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Disclaimer of Responsibility

As this document is submitted by the General Electric Company on behalf
of the Mark II Ouners Group, the follouing disclaimer is incorporated:

The only undertakings of the General Electric Company respecting infoma-

tion in this document are contained in the contracts for Mark II Containment
Consulting Services between the General Electric Company and each of the
members of the U. S. Ihrk II Cuners Group, effective variously June 9, lO 75,
June 23, 1975, and July 29, l975, and nothing contained in this document
shall be construed as changing the contracts. The use of this information
by anyone other than the members of the U. S. bbrk II Ouners Grcup either
themselves or through their technical consultants, or for any purpose other
than that for which it is intended under the contracts is not authorised;

and uith respect to any unauthorised use, the General Electric Company makes
no representation or carranty, capress or implied, and assumes no liability
of any kind as to the completeness, accuracy, usefulness or non-infringing

nature of the information contained in this document.
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1. INTRODUCTION AND SUMMARY OF CONCLUSIONS

When two histories of component response (e.g., stress time histories)

are hypothesized to act simultaneously it is desirable to have straight-

forward rules for determining a satisfactorily conservative combined peak

design response. The Square Root of the Sum of the Squares (SRSS) rule *
_.

has been proposed as being applicable, provided certain criteria are sat-

isfied. The most recent statement of such criteria, called the Newmark-

Kennedy criteria, is given in Reference 1. .

The primary purpose of this study is to support the criteria confir-

mation and other conclusions drawn in Reference 1 by considering a broader

range of variations in the sensitivity study reported there. This report

is a companion to Reference 1 in that respect, and the reader is assumed

to be familiar with it. Only a brief summary of the background is given

in the next section.

A secondary purpose of this study has been to develop and confirm an

analytical (or, when computer-implemented, a numerical) procedure to gener-

ate both time-phase-only (TPO) cumulative distribution functions (CDF's)

and random-amplitude-plus-time-phase distribution functions of the peak

combined response when time histories of the individual responses 'are ,

given** The new procedure can evidently replace the more costly simulation

*
The rule, the method, and the examples here are interpreted to apply to

the signed responses. The method can be adapted to absolute extremes by -

replacing the mean up-crossing rate by the sum of the up-crossing and down-
_ _ _

crossing rates-
**

The procedure also applies to cases in which instead of explicit time histo-
, ries,appropriaterandomprocessdescriptionsoftheresponsesarespecified.I

These might be oevelopeo in the future from random vibrations approacnes
i to the structural / mechanical dynamic analyses.
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analyses that have been used for this purpose in preceding studies (Rrfer-
'

ences 1, 2, and 3). Because it is new, somewhat more space is given in

this report to the bases of the procedure; most of this material has been

placed in Appendix A, however, not to detract from the main emphasis of

this study.

The primary conclusion of this study is simply a .

confirmation of Reference 1,. If the modified preamble

and Criterion 2 of the Newmark-Kennedy criteria are

satisfied for response time histories with individual .

pcsks defined at 84% NEP (non-exceedance probability),

then the SRSS combination rule will produce a value

with approximately the same (84%) NEP. This conclu-

sion has been verified here for a large variety of am-

plitude distribution types (lognormal, uniform, normal,

exponential, and a bimodal mixture of uniform distri-

butions), for a range of preliminary relative amplitude

scalings, and for a range of relative durations of the

two response histories. In addition, a range of ampli-

tude dispersions has been considered to investigate the
|

| dependence of the conclusions on this variable. As de-
! -

! termined in Reference 1, the 84% fractile (or the design

amplitude) should be at least 15% greater than the me-

dian to insure that the SRSS procedure is adequate. *

2. A BRIEF BACKGROUND

In summa:y, the primary purpose of Reference 1 and of this study is to

demonstictc the adequacy of Criterion 2, which states:
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"When response time histories are available for all dynamic loadings

being combined, SRSS methods may be used for peak combined response when
9

CDF calculations, using appropriate assumptions on the range of possible

time lags between the response time histories, show the following criteria

are met:

1. There is estimated to be less than approximately a 50% conditional .

probability that the actual peak combined' response from these conservatively

defined loadings exceed approximately the SRSS calculated peak response, and

2. There is estimated to be less than approximately a 15% conditional -

probability that the actual peak combined response exceeds approximately

1.2 times the SRSS calculated response."

The conditional probabilities stated are conditional on knowing the peak

amplitudes of the individual responses, that is, the only random quantity

reflected in these CDF curves is the random time lag between the two re-

sponses. We refer to these conditonal CDF curves as time-phase only (TP0)

curves or TP0 CDF's.

Adequacy of the SRSS rule is defined to be that it produces a design

peak combined response that has a non-exceedance probability (NEP) of ap-

proximately 84%, when the randomness in the peak amplitudes is recognized

explicitly. It is presumed (see modified preamble, pg. 4-1, Reference 1)

that the' individual given time histories have been scaled, conservatively,

such that their individual peaks have approximately 84% NEP's also (or that

| each peak is at least 1.2 times the median level, whichever is greater). *

In Reference 1, the authors selected six cases of sets of time histories

from the 291 which had been considered earlier (Reference 2 and 3). All non-

trivial cases satisfied Criterion 2. To be conservative, the six selected cases
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were those that came closest to failing the requirements of Criterion 2,

