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ABSTRACT

In Vesely's binomial failure rate model, a system of m components is
| hit by random shocks which may cause components simultaneously to fail,
; each component with equal probability. Individual components may also fail

when no shock has occurred. The data possibilities considered are that
causer '' ;;ngle failures are identifiable (as shock or not) or not identi-
fiable. Given data from such a system, non-Bayesian and Bayesian point and
interval estimators are found for the various quantities of interest.
Residual analyses and hypothesis tests are pr;sented for checking the model
assumptions. An example is worked out.
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ESTIMATORS FOR THE BIN 0MIAL FAILURE RATE
{

COMON CAUSE MODEL

1. SUMARY

1Vesely proposes a binomial failure rate-(BFR) model for modeling 1
1

comon cause failures in a system. In this model, each component of the !

system has a constant failure rate A. In addition, a " common cause shock,"
or " secondary event" in the terminology of reliability analysts, can occur

|
with constant occurrence rate v. If a shock occurs, the components fail '

independently of each other, each with probability p.

This paper presents results concerning the BFR model. There are six
or seven related, unknown quantities of interest. The exact number depends
on whether the causes of single failures are identifiable (i.e., due to
shock or just individual failures) or not identifiable. Maximum likelihood
estimators are given for all of these quantities. One of the likelihcod
equations requires numerical solution. Confidence intervals ire given,
which are sharp for some quantities and conservative for others. Confi-
dence regions, not all rectangular, are given for estimating the quantities
simultaneously.

Bayes estimators (posterior modes and means) and Bayes probability
intervals are gi'ven for all the quantities of interest, as is the three- |

dimensional probability region for the three basic parameters. All the
Bayesian results, except finding the modes, require numerical integration. |

However, in almost all cases, only integrals with respec.t to a single vari-
able need to be done numerically. Depending on the parameters of the prior
distribution, the integrand may contain an infinite series.

Residual analyses and hypothesis tests are presented for checking the
model assumptions. Most of the hypothesis tests require a large sample
size.

The results are applied to some of the boiling water nuclear reactor
1control rod data given by Vesely .

,
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2. BASIC CALCULATIONS

Let there be a system with m components operating for time t. (if
there are several such systems with the same m, each operating for time
t , consider them as one system with t = Et .) Assume m > 2. (Inj g

Section 6, where the causes of single failures are identifiable, we will
relax this assumption to m > 2.) Each component has an exponentially
distributed lifetime with parameter (failure rate) A, and the failures are
mutually independent. In addition, a conmon cause shock may hit the sys-
tem, with the shocks mutually independent and the time between shocks expo-

nentially distributed with paramater p. If a shock hits the system, the

components of the system fail independently of each other, each with prob-
ability p. All failures are discovered and repaired as soon as they occur.
Dv ine q = 1 - p.

Let N be the number of occurrences of i simultaneous failures. (Wej
will follow the convention of using capital letters to denote random vari-
ables and using the corresponding small letters to denote specific values
of the random va,-iables.) Then, basic calculations (see Reference 1 or
Mann, Schafer, and Singpurwalla,2 Section 4.2) yield that

N are independent Poisson (A t)
g j

with

(2.1)1 - mA + u ryA

and

Aj-pr, i - 2,.., m.j

Here, r j is defined by

j - (*) p q*-i (2.2)I
r .

2
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The special expression for A comes from the fact that a single failurey

may be simply an individual failure or it may come from a common cause
shock that caused only one component to fail. (Reliability analysts would
refer to a common cause shock that failed fewer than two components as a
" potential common cause.")

The model has been formulated in terms of A, p, and p. Also of inter-
est, indeed perhaps of great interest, are A , defined by (2.1), andy

A , defined by

m
A

i-2
j - p(1 - r - ry). (2.3)E A

o

The quantity A is the rate of common cause failure occurrences. It must
be distinguished from p, the rate of common cause shocks. A last quantity

kof interest is up for 2 5 k 5 m. This is the rate at which some specific
k components fail simultaneously, and is the relevant rate corresponding to
a k-element "AND" gate in a fault tree, or to a k-element cut set.

It may be that the causes of single failures are identifiable as either

individual failure or coninon cause shock. Then, Ny can be decomposed
into Ng + N , where Ng is the number of individual failures, distri-C

buted Poisson (mat), and N is the number of single failures due to coninon
C

cause shocks, distributed Poisson (pr t). It may be very difficult toy

extract the necessary information for this decomposition from failure
reports. For example, in nuclear industry Licensee Event Reports, the
information may simply be unavailable: the cause is reported " unknown."
Or, it may be difficult to interpret: is " dirt in valve" a coninon cause
shock that happened to fail only one valve? Finally, tne report may be
untrustworthy: in one report, 96 control rods failed to insert fully. A
possible cause reported was that oil leaked past 96 independent piston
seals. We do not believe in such a coincidence, but assume some common
cause unrecognized by the reporter. But do we then classify a reported
single oil leakage past a piston seal as an individual failure, or as a
coninon cause shock that_ failed only one component?

3
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There are data sets in which causes.of single failures.are identiff-
able. For example, failures due to personnel error may all be regarded as
due to comon cause shock. However, the major portion of this paper assumes

that N and N are not separately available. Everything simplifies if
g C

they are available, so the results are summarized in Section 6.

Since t is fixed, basic calculations show that the probability distri-
bution of a set of failure data depends only on the number of failures, not
on the times of the failures (Reference 2, page 180). Define

m

N, = I Nj.
1-2

Then

P -Ny - n ,.., Nm " "my

P N = n. P N2 * "2,.., Nm""m|N=n}=P N1=ng

symbolically written as

(2.4)L=L xL2 * '33
,

This decomposition is useful because

N - Poisson (A t)y y

N - Poisson (A t)#

N ,.., Nm | N, - n multinomial(n., z ,.., z )
2 2 m

.

where

(2.5)
z$ =_r /(1 - r -ry)_.g o

4
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The multinominal probability L3 can be written out as

*

P -N2""2,..,N,=n,|N,.n,_
n1 n

g
=

_ n2 ** "m i2

"*-8 "in + *' s m
D 4

n A * * "mA
g (") (2.6)

,

51)"+
2 i=2m(1 - 4 -mpq

where s is defined as

m
*s- E ing,i-2

i
.,

the total number of components failing in multiple failures.
1

Note that 2n < s < mn . Note also that (N , N , S) is a
1

sufficient statistic.

I

i
i

1

5
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3. NON-8/,YESIAN INFERENCE

:

3.1 Maximum Likelihood Estimators

It will be most convenient to parametrize the model in terms of (A1,
A , p). From estimators of these quantities, estimators of A, u, and

kup will also be developed. The parameters A1, A , and p are related
by (2.1) through (2.3). If we set A > 0 in (2.1), we obtain that the param-

eters satisfy the constraint

*~1 (1 - q* - m p q'-1) (3.1)/A1>1 mpq .

1 > 1, z , in the notation o? (2.5).This can be abbreviated 1 y

From (2.4), the logarithm of the likelihood is

log L = log L1*I9L2 + IU9 L3

where

log L1 -A1 + nylogly - log (n1 )I

log L2 " -*+ + "+I 9A+ - I 9 I"+II

'and L is given by (2 6) and does not depend on At or A+.
3

Let us first maximize log L ignoring the constraint (3.1). The maxi-

mizing values of Al and A, are

1 = ng/t1

1+ = n+/t.

The maximizing value of p, denoted p, must now be found.
,

'

6
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If m = 2 or if n, = 0, then L is identically 1. We have assumed3
throughout that m > 2. Now assume also that n, > 0. Differentiation of

log L is straightforward-
3

1

a log L 1 - q -1m
3 s

(*}ap " p q - * U+ q(1 - q -mpqm-1) *m

|

It is shown in Section 8.2 that if s = 2n., then p = 0. If s = m n ,

then p = 1. And otherwise, q(a log L /ap) is strictly decreasing in p
3

and changes sign between 0 and 1; that is, p is the unique solution of

1

m-1 i

1
(3.3)s - m n, p .m m-11-q -mpq

j

|

If m = 3, the smallest value that allows p to be estimated, then (3.3) has
an explicit solution: p = 3(s - 2n )/(2s - 3n ). For larger m, the
solution must be found numerically.

The naive estimate of p would be s/m n , the average proportion of
failed components in multiple failure occurrences. We would expect this
naive estimate to be biased upwards, since it is based on only those common
cause shocks that happen to result in at least two failures. And, in fact,
s/m n, is somewhat larger than p, the MLE. The naive estimator s/m n,

,

can be used as an initial guess for solving (3.3). !

l

It is interesting to note that an estimator based on the conditional
|

firstmomentofSisthesameas$,becausetheequation l

s=E}S|N,=n[

reduces to (3.3). This can be shown directly or derived from (3.2) and
the well-known fact that, under regularity conditions,
E(a log L /ap) = 0. The equality of the two estimators is not mere

3
coincidence, but follows from the fact that the truncated binomial

distribution is in the exponential family.

7
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If s/n n 2, then the naive estimate and the MLE are approximately
equal. For in this case, the data show many failures per observed shock,
indicating that virtually all common cause shocks result in at least two
failures. If s/n is close to 2, then the two estimates differ
appreciably. The quantity S/N will tend to be large if mp is large and
small if mp is small.

Sometimes m is not known exactly. Then it is important to know how p

varies as a function of m. It is shown in Section 8.1 that the right side

of (3.3) is an increasing function of m, for fixed p. Therefore, as m

increases, p must be decreased to preserve equality in (3.3). That is, the
MLE p decreases as m increases.

f Once 1 , 1 , and p are found, 1 and 9 follow from (2.1) through
1 k

| (2.3), and the MLE for up is u$ ,

,

It may be that the above procedure makes 1 negative! This is because
log L was maximized without any contraints, whereas it should have been
maximized subject to the constraint (3.1); i.e., A > 0. In this case,

proceed as follows.

