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than that for which it is intended under the contracte is not authorized;
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1. INTRODUCTION AND SUMMARY OF CONCLUSIONS

when two histories of component response (e.g., stress time histories)
are hypothesized to act simultaneously it is desirable to have straight-
forward rules for determining a satisfactorily conservative combined peak
design response. The Square Root of the Sum of the Squares (SRSS) rule”
has been proposed as being applicable, provided certain criteria are sat-
jsfied. The most recent statement of such criteria, called the Newmark-
Kennedy criteria, is given in Reference 1.

The primary purpose of this study is to support the criteria confir-
mation and other conclusions drawn in Reference 1 by considering a broader
range of variations in the sensitivity study reported there. This report
is a companion to Reference 1 in that respect, and the reader is assumed
to be familiar with it. Only a brief summary of the background is given
in the next section.

A secondary purpose of this study has been to develop and confirm an
analytical (or, when computer-implemented, a numerical) procedure to gener-
ate both time-phase-only (TPO) cumulative distribution functions (CDF's)
and random-amplitude-plus-time-phase distribution functions of the peak
combined response when time histories of the individual responses are

given?’ The new procedure can evidently replace the more costly simulation

*

The rule, the method, and the examples here are interpreted to apply to
the signed responses. The method can be adapted to absolute extremes by
replacing the mean up-crossing rate by the sum of the yp-crossinj and down-

crossing rates:
*

*
The procedure also applies to cases in which, instead of explicit time histo-
ries, appropriate random process descriptions of the responses are specified.

These might be aevelopea 1n the future from random vibrations approaches
to the structural/mechanical dynamic analyses.



analyses that have been used for this purpose in preceding studies (Refer-
ences 1, 2, and 3). Because it is new, somewhat more space is given in
this report to the bases of the procedure; most of this material has been
placed in Appendix A, however, not to detract from the main emphasis of
this study.

The primary conclusion of this study is simply a

confirmation of Reference 1. If the modified preamble

and Criterion 2 of the Newmark-Kennedy criteria are
satisfied for response time histories with individual
pcaks defined at 84% NEP (non-exceedance probability),
then the SRSS combination rule will produce a value
with approximately the same (84%) NEP. This conclu-
sion has been verified here for a large variety of am-
plitude distribution types (lognormal, uniform, normal,
exponential, and a bimodal mixture of uniform distri-
butions), for a range of preliminary relative amplitude
scalings, and for a range of relative durations of the
two response histories. In addition, a range of ampli-
tude dispersions has been considered to investigate the
dependence of the conclusions on this variable. As de-
termined in Reference 1, the 84% fractile (or the design
amplitude) should be at least 15% greater than the me-

dian to insure that the SRSS procedure is adequate.

2. A BRIEF BACKGROUND

In summa‘y, the primary purpose of Reference 1 and of this study is to

demonst) otz the adequacy of Criterion 2, which states:



"Wwhen response time histories are available forall dynamic loadings
being combined, SRSS methods may be used for peak combined response when
CDF calculations, using appropriate assumptions on the range of possible
time lags between the response time histories, show the following criteria
are met:

1. There is estimated to be less than approximately a 50% conditional
probability that the actual peak combined response from these conservatively
defined loadings exceed approximately the SRSS calculated peak response, and

2. There is estimated to be less than approximately a 15% conditional
probability that the actual peak combined response exceeds approximately
1.2 times the SRSS calculated response.”

The conditional probabilities stated are conditional on knowing the peak
amplitudes of the individual responses, that is, the only random quantity
reflected in these CDF curves is the random time lag between the two re-
sponses. We refer to these conditonal CDF curves as time-phase only (TPO)
curves or TPO CDF's.

Adi:quacy of the SRSS rule is defined to be that it preoduces a design
peak c&mbined response that has a non-exceedance probability (NEP) of ap-
proximately 84%, when the randomness in the peak amplitudes is recognized
explicitly. It is presumed (see modified preamble, pg. 4-1, Reference 1)
that the individual given time histories have been scaled, conservatively,
such that their individual peaks have approximately 84% NEP's also (or that
each peak is at least 1.2 times the median level, whichever is greater).

In Reference 1, the authors selected six cases of sets of time histories
from the 291 which had been corsidered earlier (Reference 2 and 3). All non-

trivial cases satisfied Criterion 2. To be conservative, the six selected cases



were those that came closest to failing the requirements of Criterion 2,
either because the SRSS value was close to 50% in the TPO CDF or because
1.2 SRSS was close to the 85% value. (In addition, cases were rejected in
which the SRSS value was within 25% of the absolute sum of the peaks, the
difference being insignificant and uninteresting.) The first five of these
cases are also considered here.'

In Reference 1, simulations were conducted with both random amplitudes
and random time lags. The former were introduced as random variable multi-
pliers': FR’ on the deterministic time histories, A(t), producing random
time histories R(t) = FR « A(t). Various dispersions were assumed for the
distribution of FR but, consistent with intent of the study, in all cases
the median was defined such that the unity value of the scale factor FR
corresponded to the 84% NEP. The dispersion factor &§ was defined as the
ratio of the 84% NEP value to the median, i.e., simply as 1/median. For
the lognormal distribution (used in most of the Reference 1 study), & cor-
responds to exp(8) in which 8 is the standard deviation of the (natural)

log of F (Approximately, § = 1 + 8, and, approximately, 8 is the coef-

R’
ficient of variation of the amplitude distribution.) & values of 1.0 (i.e.,

the TPO case), 1.1, 1.2, and 1.3 were considered in Reference 1 and in this

The sixtn case involving three rather than two loads, was not pursued
simply beca.se it would have required computer program extensions that were
not believed *o be justified in the light of the two-load case results.
Recall that th> combination of three loads can always be considered as the
combination of ure with the combination of the other two. Because the am-
plitude dispersion for the combination of any *wo loads involves both TPO
dispersion and individual amplitude dispersions, it was never found to fall
below the 15% level. Therefore, there is every reason to assume that the
SRSS procedure will work for three as well as for two loads.

ke
This is consistent with seismic practice of scaling motions by their peaks.



study as well.

