UNITED STATES
NUCLEAR REGULATORY COMMISSION

In the matter of:

PORTLAND GENERAL ELECTRIC COMPANY, et al (Trojan)

Docket No. 50-344


Place: Portland, Oregon
Date: April 2, 1980 Pages: $4300-4453$

International Verbatim Reporters. Inc. 499 SOUTH CAPITOL STREET, S. W. SUITE 107 WASHINGTON, D. C. 20002

UNITED STATES OF AMERICA
NUCLEAR REGULATORY COMMISSION


```
In the vatter of:
PORTLAND GENERAL ELECTRIC CO.)
    et al.
)
    (Trojan Nuclear Plant) )
```

    Docket No. 50-344
    (Control Roo.. Proceedings)
                                Court of Appeals room
                                Pioneer Court House
                                Portland, Oregon
                                    Wednesday, April 2, 1990
                                    Che above-entitled natter cane on for hearing,
    pursuant to adjournment at 3:30 A.M.
BEFORE:
MARS:LALL E. MILLER, Esq., Chairman
Atomic Safety and Licensing Board
DR. KٌENvETH A. MCCOLLO1, Member
DR. HJGd C. PaxTON, venter
APPEARANCES:

```
REGJLATORY STAFE
```

Joseph R. Gray, Esq.
Jay açurren
COALITION FOR SAFE POWER
Eugene Rosalie
CONSOLIDATED IVTERVENORS
Nina dell

LICENSEE
Maurice Azelrad, Esq. Alberto Carr, is q.

STATE OF OREGON
Richard A. Sandvik, Esq. Frank M. Ostrander, Jr.. Esp.

Camin4ku ILLSR: all right, we will resung our evidentiary hearing. I believe that r. Clenenson and dr. inignt were testifyinj, and Dr. iccolloa was asking some questions at tnat point, please.

2i. जcCOLLOA: Were you resent here when we nad the walk chrouyn of the installation of the eignt plates by the panel from the Licenseə?

TaL ili.ESS: Yes.
2.. accoLLui: nere joth of you present?

RHL infiness:
गn. ACcullof: Since pour testinony, since we fovieved that, could you tell me any points at which the cescription was presented by the Licensee's gonel ciffered Ero.. what your conception of what the process of the installation of the plates was or wather there is any disajretaent on your part in the understanding of now those Aates were to je installed.

1R. CLEMBNSDN: I do not recall any difference in understanding as to how the plates were to be moved and installea.

DR. ncCoLLO: Nhat aspects of the plate installation do you zonsider your expertise covers and that your dalyses, if you wish, vere involved?

4i. CLEMENSON: In regards to the handing of heavy

```
luads which ouviously are all eiyt.t mates I feel my area os
review is to deteraine the adequazy of the nandling
procedures for those eight plates.
    2... vcOLLO&: Your conclusion, then, dith respect
to the safety of installation of tne plates is what?
    4R. CLEvSNGOv: It is acceptable.
    Dn. icCDLLOA: &r. Knight, Sid you have any area in
```

this.
w.. RVCif: *), I ndve no inforaation for shat area.
Dr. mccolian: hich one of you would be involved, I
velieve it would be if. Clemenson, in the process of driliing
tarouju the walls with the holes? You stuvied aust
collection. et cetera.
4R. CLZシENJON: I thins we both nad ān interest in
oriiling of tae holes throuan the walls fron different points
of view. $\because$ concern dealt witn noiss, cust, and noisture
associated with the orilling operation and vioration. Mr.
dnijut was interested in arilling the holes fron the
stenupoint of any electrical connections associated with the
driliing operations.
th. K, IGH: well, any possible effezts to the
eguipuent insice.
DR. NCCOLLO4: Ar. Clemenson, as just a point of
information, when they use the water cooling to drill through
aith o dianond vit, wat kind of water, how auzn water is

```
used typically? mat do you espect when you do this drilling?
    4%. CLEAENSON: I don't know that I can quantifyit,
in those operations thet I have witnessed and I can't
specifically say where, it's a slurry more or less, anc the
intent behind it is really nothing more than to carry away
tne grindinj particies or particles of concrete and also to
keep the cutting faces of the tool cool. And it's not a vast
amolint of water.
```

                            2... AcCuLiu: Another way of zharacterizinj it, is
    it line having a jaraen hose here turned on full force or is
it just irlainz off the edze of the garden hose?
12. CLLvENSON: I Nould say it would ve closer to
the latter.
2R. mecuLLo 4: Do you have the fealing that the
collection of water on the inside of the control roon
गuildinz with the container that the Licensee has identified
will adeguately contain that water and it will be appropriate
proceciures that have been estajlished for suah that that
water will je caught in the container and apsorbed?
4il. CLEvENSON: Ves.
CHAIRAs: MILLER: I believe that's all the guestions
that the Sozra nas.
I believe the Staff did ask for an opportunity for
redirett; is that correct?
ah. cGuineN: I just have one question, m.
yـUVICA o rozickI

Crair．．．an．


Th．AUJRREN：ir．Nnight，yesterday you were asned about the situation where the plant origade would be going in the vaule spreading roon at the sane tine that a fire origace hiignt de going into the cable spreading roon，would that oresent a proplen？

4n．KivIGiI：so，thát woulc not be a provlea．Ane weople with the board could siaply be directed to nove out of the way and allow the fire brigade to pass．For exaap＂e，a brigaue in the doorhay zoing into this area and it shouldn＇t Le any ๗とoうlea et all．
th．NCGUAREN：Mat＇s all have we have，ar．Chairman．
lin．Chilaias：any reaross within the scope of the redirect？$n e$ excuse you at this tine．कhank you，gentleaen． Ne．st？
ur．Ginv：ir．Cnairman，at this time the Staff would call ar．Charles Ir ammell to introduce his testimony wict．has been previuusly identified as Staff Exnioit 16.

ChAINUAN YILLER：15？

2K．GNAY： 16.

CHAIRAAN AILLEN：ir．Aramaell has alreacy been sworn．So you readin under oath，ir．Tramell．

CHARAAV IILLER：You are Charles itrammell，III．

```
                CHARLES M. TRA4|ELL, III
was chereugon froduced as a witness in benalf of the NRこ, and
naving veen first duly sivorn on oath was examined and
testified as follows:
    fde \IfNGSS: Yes, sir.
    Z:LAINMAN AILLSR: You testified previously and you
zre about to testify now fron cuestions from mr. Cray, Stafe
counsel.
```

UXIVII, TION SY-fn. GRAY:
2. Sefore ve get to Staff Exhibit No. 15, ir. iramaell,
were you present yesterday during the cross exaination of
Ir. Ninighz and Clemenson by As. Eell for the Intevenors in
which a matter was raisec with regard to the operability of
safety crains $A$ and $f$ during the cold shutdow: period for
flate o?
A. Yes, I was.
2. Would you please cescribe -- could you please describe
what matter was raised in the cross examination?
.. ms. oell was inquiring in her cross examination apout
the operability of train table E during the installation of
Rate 3 widcn caused me to inquire further as to wiat the
requirements there is in the license with regard to
operajility. And it's true that Trojan has redundant trains
and the Staff is relying on this redundancy during the

```
installation of plate \delta and, in fact, realize on it at other
\imathimes as wel1.
```

    out in particular, in looking at technical
    srecifications and what is actually required during the
installation, during the node that we think that the plant
snould de in for this installation, there are very minimal
resuirenents in cold shutdown. And with eespect to the
service vater component cooling and residual heat renoval,
and I think it's ay opinion as if Liscensee's condition
should ve sufplemented to require that during the
installation of plate 3 tnat joth trains of ecuipraent needed
for haintenance of cold shutdown be racuired to be operable
Gor that linited period.
Jder the license as written now, it's tecmincily
fossibit or it's peraissible to renove a pung fro:a service
for a scandaro period of tiae exeapt for aaintenance. And
this would prevent that from happening. I don't think it's
the type of thin, they would do, anyway, but nevertneless the
license as written now allows it.
So in sumary, my recommendation, or $I$ woulc lise to
suppienent my testimony yesterday under the license
conditions to state that during the installation of plate 3
that votn trains of equipuent needed for continued safe
shutdow se re, bired to be operable during instslletion of
plate 3.

```
.. Is Ehat during the cold shutdown period for the
Installatin of tn? plate?
.. Juring the cold shutaown period for the installation of
\lambdaate 8, yes.
```

2. Mr. Tranaell, do you have in front of you a docunent
entitled NnC Staff testimony in charge of Charles a framell,
LI rejarding relocation of the railroad purchased and
reduction in sizt of the equipment hatch under the proposed
modfications wioh has been marked for identification as
staff bxhibit $15 ?$
a. Yes, I do.
. Did you prepare that document?
i. Yes, I dio.
3. Is also attazhed to that cooument a copy of your
professional ualifications?
4. Yes.
-. fond did you prepare that?
A. Yes.
5. Do you have any additions or corrections to nake to
this exnibit?
... No, I don't.
6. Is staff Exhioit 16 for identificetion including your
statement of qualifications attached thereto true and correct?
A. Yes, it is.
7. are you avare of any descending opinions or minority
```
view with regard to what you've expressed in this testimony?
A. No.
4. would you oriefly descrive wat this testimony does
adoress?
A. It aduresses the safety impact of the relocation of the
railrodd sour and tne reduction in size of the ecuipment
natch in the inline wall.
    4R. GRAY: ir. Chairman, at this time, I offer this
Staff Lxhibit 16, identified as Staff Exhibit 15 into
eridence as the exhibit for the NRC Staff.
    CLAIRAAN AILLER: Is there any objection to the
a\̊uissa>ility of Staff Exnibit 16?
    %. AXELRAD: No.
    ChaIf4A, IILLER: Being no objections, che Stasf
```

L<nibit 15 is admitted into evidence.
in. GRaY: The Staff has no furtner questions.
Ar. Iramell is available for cross exanination, both on the --
opviousiy on the items we talked apout, the sugjested chanje
of the license condition, and also on Staff Ezhibit 15
CHAIRAAN IILLER: Very well, State of orejon care
to cross exewine?
ik. USHNAKDER: we have no questions, r. Cnairaan.
CiAIRvaN iILLER: Thank you. Intevenors?
4S. bELL: he have no questions, ir. Caairaan.
CHAIRMAN MILLER: Licensee, $\because r$. Axelrad?
4... AxcLhid: ray I have a moment, flease?
C...今IAuAN IILLER: Yes, certainly.

4R. AAELRAD: No questions, Mr. Chairaan.
CHIINiAs IILLER: Thank you. You are excused at
this tiae.

CiaInvan IILLER: Zr. McCollon? I am going to put you at the end of my cross examination list.
2.. AcCOLLO: I just want to clarify a little bit about the ability and design of the railroad syg+em and the terininolozy used here, which I an not faniliar with, in terns of cais cowing into that railroad tradk from the outside.
sirst, you talked avout a suapinj post? fould you cescride a vuaping post and say how that bumping post works wazn that car cones in?

PHS NIANSS: Nell, the ounping post is a steel Iraweworh to sasically provide the dimension and shape, which is designed to provide, designed to stop a train when it reaches usually the end of a track.

JR. NCCOLLO4: That's sufficient. Jow, descriدe a Gerailer and where it's located and what its function is.

FHE IMNESS: Yes, sir. A derailer is a piece of wetal which is bolted on the track and in zase -- in this case locked such that when the train approaches the derailer, it lifts the inside flange of the wheel, which makes a track For the insice flange of the wheel wilch norgally doesn't

```
rest on anything, and noves the train and derails the train
like loving it to the left or right.
    JR. NCCJLLO4: And is there a standard operatiny
procedure as you understand it by the Licensee that these are
in place exceft when they are novin; a piece of equipment on
the railroad ca: in to the area -- I tnink it's described as
the suvurity fence.
    IH ITNSSS: Yes, these are in place. Onere is
srocedures joverniny Eneir removal and they are verified to
~e in plave periodically. moz inside one, I believe the
Erequency is once every hour. The outside is less freguent.
sut this is a matter of the installation of these are subject
to surveillance.
    DR. NCCOLLOA: The procedure, then, fron my
    information, it would we in place up to the time that they
        are ready to move the car in and then they would renove it?
    T.IE NIfNESS: Yes, sir.
    UR. McCOLLO.\: Thank you.
    CHAIRHAN vILLER: "I Delieve that, then, does
concluae the examination at this time. Tnank you, sir.
    Mf. GRAX: Mr. Chairman, next we would have liked to
        Nave presented ar . Herring. de is still disabled and will
        not de aole to testify today. I believe that based on our
        uiscussions yesteriay that the option at this point is to, I
        juess, jo to the Licensee to start their testimony.
```

CHAIrian filler: Yes, I think due to m. lierring's illness, that we will depart somewhat fron our scheduled witnesses alifhtly out of order. We will now proceed to the Licensee testi: ny on structural adequacy; is that correct nf. muelraz?
-TR. AXELAAL: Yes, Mr. Cnairaan, however, in view of the fact that or. McColloa still had questions from ar. sinignt and ar. Cleaenson anc sr. Ir ammell and they testified Eurther this aorning, we misjuiged the period of tiae that roula be recuired for that, and the witnesses for our structural panel were instructed tore here at ten o'clock cais morning, *e are trying to locate thea. They are someflace detween the notel, PGi offices and the courtroo.a. Y aay de asle to gather then by 9 9:30.

DhaIRAt.. iILLER: he'll send somebody out and start gathering thea. In the meantime. Let me ask the state of Orefon. nould it be possible since we are moving into otructural adequacy, would it be possible to put your witnesses on without inconveniencing anybody?
(12. OSCRANDEK: Could we have a monent? CHAIRMAN MILLER: Sure. Sik. OSMAANDZR: Ar. Cnairmen? ChaImman ailler: Yes. 2R. OSTRANDER: Is it would probably be more efficient if we could go after the Licensee. he prefer to

```
hear their testimony first
```

4h. Crinidan: all right, does anybody have any witnesses? Does anyoody want to make any limited appearanee statements?

All right, let's recess for about 15 minutes or so. ..e will de in or near the judge's chambers back here. Advise $4 s$ as to the availajility of witnesses.

Ah. AXELRAD: Mr. Chairman, let ne nake sure that we oo this for a few minutes now, what the testirony will be and how we will go bjout thaz.

CiAIRMAN AILLER: All rijht.
if. axCLRAD: he have the panel prepared to testify Jith respect to its prefiled testimony. Ne have not, pecause of ir. aerring's illzess, been yet aade fully aware of what the remaining issues in controversy with respect to wat that testimony inay be. what we propose to do is put our witnesses on at this tine and have then testify with respect to their prefiled testimony. And we may have to recall thea subsequently in order to discuss some additional matters arising fron further discussions with the Staff.

Chairman aillez: Sure, you wouldn't be precluded. You are assisting us by advancing, slightly, the order. And we will perait you to call for any reasonable purpose su.sequently as well.

MR. AXELRAD: Thank you, or. Cnairaen.

ChaIntaiv viLLER: Is there anything you need to inquire of che Staff in preparation in aoving into the phase you aight not have intended to go into earlier? Is there any way the staff can oe of any assistance in focusing on issues not yet approached in

an. AnelayD: ne have some preliminary inforaation in thāt rejarj and we are trying to develop sone adiditional information with respert to natters that have becn aentioned to us. ne selieve that it may be more orderly to proceed itn the prefiled testimony and then perhaps take up any adiltional ...atters after ir. Nerring was recovered.

In ciscussions with the court reporter, the other court reporter that was here this morning, there was sowe indication that it night be jossible to axpedite tha preparation of the transcript on any particular subject matter if the Stafe would want to have a copy of that transcrift available for ir. Herring at his hotel room. Anc perhaps the Staff dill want to consicer whether, when they cross examine or any particular portion of our testimony, if there are portions that they want to have expedited for ir. nerring's revien. That might be one way to aake sure ir. derrinz is aware of what is happening in the courtroon today. ChaIniai miLLER: That might not be the way to insurt expedient recovery. However, we will make sure that the witness is faniliar with what is occurring in that rejard.

And we will stand in recess abour 15 minutes and let us kno: wat she results are.
(RECESS)
CIAIRAAN AILLER: Let's have the record show that we are having to make an arbitrary assignnent of page numbers. And the portion of the testimony or procedings whicn started et $3: 30$ this morning April 2nd, 1930 will comance numberin, aitn paje no. 4300 . , we will have the record reflect certain japz are hiatuses in previous transcrift numbering, but we will wait until the transcripts for monday the 31 st and Tuesday the lat of ipril are completed and we will then ...ake sone record notations as to that portion of the paginetion. All rignt, now, the Licensee, by mr. Axelred, hes indicated that the original panel has seen tealled for some additional natters. The panel is now seated consisting of 4r. oroehl, ur. Anderson, ir, thite and $4 r$. Cook, who have previously oeen sworn and remain under oath. You alay proceed, ir. Axelrad.
ih. AXSLRAD: Dr. Nhite, yesterday you explained to us in detail installation of the plate number 8 . It is conpletely lowered into location, ajjacent to the $R$ wall and rested to the top on plate 2 557. Will you please descrine to us what the next step will be at that time with respect to the installation of plate nunber 8 ?

OR. WITE: The next step will be to secure the

```
plate, waion will result in the installation of five bolts
and ap,lying a quarter inch beam at tha base of plate 3
attaching it to plates 7 and 6. Now, this is adecuate to
7วla the plate in place.
    AEter those have been -- after the plat? has jeen
secureu, then the hoisting arrangements can be released and
then the timber area supports the cripts for tne wood can be
removed.
                            1f. AXELRAD: Can you describe for us the mount of
the welaing that wil: be involved, the lengtn of it.
                            JR. .HITE: Ne will ve putting in GC iriches of welci
across the botton plate, 48 in quarter inches of weld, and
tnis will supply the resistance with the safety factor of
Ive for the S E t as will both the bolt safety factors on
tnose are way oeyond 5.
2. Zr. rnite, I would like to bring you to your attention
your answer to question 124 in Licensee's Exhibit 27. In the
last vara,raph of that answer on paje 59, the second line of
that last parajraph incicates that the tack welding will be
to rlates 5 and 5. Do I understand your testinony to be that
that tack weldiw will be to plates 5 and 7?
```

    Dス. haIMS: Yes.
    4R. ANELRAL: So that will be reflected to reads
    3 ates 5 and 7 and not 5 and 5 .
Dr. Ahite, could you reai inat sentence, please?
D.. MIFA: In addition, once plate is secured and with a tack weld to plates 5 and 5.

AK. 4XELRAD: No, 5 and 7
JR. WHIDE: Gat's the way it is. It will be correctec to read plates 5 and 7.
hii. AXELAMD: And the rest of the seatence rill
continue as it reads?
DR. MIICE: Yes.
4R. AXALAAD: Could you repeat for us the safety factors that would be involved with respect to a 0.253 SSE and wether that considers both a north-south and east-ast eartayuake?
23. Wills: Ther= is a safety factor for botn the welus in the solts, it is a safety factor of five or yreater, consicering both east-west and north-south earthquares.

AK. AXELRAD: Mr. broenl, since in accordance with Dr. Wate's testimony at the time that the welcing that he has aescribed is having 5 bolts that he has mentioned replaceo, plate number 3 will be able to withstand a 0.25 g earthouake, is there any reason to maintain e cold sinutdown any longer for the installation of plate 8 ?

MR. BROEAL: No, there is not.
2. In yesterday's cestimony, the Staff indicated that it believed that the cold shutdon should continue until all of the bolts for plete nuaber of are installed. Could you tell

```
    us what that would entail in terms of effort and what perioc
```

    of time it will reguire?
    4R. ERUCaL: The difficulty in installing the bolts in plate 3 are principally all along the top line of bolts wich are into the control roon. We have committed to have only one of these noles open at a tiae. So all of the bolts in that top row have to be put in sequentially. And $I$ would juaje that it's projably along that row two shifts work to fut those polts in alone.

Dow in the cable spreading roon, there is a consicerable a:sount of grading required to install the plates for the bolts so that this is a slow process and involviny Eew workien, so it is going to be so..ewhat lengthy. I would estiate that the noral process as we will perform the work, It would take roodely four to six days to install the polts and Hates.

AR. AXBLnin: Could you tell us how nany bolts are involvec?

4n. BROEHL: There is a total of 44 bolts in the plate.

4h. AKEI RAD: so that would be the wors recuired for the readining 39 bolts to be installed?