As a function of 11, A , and p, log L has a unique local maximum.
Therefore, the local maximum is still unique when log L is written as a
function of A, u, and p. If this local maximum occurs at 1 < 0, then the

maximum subject to 1 > 0 must occur at x = 0. So, set x = 0 in (2.4), and

set 1 = 0. Define
1
:

m
N= rNg.

i=1

Then - - '

P 'N_y=n,..,N,-n|N=nL=P N=n g g

8
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l
1

.

where |
l

N ~ Poisson (A' t), A' = u(1 - r )g

I

and

PNi = n ,.., N,= n,|N = ny

"i5' m.n - s' mn! p q
"n: . . n .c n -- H (*)

1 m I"1(1 - q')
i -

*
, ,

with |

|

m |

s' = r ing.
i=1

:
1

The MLE's are found by setting ,

!

l' = n/t

and letting p be the solution of

s' = m n p/(1 - q").

t

This$isalsotheestimatorobtainedbysetting

s ' = E [S ' | N = n] .

It decreases as m increases. Then G follows from l', p, and the
definition of A', as does p$ .

9
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3.2 Confidence Intervals

3.2.1 Terminology. Since the data are discrete, all confidence regions
are necessarily inexact, in the sense that

P[ region contains parameter] > 1 - a (3.4)
_

for all values of the parameter, with strict inequality for some values of
the parameter. This is a well-known characteristic of discrete data. A
(1 - a) confidence region will be called sharp and the inequality (3.4)
will be called sharp if the infimum over all values of the parameter
satisfies

i inf P[ region contains parameter] = 1 - a.

[Wedonotsimplysaythatequalityisattainedin(3.4)forsomep,since
attainment of equality depends on whether open or closed confidence inter-
vals are used and whether the parameter space is open or not. Use of the

infimum avoids that difficulty.] The confidence region will be called
conservative if (3.4) holds but is not sharp.

3.2.2 Intervals for Ay, A,, and p. Sharp confidence intervals for
and N are independentand A, are completely standard since Ny1

1

Poisson variables. Expressions for the lower and upper limitt. for Ay

that are easy to compute from readily accessible tables, are

ll " 2n , a/2)/2tA

y

10 " I 2(n +1), 1-a/2)/2t .A

1

<

The interval for 1, is of the same form, using n instead of n .y
3For details, see Johnson and Kotz , Vol. 1, Sec. 4.6.2.

10
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A sharp confidence interval (p ' P ) for p can be based on the
L U

conditional distribution of S given N., if N > 0. Let pl and pu
satisfy

'S > s | N = n , p = p - a / 2 (3.5)P
_

|

'S < s|N = n., p - pu " "IP (*}*

;

i

Depending on whether s is large or small, it will be more convenient to
rewrite one of these equations as

P}S<s|N=n,p=p{=1-a/2 (3.5')
|

|

.S > s|N = n., p - pgP
_

= 1 - a/2 . (3.6')
_

This choice of the confidence interval has a mathematical statistics justi-
fication, given in Section 8.2.

To use (3.5) and (3.6), the conditional distribution of S given N.
must be found. This involves some complexity, and more notation is needed.

Let v = (v '**' Vm) be any vector of nonnegative integers. Define; 2
l

m
v= I v.j

i=2
I
i

Define the set Tk by

m

i = kf.Tk" V I V+ " "+' E IV
i-2

1
1

11
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Let

V
v! m i

n (*)c(v) = y .,, ,, y
2 m i=2

Then for 2n < k < m n ,

'

P 'S = k N - n.' { P 'N2*V2,.., N,= vm|N=n=

~

vcTk

m n. - k
P S E c(v) (3.7)- - - --

(1 - q' - m p qm-1)"+ vcTk

from (2.6). The summation in (3.7) can be evaluated for the relevant values
of k. Then (3.5) and (3.6) can be solved numerically for pl and pV*

The above procedure gives a sharp confidence interval for p, condi-
tional on N having any specified positive value. That is, the probabil-
ity that the interval contains p, conditional on N , is > 1 - a, and the

_

inequality is sharp. There is no unconditional confidence level, because |

when N - 0 no interval has been defined. To remedy this, when N - 0
the interval [0,1] can be used with confidence level 1. Let I(S,N.)
denote the interval for p, depending on 5 and N.. Then the unconditional

confidence level is

P 'p c I(S, N )~
_ -

|
.

I P'p e I(S,n ) N = n.' P N. = n "
-

=

n =0 - - - -

. .

>_,I (1 - a) P
. .

+1P .N=0N = n.
n =1 - - - -

._ (1 - a) .>

12
i
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The first inequality results from the inexactness of the conditional confi-
dence intervals.

Is the unconditional confidence interval sharp? For any fixed A ,
P'p c I(S,N )" is strictly greater tt.an 1-a. However, as n, * m, the

'

distribution 'of S given n, approaches a continuous distribution (S given
n, is asymptotically normal, by the central limit theorem). So for any

fixedp,P'pcI(S,n)|N,-n * (1-a) as n, * m. Therefore
__

P p c I(S,N ) > (1-a) as A,t * =, so
_ _

inf P p c I(5,N )~ = (1-a).
-

p

In this sense, the unconditional confidence interval is sharp. This sense
of sharpness may not be what the user really wants, since A t may really#

be moderately small. It may perhaps be possible to shorten the conditional
confidence intervals when n, is small, and still maintain an unconditional
confidence level (1-a). However if this is possible, the details are cer-
tainly quite complicated.

3.2.3 Joint Region for (Ay,A, p). Confidence intervals for Ay,
A., and p have been given separately. Now consider how to find a confi-
dence region for the three parameters taken together.

Let al' "+, and a be between 0 and 1. Let 1 (N ) denote the 1-ay,1 1p

confidence interval for Ay, and I,(N ) the 1-a, confidence interval for A .
Let I (5,N ) be the 1-a conditional confidence interval for p if N > 0, andp p
let it equal [0,1] if N, = 0. Let us tentatively use the product of the
three intervals as a joint confidence region for the three parameters. Then

g c I (N ), A , c I,(N ), p I (S,N,)P A y g p

=P - 1 c I (N ) P A,e I ,(N ), p c I (S,N )~1 y 1 p #_

=

> (1-ay) n,E
P A c I,(n ), p e I (5,n )| N, = n,' P N, = n, .

~ ~

_

=0 -
p

-
- -

13-
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The inequality results from the inexactness of 1 , and is sharp. Now let
7

6(A , n ) - 1 if A,c I,(n ), and let 6(A,, n ) = 0 otherwise.
The last expression equals

=

6(A , n ) P'p c Ip (S, n ) N, = n,' P'N, = n ,"
, (1-ay) n,E - - -

=0i

=

6(A,, n ) (1-a ) P 'N,= n,- + (1-my) 6(A,, 0) P'N, = 0'
> (1-al) n,E p

- - - -

-1

> (1-ay) (1-ap) (1-a ) .

As A t -> , the last two inequalities approach equality, so the confi-
#

dence region is sharp.

In fact, this product of the three intervals may be larger than neces-
sary because a portion of it may not satisfy the constraint (3.1). That

,

portion can be deleted as impossible. To visualize this, think of the
product of the three intervals as a block with rectagular cross sections.
For any p, the cross section is a rectangle parallel to the (A , A,)y

plane. Invocation of (3.1) typically cuts a corner off of the rectangle.
Several cross sections for the example of Section 7 are shown in Figure 7.

3.2.4 Joint Regions for Any Two of Ay, A , and p. If we are interested

y, A , and p, the constraint (3.1) does not apply, so thein two of A
region is simply the product of the two intervals. Work parallel to that
of the last section shows that the unconditional confidence level is the

duct of the two confidence levels for the interv is.

3.2.5 Confidence Regions for Quantities Other than Ay, A , and p. If

,

we are interested in three independent parameters other than Ay,A,
and p, for example if we want a confidence region for (A, y, p), the region

for (Ay, A , p) can be rewritten in terms of the three desired param-
eters. The results are not especially neat,'but they are straightforward.

14
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It is not apparent how to get sharp confidence intervals for A, u, or i

up , or a sharp two-dimensional region for, say, (A, u). One conserva-
tive region for (A, u) is the set of all (A, p) corresponding to any point I

in the three-dimensional region. Its confidence ccefficient is at least
that of the three-dimensional region.

A conservative region for u is based on

u - A /(1 - q* - m p q'-1). '

If (A , p) is in a confidence region with some confidence level,'then
the resulting maximum and minimum values of u form a confidence inter-
val with at least that confidence level. Similarly, a conservative

kinterval for up is based on

4
.

- A, p /(1 - q* - m p q*I).pp

The right hand side is monotone in p for k > 2, so conservative upper
and lower values for up can be obtained from the upper and lower
values of A and p.

l
|

A conservative one-sided interval for A can be based on I

A < A /m.y

A conservative two-sided interval can be based on

pq'-1 (1 - q* - m p q'-1) .A = A /m - A, /y

This last e.quation requires maximization or minimization over all thrr.e.

confidence intervals, and has coefficient at least (1-ay)(1-a )(1-a ).p
In the example of Section 7, the first method gives a smaller 957. confidence
interval .

15
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If the sample size is large, approximate confidence regions can be
constructed using the Fisher information matrix. (A reference is Cox and
Hinkley,4 Sec. 9.2.iii.) The Fisher information for A or A isy

t/A or t/1 , respectively. To get the information for p, write they

right hand side of (3.2) as

h - m n, f .
; ,

Then

.