Random tiie lags were introduced in Reference 1 in a manner consistent
with the preceding studies (References 2 and 3): the beginning of the
shorter time history was assumed to lag behind the beginning of the longer
time history by an amount uniformly distributed on the interval fror the
beginning of the longer history to the end of the longer history. In con-
strast, in this study, for reasons of anmalytical simplicity, the lag is
v {formly distributed on an interval equal to the sum of the two histories
durations (a somewhat unconservative assumption, relative to previous stud-
jes), but the motions are assumed to be periodic implying that, if it ex-
tends beyond the termination of the longer motion, the tail end of the shorter
motion can "wrap around” and superpose on the beginning of the longer motion
(a conservative assumption relative to previous studies). In addition to
simplicity (it permits the adoption of stationary processes), the assumption
here is more realistic in that it assumes, in effect, that the shorter mo-
tion may be the first of the two to occur. In any case, the net effect is
believed to be small and comparisons between results here and in Reference ]
are very satisfactory.

In Reference 1 simulation was used to determine the CDF's. Here an
approximate analytical method has been developed, based on random process
theory and on previous theoretical study of load combination problems. The
procedure permits determination of the CDF's by simply evaluating several
convolution integrals. These integrals can be evaluated numerically by com-
puter. (A convenient program has been developed for the specific purposes
of response combination studies.). The basis of this method is presented in

a subsequent section and in more analytical detail in Appendix A.



The information required for each response history .s

(1) the duration, Ty

(2) the CDF of the random amplitude scale factor, FRi.

(3) the marginal CDF of the deterministic time history, A,(t).
(This function gives the fraction of the duration, T,, that

the history spends below level x, as a function of x.)

(4) the mean upcrossing rate function of Ai(t). (This function
gives the ratio of the number of times Ai(t) crosses--from
below to above--level x to the duration T,. It is a “unction
of level x.)

The last two functions are easily obtained if the deterministic time history
Ai(t) is given.' For example, if Ai(t) is given as a set of values at uni-
form time intervals, At, the determination of the marginal CDF requires sim-
ply counting the number of values in the list with A1 < x, dividing by
Ti/At. and repeating for a set of x values. Similarly the upcroussing rate
function involves observing values at the two ends of each time interval and
counting the number of times that both the earlier value is below x and the
later value is above x (i.e., an upcrossing of x occurs). This number is
divided by Ti to obtain a rate per unit time. The process is repeated for

a set of x values above and below the (zero) mean. If negative peaks are
also to be considered, a mean downcrossing function is needed for all values
of x. These functions are equal in value. Examples of these functions, pro-

vided by EDAC, are shown in Figures E-2, 4, 6, etc,

*
As mentioned above, these functions might also be provided directly by
random vibration theory without calculating response histories.



The following sections will summarize first the analysis method used and
then the results. Those uninterested in the former can skip the next sec-
tion. Those interested in more detail about the method are referred to

Appendices A and B; details of results are given in Appendices C and D.

3. METHOD OF ANALYSIS

The analytical method used to evaluate the SRSS rule of 84% fractile
combination is based on an approximate theory of extremes of stationary
random functions (Reference 4 and 5).

A requirement for applicability of this analytical technique to the
present problem is that the random response functions (random because of
phasing and because of amplitude) correspond to stationary processes. Al-
though each response, Ai(t), may appear to be the realization of a nonsta-
tionary stochastic process, (see, for example, Fig. E-1 , in Appendix C),
the introduction of random phasing between responses gives an opportunity
for stationary representation of the uncertainty. For the ith response,
one such stationary representation can be obtained jn three steps:

1. A deterministic and periodic function Aip(t) is obtained by shiffing
the ith response, Ai(t) to start at time t = 0 and by then repeating the
same function at intervals of length T = T1 + TZ' the combined duration of
the two loads.

2. Aip(t) is translated randomly by an amount toi' The random variables
to; and tg, are independent with an identical uniferm distribution on the
interval [0, T]. (In application, it is sufficient simply that the

phase between the two responses has such a uniform distribution.)

3. In the final step, randomness of the amplitudes is accounted for. After



this is done, the jth response is represented as a stationary periodic ran-
dom process, Rip(t) = FRi Aip(t)' in which FR1 = random amplitude of re-
sponse i and Aip(t) = (random, periodic) respense process for FR1 =1,

These three steps need be done formally only; in practice (Appendix A) one
deals numerically only with the marginal COF and mean up-crossing rate func-
tions of the given response histories. Application of the approximate theory
of Poisson upcrossings to the stationary and periodic sum process Z(t) =

2 Aip(t) over the interval [0, T] yields an analytical approximation to the
;istribut1on of the maximum combined response. Details of the model and of
the analysis that eventually leads to this distribution are given in Appen-
dix A.