MR. DNOGAL: TMat's correct.
4.. AXELRAD: he have no further questions of this pancl.


```
~oard find that the witness is qualified, that he thas read
Gne written testimony, and that he is prepared to conduct
expeditious questioning. I ain not sure how the Boarc wants
to go about making those findings. ie are prepared to do
whetever you recuire. I can certify or state that Dr. Larsen
ads cead the testimony and is prepared for an expeditious
questioning.
    Un. ANSLRAD: If it would assist the soard in
    reaching a decision, we would have no objection to the
    croposal Di the State of Orezon
    CHAIR|AA IILLER: I an going to inquire, ôre there
        any objections Jy any of the parties? The Licensee incicetes
        none. Intavenors, none. Staff?
                            ik. GRAY: No, ir. Caaiman.
                            CHAIRANN AILLER: In accordance with 10 CER Seztion
2.733 exanination by experts, the Boara does Eind that Dr.
Larsen professes the necessary qualifications which are
cescrioed in that section of our rezulations, and, therefore,
we exercise our discretion to perait Dr. Larsen to
interrojate the wanel in accordance with doth our regulations
anc within tne scope of the direct examination.
    Iou may proceed.
    J2. LARSZN: we need some clarificetion on this iten
on Paje 5s.. I think, Dr. white, you are responding to it
Eirst.
```

In particular，it＇s with rejard to the 5 －bolt
cayacity．
J．2．vinI工己：Yes．
D．2．LAKSEN：Could you descrive the reans by which
you deternine the forces within these five？Is it the
inertia force of plate 3 ？
Di．Wia＇se：Yes，the inertia forces in plate 8 ．
Aat would be the deaand on the bolts due to an east－west
eartaguake．

D．．LIASSN：Cast－ivest and north－south？

U．．．nIIE：nell，the resistance recuired for the ：10rth－south earthquase will be coming from the welas in rlates 7 and 6．The east－west earthquake is going to try to ove the plate away fron with wall i，whereas the north－south earthyuane will be putting sheer forces on those，and the Dolts，tnenselves，will keep the plate in proper alignment． Wut will not develop any resistance，per se，due to the north－south earthquake．The resistance for the north－south earthyuake is coming from the quarter－inch weld．

DR．LARSEn：That was part of ay next question．As to the aolas of resistance，is there tension in the bolts and shear in the bolts and sheer in the welds？

Dh．NAITE：No．
2．．Linszi：The plate has been satisfied as far as novement normel to the wall and parallel to the wall；is that
2.. HEIFE: The resisting doesn'c include sheer in the bolts. The flexure in the bolts are for east-west earthquakes. Ine north-south earthquakes are resiated oy the volts. Fiey are not recuired for resistance in the north-soutr earthyuake.

2R. LARSEN: Could you explain the resistance in those 5 as distriouted over the area of that plate?
D... MIFZ: mey are distributed over the area of the ,late. There is three in the top row. This would be up in the control roon. and then there will be two fron oflo: the slab at 93 , down in the caole. spreading roon. So they jre spread out.
23. LARSEv: 2nen I have just one last guestion. Is there any liguid material present during this state, grout?

0R. NHIT $\mathrm{N}: ~ N o$.

DR. LARSEiv: That's all I heve, Mr. Chair.ian.
ChAIRMAN AILLER: Fnanis you.
4F. OSTR4NDER: Thena you, Mr. Chairman.
CimIRnAN IILLER: Incervenors.

MR. sELL: Ne don't any questions.
CHiARAAN mILLSR: Thank you. Staff.

4ik. ERAY: Would you describe the welo that you were going to use? Lou incicated 58 inches. Now, is that $\angle 8$ inches total, or is that 48 inches for plate 9 to plate 7 ,
anc 43 from plate 7 to plate 6 ?
ur. wifte: No, this would be a total of 68 inches that will $u$ e aistributed into three areas. Those areas are on fiates 7 and 5 . fand you can see from the location of the supporting plates for the wood $4-b y-4$ timbers, you can see the three zones that these velds will be placed in. So it .ill not de concentrated. It will be spread out. sut it is 48 incnes total, not 40 for 7 and 48 for 5.

Ah. CRAY: Are you going to nondestructively test this welo at all to deteraine they are good welds? 42. anozit: Considering the very large safety factor we nave on the welds, ve do not intend to perfora nondestructive testing at this time. It will be nondestructive testiny as a part of the conpleted weld, honever.

9n. CRAY: But you wouldn't have the safety factor if you didn't have a good weld; isn't that true?

AR. DAOChL: Could you repect your question? 4R. Giray: You said you are not going to nondestructively test the welris secause of the larje safety factor, sut you would not have that safety factor if you dia not have a good weld there?

4R. SROEiL: I don't know that the nondestructive Eesting has anything to so with the safety Eactor. That has to do with the quality of the weld. It will certainly se
visually inspected so that we have a reasonably high degrea of confictnce that the weld is competent, certainly no visual cracks in iz.

DR. UHITE: The allowable stresses used for the evaluation of the capacity of the weld have been noraal working stress icieas rather than joing to some ultinate strenjth.

AR. GRAY: ...ill the plates below plates 7 and 5 , will they have been Eully nelded to the plates below ther?
J... Wirlis: Ves, they will be fully velded and grout N11 pe placed in behind then prior to the govement of bate . .
sR. Gray: and the tensioning on the jolts - I know that's the wrong word to use - but how are they goin; to be tijhtened up?
0.. HITE: Those will be s.ug. Imight also mention that the spacers will be placed in the plate prior to the snujging of the oolts, so that the plate is firmly attached to the wall, out there will be a wedged gap. But the bolts will be snujyed rather than any post-tensioning kind of operation.

4i.. GRAX: Will the bolts prevent novement of the Wate in the eaot-wast direction?

DR. WhITE: Yes, that is their main resisting ..echanis..., the main purpose.

```
    By mentioning that, the passing of a single bolt
    based on the bearing plate requirenents is in the
neijhoorhood of 200 kips. Our plate weighs 47 kips, so just
one simyle bolt in terms of resistance can develop a
tremendous amount of capacity. We ere looking at. . %s as
the acceleration of the wall in àn east-west dicection. So
tne actual denand of the total plate is like 24 kips. So a
single bolt gives us 200. So we put 5 of then in just to
syread znen out over the resistance of the planc of the plate
so the east-dest cirection.
    Hi. CMIRMAN: What is a kip? KIP, isn't it?
    2R. WiI:`: Yes, K I p, 1,000 pounids.
    CLAINuAN ILLER: Could you put it another way.
thoup? I a:a only being facetious, out I dic want the
definition of kip on the record.
    D._. NdIL~: Yes.
    iR. S.aY: Is there any way that the vibration of an
earthquade could cause this plate to bend or move in such
awdy as to break those welds?
    Din. NBITE: If you were to size the welds on just a
    safety factor of 1 to 1, we would be 33 inches in order to
resist that.
    low, I mean l to l based on allowdjle stresses.
Bven if that's all we put in there, you still have the
aduitional code margin.
```

```
    so ne are putting in -- I'a sorry. I'm sorcy. Let
...e wack up a minute.
    gou need about }5\mathrm{ inches. The }33\mathrm{ inches has a safety
tactor defined of l in it over the total. So we are going
weyonc tnat and putting in 48 inches. So wa are looring at a
safety factor of }7\mathrm{ or 8. So in terms of the actual
earthc,uake dolng sone damage to this, that's inconceivable.
I mean all of these thinys have been considered
    4... GRiY: O*ay, you said that the -- your analysis
was Dased on using working stresses as opposec to element
cepacity?
    2N. viITE: Yes.
    4N. GRAY: If you used the element strengtn capacity
or method, would these safety factors be in mind?
    2R. AHIPS: Yes.
    in. GRAY: Tiat's the end of the Staff's questions.
    CHAIN|AN MILLEF: Thank you. Anything further of
tnis panel?
    4N.. AXELRAD: Just one further question?
    CHAIn|AN IILLER: Yes.
    in. AADLRAD: Dr. white, do I gather from your
testinony that you ajree that nondestructive testing or
weluing is not necessary in order to provide the confidence
that the nelds will perform their purpose?
    0マ. \\IIなこ: Yes.
```

If．AXCLRAD：Thank you．
CHAIR1Aん IILLER：Dr ，vCollou？

DA．NCCJLLOM：Why did you choose just five bolts？ 2R．whInz：iell，if you believe in numbers fro．？ aalculation point of view，one is plenty．Now，in order $t$ ， rovide sone stajility on a plate，fou ought to have one in zach zorner．Erom an engineering point of view，it＇s ropably－－that would probably be all you really need．I think for a little added security，we said，＂What the heck， iet＇s put in Eive．It doesn＇t really take that auch aore こine in order to put in five．It＇s just way beyond what 8 رerson would recuire based on juat colculations alone．Eut rut in five，more security，bigger security blanket is what it amounts to．

3．．ACOLLOA：No．．，are these bolts in there for yood when you put in five？

DR．，NITE：They will not have to be taken out， relocated or anythiny else．

Da．1cCOLLO4：So the only other thing that will have to be done to finish the plate off in terns of full installation of the bolts would then just be to tighten these volts？

D．．．WHITE：As far as these bolts are concerned． You have to put in ene others，but－－

D7．NCCOLLO：This is part of the peraaneat orocess

```
        of installing the Dolts; it's not an interin thiny that you
        are zoing to perait yourself to start operating waich would
        reguire you to reglace them or take then out or put thea in
        some comivination?
```

            sin. BROEAL: I would line to add a little
        information on that. What we would intend to do with these
        five bolts would be to inztall thea in a teaporary aanyer as
        a part of the plate erection process. They will not have the
        seflon tape on thaa, nor will the three-inch plate on the
        jack side of the wall have the one-incn space on that. So in
        that sense, yes, they will be installed in these locations
        temporarily to expedite the completion of the securiny of the
        plate. The jolts will be then placed using the 'reflon tape
        anu the spacers behind the three-inch washers in the
        permanent ianner.
            When that work is completed, we will go aack to
        these five bolts, remove then, put the tape on the bolts, put
        the spacer, one-inch spacer, the grout, the washer, and
        reinstall the bolts in preparation for doing the grouting.
            D.. mecoLLo I: All right, then your coweat is this,
        all of the polts will se installed before you pull out the
        original five jolts to aake their installation conplete; is
        that correct?
            4R. bROEIL: TMat's correct.
            DR. necollun: Okay.
    ChAINAAM ILLER: I believe that's all at this tioe. 4h. GnAy: 4r. Cnaikman, f saen to have nissed ons additional question, if the board will perait ae. CHAIRAAN AILLER: All right.

4N. SNAY: You indicated there are going to be spacers ofains this place. I suppose there are soaces for the, fout in order to be poured down. What material are those spacers?

4ik. BRDEAL: Tnose will be steel spazers.
4K. GRAx: aave you examined whether those thinjs ignt de arushe or damajed during an earthquake sucn that the plate would then be movinj around?
2.. ..fire: In teras of exanining those spacers, de naven't. -ut in terms of the loads that the systen is going to see, there is no reason to bother. Co back to the inertia loai of the plates. There is only 23 kips total, and we are goin; to spread that out over five spacers. And if the spacer were to fail on that, it would be so flinsy, it wouldn't grovide any spacing capability, 30 any spaciny at cll in there is going to take care of it.
if. GkAY: Sank you.
CHARMAN MILLER: Dr. Paxton?
DR. Paxpon: Ir. broehl, you mentioned Teflon tane. where is this applied?
… EnvEnL: fais is a thin-film neflon which will

Ne wrapped on the surface of the mold to provide a positive wond breaker berween the ，rout and the nold．

CaAIRan IILLER：Is that it？Thank you． 4R．AXELiAD：4r．Ciairman，I will ask fr．Anderson and Dr．White to stay in their positions and they will be joined．For the next panel of Hr．Eimal Sarkar and ir． Fatrick Chany－Lo

CHARIAN MLLER：Mr．Sarkar，you are staadiag now， will you raise your rijht hand to take the oath，please？

```
                3LinL SAZKAR
was thareupoh produced as a withess in behalf of the
Licensee, and heving veen first duly sworn on oath dâs
    exainined and testified as follows:
    ChiIrsAN AILLER: Tnank you, be seated.
    The other two witnesses nave already been sworn and
    renain under oath, of course.
                            if. AABLRAD: Gentlemen, Bose each of you have
    ~efore you a dozument entitled *'estimony Under Structural
    Aueyuazy of the nodified Complex" mhich has previously been
    aazked ss Licensee's Exhibit No. 23?
    4r. SARIAR: Yes.
    4N. CiAv/二ーLO: Yes.
    4i.. ANELNAD: Ar. Anderson, is the statement of
    euucational professional yualifications attached to the rear
    of Licensee Lihibit 23 the sa.ae statement that has previously
    been accepted in evidence with Licensee Exhibit 27?
    vi.. AvDERSOlv: res.
    4R. AXLLiADD: Dr. White, is your szatement of
    ecucational and professional cualifications attached to
    wicens:e proyosed Exhibit 28 tha sane that was accepted in
    cvidence as Licensee txhioit vo. 27?
    JN. inIras: yes.
    *N. s人ELRAD: Mr. Sarser, is e copy of your
```

```
stateaent of educational and professional qualifications
attacned to proposed Exhioit No. 23?
    4n. SARNAR: Yes.
    4.. AXELR4D: Do you adopt that stateaent as your
statenent of qualifications in this proceeding?
    4N. ANSLRAD: Yes.
    4i. AXELRAD: Could you summarize for us briefly
four equcational backjround and professional experienza?
    4f. SARKAR: Ay name is Binal Sarkar. I afm
enjineering supervisor. I have a bachelor of Science Dejree
in Civil Enjinetring fron university of binar, India, a
laster of vilende in Engineering from University of Calcutta
in India and a master of science in Engineering from the
university of California in berkeley. I was an lecturer in
Civil Lnjineering at the University of Calcutta for three
leais.
    C.uIrAAN {ILLUR: Calcutta?
    IN. SARKAR: Calcutta, where I taught undergraduate
classes in Structural Nechafics and Structural Enjineerinj.
Arc I was a design engineer with Sallardie, Thompson i
4att:\Omegaews.
Chairatai aillei: 3 AL L ar D I E, Thoapson a
~atthews are a structural engineering firm in Calcutta, India?
    4R. SANi/AR: 'mat's right.
    CHilruaN AILLER: Thank you.
```

```
analysis of reinforcea concrete and structural steel.
AR. AXELRAD: Maybe you should bring the aicrophone
a little bit closar to you.
4n. CaAInisn: Yes, I think that would help.
10. SAnkAR: Timen I was an enzineering specialist witn the governaent of Lioya for four years and attacned to their sinistry of planning and inistry of Incustry, were I .as involved in the review of design as were done by consulting enzintering Eirns for the deaign of soile of the major industrial projects in the country.
Anen I caire to this country and joined John eluae á
``` Associates.

CHAIAリSN MILLAR: eardon me. whan sid you join John 3lume is Associates?

1k. SAMKAR: In 1971.

ChaIRリAN IILLER: They are located in San Eransisco, are =hey not?

4h. SAkNian: That's correct.
CHAIRAAN iILLER: Consulting engineers?
1R. SARKAR: Yes.
CHAIKAAN MILLER: I aight indicate to counsel and for the record, I think chat my hrother-in-law is or was an engineering member of that fira of John Bluae \& Assocjotes. I have not has any discussion witn hin regarding this case or
any siailar case, but I recognize John Bluac \& Associates. dy Nrother is -- or my ~rother-in-law is James Keith, K \(\sim\) I in. I believe that he is and was at that tiale a hember of che firn. So I call it to the attention of the darties and counsel.
iou may proceed.
4h. SARNAA: I was involved in the analysis of Duildinjs wilch were sujject to the 1971 Los Angeles eartayuake in Los Anjeles and the vicinity. And I worked therefor aoout two years. And I joined bechtel in 1974. nad since that tiae, I have been involved in the design ano analysis of che nuclear power plants.

Ny involvenent in Trojan Power Plant has been since Juns, 1973.
is. AXELRAD: Thank you, tr. Sarnar. are you o reyistered professional en, ineer?
in. SARKAR: Thank you. I am a rejistered professional engineer in the State of California.

4n. AXELRAD: Nhen I first askec you a question, I negieated to asi you for your business address. Could you provide that for us, please?

MR. SARKAR: My Dusiness address is 50 deale street, is E L L, Street, San Fransisco, Californie.

MK. AẊLLKD: Can you describe your involveaent is Irojan Concrol vuilding proceedings?
\(\therefore\) A. SadiaA: As I said, I have betn involved in the Arojan control suilding since June, ly78 both in rejard to the Fhase 1 operation, the seismic evaluation, and also the hodification of the Control Building

जर. AKELRAD: Thank you, Mr. Sarkar.
4r. Cnang-Lo, will you alease provide for us your Eull name, working address and present position?

4k. CiswG-LD: Yes, tay nane is Patrick Chanj-io. Ny uusiness address is at 50 beale Street, San transisco. I a.. enployed by dechtel Power Corporation as project enjineer responsible tor civil structural desijn and onalysis of the irojan Control auildinj aodification.
18. AXZLRAD: Do you have before you a copy of bicensee's testimony in the structural adequacy of the nodified complex, whicn has been marked as Licensee's roposal Eshioit 28

4R. CiAAVG-Lû: Yes, I.do.

नh. AXLLRAD: Is a copy of your statement of crofessional equcational quálifications attached to this こestimony.
rif. Chanc-Lu: Yes.
'R. AXELRAD: Do you adopt that statement as a stateneit of your qualifications in tinis proceeding?

HiN. Chavi-LO: Yes.
ak. AXELNAD: Coula you sumarize briefly for us
```

your euuzational vack;ronc anc g: fessional ekperience?
4N. CiANG-LD: I have a sachelor of Sciance jegree
in Civil Enginering from the Virginia military Institute and
a Naster of Scievce Degree in Civil Engineerinj, San Jose
State Colleje. I an registered civil engineer in California.
I nave deen emhoyed by Becntel Power Corporation for 13
years and have jeen involved in the structural design of
ruclear over plants
AR. AALLRAD: Could you describe for us your
involvelent in the Trojan Control Building proceeding?
4... CriNG-LO: Yes, I nave joined the project as of
Novemper of l97s as a civil struatural froject engineer. I
have hau supervisorg position and I nave reviewed all of the
work that has been performed up to now.
4f. AXELRAD: THank you.
ar. Anderson, are there any corrections or acditions
whicn you wish to make at this time in Licensee Exhibit 26,
tue testimony of this proceeding?
4n. ADDERSON: Yes, there are a few winor
corrections. On page l\& h, the fifth line down from the to!
of the paye, tne four-inass systen should be cescribed as a
five-masy system as shown in figure 1. So the sentence would
read, "ilgure l shows a simple model of a five-nass system.
Ane the rest is the same.
On paje 58, there is a typographical error in the

```
next-とo-the-last line on the fage. The question mark after the word "tension" should be deleted. And the apital where snouid ve replaced with a lower case where.

On page o, the title snould be changed fron SEE to
SEK. So it will read "SER open items."
Chandin 1 ILLER: The paze before that, I think I
have two pages 5b. Is that intentional?
AR. AKsLRAD: Inat is correct. I believe the sezond
faje 55 should be marked 55 A.
ClialiqA. AILLEk: All right. Se will have the
second paje 55 , wich consists of five lines anendec to 65 A , please.
4.. ANLLRSON: And the last correction is on paje 35 ? sin. OSTRANDER: Could you repeat that?

4R. avdLaSON: The last correction is on paje 35 . The date sham in the question, may 16 th, 1973 , should be changed to say 25 th, 1978.

1i. ANLLHAL: I would like to ask the other three ne apers of the panel if they adopt those corrections that have just jeen identified by Ar. Anderson.

