Docket No. 70-1257
Project M-3

Dr. Roy Nilson, Manager
Corporate Licensing
Exxon Nuclear Company, inc.
2955 George Washington Way
Richland, Washington

Gentlemen:

The purpose of this letter is to transmit for your information an increment of the analysis of the effects of natural phenomena relative to your plutonium fabrication operations at Richland, Washington. The subject increment of analysis is the environmental character around your Richland, Washington plant. A draft of the enclosure has been reviewed, and commented upon, by those analysts who require the results to carry out succeeding analyses and by the NRC staff. The NRC staff has adopted this final version of the review for application in succeeding analyses. However, we will consider challenge of our position when supported by credible technical bases.

Any questions you may have on the enclosed analysis should be addressed to James E. Ayer of this Branch. He will direct resolution of comments and any justifiable revision of the analysis.

Sincerely,

Enclosure: As stated

A. THE EXXON NUCLEAR SITE

1. Geographic Location

The Exxon Nuclear site lies just inside the northern boundary of the city of Richland in the southeastern portion of the State of Washington, and is approximately 110 miles west of the Idaho-Washington border, 180 miles south of the Canadian border, and 225 miles east of the Pacific Ocean. As shown in Figure 1, it is bordered on the north by the 559 square mile Hanford Reservation. The site consists of the entire southwest quarter of Section 15, Township 10 North, Range 28 East, Willamette Meridian in Benton County. The site coordinates are $46^{\circ} 22^{\prime}$ north latitude and $119^{\circ} 16^{\prime}$ west longitude.

The 160 acre site is square shaped. The MOFP lies in the northwest comer of the site, and the center of the plant lies approximately 930 feet south of Horn Rapids Road, which forms the northern boundary of the site. The remaining site boundaries lie 410 ft . to the west, $1,700 \mathrm{ft}$. to the south, and $2,200 \mathrm{ft}$. to the east. The Columbia River flows southward at a point approximately $1-3 / 4$ miles east of the MOFP and the Yakima River flows toward the southeast roughly $2-1 / 2$ miles southwest of the plant. Table I gives the distance from the MOFP to a number of offsite developnents.

TABLE I
 DISTANCES FROM THE MOFP TO OFFSITE
 DEVELOPMENTS

DEVELOPMENTS	DISTANCE	DIRECTION
Horn Rapids Rd.	$930 \mathrm{ft}$.	N
Stevens Drive	4600 ft.	E
Industrial Plant (Battelle-Northwest)	1 mi.	E
State Route 240	SW	
Closest Farm (Alfalfa Field)	1 mi.	SE
Closest School (Hanford School)	$2-1 / 10 \mathrm{mi}$.	SE
Closest Residence (George Washington Way and Hanford St.)	2 mi.	SE
Closest Airport (Port of Benton)	3 mi.	S
Closest Hospital (Kadlec Hospital)	$4-3 / 4 \mathrm{mi}$.	S

2. Major Topographic Features

The Exxon Nuclear site is basically flat, but covered with a series of parallel wind-swept ridges that extend in the northeast and southwest directions, and range from 5 to 30 ft . in height. The Burbank loamy fine sand, Finley fine sandy loam, and Quincy loamy sand that forms the surface soil of the area supports typical desert vegetation dominated by bitterbrush and sagebrush. The general topographic trend is an upward slope from the site, which is at an elevation of 372 ft . above sea level, toward the north and northwest.

The site lies on a wedge of land between the Columbia and Yakima Rivers. The Columbia River is approximately 340 ft . above sea level in the vicinity of the site. The banks are generally 100 to 200 ft . above the River. Approximately three miles northeast of the site on the eastern bank of the Columbia is a continuous outcropping, known as the White Bluffs, which vary in altitude between 670 and 930 ft . above sea level. To the west and south are the Rattlesnake Hills, which reach an altitude of approximately 3600 ft . These features, cut by the Yakima River near Benton City, merge into the Horse Heaven Hills near Kennewick, approximately 14 viles southeast of the site.

The developments within a five mile radius of the site are shown on Figure 2 and 3. Approximately one mile to the east is an industrial park. The closest development within the Hanford reservation is the 300 Area, located about $1-1 / 2$ miles northeast of the site. The access to the site is on the North from Horn Rapids Road. The Federal Government has leased to the State of Washington a solid waste burial ground on the Hanford Reservation several miles northwest of the site. Horn Rapids Road intersects Stevens Drive, the main north-south route to the Hanford Reservation, to the east of the site, and the Hanford Highway to the west. A Federally-owned and operated railroad which runs north and south is located roughly 2000 ft . east of the site.

The Horn Rapids ditch, which forms the southernmost boundary of the Horn Rapids Triangle, supplied irrigation water to agricultural areas adjacent to the Yakima River. A deserted gravel pit lies adjacent to the eastern boundary of the site, and an abandoned canal, running north and south, lies approximately 2000 ft . to the west of the site.