The method requires much less numerical effort than simulation. It is,
however, an approximate method. In a variety of applications to load
combination problems it has been found to be satisfactorily accurate (Ref. 4).
For this response combination application, its accuracy must be verified
through comparison with Monte Carlo simulation results. Specifically, one
may anticipate that inaccuracies could originate from three features of the
analytical model:

1. Representation of random phase through the artificial introduction of
stationary, periodic response processes;

2. Approximation of the mean upcrossing rate function of the sum process
Z(t); and _

3. Assumption of Poisson upcrossings.

From comnarison with the simulation result in Reference 1, it was concluded
that none of these features is critical in the case of random phase only
(i.e., TPO CDF's), whereas the Poisson approximation can produce sizeable

errors when amplitudes are random with large coefficients of variation

- By = L r-amagihe R A T T T R A S T AT T R SR TR S S ——— ————



(large 8). In this last case, a major improvement in accuracy followed

from assuming that upcrossing events are conditionally Poisson, given the

response amplitude factors. This improvement over the ordinary treatmert
of mean upcrossing properties has been incorporated into the amalytical .»>-
proach (Appendix A). Through it, one accounts for the fact that the mean
upcrossing rate of Z(t) across level x, vz(x). varies from realization to
realization due to randomness of the response amplitude factors, FR,‘ On the
contrary, the method neglects sample variation of vz(x) due to random phase.
This factor introduces conservatism into the analytical results for moderate
to high fractiles. Another source of conservatism is the formula by which
mean upcrossing rates of Z(t) are approximated (Eq. A.4). These conservative
trends are anticipated on the basis of th:oretical considerations; numerical
comparison with simulation results has shown that biases of the (improved)
analytical method are small. See, for exarple, Fig. C-1. Details are given
in Appendices C and D. Note that for the sample sizes used in the Reference
1 simulations the simulated COF's are statistically accurate only between
about 0.0 and 0.9.

In the analytical treatment, considerable computation time savings
result if the two random amplitude scaling factors, FRi and FRZ. are the
same (perfectly dependent) for both the responses'. as opposed to them
being probabilistically independent for the different responses, Replace-
ment of the independence assumption by the perfect dependence assumptior (Ap-
pendix 8) causes little modification in the median value of the peak com-

bined response, Z . = OT::T Z(t), but increases the variance of Zoax’

2 .
This assumption is amalogous to that adopted in Chapter 3 of Reference 1;
the method there applies only to lognormal distributions, but the conclusions

are similar to those found here.

P ——
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thickens the distribution teils, and therefore adds conservatism in the
estimation of high fractiles (of low fractiles for Zmin = OZLST Z(t)).

A typical comparison between results from the two assumptions is shown in
Fig. C-1 and many more cases are presented in Appendix C.

Numerical values for the NEP's of SRSS values in Table 1 can be used
to confirm quantitatively the dependent-amplitude analytical method ¢ pted.
The figures in parentheses are analytical results for independent ampli-
tude scale factors. They are, on average, only 1% higher than those deter-
mined assuming dependent amplitude scale factors. A typical net comparison
bet 2en the dependent-amplitude analytical results and the simulation results
is obtained by comparing the left-most columns of NEP values in Table 1.
Analysis of these results suggests the true (simulation) values are (on av-
erage over the cases shown) 1.05 times the dependent-amplitude analytical
results used in the bulk of our study. This factor is somewhat higher (1.09)
for § = 1.0, i.e., TPO, and somewhat lower (1.03) for § = 1.2 and 1.3. These
factors can be used to apply approximate corrections to the (conservative)
analytical results discussed below.

In summary: for fractiles above the median (below the median for Zmin)
the analytical procedure tends to err on the conservative side. Conservatism is
more pronounced but still not large under the simplifyina assumption that amplitude
scaling factors are the same for all responses. Therefore, the SRSS rule is
validated here under this last assumption; in this case there is no need
for more sophisticated modeling and analysis. On the basis of this reason-
ing, most calculations have been made assuming identical, perfectly depen-

dent random amplitude factors.
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4. NUMERICAL RESULTS

Representative results from the analytical procedure (the c mplete set
is in Appendices C and D) are showa in Fig. D-1. They refer to EDAC Case 1,
identical amplituce factgrs (FR1 = FR2 = FR) with lognormal distribution,
and dispersion parameter &§ =1, 1.1, 1.2, 1.3. Due to the fact that the
distribution of amplitude is "anchored" at the 0.84 fractile, larger §
(larger variance) of FR implies smaller mean value of the maximum combined
response, Zmax' Clearly, it also implies larger variance of Zmax’ The two
effects combine to cause the cumulative distribution functions for different
8 to cross at points above the median. Of special interest here is the 0.84
fractile of the distributions and, ever more, the probability F(SRSS) of not
exceeding the SRSS value, i.e., the NEP of the SRSS.

The NEP of the SRSS value depends on many parameters, including duration
of the responses, distribution of the time phase, distribution of the ampli-
tude factor, relative size of the loads (whether or not one response domi-
nates the sum), whether interest is in the minimum or in the maximum of the
sum ("positive" case versus "negative" case). Among these parameters, the
more critical ones have been identified *hrough sensitivity analysis of the NEP
with respect to:

1. Dispersion of the response-amplitude distribution (8§ between 1.0 and 1.3);
2. Type of response-amplitude distribution (uniform, lognormal, normal,
exponential, bimodal mixture of uniform distribution);

3. Preliminary amplitude scaling of the response functions;

*
In all studies here >oth scale factors have the same & value. This case
is the most critical. See Reference 1.
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4. Relative duration of the responses;

5. Positive (maximum) versus negative (minimum) case.

A1l calculations were performed on the five response-combination problems
previously identified through simulation as those critical to the applica-
tion of SRSS. Therefore, one can expect present numerical values of the
NEP of the SRSS value to be conservative (low) with respect to those for
the entire spectrum of response-combination problems.

