclear caterial accounting system keeps track of material inputs and

outputs by taking inventory at regular intervals and locations. At the end of

the inventory period a reconciliation between the physical inventory and the

accounting records is effected. Due to measuring errors, recording errors,

bias in individuals and instruments, process errors, and possible diversion,

the inventory usually does nut balance, leaving a quantity called ID (inventory

difference). ID is a function of the realizations of the many errors involved

and would include any diversion that may have occurred during the inventory

period.

'
The decision-making problem is, given an ID reading, when should the alarm be

,

1
sounded to verify a possible theft. If the alarm threshold is too large, q

there will ha a low probability of alarming in case of a diversion. If
,

,

.

'
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the alarm is too small, there will be a high probability of false alarm with
_

its consequent penalties. The decision-mak,er thus has a duality of objectives

to consider for establishing an equilibrium. Furthermore the outcome is
4

beyond the control of the decision-maker since the underlying statistics would

be partially controlled by a hostila adversary, a diverter whose decisions

s. uld determine the mean of the distribution from which the inventory differ-

ence statistic would be obtained. The framework for developing a hypothesis

test for diversion is shown in Figure 1.
i

|

This framework can be used to develop a payoff function for a game ,

1

theoretic model that would solve for the optimum threshold. The rules for |

such a game would be..
|

_. "]

Move 1. The diverter diverts an amount 0 or K of nuclear material.
|

|
,

Move 2. Nature or chance selects an amount of p of ID from some given

probability distribution for ID.

Move 3. The defender, knowing the outcome of Move 2, decides whether or

not to alarm.
1

h
;

.
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Since each player has two choices available per move, there are four possible

outcomes to the game and thus four possible payoff values. They can be

summarized by the following 2 x 2 matrix, which describes the payoff to the

defender as a function of these moves.

<

DEFENDER
NO ALARM ALARM

,

DIVERT 0 0 My

DIVERTER

DIVERT K M Mg 2

This can be transformed into a regret matrix similar to Figure 1 by defining
_

regret as the difference between the best and the actual payoff. With this

definition M2 = 0. (Regret is due to wrongly guessing the unknown state of

affairs, See [ 2 ].) The matrix elements represent the payoff to the defender

in term 3 of costs for each of the possible outcomes.

3. Formulation of Game

In order to analyze the above game, it is necessary to formulate the game in

terms of the strategies of the players which take into account the chance move

of the game. Thus, the game payoff will be described in terms of an expected

i value over the chance move.
,

First, it is clear that a strategy for the diverter is either x = 0 or x = k. "

The diverter has only two strategies.
1

.
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Since the defender has information about the magnitude of ID, he must decide

for each value of u whether or hot to-alarm. This is equivalent to choosing

some z, where -= < z < = such 'that if u i z, then the defender does not alarm,

and if u > z he does alarm. Thus, the defender has an infinite or a continuum

of strategies {z} such that -= < z < m.
C

We can now express the payoff of the game, which is an expected value, in

terms of the strategies as follows:

M P(u > z x = o)y

M (x, z) =

M P(u < z x = k) + M P(u > z x = K)g g

where P(u i z x = k) is a normal probability function with mean k and unit

standard deviation. It will be convenient to write the above payoff as

M(o, z) if x = o

M(x, z) =

M(k, z) if x = k

where

M(o, z) = M P(u > z x = 0).y
E

M(k, z) = M P(u i z x = k) + M P(u > z x = k)g 2
C

Since the payoff M(x, z) involves four parameters, i.e., M , M , M , k, theg 1 2

solution of the game will depend on the values of these four parameters.
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4. Computation of Max Min

We shall now show that this game has no saddle point solution. We shall also

obtain upper and lower bounds on the game value.

The lower bound on the game value is given by Max Min or
: s

Max Min M(x, z) = Max [ Min M(o, z), Min M(k, z) ]
x z z z

= Max [ o, M 32

Max Min M(x, z) = 0
x z .

m

and the max min is assumed at x = 0. ~

5. Computation of Min Max

In order to compute the upper bound to the game value, we need to compute

Min Max M(x, z). For any given z, we have

z x

i

Max M(x, z) = Max [ M(o, z), M(k, z) ]
4

M(o,z) if M(o, z) > M(k, z)=

M(k,z) if M(k, z) > M(o, z)
|

C
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.

Suppose M(o, z) > M(k, z), then.

..