either because the SRSS value was close to 50% in the TP0 CDF or because

1.2 SRSS was close to the 85% value. (In addition, cases were rejected in

which the SRSS value was within 25% of the absolute sum of the peaks, the

difference being insignificant and uninteresting.) The first five of these
*

cases are also considered here. -

In Reference 1 simulations were conducted with both random amplitudes
3

and random time lags. The former were introduced as random variable multi-
**

pliers , F , on the deterministic time histories, A(t), producing random -

R

time histories R(t) = FR A(t). Various dispersions were assumed for the

distribution of F but, consistent with intent of the study, in all cases
R

the median was defined such that the unity value of the scale factor FR

corresponded to the 84% NEP. The dispersion factor 6 was defined as the

ratio of the 84% NEP value to the median, i.e., simply as 1/ median. For

the lognormal distribution (used in most of the Reference 1 study), 6 cor-

responds to exp(S) in which S is the standard deviation cf the (natural)

log of F . (Approximately, 6 m 1 + S, and, approximately, 8 is the coef-
R

' ficient of variation of the amplitude distribution.) 6 values of 1.0 (i.e. ,

the TP0 case), 1.1, 1.2, and 1.3 were considered in Reference 1 and in this

*
The sixt'n case involving three rather than two' loads, was not pursued

simply becacse it would have required computer program extensions that were
not believed *.o be justified in the light of the two-load case results. .

Recall that tha combination of three loads can always be considered as the
combination of o.'e with the combination of the other two. Because the am-
plitude dispersion for the combination of any two loads involves both TP0
dispersion and individual amplitude dispersions, it was never found to fall
below the 15% level. Therefore, there is every reason to assume that the
SRSS procedure will work for three as well as for two loads.

**
This is consistent with seismic practice of scaling motions by their peaks.
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study as well. ;

Random tir.;e lags were introduced in Reference 1 in a manner consistent

with the preceding studies (References 2 and 3): the beginning of the

shorter time history was assumed to lag behind the beginning of the longer

time history by an amount uniformly distributed on the interval frorr. the

beginning of the longer history to the end of the longer history. In con- .

strast, in this study, for reasons of analytical simplicity, the lag is

er.iformly distributed on an interval equal to the sum of the two histories

durations (a somewhat unconservative assumption, relative to previous stud- .

ies), but the motions are assumed to be periodic implying that,' if it ex-

tends beyond the termination of the longer motion, the tail end of the shorter

motion can " wrap around" and superpose on the beginning of the longer motion

(a conservative assumption relative to previous studies). In addition to

simplicity (it permits the adoption of stationary processes), the assumption

here is more realistic in that it assumes, in effect, that the shorter mo-

tion may be the first of the two to occur. In any case, the net effect is

believed to be small and comparisons between results here and in Reference 1

are very satisfactory.

In Reference 1 simulation was used to determine the CDF's. Here an

approximate analytical method has been developed, based on random process
,

theory and on previous theoretical study of load combination problems. The
,

| procedure permits determination of the CDF's by simply evaluating several

convolution integrals. These integrals can be evaluated numerically by ccm- -

|

|
puter. (A convenient program has been developed for the specific purposes

|
of response combination studies.). The basis of this method is presented in

a subsequent section and in more analytical detail in Appendix A.
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The information required for each response history .s

(1) the duration, T .j
,

(2) the C0F of the random amplitude scale factor, F .

(3) the marginal CDF of the deteministic time history, A (t).g

(This function gives the fraction of the duration, T , thatj
.

the history spends below level x, as a function of x.)

(4) the mean upcrossing rate function of A (t). (This functionj

gives the ratio of the number of times A (t) crosses--fromj ,

below to above--level x to the duration T . It is a fynctionj

of level x.) .

The last two functions are easily obtained if the deterministic time history
*

A (t) is given. For enmple, if A (t) is given as a set of values at uni-j j

form time intervals, at, the determination of the marginal CDF requires 'sim-

ply counting the number of values in the list with Aj 5,x, dividing by

T /at, and repeating for a set of x values. Similarly the upcrossing ratej

function involves observing values at the two ends of each time interval and

counting the number of times that both the earlier value is below x and the

later value is above x (i.e., an upcrossing of x occurs). This number is

to obtain a rate per unit time. The process is repeated fordivided by Tj

a set of x values above and below the (zero) mean. If negative peaks are

also to be considered, a mean downcrossing function is needed for all values

of x. These functions are equal in value. Examples of these functions, pro- .

vided by EDAC, are shown in Figures E-2, 4, 6, etc.

*
As mentioned above, these functions might also be provided directly by

random vibration theory without calculating response histories.

I
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The following sections will sumarize first the analysis method used and

then the results. Those uninterested in the former can skip the next sec-

tion. Those interested in more detail about the method are referred to

Appendices A and B; details of results are given in Appendices C and D.

3. METHOD OF ANALYSIS
.

The analytical method used to evaluate the SRSS rule of 84% fractile

combination is based on an approximate theory of extremes of stationary
.

random functions (Reference 4 and 5).

A requirement for applicability of this analytical technique to the

present problem is that the random response functions (random because of

phasing and because of amplitude) correspond to stationary processes. Al-

though each response, A (t), may appear to be the realization of a nonsta-g

tionary stochastic process, (see, for example, Fig. E-1 , in Appendix C),

the introduction of random phasing between responses gives an opportunity

for stationary representation of the uncertainty. For the ith response,

one such stationary representation can be obtained in three steps:

1. A deterministic and periodic function Agp(t)isobtainedbyshiffing
ththe i response, A (t) to start at time t = 0 and by then repeating thej

j + T , the combined duration ofsame function at intervals of length T = T~

2

the two loads.

gp(t) is translated randomly by an amount t0j. The random variables2. A
_

are independent with an identical uniform distribution on the
and t02t01

interval [0, T]. (In application, it is sufficient simply that the

phase between the two responses has such a unifohn distribution.)