2
aI(p) 5 -E I9'2
ap

,_E(S)(p-q)+mn+8A'-AB'22 2
Bpq

,

A -p) B A' - A B' (3.8)=mn, .

The off-diagonal elements of the information matrix are 0. So, if the

sample size is large, 1 ' S+, and p are approximately independent nor-
1

mal with means Ay, A , and p, and variances Ay/t, A,/t, and 1/I(p).
From this, approximate confidence regions can be found for any subset of

k
|11, A , pL. A conservative interval for A, u, or up can be based
on the intervals for Ay, A+, and p.

16
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4. BAYESIAN INFERENCE

4.1 Prior a_n_d Posterior Distributions
_

The constraint (3.1) makes the Bayesian problem inherently more com-
plicated than the non-Bayesian cne. Any prior distribution must be consis-
tent with (3.1). The posterior distribution cannot be factored neatly as
could the likelihood (2.4).

A suitable class of prior distributions must be selected. For greatest
usefulness, this class should include the noninformative prior of Box and

5Tiao , Secs. 1.3.4-7. Box and Tiao argue that a noninformative prior for
a parameter should be proportional to the square root of the Fisher infor-
mation for the parameter. Therefore, the (improper) noninformative prior

-1/2 1/2density for Ay, resp. A , is proportional to A , resp. G ,

These distributions are in the class of (improper) gamma distributions. In

this paper, A and 1 ,will have gamma prior distributions, possibly1

improper.

The information for p is the complicated expression (3.8). Therefore,
the noninformative prior density for p is proportional to 11/2(p),the
square root of (3.8). It may be approximated in several ways by a beta
distribution, as follows. The beta (1/2, 1/2) distribution would be non-
informative if the common cause failures were not restricted so that only
multiple failures are observable. This is a first approximation to the
noninformative prior. Better approximations are obtained by adjusting the
par meters of a beta (c,d) distribution. If c = 1/2, then 11/2(p) and
the beta density will both be asymptotic to p-1/2 for p near 0. Then d
may be chosen so that the two distributions have the same mean. For a
still better overall approximation, c and d may be chosen so that the two
distributions have the same mean and the same variance. Tables 1 and 2
show the correct values c and d for these approximations, for many values
of m. Figures 1 through 3 show the noninformative prior cumulative distri-
bution and the thret approximations, for m - 5, 20, and 100. In the example
considered in Table 7, the third beta approximation appears adequate. In
this paper it will je assumed that p has a beta prior distribution, possible
one of these appro.imations to the noninformative distribution.'

17
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TABLE 1. BINOMIAL WITH 0 AND 1 TRUNCATED: APPR0XIMATELY NONINFORMATIVE d
FOR BETA (1/2,d)

m d

3 0.2893

4 0.3148
.

5 0.3323

6 0.3455

7 0.3560

8 0.3645

9 0.3716

10 0.3777

12 0.3877

14 0.3956

16 0.4020

18 0.4073
/

20 0.4119
<

25 0.4209

30 0.4276

40 0.4372

60 0.4486
,

80 0.4555.

100 0.4602

150 0.4676

200 0.4720

300 0.4773

0.5000=

18
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TABLE 2. BINCilAL WITH 0 AND 1 TRUNCATED: APPROXIMATELY NONINFORMATIVE
PARAMETERS FOR BETA (c,d)

m c d

3 0.6386 0.3695

4 0.6641 0.4181

5 0.6762 0.4495

6 0.6813 0.4708

7 0.6824 0.4858

8 0.6814 0.4967

9 0.6791 0.5048

10 0 6762 0.5108

12 6695 0.5191

14 0.6626 0.5242

16 0.6560 0.5274

18 0.6498 0.5294

20 0.6442 0.5307

25 0.6321 0.5321

30 0.6223 0.5322

40 0.6075 0.5312

60 0.5888 0.5283

80 0.5772 0.5259

100 0.5692 0.5239

150 0.5567 0.5206 |

200 0.5492 0.5185 l

300 0.5404 0.5159
{

0.5000 0.5000= -

'iijg
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Figure 1. Cumulative distribution functions for noninformative prior and three beta approximations, 0 and
1 truncated, m := 5.
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Figure 2. Cumulative distribution functions for noninformative prior and three beta approximations, 0 and
1 truncated, m - 20.
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l

Since Ay, A., and p must satisfy the constraint (3.1), we will ;

take the joint prior density to be proportional to the product of the indi-
vidual prior densities in the region where (3.1) is satisfied. (See also
Reference 5, pp. 56-58 and Section 1.5.) In summary, the following class
of prior densities will be considered:

L( A , A , p)
i

j -b A a -1 -b A. a ,-1 c-1 d-111 l
|

= C U(A ,A , p) e A e A. p q (4.1)y y

where C is a constant, and U(A , A , p) equals 1 where (3.1) holds, and
i

,

equals O elswhere.

The parameters should be restricted as follows: require ay > 0 and
a > 0 in order to guarantee that the posterior density, given by (4.2)
below, has finite integral for ny >_ 0 and n >_ 0. Require by > 0 and
b > 0, to force the posterior density to have finite integral for all
t > 0. Require c > 0 and d > 0. For, if c 1 0 and s = 2n + 1, then the
posterior density would be positive at p = 0, and if d 1 0 and s = mn - 1,
the posterior density would be positive at p = 1. Either of these possi-

| bilities defies any reasonable interpretation of a posterior density, so
restrict c and d to prevent it.

|

If ag = a = 1/2 and by - b - 0, the prior _ distribution is
noninformative for A and A .

1

The posterior density of (Ay, A., 9) is obtained by multiplying
(2.4) by (4.1) and adjusting the con;Lant. It will be convenient to write
it as follows:

L(Ay,_A , p| data) - C U(Ay, A , p) V(A ' A+, p) (4.2)l

23



where

"*
(b +t) l "I -(b +t) A

*

a *"1-1ly i l

V(A1, A., p) = f(a +n } e A y
y 1

*
(b +t) -(b +t) A. a +n -1

* - (a +n ) A+*r

s+c-1 ""+-s+d-1
P 4 (4.3)- .

r(1-q'-mpq -1)"+m

Here C is that constant such that L(Ay,A, p data) - 1.

4.2 Bayes Point Estimators

4.2.1 Posterior Modes _. One estimate of (11, A., p) is the mode of
the posterior density. If the constraint (3.1) is ignored, the; maxi-
mizing values for A and A are the maximizing values for (4.3),

l
,

1 - (al * "1 - 1)/(by + t)1

i
'

A - (a + n - 1)/(b. + t).

To find the maximizing p, compute

+c-1 1-q*-1
q log L(A1, A , pjdata) s_ -

c + d - 2 + mn 1-q -mpq
.

L

'It is shown in Section 8.1 that this quantity either is always positive,
or is always negative, or else is decreasing and equals zero at ju.st one
point. The possible cases are tabulated in Section 8.1. Therefore,

there is a unique posterior mode p. The corresponding values of A, p,

kand up follow from the defining relations (2.1) through (2.3).

24
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Suppose now that the above values of A , A , and p do not satisfy
1

constraint (3.1). Expression (4.3) is unimodal, so a maximum of (4.2) must
occur where equality occurs in (3.1). Substitute A =A.zy in (4.2)1*
and maximize the result with r6spect to A , say at A . Then

* *
L(A z , 1. , p| data)y

z "1+"1-1 s+c-1 ""+-s+d-1
1 P 4=C-

a +W +a +n -2 n1 i
(1_q _ ,pq -1) .(b +t)z +(b +t) m m

i y
,

s+a +n +c-2 m(n +n +8 -1)+d-1-(s+a ent-1)1 1 1 1 t
P 4*C

-(b +t)z +(b +t)l*"1+a +n -2
*

(1-q -mpq -1)"++"1+a -1
-a

m m l
, i i

Here C is some constant. This must be maximized with respect to p. If

by = b., the expression simplifies to the following, with s'=s+a +n -1,
1 t

n'=n +n +a -1:1 y

a -1s'+c-1 mn'-s'+d-1 - mp q 1_q

1 -
Im "' ,-q' mpq*- ,(1_q )

This must be maximized numerically with respect to p. (Note, if c=d=a =a#=1,t
then this was the expression which was maximized to get the MLE.)

With this p used to calculate z , the maximizing A is A =
, y

(al+a+n1 + n - 2)/ (b1 + t)zy + (b + t)_ , and then Al " A+z . !t

4.2.2 Posterior Means. A more difficult estimate to obtain is the triple
of posterior means. The difficulty arises from having to integrate (4.3)

over the region satisfying (3.1) rather than over the region Al > 0,
1. > 0, 0 < p < 1.

_

The integrals needed are usually of the following forms. For A > 0
and B > 0, define

25
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t -1 dt (4.4)-O AI(A,B,x) = e

the gamma (A,B) cumulative distribution function. Note that 1(A,B,=) - 1
for any A and B. Now assune that A, B, A', and B' are all positive, and

define

B -Bt A-1 -B s A'-1
J(A,B,A',B',x) - g t e 3 dt ds. (4.5)

In Section 8.3, formulas are given for evaluating I(A,B,x) and J(A,B,A',B',x)
as finite sums or infinite series. The formulas are simplest if A and A'
are integers, somewhat harder to evaluate if A and A' are integers plus
1/2, and hardest to evaulate if A and A' are arbitrary. In practice, the
formulas for evaluating I and J should be written into computer subprograms.