Max M((x, z) = M(o, z).

x

and this holds for a range of z's such that -= < z 1 z . We thus have
o

.

Min Max M(x, z) = M(o, z )g
~# < z$z x

i Where the minimum is assumed at z = z .g

,

.

Now suppose that m

M(k, z) > M(o, z)

;

Then

Max M(x, z) = M(k, z)
x

.

O

i
*

.
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This nolds for all z such that z,5 z 5 m. In this case

.

Min Max M(x, z) = M(k, z ),g
z <z<m xg

and the minimum is assumed at z .g

Therefore, we obtain for the upper bound of the game value

Min Max M(x, z) = Min [ Min M(o, z), Min M(k, z) ]
z x m<z<z z <z<m

.

= M(o, z ) = M(k, z )g g __

The value of z , where the minimum is assumed, is obtained by solving theo

following equation:

,

M(o, z) = M(k, z)

where -= < z < m. Further, the solution is unique. It satisfies theg

following equation.

|
*

1.

C
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2
.

= -u 2 - (u - k)
2 (M -M) 2

M 1 e du = o 2 ,. e du + Mj 2

V2n z 42n -=
,

<
,

6. Optimal Strategies

Having proven that the game does not have a saddle point, this implies that

the optimal strategy of the diverter is given by

F*(x) = A.Ig (x) + (1 - A) Ik (*)

where o < A < 1 and Ik (x) is a step-function with a jump at x = k. ==

Suppose that the diverter uses F*(x), the diverter's optimal strategy, then

the optimal strategy of the defender is such that the defender randomizes

over those strategies of the defender for which

Min M(F*, z) = V
z

i

|

- ._
m
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Now

.

1

M(F*, z) = Ah(o, z) + (1 - A)M(k, z).

It can be shown that this function (of z) has a unique minimum. Hence, the
<

defender's optimal strategy is a pure strategy z* which minimizes

M(F*, z) = AM(o, z) # (1 - A)M(k, z).

Note that - = < z* < m. In particular, z* may be negative, depending on the

values of the four parameters M , M , M , and k. In such a case the defenderg j 2

would alarm even if an ID were negative.

-=
,

The computation of z* is relatively straight-forward. It is that z which

minimizes Max M(x, z) or Min Max M(x, z) = M(o, z*) = M(k, z*) = V
x z x

In crder to obtain the value of A, which will yield the diverter's optimal

strategy, we first compute

BM(x, z)

Bz

.

and evaluate this derivative at x = o, z = z* and at x = k, z = z*, where z*

has been obtained above.

.
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Let

.

BM(o, z*) = M (o, z*)
az

and

BM(k, z*) = M (k, z*)
az

In order to determine the value of A, we solve the following equation for A

A M (o, z*) + (1 A) M'(k, z*) = 0

__

In summary we have the following results. The defenders optimum strategy

Z* satisfies:

M,[1-F(Z*)] = (M - N ) F(Z* - K) + M0 2 2

The value of the game is given by:

V=My [1 - F(Z*)]

'

= (M - M ) F(Z* - K) + M0 2 2

.
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and th'e optimum probability of not diverting is given by

(M 'M ) f(Z*-K)0 2
M f(Z^)+(M -M )f(Z^-K)y 0 2

<

Wheref(Z)=hF(Z)

.

Figure 2 presents a graphical interpretation of the optimal solution to the

game for the regret case where M is set equal to 0. The optimum alarm2

threshold is observed to be obtained from a balance between the e rected cost

of a false alarm and the expected cost of a missed alarm. The shaded area to "

the left of z* is Mo F(z* - k) = P(No Alarm / Diversion) (Cost to Defender Of No

Alarm Given Diversion).

The shaded area to the right of z* is M1 (1 - F(z*) = P(False Alarm) (Cost To

Defender If False Alarm).

As proved earlier, the optimu'm alarm threshold, z* is given by
i

M F(z* - k) = My (1 - F(z*))
'

g

c

|
!

.
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7. A Generalization

The game previously presented can be readily generalized to consider a general

regret case where the diverter can choose between two possible levels of

diversion. This is analagous to the classical hypothesis case where instead of

specifying the Type I and Type Il errors, two points of the power curve

corresponding to two different values for the Type II error are specified.
.

The regret matrix takes the following form.

DEFENDER

ND ALARM ALARM
(Type II error costs)

_.