As shown in Figure 4, the MOFP is located approximately 110 ft . west of the UO_{2} facility and 200 ft . south of the Exxon Nuclear office buildings. These buildings are roughly 750 ft south of Horn

$\angle A N D$ USE WITHIN FIVE MILE RADIUS OF EXXON NUCLEAR SITE
FIGURE 2

FIGURE 3

Rapids Road. The production facilities are surrounded by an eight ft, security fence. The immediate area surrounding the Exxon Nuclear development is vacant.

B. LAND USE AND REGIONAL DEMOGRAPHY

1. Land Use

The Exxon Nuclear site is the sole development on a 6,100 acre parcel of 1 and known as the Horn Rapids Triangle. This land was acquired by the USAEC in 1942 as part of the Hanford Reservation and was subsequently annexed to the City of Richland in 1967. The triangular tract is bounded on the north by Horn Rapids Road, on the south by the Horn Rapids Irrigation Ditch, on the east by a strip of Federallyowned land, and on the southeast by the Port of Benton airport. State Route 240 , Hanford Highway, runs diagonal. y through the Triangle.

The City of Richland owns two-thirds of the land in the Triangle; the remaining third, arranged in a checkerboarc pattern, is owned by the Bureau of Land Management. At present, a portion of the Triangle is zoned for light industry and the remainder is zoned agricultural. The 160 acre Excon Nuclear site lies in the northeastern portion of the 800 acre rectangle which is zoned industrial. Exxon Nuclear has an option on the 160 acre parcel directly to the west of its property.
The City has a comprehensive development plan for the entire area. A 1970 development study of the Horn Rapids Triangle is used as a guideline for this section of the City within the present plan. The year 2000 plan for the Horn Rapids Triangle is shown in Figure 5. It is estimated that 2,000 to 3,000 acres of the Triangle will be required by the year 2000, assuming a population growth rate in the range of 2% to 2.5%. (2% is estimated by the Pacific Northwest Bell Telephone Company.) The residentici development, which is planned adjacent to Hanford Road, is not expected to be required until 1980 or 1990 (if development in the area annexed in 1970 south of the Yakima River proceeds rapidly). It is plann-d that roughly $10-20 \%$ of the Triangle will be developed for industry, and that the industrial development will take place to the south and west of the existing Exxon Nuclear site.

The land use in Benton County within a five-mile radius of the MOPP comprises rural residential southwest of the plant, high density residential southeast of the plant, and unoccupied desert northeast and northwest of the plant. Approximately 180 acres of land are being farmed for alfalfa east-southeast of the plant, and an additional alfalfa field of about 65 acres lies southeast of the plant. Because the soil is salty, land close to the Exxon Nuclear plant is

HORN RAPIDS TRIANĞLE YEAR 2000 DEVELOPMENT PLAN figure 5
not well-suited for cash crops. However, a number of acres of irrigated pasture supports, horses, beef cattle, and a few sheep and milk cows. It is estimated that there are a few hundred head of cattle within five miles of the plant in Benton County. The closest hear of about 50 beef cattle are located about three miles southwest of the plant.

That portion of Franklin County which lies within a five-mile radius of the MOFP is primarily an agriculture area. The principle crops are alfalfa, hay and potatoes. There are two commercial dairy herds in this area comprising roughly 150 cows. There are, perhaps, an equal number of beef cattle.

2. Population

The Exxon Nuclear site is on the northern border of the city of Richland, which constitutes, along with Pasco and Kennewick, a metropolitan area known as the Tri-Cities. The projected population of the Tri-Cities in 1980 is approximately 78,500 . The centers of population within a 50 mile radius of the site are shown in Figure 6. The projected 1980 population distribution within 22.5° sectors is given in Figure 7. Table II gives population projections supplied by the Battelle Pacific Northwest Laboratories through the year 1990.

3. Traffic

Horn Rapids Road provides the only highway access to the Exxon Nuclear Site. A 1978 measurement in the vicinity of the site indicrted an average daily traffic volume on this road of approximately 2000 vehicles. Stevens Drive, directly east of the site, provides the main north-south access to the Hanford Reservarion, and consists of four lanes in the vicinity of the site. The average daily traffic volume on Stevens Drive approximately three miles south of the intersection with Horn Rapids Road, north of intersection with Route 240 , is $8000-9000$ vehicles. The average daily traffic volume on State Route 240 south of the site was roughly 3440 vehicles in 1978.

The railroad track to the east of the site is owned and operated by the Federal Government, and is used exclusively for freight. On the average, the track serves two trains per day.

The Port of Benton Airport, approximately 3 miles south of the site, is used for small private aircraft, including small private jets, and by a commercial commuter air carrier having approximately 30 flights per day.