Tables 1 and 2 summarize the numerical results from some of the sensi-
tivity analyses. With the exceptions shown for comparison, all results were
obtained under the conservative assuiption that the random amplitude factors
of the two responses are the same. The following conclusions can be drawn:
1. As expected, the NEP of the SRSS value tends to increase with & {see
also Fig. 1). This fact is considered in the Newmark and Kennedy criteria
by limiting the applicability of the SRSS rule to, in effect, 8 > 1.15. The
reason is that the amplitude-factor distribution is anchored at the 0.84
fractile. For all but small values of § (e.g., for & > 1.15), the NEP of
the SRSS value has small dispersion about a value which is itself close to
0.84. Recall that the cases studied here are the near critical ones from
the original 291 cases. The remaining cases would show typically equal or
higher NEP values.

2. The difference between the NEP of the maximum combined res-onse and the
NEP of the minimum combined response* explains most of the dispersion of the
results in Fig. 1 for given §. This variability overshadows sensitivity of the

NEP of the SRSS value to all parameters considered here, except &§. It is due

*
More precisely 1 - NEP in the minimum case.
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primarily simply to small asymmetries in some of the sample time histories.

3. Parameters to which the NEP of the SRSS value is not sensitive include:
(a) Distribution type (shape) of the amplitude factor (simple or bi-
modal rectangular, lognormal, etc.). Se2 Table 1. Within the present
choice of distributions, sensitivity is very small and negligible.
(b) Relative duration of the loads. Relative duration is varied here
by stretching or compressing the time axis of the response with shorter
duration. Sensitivity to this parameter is displayed in the last four
columns of Table 2, in which TF is the factor by which duration of the
shorter response is multiplied (duration = TF x original duration).
(c) Preliminary deterministic scaling of the responses (first four col-
umns of Table 2). One of the responses is multiplied by a constant be-
fore phase and amplitude are randomized. The parameter that is varied
in the table is the ratio R between the peak of the function with longer
duration and the peak of the function with shorter duraﬁion. (Positive
peaks for "positive" case, negative peaks for "negative" case.) There
is only a very small reduction in NEP for R close to 1, which may actu-
ally be due to the method of calculation (i.e., to the assumption that
the amplitude factors FR] and FR2 are perfectly dependent).

5. CONCLUSIONS

A set of five pairs of response histories, selected from 291 cases as
the most critical tests of Criterion 2, have been used as a basis to study
the sensitivity of the NEP value of tne SRSS value. It is found to be in-
sensitive to the shape of the distribution of the rancom scale factor, in-

sensitive to the (median) relative amplitura of the peaks of the two histories,
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and insensitive to relative stretching (and hence relative durations) of the
two histories. The NEP is sensitive to the dispersion factor §, at least
for values of § between 1.0 (i.e., TPO) and about 1.15. These are unreal-
istically low values, but in any case they are excluded by the (modified)
preamble of the Newmark-Kennedy criteria.

In absolute terms, for cases that satisfy the criteria, the NEP's of
the SRSS values are estimated to lie above about 85% for all but a very few
cases studied. This conclusion is demonstrated in Fig. 1. The right-hand
scale has been adjusted to reflect the typical conservative bias (a factor
of 1.05) observed to exist in the analytical procedure adopted for these
studies. To meet the criteria, & must exceed 1.15. At this & value (by
interpolation in Fig. 1) only three of the cases in Table 2, for example,
fall below 80%, the lowest being about 75%. The results in Table 2 are
typical for all tt_- (most critical) five cases.

A second, methodelogical conclusion is that an analytical theoretical
procedure, although approximate, gives satisfactorily accurate results for
such studies. The compulation time is believed to be much shorter than that
associated with simulation. The approximate NEP results are found by com-
parison to simulation to be typically 1% to 5% conservative in the range

of interest depending upen which of two analytical models is used.
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& LOGNORMAL (MIXED)
-8 S UNTFORM GAUSSIAN | EXPONENTIAL|  UNIFORM
g §§ £ El S | awaLYTICAL
X o
a- |2 = S!RSFSL NEP(SRSS) NEP(SRSS) NEP(SRSS) NEP(SRSS) NEP(SRSS)
1.0 | neG || 0.48 | 0.51 (0.51)
p0S || 0.40 | 0.38 (0.18)
1.0 | nes || 0.77 | o
1 pos || 0.74 | o.n
1.2 | neG || 0.81 | 0.82
pos || 0.81 | 0.76 (0.80) | 0.79 (0.79) | 0.76 (0.80) | 0.79 (0.81) | 0.73 (0.79)
1.3 | nec || o0.8¢ | 0.83 (0.81)
Pos || 0.82 | 0.76 (0.80)
1.0 | N6 || 0.61 | 0.5¢ (0.54)
0 | POS || 0.66 | 0.5. (0.59)
1.1 | N6 || 0.78 | 0.7
2 pos || 0.80 | 0.20
1.2 | %6 || 0.82 | 0.8
POS || 0.85 | 0.83 0.85
1.3 | &6 || 0.83 | 0.83
pos || 0.85 | 0.84
1.0 | neG || ©0.74 | 0.66 (0.66)
o | pos || 0.54 | 0.53 (0.53)
1.1 | N6 || 0.86 | 0.83
3 pos (| 0.79 | 0.75
1.2 | e6 || 0.86 | 0.85
pos || 0.82 | a1 .81
1.3 | nes || n.e7 | 0.26
PosS || 0.87 | 0.83 (0.83)
1.0 | ne6 || 0.90 | 0.89 (0.89)
™0 | POS || 0.70 | 0.56 (0.56)
1.1 [ ne6 || 0.94 | 0.93
\ pos || 0.82 | 0.71 (0.7)
1.2 | »€6 || 0.93 | 0.93
pos || 0.86 | 0.79 (0.81) | 0.81 (0.83) | 0.80 (0.82) | 0.82 {0.82) | 0.79 (0.83)
1.3 | ne6 || 0.92 | 0.92
pos || 0.89 | 0.82 (0.89)
1.0 | w6 || 0.94 | 0.90 (0.90)
™o  P0S || 0.74 | 0.65 (0.65)
1.0 | ne6 || 0.96 | 0.94
6 POS {| 0.86 | 0.76 (0.77)
1.2 | ne6 || 0.93 ] 0.9
POS || 0.88 | 0.83 (0.84) | 0.84
1.3 | ne6 || 0.93 | 0.93
POS || 0.88 | C.85 (0.87)
TABLE 1 Sensitivity of NEP of the SRSS Value to Shape of the Amplitude Distribution.