To express the results compactly, let us also define

D E
P 9 (4.6)f(p) - C,

(1-q'-mpq*-1)FI

where

D s+c-1=

E mn -s+d-1=

F n.=

normalizing constant.C, =

Let

A a *"1--
l1

A. a +n.=

26
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(b +t)z IB -
y yy

B. b,+t .-

With this notation defined, the results are easily expressed. Let us
beginbyobtainingL(p| data). This is done by integrating (4.2), first
with respect to A1 (making the change of variables u = A /z ), andy y
then with respect to 1,. Integration is over the region satisfying (3.1).
Then

L(p| data) = f(p) J(A , B , A., B , =). (4.7)-

y y

The quantity J depends on p through B . The constant C in f(p) is suchy g
that (p | data) dp = 1. It must be found numerically.

OnceC,isfound,pL(p| data)canbeintegratednumericallytoget
kthe posterior mean of p. To find the mean of Ay,A, y, or up ,

multiply (4.2) by the appropriate quantity and integrate. Integration with
respect to A and A, resembles the integration to obtain (4.7), andy

; gives an expression of the form
l

C f(p) J(A , B , A , B , =) (4.8)y y y

with redefined values for some of the constants. The changes in the con-
stants are

for A A1=ay+ny+11

for 1 A, = a, + n, + 1
1

for u A, - a, + n, + 1, F = n, + 1

kfor up A, - a, + n, + 1, D = s+c-l+k, F = n, + 1.

is (a +n )/(b +t) for A , and (a,+n#)/8,The multiplicative constant C y y y yy
kfor A , u, and up . The constant C remains the same throughout, theg

27



value needed to make (p| data)dp = 1. The desired posterior mean is found

by integrating (4.8) numerically with respect to p.

The posterior mean of x is given by

- E x. p q*~1 (1 - q" - m p q'-1)
~

/E A /m ,

3

Ex has just been f9und. The second term is found in the same way, using
y

A - a. + n + 1, 0 = s + c,

E = mn - s + d + m - 2, F = n + 1,
|

and multiplicative factor C1 = (m. + n )/8 .

l
4.3 Bayes Probability Regions'

4.3.1 Joint Region for Three Parameters. A three-dimensional region R is
' '

sought such that P (x1, A.,p) e Rldata equals some specified value.

There are many such regions R. One approach is to try to treat the three-

parameters one at a time, so that R will, to some extent, resemble the
5

confidence region of Section 3. Another approach, following Box and Tiao ,

Sec. 2.8, is to choose R such that the posterior density is greater at any
point inside R than at any point outside R. This is called the highest

posterior density (HPD) region. While this second approach is natural in
principle, it requires numerical triple integration, so is awkward in prac-
tice. Moreover, if such a region were found it would be shaped like a
highly distorted ellipsoid and so would be difficult to describe. In par-'

ticular, it would not be defined by any simple set of equations. For these

reasons, the first approach is the only one which will be followed for a~

three-dimensional region. ,

The posterior density of p is given by (4.7), so for any desired ap
between 0 and 1, an interval I can be found numerically such that

p

P p. c I data =1-a. This interval may be the interval with equal
p p

tail probabilities, or the HPD interval for p, or another interval.

28
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Now use
'

L(A+|p, data)=[L(Al' *+, p| data) dA /L(p| data)1

satisfying (3.1), to obtainintegrating over 11
,

A.
B. -B A, A -1 . ~

/J(A , B , A., B , ).1 - I(A , B , A,) y yL( A,|p, data) = f(A+) * A+ 1 y
,

The constants A , B , A., and B are as defined below (4.6). There-
1 y

fore, for any p, an , interval I (p) can be found numerically such that
P A c I (p)|p, data =1-a. This interval may be such that there
is' equal probability"(conditional on o and the data) that A, is on each
side of I,(p). Or, the interval may be the conditional analogue of an
HPD interval, chosen now so that L(1,\p, data) is highest in I (p). Or
the interval may be chosen in some other way.

-

isFinally, from (4.2), the conditional density of A1

A

(b +t) 1 -1 (b +t) A -1 .

l 1 y 1 1 - I(A , B , A+)L(A1|A , p, data) = f(A ) te A /
1 y

1

l

for At > A, z .t
|

So an interval 1 (1, p) can be found such that
1 ,

_ 1 c 1 (A , p)[A+, p, data =1-a1P A
1

The resulting three-dimensional region has posterior probability

(1-al) II~"+) (I-*p)*

If desired, this three-dimensional region can be re-expressed as a
region for (1, p, p).

1
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4.3.2 Intervals for Single Parameters. Let us find a probability interval
kfor up . For any c 3 0,

~

k -)
- A+ P

P ppk<c| data =P h11-r-ry)Ic0
- -

k#1c(1-r-ry)/p,0<p<1| data=P Ag2zy A,A .

0

,

kDenote (1-r -r )/p by u(p). Make the change of variables t = A /z .0 y y t

Then, using the notation (4.5) and (4.6), the above probability equals

r1 . ~

j J A , B , A , B , cu(p) f(p) dp. (4.9)
0

- y y
-

The expression J may be evaluated using (8.10) through (8.13). Even if the
evaluation requires summing an infinite series, this is probably faster
than performing a double or triple integral numerically. So an interval

k
[c,d] can be found numerically such that P _c 1 pp i d| data equals any

desired value 1-a between 0 and 1. The interval can be chosen so that

P ppk < c| data =P ppk>d| data = a/2.

This gives the interval with equal tail probabilities. If instead the HPD
kinterval is desired, the posterior density of up must be found by differ-

entiating (4.9) with respect to c. By the definitions (4.5) and (4.4),

F1
k(c| data)=g0 hJ A , B , A,, B+, cu(p) f(p)L y y

pp

1 A.
I B. -B cu(p) A _

u(p) f(p) dp.[cu(p)] + _1 - I(A , B , cu(p))-= .l e y y

O P(A ) -
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Evaluation of this density requires use of one of (8.5) through (8.7) fol- )

lowed by numerical integration, but when this is done the HPD interval for
k

up can be found.

An interval for y follows from the above by setting k = 0. An inter-
val for A is obtained by replacing u(p) by 1 in (4.9). An interval for
A can be found by using

1

P'A11c[ data}
o

= P ~z A,1 111c,0<p<1| data"i

= P'A, i c/z data
_

i

- P "A1 > c, A , 1 c/z , 0 < p < 1| datay

II J(A , B , A , B , c) f(p) dp=4 y 1a

- 'l - I(A , B , c/z )" I(A , B , c/z ) f(p) dp.
1 1 y i0 -

.

|

Numerical integration can be used to evaluate this.

:

An interval for A can be found using

P[A 1 cidata]

~

= P'A1-Azy1mc| data

=1-P 'A /zi>A,+mc/zi,0<p<1| data1

A

. B, , -B, A, A,-11 =.
-1

p
1 - I(A , B , A , + mc/z ) f(A,) e A, f(p) dA,dp.1 1 y

,
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This must be evaluated by numerical double . integration.
!

Two-dimensional probability regions for pairs of the parameters will
not be given.

,

i

;

i

I

?

!

!

!
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|

|
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i
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5. DIAGNOSTIC CHECKS ON THE MODEL

5.1 Poisson Parameters

Suppose that there are I " sources" of data. These sources could be
plants, vendors, time periods, etc. Let us investigate whether the sources
all have the same values of A1 0# A+. The methods below do not use the
binomial distribution assumptions at all. The only assumption is that the
single failures' and multiple failures form two Poisson processes.

5.1.1 Graphical Methods. Denote the A, corresponding to the ith source
by A,j. Suppose that all the sources but the ith have a coninon A+,

denoted A ,_j. Let N g and t be the number of multiple failures andj
the operating time for the ith source.

To test the null hypothesis A,$ = 1,,_j, a uniformly most powerful
similar test is based on N#g given N+. The conditional distribution of
N j jN, = n, is binomial (n , t /t) under the null hypothesis.j

4(These assertions are all shown in Cox and Hinkley , pp. 136-7.)

One can therefore examine either residuals or the corresponding signi-
ficance levels. The ith standardized residual is defined as

N,j - n#t /tg

i"- - 1/2

.n,[t.
t

(1 - )
i

If A g is the same for all i, then for a given n , the R 's all havej
mean 0 and variance 1. Define the ith significance level aj as

Min (2PN#j 2 n,j N,=n, , 2P'N#g < n+4 N-n,',1).#
_ _

That is, the ith significance level is 2P'N#$ 2 n,j N,= n,' if the
_

observed n g is greater than the median,_and it is similarly defined if
n$ is less than the median or equal to the median. The tail probability

33
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is doubled to reflect the fact that N,j could be, a priori, either large
or small.

Outliers correspond to large values of R or to small values of
$

The standardized residuals can be graphed, but they have a skewed' aj.
distribution, so a glance at the plot will not necessarily pick out the
values which are significantly large or sinall. For this, the individual

significance levels are preferable.

These methods can be used to identify sources for which A 4 seems to
be substantially different from the others. They cannot be used for an

overall test of whether al'1 the A j's are equal, for if the number of
sources is large, then random variability alone will produce some

apparently extreme values of N,$. Testing is discussed below.

For investigating 11, exactly the same techniques work, replacing

Ng and n by Nyj and ny.

5.1.2 Hypothesis Tests. Let us test

H: N,4 Poisson (A t ), i = 1,..,I-

g j

H: N - Poisson (A j), i = 1,..,I, with no relation among the A,j's.y #j

If the sample size n is large, the generalized likelihood ratio
6

test can be used. (See Mood, Graybill, and Boes , Sec. IX.5.1.) The

test statistic is

-2 log A = 2 N,j log (5.1).

i=1

The null hypothesis s.hould be rejected if (5.1) is greater than the 1-a
2point of a X distribution with I-1 degrees of freedom.
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This is exactly the same test as would be used to test i

H: (N#1,..,N#1)|n,~multinomial(n.,t/t,..,t/t). (5.2)g 1 y

If n, is not large, the test statistic (5.1) can still be used, but since
1, is unknown the critical point should be derived from the multinomial

'

distribution (5.2). The exact distribution can be calculated for small I
7and n, by using the program POLYP 0W, presented by Atwood . This works

because the multinomial probabilities are the terms in the algebraic expan-
sion of

| n
(t /t + . . . + t /t) , ,t

1 g

and POLYP 0W finds these terms.