3. In the final step, randemness of the amplitudes is accounted for. After
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ththis is done, the i response is represented as a stationary periodic ran-

dom process, Rjp(t) = F Ajp(t), in which F = random amplitude of re-
RR

$g

sponse i and Ajp(t) = (random, periodic) response process for F "I*
R

9

These three steps need be done formally only; in practice (Appendix A) one

deals numerically only with the marginal CDF and mean up-crossing rate func-

tions of the given response histories. Application of the approximate theory
.

of Poisson upcrossings to the stationary and periodic sum process Z(t) =

Ajp(t) over the interval [0, T] yields an analytical approximation to the
distribution of the maximum combined response. Details of the model and of

.

the analysis that eventually leads to this distribution are given in Appen-

dix A.

The method requires much less numerical effort than simulation. It is,

however, an approximate method. In a variety of applications to load

combination problems it has been found to be satisfactorily accurate (Ref. 4).

For this response combination application, its accuracy must be verified

through comparison with Monte Carlo simulation results. Specifically, one

may anticipate that inaccuracies could originate from three features of the

analytical model:

1. Representation of random phase through the artificial introduction of

stationary, periodic response processes;

2. Approximation of the mean upcrossing rate function of the sum process

Z(t);and -

,

3. Assumption of Poisson upcrossings.
,

From comnarison with the simulation result in Reference 1, it was concluded.

. that none of these features is critical in the case of random phase only

(i.e.. TP0 CDF's), whereas the Poisson approximation can produce sizeable

errors when amplitudes are random with large coefficients of variation

|

|
._..;..~._ _m..-....-

._ _ _ _ _ . - . - - - - _ _ - - - - _ -_- , . - - - - -



- .

-
.

9

(large6). In this last case, a major improvement in accuracy followed

from assuming that upcrossing events are conditionally _ Poisson, given the

response amplitude factors. This improvement over the ordinary treatmert

of mean upcrossing properties has been incorporated into the analytical o-

proach (Appendix A). Through it, one accounts for the fact that the mean

upcrossing rate of Z(t) across level x, v (x), varies from realization to
7 ,.

realization due to randomness of the response amplitude factors, F On the.

contrary, the method neglects sample variation of v (x) due to random phase.
Z

This factor introduces conservatism into the analytical results for moderate ,

to high fractiles. Another source of conservatism is the formula by which

mean upcrossing rates of Z(t) are approximated (Eq. A.4). These conservative

trends are anticipated on the basis of thioretical considerations; numerical

comparison with simulation results.has shown that biases of the (improved)

analytical method are small. See, for exarple, Fig. C-1. Details are given

in Appendices C and D. Note that for the sample sizes used in the Reference

1 simulations the simulated CDF's are statistically accurate only between

about 0.0 and 0.9.

In the analytical treatment, considerable computation time savings

result if the two random amplitude scaling factors, F and FR , are theR i 2,

same (perfectly dependent) for both the responses , as opposed to them
.

being probabilistically independent for the different responses. Replace-

ment of the independence assumption by the perfect dependence assumption (Ap-
,

pendix B) causes little modification in the median value of the peak com- .

max Z(t), but increases the variance of Z
bined response, Z,,x = 05t<T max'

-- ;
.

,
' |*

This assumption is analogous to that adopted in Chapter 3 of Reference 1;
the method there applies only to lognormal distributions, but the conclusions
are similar to those found here.

:

<-,
. - . _ . _ c - .- . - - . ~ . . - - - - - - - . .. _ .- - .-...
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thickens the distribution tails, and therefore adds conservatism in the

estimation of high fractiles (of low fractiles for Z min Z(t)).=
min

Ost<T
A typical comparison between results from the two assumptions is shown in

Fig. C-1 and many more cases are presented in Appendix C.

Numerical values for the NEP's of SRSS values in Table 1 can be used

to confirm quantitatively the dependent-amplitude analytical method a .pted. .

The figures in parentheses are analytical results for independent ampli-

tude scale factors. They are, on average, only 1% higher than those deter-

mined assuming dependent amplitude scale factors. A typical net comparison .

betuen the dependent-amplitude analytical re::ults and the simulation results

is obtained by comparing the left-most columns of NEP values in Table 1.

Analysis of these results suggests the true (simulation) values are (on av-

erage over the cases shown) 1.05 times the dependent-amplitude analytical

results used in the bulk of our study. This factor is somewhat higher (1.09)

for 6 = 1.0, i.e. , TPO, and somewhat lower (1.03) for 6 = 1.2 and 1.3. These

factors can be used to apply approximate corrections to the (conservative)

analytical results discussed below.

In sumary:
for fractiles above the median (below the median for Zmin)

the analytical procedure tends to err on the conservative side. Conservatism is

more pronounced but still not large under the simplifying assumption that amplitude
,

scaling factors are the same for all responses. Therefore, the SRSS rule is

validated here under this last assumption; in this case there is no need

for more sophisticated modeling and analysis. On the basis of this reason- -

ing, most calculations have been made assuming identical, perfectly depen-

dent random amplitude factors.
i

i

,

1

| |
|

~ . , - . - . _ . - - . - - _ . ..-. . - .-
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. 4. NUMERICAL RESULTS

Representative results from the analytical. procedure (the c mplete set

is in Appendices C and D) are shown in Fig. D-1. They refer to EDAC Case 1,

=F = F ) with lognormal distribution,identical amplitude factors (FR R R
1 2t

and dispersion parameter 6 = 1, lel, 1.2, 1.3. Due to the fact that the
.

distribution of amplitude is " anchored" at the 0.84 fractile, larger 6
'

(larger variance) of F implies smaller mean value of the maximum combined
R,

response, Z Clearly, it also implies larger variance of Z,,x. The two.

max

effects combine to cause the cumulative distribution functions for different

6 to cross at points above the median. Of special interest here is the 0.84

fractile of the distributions and, even more, the probability F(SRSS) of not

exceeding the SRSS value, i.e., the NEP of the SRSS.