The Tri-Cities Airport, approximately 10 miles southeast of the site, accommodates aircraft as large as the Boeing 727, and is served by approximately 12 DC-9 commercial flights and 20 or more commuter flights daily.

```
OHTY & Imengenetas > 1000 rople BICHLAND
    * Lienvmesed < 1000 propmblats
```

$\begin{array}{lllr} & \text { COUNTIES } & \text { (1980) } & \\ \text { ADASIS } & 14,500 & \text { WALLA WALLAA } & 45,200 \\ \text { BEMTOS } & 97,400 & \text { YAKIMA } & 161,500 \\ \text { FRANKLIS } & 31,300 & \text { HORROW } & 7,400 \\ \text { GRANI } & 49,300 & \text { USATILLA } & 55,800\end{array}$

PROJECTED 1980 POPULATION DISTRIBUTION WITHIN
50 MILES OF EXXON NUCLEAR SITE

TABLE II
POPULATION PROJECTIONS FOR RINGS SURROUNDING THE EXXON NUCLEAR SITE

Radius	Population	
	$\frac{1980}{19,370}$	$\frac{1990}{54,440}$
$10-20$ miles		63,300
$20-30$ miles	22,110	67,680
$30-40$ miles	42,180	27,010
$40-50$ miles	$\underline{41,260}$	55,660
Total	214,220	$\underline{47,200}$

4. Commercial Activities

The major commercial activities in the Tri-Cities area are nuclear energy research, development, and application; and agriculture. The industrial park directly east of the Exxon Nuclear site is populated mostly by US Department of Energy contractors, as shown in Figure 3. These industries employ more than 1200 individuals.

The 559 square mile Hanford Reservation has served as a national nuclear center since 1943, when construction of the plutonium production reactors was initiated. Although only one reactor is in operation, the Reservation is still a center for nuclear energy research and development and some production activities. At present, approximately 3500 people are employed at Hanford. In . 11 yु, 1970, construction was initiated on the Fast Flux Test Facil p, which is expected to be in operation in 1980, and is located ughly 6 miles north of the Exxon Nuclear site. The construction of $t t$. Hanford No, 2 Nuclear Plant, ${ }^{4}$ an 1100 Mwe generating facility owned by Washington Public Power Supply System and located approximately 8 miles north of the site, was begun at the end of 1972, and the plant is expected to be operational in 1981.

Agriculture is also important to the economy of the area. In 1978, the value of crops grown in the Columbia Basin Area was approximately $\$ 230,000,000$, and livestock, poultry, and associated products were valued at about $\$ 71,000,000.5$ Many of the acres devoted to crops are irrigated and are planted with wheat, hay, and other small grains; potatoes, to a lesser extent vineyard, and orchard crops are grown. There are essentially no forest products harvested in this part of the state.

In 1967, there were approximately 60 manufacturing establishments in Senton and Franklin Counties, employing about 5300 individuals. 6 Chemical products, food products, and printing and publishing constituted the majority of the manufacturing establishments. A number of these plants are located along the Columbia River, southeast of the Tri-Cities.

The area between the Port of Benton Airport and Hanford Road, approximately $2-1 / 2$ miles south of the MOFP, is the site of some recent industrial developments. A large food packaging plant, specializing in the processing of potatoes, has been located there. Additionally, a new airport terminal has been build including a restaurant. Nearby, computer software manufacturing and office facilities have been built.

C. METEOROLOGY

1. Regional Climatology

The climate of the Hanford area is relatively mild and dry and is controlled in part by the seasonal and synoptic variations in the strength and position of the Pacific high-pressure center. The area has the characteristics of both maritime and continental climates, modified by the Cascades and Rocky Mountains. The maritime influence of the ocean is strongest in winter due to the prevalling westerlies. Occasionaliy, very cold Canadian air enters the region from the east and north, resulting in very cold conditions. In summer, airflow from the Pacific is reduced, and the area is subject to clear skies, high temperatures, and low humidities during the afternoons, but the clear, dry air permits rapid radiation cooling after sundown, producing cool nights. Rainfall in summer is very light. Winters are cloudy and relative humidities are high, although total precipitation is quite low. Wind direction is strongly influenced by the terrain; windspeeds are moderate, with occasional calms and gales. The prevailing wind direction is southeast.

2. Local Climatology

Unless otherwise indicated, the climatological data used in this report were collected at the Hanford Meteorological Station (HMS), which is located about $32 \mathrm{~km}(20 \mathrm{mi})$ northwest of the site. 7 Temperature and precipitation records were collected by a U.S. Weather Bureau cooperative observer from 1912 to 1943 at a site about 16 km (10 mi) ENE of the HMS. Hourly observations at the HMS are continuous since December 1944. (There are small gaps in the record in 1943 and 1944.) The climatological data are given in Table III.