DR. WHITE: Yes.
Al. SARKAR: Yes.
4ic. Cidanc-Lo: Yes.
4.. AreLkal: Gentlemen, is this testimony wita these corrections true and correct to the best of your

> hnowlecye?
(nffirnative responses)

AK. AXELRAD: Do you adopt that testimony as
Gestimony in in this proceeding?
(Affiraātive responses)
4n. AKC:QAD: when this testimony was prepared, were there any minority or dissenting opinions expressed?
(hespond nejatively)
rA. AxBLRAD: Gentlemen, do each of you have in Aront of you a docuient entitled Licensee responses \(=0\) MoCollun's prehearing conference questions varch 11,1580 whic: has peviously been narknd for identification as Liceasee Exhioit 30 ?
(hesponding affirmatively)
AK. AxELRAL: Are the answers to questions 1 through 12, \(15,17,20\) end 21 true and correct to the best of your knowledge?
(wesponding affirmatively)

4in. AXELRAL: Does each of you adopt those answers as aauitional testimony of yours in this proceedinjs?
(responding affirmatively)

4is. AXELRAD: Mr. Cnairaan, at this tine I would ask
that they de received in evidence in this proceeding, Licensez's Lxhibit No. 28 and with respect to the docuaent
```

Licens\&e Lzhibit No. 30, nshely the ansvers to Dr. NoCollon's
questions, we reviously offered questions 13, 14, 15, is an%
15, we have now had testimony sponsoring the remaining
questions. I would therefore ask that Eshibit No. 30 hinself
be received into evidence
CimIRiAN IILLGR: Is there any objections to the

```
receipt in evidence of Licensee's exhibits nunber 29 and 30 ?
    AR. GRAY: vo oDjections.
    CHAIRAAM IILLER: There being no objections, the
-xnibits wicensee's nuniwer 28 and 30 in toto will be admitted
into evicence.
    4ik. AKELRAD: if. Cneirnan, we do not have any
Surileaentary oral testimony at this tine. As I indizated
earlier this morninj, wa may have suppleaentary oral
testimony by this panel later. If they are still s? the
witness stand at that time, we may offer that evijence latar.
Or if they are excused telaporarily, we may readil thea at
sowe subsequent time.
    CuAInMAi qILLER: Very well, you will be given leave
in that regard.
    AR. FXELRAD: The witnesses ere now availaכle for
cross exanination.
    ChaIrMak IILLER: we will proceed with cross
exc...ination. State of Oregon?
    4\%. OS RRAVDER: Yay we have just one rinute?

Cinifutv IILLER：Yes．
… OSMMANDEA：Nould it be possible to recess for
12 or 15 inutes？
CHIAINAA：IILLER：Yes．

4．．．AXELRAD：Mr．Chairaan，pernaps the Intervenors could 30 －－

Shisi．din aILLeR：Yes，but the State of Orezon would like to cojitatz and confer．Could you tell me，Intervenors， asout how auc．．time you anticipate in cross exanination？
an．ROBOLIE：Ar．Chairaan，I don＇t delieve we hove any cross exenination．of cores－－oh，we have ajout five niautes．

Charrihv aILLER：eine．And the Staff，could you jive us an estinate？

2nis isn＇t binding．This is just for scheduling ，urposes．

4R．Grisi：I would say about a half hour．
CiAIR4／AM MILLRR：All ri．jht，what do you need about 10， 15 minutes．

4R．OSTRANDER：About 15 ninutes．

CHAINHAN iILLER：Take a rezess．
（Recess）

ChaINAAN IILLER：very vell，you may proceec．
th．OJAKANDER：ur．Cnairman，we would like to use

Larsen conuuct our yuastioning.
ChaInlan AILLZn: Jranted leave so that you can.

4n. OSFRAVDER: I Bight point out it aay be refer to the mocel that is before the Bcard. Dr. Larsen, understand tnat he is supposed to refer to the column ond the wall numbers so that it is clear on the record nat is being descrived.

ChaIrifa AILLZR: Yes, pe sure to use deszription in words when you are using models or anything so that our rezord, our transcript will reflect it as well as being visually available here. I an sure you will remember to do that. You may proceed.
O.r. H.iSEv: iy first concerns have to do with the zonstructian, for instance, in some of the statements that have jeen made rejarding that. If we could, refer to paje 12 of, I Jelieve we are calling this, Ekhibit 27, watters other than structural adequacy of the coaplex. It's on page 12 .

Eirst, dia \(I\) correct in assuming that these are additional improvenents that are going to be incoryrated into the final modification? I know these were discussed in oan transisco at this beeting, but as they appear on paje 12 , are these itens to be incorporatec in the final modification?

AR. ANDERSON: Yes.

DR. LARSBN: If we could then, turn to page 59 of that saine cocument. I missed the sliode show on vonday, so

1
wayue you are yoing to be repeating some of the things that yuu indicated therewith the slides. sut let me just indicace my concern in the construction sequence.

It seems that at each stage of construction you aust indicate sone ajditional or a substitute structural itea to pick up anything that nay be reduced in strenjth. And I an yuite satisfied with everything that occurs up to the 65-foot level, oecijse you have adoed the in-prime wall and brought it to a particular strength.
out in looking to the stateaents made on monday and disu on pay 3 y I need some clarification as to where the sussticute strenjth is going to cowe apove elevation 35 at the tiae in whicn sote of the columns are exposed. I sinply cannot see tne suostitute strenyth coning in at tnese Bifferent Eloor levels. Can soaeone respond in just yeneral seyuence as to how chis would be cone? I would particularly Iike to hear the substitute iten, its location, and whether or not it chanjes in response of the conflicts at each floor Level as it is done.

Dn. nnInE: I an assuaing that you are talking about the supstitute for vertical sheer resistance?

DR. LARSEN: Yes, that is primarily the concern, yes. D.i. जIITE: Okay, as we were talking eerlier, the vertical sheer resistance is the thing that is being renoved from the structure duriny the construction secuence. And if
you consider the, the waterial is beiny removed in order to tx,osed coluan lines 41 and \(R\) \& , for instance, refer to that as a tipical situation.

DR. LARSEN: Aat's fine.

Dr. vaITE: ve have renoved the vertical sheer transfer around the zorner versus if <l. wow, whi e it's deing done, the new wall directly below this e, evation, the new with all is 45 to 55. Now, the concrete is at 2 , (0. ? 3 I frior to reaoving the material at elevation 55 anc 77. So, now, this is new vertical sneer transfer capability that exists that dic not exist prior to the modification.
vow, the adecuate sheer transfer capaoility thet existed between elevation 45 and 65 is way beyond what has Deen renoved fron elevation 55 to 77.

DR. LARSEN: Could I interzupt for just a seconc? I a. concerned, though. have you added sorething to the inner stor dje sehavior between 55 and 77. I realize you have strength adued below 65. 5ut is tnere innerstorage strengtn Detween 65 and 77 , has that been strengthened at this point or is there a weakness?
0.. AITE: Some has been removed, you can't remove wove waterial without weakening the structure.

गR. Luikaiv: that is waere my concern lies. Is thete anything going in as a substitute for those levels? DR. NnITE: No. But that doesi't aean that the
```

structure cannot resist the S S E. because there was aergin
in that with all both due to horizontal sheer and vertical
sheer prior to removing this material. So some of the
material wasn't sovec haj excess sheer transfer to start with.
DR. LARSEN: I ajree with that. Eut I diu question
the statenent that we haven't reduced, fron reductions. ate
you indzating betveen these floors we have lost a little or
no.- much.

```
    2R. AIITZ: se haven't reduced the capacity
structure below the resistance recuired for the .25 SSE.
    D.R. LA:SEN: Could you then go on up to get:reen 77
and 53 , is the story goinj to be the sane there.
    J.. wiff: Yes, there is adecuate capacity at the
various stajes of construction to resist the .25 SSE, even
though locally sonething has been renoved. but from a local
Wint of view in the structure itself, the structure has the
Câpajility of resisting the S S E.
    Dn. LARSEn: That's what I en getting at. Lt times
        I saw the wording no reduction had been made and you are
        suying row there is sufficient strength.
    DR. WHITE: Yes.
    02. LAKSEN: I tend to agree with you. It's just
the worainj I coulan't agree with all the time.
    2.. hilifs: The wording joes, perhaps, need
    \(2 b\)
explanation.

DK. LA,KSEN: Then could I go back to that paue I Just ceferred you to, vaje 12. Tais was done, as you koow, at the San rransisco meeting, and \(I\) simply did not have tiae Lo eiplore in detail. This doesn't really alter any statements you have wade. There is no further reduction due to your afding toese inproved aodifications on 12 , in otrer woras, exposiny the columns to weld being to colunn connections, anc you are also joing to tie sone wall better tofether. has any of this reduced its existing capabilities Lo withstand a SSE?
D.i. AHITL: Tne areas where the capacity is reduced tempozarily would de for the construction of coluan line 412 , starting with 41 wall, bear the secuencing of construetion that we talked ajout earlier which indicated that colum line 41 z would not oe open at the same tine that colun lines n 41 ans \(\leqslant 41\) would be open. So the seyuencing there is such that vefore 41 2 is openea up, there is adecuate capacity adcied to other areas or it would be opened up oy itself, essentially, 412 along with \(x\) prime.

DR. LARSEIN: 418 is opened up only to elevation 55; is chat correct?.

DR. vAITE: Yes. And going along wall 41, 4i 2 will not we opened at the same tiae as \(\angle 1 R\) anc 41 iv
iR. AXELAAD: ir Cnairman. If I Gay interrupt for a minute.

Craikhan milek: Yes, are you inquiring because we are oeyond the scope of the present pantl's testinony?

HK. AXELRAD: Yes.
Chisiakio sILLER: I see, very well, fine.
in. aXELRAD: Ny feeling is if there are any aatters that ilue state wants to explore with respect to the construction sequence or the way the facility is going to be inproved, we would like to have those matters clarified on the record, and we will be perfectly willing to have this Particular panel to define matters of that kind

CAAImIAN AILLER: It has occurred to us in the intersats, in the pulic interest, we have permitted cross eicaination natters that are not before us on cross examination, ais as you know, counsel. It should probably je liaited, had you told is, it would probably be granted. Eor that reason we iid not interrupt. we are, however, into an area where there is present, presently before us prepared witten direzt testimony on the matters of the structural adeyuacy.

Now we want a conplete record. As we say, we are not criticizing you. On the other hand, now, if we are going to get into matters other than that, which were in the first phase of the second phase, so to speak, in fairness to the witnesses and A. Akelrad, we should have some deliniation and we should have some indication from the State of orezon
which has taken no position with rezard to contentions, as it is not requirec to cio, but if you are going to get into jupstantive areas we must have fairness. And so I sujgest that you give that some thought, and you can then tell us how you aisn to handle that so that all parties including licensee's, Staff and intervenors will have notice of the varioug intentions that you plan to go into and get on to sone ȧifirnative evidenze.

Thani you, you may proceed.
小. AKELRAD: Ane reason I dia interrupt was that when professor Larsen had indicated before starting his eicuinction, that would be useful if he nad some diajrans to refer to for vurposes of his exanination.

ShaINuAN AILLER: Do you nave sone such naterial.
MA. AXELRAD: Be have now received the copies of the slicies that were used in the presentation on mondey.

CHAIRvis vILLER: Very good. That would be helpful I thini.
ik. AxELRAD: I would like to have aarked a ciocuaent entitled "Slides used in oral testimony oy Nir. R C Anderson and Dr. .illia... \(H\) whte on March 31 , \(1980^{\circ}\), consisting of
 to have that docment marked as exnitit, Licensea's Gxhibit no. 30.

Chalrman alller: you have a 30 .
N. AAELRAD: 31.
vik. Chalrumn: 31 , that will be 30 merked for
identification.
After you have iad a chance to examine it, I /ill ask counsel and parties to indicate whether or not you have any objections to it ein; admitted into evidenee at this tiae.
(Ex.1.-ホD. 31 marsed)
Chalhian millen: my understanding is that these slides waich are indicated in Licensee's Exhibit 31 consist of those sliles which were visually demonstrated in our courtroo. donday, was it, Jonday, March 31. And tnat they have now been reproduced in suen fashion that they ary both De ade part of the record and that professor Larsen, State of Orejon, or others may utilize them in further eaamination; is that correzt?
vR. AXELRAD: Fnat is correct, with one addition es -r. White pointed out when he started his presentation, slide 1 was not, in fact, a part of the presentation, but is just incluued to depict the construction sequence.

Chalnvis viller: Tnat is slicie l?
Vii. AXELRAD: Yes.

CHAIRAAN MILLER: All right, slide 1 , which was the sccond, I yuess, slice that was photographed was not, itself. physically used in the presentacion, sue fair and accurotely
```

portrays the infornation of data which was the subject of
testimony?
4k. wNeLzaL: mat is correct.
CHAIR\&AN IILLER: Is there any objection to sli*e l
wth that explanation appearing in this exhibit?
IN. GRAY: No oDjection from the Staff.
CMAInAAN IILLCR: All right, I take it there is no
ovjection, tnen. so slide 1 may be incluted.
Now I have asked you, if you had a chance to exevine
these sufficiently to tell us whether or not you wish to
onject to the admission into evicience of Lizensee's Exhioit
31 at this time?
4S. BELL: ur. Cnairman, some of the intervenors
would odjece unless it is clarified in some way -- well.
thare is a problem in the back, let's see, the back of the
wuilding from the view that it's shown in these slides, that
somttimes the color, the yellow or the blue, basically you
can't see it because it blends in the background. And that
was orally enplained by Dr. White during the slice show, out
it doesn't shon up in these pictures.
CiAAINAAK AILLGN: That is true, that does not show
ur in the color reproduction. It was explained by Dr. White
in his testiliony. Do we havc any sugjestions as to now to
handle the problen?
AR. AXELRAD: ofr. Chairman, we thought tne exhioit,

```
```

even with this sli;nt imperfections as described in the
record is useful to all parties and the board. If there is
any oLjection, we will be pleased to withdraw the exhibit.
ChiIRvaN 4ILLER: well, it's been markeo for
iuentification, you may proceed with it on that sasis, and we
Nil consider the aatter in point, if it is offered. And it
is avcepted. Licensee Exhibit }32\mathrm{ for identification nay be
used in your examination of the panel.
(Z天.1.-No. 31 receiv@d)
4A. OSFRA\&DEZ: Thank'you, Mr. Chairman. I vould
lise to conment briafly on your renarks concerninz how we got
into that arta or. this panel's presentation.
CHAIR|AN HILLER: Jkay.
4h. OSTRA\&DER: lesterday we tried to alert the
soard and the partias to the fact that we had considered the
3eguenain? of construction to be a structural aatter. ind

```
Er. Larsen addressed that in his structural testinony. And
it's ooviously one of those areas that crosses, I tnink, into
Doth nonstructural ano structural areas. And we had
reyuested the voard, and I think the Licensee ajreed that we
couic treat this issue flexibly. snd that was our intention.
    CHIRAA!! MILLER: what we are pointing out is that
you are not now presenting affiraative evidence going into
thos nattters as you have given, but nonetneless, we went a
complete recors as we are getting now, on the process of a
```

cartain oroad issue for going into this a certain amount of
ti:le into otner issues.
in. OSGRAvDER: I think the advantaje of this now is
we make our affiraative evidence tiore precise.
CnsIRAA: AILLZR: Tine, we have no ojjection.
4N. CSTRA.DER: Thans you.
if. OSAR.adDER: Could I ask the panel one question
conceraing uznibit 31?
jes this azcurately reflect the saguance of
construction that is set forth in the varch 17 testinony
vicensee Lshibit 27?
DK. vaITE: Yes.
AR. OSARINDZR: mat's all.
DN. LANJZv: I have just a couple more thinjs.
Eirst of all, let me incicate that I think slide 11
incicates my concern at that point, and I think you have
addressed it and answered it, in the way that I would hope
that you would have claared things up. And I think you heve
cleared up as far as I am concerned.
Slide 1l indicates those areas around those columns
Netween particular floors chat I was concerned with as far as
twe construation sequence. And I think I nave only one otie:
yuestion, and I con't know whether thare is a proper time to
orirgg it up. It will havve to do with the defined stiffness
of the final system and how wuch the floor response spectra

```
```

wil be wisened. but I think provably we will walt until a
later date to do this.
CiNIRvAN {ILEER: Whatever is nost convenient frou a
loyical standpoint.
th. AxLLnaD: Mr. Cnairman, that is part of this
Lestiaony. This would ae the appropriate time to cross
Examine on that point.
CriAINMAN AILLER: I would think so.
in. OSTRANLER: It's night to be in the right place
at the riznt tiue.
3... LArSEN: I woulci like to refer to Exhioit 23.
DN. *NITE: ₹aje 28?
2R. LAISSZN: Exhibit 2S, pages }45\mathrm{ and 55 A. Tnis
has to do with tne response spectra that will be used in the
دi,e analysia, l believe.
Dn. NiAIE: Yes.
2.. LNKSEN: more was some indication uv to a
courle weeks ago that further evidence would be provided as
to fon low the stiffness aight possibly degraoe. \a 3
anytning more Deen presented beyond what we see on these two
pajes? Any particular?. Are you still plenning to broaden
tne curve by a 3l percent as indicated on page 55 A?
Di. AIFE: Yes, that is, that is our plan, the
curve is lovered 31 percent on the low Erequency side, and
then in adcition to that, additional ten percent. Ine }3

```
```

percent here just Jue to the matters of stiffness associated
with gross oenoing, creeping, shrinkage, all tnesp lind of
it\epsilonas, not talsing about variation in material properties due
to changes, not including variations in weight, these kind of
tnings. Those iteas are in the additional ten percent. So
3 1 percent is just to talk about the departures from the
frequency fredicted oy the original STARDY|E model.
2.. LaRSEN: Do you fe\#l at this tine you nave the
\nuest representation that you can hope to achieve using the
jTnm\&Nz noGel as far as stiffness is converned?
DN. AiITE: I think that the representation that was
ujeu in the orijinal S"ARDYNE model is a very reasonajle
nodel. Tl!e additional broadening that we have inclubed I
think more tnan adequately covers any, any possible departure
from tie iciealized case that was originally enalyzed.
iR. OSTRANDLR: That concludes our questioning, Ar.
Cnairman.
CHAIn4mi AILLZ又: Thank you,. Intervenors?
MS. séLL: Eirst I'd like to direct you to a letter
Erom tne Licensee to wic dated narch 17, 1830. I Jelie%e
it's in Exnibit 25, but I an not sure which section. Section
J in Lxiaisit 25.
DN. WIITE: Okay.
S. BELL: I am referriaj to answer l fa anc a paje
s of 18.

```
D... WITE: Could you repeat that, please.
S. beLL: I aa referring to answet nuaber 1 and i., :aje OF 18.

2k. WhITE: Oxay.
45. bsLL: Okay. On the second paragrayh on that paje, let ae , ust read that, "It is important to note taat ull wall sections considered in these examples have an unteinforced core. In the actual complex, walls, especially in the Control Juilding, aost of the wall panels of the sheer wans have reinforcing steel in the concrete core, and therefore, their sheer capacities for all the f.edicted modes W11 be inereased accordingly."
nould sone nember of the panel please explain to ne and cuantify the word "Nost" that appears in the second sentence of that paragraph.

DR. NHITE: Clarification on wat's heant by nost, aost cores having reinforcing steel in them?

4S. DELL: Right.
DA. NiIIE: It's calculated the number of cores Delon elevation 93, I thinis there is like 95 percent of the course have concrete in then -- I mean the cores have reinforcing steel in thea. That's in the control Building.

4S. BELL: In the Contro? Euilding, not the conjlex. Is this referriny specifieully to the Control Buildiny? ine sentence reaus, "Aly actual complex walls, especially in the
```

Control uuilding, most of the wall panels. But the wore "nost"
I would assume refers to the ectual comple\& walls.
DN. ..IINE: The numper 95 percent I gave you was
specifice y for the Control Building.
4S. sELL: And could you quantify fron what the word
nost would nean in reference to the actual complex walls?
DN. NITE: On that one, I haven't calculatec a
figure, ou= the walls that are being used to, orimarily to
resist the eartaguake loaus do heve reinforeing steel in the
core.

```
    more are a nunder of walls in the Auxiliary
zuiluing that are used primarily for shielding, three to four
sooc thick rails, and those, in general, do not have
reinforcing steel. sut an actual percentage, that I don't
nave.

4S. BELL: Judging fron your use of the word nost, without jeing accurate, can you could you just give ae in yeneral, would it be over 50 percent?

CiAIRMAN IILLEf: fost what, now? I ain jetting confused as to the most.

IS. BELL: Of how alany of the wali panels in the complex have reinforcing steel. That is how many of the wall panels that have concrete cores have reinforcing steel in those cores?