2
The X test statistic

(N
b

,g - n,tj /t)
n,t / t< j

could be used instead of the likelihood ratio test statistic.

For studying A1, simp!y replace N,j and N, by Nij 1
and N .

i
5.2 Binomial Parameter '

Suppose again that there are I sources of data, which may be plants,
etc., as before, but may now also be the n, individual observations of
multiple failures. Let us investigate whether the I sources have the same
p, and whether the data as a whole seem consistent with the assumption of a
binomial distribution.
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5.2.1 Graphical Methods. Let the random variable X be the number of failed
components in a multiple failure. (We have been assuming that X is trun-

cated binomial (m,p), truncated so that X 2 2.) Let S denote S (i.e.,i j
the total number of failed components in multiple failures) based on obser-

is a sumvations from only the ith source. So, conditional on n 4, Sj
g by S_j. Then,of n j independent observations of X. Denote S - S

and n.,_j, S /n j - S_j/n ,_j has expectation 0 andconditional on n 4 j
variance

1/n 4 + 1/n ,_j var X.

Define

j = }S /n j - S_j/n ,_j} / }l/n $ + 1/n ,_{
1/2 (5.3)R .j

If all sources correspond to the same distribution of X (in particular, if
all sources obey the BFR assumptions with the same p), then, conditional on

the n j's, the R$ are identically distributed with mean 0 and variance
= var X. If X is truncated binomial (m,p) with X 2 2, then direct calcula-
tion yields

m p(1 - q*-1)
EX -

1 - q* - mpq*-1

2m (m - 1) p
EX(X-1) -

1 - q* - mpq -1m

I and the variance of X'is

X - EX(X-1) - EX(EX-1).| o

This may be estimated by substituting some estimate for p. The standardized

by S , the estimate of oX*residuals are then obtained by dividing R
$ X
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They are not independent, but a plot of i versus R /6 will help point ij X

out sources with unusually high or low p.

The above method was used to identify sources with high or low numbers
of failures. The following method investigates whether the distribution
within a source is really truncated binomial. To simplify the notation,
assume that there is a single data source, with n, multiple failure occur-
rences. For 2 1 1 1 m, conditional on n , the number of instances of i
failures, N , is binomial (n#,z ), with zj defined by (2.5) andj j
(2.2). Let 2 be the estimate based on the MLE p, i.e.,

4

Q*-I(1-q'-mpq*~I).I2 - (*) p /
3

i

Then

g-n23N

- (5.4)U j=naz (1 j) 1/2z
_

j

has mean and variance approximately 0 and 1. Large or small values, or
strong patterns, indicate that the distribution is not truncated binomial.

5.2.2 Hypothesis Tests. Let us test the null hypothesis that X is a trun- |

cateG binomial (m,p) random variable truncated such that X > 2. Under this
hypothesis, P[X = i] = z , in the notation of (2.5), for 1-2,..,m.j

;

Possible alternate hypotheses are that p varies from source to source,
and that the distribution of X is the same for all sources but is not trun-
catedbinomial(m,p).

If the sample size is large, the generalized likelihood ratio test can
be used. For testing against the alternate hypothesis that the sources are
BFR but with possibly different p's, the test statistic is

I
-2 log A = -2 L + 2 E L

Ii=1
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where

Lg-slog (p/Q)+n, log Q*/(1-q'-mpd*-1) (5.5)

and

log (p/Q)+n,j log 'Qj"/(1 - dj" - m $ Qg -1) . (5.6)m
Lj - sj j 9 9

is the MLE based on onlyHere p is the MLE based on all the data, and pg
2the ith source. Under H , -2 log A is asymptotically X (g_y),g

To test against the alternate hypothesis that X is not truncated bino-
mial(m,p), the test statistic is

m
log (n /(n 2 ))-2 log A = 2 I n j 4g

1-2

where 2 was defined above (5.4). Under Hg , the asymptotic distribu-
4

2tion of -2 log A is X (m-4). Another possible test in this case is the
ordinary chi-square goodness of fit test. The test statistic is

m
E (nj - n 2 )2/n 2

4 4,

i-2'

:

2and its asymptotic distribution under H is X (m-4). If the sampleg
size is only moderate rather than large, then the cells can be grouped and

| the degrees of freedom adjusted in the usual way.
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6. RESULTS IF CAUSES OF SINGLE FAILURES ARE IDENTIFIABLE !

6.1 Definitions

The data consist of (n , n ' "2'*** "m), where n is theg C g

number of single failures that were not due to common cause shocks, and
n is the number of single failures due to comon cause shocks. Now mC

may be as small as 2. Define

n,' = nC * "+

A,' = pri + A, = p(1 - r )g

s' =nC+s

z ' = rg/(1 - r ) for i = 1,.., m.j g,

Then

P 'Ng-n,NC * "C' N2 " "2 ' " , N, = n,'y
_

~

= P'N; - n" P N,' = n,' P -NC=n,N2 " "2,.., N,= n jN,' = n I
_

g
_ C m

_

where

N - Poisst .mt)g

N,' - Poisson (A,'t)
_

N ,.., N, N,' = n,' multinomial(n,', z ',.., z,').C y

Inference follows the pattern of Sections 3 through 5, but is much simpler
because the most easily estimable parameters, A, A ', and p, are not
constrained by any analogue of (3.1).

~
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6.2 Non-Bayesian Inference

The Poisson parameters A and A ' can be estimated, both by MLE's and

by confidence intervals,'in the standard way. The MLE for p is the solu-
tion of

I

s' - m n,' p/(1 - q').

[In the special case m - 2, the solution becomes simply p = 2(s'-n,')/s'.]
Maximum likelihood estimates for any other parameters-1, A , u, or

1
kup -follow from substitution of 1, A , and p into the appropriate

defining equations involving the desired quantities.

If n,' > 0, a confidence interval for p can be based on the condi-
tional distribution of S' given N ', using analogues of (3.5) and#

(3.6). This conditional distribution is now given. Let v = (vy,.., v,)
be any vector of nonnegative integers. Define

m

v,' = I v j
1-1

Define the set T by
k

m
*V kV V+' " "+ ' 1 -1 'i-Tk" .

Let;
,

I v,'! m v
(*) j

c(v) = v .,..., y ,., H -
.

1 j,1

Then, for n, 1 k i m n,,
,
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P S'=k|N'=n' I P NC"#, N2 " V ,.., N, = v N ' = n+ '-
1 2 m# #

vcT ~

k

mn ' - s'3,
P q

I c(v) .= ",
(1 - q*) + vcT

k

If the interval [0,1] is used when N ' = 0, then the procedure has#

unconditional confidence level (1-a).

A joint confidence region for more than one of A, A,', and p is
simply the product of the confidence intervals. Conservative intervals for ,

ku and up can be based on the intervals for A ' and p in the obvious
ways. For Ay and A., conservative intervals can be based on the inter-
vals for A, A ', and p. Alternatively, the confidence intervals of Sec-
tion 3.2 can still be used for A and A .

l

If n and n ' are large, then 1, 1 ,', and p are asymptoticallyg

independent normal with means A, A,', and p, and with variances A!mt,
A '/t and 1/I(p), where

1 - q" - mPI(p) = (6.1).
m(1 - q )

Approximate confidence intervals can be based on this asymptotic
distribution.

6.3 Bayesian Inference

We will consider the class of prior distributions: A ~ r(a,b),
A,' ~ r(a,',b+'), p - beta (c,d), with A, A ' and p independent. If

a=a '=1/2, b=b '=0, then the (improper) priors are noninformative for A
5and A '. The noninformative prior-advocated by Box and Tiao for p is

proportional to Il/2(p), with I(p) given in (6.1). If c=d=l/2, the

beta (c,d) distribution approximates the noninformative' prior. Tables 3 and
4 give values of c and d that provide better approximations, and Figures 4
through 6 show these cumulative distributions for m - 5, 20, and 100.
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TABLE 3. BINOMIAL WITH 0 TRUNCATED: APPR0XIMATELY NONINFORMATIVE d FOR
BETA (1/2,d)

m d

2 0.3541

3 0.3776

i 4 0.3923'

5 0.4027

6 0.4105

/ 0.4167

8 0.4217

9 0.4260
.

10 0.4296

12 0.4355

14 0.4401

16 0.4439
'

18 0.4470
i

20 0.4496

25 0.4549
;

l 30 0.4588

40 0.4642

60 0.4708

| 80 0.4748

100 0.4775

150 0.4817

200 0.4842

300 0.4872

'" 0.5000
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TABLE 4. BINOMIAL WITH 0 TRUNCATED: APPR0XIMATELY NONINFORMATIVE
PARAMETERS FOR BETA (c d)

m c d

2 0.5902 0.4179

| 3 0.6051 0.4569

4 0.6101 0.4786

5 0.6108' O.4919

6 0.6096 0.5004

7 0.6075 0.5063

8 0.6050 0.5103

9 0.6024 0.5132

10 0.5998 0.5154

12 0.5949 0.5181
e

14 0.5904 0.5197

16 0.5864 0.5205

18 0.5828 0.5210

20 0.5795 0.5212

25 0.5728 0.5211

30 0.5675 0.5207

40 0.5597 0.5196

60 0.5497 0.5177

80 0.5436 0.5162

100 0.5394 0.5151

150 0.5327 0.5132

200 0.5287 0.5120

300 0.5240 0.5106-

0.5000 0.5000=
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The posterior density factors into the product

L(A,1,',p| data)-L(A| data)L(A'| data)L(p| data)

where
i

t

Aldata-T(a+n,b+mt)
y

| A,'| data-r(a'+n,',b'+t)

and

m "i s'+c-1 ""+'-s'+d-1n'! "C

L(p| data)=C n "' " ' n *' ( ) U () ' *

C m i=2 (1 - q') *

Bayes point and interval estimation of A, A ', and p are routine,
using numerical integration to treat p. Point estimates of 11, A , p ,

kand up corresponding to the mode of the posterior density follow from
the equations relating the parameters, and the posterior means of these
quantities are obtained by straightforward integration.

kA probability interval for up can be found as in Section 4.3.2:

F: 1 pp 1 d data
.