Amplitudes Assumed to be Perfectly Dependent.

Independent Anplitudes).
Cases 4 and 5 give Similar Results.

{Values in Parentheses are for
No Prior Deterministic Scaling of the Response Functions.
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TF, SCALING FACTOR OM DURATION OF SHORTER
- § J S ANN.& XA A LOAD (1.0 1S ORIGINAL CASE, REF. 1)
2 :
st (2SI ¥
w. (25221 3 ) 3 0.5 0.25 .0 10.0
— - o
S| ® = ep(snss) | nep(shss) | NEp(shss) | wep(sRss) o) NEP{suss) | NEP(SRSS) | NEP(SRSS) | NEP(SRSS)
1.0 | NG || 0.53 0.5 0.64 085 || 0.5
™o | Pos || 0.40 0.51 0.60 0.89 0.42
1w || 0.78 0.7 0.79 0.9} 0.79
. pos || 0.73 0.72 0.76 6.91 0.73
1.2 | MG || 0.2 0.81 0.84 0.5 0.83 0.83 0.81 0.80
Pos || 0.9 0.79 0.82 0.50 0.79 0.79 0.78 0.77
1.3 | w6 || 0.8 0.83 0.8 0.90 0.83
Pos || 0.81 0.81 0.84 0.89 0.81
1.0 | NEs 0.56
%0 | POS || 0.6 0.67 0.72 0.9 0.61
11| NG 0.79
] pos || 0.8 0.81 0.84 0.92 0.82
1.2 | MG 0.83 0.83 0.8
Pos || 0.84 0.85 0.87 0.91 0.84 0.85 0.83
1.3 | 6 0.84
Pos || 0.85 0.86 0.88 0.90 0.8
1.0 wc || o8 0.86 0.87 0.92 0.90
o | Pos || 0.5 0.55 0.57 0.74 0.58
10 | ms || 0.9 0.91 0.92 0.93 0.94 i
" pos || 0.78 0.72 0.72 0.8 0.73 0.94
1.2 | wa [ 0.0 0.94 0.94 0,93
pos || 0.83 0.80 0.80 0.87 0.81 0.81 0.79
1.3 | W6 0.93
pos (| 0.84 0.82 0.8 0.87 0.83

TABLE 2 Sensitivity of NEP of SASS Value to Relative Scaling of the (Ceterministic) Amp!itudes and Tire

Scaling (Stretching) of Shorter Load ana its Ouration,
Preak Combined Responses) are Shown.

Factors. Cases J and 5 give Similar Results.

Maxima and Minima (P~stitive and Negative
Lognormal Oistridbution on (Perfectly Dependent) Amp!litude
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APPENDIX A: METHODOLOGY

Let X](T). Xz(t) be stationary, independent random processes (nor-
malized responses) and A]. A2 be independent positive random variables
(response-amplification factors)f We are interested in the extremal prop-

erties of the stationary (combined response) process Z(t); defined

I(t) = A]X](T) . Azxz(r) (A.1)

= Y](t) + YZ(T)

in which Y,(t) = A;X,(1) is the ith response process. Conditionally on

A] =3 the upcrossing rate of Y](r) is given by
vy 12 (¥s a) = v, (L) (A.2)
Y]|A, 1 Xy a
and the first-order (marginal) probability density function of YI(T) s

o)
fy, a0 1) = - f

o (;!]—) (A.3)

1
similarly for Yz(r). The upcrossing rate of the sum process Z(t) condi-
tional on given values of A] and A2 can be approximated by the following
conservative formula (Reference 4 and 5):

- 231 ¢ (2 I Rile Lok
2|y, 0%22) L " apay a0 (e G

(A.4)

*
A simpler notation is used here compared to main body.
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This is a basic relationship in the approximate calculation of the proba-
bility distribution of Zmax = OzgiT Z(t) by the analytical method pro-
posed here. Before completing the method, we cbserve that in order to
apply equation 4 to the present problem, it is necessary to model the
(finite length) response functions as stationary processes. This opera-
tion can be performed as follows:

Let T] be the duration of event X](r). and T, be the duration of
event XZ(T). Define periodic functions x]p(r) and xzp(r), both with pe-
riod T = T] + TZ’ as follows: xjp(r) (j = 1,2) is obtained by shifting
Xj(T) to start at time T = 0 and by.then repeating the functions at in-

tervals of length T. See Figure A.l.

l——r, ‘4‘ Xp()
l”pZSQQQ, ANVAW YV l/\/\V/\A\,,
TV 0 VA

TZ xzp(T)

i ﬂﬂnﬁm loh! M h
B[ | S

FIGURE A.1

Next, xlp(r) and xzp(r) are shifted randomly by amounts tor and t,,, re-
spectively. tol and toz are independent variables with identical uniform
distribution in [0, T]. (Note that the phase h01-t°£ is also uniformly
sitributed on [0, T].) This operation produces random processes x]p(r)
and xzp(r) which are stationary, periodic with period T, and independent
(Fig. A.2). One replaces Xi(t) in Eq. A.1 by Xio(r). and uses the re-

sults which follow to calculate the distribution of the maximum of Z(t)
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over an interval of duration T.