CHIARAA AILLER: No.., the comple: consists of gore
```

than one puilding?
4S. bELL: Rignt.
CHAIR|Aid IILLER: Now which building or buildings
are you inquiring a.jout?
4S. BLLL: I ain referring to the entire con, lex, all
of the panels in the complex that they are referring to.
.र. wIITE: In one of our responses to the N.iC
question we prepared a table which gives those itens, you can
caiculate it as vell as I can.
4S. BeLL: I an just trying to elicit, I reclize
cnat aprears in section a of B of the same exhibit, I a.a
asking whether your use of the worc most refers to over 50
percent of those panels?
ChaINAAN oILLER: Of what panels? If you are
inclucin, the Control Builainj panel you are going to get a
different percentaje tnen if you exclude it.
4S. bELL: All the panels in the complex including
the Control building whicn is part of the complex.
CH.Ir.aN AILLER: So then you are goinj to get a
percentage. If you are asking for a percentage which is
going to include the }95\mathrm{ percent in one of the three buildinjs,
is that what you are inquiring?
^S. BELL: That's correct.
CN2IRIAN iILLER: Okay, can you approximate it or
sive it exactly?

```

2r．AIITL：les，for the complex，nost woulc naan 50 percent or greater．

4S．ṡLL：Okay．
ry zecond question has to do with the bloch rather than the core．Iurning to section \(B\) of that ex ibit，which are the sumary tables that you were referring to，is it your unuerstanding that all the block has steel reinforceaent？

DR．شiIIC：Yes．
4．3LLL：Okay，thank you．We have no \(f\) rther vestions．
… C：HARMhv：Thank you，Stáf？
4N．GrAD：Starting out with VGE Lxhibit 26 ，on paje 11，the answer to，a response to question 18 ，do you nave thac？

CHAIAAAN IILLER：Wat page was that？
rit．Gha：？？aze 11.
こHIIRリAA IILLER：Tinank you．
1．．Gray：sesponse to question 18．You indicate that the originally oroposed structural eztension or structuril extension that was being contenplated resuired difficult anclysis and design to fully denonstrate the aapaoility and stiffness petween the old and new structures and therefore is a more difficult design for the pnysical connections petween．Isn＇t there sonehow an eleneat of that， aiso，in the proposed modifications？
D.f. जIFE: There is sone of that in this perticular Jesijn. Howaver, if you look at the relative conditions of the iwo, I Enink tne distinction will becone apparent in the structural surport systen, which was perhaps one of the earlier concepts for the akking the modifiaations. Fhere ive vare unauleto zraj ahold of the existing condlex alonj lines at tne edyes of slaps and the edges of valls. Ne weren't wis to realiy jrab anold of the area in tha wall in getting a joou resistance Eron it. and this is one of tiae aain conlens in the structural support systen.
however, if you look at the nodifications that are curcently , oeang proposed, rather than grabbing th三eaisting complex at the 1 ine, we are able to do it over an area, which yives us mucn better distrisution between the existing elements and the new elements. So this is one of the uif.ferences. \(I\) an not sayinj that the consctions now are simple sut relatively speaking mucn sinpler.
yn. उnAX: Is it easier to naintain the seisnic Yuclification curing the coistruction work using this present conctpt for proposed hodification zelative to what it would nave \(\operatorname{neen} f \circ r\) that other sort of structural extension.

4R. ANJErSON: Well, our considerations were that if we had a problem that was in the existing buildinj, the only way tiat proslea could be solved was to have sone kina of a structure or elements that would reach out into the suileiny.
sEOVICA \& NーZ LRI
```

And iE we did that, then reaching out into the building would
reach out into perhaps the control roon or cable spi aidinz
roon into areas that we felt would have made it more
difficult to do during operation, and that was one of the
major consicerations in yoing to the present concept of the
hocification grojrain.
AN. GRAY: Aoving on to page 13 of this axhioit,
resfonse to question 2l. Let's see. You discussec the
ground ootion at the base of the structure. Is a najor
consiveration in the ground motion .the siaultantous
conuination of horizontal orthagnal components of the
earthquane wi=h the vertical.
3F. WIIFE: Could you repeat trat, ylease?
4N. GRAI: Is a mejor consideration, in considering
the ground uotion, the siaultaneous combination of a
norizontal orthaznal components of an earthquuake älong with
vertical that is orthagnal,
DN. NuITE: That wasn't part of the original desig\#
criteria, and that's wioat we are working with, the original
vesign criteria.
4.. CRAY: vnat was the original design criteria?
DK. NidTE: The original design criteria stipulated
that one horizontal and one verticel conponent were to be
considerec simultaneously and the influence of these would be
addec absolutely.

```

ヶ．．．Ghas：In respanse to question 32 given there on Jajes 15 and 17 ，actually on page 17 ，you indicate the force latse ？the building transfer a certain load．In addition to the force slass zransnittiny their own inertia loads of attached equiphent and piping to the sheer walls and then to the دase of the structure，they also transmit dead load and thermal loacs，don＇t tney，to some extent？

2R．milITE：les．
in．GRAY：Oiay，in response to question 33 at paje． 17，you discuss there web walls and flange walls，weo and Eleage walls in the structures．Does the STARDINE a alysis wiicn you have used，does that rely on the web walls to resist oending in addition to sheer？

DK．niITL：Yes．
fix．CRsY：Ioving on to page \(1 \varepsilon\) ，response to yuestion 34 ．You indicate there that the force slajs in the Duilding are very stife in a horizontal plane．Are they ěually as stiff to resist out－of－ilane bending at the flange walls？

D2．WHIE：Jut－of－plane bending as the flenge wàls？

4R．Gaty： \(4 t\) the flange walls．
Di．winE：I am not sure I understand the question． Repeat thât，glease．．

18．GRAY：Okay，are those force sidus as stiff to
```

resist the out-of-plane sending at the flanje walls as they
arestiff to, in their horizontal planes.
DN. NHITE: Nell, the force slabs can definitely
take the out-of-plane bending, to whatever loeds coaply.
Ihat is their main Eunction is to resist vertical loads,
wicn is tne out-of-plane oending effect.
4... GiAY: Aoving on to page 19, response to
question 38. You state there that the effect of gross
overturning is to do several =ninys, out among oこhers, it
will coiuce asial conpression on one end and axial tension
on the other end of the wall. Does the gross bending or
overturning, yross oending or overturning introduce any ret
compression and tension in tine wall?
2.. WHITA: In our assessment of the vehavior of the
comples que to fross bending, the walls see at nost a very
Low level of tension. There is definitely compression build
up on tne compression side. But in our section of the
complex, the panels, if they go into tension at all, is very,
very aininal.
if. GRAY: Can you guantify the minimal.
UN. NHITE: }5\mathrm{ PSI kind of thing.
1R. SRAI: loving on to paye 2l and the response to
yuestion 40. I'm sorry. The response to question 39.

```
    1R. GriA: You discuss thore a aechanisn to deveiop
woment restraint．And you say a complex wall in one of these mechanibns is the sean－colunn connection was tne bea．i－coluan connection reliez on in your analysis to resist the monents in double zurvature mode benavior．

Dh．viImE：No，it was not relied on．
AR．GRAY：Onay，paje 23，in response to question A5，
you there discuss the structural steel franing，the steel Deans and columns which support the force slabs in the comilex．Isn＇t it true that orizinally that steel framing was not \(r \in l\) led on for any lateral resistance，only for vertical rasistance，vertical load？
\(\therefore\) ri．akDciSON：well，the original steel－－ originally the steel frame was certainly considered oy the cesign tean in the design of the structure．ine steel frame was considered to be imbedded in the walls and certeinly althoujh it was not directly designed for lateral loads，it was zonsidered as a member in the walls and a contributor to the building＇s overall capability

4R．GRAI：But it＇s primarily a design for taking the vertical loads．

MR．HNDEROUN：Yes，DEcause the steel frame was ouilt prior to the walls being constructed and the steel frame had to be designed to carry the vertical load．
rh．Gfial：And today with rezard to the modified complea，it is now ofing orought to soat extent to resist
```

lateral loac; is that true?

```

Casifita AILL二R: Pardon ne, I didn't quite cetch
cll that?

1R. GRay: Todiay, with regard to the analysis of the modified structure as proposed, that steel franing systen is relied on to sone extent to resist the leteral loacis?

DR. NiITE: Yes.
dis. GRAY: Hoving on to page 26 , there is soue ciscussion of the test progran that you conducted in conjunction with the develothent of the proposed aouifications. Fou indicated that one of the purposes of the test fro, rail was to assure conposit behavior of the aasoncy walis with the concrete core. I guess this is what we all the composit walls, and that no delanination vill occur ot that concrete and masonry interface. Was that object of the test projram specifically addressed for walls that have inbeaced columns? In other worcis, were the ibbedded columns adcounted for.

ग.र. nHIFL: e did have two test imbedied columns and there was no delamination of those specimens.

4h. GRAY: Raje 25, response to question 50 , I welieve you indicate there that the test specimens cenonstrated that the wills will withstand lateral loads of the osh or the SSE without significant physical damage. That do you mean by significant paysical damaje? Zive uà some
description?d. Yes, in the -- in the behavior of trese test specimensup to and including the ultiate cripaciiy of the specimens,cracks witnin the specimens did develop, Dut big pieces didnot fall off, in fact, no pieces fell off.วne of the iaportant characteristics Genonstrated by
the test specimans is that once the ultinate capacity had
been reached, the specinen did not explode or release its
ioad. It was è very abuuctal kinc of behavior and was enable
to waintain its load even after reaching the ultinate
こapaえity. So this was o very important opservation.
    th. GRAK: So even at failure of the wall test
specimen itself, you did not have block flying out frori--
    2.. Nrilh: Exactly, it was abducted behavior,
pieces not falling off \(u_{\%}\) to and inclucing the ultinate. .
    4R. C.रAY: Okay, on page 26 of this exhibit,
response to question 51, part \(B\) here, you indicate a sheer
capacity of 300 ?SI coula be considered as a conservative
lower bound for normal sheer failure for specimens with an
aspect ratio of.5. Is that 300 PSI always the lower pound
of normal sheer failure for those aspects ratios?
    23. VhI'ż: For an aspect ratio of. 5?
    vล. GR4I: -5, yes.
    J.. NHIPE: In the test speciaens that we have oeen
working witn, all the test specinens that failed in diajonal
tension were bexond 300 ESI. दerhaps sr. Sarker can eid soae
information to that based on the analytic studies that were
Jone.

4\%. GRAY: Diajonal tension, this is what you refer to as nornal sheer failure.

2R. AIAC: les.
AR. SARKAK: Does this Explain sufficiently?
Ni. GRsy: Rnat's sufficient.
Going ur to paje 47, the response to question si. Aere you zaai about the steel plates to je installed in the rest wall and frictional resistance.
2.. cCOLLOA: ur. Gray, I nave an avicul time. .e are shitided fro.. here, anc if you could enunciate ó little wetter, I thinn i coulc near it.

Mr. Gkay: Okay, the question was that in this res, onse on pa, e 47 to reaponse to question 91, the steel Hates to de installed on the west wall control Euilding are ciscusaed, ano there is sone discussion there about frictional resistance between the plate and the concrete wall or the concrete behind it. On that, what is the - can you a test the adeyudey of the sheer friction coefficient between tile new concrete and the steel plate? In other words, will that required frictional resistance be developed?
DR. NHINE: JKay, I think in order to address the

Guestion will the frictional resistance be developec, I will
need to take a look at the overall desiyn nechanisa here. we are usinj a sost tension solt syjten in orcer to proviue the clamping forze. And in evaluating that force, we are indluding the influence of jolt relaxation, cfeer in the wall, these nind of things to their effect on the adequata tension of the ooit. In addition to that, we have an insfection prozraia that will insure the tension of the bolt دe waintained throughout the life of the plant. Shat's one aspect.

Bezond is the doefficient of friction that we are usinj, rlus watever safety factor wa have. So we are using a safety factor to, in conjunction with a coefficienc friction of . 7. Anc. fron a nuaser of different stucies, the . 7 for concrete on steel is a reasona)le coefficient of friction.
wo.., to further enhance this coefficient of eriction, ve are young to rougnen up the back of the plate to Eurther insure that this coeffizient of friction is, in fact, object tâpad.
13. Gray: vaere is that going to be.
DI.. WHITE: This would be in the vicinity of bolts. Inat's where the alapinj force will have the primery influence, and we haven't really decided on how big a range of arece that will be roughenes up, out it will be an adec,uate area.
4R. Shil: How about the washers on the otier sice
```

of the wall, will they be roujliened up?
D.. wiinz: There is no sheer transfer at. the

```
    interface of the washer. The sheer transfer takes plece only
    at the interface of the plate? a.nd the ones on that side,
    anc tne wall. The plates 1 through 3 in zeneral.
    4.. GKiY: Nlthough that design was with a
    coefEizient of Eriction of. 7 , do you really need that nuch
    of d zoetficient of eriction?
    Dr. NAIPE: No, as I mentioned in teras of ectued
slippaje, we art using a gafety factor of 2, so that, in
essence, drops it back to a coefficient of friction of oint
35 wich really all is nzeded in order to preclude slippaje.
In adifion to that, the capacity of the oolts are sized
vased on seisuic loads in conjunction with therval loads.
And ajout 40 percent of the load is coning erow thermal. Ant
this is a self-relieving hind of situation, so in terms of
slip curing an eartnouake, the possibility is extrenely
renote.
    4... Z8iz: You did mention the bolts. They are
3oing to de two inches in diameter; is that correct?
    วR. NHITZ: Yes.
    4R. GNMY: What stress level will be in those two-incn
diameter oolts as opposed to the stress level that would have
ctveloyes in the one and three guarter inch bolts that you
were previously going to use.

DN．．．iITE：I an not sure what the tension is．It would we reduced by the two criss section area．Decause the autual tension in the Solts will still be the tensile forca a．d I all have the sane majnitude．It＇s just reduced by the ratio of the two areas．

ทh．GRAY：The stress would be less．You＇ve jot a olyzer area．

22．NHIT己：Jin，yes，assolutely．
4h．Griv：cuing to page 12 ，I am going back a bit． taje 42 ，tris is a response to question 32 ．

Where at the botton of the paje，you inuicaze that diotributed microcracking developed on the wall during earchgudxe will force the wall to grow vertically．ihat is the ousis for that statement？

D．．NITE：hhat＇s the basis for the statenent that the crazks will cause the wall to grow？

1R．Gray：Yes．If it＇s obvious，please explain it．
Dr．WHIAE：Giay．You＇ve got a panel，and matever its oriyinal height was，if now you put some cracks in that， the wall is now as tall as it was plus the sum of the creak widti，so it＇s going to widths，so it＇s joing to increase．

4n．GRAY：But in a dynamic situation which you ；et with on earthquake where thinjs are vibrating about，you inght yet sone griading away of these crach surfaces ty it Coulc tawe away your growth；couldn＇t it？

D．N．NIICE：These kind of things were not observec in mormal flexure cracks in nornal sneer walls，for instance． A．\(=\) ind of cracks we are talking awout are cracks due to the reinforzing steel stretching and causing the oracks rather than a ciajonal crack or something along those lines．So it would we the sane kind of crach that would develop in a horizontal beaa subjected to vertical loads．The bean deflects down，the botton side stretches and a crack opens up． so there isn＇, ，per se，a lot of forced grinding across this thing．The aracks are develo，inj prinarily due to the reinforeing steel stretching．
tix．GRAY：Oiay，on page 54，response to guestion 107．There you incicate that if you assume that there is no Donu between the coluuns in the concrete，you nay need to develop some vertical slip in order to develop the required shəar friction wich you reed．And you indicate that you need a vertical slip of about 7 mils， 7 mils， 70 one t．oousandths of an inch．Is a 7 mil slip necessary for the develoi of a factored or an unfactored 03E load．
－2．Wallic：Inat would de for an OBE loadin； condition as weli as the SSi，being as the loads are the same for the two earthcuake levels．So in teras of actually going out to tofe Eull demand structure，which is the SSE，thet＇s rat you yet．
（K．GRAY：Jo you know what did for that on an
```

unfactored -- I'.a sorry-- for the factored O3E loading
mutiplied by the A.4?
2.. NaIrz: Ěor an earthquake larger than the SSE. I would ind,ine it would be in the neighoorhood of a nundredreth of an inch, in that general vicinity. 8. So you are foing from 7 bils to ten nils.
if. CNAx: I'n sorry, you said a hundredti of an

``` inะa.
2.2. NiITE: Yes, ten ails. .

4n. GRav: Going on to page 57, in response to question 113, there you indizate that sliding does jovern the Capacity of sone of the sheer walls in the complex. Can you indicate mere sliding controls in the complex?
in. Chanj-io: In general, the sliding occurs, the stidag , overns in areas where there is less dead load. So it would de ia the higher elevation. And keep in and what I mean by foverning, it still meets the criteria that we have designed it to. In other words, it would be -- conparing, it woula just be the critical or the governing between sliding, Elesure and so on, but we still aeet the margins.
in. Grisy: okay, you aay in the higher elevations, the elevations in the complex where the dead load is lower, so the Control building is higher elevations of the Auxiliary suildinj, also?
(n. CHANG-Lo: Yes. That's correct. T.ere nay be
```

one or two walls in the Auxiliary building. There aty be one
or two panels or walls in the -- I shouldn't say walls --
~anels in the Control suilding.
4R. GN.aY: Do you have an estimate of tne
capacity-to-force ratios for those walls that are joverned by
slicinj? I guess this woulc oe for factor, it would be a
zondition?
4n. C\ANE-5D: res, it would be aore tnan 1,t.
An. GNAy: bor the unfactored. It would be nore
chan 1.4?
4k. CH%:G-n): mnat's right.
|k. GRAI: Okay, in response to question 115, also
rer on paje 57, you inaicate that diajonel tension does not
fovern sneer sapacity in any of the walls of the comples.
Joes that incluje a consideration of tie acuitional faztors
that were set forth on the February 15 and Narch 17 response
as to staff questions?
DR. NHIrב: In terms of the diajonal tension that's
referred to in this particular equation, the question refers
vack to the diagonal tension capacity predicted vy the
diajonal tension equation in those responses that you
referenced or mentioned. However, there are panels wnere we
have linited the stress to 30C PSI which goes beck to the
-2uit inposes in P3A 1020 now, even though we are using tinat
as a level for design, it's stretching thinjs to infer that

```
that would be representative of diagonal tension failure. So we neau that clarification.
4. GPAY: on page 58, response to question 112.

Dnere you uiscuss the theoretical equation for dounle curvature. Now, the capacity-to-force ratios that are set forth in fGS 1020, whicn is Licensee's Exhibit ? \&, I Jelieve, the capacity to force ratios set forth in that document for the ODE are based on the double curvature, sliding or single curvature.
in. AñLRAD: Coula you please repeat that question, r. Gray?

4R. GRAY: I'n sorry. I don't have a question, yet. I ank a little uit confused here.

CHAIMAAN AILLE: Ne haven't got to the punch line yet.

भf. Gihy: Oisay, are those cápacity-to-force ratios in the PGE 1020 based on double curvature?

DR. Mecollon: Based on what?
Ah. GRrax: Double curvature?
DR. VIIITE: Yes.
4.. Grix: Can other modes of failure, single curvature or slidiaj control in sone instances.

Dn. NHITE: Single curvature and sliding could govern in some areas. The representation of the cepacity-toforce ratios for some curvatures is presented in another
response，I un＇t renemoer what nunber it is riznt now．wut all that stufe is also laia out．
an．Ghay：Jkay．Offhand，I guess you don＇t rave Tne Lxhibit No．Of that．Is that the \(r\) tsponses to the narch 7tn Staff questions？

4in．SAKNisR：Eebruary i3th．
AR．GAAY：February 13 th．
4h．AXLLRAD：Anat \％ould be iten 2 in Licensee ckhicit No． 25.

こんさIR•A才 iILLGR：Q．
4．．Giny：Thank you．Page 55．Insteac let＇s yo to äje 54．

ChAIAMA：IILLEX：What page is that，ur．Cray？
4．．GRAY：64．And it＇s the response to question
127．Do．m near the end of that first paragrap．You say the yeneral weenooology used to determine the subsequent vualifications of equiphent components，vipinjs，is the sane that＇s described in the，employed for inneroperations．inat you ．．．ean jy jeneral methodolozy．In othar words，way are you usiny the tera general？Is there sometning in sone instances some other rethouolojy that＇s being ussd？

4．．．ANDERSON：Nell，I think certainly the intent is to ust tne methodology described in the EnSR．However，if I recall in the interia peration proceedinjs，we had testimony， cross exumination on the methodolosy that was used，some of
```

the methocolojy used to calculate piping systens would be the
datest approved wechtel procedures and bechtel to,jcal report
that woula be used now that is perhaps slightly cifferent
chan what was used originally. That was meant by the term
jenerally.
IR. CRAY: Oiay, also in res,onse to this question
227, there in items 1 and 2, you indicate that all safety
celated eguipaent, zonponents and piping in the conplek will
v= reviewed anc modifications mace as necessary. I guess my
yuestion goes to the words "in the complex." Does that
f.urase include equipments, components, piping that may be
attacnec to tne complex but maywe aren't pnysically located
inside the wall or inside the conplex.
4n. niDLiSON: Yes, it includes any equipment or
conponents that would be affected oy the seisaic response of
the complex.