The NEP of the SRSS value depends on many parameters, including duration

of the responses, distribution of the time phase, distribution of the ampli-

tude factor, relative size of the loads (whether or not one response domi-

nates the sum), whether interest is in the minimum or in the maximum of the

sum (" positive" case versus " negative" case). Among these parameters, the

more critical ones have been identified through sensitivity analysis of the NEP

with respect to:
.

~

1. Dispersion of the response-amplitude distribution (6 between 1.0 and 1.3);

2. Type of response-amplitude distribution (uniform, lognormal, normal,
,

exponential, bimodal mixture of uniform distribution);
,

3. Preliminary amplitude scaling of the response functions;

*
In all studies here both scale factors have the same 6 value. This case

is the most critical. See Reference 1.

.

i
1

.I- . - - - - - - - . . - . . - . - .n..--- .
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4. Relative duration of the responses;

5. Positive (maximum) versus negative (minimum) case.
9

All calculations were performed on the five response-combination problems

previously identified through simulation as those critical to the applica-

tion of SRSS. Therefore, one can expect present numerical values of the

NEP of the SRSS value to be conservative (low) with respect to those for
,

the entire spectrum of response-combination problems.

Tables 1 and 2 sunnarize the numerical results from some of the sensi-
,

tivity analyses. With the exceptions shown for comparison, all results were ,

obtained under the conservative assumption that the random amplitude factors

of the two responses are the same. The following conclusions can be drawn:

1. As expected, the NEP of the SRSS value ter.ds to increase with 6 (see

also Fig. 1). This fact is considered in the Newnark and Kennedy criteria

by limiting the applicability of the SRSS rule to, in effect, 6 > l.15. The

reason is that the amplitude-factor distribution is anchored at the 0.84

fractile. For all but small values of 6 (e.g., for 6 > 1.15), the NEP of

the SRSS value has small dispersion about a value which is itself close to

0.84. Recall that the cases studied here are the near critical ones from

the original 291 cases. The remaining cases would show typically equal or

higher NEP values.

2. The difference between the NEP of the maximum combined res7onse and the
*

NEP of the minimum combined response explains most of the dispersion of the

results in Fig. 1 for given 6. This variability overshadows sensitivity of the .

NEP of the SRSS value to all parameters considered here, except 6. It is due

*
More precisely 1 - NEP in the minimum case.

.

.

4 .. e, . . - , . . . . - .e .--ms. . _ - - - - . ..wm_, .._e g ,
,
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primarily simply to small asymmetries in some of the sample time histories.

3. Parameters to which the NEP of the SRSS value is not sensitive include:

(a) Distribution type (shape) of the amplitude factor (simple or bi-

modal rectangular, lognormal, etc.). See Table 1. Within the present
'

choice of distributions, sensitivity is very small and negligible.

(b) Relative duration of the loads. Relative duration is varied here
.

by stretching or compressing the time axis of the response with shcrter

duration. Sensitivity to this parameter is displayed in the last four

columns of Table 2, in which TF is the factor by which duration of the
4

shorter response is multiplied (duration = TF x original duration).

(c) Preliminary deterministic scaling of the responses (first four col-

umns of Table 2). One of the responses is multiplied by a constant be-

fore phase and amplitude are randomized. The parameter that is varied

in the table is the ratio R between the peak of the function with longer

duration and the peak of the function with shorter duration. (Positive

peaks for " positive" case, negative peaks for " negative" case.) There

is only a very small reduction in NEP for R close to 1, which may actu-

ally be due to the method of calculation (i.e., to the assumption that

the amplitude factors FR) and F are perfectly dependent).
R

2

5. CONCLUSIONS

A set of five pairs of response histories, selected from 291 cases as
''

the most critical tests of Criterion 2, have been used as a basis to study

the sensitivity of the NEP value of the SRSS value. It is found to be in-

sensitive to the shape of the distribution of the random scale factor, in-

sensitive to the (median) relative amplitude of the peaks of the two histories,

:
|
t - - - . . . . -. -
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and insensitive to relative stretching (and hence relative durations) of the

two histories. The NEP is sensitive to the dispersion factor 6, at least

for values of 6 between 1.0 (i.e., TP0) and about 1.15. These are unreal-

istically low values, but in any case they are excluded by the (modified)

preamble of the Newmark-Kennedy criteria.

In absolute terms, for cases that satisfy the criteria, the NEP's of
,

the SRSS values are estimated to lie above about 85% for all but a very few

cases studied. This conclusion is demonstrated in Fig. 1. The right-hand

scale has been adjusted to reflect the typical conservative bias (a factor .

of 1.05) observed to exist in the analytical procedure adopted for these

studies. To meet the criteria, 6 must exceed 1.15. At this 6 value (by

interpolation in Fig.1) only three of the cases in Table 2, for example,

fall below 80%, the lowest being about 75%. The results in Table 2 are

typical for all tt. (most critical) five cases.

A second, methodological conclusion is that an analytical theoretical

procedure, although approximate, gives satisfactorily accurate results for

such studies. The computation time is believed to be much shorter than that-

associated with simulation. The approximate NEP results are found by com-

parison to simulation to be typically 1% to 5% conservative in the range

of interest depending upon which of two analytical models is used.
.

.

4

e
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BIMODAL

5 LOGNORnAL (mixEO)

| ao gg UNIFORM GAUS$1AN EXPONENTIAL UNIFORM

bb b5 51M. ANALYTICAL |NO. gy ,,

5" E iii (h$$) NEP(SR$5) |NEP(SR55) NEP(SR$5) NEP(SRSS) NEP(SRSS)
#

1.0 NEG 0.48 0.51 (0.51)
TPO POS 0.40 0.38(0.38)

1.1 NEG 0.77 0.77
POS 0.74 0.71

1.2 NEG 0.81 0.82
POS 0.81 0.76 (0.80) 0.79(0.79) 0.76 (0.80) 0.79 (0.81) 0.73 (0.79)

.-
.