P c(1-q*)/p i A+' i d (1-q')/p | p, data' L(p| data) dp=

1 - .

P cu(p)11,'i du(p)|p, data L(p|aata)dp-

J0

with u(p) = (1-q*)/p . In the notation of (4.4), this equals
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l

.I(A ', B,', d u(p)) - I(A ', B ', c u(p)) L(p| data)dp
.

_

with A ' = a ' + n,' and B ' = b,' + t. The integrand may be evaluated

using (8.6) through (8.8), and the integral may be evaluated numerically.

For 9, the method is the same, with k-G. For

1,= A,' (1 - q' - mpq*~l)M 1 - q'),

the method is the same as for up , but now set u(p) = (1-q*)/(1-q'-mpq'-1).

For

Ay - mA t A,' (mpq*-1)/(1-q'h

the method is similar, but integration is with respect to A and A '. The
details are messy and will not be given. If N and N are identifiable,

g C

then A is a less natural parameter than 1 and may not be of interest to
y

the user.

6.4 Diagnostic Checks

The checks for the Poisson parameters in Section 6 all carry over if

#g, n , A,g, and 1, are replaced by N,j ', n,', A,g ', and A,', and ifN

are replaced by Ngj, ng, Aj, and A.Nig, ny, Ayj, and A1

The checks for the binomial parameter p carry over under the following
translation. Now, X takes values from 1 to m. Primes should be given to

5, S , S_j, n,g, n#,_j, and 2 . Equations (5.5) and (5.6) must be replaced
g 9

by

|
|
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L =s' log ($/d)+n' log Q*/(1-Q*)a

j=s' log (p/$j)+ng' log 6"/(1-q')'.L
g g

To test against the alternate hypothesis that'X is not truncated binomial,
the likelihood ratio test statistic is

~

-2 log A = 2n I"9 "CII"+' l') +2 n , log n/(n'2'fC j g 3
. 1.2 . .

where

2 ' = (*) $ q / 1 - 6*4
,

.

2Under H , the asymptotic distribution is X (n-3). The X test statisticg
,

(nC ~ "+ l').+ ("i - "+ ' b ')
' * iE

n'2' i=2 .n'2'1 g

may be used instead of the likelihood ratio test statistic,

i

i
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7. ILLUSTRATIVE EXAMPLE

7.1 Data Used

IVesely gives data from 20 U.S. commercial boiling water reactors.
The components are control rods, and a failure may be defined in at least'

j two ways: failure to insert past notch 04, or any failure to meet techni-
cal specifications. The first definition includes failures that are serious
enough to affect safety. The second also includes incidents such as slow
rod insertion.

( This data set is used for illustrative purposes only! Much more data

j has become available since the data set of Reference 1 was published. The

treatment presented here is also naive in that it ignores the event descrip-
tions given in the reports. These descriptions might suggest qualitativei

differences among the events, which would lead a careful analyst to consider
portions of the data separately. Finally, the diagnostic checks point out
inhomogeneity among the plants, and one failure occurrence which is a clear
outlier. These are not investigated further here. A more thorough analysis
of much more extensive data is now underway at the Idaho National Engin-

eering Laboratory. Those who are interested in the answers, not merely in
the method, must refer to the INEL reports that will appear. The numerical
results given below serve only to illustrate the method.

The model of this paper assumes that m, the number of components, is

constant. In Reference 1 the number of rods in a plant varies from 32 to
185. We will consider plants with 177 or 185 rods. The data for these
eight plants are summarized in Table 5. The effect of pooling data with
these two values of m will be discussed below.

The causes of single failures will be considered as not identifigble.

50
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TABLE 5. SUMMARY OF FAILURE DATA

Total Operating Failures toMonths
Number of Rods Insert Past All

Reactor (m) (t)" Notch 04 Incidents

Dresden 2 177 41 n "I "96"13

n -2
2

n =1g

Dresden 3 177 61 n =1 n -1
1 3

Quad-Cities 1 177 51 None None

Quad-Cities 2 177 49 None None

Peach Bottom 2 185 30 None None

Peach Bottom 3 185 25 None None

Browns Ferry 1 185 20 None None

Browns Ferry 2 185 13 None None

290

a. Operating time in hours assumes 720 hours per month.

7.2 Analysis of Failures to Insert Past Notch 04

For this data set, ny - 1, n - 1, s = 3, t = 208800 hours, and
estimates will be calculated using both m = 177 and m = 185. Estimates

2will be found for A , A , A, y, p, and up . The last quantity is any
kexample of up ,

Maximum likelihood estimates and 95% confidence intervals are given in
Table 6. All the confidence-intervals are two-sided (probability 0.025 for
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TABLE 6. HAXIMUM LIKELIHOOD ESTIMATES AND 95% CONFIDENCE INTERVALS'

--.

m = 177 m = 185

Parameter MLE Confidence Interval MLE Confidence Interval

p 0.0122 (0.00043,0.0483) 0.0117 (0.00041,0.0462)

610 xA 4.79 (0.121,26.7) 4.79 (0.121,26.7)

6
10 x A. 4.79 (0.121,26.7) 4.79 (0.121,26.7)

810 xA 1.65 (0,12.8) 1.58 (0,12.8)

610 xy 7.51 (0.061,42248) 7.51 (0.061,42468)

9 2
10 x up 1.12 (0.0040,87.4) 1.02 (0.0037,80.1)

each tail), except for the interval for A. The interval for A is the con-
servative one-sided interval based on A < A /m (probability 0.05 for theg

upper tail). The two-sided interval for A that is based on 11, A , and
p, and is described in Section 3.2.5, turns out also to have its lower end
point at 0, and the interval is strictly larger than the interval of

2Table 6. The intervals for y and up are based on two-sided intervals
for 1, and p with (1-a)(1-a ) = 0.95 and a# =a

p p.

Bayesian point and interval estimates are given in Table 7. The

intervals all have posterior probability 0.025 in each tail. Highest
posterior density intervals are not shown because the computer programming
is not yet complete. An interval for A is not given because of the lengthy

computation required. The prior distribution is noninformative for At
and A,. The first two portions of the table use a beta prior distribu-
tion for p that is approximately noninformative. The third portion uses a
beta (0.5,0.5) distribution.

A comparison of the first and third sections of Table 7 shows that the
,

entries change very little, whether the prior beta distribution has
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TABLE 7. BAYESIAN POINT ESTIMATES AND 95% INTERVALS

-=

m = 177, p - beta (0.552, 0.519)
.

|

Parameter Posterior Mode Posterior Mean Interval

p 0.00769 0.0189 (0.00418,0.0439)

610 xA 2.39 8.29 (0.923,23.7) i

610 x A, 2.39 6.07 (0.411,19.6)

810 xA 0.156 4.05 -

6
10 x 6.06 9.01 (0.626,29.3)

9 2
10 x up 0.358 3.55 (0.0836,18.4)

m = 185, p - beta (0.551, 0.519)

p 0.00734 0.0180 (0.00399,0.0420)

610 xA 2.39 8.30 (0.923,23.7)

6
10 x A. 2.39 6.07 (0.411,19.6)

810 xA 0.145 3.88 --

6
10 x 6.08 9.01 (0.626,29.3) '

9 2
10 x up 0.327 3.25 (0.0765,16.8)

. m = 177, p - beta (0.5, 0.5)

p 0.00/10 0.0186 (0.00404,0.0435)

610 xA 2.40 8.33 (0.937,23.8)

6
10 x A. 2.40 6.04 (0.407,19.5)

810 xA 0.00 4.05 -

6
10 x 6.68 9.08 (0.630,29.6)

9 2
10 x up 0.337 3.46 (0.0804,18.0)

|
|
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approdmately noninformative parameters or parameters 0.5 and 0.5. As

shown in Figures 1 through 3, the approximately roninformative beta distri-
! bution is " closer" to the noninformative prior than to the beta (0.5, 0.5)

distribution. It therefore seems unlikely that the table entries would
| change much if the prior distribution were the noninformative prior based

on the information matrix. This indicates that the beta approximation to
the noninformative prior is adequate. Investigation of this point when m

i is small will be carried out at a later date.

In Section 3.1, it was mentioned that the MLE p decreases as m increas-
es, so a more conservative (larger) estimate p will result from using

| m = 177, rather than m - 185. Tables 6 and 7 show that in this example, it

| is more conservative by any criterion to use m - 177 rather than m = 185,
2since doing so gives larger estimates of A, p, and up , and identical or

virtually identical estimates of A , A , and-p. The maximum likelihoody

estimates and posterior means for p and for A are approximately propor-
|
1 tional to 1/m.