The average annual 'temperature of the site (based on the 1912-70 record) is $11.7^{\circ} \mathrm{C}\left(53.1^{\circ} \mathrm{F}\right)$; annual averages vary from $13.4^{\circ} \mathrm{C}\left(56.2^{\circ} \mathrm{F}\right)$ in 1934 to $10.1^{\circ} \mathrm{C}\left(50.2^{\circ} \mathrm{F}\right.$) in 1929 and 1958. January, with $-1.4^{\circ} \mathrm{C}\left(29.4^{\circ} \mathrm{F}\right)$, is the coldest month; July is the warmest month, averaging $24.1^{\circ} \mathrm{C}\left(76.4^{\circ} \mathrm{F}\right)$. January means values have varied from $5.8^{\circ} \mathrm{C}\left(42.5^{\circ} \mathrm{F}\right)$ in 1952 to $-11.1^{\circ} \mathrm{C}$ $\left(12.1^{\circ} \mathrm{F}\right)$ in 1950 . The summer variability of average temperatures is less; in July, the mean monthly temperature varies from $27.7^{\circ} \mathrm{C}\left(81.8^{\circ} \mathrm{F}\right)$ in 1960 t. $22.7^{\circ} \mathrm{C}\left(72.4^{\circ} \mathrm{F}\right)$ in 1964 .

	Jan	$r-b$	Mar	Apr	May	Jun	sat	Ang	sep	at	Nov	noce	Annual
Extrear maximum	18.8	21.7	28,3	35.0	39.4	63.3	66.1	43.0	38.9	32.2			
Average	-1.4	2.3	1.3	11.8	16.6	20.8	26.7	23.4	18.4	11.1	6.6	0.3	11.7
Extreare ainimum	-30.6	-30.6	-14.4	-11.1	-2.2	0.6	5.0	6.4	-3.9	-14.4	-18.3	-31.8	-32.8
No. days anx z $31.8^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$					b	2	7	4	b				11
No. dorn ank $232.2^{\circ} \mathrm{C}$ (90. ${ }^{\text {a }}$)				-	,	-	21	18	,	b			56
No. days $=0 \times \leq 0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$	10	3	b							b	${ }^{1}$	8	22
Mo. day* min $\leq 0^{\circ} \mathrm{C}\left(32^{*} \mathrm{~F}\right)$	2)	21	is	s	b				b	,	17	23	115
No. daye =in $1-17.8^{*}\left(0^{\circ} n\right)$	2	1									76	991	5267
Degree days ${ }^{\text {c }}$ (base $65^{\circ} \mathrm{F}$). ${ }^{\circ} \mathrm{F}$	1094	178	642	381	133	34	3	5	61	373	766	991	3267
Preciplestion (mas)													
Mighest monthiy Average	63 26	16	29	10	11	14	2	,	${ }^{6}$	15	22	12	159
Averase Lovest monthly	,	${ }^{16}$	0	0	0	0	0	-	${ }^{\text {d }}$	0	d	,	${ }^{83}$
No. dave trace or more		,				10	4	6	,	11	15	18	132
No. daye trace or moree No. deys z 0.25 ane	11	12	11	11	10	10	2	2	,	,	8	10	68
No. deye $20.25 \mathrm{~mm}^{\text {en }}$ No, deys $22.5 \mathrm{me}^{\text {e }}$	9	1	6	,	,	5	,	+	,	,	,		24
No, days 22.5 me No. daye e e	3	2	- 2	2	2	2	1	1	1	?	,	1	2
No. daye $26.4 \mathrm{max}^{\circ}$ Average anowfoll, momer	1	1	b	\bullet	1	1	b	-	b	${ }^{4}$	30	94	323
Average anowfall, mom	132	56	${ }^{8}$	d									
Other Meteorological Date 8													
Daytine aky cover, $\mathfrak{x}^{\text {r }}$ No, clear daya'	78	7	6)	64	3	10	20	19	is	10	s	3	111
No, clear daye ${ }^{\text {No. partly cloudy deynt }}$	6	,	8	10	11	10	,	,	,	,	s	5	${ }^{88}$
*o. cloudy dayr	22	18	16	14	12	10	4	,	8	14	20	${ }^{31}$	166
Avg. relactive humidity, ${ }^{8}$	16	70	"s	46	42	39	32	35	40	58	13	81	53.8
Avg. dewpotnt teap., * c^{8}	-6.9	-2.6	-2.6	-0.9	2.2	5.1	5.7	6.0	4.2	2.1	-0.3	-2.5	1.0
No. days thunderstora ${ }^{\text {c }}$	0	b	b	1	2	,	2	2	1	b	0	0	11
No. daye hat $1^{\text {c }}$	b	b	b	b	b	b	b	b	b	0	0	0	1
Fa. daye D or $\mathrm{BD}^{\text {c,h }}$	1	b	1	1	1	1	*	b	1	b	*	${ }^{6}$	6
No. doye for ${ }^{\text {c, }} 1$,	6	1	b	b	b	\checkmark	b	$\stackrel{5}{5}$	2	s	12	38
No, deye toz, dense ${ }^{\text {J }}$	6	3	1	b	-			b	-	1	5	8	24
No. days slare ${ }^{\text {c }}$	2	1	b								1	3	\%