1.3 NEG 0.84 0.83 (0.81)
POS 0.82 0.76 (0.80)

1.0 NEG 0.61 0.54 (0.54)
TPC POS 0.66 0.54 (0.59)

1.1 NEG 0.78 0.77
*

POS 0.80 0.80

1.2 NEG 0.82 0.81
POS 0.85 0.83 0.85

1.3 NEG 0.83 0.83
POS 0.85 0.84

1.0 NEG 0.74 0.66 (0.66)
TP0 POS 0.54 0.53 (0.53)

1.1 NES 0.86 0.83
PCS 0.79 0.75

1.2 NEG 0.86 0.85
PnS 0.82 0.41 0.93

1.3 NEG n.87 0.86
POS 0.87 0.83 (0.83)

1.0 NEG 0.90 0.89 (0.89)
TPO POS 0.70 0.56(0.56)

1.1 NEG 0.94 0.93
P05 0.82 0.71 (0.71)

1.2 NEG 0.93 0.93
POS 0.86 0.79(0.81) 0.81 (0.83) 0.80 (0.82) 0.82 (0.82) 0.79 (0.83)

1.3 NEG 0.92 0.92
P05 0.89 0.82(0.85)

1.0 NEG 0.94 0.90(0.90)
TP0 POS 0.74 0.65 (0.65)

! 1.1 NEG 0.96 0.94
POS 0.86 0.76(0.77)

1.2 NEG 0.93 0.94
POS 0.88 0.83(0.84) 0.84 .

1.3 NEG 0.93 0.93
POS 0.88 G.85 (0.87)

TA8tt 1 Sensitivity of NEP of the $25$ Value to Shape of the Amplit:2de Of stribution.
Amplitudes Assumed to be Perfectly Dependent. (Values in Parevitheses are fori

l Independent Amplitudes). No Prior Deterministic Scalin9 of the Response Functions.
Cases 4 and 5 give Stellar Results.
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TF SCALING FACTOR ON DURATION OF 5HORTER
R. RATIO 0F SCALING FACTOR $5. " OG LOAD (1.0 IS ORIGINAL CASE. REF.1).

CASE $$ $$
1/3 2/3 1 3 0.5 0.25 4.0 10.0 ;

NO. SM = z
E" 1E

|NEP(5R$5)|NEP(SRSS) NEP(SR$5) NEP($RSS) NEP(5tSS) NEPf5R55) NEP(SRSS) | NEP(5R$5)i

1.0 NEG 0.53 0.55 0.64 0.85 0.54
TPO POS 0.40 0.51 0.60 0.89 0.42

1.1 NEG 0.78 0.75 0.79 0.91 0.79
POS 0.73 0.72 0.76 0.91 0.73 .

1.2 EG 0.82 0.81 0.84 0.90 0.83 0.83 0.81 0.80
POS 0.79 0.79 0.82 0.90 0.79 0.79 0.78 0.77

1.3 EG 0.83 0.83 0.85 0.90 0.83
POS 0.81 0.81 0.84 0.89 0.81

1.0 NEG 0.56
TP0 POS 0.61 0.67 0.72 0.90 0.61

1.1 NEG 0.79
POS 0.82 0.81 0.84 0.92 0.82

1.2 NEG 0.83 0.83 0.81
POS 0.84 0.85 0.87 0.91 0.84 0.85 0.83

1.3 NEG 0.84
PO$ 0.85 0.86 0.88 0.90 0.85

1.0 NEG 0.81 0.86 0.87 0.92 0.90
TP0 POS 0.58 0.55 0.57 0.74 0.58

-

1.1 NEG 0.89 0.91 0.92 0.93 0.94
POS 0.78 0.72 0.72 0.86 0.73 0.94.

4
1.2 44 0.90 0.94 0.94 0.93

POS 0.83 0.80 0.80 0.87 0.81 0.81 0.79

1.3 NEG 0.93
P05 0.84 0.82 0.83 0.87 0.83

.

TA8LE 2 Sensttivity of MEP of $255 value to Relative Scaling of the (Deterministic) kp11tudes and fire
Scaling (Stretching) of Shorter Lead and its Duration. Mantea and Minima (Pastitive and Negative
Preak Cometned Responses) are Shown. Lognomal Of stributton on (Perfectly Dependent) Mc11tude
Factors. Cases 3 and 5 give 5tmilar Results.

.
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APPENDIX A: METHODOLOGY

Let X (T), X (T) be stationary, independent random processes (nor-j 2

be independent positive random variablesmalized responses) and A , A2j
(response-amplification factors)* We are interested in the extremal prop-

erties of the stationary (combined response) process Z(T); defined ,

Z(T) = A X (T) + A X (T) (A.1)jj 22

= Y (T) + Y (T) ''

j 2

in which Y (T) = A X (T) is the ithj j$ response process. Conditionally on

Aj = a), the upcrossing rate of Y (T) is given byj

Y|A(y,a)=vX( ) (A.2)v jj j j

and the first-order (marginal) probability density function of Y)(T) is

Y)|A(y,a)= X)(
) (A.3)f fjj

similarly for Y (T). The upcrossing rate of the sum process Z(T) condi-
2

| tional on given values of A and A can be approximated by the followingj 2

conservative formula (Reference 4 and 5):

-
. .

"Z|A ,A ( l'2) "X ( k) X( ) f ~I Id*fX (a )dx + v"

j 2 1 2 2 X) ja

(A.4)

*
A simpler notation is used here compared to main body.

l
|

|
-

-_ - .



_ _ _ _

. .

.