In every case, the maximum likelihood estimate lies between the Bayes

posterior mode and the Bayes posterior mean. In problems with a single
binomial or Poisson parameter, it can be shown directly that this relation
holds when the noninformative prior is used. It is interesting that it

also holds for every parameter in the present multiparameter problem.

For Ay, A , and p, the Bayes intervals are shorter than the cor-
responding confidence intervals. In problems with a single binomial or
Poisson parameter, it can be shown directly that the Bayesian interval
based on the noninformative prior must be strictly shorter than the cor-
responding confidence interval. This is because confidence intervals based
on discrete data are inexact, with the_(unknown) true confidence level

j being greater than or equal to the nominal level. In the present multi-

parameter problem, the same relation holds between the sizes of the confi-
dence interval and the Bayes interval, presumably for the same reason. For

2
| p and up , the Bayes intervals are also shorter than the confidence

. intervals.. This is due both to the reason just mentioned and to the fact
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that these confidence intervals are conservative rather than sharp. The
Bayes interval for A is not shown because it requires lengthy computation.

Figure 7 shows a 90% confidence region for (A , 11), given three
values of p. The values of p are the MLE and the ends of the 95% confi-
dence interval for p. For each p, the portion of the square which is above
the corresponding line is that portion satisfying the constraint (3.1).
Figures 8 through 11 show 90% Bayes regions for (A , A ), given various

1

values of p. The values of p are the posterior mode, the posterior mean,
and the end points of the 95% probability interval for p. The Bayesian and

non-Bayesian regions are not directly comparable, since they assume differ-
ent values of p. However, in all the figures, the estimates of A. and
A are positively correlated, due to the constraint (3.1), and the

1

correlation is strongest for small p.

.

.
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3 x 10 - 5 , ,

p = 0.000431

2 x 10 - 5 .- _

A1

$

1x 0-5- ~

= = 0.0122

|
1

p = 0.0483,

|
'

! 1 x 10 - 5 2 x 10 - 5 3 x 10-6
l A+

Figure 7. Ninety percent confidciice region for (A+, 11), given p. For each p, the region is that portion
of the rectangle above the line corresponding to p.
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7.3 Diagnostic Checks4

In order to have enough data to illustrate the methods for diagnostic
checks, we will consider all five failure incidents.

Let us combine single ind multiple failures, and investigate A1 + A,.
Table 8 shows the standardized residuals and significance levels for the

eight plants, and for the parameter A1+A. The first plant shows a
small significance level, indicating that the plant seems to be anomalous.
However, one would expect random variability alone to produce some apparent
anomalies among many plants. To test whether the plants all have the same

value of 11+A, the likelihood ratio statistic (5.1) can be calculated
to be 13.76. If all the plants have the same value of 11 + A , then

P(-2- log A > 13.76|N1 + N, = 5) = 0.016._

This probability is exact rather than asymptotic, and indicates that the

plants did not have the same value of A1 + A+*

TABLE 8. STANDARDIZED RESIDUALS AND SIGNIFICANCE LEVELS FOR 11 + A+
_

Observed Number Standardized SignificancetPlant i of Failures Residual Level

Dresden 2 41 4 4.23 0.0035

Dresden 3 61 1 -0.06 1.0

Quad-Cities 1 51 0 -1.03 0.76
,

Quad-Cities 2 49 0 -1.01 0.79

Peach Bottom 2 30 0 -0.76 1.0 1

Peach Bottom 3 25 0 -0.61 1.0

Browns Ferry 1 20 0 -0.69 1.0

Browns Ferry 2 13 0 -0.48 1.0
*

,

;
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As an illustration of diagnostic checks for the assumptions about p,
let us consider the four multiple failure occurrences as the " sources."

Then the values of n,$ and n.,_g are 1 and 3 for each source. For this
data set, the MLE p is 0.14548. This agrees to five places with the esti-
mate s/mn , which would be obtained if the observed data were treated as

binomial rather than truncated binomial. Since the truncation effect is
negligible, an approximate 95% confidence interval for p has upper end at

p+2 pq/(mn ) 1/2 = 0.1720.

The standardized residuals from (5.3) are given in Table 9, based on

p = 0.1455 and p = 0.1720. Plausible magnitudes of standardized residuals
are, say, less than 3. The magnitudes in Table 9 are so much greater than

3, whichever p is used, that it seems conclusive that the data do not come
from a single BFR model.

TABLE 9. STANDARDIZED RESIDUALS FOR p
Each multiple failure treated as data source, using formula (5.3)

*
Number of Failed
Components (=S ) p = 0.1455 p = 0.1720$

96 17.29 16.16

2 -5.85 -5.46

2 -5.85 -5.46
4

3 -5.60 -5.23

103

Even more dramatic results are seen if the data are treated as coming
is calculated from (5.4). The values arefrom a single source, and Uj

summarized in Table 10. Truly enormous quantities are obtained because of
observed failure numbers with extremely small estimated probabilities.
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TABLE 10. STANDARDIZED RESIDUALS FOR BIN 0MIAL DISTRIBUTION
-

Data treated as coming from single source, using formula
(5.4)

Number of Failed Number of - -1/2
$ = (N -n 2 )/ n24 (1-2 )$_

Occurrences N UComponents i g j g

2 2 51914.0

3 1 8237.0

4 0 -0.000,

5 0 -0.001,

i ... ... ...

24 0 -0.595

! 25 0 -0.608

26 0 -0.607
|

27 0 -0.591

.

... ... ...

95 0 -0.000

96 1 5.72 x 1016
.

97 0 -0.000

... ... ...

177 0 -0.000
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In fact, in this case, it is possible to test

H: the four multiple failures come from a single BFR model.g

'

Under H , given that 103 components fail in four occurrences, the condi-g
tional distribution of the four failure counts is multinomial(103, 1/4,
1/4,1/4,1/4). The distribution can then be found subject to the addi-
tional condition that each failure occurrence involves at least two failed
components. Somewhat tedious but direct combinatorial calculations yield

i

P .-2 log A y; observed |H , n = 4, s = 103, each failure count y;2o

-49a 5 x 10 .

,

Therefore, the occurrence with 96 failures does not come from the same BFR

model as the other failure occurrences.

i

I

i

64



8. TECHNICAL DETAILS

8.1 Maximization of' Likelihoods

Consider

s+c-1 ""+-s+d-1,

| L(p) = C P 4
.

(1 - q' - mpq -1)"+m

|

If c > 0 and d > 0, this-is the posterior density of p from a beta prior.
If c = d = 1, it is the likelihood.

If m = 2 or n = 0, then s can only take the one value 2n , and
the data contain no information about p. So assume m > 2 and n > 0.

We will show that L(p) has a unique maximum (possibly infinite), at
some p which is located according to the following seven cases andg
subcases.

,

If Then

2n < s < m r.. O<pg<1

s-mn.
d>l 0<pg<1
d i l p-I

s = 2n.

c>1 0<pg<1
c<1 p =0g

| c=1

I n,(m-2)
-d+1>0. 0<pg<1-

3

.n (m-2)r

J -

3 -d+1 1 0 pg=0

| 65
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Moreover, if 0 < pg < 1, it is the value at which expression (8.1) equals
zero.

Since s is an integer and c > 0, s + c - 1 - 2n can be negative if
and only if s = 2n and c < 1. In this case L(p) is finite for 0 < p <_ 1
and L(p) * = as p + 0. So p = 0.g

Assume now that s + c - 1 - 2n > 0. Let us show that (a/ap)L(p) is
zero at at most one point, and that the sign change can only be from posi-
tive to negative. The cases then follow from considering whether (a/ap)L(p)
changes sign or not. Since (a/ap)L(p) has the same. sign as q(a/ap) log L(p),
it is sufficient to show that

m-1
1-4

q h log L(p) = s+c-1 - c&d-2 + mn 1-q'-mpqp

is strictly decreasing in p for 0 < p < l. Add the constant c+d-2 to both

sides of (8.1) and write the result as

s+c-1-2n+ 2 1-q*-1
(8.2)+ n. p-m 1-q'-mpq

.gp

Since s+c-1-2n >_ 0 by assumption, the first term of (8.2) is decreasing
in p. Therefore it is sufficient to show that the expression in brackets
is strictly decreasing in p for 0 < p < 1 and m > 2.

The derivative of the expression in brackets in (8.2) is

2 w 2 (1-q'-mp) - 2(1-q'-mpq'~1)m(m-1) p q

2 (1-q'-mpq'-1)p

Denote the numerator by A,(p). h is not obvious that A ,(p) is nega-
tive, and we will show it by obtaining successively simpler expressions

.
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B,(p), C (p), and D,(p). The outline below omits the tedious butm
direct algebra. Each assertion is verified in the obvious way.

'

A (p) = 0, for 0 < p < 1.2

A,1(p) - A,(p)

2 m-2= -mp q 6 - (4m + 6)p + (m+1)2 2p

2+ q',-6 - (2m - 6)p + (m-1)p ,'

= -mp q'-I B,(p)

definirig B,(p). Setting m=2 and q=1-p yields

4B (p) = p > 0, for 0 < p < 1.2

2B +1(P) - O (p) = p -4 + (2m+3)p + q' ,4 + (2m-3)p - mp - p C,(p).m m

C (p) = p (5 - 2p) > 0, for 0 < p < l.2

2C +1(p) - C ,(p) = p 2 + q' -2 - 2mp + (m+1) p = p D ,(p).m

D (p) = p (9 - 10p + 3p ) > 0, for all p.2

2m
D +1(p) - D,(p) = p q 2m+3 - (m+2)p > 0, for m > 2, 0 < p < 1.m

Working up the above lines, we obtain successively D,(p) > 0 for m 1 2,
0 < p < 1, then C ,(p) > 0 for m 1 , 0 < p < 1, then B,(p) > 0 for2

m > 2, 0 < p < 1, and finally A,(p) < 0 for m > 2, 0 < p < 1. This shows l
that (8.2), and therefore (8.1), is strictly decreasing. So L(p) is maxi-
mized at a unique p .g

To. locate p , consider first (8.1) as p * 1. The limit isg
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,

s - mn, - d + 1,
|

which is negative if and only if

i

s < mn.