```
    in. Ghay: By the changeable response. شry effect,
        evan thou,h it may be outside, but somehow attached?
        D.2. siITE: one good exanple of this would of à
        Wiving networs. Anc the systen is followed out beyond the
        conplex to the first seis.uic anchor, and everytninj out to
        that seismic anchor is analyzed as though with respect to the
        response spectra witnin the complex.
        AK. Grax: Noving on to päge '75. Response to
        question 135, near the wottori of that large parajraph, you

> indicate openirys if the panel significantly reduce the arailable capacity of the panel. Generally, how are the sciffnesses of the walls witn openings affected oy those openings?
2.. KaIE: Say that again, please?
th. GRAI: rlow are the stiffnesses of the walls affected \(y_{y}\) the openings in the walls.

Dr. wiIIL: well, the stiffness is sonewhat reiuced. In उวae areos of the complex, efforts were made to take this into account by reducing the models of the panel in that area. Dut that isn't necessarily affecten as is the reduction of the dagacity in that area. The capacity would drop guizker tuan the stiffness.

4R. GRIV: that's what I wanted to get at, say you wo heve larye openings that could result in significant stifeness ceductions, there was at one tine accounted for?

DK. WiITE: Yes, that was not -- soae of the opanings were not nonitored. Primarily, the situation €xists in the upper elevations of the complex and in developing the overall hodel, those levels seened at the time of mojel developatat to be ones where it is not particularly significant. However, down at the lower levels, the doors anc this kinu of thing, were nodeled explicitly actually in t..: fine elenent nodel.
```

                    4f. Cral: woulc jou say that all the openinjs that
    ```
```

~uulG have a significant effect on the stiffness were in the

```
Hoacl?

DR. NaIPE: les.
4r. GRAY: तlow do forces from panels with these openings redistribute to panels w: os openings or to other vanels chat are stiffer?

2R. NHITL: Nell, in terns of the rejistrioution ascociated witn an opening, it's not so much a redistribution Cf, of the loads themselves. The loads are going to follow to こhe stiffness. Now, tnere is, perhaps, a rainor cisereqaacy between the forces redicted by SxARDY心s at a particular location versus what the wall is actually going to see, uut the loads are joing to follow what is the prediction of STARDYNL and then jo somerlaze else. The response is yoinj to develop and the walls when they pickad up the loed üe joing to develop relative to that. So there is going to we in sone areas where we have an opening sone departure from actual loaus in the panel as ppoosed to what is actually showing up in the structure. sut that doesn't aean that the loacs predicted by S'AARDY:NE will have to be redistributed mecnanically \(=t^{\prime}\) physically sonehow. They wouldn't nave been there in the first place.
48. Giray: loving on to Page 78. This is the last part of a response to question 137 . And it is dealing with the treatment of bean-column reactions.

In the analyses, the beam-coluan cunnections wert essentialiy decounted as reinforcing steal; weren't they?

DR. waITE: In the original STARDYUE analysis, they were consiliezed as contributing to the reinforcing ratio for purposes of calculating stiffness, not capacity, out for the sur cose of calculating stiffness.
in. OnAy: Okay, novinj to paje 1:2, response to
wuestion 141. There in the first paragreph of the response, zou incicate that uncertainties with respects to the effects of the interaction of an asseably of wall panels in a sceel frane were addressed with respect to capacities by ignoring che emount of adcitional capacities shown by test speci:rens L 1 and L 2. row does ijnoring that, those test specinens results L 1 and L 2 somehow account for the uncertainties that you are talking about here?

4ik. SARKAR: Could you repeat that question?
AK. GRAY: Sure. Do you see the sentence I am reading? It's in the first parajraph in response to question 161, and it's actually the second sentence. It says the uncertainties with respect to the effects of the interaction of an assemoly of wall panels encased in a steel fra.te were aduressed with respect to capacities by ignoring the anount of adcitional ca,acities shown by the results of the tests of specinens \(L 1\) and \(L 2\). wy guestion is, how does ignoring those results thereby address those uncertainties?
vin. ShaKAh: hat we meant here was that the test specimens L 1 und \(L 2\) gave supstantial anount of capacity, sneer capacity whicn were not factored into our a pacity evoluation.

In other words, L 1 and \(L 2\) which had envedded steel colunas at the end, those steel coluans were acted as positive a.hount of elements to resist the lateral load. nowever, in our actual capacity variances, those were not zaken into account.
in. Gisy: way, therefurther on in that sane response, the next parajraph talked asout the effeet of the induced tensions. And I believe you indicatec earlier that inducement tensions, if any, would be on the order of 5 PSI. lave you azcounted for that induced net tension in the wall in your analyses?
2.. wilhi: As far as the stiffness characteristics of the complex are concerned, I think we have nore than adcsuately accounted for these kinds of effects by consideriny the change in stiffness que to gross bending and the other items that got us to the overall 31 percent oroadenin.j of the response spectra on the low side. and I think this would more than aceguately cover these ninas of infiuences.

4if. Gisy: ir. Cnairaan, if you would wish to recess for lunch now, I do have some nore questions, sut I would
line to de able to asseable then. I think sone other things were covered that I could cross out

Chan Ruan illLer: ve will do that. If we didn't recess for lunch, do you think the interrojation would be snorter. You don't have to answer. we will recess for lunca. desuile at \(1: 30\), 21ease.
(.NOON RECESS)
```

like to be able to asseable then. I thiak soae other thinys
were covered that I could cross out
Chatruan illleza: be will do that. If we dian't cecess for lunch, do you think the interogation would be snorter. You don't have to answer. ie will recess for iuncal. kesune at 1:30, 2lease.
(NOON RECES3)

```

3EOVICA o ROL2RNS

1

4R. AXeLRAD: Mr. Chairman, as we indicated to the Soarci before, we are trying to proceed in the best way possible under the present circuinctances. When the staff had arrived here in Portland on Sunday, we had had some discussions with mr. Herring who had indicated to us at that time when some of his remaining questions were, in fact, what we think all of his renaining questions are. he have been working the last several days to develop answers to those questions. And what we would propose to do is some time later on this afternoon, we would have written answers to those questions. te would propose that this panel continue ve cross examined with respect to matters as tney now stand. ne will aake as an additional exhibit those answers to those fuestions. The Staff can take those to ir. Herring. The Board will be aprised and review that information overnight and perhaps tomorrow morning any additional cross examination on that additional information will take flace. Se have to rely on the transcript. And that will be a complication.

CHAIRMAN MILLER: I understand. Ne have to do the Dest weaxin Cin I

Does that information revolve about the remaining unresolved issues uy any chance.

4K. AXELRAD: Our understanding is that information which hr. Herring requires in order to resolve the unresolved questions. but pernaps ir. Gray can address that better than
```

we can.

```

ChAIRजAN AILLER: we only note that that is farther down on or agenda and undoubtedly take place two weeks from today, the unresolved issues. Although we will have reports as we \(\ddagger 0\) along.
wat we are doing now is moving into the second area which is the adequacy of the modification plans and work.
rif. AXELRAD: well, mr. Cnairman, these are unresolved atters with respect to structural adequacy, and they are part of the general subject that is being discussed by this panel right now.

CHAIRMAN AAILER: Does it involve any of the issues otner than the structural adequacy?

IR. AXELRAD: This is not the short-tern test and long-tern test information that we plan to take up after structural adequacy
in. CimIRvAN: No, but you put on evidence with your first panel --

IR. AXELRAD: On matters --

CHAIRMAN MILLER: On matters other than structural adequacy, and we were intending to move on to that same area, then, by the Staff, which I guess we did in part, but coulan't complete it at any rate because of the illness.

Then we moved into the second major category of issues waich we have called the structural adecuacy, which we
are going on now. The Staff I take it will not it insofar as they can. Now, these issues relate only to structural adequacy.

1R. AXELRAD: That is correct.

CHAIRVAN AILLER: I was considering those being farther down since they remain unresolved. we also have under your designation of subject matter, then the short-term test results, the long tera projected studies with reouttal. And we thought some of that aaterial would be taken up in the remaining three days two weeks hence, which gave you a chance to resolve further the unresoived consideration which were resolved. te don't want to take the time of witnesses yetting resolved the unresolved and chasing our tail like we did in Pnase 1 where we had two or three sets of material ofcause there was aaterial that needed to be sought and exchanged and so forth. And you are aware of that situation, which we historically wanted to prevent in Phase 2.

AR. AXELRAD: It had been our hope all the matters includiny the long- term and short-terim tests and the rebuttal could be accomplished in this week.

CHAIRMAN MILLER: You understand our terins --
4R. AXELRAD: I understand, Mr. Cnairman, as of now, dependiny upon Mr. Nerring's health it still seems to be a feasible target,

MR. CHAIAMAN: You shoot for your target, we shoot

1
for ours, we want to get a complete record.
iN. GRAY: On Mr. Herring's health, we did go back with hat at lunch time. Unfortunately, because of medication and so on, we were only able to talk with him about 5 minutes, and after that, it really wasn't accomplishing anything.

ChAIRMAN AILLER: I think he got smart doctors. he probably will recover sooner. I realize, myself, it is paramount. We will do what we aan through Eriday this weak, noon Friday, and we will take continued readings.

Let's get as inuch as we can accomplisned working around hia. And then you will have an opportunity to \(\partial e\) furnishing nore information and negotiating and all the rest in this two- or three-week interval between the 'two aspects of the hearings.
where are we now with the panel?
MR. GRAY: Nr. Chairman, I was continuing with cross examination.

I woulc like to go Dack to page 17 of PGZ Exhibit No. 28. And the response to question 77.

In the last sentence of that response, you indicate that wed walls transhit in-plane sheer forces. Do the wej walls also contribute to the resistance to gross overturning?

DR. NaITE: Yes, they do.
MR. GRAY: Do you nave an estimate of the percentage of resistance to gross overturning that they provide?
```

    DR. wAITE: It would be approximately 20 to 25
    percent.
    MR. GRAY: }20\mathrm{ to 25.
    4n. GRAY: Earlier today, you discussed the steel
    Nate and how they required full tension for the steel plate
would be assured and maintained through some inservice
testinj, At the same time, you indicated that the bolts to
Ne used for that steel plate are two inches in diameter or
will be rather than one and three quarter.
DR. NHITE: Yes.
AR. GRAY: I would like to ask why would the two
inch bolts be used now rather than the one and three quarter
inch solts.
DR. wilTE: Going to the larger diameter bolt is an
effort to reduce the stress to a level where stress corrosion
would not be a concern. This would simplify the inservice
inspection program.
4R. GRAY: What's your best estimate of the stress
elements where the stress corrosion is important in the
lateral force?
4R. CHANG-LO: We have some data which we brought
along with us. I'd like to take a look at it before we say
something.
MR. GRAY: YoL can provide that answer later.
MiR. CHANG-LO: we have that information.

```

1R. GRAY: back on page 12 A in response to question 19. where you talk about the analytical model for the coaplex, and you indicate that we've got to nake certain assumptions in that analytical model.

Now, these assuaptions have to be based on and sroperly reflect the physical behavior of a structure under the expected size of the load; isn't that true?

DR. WHITE: Yes.

4R. GRAY: what, what sorts of assunptions zenerally are you talking about here, the assumptions that have to be made in this model.

गR. WHIPE: Generally, you would want to have a model give a representation of the distributions and also one that fave a good representation of the structural stiffness.

1R. GRAY: And what's the basis for the assuaptions, for exanple on stiffness?

DR. WHITE: In most practical designs, reinforced concrete structures, the model is of the stiffness -- the stiffness of the inodel is obtained from the initial module us of the concrete in the uncracked state. And this is the traditional accepted procedure for calculating the stiffness of a model.

For the approach that we've taken using the fine element model, which is a refincment far beyond what normally is done in reinforced concrete design, we have tried to
account for the influence of sheer stress on the stiffness of the walls. In this, we have made an attenpt to incorporate these kinds of refinements into the definition of the 3tiffness into the fine element model which is already one step beyond what is normally done for reinforced concrete structure.

1R. GRAY: which your testimony program provided you witn some data on stiffness and variation in stiffness. 2R. WHIIE: Yes.

AR. GRAY: Paje 15 in response to question number 28 , you indicate that dampening can reduce the inertia loads and that dampeninj increases with increasing stress level in the structure.
D.R. WHITE: Yes.

4R. GRAY: while that's generally true, you can't really quantify this change in dampening very well; isn't that correct?
3.2. Whire: That's true, we don't have any experimental data on this specific struzture that could be used.

MR. GRAY: Now, the additional structural iaprovements, I believe they have been referred to, such as welcing on the beam-column connections in certain locations, they will add to the decided resistance capaijility of the complex, is that not true?

1

DR. NHITE: True.
4R. GRAY: Have those improvenents, of that additional capacity, even thougn it may be lotal, have they been factored into the capacity determinations or the capacity-to-force ratio roles that you have presented?

0R. WHITE: Okay, the capacities have been factored into the response to Dr. McCollom's question number 6. And I chink that perhaps the first place where these new items have show \(u\) in terms of overall capacity, they are not reflected in the diagram shown in PGE 1020, for instance.

AR. GRAy: They would be reflected, thougn, in what nas been, wnat is PGE Exhibit 30 , this is response to Dr. mcCollom's questions, and you have a number of figures?

JR. WHIrE: Yes, yes.
Mi. GRAY: Now, we've got exhibit --

गマ. WHITE: Let me make one addition to that.
The increased capacity due to tying the horizontal reinforcing steel at elevation 45 , those are included. But the influence of the reanrcolumn connections on the column line \(N 45\), tnose were not included?

4R. AXELR.D: Dr. white, were those included, in wnich answers?

DR. WHTTE: The dean-colunn connection -- this is included in the response to Dr. HCCollom's question nunber 6. MR. GRAY: Do you have in front of you PGE Exhibit

1

25 vart \(u\) ? This is the March 17 responses to Staff questions of varch 7.

DR. WhITE: Okay.
4R. GRAY: You have indicated in those responses
that Dased on the equations of diagonal tension, the element sneer value can be less than 300 ? \(S\) for aspect ratios of .73 ; is that correct?

OR. WHITE: Yes.

MR. GRAY: Now, the 300 PSI limit was used in PGE 1020, wnich is Licensee Exhibit 24. So can you verify that you are using values less than 300 PSI where those values are calculated and appropria;e in your analysis?

DR. WHIFE: If diagonal tension controlled and it were less than 300 PSI we would use it. Now practically, that has not occurred because when we have an aspect ratio of .73 or higher, the diagonal at the, the controling, controlling mode. But if it were, we would have used the value less than 300 PSI.

4R. GRAY: In that same document, I believe that document did not address, part \(U\), did not address the double Dlock walls as applicable to composit walls; is that true?

4R. SARKAR: would you please repeat the question once more, mr. Gray?

Mr. GRAY: The factors considered in this response to Staff questions did not address double block walls in the
complex. They were considered for the conposit walls; is that true?

4R. SARKAR: Yes, that's true.
AR. GRAY: And what is the reason for that?
4R. SARKAR: Nell, this was, the response was generated for the purpose of illustration of the matter of calculations of the passajes of the conplex walls. by application of the appropriate modes of behavior. And by and large, of corse, we are concerned with the composit walls. out in case of the double block walls, the sane approach would be taken in the applications of the other modes for the evaluation of the double block walls.

4R. GRAY: How would that effect the double block wall sapacity if you applied those same considerations to those?

4R. SARLAR: Are you referring to the diajram behavior or the particular mode behavior or in general?

4R. GRAY: In general.
AR. SARKAR: In gener al the bending modes for the double curvature and for the single curvature the method of calculations would be the same. For the sliding the method would be the same. For the diagonal tension as is in PGE 1020 or perhaps in one of the NRC Staff responses that we are limiting ourselves to 150 PSI for the diagonal tension.

MR. GRAY: would any of the sapacities, s'ieer
capacities for the double block walls fall below that 150 PSI.
4R. SAKiAAR: Snould that fall below 150 OSI, the actual value would be taken.

1R. GRAY: But that has not actually been calculated for double block walls, that same approach; is that correct?

MK. SARKAR: In terms of the diagonal sheer, again?

4ri. GRAY: In terms of all three that you mentioned. 1R. SARKAR: As \(I\) say, the capacity evaluation for the various modes of behavior apply both to the double block walls and the composit walls. The only difference is that the coraposit walls we are restricting ourselves to the diagonal tension mode of behavior to 300 PSI where as in double block walls, that particular is 300 PSI.

4R. GRAY: Or less, if calculate.
MF. SARKAR: Of course, that is the ultimate.
MR. GRAY: Moving on to PGE Exhibit 30 , which is Licensee's responas to Dr. McCollom's prehearing questions. On Page 2 of 3 at the response to questions 1,2 and 3. in the next-to-the-last paragraph, you state that the applicable load combinations of the \(S S A\) must ve satisfied to show that the margins are restorzd. Isn't it true that the load combinations are not everything. The corresponding acceptance criteria are also inportant in determining whether the margins have been restored. In other words, you concentrate here on the load combinations, but you've also

1
gut acceptance criteria which you compare to in determining whether the aargins are restored.

DR. WHITE: Well, that's true that the two go mand in glove. I guess 1 don't understand your question.

1R. GRAY: I am just trying to -- the indication nere is that to deternine whether the commission's order of may 26,1978 satisfied it's necessary to ascertain whether the modified complex would satisfy the applicable load compinations in the FSAR. That seems to concentrate on load combinations alone.

DR. WHITE: Okay, in order to satisfy the other aspects of the 40,000 PSI steel and thos: kinds of thinjs, is that what you are referring to?

MR. GRAY: Yes, in otier words there is more to it. It's also what is acceptable to order the acceptance criteria.

DR. whITE: This is referring to or attenpting to reter to on the load side of the whole operation, what are we considering and trying to clarify that.

4R. GRAY: Fine. In response to question 5 on pages, on Paye 1 of 4 , the last paragraph on that page, you refer to the capacities snown in certain figures for walls \(R, N, 41\), 46 and 55. Were those capacities divided by the load factor of 1.4 ?

DR. WHITE: Yes, they have been divaded by \(1 . \leqslant\) and the appropriate caparity reduction factors have been included.

AR. GRAY: Un Page 2 of 4 in response to question 5 , the top of the page there, you refer to the capacities that nave been modified 41,45 and 55 walls for the single curvature mode of behavior. How were those single curvature capacities determined?
D.2. NHITE: It's the same approach that was described in our response to NRC question of February 13 in the sane, same procedure all the way througn. I don't know if you want to go through all that or if that's adequate.
41. GRAY: What capacity reduction factors were used in that that?

DR. WHIFE: For the vertical sheer on the side of the menders there, the sheer resistance is coming from sheer Eriction, so they were using the .85 . The noment across the botton of the free bodied diagram, this is a flexure related resistance, so they were using . 9 .

AR. GRAY: was there capacity reduction factor used for the beam-coluan connection?

DR. WHITE: No.
4R. GRAY: And why was that?
DR. WHITE: The cafacity reduction factors as we interpret thea are applicable to portions of resistance associated with concrete. And here we are taking the capacity froa a steal kind of connection and therefore the capacity reduction factors from \(A \subset\) I are really applicable.

Nh. GRAY: Even though that bean-column connection nas been consicered as additional reinforcing steel?

DR. wiITE: That perhaps may be your interpretation of it, but not ours. The bean-colunn connection was for purposes of stiffness calculations for convenience of the evaluation considered as part of reinforcing steel, just as a matter of convenience. But in terms of the actual mechanism of developaent, it's a steel type of behavior not necessarily concrete.

4R. GRAY: Oאay, in response to question 5 , again, Page 2 of 4 , the last sentence at the top paragraph, you indicate that the sliding of the diag unal tension loads of behavior don't govern the capacities for modified walls 41, 46 and 55. Are the sliding and diagonal tension capacities that you are referring to there, those given in PGE Exhibit 25 itea \(U\), that is the March 17 response to the set of questions. In response to Staff questions. Response to Staff question 1 A.

OR. waITe: I didn't understand the question.
Min. GRAY: Let me go back over this again.

You state in the last sentence there that the sliding and diagonal tension modes of behavior do not govern the capacities of any of these modified walls.

DR. wHITE: Right.
4R. GRAY: Are those capacities in sliding diagonal
tension capacities that you are referring to there, are they the capacities that were calculated and provided in PGS Lxhibit 25 item \(U\) in response to Staff question 1 a?

DR. WHITE: Let me repeat the question to make sure I am giving you the right answer. The sliding diagonal tension referred to here in the last sentence of that parayraph, these are the Dehavior mechanisins that are reported in question 1. Is this what the question was?

MR. GRAY: Right, that's the question.
DR. WHIIE: The sliding diagonal tension referred to here is the same as the sliding diagonal tension here.

MR. GRAY: Fine. And does that have the appropriate capacity reduction factors?

JR. WaITE: Yes, yes. The figures in exhibit \(u\) as has been stated you recall, yes, the capacity reduction factors are not included in these figures. These were just for purposes of illust.ation. When we get around to calculating the actual capacity of the walls, then the appropriate reduction factors were included.

MR. GRAY: Okay, in the second paragraph on this same page of Exhibit 30 , you, you state in the second paragraph on Page 2 of 4 of the response to question 5 , that the flexural capacities were calculated by conservatively neglecting the bond between the imbedded steel colunns and the concrete?

DR. নaITE: Yes.

4R. GRAY: Isn't it true that that bond may not be very reliable, that it may well not exist?

DR. ivHITE: It is undetermined the quality of the Dond. This is why we have conservatively neglected it. our neglecting of the bond does not indicata on our behalf that we expect the bond to be zero. We do not expect that to be the case at all. we expect some bond to be there. Bul not seing able to quantify it, we have conservatively neglected it. But that should not be construed to indicate us believing that there is no bond. We believe there is.

1R. GRAY: So if there is a bond there by neglecting it obviously it's conservative. If it's not there, then neslecting it is just what should be done.

Even if that bond does exist, that should have no effect on the double curvature behavior; isn't that true?

DR. WHITE: If the bond does exist between these panels, then they would not function as individual panels. They hould function now as a segment of wall 93 feet long or depending on the wall we are looking at. So the presence of bond or no bond is important. I say if the bond is there, then it doesn't dehave as individual panels between beams, one great big long pañel.

1R. GRAY: On page 3 of 4, the nexi page, you indicate that the growth of the wall panel due to this
```