A2

|

This is a basic relationship in the approximate calculation of the proba-

bility' distribution of Z,y = 0<T<T Z(T) by the analytical method pro-max

posed here. Before completing the method, we observe that in order to

apply equation 4 to the present problem, it is necessary to model the

(finite length) response functions as stationary processes. This opera-

tion can be performed as follows:
.

Let T) be the duration of event X)(T), and T2 be the duration of

event X (T). Define periodic functions Xjp(T) and X2p(T), both with pe-2

riod T = T + T , as follows: X)p(T) (j = 1,2) is obtained by shiftingj 2 .

X (T) to start at time T = 0 and by then repeating the functions at in-
3

tervals of length T. See Figure A.1.
_

3 jp(T)
.- T X

~ =

b nb AAn. AbAAn. A ATm

_' Uv - b hvv v v v 1

T
-- ~~ ~

T X IT)"
2 2p_

___

_
f f n. f't 'On,

_

v -T~ i j s i p i gv
-T 11 0 ill T j II3

i i

FIGURE A.1

.

Next, X;p(T) and X2p(T) are shifted randomly by amounts t,01 02, re-and t

spectively, t are independent variables with identical uniform
0) and t02

distribution in [0, T]. (Notethatthephase|t0 -t0 l$ " "
j 2

l sitributed on [0, T].) This operation produces random processes Xj p(T)

and X2p(T) which are stationary, periodic with period T, and independent

| (Fig.A.2). One replaces X (t) in Eq. A.1 by X (T), and uses the re-g

sults which follow to calculate the distribution of the maximum of Z(T)

- -
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A3

over an interval of duration T. ,_

T T+T
.

_

h fg h n fg n , h n h n rg n _ _X)p(T)
v vi -g yvv- i yv iv -v

1
I
II

fI
f}I il |

'-l

, 8fL TL h, X2p(T)
i 4 : * 4

II 1s

- ) 1

- ;

FIGURE A.2

If the upcrossing rate functions and first order probability density
'

functions are obtained from the original time functions X (T) (j = 1,2),
3

defined on the intervals [0, T ] (j = 1,2), respectively, then the first two
j

. functions must be modified to reflect presence of intervals of zero ampli-

tude in the stochastic model. With vj,T(x) and fj,T(x) the modified func-

j,T)(x) and fj,T (x) the original functions, it is easy to show
tions, and v

j

that

j,T(x) (A.5)v ,T(x) = v
j

j

and
.

T T

j,T (x) + (1 - ) 6(x) (A.6)j,T(*) " ff
-

j

where 6(x) is the Dirac delta function. These modified functions can be

used in equation A.4 for vXj(x) and fXj(x).

|
_
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I
It was originally thought that the best solution strategy was to cal-

culate the upcrossing rate of the sum v (z), as
Z

a a

1 2 A YA 2 1 2"Z(z)= Z|A),A2 j 200
|

I

and then to calculate F (z) by the approximation
Z

.

_.

F IZ) " **P -"Z(z) T} (A.8)
Z

However, when compared to simulation this approach proved to give unsat-
'isfactory results in the middle portion of the distribution of Z Amax.

different approach, which produced much better results, consists of cal-

= max Z(T),culating the conditional distribution of Z
max

0<TsT i

F |A,,A ( ' l' 2) " **P I-"Z|A),A ( ' l' 2) T) (A.9)Z
2 2

and then removing conditionality:

*

. .

F (z) = l' 2 A YA 1 200 Z|A),A2 j 2
Z

..

Results from Equations A.4, A.9, and A.10 are shown in Appendix C, where

they are compared with simulation analyses.

.

'
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APPENDIX B: SIMPLIFIED METHOD

The method of Appendix A, which involves a double integration in
*

Equation A.10, can be expensive to implement if a large number of cases

are to be studied. A simplification, similar to the simplified method

proposed by Kennedy and Tong (Ref. 1), is to assume that the two responses
,

have identical random amplitude factor, A = Aj=A. In this case Equa-
2

tion A.4 becomes

4

X(f) # Id* + "X(f) #X ( a ) dx (B.1)"Z|A(z,a)= v
X a

1 2 2 1'=.

and Equations A.9 and A.10 combine to give

a

F (z) =
|A @N N*

Z
0

T'he two methods will be distinguished by calling the method in Appendix A

the independent amplitudes aporoach, and the above method the dependent

amplitudes aoproach. .

Comparisons in Appendix C indicate that there is reasonable agree-

ment between methods and between each method and simulation when the

amplitude factors are identically distributed $* It can be observed that

*.

The original method, involving Eq. A.7, is accurate in the tail (NEP
very close to 1.0). For applications in whEh only these NEP's are re- .

quired that method may be used. Eq. A-7 (after substitution from Eq. A.4)
reduces to single integrations over the A distributions.j

**
In the case when the random amplitude factors have different distribu-

tion, the dependent amplitudes method is generalized by assuming A =j
c3 + d A with cj jand d given constants.j

_ -
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the dependent amplitudes method tends to be conservative with respect to

the independent amplitudes method in the upper portion of the distribu-

tion of Z,,x.
Since the SRSS values tend to occur in the upper half of the dis-

tribution, it is probably conservative to use the dependent amplitudes

; method to estimate the probability of non-exceedance of the SRSS value.
.,

Neither method seems to have a clear advantage over the other in matching

the simulation results.

.

.