Or

i

j .

s - mn, and d > 1.

|

| So these are the cases for which pg < 1.
l

Now consider (8.1) as p * 0. Since
i *

1 - q -1 =(m-1)p-($1)p2 + 0(p )m 3

and
!

i

1 - q' - mpq"~1 = (*)p q2 m-2 )p3 + 0(p ),4

we obtain after manipulation, that as p * 0 (8.1) equals

1 s + c - 1 - 2n, n (m-2)
- (c+d-2) + 0(p). (8.3) i

p
-

3

Recall that s+c-1-2n is assumed to be > 0. Expression (8.3) is positive
|

if

i
i

s > 2n,

!

( or

s - 2n , c-> 1
|
i

Or

| 68
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s - 2n., c-1, -n,(m-2)/3 - d + 1 > 0.

So these are the cases for which pg > 0.

All the assertions made at the start of this section about the maximi-
zation of L(p) have now been proved.

We now verify the claim made in Section 3.1 that the.right -side of
(3.3) is increasing in m. Let

1-q-1m
G(m) = mp g.1 - q,- mpq

To show that G(m) is increasing in m, let us show that G(m+1) - G(m)
is positive for p > 0. Algebraic manipulation shows that G(m+1) - G(m) is
positive if and only if

'T

(m+1)(1-q*)(1-q" - mpq'-1) - m(1-q -1)(y_q +1 _ (,,1)pq )m m m

is positive. This quantity equals

(1-q')2 _ ,2 2 m-1 =A 'pq

defining A. At p - 0, A is zero. The derivative aA/ap equals

m-2 2 m-2
mq 2q(1-q') - 2mpq + m(m-1)p , ,q B,

defining B. At p = 0, B and its first derivative are both zero. The second

derivative is

2m(m+1)(1-q -1) > 0.m

Therefore, B is positive for all p > 0. Therefore, so is A,-and therefore,
G(m+1) > G(m) for p > 0.
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8.2 Confidence Interval for p

In Section 3.2, a confidence interval for p was given, based on the
conditional distribution of S given N . The choice of this particular
confidence interval is now justified. The argument uses the properties of

8similar tests and Neyman structure (Ferguson , pp. 226-7, or Reference 4,

pp. 134-5) and monotone likelihood ratios (Reference 6, p. 423, or Refer-
ence 8, p. 208).

By the factorization (2.4), the problem may be formulated in terms of
and N . Suppose( A , p) and the sufficient statistic (N , S), ignoring A1 y

that we were testing

H: p<pg g

H: p>py g

for some p and some desired level a. A "similar" test is one withg

P reject H |p = p -ag g

regardless of the value of A . On the boundary

f(A+, p)|p = p fo

N, is sufficient for A . So, a test such that

for all n+ (8.4)P (S,N)incriticalregion|N,= n+ =a

has " Neyman structure." Since a Poisson random variable is boundedly com-
plete, every similar test has Neyman structure, and any test which is uni-
formly most powerful (UMP) among tests satisfying-(8.4) is: UMP similar.

| The conditional dis'tribution of S given N is written in (3.7). So

the likelihood ratio is

,

70
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P S = k | N = n#; p1 /P S - k|N = n#; p2 |

"~1)"*[p2
"

91 92 (1 - q1 - mpiq1
n*(9'P/ ""+ (1 - 92 1 m

91 2 - "P P m-1)22 i

i

which is monotone increasing in k for fixed p1 and p2' P1<P. Therefore,
2

a UMP test among tests satisfying (8.4) is to reject H if and only if S isg ,

greater than some c(n ), with possible randomization if S=c(n ). This test
is UMP similar.

Since a UMP similar test of a one-sided hypothesis has a one-sided '

critical region, good tests of two-sided hypotheses have two-sided critical
regions, and one convenient such test assigns equal probabilities to the
two tails. The corresponding confidence interval is given by (3.5) and
(3.6).

8.3 Integrals

Assume that A > 0 and B > 0. We repeat definition (4.4) here.

-Bt A-1I( A, B, x) - e t dt (4.4)

Then I(A,B,=) = 1 for any A and B. For x < = the following three results
3hold. [See also Johnson and Kotz , Vol. 2, Ch. 17, equations (23.1)

through (24).]

If A is a positive integer,

I( A, B,' x) = 1. - e-Bx { (3'By)d (8.5).

j=0
.

l
(

If A = k + 1/2 for integer k > 0, l
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j+1/2 -

I(A, B, x) = -e-0* k-1I +24 (2Bx)
_

-1 (8.6)J 3/2) ,

1

j-0

where 4 is the standard normal cumulative distribution function.

For arbitrary A > 0,,

t

i = A+j
I(A, B, x) - e-0*'

I (*)*

A j+1)j_O

To prove (8.5) and (8.6), integrate by parts and use induction. The
proof of (8.6) is completed by observing that I(1/2, B, x) = P[X 1 x] where

2X ~ r(1/2, B). .But thi_s equals P[2BX 1 2Bx] where 2BX ~ X (1). Finally,
this equals 24 (2Bx)1/2 - 1. To prove (8.7), observe that the two sides

,

have identical ' derivatives and are equal at x=0.
'

'

Assume now that A, B, A', and B' are all positive. Define

| J(A,B,A',B',x)

f* B^ -Bt A-1 (B')A' -B's A'-1
~

e t e s dt ds. (4.5),

^}Jo s

Let

I^ I B' h^' f(A+A')i / BW(A, B, A', B') - N f f(A+1) F(A')
*

l
!

Note the slight asymmetry of A and A' in W. The following four results
hold.

If A is an integer,
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A-1
J(A, B, A', B', x) - E W(j, B, A',B') I(A'+j, B+B', x). (8.8)

j-0

If A' is an integer,

J(A, B, A', B', x)

= I(A, B, x) + I(A', B', x) - I(A, B, x) I(A', B', x)

A'-l

4 - E W(j , B' , A, B) I( A+j , B+B' , x) . (8.9)
j=0

If A and A' are arbitrary positive numbers,

J(A,B,A',B',x)

= I(A', B', x)

- I W ( A+j , B, A' , B ' ) I ( A+A ' +j , B+B ' , x ) (8.10)
j-0

= 1(A', B', x) [1 - I(A, B, x)]
=

+ E W( A' +j , B' , A, B) I( A+A' +j , B+B ' , x) . (8.11)
j-0

Equation (8.8) follows from (4.5) and use of (8.5). So does (8.9),,

after reversing the order of integration in (4.5). Equations (8.10) and
(8.11) follow from (8.7), using both possible orders of integratilon in
(4.5).

Of special interest is J(A, B, A', B',. ). If A or A' is an integer,

then (8.8) and (8.9) give finite sums for J(A, B, A', B', .). If A and A'
are both integers plus 1/2, then there is also a finite expression for J(A,
B, A', B', ):

If A-k+1/2 and A'-k'+1/2, for nonnegative integers k and k', then

n
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J(A,B,A',B',.)

k-1 k'-1

=1+ E W( j+1/2, B, A', B') - I W(j+1/2,B',1/2,B)
j=0 j=0

2 (B/B')1/2 (8.12)4 - arctan .

:

To prove this last assertion, use (8.6) on the inner integral of (4.5).'

Note that 1(A, B,.) = 1 for any A and B, and obtain

J(A,B,A',B',.)

A'"-k1
(2Bs)1/2-(

-B's A'-1
e 3 ds.=2+ E W(j+1/2,B,A',B') - 2 4

j=0 - 7

Integrate the last integral by parts k' times, obtaining

J(A,B,A',B',.)

k-1 k'-1
=2+ E W(j+1/2, B, A', B') - E W(j+1/2,B',1/2,5;

j=0 j=0

(28s)1/2
-B's -1/2e s ds.-2 4

,

.

The last integral equals P 'T < (2BS)1/2~, where T ~ N(0,1) and S - r(1/2, B').
The distribution of 2B'S is X (1), so the integral equals P T < (B/B')1/2|Z| ,-

' ~ _

where T and Z are independent N(0,1). Thisprobability-isf1+2
,

arctan

(B/B')1/2 /2, by the spherical symmetry of the bivariate normal distri-
, ,

bution. This proves (8.12).

( If J(A, B, A', B', .) must be evaluated for arbitrary A and A', then

I one of (8.10) and (8.11) may converge much faster than the other.. To decide
-which series to use, define

.
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-

Q = B/(B+B') I
'

i
1

Q' - B'/(B+B').

The ratio of term j+1 of the infinite series to term j is |
i

A + A' + j
9A+j+1*

for (8.10), and

A + A' + j |q,
A' + j + 1

,

1

for (8.11). These expressions are monotone in j (decreasing if A > 1 and
A' > 1), so are bounded by

A + A'
max (1, A + 1 ) Q (8.13)

and

max (1, A + A') Q' (8.14).
A' + 1

At least one of (8.13) and (8.14) is less than 1. For they are strictly
i bounded, respectively, by

Q
(8.15)A/(A + A')!

and

Q' 1-Q
A'/(A + A') " 1 - A/(A +.A') (8.16)

,

and the numerator of (8.15) is greater than the denominator if and only if

the numerator of (8.16) is less than the denominator. So, reasonably fast
;

convergence is assured by using (8.10) if (8.15) < (8.16) and using (8.11)>

otherwise.

,
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