aicrocracking or small cracking will compensate for the
effect of creep and shrinkage
DR. WHITE: Yes.
MR. GRAY: How much creep and shrinkage will it
compensate for? Compensate for, you assume 140 microinches
per inch of creeping and shrinkage?
A. We are looking at the influence of this microcracking
to provide a vertical growth strain in the neighborhood of
240 microinches.
2. On the last two sentences of that paragraph, you state
that the total load of the wall will not, in effect, change
and the effect on capacity will not be significant. Do you
see where I am referring to?
4R. AKELRAD: what page are you on, Mr. Gray?
MR. GRAY: This is the same page, }3\mathrm{ of }\Delta\mathrm{ , top of
guestion 6, the large paragraph, last two sentences.
MR. AXELRAD: Thank you.
rik. GRAY: In making that statement, have you
considered what the combined effects of gross bending and
cead load reduction could be concurrently?
DK. Wi.TTE: Well, the combined effects are addressed
in response to question 1 B that are varch 17. So that is
backed up for the previous statement.
IR. GRAY: Have you verified that the load capacity for redistripution of the loads are viable? In other words

```

1
that the loads can redistribute the way they need to. 2R. wiITE: Yes, we have looked at the load redistribution that would be associated with the influence of gross bending and this kind of thing.

Now, if you take a look at the panels being attached to one another by the floor diaphragm, this is the mechanism that is used for actual load redistribution within the systen. If a panel snould be - actually, you can't put the load in the panel, and the panel says that its capacity has been exceeded, and then the load goes someplace, that isn't really what happens. The load will not have gone to that panel in the first place. So by virtue of the load never being there, the idea of redistribution is somewhat the figment of an analytical imaginatiol. The actual building doesn't respond that way. In actuality, the floor diaphragin will route this load to whoever has the stiff he's nembers. It isn't the load started out in one member, that capacity exceeded and then the load went someplace else because it was never there to start with. However, if you get down in a microscope to look at this thing, if you are not careful to arrive at that seginning point and then try to see how a load is going to try to depart from that identification. But when you step back and actually look at the response of the building, it really doesn't quite behave that way. .

MR. GRaY: Will substantial cracking occur in the wall panels under these conditions we are talking about?

DR. waITE: I wouldn't call it substantial. Let's try to put some, some bounds on that. If you take a look at the dehavior of the test specimens, for instance, in their approaching ultimate load, the kinds of cracks that develop where -- I think what most people would call a hairline crack, sometning in the ten mil category, a fairly small crack. And in terins of actual cracking as referring to developing in these walls, this is primarlly what it's going to be. The panels are essentially flexure controlled so the cracks will De flexure cracks rather than large diagonal cracks.

NR. GRAY: In the figures attached to your figure -specifically figure 53 and 64 and 65 , the single curvature capacity is not shown on the figure; is that correct?

OR. WHITE: Nhat was that again?
4R. GRAY: The single curvature capacities?
OR. WHITE: Correct.
AR. GRAY: Do you have any idea where that single curvature capacity would fall on each of these figures?

4R. SARKAR: Yes, as discussed yesterday which we talked about earlier, there is a substantial amount of difference. So for a matter of clarity, we did not show the single curvature capacities in those figures.

Mr. GRAY: You say they are not substantially
different fron what?
4R. SARKAR: Froa the Couble curvature capacities. There is some slight difference. But as I say, this is a large amount of difference in order to make any substantial change.

MR. GRAY: Okay, on response to question 11, page 2 of 2 .

JR. WHITE: Still on Exhibit 30?
4R. GRAY: Yes, Exhibit 30, the third paragraph, I guess, again, the saae question, if, the probability of the beam and the columns and the concrete, if that bond exists it provides you with soae additional capacity here; is that correct?

DR. WHITE: Correct.
MR. GRAY: which you have neglected in any event.
DR. WHITE: Tnat's true.
4R. GRAY: In response to question 12 in Exhibit 30 , Page 1 of 2, the first paragraph in the answer, in the last sentence, you state that the Trojan FSAR went beyond the minimal requirements of the UBC. And the siaplified equation in the UBC by specifying response spectra method of that analysis. You are not claiming that this is a conservatisn, or are you indicating that that's a conservatisin.

OR. waITE: No, I think it was just a simple statement of what the situation is and a word of caution of
trying to apply UBC allowables with a set of loading conditions that is inconsistent with the kind of load that UEC was talking about. In developing i particular code, their loads, their allowables are \(n\),rmally developed hand in g+ ove. And if you pick one set uf allowables in someone else's loatin, conditions, you run the risk of coming up with an incoapatible, although maybe conservative, at least an incompatible set of conditions.

MR. GNAY: we have no further questions at this time. CHAIR MAN IILLER: OKay, Dr. MCCOIlom?

DR. McCoLLOM: In the questions that I gave at the prehearing conference I was concerned about the criteria aoout which we shouli judge whether we have met the reguirenents of the ESAR. Both you and the Staff nave responded to this. You did it in your Licensee Exhibit No. 28 and the Staff did it in the Staffexhioit No. 17. have you had a chance to review the Staff's writing on this?

Mik. SARKAR: The answer is yes, Dr. McCollom, we went through the Staff's yesterday.

DR. MCCOLLOA: All right, are you the one that is knowledgeable, then, about whether, what you have suggested is the criteria and what they have suggested is the criteria are compatible or does one go outside the bounds of the other one in certain areas, and if so, how.

AK. SARKAR: That is a question, Dr. McCollom, I

1
have to refresh my memory a little bit and go through the Staff's testimony and give it a 3 lance to see where we stand. DR. McCOLLOM: I think that would be useful, and if that's all right, I would suggest that you do that carefully and then we can address that problem.
Mi. AXELRAD: Dr. MCCollom, are you referring to the Staff's answer to your, the Staff's answer to question 21 or referring to pages 19 and 20 of the Staff's testimony of Aarch 24, 1930?

गR. NCCOLLOri: Tnat is part of it. I believe, also, there is soae part of it in question 23.

CHAIRMAN AILLER: Paje 35.

AR. AXELRAD: Appearing on Page 22 of the Staff's testimony, their question 23 and answer \(23 ?\)

DR. meCOLLOथ: Also, so is -- the answer to that is fes, Mr. Axelrad, but also, I believe question 22 starting on Page 21 is related to that. And the answer to it.

4ri. AXLLRAD: So we are referring to the Staff's testimony appearing beginning on page 19 on Narch 24

CHAIRAAN AILLER: Right, and subsequent, most, if not all, the balance of page 19, I think, Mr. Axelrad.

DR. MCCOLLOM: I believe it goes through page 25, if I have gotten my pages right now.

リR. AKELRAD: No, I believe it would stop at paze 23. Appearing on page 24 is a question with respect to analytical

DR. MeCOLLOM: I agree, so it would be from page 19 to page 23 inclusive.

ME. AXELRAD: Yes, right.

CHAIRAAN MILLER: Do we understand the panel has not examined that testimony or not? I didn't get the answer. DR. whITE: we have.

MR. CHAIRMAN: You have.
iR. AXELFIAD: The panel has reviewed that testiaony +ogether with a lot of other testimony and a lot of other materials. we just wanted to be sure they were addressing the right question. It might be useful if we took a short recess at this point.

4A. CHAIRMAN: If we take a short recess, the panel as I understand has read the testimony of the Staff, is faililiar with it, the snort recess will enable the Staff to focus so we can proceed. Recess.
(Recess)
JR. WHITE: We believe that we are in the basic ayrement with NRC Staff in-terms of the objective of the storing required aargin. It's primarily my meeting the FSAR criteria, this is prepared in the discussions of the Staff section ESAR section 3678 but since the NRC is still in the process of reviewing, we are not sure we are in total agreeaent. But from what we think so far, we think we are.

DR. MCCOLLOM: One of the places where the Staff
questioned was that you were taking acivantage of orher structural capacities such as the steel frame primarily being used to carry the weight rather than being relied on to resist lateral loads. Now, is that consistent with or inconsistent with anything with respect to the FSAR criteria for seis.aic capabilities?

DR. WaITE: The FSAR indicates that the steel frame was designed to carry the vertical load and the concrete masonry walls were designed to resist the lateral sheer. It does not say that the steel frame was designed to carry only the vertical load. It says it was designed to carry the vertical load.

As Ar. Anderson indicated this morning, the original designers obviously recognized the steel frame being there and was able to take some value for it. It was not guantified in the original design, however.

JR. MCCOLLOA: In terms of the use of the STARDYNE finite element model, in your words, how does the criteria in the FSAR permit the use of that inodel?

DR. NHITE: In my understanding of the requirements in the FSAR, it makes no mention as to the limitations that one must use in developing analytic model. At the time that the original analysis was done, the finite element analysis that we are currently using was not availalle on production basis. It was strictly a research tool if used at all. As a
consequence, the best tool available at that time was the stick model which you recall from Phase 1 what the stick model refers to, viewed from today's standards, that was a relatively crude model. However, at that time that was as good as could be done.

DR. MCCOLLOA: See, now, I appreciate that, and I appreciate the ability of the STARDYNE model. But all I am trying to do at this point is to determine that we haven't violated the ESAR or if we have that we justify that. And I think what you are trying to do is justify it. But \(I\) wonder if it cannot be included or is not included under witt tever cover the FSAR would have permitted.

DR. wiITE: well, the FSAR would certainly not exclude the use of STARDYNS. It doesn't require that it be used.

DR. ACCOLLOA: STARDYNE or a finite element model as compared to à beam stick inodel.

DR. WHITE: Right. I might point out that in tne original design, you have certain knowledge of loads, and knowledge of loads that existed at the time of the original design is not as good as we currently know it. And because of that, this is a different, different kind of situation. we feel we have a much better appreciation for the behavior of the structure than the original design was able to develop. And because of that, it gives us certainly more comfort.

DR. 4cCoLLDit: on paje 47 of your testimony, Licensee Eahioit No. 23, there are two questions, 39 ana 90 that respond to the criteria being used for the new reinforced concrete walls capacity and the capacity of the steel plates.

DR. WIITE: Yes.
OR. NCCOLLOM: Are those poth consistent witnin the reguirements of the FSAR?

DR. WIITE: Thase would supersede the recuirements of the FSAR. They refer to the code at that time.

DR. AcCOLLO.: Do you recall that there is any reason why codes cannot supersede as far as the PSAR requirements are concerned? Just like, for instance, a STARDYAE analysis permittea where as the bean stick model was permitted first?

2R. WHITE: They certainly can superseae.
DR. : acCOLLD1: In your opinion, does it change the asility or margin of the seismic capability of the structure?

DR. तIITE: In the development of codes, à following code is not necessarily aore conservative than previous code. As -- if you look Jack over history, sometimes they learn sonething that causes thea to go more conservative or less conservative. So a new code in itself does not necessarily indicate an increase in margin. In many cases that is the situation, but not in all casss. I think that it woula
certainiy de the acsign that would develop sased on the latest coae woulu certainly reflect the latest thinlinj. So from that point of view, whatever margin you have as a result of using that code would se considered by the enginearing connunity certainly an adequate aargin.

DR. NCCOLLOM: Ana possibly even a setter or justified one with nore accuracy. DR. WIITE: Yes.

OR. AcCOLLOA: I guess I would de remiss if I dian't connend whoever wrote the section for an excellent editorial analysis. Is that yours, Mr. White?

DR. NeITE: No, I have to certainly give credit to 4r. Sarkar. I think he did an excellent joo in developing this overall testimony.
D.. IcCOLLOH: I would like to turn to page 55. DR. WHITE: I might also indicate that the questions were developed along with Mr. : onnson as well. DR. HCCOLLJ\%: In your question number 110 and the answer, you sugyest that 」sing single curvature capacities result in calculatea capacities that still satisfies the osz ana SSE deand with appropriate capacities. what do you mean Dy appropriate capacities? Did I get the wrony one? Excuse me, it's question 111, the next one. Question 111 with the answer there. Appropriate nargins. Ny question is, what is the appropriate margin?

DR. NOIPE: Your reference is made to satisfy the criteria sithin the FSAR. And the modifications are developed with the idea of meeting the rejuirements of the fact of OBE loading combination within the FSAR.

DR. McCOLLOX: I think whe only other question I nave is with respect to Licensee Exhibit 10.30 , the answers to the questions froa the prehearing conference. And it is witn respect to question 6, again.

I accept the fact that the walls that you selected to nake these comparisons were the ones that were most effected. Ans certainly, it was very nelpful to me, I an nappy to say, Decause I know it was extra work, to put then on these figures as they are. Jut is there sone way that you coula either using the mozel or just descriptively tell us why it is that these were the ones that were most effected by the cnanges that were made in the modification?

JR. wAITE: Nell, the force capacity representation that is on these aiagrans, the reason these particular walls were selected is, first off, these were the walls upon which . oodification were maje. Moaifications were physically mace co in teras of the east-west walls, walls 41, 45 ana 55 . So as a result, whatever capacity these walls had prior to modification, their capacities now are further ennanced.

The other two walls that are mentioned are the east and west walls of the Control Juilding walls, R and it. Ano
ajain, these walle has suostantial modifications made to them with the filling of the train oay, adding essentially an adaitional 30 to 40 percent of sheer area on the3e two walls at the lowest elevation to where the elevation of the sneer is the highest. Now in ajdition to the complex, the walls were not aodifiea because the capacity was ac their current condition, the loass within those els rents, those walls which were not modified cnanged somewat, but there was not a major redistribution of the walls as a result of mouifyins the wall Whtnin the Control Builoing complex, the Control Builaing. So the walls that were rot shown in these diagrams, the capacities were not cnanged at all. Tne loads only variea siightly and in virtually all instances there was sone reduction in the loads Decause now the walls that had been modifiea have the capability of accepting groater load than they were Defore. So the other walls now are loaded less. 3o the walls that are snown, that are shown that way because these are where -- this is the place where the new capacity has been added. The otner walls as mentioned earlier, capacities were unchanged, loads went down s+ightly, not a biy shift.

LR. MCCOLLOA: I assume from tnat statement that if the facility had been left as it were, unmodified, and if there were a seismic event to occur that were large enough to cause failures of any walls, that the walls that you have
nodelea here would be the ones that would be expectec to fail first?

DR. WIIITE: If these walls were to --

Dr. cCOLLOH: I an saying I know that it isn't feasiole and that it isn't in the specification, Dut if there were a seistic event sufficiently large to cause failure, would those de the ones that would be failing first? lot necessarily?

DA. NaITE: Not necessarily. moere are sone fairly 3aall valls, we refer to them in Phase 1 as ainor walls. Phere are soae of those walls that would reach their capacity prior to sone of the aajor elements. Now, whether or not for that local wall, you would consiaer that wall as having failea or not, this, I think, depenas on one's definition of failure. In terms of functionality of the overall complex, the complex certainly has not degraded its capacity from a functional point of view. So from that point of view, tnere is no failure in terms of an individual wall exceeding its local capacity, zeroing in'on that one wall, maype you would conclude that it hav yieldea or failed or something, but certainly not the complex.

If one of these major walls were to ex eea its capacity, however, now we are talking apout, at least from our predictions of earthquake, far beyond the SSE, 3ut if that were to occur, now we aro getting into structural damaye
 CGAIRMAN IILLLR: Yes.
```