DIVERT K M My 3 y
__

DIVERTER

DIVERT K M, M
2 g

where M denotes the cost to the defender of a Type II error when K is
3 y

diverted

M denotes the cost to the defender of a Type II error when K isg 2

diverted

M denotes the cost to the defender of an alarm when K is divertedy y

M denotes the cost to the defender of an alarm when K is diverted -

2 2

.

O

w -

9
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By analogy with the solution to the previous case, the optimum alarm threshold

satisfies
.

My [ 1 - F(z* - K ) ) + M F(z* - K )y 3 y
<

=M F(z* - K ) + H2 [ 1 - F(z* - K ) 3g 2 2

The value of the game, V, is given by

.

V=My [ 1 - F(z* - K )] + M F(z* - K )y 3 y _=

=M F(z* - K ) + M E 1 ~ f(** ~ K ) 3g 2 2 2

i

Letting A denote the optimum probability by which the diverter chooses to
,

divert K , one obtainsy

:

-A M f(z* - K ) + A M3 f(z _ gy)y y
'

= f(1 - A) [ M f(z* - K ) ~ M f(z* - K ) ] = 0y 2 2 2

.

h

<

1

|

k
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solving for A, one obtains

.

(M - M ) I(2* ~ K )g 2 2
A * (M - M ) f(z^ - k ) + (M - M ) #(* ~K)y 3 1 y 2 1

8. Numerical.Results

The solution derived in Section 6 was evaluated numerically over a wide range

of paramater and payoff element values.
This was the case when M2 = 0 (the

regret matrix). Some of the results will be presented in this section. The

solution in all cases assumed that f (z) was normally distributed with mean 0

or K and standard deviation c. The results are presented in sigma (a) units.
.

m

Figure 3 presents the payoff M as a function of the alarm levei z for a

specific case. The optimum alarm level z* was unique and the optimum value of
'

the payoff V occurred at a sharp point. (There was a severe penalty for

excursions of the alarm level away from optimum). Other specific cases

examined exhibited similar behaviorism.

Figure 4 shows the sensitivity of the optimum alarm z* to the ratio of M /M ,1 g

the ratio of value of false alarm to undetected loss (i.e. , missed alarm). As

false alarm increases in value relative to missed alarm, z* tends to become

larger. Also the false alarm rate (Type I error) and the undetected loss rate

(Type II error) is illustrated for each of the alarm levels. As is to be

expected, at small alarm levels Type I errors dominate and conversely at large e

.

w
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alarm levels Type II errors dominate. However, these error rates are

explicitly related in the figure to the underlying value judgments M /M .y o

Figure 5 and 6 pre:;cnt the sensitivity of the optimum alarm threshold and the

error rates to the value of K, the amount diverted, for a specific utility
<

ratio M /M . When false alarm rate drives the system, i.e., M /M = 100,y g y g

Type II errors dominate fo smaller values of K, i.e., K < 7. When undetected

losses drive the system, i.e. , M /M, = .01, Type I errors dominate. The
y

optimum alarm threshold increases almost linearly with increases in the value

of K for a wide range of ratios M /M .y g

Figure 7 presents optimal alarm contours on M /M,- K coordinates. Sincey _

M /M and K are the implicit judgments underlying establishment of alarmy g

levels, this figure exposes the underlying value system for hypothesis testing

models (of course within the constraints of the present model, i.e., normality

and known o). For example, when the alarm is established at 2 c, the nominal

95% confidence level, the decision has implicitly accepted the values of M /My g

and K along the z* = 2 contour. For instance, for an alarm z = 2, and an

amount of interest K = 4, the decision is implicit that the penalty of false

alarm is equal to the penalty of undetected loss. The chart clearly

illustrates that as false alarm becomes more important, that the optimum alarm

will become, larger.

c

_.

g
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9. Summary and Conclusion

An approach based upon the +heory of games has been presented that can be

useful in exposir.g implicit valua judgments that underlay the establishment of

alarm thresholds for statistical hypothesis testing models. This approach has

been illustrated by application to a nuclear material accounting problem.

However, it should be applicable to other areas where auditing for fraud and

theft is a factor.

Incorporation of the factor of competition and adversarial actions by game

theory models should significantly improve the effectiveness of threshold

discriminants. This would eliminate a major deficiency of the classical

statistical approach. However, the two disciplines of game theory and
__

statistics should be viewed as complementary, each discipline contributing

that which it ccn capably do.
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