[^0]Extreme temperatures are $46.1^{\circ} \mathrm{C}\left(115^{\circ} \mathrm{F}\right)$ in July 1939 and $-32.8^{\circ} \mathrm{C}\left(-27^{\circ} \mathrm{F}\right)$ in December 1919. Maximum temperatures above $32.2^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{F}\right)$ can be expected 56 days per year, above $37.8^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) 13$ days per year, and below $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right) 22$ days per year. Mimimum temperatures below $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ can be expected on 115 days per year, and below $-17.8^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{F}\right)$ on four days per year. The average seasonal (July through June) degree-day total (in ${ }^{\circ} \mathrm{F}$ for the period $1945-70$) is 5267 ; seasonal totals vary from 6045 (1949-50) to 4599 (1966-67). As is typical of arid areas, the daily temperature range is quite large. At the Yakima Airport, the annual daily range averages $14.9^{\circ} \mathrm{C}\left(26.9^{\circ} \mathrm{F}\right) .8$ In July the range is $19.3^{\circ} \mathrm{C}\left(34.8^{\circ} \mathrm{F}\right)$, and in December it is $8.7^{\circ} \mathrm{C}\left(15.6^{\circ} \mathrm{F}\right)$.

Precipitation in the Hanford area averages 159 mm (6.25 in). January, with 24 mm (0193 in), is on the average the wettest month; July, with 4 mm (0.14 in), is the driest. Calendar months with no measurable precipitation have occurred year-round except in January and December. The greatest 24-hour rainfall was $49 \mathrm{~mm}(1.91 \mathrm{in})$ in October 1957 , with 43 mm (1.68 in) falling in six hours. As is typical of arid regions, the variation in rainfall totals from year to year is large; annual totals range from 290 mm (11.45 in) in 1950 to 83 mm (3.26 in) in 1969 . A trace or more of precipitation falls on 132 days per year. Days with precipitation equal to or greater than $6.4 \mathrm{~mm}(0.25 \mathrm{in})$ are infrequent, averaging seven days per year.

Snowfall, which accounts for 40% of all precipitation in the months of December through February, averages $323 \mathrm{~mm}(12.7 \mathrm{in})$. Seasonal amounts of frozen precipitation vary from $8 \mathrm{~mm}(0.3 \mathrm{in})$ in the winter of 1957-1958) to 1107 mm (43.6 in) in $1915-1916$. The maximum recorded snow depth was 300 mm (12 in). A typical year has five days with 25 mm (1 in) or more of snow.

The average number of clear days per year is 111 ; cloudy days, 166 . The average annuil daytime (sunrise to sunset) cloud cover is 59%, and varies from 81% in December to 27% in July. The average annual relative humidity is 54%; the value is 81% in December and 32% in July, At Yakima, the afternoon ($4 \mathrm{p}, \mathrm{m}$. PST) humidity varies from 74% in winter to 25% in midsummer. ${ }^{8}$ A value of 6% was recorded at the HMS in July 195\%.

Thunderstorms are quite rare, averaging 11 days per year, mostly in summer. Hail has been observed on 16 days in 12 years of record, Dust nas been recordea at the HMS on 2% of all days of observation (84 days in 14 years of record), with a distinct maximum frequency during the summer months.

Light fog occurs on 38 days per year. Heavy fog visibility no greater than 0.4 km or 0.25 mi) occurs on the average 24 days per year, varying from 9 days in 1948-49 to 42 days in 1950-51. Heavy fogs are most frequent on the average in December 8 (days), January (6 days), and November (5 days), and have never beer observed in June or July.
The average duration of $f \circ g$ is 3.2 hours; however, a light fog (visibility less than 9.7 km or 6 mi) persisted for 72.3 hcurs in December 1947.