    #R. AXELRAD: A ten minute recess?
    CHAIFMAV vILLER: Let me inquire first, and you will
        yet your ten minute recess. Anyboay else have any questions?
        Intervenors?
            Very well.
                            if. AXELRAD: If we kave no redirect, or just a few
    minutes of reairect, we then plan to put on ?rofessors folley
and oressler
GAAIR|Av AILLこR: HAl right, are we reacy to resuae?
AN. AKELNAD: Yes, we are, Nr. Chairman
CHAINAA: AILLER: I assume these f\inntleaen men are
the next witnesses?
iR. AxELRiD: Yes, they are, Mr. Chairman.

```

AYLE J. HOLLEY and SORIS BRESUCR
was thereupon produced as a witness in behalf of the Licensee, anc haviny oeen first duly sworn on oath was examined and testified as follows:

IR. AXELRAD: Before roceeding with the testiaony of these witnesses, \(r\). Chairman, we nave previously had narked as an exnidit in this proceejing a document entitled review of uro~osea desijn moaifications for Trojan Sontrol 3uilding, larcn 13,1930 by iyle J Holley, jr. and Boris 3resler. Re sevevicusly markea that Exhidit 29. If we could aare tnat Exnidit 29 A ana we have handed uy to the parties, to the mompers of the 3 oars and the reporter tho auiitional docunents, one entitlea professional qualifications of lyle j nolley, Jr. wnicn I would ask to de aarkoc foz identification as \(2 y 3\), consisting of two payes, and a l-paje document, at the head of whicn is name, Boris sresler, whicn I woula ask be marked for identification as exhibits 29 C

CIAIRMAN HILLER: They nay de so marked. (Ekli.-10. \(29 \mathrm{~A}, \mathrm{~B}\) and C marked)

Ah. AKELRND: Professor Rolley, would you vlease state for the recors your name, address, and present oosition DE. HOLLE: : Hy name is tyle J Nollev, jr. "y ousiness audress is box \(33, \angle I\) I oranch, post oftice, Canoridge, nassachusetts.

Ano your third question was what?
AR. ASELRAD: Your present position.
T:ic IIT.Is3S: I an a consultiny structural
engincers. I nold the title of professor aneritus in civil engineerinj of 11 I

1R. ANDLAAD: You have Defore you a copy of the tro-page docunent entitled Professional qualifications of ayle J holley, jr. which has been marked for identification as wicensee Eahicit \(2 \Rightarrow\) B.
D. HOLLEY: Yes, I ao.

Al.. AALLRAL: Do you accpt that statenent as your statement of qualifications in this proceeaing?

DR. HOLLLY: I think there may be one small error.
AR. AADLRAD: iould you oring that to our ettention, please?

DR. HOLLEY: In the second sentence, the docunent says I Joined the 1 I \(T\) faculty in 1946. Ny recollection is I secane an instructor in 1946 and actually joined the faculty in 1947. Jther than that, I think the dovument is all right.

MF. AXELRAD: Thank you. Do you adopt that statement as your statement of gualifications in this proceeaing as corrected?

OR. HOLLEY: Yes.

MR. AXELRAD: Could you sum vice for us oriefly your
aducational sackground and excerience?

DR. HOLLEY: I have a bachelors degree and nasters dejree iron A I \(T\) in civil engineering. I received the Dachelor's degree in 1939 and then remained at the institute for 2 years as a teacning assistant. I was away fron the institute until 1946 during which time I was working for the j Forgan Smitn Coapany in York, Pennsylvania, primarily as a stress analyst in the heavy machinery field.

In 1946 , I returned to \(M \mathrm{I}\), went into the studies wich I had interruptea, as noted, received my masters degree in ' 17 and joined the faculty in ' 47 in the structures alvision of the department of civil engineering. I remained an active faculty menper until 1974 and for a larze. por a significant jortion of those years, I was heau of the structures division of the department of civil enjincering.

I nave deen involves in, in engineering essentially since 1941. Starting sometime in the early 50 , I coabined ... \(y\) consulting engineering efforts with Professors Biggs (pnonetic) and hanson (phonetic) and over that 20 sone oas years, I nave been involved in a large number of engineering projects. I would say that ny efforts have been primarily either in assisting in the design of complex structures or in the appraisal of structures which evidence sons aifficulty.

The experience has includes, as indicated in the written docunent, a considerable amount of time in the
```

nuclear sower fiela.
1.. ASELRAD: Professor Aolley, you testified in the
irteria operation phase of this proceecing; did you not?
DR. HOLLEY: Yes, I did.
.1.. AXELKAD: And since that time, you have
continued to De involved in the review of the proposed
nugification orogran?
DN. IOLLEY: Yes, sir.
AR. ASELRAD: Do you have Defore you a copy of the
aocuaent entitled revien of proposed design and modification
for {rojan Control 3uildinj :arch 13, 1920 which has
previously been markea for identification as Licensee Exhivit
2) A?
DR. SOLLEY: I do.
AR. AXELRAD: Are th\nire any corrections or adaition
you would aake to trat docume:ut?
DE. NOLLEY: Where ire not.
15. AKELRAD: IS this testimony true ana accurate to
the Dest of your knowleaye?
Dk. \#OLLEY: To the Dest of ny knowledge, it is.
N.. AXELRAD: DO you adopt that in this proceediny?
DR. HDLLEY: I do.
1R. AKELRAL: ir. Bresler, wouls you state your
address and name for this proceeding?
DR. SRESLER: \#y name is Joris Bresler, ny azaress

```
is Jatergate Tower, Suite 755,1900 powell Street, Eneryville, California.

I an at the present time one of the orincipals in the firm of iviss, Janney, Elstner and Associates, and nanager of their California office.

I have seen retirea from the University of
California at Berkeley for the last two years where I had taugnt for a perioa of 32 years. I received \(m\) i :achelor of science in civil engineering degree fron tha Jniversity of California in 1941 anc for several years following was working as a design engineer in the ship builiing industry and then the aircraft insustry.

At the end of the war, I returned to Califorria Institute of Iechnoloyy in Pasadena where I raceivea my master of science deyree and an article in engineering. And shortly thereafter Joinet the faculty at the University of California at Berkeley.

During the years at the University of California, in addition to tesininy and research, I have continuea to enjage in consult, \(y\) to a more limited extent while I was enjajed in tine \(u^{*}\)-versity. The focus of my research has been primarily structures in distress or structures where a potential hazard ivas involved and to a large meascre the source of the hazard was of seisnic nature. This involve: a variety of structures, steel, and reinforced concrete alike.

Y area of specialization was, at least for the last 20 years, was in reinforced concrete. I have deen active in a number of professional comaittees both in the Ainerican Concrete Institute and the American society of Civil Engineers, comittees which produce docunents leading to developing of total criteria.

I tnink that might de a sufficient resume'
A. ARELRAD: Thank you, Professor 3resler, are your qualifications sumarized on the 1 , page docu nent that has previously been markea for identification as Licensee Exaidit 2y C?

OR. BRESLER: Correct.
12. ASCLEAD: Do you have any corrections or
aدaitions to make to that l-page locument?
DR. 3RESLik: I have not.
AR. AXELRAD: DO you adopt that statement as a stateaent of your qualifications in this proceeding?

2R. BRESLER: I do.
A.. AXELRAD: you have previously testified in this proceeaing at the interim operation pnase?

DR. BRESIER: Yes, I have.
Ch. AXELRAD: Since that time have you continued to review the aesign and proposed modification of this farility? DR. BRESLER: Yes, I have.
if. AKELEAD: Do you have before you pocument

2ntitled review of proposea design and modification of
proposed Trojan suilding, as was narked Licensee Exhibit 2y A.
DR. BEESLER: I have.

HR. ARELRAD: Do you have any corrections or
adaitions to nake to that document?
DR. SRESLER: No, I do not.
DR. SRESLER: That is aocunent true to the jest of
your knowleage?
DR. BRESLER: It is to the Dest of my knowledge.
4R. ASELR:D: And do you adopt that testimony as
testimony in this proceeding?
DR. 3nESLER: I do.
.... ASELRAD: Professor Holley or Professor Jresler, could you sumarize for us the review that you have performed which lea to the reparation of this report in this proceeding and also sumatarize for us the conclusions that you nave reached?

DR. BRESLER: If it's a̧reeadle with you, I will try to sumarize this testimony oriefly. And I an sure orofessor Folley would want to ady further remarks when I complete my srief sumaary.

As I have already responded following the hearings, previous hearings, we have seen participating in developing design modification. These involve frequent conferences, the gechtel Staff, PJS Staff, and in adaition conferences
between professor solley and nyeelf in adaition to these. Aso I ala at this time to estimate precisely the anount of tine we have spent on this, sut I would guess something in the order of perhaps 30 days a year or something of that sort, at least of that order. I have not checker the figures precisely, Dut something of that sort. So this would represent an effort, for ae, at least, of about a nonth ana a nalf over a period of à year and a half.

In the course of this appraisal, we have followed closely the development of various analysis, the development of criteria, but whion results of the analysis were svaluated. we have developed closely test results wirich led to the aevelopaent of these criteria and examined all the docunents that resulted or reported results of analysis anz evaluation. ve have in our testimony discussed the onjectives of structural modifications. Ana, of course, the principle oojective is essentially nandated oojective to satisfy the specifiec OBE criteria, essentially under the sane conditions as the original design specified in these conditions.

There has deen some discussion of the OJE criteria. They are not, perhaps, easy to state cirectly, and as has deen discussed previously, there may de different interpretations oy engineering, qualified engineering professionals as to their precise abaning.

It is our osinion nere, it is our view here that 23 E
```

cepresents maximua event that a facility -- naximum seismic
event a facility will se subjected to without any way
disruoting Iunctional caoability. And tnat's all it gives.
When one introduces factor, one introjuces only for
the purpose of comparison of the response and the OSE
conaitions with so much higher capacity and to sr.w that
tnere is a reserve maryin of performance but a so-callea
factor 03E event is not an event that describes specifieg o3E.
If I have nisstated or misrepresented anything, I know
professor Holley will correct me.
The next iten, perhaps, in our testinony yoes to the
matter that Decausc of the complex nature of the ouildings in
this complex, ano I mean the type of construction which
utilizes a steel frame, in many cases a tnick concrete core,
faced Dy mazonry exterior and interior, a very difficult
sandwich to aiyest, that the existing codes, in fact, do not
deal with such structures. The existing codes are usually
developed eitner for reinforced concrete structures or
prestressed concrete structures or steel structures. Sut
when the structure involves the various materials in one
composit, one gets into proDlems of interpretation of codes
that are just intractiole ano inapplicaole.
Therefore, it became necessary in this orogran to
verify criteria Dy which the analytical results could de
Juaged. The criteria could pe developed from theoretical

```


Further more, in this particular experimental prograa, there were a numper of garaieters characterizing the Specific Sontrol suilding, not just in jeneral dealing with cuniosit struetures, the anount of reinforcenent, the thickness of concrete core. The spectikn as nearly as <ossiole designea to aodel sone of tho parameters that ropresented tais particular ouilding. The effect of cyclic loadinf was anotner aspact that has to pe veritiea by a testing progran.

Tne principle test results of this projran were 1 . to identify modes of failure. And three moaes of failure ware iqentified, flexural failure, sneer failure which are quite comaon to all types of construction and slicing mode of fallure that is frequently observed in masonry construction out aight not oe observea in other type of construction.

In the conposit structures, it was quite interesting that when the full compozit wall masonry concrete and steel Irane acted together, the sliding mode generally was not a
critical aoae．Ihis das verification that was vary inoortant for us \(1 n\) developing and applying the various criteria． very useful data was ootainea froa the cyclic loads on the specimens and results of this permitted us to jain a wucn oetter insight ooth into the effect of such cyclic loaainy stiffness，effects of such cyclic loading on possicle facuction in capacity，ana effects of sucn cyclic loaliny on the utillty or adility of the test specimens to．defor．．．

Mile this was，as any test orograa，it＇s a somewhat
11mited test oroyram．And I don＇t recall exactly now，but the order，the numoer of siecimens on tho orater of 25 or sonetning like that．Te aio and we were able to verify the criteria with substantial confidence ir these criteria． Nhe rest of our testimony deals with achievenent of the \(03 E\) acsiyn criteria．And this is adaressed primarily Doth to tne applicaoility of linear clastic analysis，the use of SMARDY：the interpretation of these results，that is how vell known existing nonlinearities and linaarities could effect the results of a linear analysis or how a inear analysis could de interpretes to engage the performance of such a stzucture，a more accurate performance，which would be nonlinear．

And skipping Einally towaras our sumary and conclusion，we have concluded that the finite element proyran provijes yood results for prediction of response in the
elastic range for the particular case for the orescrioed jrcund motion, the force resultants are predicted reliably. That nonlinearities which cause differences oetween the actu-1 distribution of forces in the building, differences between the analysis and the actual forces can be evaluated ano interpreted and finally applying the eriteria for determining the capacities, capacities both for resistance of force, and capacities to the form when compared with the results of the analysis with due interpretation of nonlmearities indicates to us that the oojectives of restorin: the original conservatish for OBE criteria odjectives have ఎeen achieved.

I know you want to say something.
DR. HOLLEY: I vant to say that was excellent.
I tnink I would simply like to emphasize one or two points whicn Mr. 2resler made.

First of all, in an early section, in the section where we talk apout opjectives, he mentioned to you our interpretation of this factor 1.4 , and I think that aay pe of sonit inportance secause in the course of reading the voluminous amount of information that has been yenerated on the effort of this sort, I think it's easy to get confused. And we view the 1.4 factor, if you will, as having aosolutely nothing to do with an earthquake beyond oee, which in this particular case means beyond \(3 S 2\) because of the factor they
are sssentially identical majnitude ana load. But that rather the l.i says that you are going to try to design in such away that when you have forces develop oy 1 JeE, the demand on major resisting elements in the case of the Trojan building, this would de major sheer walls particularly, doesn't exceed 1 over 1.4 times their individual capacities. As I think we discussed in our earlier meeting with the Board on another occasion, tnis is for the purpose of having some confiaence as to the performance of the 1 OPS.

In making calculations or in writing text apout this orocess, en,ineers sonetimes use a shorthand, particularly if you are sealiny witn linear situations, you may sonetimes say I an conparing 1.4 JBE with capacity which, of course, numerically is the same as saying I am comparing oz5 with 1 over 1.4 times capacity. Zut it is an inportant point, I think, which we would like to note.

Inen yetting to in terim of sone of the things you atteapt to write in nere apout analysis, it was inportant to us to think awout nonlinearities, and you gentlemen are ЭroDably more aware than we of the considerable discussion in questions fron the Staff and responses from the Licensee an nonlinearities of various sorts, so thers are a zumber of thinys apout nonlinearities that seen to us important to consiaer. ie were, Decause this is a dynamic situation, namely in response to an earthquake. : were forced to be in
```

a position where for the varticular response spectra that was
specifiad and tne particular characteristics of this
structure, the inertia loadings on the structure for a piece
of equipment per wall per square foot, however you want to
put it, are extremely insensitive to the nonlinearities,
which is fortuitous, it means we know tne loading we are
talking apout quite well.
Now, there remains the question avout nonlinearities
which nay effect the distribution of the resisting forces
throughout tne structure given that you kno: the loaiing
itself quite well.
Ans nere in our testimony we discussed sone aspects
of that. But I juess the botton line is that the imoortant
polnt is that the structure has ductility which is very
imooftant in terms of situations where there may be
departures in distribution of forces throughout a structure
from those which are obtained fron a linear elastic analysis.
And here then carrying the cnain back just one step,
It will be apwarent to you why the results of the test
prozran were of particular importance to us. It may well de
that if it was not the most important one of the most
important factors in indicating first a dasis for some
capacity precictions basea on extreme assumotions. Sut
perhaps to ne more important, Dased on the need for guctility.
I think that's all.

```

A…AXELRAD：Thank you．
？rofessor Bresler and Professor Holley，your
testimony is dated llarch 13,1930 ．Since that tine have you had an opportunity to review the documents which have deen suosequently generatea？Let me ask specifically，the testimony on structural ajequacy that was suomittea by the Licensee aated March \(17,1930 ?\) The testimony on structural adeyuacy aated siarcn 17,1980 that was sunaitted by the NRC Staff，the testimony of Mr．Herring？

DR．BRESLER：Yes．

DR．HOLLEY：Yes．
IF．AKELRAD：The information that was submitted by
the Licensee to the VRC Staff on March 17，1980？

こR．BRESLER：I nave．

DR．HOLLEY：Yes．

DR．BRESLER：You have in mind the details of the walls on the reinforcing steel．

AR．AXSLRAD：Marcn 17,1930 was the response to the
larcn 7 questions that were discussed in San Eransisco．

DR．BRESLER：I remember．
iR．NKELRAD：Narch 20,1930 was information
pertaining to the reinforcing steel in the sheer wall panels．
DR．BRESLER：Yes．
As．AXELRAD：Does any of that information or
testimony causo you to mpdify or cnange the conclusions that
```