FIGURE A.2

If the upcrossing rate functions and first order probability density
functions are obtained from the original time functions Xj(r) (§j = 1,2),
defined on the intervals [0, TJ] (j = 1,2), respectively, then the first two
functions must be modified to reflect presence of intervals of zero ampli-
tude in the stochastic model. With vj,T(x) and fj.T(x) the modified func-

tions, and v T.(x) and fj T.(‘) the original functions, it is easy to show

j j
that
VJ-'T(;) - :Tl vJ’Tj(X) (A.S)
and
T T
RCER SECRIE ) 8(x) (A.6)

where §(x) is the Dirac delta function. These modified functions can be

used in equation A.4 for vxj(x) and ij(x).
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It was originally thought that the best solution strategy was to cal-

culate the upcrossing rate of the sum vz(z), as

vz(z) = I: I: “ZIAI,AZ (z,a],az)fA](a])fAz(az)da] da2 (A.7)

and then to calculate Fz(z) by the approximation
Fz(z) = exp {-vz(z) + T} (A.8)

However, when compared to simulation this approach proved to give unsat-

isfactory results in the middle portion of the distribution of Z A

max’
different approach, which produced much better results, consists of cal-

culating the conditional distribution of Zmax = max Z(t),

O<t<T
and then removing conditionality:
Fz(z) = I: b leA],Az(z,a],az)fA](a])fAz(cg)dai da2 (A.10)

Results from Equations A.4, A.9, and A.10 are shown in Appendix C, Qhere

they are compared with simulation analyses.
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APPENDIX B: SIMPLIFIED METHOD

The method of Appendix A, which involves a double integration in
Equation' A.10, can be expensive to implement if a large numnber of cases
are to be studied. A simplification, similar to the simplified method
proposed by Kennedy and Tong (Ref. 1), is to assume that the two responses
have identical random amplitude factor, A = A.I = Az. In this case Equa-

tion A.4 becomes

v alza) = rvx](;*) ;—fxz(-z—;—x)dx + rvx (% 1 7 fx, (3% ax  (8.1)
and Equations A.9 and A.10 combine to give
Fz(z) = f; exp {-vzlA(z,a) « T} fA(a) da (B.2)

The two methods will be distinguished by calling the methed in Appendix A
the independent amplitudes approach, and the above method the dependent

amplitudes approach.

Comparisons in Appendix C indicate that there is reasonable agree-
ment between methods and between each method and simulation when the

amplitude factors are identically distributed?' It can be observed that

The original method, involving Eq. A.7, is accurate in the tail (NEP
very close to 1.0). For applications in wh1ch only these NEP's are re-
quired that method may be used. Eq. A-7 (after substitution from Eq. A.4)
reduces to single integrations over the Ai distributions.

**
In the case when the random amplitude factors have different distiibu-

tion, the dependent amplitudes method is generalized by assuming A =
c; + diA with ¥ and di given constants.
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the dependent amplitudes method tends to be conservative with respect to
the independent amplitudes method in the upper portion of the distribu-
tion of Z .. -

Since the SRSS values tend to occur in the upper half of the dis-
tribution, it is probably conservative to use the dependent amplitudes
method to estimate the probability of non-exceedance of the SRSS value.

Neither method seems to have a clear advantage over the other in matching

‘the simulation results.
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APPENDIX C COMPARISON OF RESULTS OF TWO ANALYTICAL METHODS

Results for the independent amplitudes met“od and the dependent ampli-
tudes method are compared to simulation results in the following figures
(see Appendices A and B for a description of the analytical methods). Fig-
ures C.1 through C.8 illustrate the case of lognormal random amplitude dis-
tributions and a dispersion factor of § = 1.3. Figures C.9 through C.11
i1lustrate the case of uniform random amplitude distributions and a disper-
sion factor of & = 1.2. Of those available (1.0, 1.1, 1.2, and 1.3) these
are the §-values admitted by tha Newmark-Kennedy criteria.

The independent amplitudes method and the dependent amplitudes method
give essentially the same result around the median value of the distribu-
tion, but the dependent amplitudes method gives a larger variance and
therefore thicker tails on the distribution. The dependent amplitudes
method therefore tends to be conservative in the upper tail of the distri-
bution, which is the region of greatest interest. Because of the approxi-
mation introduced by the assumption of Pocisson croséings, the lower tails
of the distributions tend to show the greatest errors, and it must be re-
garded as coincidental that the dependent amplitudes method sometimes gives
better results in this region.

For the cases studied, the two analytical methods give similar results,
and the dependent amplitudes method is generally conservative in the region
of interest. Therefore the dependent amplitudes method was used in subse-

quent comparisons to simulations (Appendix D).



PROBABILITY

1.0

CUMULATIVE DISTRIBUTION FUNCTION

1 A A A A ’

0.8 -

0.6.

0.4

0.2 4

0.0

INDEP. AMP.

S DEP. AMP.
SIMULATION & = 1.3

NOTE :

~
.

-

.
e
-1

R-VALUE x 103

SIMULATION TRACED FROM EDAC FIGURE 2-28. CASE 1: MS - OBE + 3RY, Ma
LOGNORMAL AMPLITUDE PDF-ALL DISPERSIONS EQUAL

FIGURE C.1 COMPARISO! ANALYTICAL METHODS TO SIMULATION: CASE 1



PROBABILITY

COMPLEMENTARY CUMULATIVE DISTRIBUTION FUNCTION

————— - —— -

] 0 ~ . i . 1 N
0.8 1 b
0.6 4 9
DEP. AMP.

e SIMULATION & = 1.3 — INDEP. AMP.
0.2 4
0.0 - v - ; : )

-18 -16 -14 -12 -10 -8 - 2

R-VALUE x 19°

NOTE: SIMULATION TRACED FROM EDAC FIGURE 2-29. CASE 1: MS OBE + SRV Ma,

LOGNORM/L AMPLITUDE POF-ALL DISPERSIONS EQUAL

FIGURE C.2 COMPARISOM AMALYTICAL METHODS TO SIMULATIOM; CASE 1



PROBABILITY

CUMULATIVE DISTRIBUTION FUNCTION

].0 2 1 I _1 1
0-8‘ -
0.6- -
SIMULATION § = 1.3
0.44 DEP. AMP. :
INDEP. AMP.