Surface winds in the area are controlled in part by local topographic features. The long-term ($1945-70$) average annual windspeed at 15.2 m at the HMS site is $3.4 \mathrm{~m} / \mathrm{s}(7.6 \mathrm{mph})$. Monthly averages vary from $2.7 \mathrm{~m} / \mathrm{s}$ (6.0 mph) in November to $4.0 \mathrm{~m} / \mathrm{s}(9.0 \mathrm{mph})$ in June. ${ }^{7}$ This unusual annual cycle of windspeeds is caused by strong drainage winds from the nearby mountain ridges during clear summer evenings and nights. The prevailing wind direction for all months at HMS is either NW or WNW, reflecting drainage winds at night. ${ }^{7}$ Wind from the W, WNW, and NW occur 42.4% of the time, compared to only 19.8% from the SSW, SW, and WSW. Strong winds from the NW sectors are relatively rare; 88.9% of all winds $13.9 \mathrm{~m} / \mathrm{s}$ (31 mph) or faster come from the SSW, SW, and WSW, whereas only 6.8% are associated with flow from the W, WNW, and NW. 7

The strongest wind ever observed at Hanford occurred on 11 January 1972.9 A peak gust of $35.8 \mathrm{~m} / \mathrm{s}(80 \mathrm{mph})$ was recorded at the $15.2-\mathrm{m}$ height of the HMS meteorological tower; the average windspeed for the hour endi 3 at 0900 PST was $22.8 \mathrm{~m} / \mathrm{s}$ (51 mph).

3. Dispersion Meteorology

No onsite wind data are collected at the Exxon site. Table IV is joint frequency distribution of windspeed vs. direction at 10 m for one year at the Hanford-2 nuclear power plant site located about 13 km (8 mi) NNW of the site. Because the two sites have a similar exposure, the wind and stability data collected at the Hanford-2 site are representative of those at the Exxon site. The distribution of wind directions is biomodal, with maximums from the $N W$ and S . Strong winds ($9 \mathrm{~m} / \mathrm{s}$ or 19 mph) occurred 479 hours during the one year of record (5.5% of the time).

The average annual relative-concentration (x / Q and relative-deposition (D/Q) values for the Exxon facility were calculated using one year (April 1975 -March 1976) of wind velocity and stability data collected at the Hanford-2 reactor site and the XOQDOQ model developed by NRC. 10 Tables V and VI provide X / Q and D / Q values at selected distances for 16 directions from the Exxon plant. The X / Q values in Table V were calculated for continuous ground-level releases. The model includes an allowance fcr plume meander during light winds and stable atmospheric conditions. 10 The D/Q values in Table VI represent only routine, continuous releases using a deposition velocity appropriate for 131 I and do not include a correction for the settling elocity of PuO particles resulting from their size and density. Considering the possible size spectrum of material and potential travel distance with varying windspeeds, the actual D / Q value may show some variation from that given in the table.

Tab e IV Joint Frequency Distribution-Windspeed vs. Wind Direction at 10 =--Hanford-2 Nuclear Plant, April 1975 through March 1976 (\%)

$\begin{gathered} \text { Direc- } \\ \text { tion } \end{gathered}$	speed Class $(\mathrm{mph})^{\text {a }}$							
	1-3	4-7	8-12	13-18	19-24	>25	Unk	Total
SNE	1.2	2.0	0.9	0.2	0.1	0.3	0	4.7
NE	0.9	1.6	0.4	0.1	0	0	0	2.9
ENE	0.7	1.1	0.4	b	0	0	b	2.3
E	0.9	0.7	0.1	0	0	0	b	1.8
ESE	1.0	0.9	0.3	0	0	0	0	2.1
SE	1.1	2.4	0.8	0.2	b	0	b	4.5
SSE	1.1	4.4	2.7	0.5	0	0	b	8.7
5	1.1	4.0	4.0	1.3	0.2	0	b	10.6
SS\%	1.2	2.5	2.5	2.6	0.7	0.4	0.1	10.0
SW	1.1	1.8	1.2	1.6	0.7	0.4	0.1	7.0
WS*	1.1	1.5	1.0	0.7	0.4	0.2	0.1	5.0
W	0.9	1.6	1.0	0.5	0.4	0.1	0.1	4.6
	1.6	2.6	2.3	3.2	0.4	0.1	b	8.1
Nh	1.9	4.2	2.7	1.4	0.7	0.4	b	11.4
Nin	2.1	3.6	1.3	0.3	b	0	0.1	7.4
N	1.6	2.4	1.0	0.4	b	b	b	5.5
Unk	0.1	0.1	b	b	0	0		1.5
Var	1.1	1.0	0.1	0	0	0		2.2
Total	20.6	98.3	22.7	10.8	3.7	1.8		

Table V Annual Average Relative Concentrations ($\mathrm{s} / \mathrm{m}^{3}$) Based on Continuous Ground-Level Release and One Year of Hanford-2 Meteorological Data, Exxon Facility, Richland, Washington