$
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APPENDIX C COMPARISON OF RESULTS OF TWO ANALYTICAL METHODS

Results for the independent amplitudes method and the dependent ampli-

tudes method are compared to simulation results in the following figures

(see Appendices A and B for a description of the analytical methods). Fig-

ures C.1 through C.8 illustrate the case of lognormal random amplitude dis-

tributions and a dispersion factor of 6 = 1.3. Figures C.9 through C.11 .,

illustrate the case of uniform random amplitude distributions and a disper-

sion factor of 6 = 1.2. Of those available (1.0,1.1,1.2, and 1.3) these

are the 6-values admitted by tha Newmark-Kennedy criteria. ,

The independent amplitudes method and the dependent amplitudes method

give essentially the same result around the median value of the distribu-

tion, but the dependent amplitudes method gives a larger variance and

therefore thicker tails on the distribution. The dependent amplitudes

method therefore tends to be conservative in the upper tail of the distri-

bution, which is the region of greatest interest. Because of the approxi-

mation introduced by the assumption of Poisson cross'ings, the lower tails

of the distributions tend to show the greatest errors, and it must be re-

garded as coincidental that the dependent amplitudes method sanetimes gives

better results in this region.

For the cases studied, the two analytical methods give similar results,
.

and the dependent amplitudes method is generally conservative in the region

of interest. Therefore the dependent amplitudes method was used in subse-

quent comparisons to simulations (Appendix D). .

m_._-_,_._.,.,.._,__.-._.. _ .
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CUMULATIVE DISTRIBUTION FUflCTI0ft
.

~

1.0 ' ' ' - - '

f '

O.8. ,

-

IflDEP. AMP.

DEP. AMP.
0.6.

g SIMULATION 6 = 1.3
~

5
E
ai
y 0.4. ,

0. 2 . ,

0.0
. . . . . .

4 6 8 10 12 14 16 18

3
R-VALUE x 10

.

NOTE: SIMULATION TRACED FROM EDAC FIGURE 2-28. CASE 1: f1S - OBE + SRV, M
a

LOGfl0RMAL AMPLITUDE PDF-ALL DISPERSI0flS EQUAL

FIGURE C.1 COMPARIS0ft Af!ALYTICAL fiETHODS TO SIfiULATI0ff; CASE 1

|
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COMPLEMENTARY CUMULATIVE DISTRIBUTI0tl FUtlCTI0t1

'
' ' ' ' ' '

1.0 %
d

0.8 - -

.,

0.6 - -

U
-

y .DEP. AMP.,

<
8
g 0.4 - SIMULATI0ft 6 = 1.3 .

-INDEP. AMP. -

0.2 - -

0.0 . . . . . i

-18 16 14 -12 -10 -8 -6 -4- -

.

3
R-VALUE x 10

tiOTE: SIliULATIOff TRACED FROM EDAC FIGURE 2-29. CASE 1: MS OBE + SRV M 'a

LOGil0RMAL AMPLITUDE PDF-ALL DISPERSI0 tis EQUAL

FIGURE C.2 COMPARIS0:1 AtlALYTICAL ftETHODS TO sit!ULATI0fl; CASE 1 .
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CUMULATIVE DISTRIBUTION FUNCTION
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fl0TE: SIf1ULATION TRACED FROM EDAC FIGURE 2-32. CASE 3: RHR-WETWALL OBE + SRV M ~

a

LOGfl0RMAL AMPLITUDE PDF-ALL DISPERSI0 tis EQUAL

FIGURE C.3 C0fPARIS0'l AtlALYTICAL ttETHODS TO sit:ULATI0ti; CASE 3
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COMPLEMENTARY CUMULATIVE DISTRIBUTI0tl FUtiCTION
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FIGURE C.4 COMPARISON AflALYTICAL METH03S TO SIfiULATI0fi; CASE 3
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FIGURE C.6 COMPARISOff Af1ALYTICAL METHODS TO SIf1ULATION; CASE 4
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APPENDIX D: COMPARIS0N OF ANALYTICAL AND SIMULATION RESULTS

.

The dependent amplitudes analytical method (sec Appendix B) is com-

pared to simulation results in this appendix. Figures D.1 through D.10

show results for the five cases studied for a lognormal amplitude distri-

bution. Figures D.11 through D.18 show results for four cases for a uni-
.

form amplitude distribution.

Figures D.1 and 0.2 (Case 1) are typical of the first three caser

studied. The analytical method compares very favorably to the simulation
.

results. The lower tails of the distributions must be regarded as very

approximate because of the approximation introduced by the assumption of

Poisson crossings; it is the upper tail, however, which is of interest.

Figures D.7 through D.10 (Cases 4 and 5) are the least successful in -

matching the entire simulation results. This may be due in part to the

unusual asymmetry in the SRV load (see Figure E.15) and to the near-vertical

portion of the distribution of the time phase only (6 = 1.0) curves. This

portion is caused by the high ratio of the durations (about 10 to 1)

coupled with a long period of relatively low amplitudes in the longer re-

sponse histories, (see Fig. E.13 and E.17), plus the presence of a single

larce peak in the longer of the combined responses (see Figures E.13 and

E !7). Even so, the analytical method performs well in reproducing this

behavior in Figures D.8 and D.10. In all these cases, of cou~rse, the ana-

lytical method gives a reasonable (and generally conservative) approximation
.

for fractiles at and above the 0.84 level.

|
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SIMC:#L5 LOGNORMAL (PIXED)5 ae ; g ' UN!FCRM GAUS$!AN (IPONENTIAL UNIFORM
WE Q $$

$!M. | ANALYT! CAL | |NO. gy , , , ,

E' Ii ([g$3)|NEP(SRSS) | NEP($R$$) NEP($RSS)
E#

NEP($R$$) | NEP($R$$)i

1.0 NEG 0.48 0.51(0.51)
TP0 POS 0.40 0.38 (0.38)

I 1.1 NEG 0.77 C.77
POS 0.74 0.71

1.2 NEG 0.81 0.82 .

POS 0.81 0.76(0.80) 0.79(0.79) 0.76 (0.80) 0.79 (0.81) 0.73 (0.79)
1.3 NEG 0.84 0.83(0.81)