0.2 i
00 T - T T .

& i 24 32 40 a8 56 64

R-VALUE x i0°

NOTE: SIMULATION TRACED FROM EDAC FIGURE 2-32. CASE 3: RHR-VWETWALL OBE + SRY M,
LOGNORMAL AMPLITUDE PDF-ALL DISPERSIONS EQUAL

FIGURE C.3 COMPARISO' ANALYTICAL METHODS TO SIMULATION; CASE 3



PROBABILITY

COMPLEMENTARY CUMULATIVE DISTRIBUTICN FUNCTION

]-0 *-q-_—l_-k d 1 L 1 1
0.8 - SIMULATION & = 1.3
0.6 4
0.4 .

INDEP. AMP.

DEP. AMP.
0.2 .
0.0 , ,
72 -64 -56 -48 -40 -32 .24
R-VALUE x 10°

NOTE: SIMULATION TRACED FROM EDAC FIGJRE 2-33. CASE 3: RHR-WETWALL OBE + SRV Ma
LOGNORMAL AMPLITUDE PDE-ALL DISPERSICNS EQUAL

FIGURE C.4 COMPARISON ANALYTICAL METHOJS TO SIMULATION, CASE 3



PROBABILITY

COMPLEMENTARY CUMULATIVE DISTRIBUTION FUNCTION

L L 1

o - l -\—\_‘\
0.8 - ——”;1k 1
SIMULATION & = 1.3
0.6 3
DEP. AMP.

o ol
0.4 INDEP. AMP.
0.2 - -
0-0 1 § 1 T ¥ L

32 -28 -24 -20 -16 -12 -8

R-VALUE

NOTE: SIMULATION TRACED FROM EDAC FIGURE 2-35.

CASE 4:
LOGNORMAL AMPLITUDE PDF-ALL DISPERSIONS EQUAL

FIGURE C.5 COMPARISCN ANALYTICAL METHODS TO SIMULATION;

ZIMMER OBE(NS) + SRV

ASE 4



PROBABILITY

CUMULATIVE DISTRIBUTION FUNCTION

e 1 & 1

1.0
SIMULATION & = 1.3 i

0.8 4
0.6 - ;
e W A INDEP. AMP. h
0.2 | !
= ,_JJ/ | | | |

4 8 12 16 20 24 28

R-YALUE

NOTE: SIMULATION TRACED FROM EDAC FIGURE 2-34. CASE 4: ZIMMER O0BE(NS) + S

LOGNORMAL AMPLITUDE PDF-ALL DISPERSIONS EQUAL

FIGURE C.6 COMPARISON ANALYTICAL METHODS TO SIMULATION; CASE 4

—— Ty S I T e W T R T G A y— e e

"
{

!

L

.-



PROBABILITY

CUMULATIVE DISTRIBUTION FUNCTION

1.0 - : . : .
0.8 - -
0.6 -4 b
SIMULATION & = 1.3
0.4 . DEP. AMP. !
INDEP. AMP.
8.2 J h
0-0 T T ] T ]
B 8 12 16 20 24 28
R-VALUE
NOTE: SIMULATION TRACED FROM EDAC FIGURE 2-36. CASE 5:

ZIMMER OBE(EW) + SRY

LOGNORMAL AMPLITUDE POF-ALL DISPERSIONS EQUAL

FIGURE C.7 COMPARISON ANALYTICAL METHODS TO SIMULATION; CASE 5



COMPLEMENTARY CUMULATIVE DISTRIBUTION FUNCTION

1.0 . L - -
SIMULATION & = 1.3
0.8 4
0.6 .
: .
=
r
= INDEP. AMP.
& 0.4
Q.
6.z 9
0-0 T T T i
-28 -24 -20 -16 12 -8
R-VALUE

NOTE: SIMULATION TRACED FROM EDAC FIGURE 2-37. CASE 5: ZIMMER 2SE(EW) + SRV,
LOGNORMAL AMPLITUDE PDF-ALL DISPERSIONS EQUAL

FIGURE C.8 COMPARISON ANALYTICAL METHODS TO SIMILATICN; CASE 5



PROBABILITY

CUMULATIVE DISTRIBUTION FUNCTION

].0 i 5 A i —
SIMULATION § = 1.2
0-8' -
0.6 4 -
0.4 DEP. AMP. L
INDEP. AMP.