Sector	Distance (mi)						
	0.5	1.0	2.0	4.0	10.0	25.0	50.0
N	$6.1-6^{\text {a }}$	1.9-6	6.5-7	2.1,-7	6.7-8	2.1-8	8.3-9
NSE	5.1-6	1.6-6	6.3-7	1.9-7	5.4-8	1.6-8	6.4-9
NE	3.9-6	1.2-6	4.2-7	1.5-7	$4.2-8$	1.2-8	5.1-9
EnE	3.6-6	1.1-6	3.8-7	1.4-7	3.9-8	1.2-8	4.7-9
E	3.4-6	1.0-6	3.6-7	1.3-7	3.6-8	1.1-8	4.4-9
ESE	5.9-6	1.8-6	6.2-7	2.3-7	6.3-8	1.9-8	7.5-9
SE	7.6-6	2.4-6	8.1-7	3.0-7	8.4-8	2.5-8	1.0-8
SSE	7.3-6	2.3-6	7.8-7	2.9-7	8.2-8	$2.5-8$	$1.0-8$
S	5.8-6	1.8-6	6.3-7	2.3-7	6.7-8	$2.0-8$	8.6-9
SS'	4.8-6	1.5-6	5.2-7	1.9-7	5.6-8	1.7-8	1.2-9
Sh	4.2-6	1.3-6	4.6-7	$1.7-7$	5.1-8	1.6-8	6.6-9
WSW	3.2-6	1.0-6	3.5-7	1.3-7	3.7-8	1.1-8	4.8-9
W	2.8-6	8.8-7	3.1-7	1.1-7	3. 3-8	1.0-8	4.2-9
Whin	2.9-6	8.9-7	3.1-7	1.1-7	3.2-8	9.7-9	4.0-9
NK	?.6-6	1.1-6	3.8-7	1.4-7	3. 9-8	1.2-8	4.8-9
Niw	5.7-6	1.8-6	$6.0-7$	2.2-7	$6.2-8$	1.9-8	7.6-9

Table VI Annual Average Relative Deposition (m^{-2}) Based on Continuous Ground-Level Release and One Year of Hanford-2 Meteorological Data, Exxon Facility, Richland, Washington

	Distance (mi)						
Sector	0.5	1.0	2.0	4.0	10.0	25.0	50.0
N	$2.0-8^{a}$	$6.4-9$	$2.0-9$	$5.7-10$	$1.2-10$	$2.4-11$	$6.6-12$
NNE	$1.9-8$	$6.1-9$	$1.8-9$	$5.4-10$	$1.1-10$	$2.3-11$	$6.2-12$
NE	$1.3-3$	$4.1-9$	$1.2-9$	$3.7-10$	$7.5-11$	$1.5-11$	$4.2-12$
ENE	$1.0-8$	$3.2-9$	$9.5-10$	$2.8-10$	$5.8-11$	$1.2-11$	$3.2-12$
E	$1.0-8$	$3.3-9$	$9.9-10$	$2.9-10$	$6.0-11$	$1.2-11$	$3.4-12$
ESE	$1.8-8$	$5.6-9$	$1.7-9$	$5.0-10$	$1.0-10$	$2.1-11$	$5.8-12$
SE	$2.2-8$	$6.9-9$	$2.1-9$	$6.1-10$	$1.3-10$	$2.6-11$	$7.0-12$
SSE	$1.6-8$	$4.9-9$	$1.5-9$	$4.4-10$	$9.0-11$	$1.9-11$	$5.1-12$
S	$1.2-8$	$3.7-9$	$1.1-9$	$3.3-10$	$6.8-11$	$1.4-11$	$3.8-12$
SSW	$9.1-9$	$2.9-9$	$8.7-10$	$2.6-10$	$5.3-11$	$1.1-11$	$2.9-12$
SW	$6.4-9$	$2.0-9$	$6.1-10$	$1.8-10$	$3.7-11$	$7.6-12$	$2.1-12$
WSW	$5.3-9$	$1.7-9$	$5.0-10$	$1.5-10$	$3.0-11$	$6.2-12$	$1.7-12$
W	$3.9-9$	$1.2-9$	$3.8-10$	$1.1-10$	$2.3-11$	$4.2-12$	$1.3-12$
WNW	$4.7-9$	$1.5-9$	$4.4-10$	$1.3-10$	$2.7-11$	$5.5-12$	$1.5-12$
NW	$8.5-9$	$2.7-9$	$8.1-10$	$2.4-10$	$4.9-11$	$1.0-11$	$2.7-12$
NNW	$1.6-8$	$5.1-9$	$1.5-10$	$4.5-10$	$9.3-11$	$1.9-11$	$5.2-12$
a Scientific notation: $2.0-8$	2.0×10^{-8}.						

The accident-case (short-term, up to $2-h$) relative concentrations have been computed, using the NRC accident dispersion model, 11 and are given in Tables VII and VIII. The model is direction-dependent and calculates the X / Q values out to a distance of 5 km (3.1 mi) immediately following the natural destructive event. The calculation computes the X / Q values that are exceeded 5% and 50% of the time as a function of distance and direction. This model, as well, includes allowance for plume meander during light winds and stable atmospheric conditions.