P03 0.82 0.76(0.80)e-
~

1.0 NEG 0.61 0.54 (0.54 )
TPG P05 0.66 0.59 (0.59)

. ,_ *

1.1 NEG 0.78 0.77
POS 0.80 0.80

1.2 NEG 0.82 0.81
POS 3.85 0.83 0.85

1.3 NEG 0.83 0.83
POS 0.85 0.84

1 1.0 NEG 0.74 0.66 (0.66)'I TPO POS 0.54 0.53 (0.53)
{

1.1 MEG 0.86 0.A3 l~

P05 0.19 0.75
|

1.2 NEG 0.86 0.85
*n$ 0.82 0.81 0.43

1.3 NEG 0.87 0.86
POS 0.87 0.83(0.83)

1.0 NEG 0.90 0.89(0.89)
TP0 POS 0.70 0.56 (0.56)

1.1 NEG 0.94 0.93
POS 0.82 0.71(0.71)

1.2 NEG 0.93 0.93
POS 0.86 0.79(0.81) 0.81 (0.83) 0.80(0.82) 0.82(0.82) 0.79 (0.83)

1.3 NEG 0.92 0.92 *

POS 0.89 0.82(0.85)

1.0 NEG 0.94 0.90(0.90)
TP0 P05 0.74 0.65(0.65)
1.1 NEG 0.96 0.94

POS 0.86 0.76(0.77)
.

1.2 NEG 0.93 0.94
PC5 0.88 0.83(0.84) 0.84

1.3 NEG 0.93 0.93
PCS 0.88 0.85(0.87)

.

TA8LE 1 Sensittvity of NEP of the SRSS Value to Shape of the Amoittade 01stribe . ten.
Amplitudes Assumed to te Perfectly Oependent. (Yalues in Parentheses forIndependefit Amplitudes).
Cases 4 and 5 91ve Stattar Results.No Prfor Ceterministic Scaling of trie Response Functions.
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g "' ~E R. RATIO CF SCALING FACTCR5
TF. SCALIMG FACTOR 03 0;;RATICM CF 5HCRTER |

G| LCAO (1.015 CRIGIMAL CASE. REF.1)
CASE E5 WI

f No. 6 ~[ 1/3 2/3 1 3 0.5 0.25 4.0 10.0

h NEP(5255) i NEP($255) ! NEP(5255)| NEP(5255) NEP(SR55) i NEP(SRSS) I sto($n55) | gro(Sa55)

1.0 NEG 0.53 0.55 0.64 0.85 0.54
| 0.42TPO POS 0.40 0.51 0.60 0.89

1.1 NEG 0.78 0.75 0.79 0.91 0.79
POS 0.73 0.72 0.76 0.91 0.13 .

1.2 NEG 0.82 0.81 0.84 0.90 0.83 0.83 0.81 0.80
P05 0.79 0.7J 0.82 0.90 0.79 0.79 0.78 0.77

1.3 NEG 0.83 0.83 0.85 0.90 0.83e
POS 0.81 0.81 0.84 0.89 0.81

1.0 NEG 0.56
g

TPO P05 0.61 0.67 0.72 0.90 0.61
*

I 1.1 NEG 0.79.

| POS 0.82 0.81 0.84 0.92 0.82

1.2 NEG 0,33 o,33 o,3; [ J
PCs 0.84 0.85 0.87 0.91 0.84 0.85 0.33 | [

[
j f e

[1.3iNEG{ PCs|
0.a5 0.es o.m o.co o.es

o.s4 )j ,

1.0 NEG 0.81 0.86 0.87 0.92 0.90
TP0 POS 0.58 0.55 0.57 0.74 0.58

-

1.1 .TG 0.89 0.91 0.92 0.93 0.94
POS 0.78 0.72 0.72 0.86 0.73 0.94

li
1.2 M4 0.40 0.94 0.94 0.93

P05 0.E3 0.80 0.80 0.87 0.81 0.81 0.79

1.3 NEG 0.93
PCS 0.84 0.82 0.83 0.87 0.83

TA8LE 2 Sensitivity of NEP of $255 Value to Relative Scaling of the (Ceterministic) Amplitudes and Time
Scaling (Stretching) of Shorter Load and its Duration. Maxima and Minima (Postitive ee? Ne94tive
Preak Combined Responses) are Shown. Lognormal Distribution on (Perfectly Oependent) Mplitude
Factors. Cases 3 and 5 91ve $1stlar Results.
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APPENDIX E: TIME HISTORIES, CDF's, AND UP-CROSSING RATES

The figures in this appendix show the time histories and the corre-

sponding upcrossing rate functions and CDF's for all of the load response

events used in this study. The following events are included:
.

CASE 1: MAIN STEAM-46I OBE, M *

a
MAIN STEAM-46I SRVBDG, M

a

CASE 2: MAIN STEAM-461 OBE, M
c

MAIN STEAM-46I SRVBDG, Mc
,

CASE 3: RHR WETWELL-il OBE, M,
RHR WETWELL-lI SRVBUS, M

a

CASE 4: ZIMME* node 4 OBE-NS

ZlMMER NODE 4 SRV-ALL

CASE S: ZIMMER N0DE 4 OBE-EW

ZIMMER N0DE 4 SRV-ALL

The upcrossing rate function and the CDF contain important infonna-

tion about the process. Figures E.1 and E.2, for example, show a typical

earthquake response. The CDF has a common "S-shaped" curve and the up-

crossing rate function is " bell-shaped". By contrast, Figures E.3 and E.4

show an SRV response, in which the CDF is almost linear and the upcrossing

rate function is almost uniform. Although these functions do not uniquely
,

define the process, they present some of the most significar information

needed for load combination purposes and in a form which is < aster to in-

terpret and generalize than the full time histories. -

.

|

|
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