0.2~ L
0.0 T T T T T

6 8 10 12 14 16 18

R-VALUE . iy’

NOTE: SIMULATION TRACED FROM EDAC FIGURE 2-52. CASE 1: MS - OBE + SRV - Ma,

UNIFORM AMPLITUDE POF-ALL DISPERSIONS EQUAL

FIGURE C.9 COMPARISON ANALYTICAL METHODS TO SIMULATION, CASE 1

T T T o AT ETION 0T 0 g R AT T R T T R T G W N S

A e At



PROBABILITY

COMPLEMENTARY CUMULATIVE DISTRIBUTION FUNCTION

].0 Y 1 1 1 1
0-8 - =
SIMULATION & = 1.2
0.6 4 1
DEP. AMP.
0.4 L
0.2 4 INDEP. AMP. !
0.0 , . ] , ‘
-18 -16 -14 12 -10 -8 -6
R-VALUE x 10°

NOTE: SIMULATION TRACED FROM EDAC FIGURE 2-53. CASE 1: MS - OBE + SRV - Ma
UNIFORM AMPLITUDE PDF-ALL DISPERSIONS EQUAL

FIGURE © 10 COMPARISON ANALYTICAL METHODS TO SIMULATION; CASE 1



PROBABILITY

CUMULATIVE DISTRIBUTION FUNCTION

1.0 . . . . $
0.8 - k.
SIMULATICN 8§=1.2
0.6 4 L
DEP. AMP.
0.4 J =
INDEP. AMP.
0.2 . .
- 0.0 v - T T 1
4 3 12 16 20 24 28
R-VALUE
NOTE: SI"ULATION TRACED FRO!M EDAC FIGURE 2-58. CASE 4: ZIMMER OBE(NS) + SRY

UNIFORM AMPLITUDE PDF-ALL DISPERSIONS EQUAL

FIGURE C.11]

COMPARISON ANALYTICAL MCTHDS TO SIMULATION; CASE §



D1

APPENDIX D: COMPARISON OF ANALYTICAL AND SIMULATION RESULTS

The dependent amplitudes analytical method (see Appendix B) is com-
pared to simulation results in this appendix. Figures D.1 through D.10
show results for the five cases studied for a lognormal amplitude distri-
bution. Figures D.11 through D.18 show results for four cases for a uni-
form amplitude distribution.

Figures D.1 and D.2 (Case 1) are typical of the first three caser
studied. The analytical method compares very favorably to the simulation
results. The lower tails of thedistributions must be regarded as very
approximate becaw 2 of the approximation introduced by the assumption of
Poisson crossings; it is the upper tail, however, which is of interest.

Figures D.7 through D.10 (Cases 4 and 5) are the least successful in
matching the entire simulation results. This may be due in part to the
unusual asymmetry in the SRV load (see Figure E.15) and to the near-vertical
portion of the distribution of the time phase only (8§ = 1.0) curves. This
portion is caused by the high ratio of the durations {about 10 to 1)
coupled with a long period of relatively low amplitudes in the longer re-
sponse histories, (see Fig. E.13 and E.17), plus the presence of a single
larre peak in the longer of the combined responses (see Figures E.13 and
E 7). Even so, the analytical method performs well in reproducing this
behavior in Figures 0.8 and D.10. In all these cases, of course, the ana-
lytical method gives a reasonable (and generally conservative) approximation

for fractiles at and above the 0.84 level.
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APPENDIX E: TIME HISTORIES, CDF's, AND UP-CROSSING RATES

The figures in this appendix show the time histories and the corre-
sponding upcrossing rate functions and CDF's for all of the load response

events used in this study. The following events are included:

CASE 1: MAIN STEAM-461 OBE, M,
MAIN STEAM-461 SRVBOG, M,

CASE 2: MAIN STEAM-461 OBE, M.
MAIN STEAM-461 SRVBDG, M

CASE 3: RHR WETWELL-1I OBE, M,
RHR WETWELL-11 SRVBUS, M,

CASE 4: ZIMME- wuDE 4 OBE-NS
ZIMMER NODE 4 SRV-ALL

CASE 5: ZIMMER NODE 4 OBE-EW
ZIMMER NODE 4 SRV-ALL
The upcrossing rate function and the CDF centain important informna-
tion about the process. Figures E.1 and E.2, for example, show a typical
earthquake response. The CDF has a common "S-shaped" curve and the up-
crossing rate function is "bell-shaped". By contrast, Figures E.? and E.4
show an SRV response, in which the COF is almost iinear and the upcrossing
rate function is almost uniform. Although these functions do not uniquely
define the process, they present some of the most significar information
needed for load combination purposes and in a form which is :asier to in-

terpret and generalize than the full time histories.
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PROBABILITY AND NORMALIZED UPCROSSING RATE
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FIGURE E.2 UPCROSSING RATE FUNCTION AND CUMULATIVE DISTRIBUTION FUNCTION
FOR EVENT MAIN STEAM-461 OBE, M,, CASE 1
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PROBABILITY AND NORMALIZED UPCROSSINC RATE
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FIGURE E.4 UPCROSSING RATE FUNCTION AND CUMULATIVE DISTRIBUTION FUNCTION
FOR EVENT MAIN STEAM-461 SRVBDG, M,, CASE 1 .
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PROBABILITY AND NORMALIZED u-’CROSSING RATE
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FIGURE E.6 UPCROSSING RATE FUNCTION AND CUMULATIVE DISTRIBUTION FUNCTION

FOR EVENT MAIN STEAM-461 OBE, M., CASE 2
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PROBABILITY AND NORMALIZED UPCROSSING RATE
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FOR EVENT RHR-WETWELL-1I OBE, M,, CASE 3
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PROBABILITY AND NORMALIZED UPCROSSING RATE
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PROBABILITY AND NORMALIZED UPCROSSING RATE
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FIGURE E.14 UPCROSSING RATE FUNCTION AND CUMULATIVE DISTRIBUTION FUNCTION

FOR EVENT ZIMMER NODE 4 OBE-NS, CASE 4
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PROBABILITY AND NORMALIZED UPCROSSING RATE
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FIGURE E.16 UPCROSSING RATE FUNCTION AND CUMULATIVE DISTRIBUTION FUNCTION
FOR EVENT ZIMMER NODE 4 SKV-ALL, CASE 4
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FOR EVENT ZIMMER NODE 4 OBE-EW, CASE 5
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