you have reached in your testimonv.

```
    DR. 日DLEEY: NO.
    DR. BRESLER: NO.
    AR. AXELRAD: Mr. Chairman, at this time I would
    like to offer into evidence Licensee Exhioits \(29 \mathrm{~A}, 29\) and
    29 こ
    CIAIRIAN IILLER: Are there any oojactions to
Exhioits 29 A, \(B\) and C?
    No onjections, the Licensee Exhidits 29 A, \(\mathcal{B}\) and \(C\)
are aamit in evitence.
    (EKA. ฟכS. \(29 \mathrm{~A}, 3\), and C received)
    1R. AXELRAD: One last question, Professor eresler
    and professor Holley, were you here in the courtroon during
    the cross exanination of the sechtel panel witnesses that
Degan with Drofessor Larsen's this aorning?
    UR. BOLLEY: Yes,
    DR. SRESLER: Yes.
    AR. AXELRAD: At this tine they are available for
cross examination.
    CHAIRMAM IILLER: State of Jregon?
    AR. OSTRANDER: ive have no questions, Mr. Chairman
    CYAIRIAN MILLER: Intervenors.
    1R. ROSOLIE: We nave no questions, Mr. Chairnan.
    CHAIRIAN MILLER: Staff?
    i.. GRAY: Just two minor questions. on page 16 of
your report, or your review of the design nozifications, you inoicate that your review and your evaluation is linited to 3ome extent; is that correct?

DR. BFESLER: Xez.
AR. GRAY: And that linitation is set uut in that Section 5.1 of this docunent.

DR. BRESLER: Yes.

IR. GRAY: Tnerein, you indicate that special adequacy proolens relate to the equipnent and the special attacnments to the aasonry walls have not been aaaressea. what special proolons are you referriny to there?

2R. SRESLER: Perhaps I snould attenpt to clarify trat. I don't know if "r. Holley may have. It has not been aduressea dy us.

ZR. GRAY: Yes.

DR. BRESLER: de have particivated in some of the discussion of prosleas assczisted with the aseguacy of the attachments of eyuipment, the ouping. Te are aware of sone of the measures that have been taken of sote of the field work and investigations that are carried on. But that was not the maln focus of our review. Anc we thought we would make that clear that this was not the main focus of our revie. and this is the only linitation, I woule say, that related to tnis item tnat I have.

DR. HOLLEI: I woula say quite sinply that we dian't

Lake those as items to which we snouls direct a lot of tnoujht and come Dack and write something. se had our nind on other things. 3ut as erofessor bresler said, we were involvea in sone discussions where these things were talked aอวut.

AR. GRAY: I guess what I an getting at is your report here aoes not consider those and other things. 2R. HOLLEY: Tnat's true.
3.. GRAY: ve have no further questions. CiAIRMAN AILLER: Thank you. CHAIRIAV HILLER: Dr. ICCOIION? D.. IccoLLO.: This morning we discussea a little Dit, and this afternoon as well, about how you 30 asout assurimy yourself that you've net the criteria that you need to neet on tne modification of a builuing tnat vas built unaer different kinas of criteria at a different time. And there are several thoughts that I thought you fight adaress in this.

One is, I tnink, particularly Professor 3resler, Deen invo-ved with the developient of codes, and I would ask. in this respect, the king of procedure that is carried out to test the cauacities of these different kinds of walls was the nor tial kind of activity that would have deen conducted to aevelos new codes as you move along. would you adaress that, Protessor Bresler?

OR. BNESLER: I will try, if Ar. Solley will nelp me later.

In developiny code criteria for varicus types of. structures, the criteria themselves represent a simplified nodel or simplified equation giving some kind of a lower Douna to possiole Denavior in a structure. Structural Denavior is, I suppose there is all kinas of physical natural processes. It is a very corplex process, and therefore, it is not'possiole in the quantitative code criteria to define all possidle aetails of that Dehavior sc that eriteria that are sevelopea sometimes simplify the process ana nake sure that these criteria are conservative.

Specifically, I think in the contest of evaluating this existing puilding, ana as a consecuence of the test results which are very important in our aevelopaent of these criteria, three major modes of failure were observed. We could have preaicted that such modes of failure would be observea. Sut the level or the magnituae of force, the mayritude of deflection, the effect of cyclic loaaing on these responses on the characteristics of such wall panels woula ne more difficult to preaict from the other considerations.

So...e of the panels in the test prozram representeo pancis with free-egge Dountaries which woula fail, essentially, in what we call double flexure. I am sure you
nuve come across this tera in testiaony，the certain reverse curvature S－shaped type mode of failure．

Others nad colunns impedded preventing sliding，and sone siedimens were tested，only with loading at the top without restraint at the top so it failed only in tie single fiexure moqe．So various hodec of flexure and other modes of failure were investiyated in the test progizim．

The resultiny equations that were developed with a fuiler understanding of Denavior of the speciaen and of Dehavior of similar walls in the sullding I tnink nave reflectea at least the sane conservatisa as we noraally would expect to find in code equations which are also often pased on a combination of theoretical and experinental results．

UR．ICCOLLO：i：Do you think，then，that this testinj projtan was typical of what you mizht acazamically project for a situation similar to this in terms of finding out what snould be used and verifying our theoretical considerations？

DÃ．BRESLER：Yes，I woula．
PR．ScCOLLO：Professor Rolley，woula you like to add anything to that？

DR．BOLLEY：I might differ slightly on the very last response．I zuess that we were doing a research program on tnis kind of wall for general use． DR．BRESLER：For general use，okay． 22．HOLLEY：You might envision some circumstances
in whica it was used guite differently in this coaplex which irignt lead to additional tests. Sut for the use in this conolex ana for the specific kind of wall we are dealing with, I think it was an unusually extensive progran.

DR. "ecollon: You were able to do this because of the nature of the walls that you were going to deal with.

DR. HOLLEY: Yes. It may also be wortn noting, Dr. .ccollow, although perhaps this has already peen mentioned, the kinds of conservative capacity expressions which professor 3 resler said could come out of a proyran of this scrt when applied to the actual comolex in essence reflect a juygnent on the part of the engineers that we would look at the complex in its most extreme position, I gon't aean geonetric position. ooviously in any real earthguake concition, you will not destroy all the dond alon; all the vertical edges. And so the engineers I think quite properly saio what happens if. What if you quite narrowly destroyed the bona and had somethwi with free edges, what now? So I think on the one nand, the expressions that came out of the proyran were sound. On the other hand I think they would conservatively apply. But I fust always go Dack that to me the most important thing was the code DR. HCCOLLOM: Now to asdress the proplem that I think the soara has, looking at the criteria that we are supposec to meet specified in an FS A. . that was written and
a ouiloing that was Duilt several yearz ago and then taking the current puilding and saying we have brought it back up to the zane criteria as was originally expected, what is your, what's your thoughts on what we neea to say, what we need to do to say that we have met that?

2R. GOLLEY: ive need to say it was excellent. DR. AcCOLLJ※: Nell put. DR. HOLLEY: To De nore serious, that's not an easy question for you, I am sure. One factor which has not been mentioned, however, and which one mijht overlook, I suppose, In conparing : vaars ago and today. If my nemorv joesn't aisserve me, I think the inertia forces that we use that came out of the original terninations and so fortn were substantially lower than what we have come up with. I stand to be correcter on that, but to the extent that is 30 , I tnink it's a relevant factor and one that miyht easily be overlooked. And I speak now about inertia loaaing per se. Ain I correct or not?

Dr. SRLSLER: Yes, that's a critical elenent, Darticularly the distrisution of the forces altered by more precise analysis oringing out their realistic response.

DR. HOLLEY: I an not sure whether I can pe heloful.
If I think I can, I will answer.

DR. 'IcCOLLO:: Let's see, I Delieve it might be nelpful if you ivjuld again take this more or lass as an
acauenic yuestion.
Let ae recap. I Delieve that during your testimony duriny the interin operation Fnase i, we asked, well, how would you fix this suilding up? And as I recall, one of you said, well, you coula put plates on the wall?

DR. SOLLEY: put what?

DR. AcSOLLO:: Plates on the wall. And. of course, that's what they have ended up doing. This is a methoy of correction. Doos this fit logically and appropriately to what \(y\) ou think a good correction process for increasing the cavanility ot this suilding to seisnic capanility?

Dr. JULLSY: I Ehink that is more readily audressed. I confess I dian't recall that we had mentioned olates.

DR. AcCOLLO: I think maybe Professor Bresler, I thins maype we will put hia on the carpet.

DR. BRESLER: Unfortunately, I don't recall either.
DR. BOLLCY: AS to whether the concept is in our juagnent a good one, I think professor 3resler and \(I\) soth fully agree that it is. You have haa a nunoer of choices in fixing the structure, none of which was pleasant, starting with just puilding a completely new control Suilding, wnich would de horrendous to other kinds of things which might be done sucn as the out the rest structure, which would interfere with operation itself, which is a much more important consideration than dollars or tine per se. and I
rether feel that the concept that the engineers have arri ：o at is attractive because it doesn＇t change radically the nature of the response．It doesn＇t，you know，if I build a new structure and try to hook it on to this when I may get into a different natural frequency and thinys are quite thorouyhly changed，so the effort was rather to keep things qualitatively and certainly somewnat quantitatively in similar cnaracteristics，but to beef up the strength，and that appals to me．I an not able to say what plates where， out I think this is a very rational approach．

DR．BRESLER：I would like to add a few comments it＇s also a little difficult to－－whenever you deal with an eiisting structure，retrofitting an existing structure，it＇s a very difficult problea．First of all，it could be cone in a variety of cifferent ways．Second，it is sometines difficult to identify precisely the perforaance of the seyuence of events under given seismic conditions．If you want ne to put it more bluntly，what may be the weakest link in the chain．And it isn＇t always easy to identify that．

I think partly because of a much more careful analysis of the structure，there were several thinjs．For one thing，putting another abutting structure was really not a very effective，practically effective way of doing it． The second thing was the walls in winch large openings existed where the railrod was passing through，that
in areas of those walls, some deficiency in cafacity existed. Sinilarly, there may have been some difficulties in the areas above where some openings existed in the original structure where the steel plate finally was adopted as a neans of strenythening that area.

Sone other areas without much interference was the operation of the plant if you knew walls were added to increase the resistance in the direction.
hs I see it, altogether apart from criteria, froa analysis, ano froa comparison of margins, capacity over the demand, I think that the areas in the building which nornaliy one would expect to be sensitive to cracking and yielding and in the event of an earthquake, those areas have been suostantially strenjthened. Anc in that sense, I think this is a building that not only meets but probably exceeds the requirenent of restoring original conservatisa.

I may have gotten myself out on a limb, in which case, of course, Holley would stop, if I know, generally, zenerally.

DR. HOLLEY: The only other thought that we should perhaps add in terms of the rational of the fix is that Professor bresler's plate idea is a very good idea. we did establish it was your idea.

DR. BRESLER: I an not taking credit for it.
Di. HOLLEY: In other words, hac is a perfectly
feasiule way to strenjthen those particular walls. And we judge the aethou of attachment thereto to be reasonavle and to have been proper. If I missed something, I can't think of it.
0.2. NeCOLLO 4: I would like to ask a question about a feeling that I have. And not beiny either a civil or structural engineer, you can bring upon ny electrical background, if you wish. Eut from what I have understood, the sean stick method of design is -- and the STARDZNE methoe -to jet these forces, I ask the question, would the bean stick hethod be leas sensitive in showing the weakness of the passaje of the railroad in the walls missing down at that lowest level than the STARDYNS method would nave been able to?

Da. HOLLEY: Yes, if you will let me change slightly one thing you said, yes.

Dr. mecullon: All right.
DR. HOLLEY: I don't think the method of analysis be it bew stick model or STAROYNE would tell you anything about the weahness. It would tell you sonething about the denand, and you would then by trying to carry that demand say, ah-han, I aa not strong enough here, but neither of these analytical tools tells you anything about the capacity. They do tell you sonething about how much you are trying to put tinrough various parts of the structure.

In this rejard, it nay be necessary to separate
thinjs a little bit once more. The stick model, as I recall, was primarily for dymanic analysis. In other words, it dian't give you directly forces in any wall. It gave you resultants, let us say, at several levels through the structure, and then some sort of sinplified, certainly not a Eine eleaent type analysis, was used to distribute these among the walls. That was not expected to be as good as STADOYNE in terins of telling you where the forces are goin 1 would aucia prefer to have the STARDYNE results available. 3ut I hasten to say that excellent design was done and can be done today using the original approach.

0R. MCCOLLOM: Have you reviewed those six diagrams that is part of iicensee Exhibit No. 30 that shows before and after forces and capacities in answer to my question number \(\quad\) ?
when corrections were made in the walls, and these, of course, as was testified, were the walls that had modifications made to them for the proposed change, I see Doti, redistrioution, I'd say, of the forces in soae way, and also a chanje in the capacity. Somftimes the force goes up, sonetimes the force goes down at a given level, and the capacity, of course, always appears to have gone up, which it seems \(\operatorname{logical,~any~way.~}\)
are these curves something that gives you real confort ebout the results of this modification, as you have looned at these and analyzed to see what's the resultant
nodification is as produced by these assuaptions made by the hicensee? Jo you have any comaent?

DR. HOLLEY: You go ahead. So help me, I an color blind.

2R. ACCOLLUA: I share that, Dr. Nolley, I am color blind, too.

2n. HOLLEY: Snall we talk aวout thea the way you and I see then?

2R. BRESLER: Let me make some renarks. Dur problen was that we saw these diagrans out they were not in color Defore. I think certainly these diagrams denonstrate suostantially reserved capacity for storage sheers for the nodified systen. I would say these are not the only diagrans that jive us confidence in the general modification. These diajrains alone, fithout knowing something ajout walls that wake up each individual story and the responses in those walls and the capability of those walls and the capajility of tnose walls to act toyether, these diagranas alone would provice only \(l\) imited comfort to us. Yes, this is very inportant. Storage sheers have the required reserved capacity. Dut I think this is only part of the evicence that we have looked at.

DN. HOLLEY: That's correct. This is part of the picture, Dr. MCCollon. I don't think it's the whole picture. DR. BnESLER: Dic you figure out what tae red stands
for?

JR. HDLLEY: It's red and Drown.
CHAIRAAN MILLER: Dr. Paxton, do you have any questions?

DR. EAXION: I Delieve that the answer to my , uestion has been implied, but I would like to nake sure.

Apart from acadelic inter \(\sin\), are you gentlemen satisfied with the scope of the test program that you have reviewed?

D2. HOLLEY: I an, but I think Erofessor bresler's coriaent would be more meaningful in this regard. He has been involved in similar kinds of research of it.

DR. BRESLER: I an trying to think the question throujin, if you will allow me just a few ininutes. And one thing that I have a little problem witn is you say apart from acacenic interest an I satisfied witn the test grogram. I wulld put it differently. I would say I an satisfied with the test program exclusivei, apart from the academic interest. If, indeed, I approach this wi acadenic ioterest, I might be, say, we11, it's a very interest, a 4.13 that we have testec 25 specimens, let's test 25 more, 'cause that's what acadenically we would like to do.

DA. EAXIUN: I know there is no limit to the
acadenic end of it. Tnat's the reason I tried to exclude it.
Dh. उRESLER: I think like any test progran, I
```

suppose, when ont completes the test prograa, one can think
of one or two or three other things they night like to do,
either to satisfy their curiosity or to provide additional
information on tnis data or another, I don't know. I Eeel
this particular situation is enough information to say that
the desifn criteria that were developed for verification of
-nls modification design were adequate. If I use tay acadenic
interests, I can't easily imagine what more coulu have oeen
cone.

```
    DK. PANAOL: Tnank you.
    CHaIruAN IILLEK: Let me inquire first. Is the
Staff or anyone else going to have any more questions of
Professors aolley and Bresler?
    in. LiAI: No, Mr. Cnairman. Ar. Chairman, saybe
just one question.
    in. GrisY: There has been some suostantial cominent
on the test program in this vein with regard to the test
program. That was a prograin on an inc ivicual panel
representing walls, whereas a complex itself is an assenblage
of panels. Do you delieve that does provide jood results to
be applied to an assemblage of panels?
    Dr. nコLLEY: Now I can say winat I was about to add
to your last.
    DR. HOLLEY: If one had chosen in the test program
to nocel let's say complete franing in panels, panel or

1
panels, I have a feeling that you would have had a hard time दver finisning, because now you really would be saying I an trying to make tne test assemblage look as much as possible like the real structure. And I assure you, I can think of a great aany variables. And if you are going to have at least two specimens for each, I aa not -- I thi: \(k\) they we aight have had a very great problen in making sure that enough testing had been done, or at least in satisfying the people.

I think the engineers were wise in deliberately aeciding not to do that, to say we will test masonry composit nalls, per se, and learn somethinj about their properties relatively free of the framing. And then in making use of it in the conplex, we will assuae the worst conditions in terms of the interaction of tha panels in the franing. So I think in teras of getting something that could be used in a test program of reasonable lengt!, it was better to idealize and say I will try to find out what the panel is like under retty awful conditions, because I a:a cquite sure the panel would be happier to have had a coluan on each side in each test. So I think in a sense it was a wise choice and it doesn't disturb ree that we did go into a program. The Licensee didn't go into a program of more nearly matching the actual installation, because the next question would se shall we put the force slabs in, too, and very soon it would be easiest to test the complex.
D.. McCOLLOM: I think those are very good coments. Does that answer your question, ir. Gray?

Aス. GRAy: well, not exactly. nhat I really want to snow, I understand that, of course, you cannot nodel the whole complex, and that even in modeling multiple panels, it may je very difficult, and that therefore, the results of your test may not be useable, but the real question is, in monitoring and testing a single panel, can those results then De apropriately and conservatively applied to walls that are not sinyle panels, they are multiple panels and have they been.

PhL InNBS i: Sure, so the question now is not snould they have lo okea at multiple panels in the test, but rather can one appropriately use the results of single panel tests and evaluate the structure, which is a different question but part of the same thing.

Anc I think the answer is yes. Eut it has to be done in a rather simplified conservative manner. In otner words, I ain saying that where you are uncertain of a particular interaction of the boundary, let us say, between a real panel and a real coluan, you have to be conservative in what you assulae to be there and its effect on the panel. Is that correct, Dr. Bresler?

2R. bKLSLER: Yes, I would say the same thing. mayoe, ajain, at the risk of repeating myself a little bit,

and correct way to prepare a modification that will neet the criteria that we have to meet.

DR. HOLLEZ: Have they gone from the test progran to the reality in a sensible way?

Dn. Kacollot. That's correct. D.R. hoLLey: And I think ny answer would have to be \(y=s\).

DR. FCCOLLOA: Professor Eresler.
Dr. SRESLER: Yes, I would concur with that. Of course, I do want to -- the application of the criteria to every and each panel was discussed in our meetings in a general way. he did not sort of do the bookkeeping and verify every number. Eut I think all these criteria were aplied properly and correctly to the walls, each story. Just as, for example, one of the things that is associated with initiation of sliding, there might be a local crack, local yielding which would occur, which as a batter of fact, to an observer who is not accustomed to look at buildinys under any load whatsoever, it would not look to him like anyrining is going on. It takes an experienced observer to say yes indeed this crack is here because of flexure or this 15 thousandths of an inch displacement is an initiation of sliding. These are the kind of things that we observe. And I think that based on the perforaance of the specimen and the criteria in the way they were applied in interpreting or in

brasler anc wolley, pernaps only temporarily. They haze, as indicated \(\nu_{y}\) the testimony, of course, reviewed t'e current version of the Staff testimony as well as tha \(S \mathrm{E}\). We have not asked them to address eac 1 and every one of the so-callej unresolved itens, because we don't know at this point whether they are unresolved. If there is sonething further that inignt be useful in evaluating after the Staff provides its testimony perhaps we will ask them to cone back again ChaIduan AILLER: Very well, we would appreciate that. We woulc excuse at this time professors bresler and nolley, out if you could be available, if necassary, sone adiitional information which may be forthcoming which you will be advised oy Mr. Axelrad, we will appreciate it.
dr. BnESLER: There is any indication as to when? AR. AKELRAD: NO.

CHAIRUAN AILLER: The Staff's witness is ill, we will try to get the inforaation to you as soon as possible. ve try not to iapose on your time, also, and we will try to hake it not an inposition upon you.

Charmian miller: Fnank you very nuch.
DK. BRESLER: Thank you very much.
DR. i.JLLEy̌: Tnank you.
CHAIRAAN MILLER: Is there anything further at this
time that counsel wishes to go into?
Mr. AXELRAD: Yes, we have the answers to the
questions that we identified earlier. And if we could just have those marked as Licensee's Exhioit 32 at this point.

ChAIRMAiv IILLEK: Licensee 32 will be so marked for identification.
\[
\text { (EXH, -NO. } 32 \text { marked). }
\]

MK. AXELRAD: It's a document entitled Licensee's April 2,1980 answers to 6 questions of March 30,1980 . Uxhibit 32 , and it consists of the answers to 6 questions.

As I indicated the Bechtel panel would be available to testify on these questions pernaps to:lorrow morning or pernaps after the Staff's witness tomorrow.

I believe the only testiaony further than that is the testimony of ar. Larsen.

CHAIRYAN AILLER: Yes, what is the situation as to the State of orezon and Professor Larsen.

MR. OSARANDER: ive will go right now, we could 70 on riynt now, if that's the Soard's wish

CHAIRIAN MILLER: Well, what is your pleasure. We don't want to chop up your testimony. We started to impose upon people to a certain extent today because of the change of order. I just ask you as counsel for the state of oregon, would you prefer to start at this time or would you prefer to start in the morning?

AR. ANELRAD: AK. Cnairman, perhaps we could ascertain now much cross examination would se involved before
```

wa kny. whether professor Larsen would be on the stand for a
lenythy period or not?
CdAIr.IAN AILLEA: I aave has certain indications
from various people that there is a certain emount of we are
I necessary at the end if a long day. ive did start at 8:30.
ive prefer to have every one fresi. Ve are all right, we are
not having to work hard. but a lot of you are. We selieve
the record, I aa speaking for myself, not only every one else,
unless someone wishes to }30\mathrm{ forward to accommodate someone,
we will do that. But short very of that, we think a night's
rest and I know those seats are hard back there, so I think
ve will stand in recess until 8:30 in the morning.
4R. GRAY: ve. Chairaan, could I just ask one thing
with regard to the Licensee exhibit, I believe it was 3l for
icentification, which you have the slides on the work
seyuence. Vas any of it resolved, the status of it.
4N. AMELiNAD: Ne have offered it in evidenee, but it
has not yet than been ruled on.
CHAIRMAN AILLER: It has been marked for
identification. There was an objection to some portion of it.
Inere was therefore no offer or ruling upon it.
|R. AXELRAD: I would offer that in evidence at this
time, Mr. Coairman
CHAIRMAN AILLER: 4ll right, there nas been an offer
into evidence. What exhioit No. Is that?

```

4K. AXELRAD: 31.
CHAIMAAN AlLLER: 31, wnich are the reproductions of the siides. There is an objection? I think Ms. Sell you had an objection before, as I recall?

MS. उELL: Yes, we do.
GhaIRMar AILLEs: what was the nature of that? It didn't show the yellow or something.

4S. BELL: I Delieve it is on the east side of tne aodel in the slides that sone of the steel plates don't appear secause the color is lost ajainst the backjround.

CHAIMAAN AILLER: You know, soae of our experts here are color blind.

4S. BELL: That really makes it difficult.
Ciimirnan MILLER: I am not sure how necessary it is to have the color any way. Is it possible you can state your oojection in which it could be cured. In other wores, you are preiared to identify the areas that you say should be in yellow and not in yellow, and say we should de able to look at it and tell what's what?

4s. BELL: I think it would be helpful in the Licensee soluthow could add that in a sheet of paper that identified where those pieces of concrete were because looking at it, I can only guess as to whether or not something is vaguely blue and yellow in the background.

4R. AXELRAD: 4r. Ciairman, the record describes
very adequately what the suilding in the modification program
is going to be. It's described in detail, in testimony.
There was cross examination on the subject, extensive
discussion. Ne don't like to appear uncooperative, but thase
were frepared with a certain amount of difficulty and expense,
it's called reproduction, and we don't feel it would be
necessary to require us to go under any more difficulty to
cure the problen and which the record clearly reflects it.
                            4S. BELL: Mr. Chairman, ny only concern is that the
docunent doesn't stand alone in being accurate.
    CliAIRGif: IILLER: It doesn't stand alone. what do
you sean?
    1S. DELL: What I mean is as a docunent without the
testimony or the transcript, it is not accurate because you
can't figure out wat its saying.

CHAIK.AN IILLER: Well isn't that true of the entire document. Standing alone it wouldn't tell me much of anytning. It could be a child's toy. I don't thinh standiny alone con:letes could be appropriate.

DK. nccoLLo : Where is the 55 colunn modifications, which slide is it on? which one fhould being colored that we can't see? That's what I am looking for.

ChiArman AILLER: Fnat's the color blind leading the color olind.

4R. AXELRAD: 10 , the 55 color nodificetion would
not require tie slide presentation. It is not shown on the slices.

CiAIR-iAN AILLER: Not shown.
4k. 4XELRAD: This is the construction secuence involving the steel plate. Not the structural improvements. Df. nccoliod: which one of the slides do you object to, s.s. dell?

IS. BELL: I guess anyone of those that has, shows a color above the elevation 55 on the east wall. It would seem that that could be recomanead Dy the Licensee quite easily.
in. Gray: pir. Chairian, one possibility simply would be to have these collected and hand drawn in here. I snow that's difficult, but if that --

4月. AXCLRAD: Ur. Cnairman, if I may just explain, these are not intended, slides, to show the complete modification. It would tead to only show a certain seçuence of the structural installation underneath the detail of the slides therselves are this rictorial would show what was deant to be shown by the slide indicating which walls would be cone in which sequence. This representation is certainly clear for the purpose both of what it shows and for which it was used. Of course, the slide presentation. Anyone else can yo to any number of other portions of the record to see what the facility would look like when completed. This is not the purpose of these slides and that's not the way it was
snown

CaAInMAN MILLER: Well, it's the Board's understanding that the slides used in the oral testimony of 4r. anderson and Dr. white are reflected in that testinony, were intended for a limited purpose, namely showing essentially the sequence of the work under way. It is Eurther the Board's understanding that Licensee's Exhibit 31 is also for the linited purpose of showing the sequence. It will se adaitted for that purpose. If it's going to se used for anything alse, it's joing to have to be used in connection with testimony on some other matters because it woes not jurport standing alone to depict anything else. And the board doesn't consider that for its purposes it will De 30 used. It is sequenced. For that purpose, it's a Inited Eunction. Anything beyond that you won't be able to use it for that purpose anyway. You can going to have to refer to the transcript and to the testinony. It will be received for the liaited purpose described,

CiisIRAAN NILLER: All right we stand in recess until 9: 30 in tne morning.
(¿VENING RECESS at \(4: 30\) PA)```