Table VII Five Percentile Short-Term ($2-\mathrm{h}$) Relative Concentrations ($\mathrm{s} / \mathrm{m}^{3}$) for the Exxon Facility, Richland, Washington

	Distance in Miles				
	0.09	0.31	0.62	1.24	3.1
Sector	(145)	(500)	(1000)	(2000)	(5000)
N	$9.6-3^{a}$	$1.5-3$	$5.6-4$	$2.0-4$	$7.5-5$
NNE	$8.5-3$	$7.6-4$	$2.8-4$	$1.8-4$	$6.4-5$
NE	$9.4-3$	$6.5-4$	$2.3-4$	$2.0-4$	$7.2-5$
ENE	$8.4-3$	$6.9-4$	$2.5-4$	$1.8-4$	$6.6-5$
E	$7.9-3$	$6.2-4$	$2.2-4$	$1.7-4$	$6.1-5$
ESE	$1.1-2$	$7.7-4$	$2.8-4$	$2.2-4$	$8.1-5$
SE	$1.4-2$	$1.0-3$	$3.8-4$	$3.0-4$	$1.0-4$
SSE	$1.8-2$	$8.1-4$	$3.0-4$	$2.7-4$	$1.3-4$
S	$1.9-2$	$7.0-4$	$3.2-4$	$2.2-4$	$1.4-4$
SSW	$1.9-2$	$6.8-4$	$3.0-4$	$2.1-4$	$1.4-4$
SW	$2.0-2$	$6.6-4$	$2.4-4$	$2.3-4$	$1.5-4$
WSW	$1.3-2$	$5.8-4$	$2.1-4$	$1.8-4$	$1.0-4$
W	$1.1-2$	$5.5-4$	$2.3-4$	$1.8-4$	$8.7-5$
WNW	$9.1-3$	$5.0-4$	$2.3-4$	$1.8-4$	$7.1-5$
NW	$8.9-3$	$6.0-4$	$2.2-4$	$1.9-4$	$6.9-5$
NNW	$9.3-3$	$1.2-3$	$4.3-4$	$2.0-4$	$7.3-5$
ascientific	notation:	$9.6-3=9.6 \times 10^{-3}$			

Table WIII Fifty Percentile Short-Term (2-h) Relative Concentrations ($\mathrm{s} / \mathrm{m}^{3}$) for the Exxon Facility, Richland, Washington

	Distance in Miles				
	0.09	0.31	0.62	1.24	3.1
Sector	(145)	(500)	(1000)	(2000)	(5000)
N	$8.4-4^{\text {a }}$	$1.4-4$	$4.7-5$	$1.8-5$	$4.8-6$
NNE	$7.0-4$	$9.8-5$	$3.3-5$	$1.1-5$	$3.0-6$
NE	$8.0-4$	$9.9-5$	$3.3-5$	$1.2-5$	$3.5-6$
ENE	$8.9-4$	$1.3-4$	$4.7-5$	$1.8-5$	$4.8-6$
E	$8.6-4$	$1.4-4$	$4.7-5$	$1.8-5$	$4.8-6$
ESE	$8.6-4$	$1.4-4$	$4.7-5$	$1.8-5$	$4.8-6$
SE	$8.6-4$	$1.6-4$	$4.7-5$	$2.0-5$	$5.0-6$
SSE	$1.2-3$	$1.6-4$	$5.0-5$	$2.0-5$	$6.0-6$
S	$1.2-3$	$1.4-4$	$4.9-5$	$2.0-5$	$6.0-6$
SSW	$1.2-3$	$1.4-4$	$4.9-5$	$2.0-5$	$6.0-6$
SW	$1.9-3$	$2.0-4$	$7.0-5$	$3.3-5$	$1.3-5$
WSW	$1.3-3$	$1.8-4$	$6.5-5$	$2.8-5$	$9.0-6$
W	$1.3-3$	$1.6-4$	$6.5-5$	$2.9-5$	$8.0-6$
WNW	$1.3-3$	$1.5-4$	$5.2-5$	$2.1-5$	$7.0-6$
NW	$1.2-3$	$1.5-4$	$4.8-5$	$2.0-5$	$6.0-6$
NNW	$1.2-3$	$1.7-4$	$5.5-5$	$2.0-5$	$6.5-6$
WSCientific	notation:	$8.4-4=8.4 \times 10^{-4}$.			

Most dispersion models are applicable only to continuous releases during periods of light to moderate steady-state winds, with numerous experiments averaged to yield dispersion parameters. Concentrations and dimensions of a particulate cloud have been calculated for conditions when the release time is short, the windspeed is very high, and the time the particulate cloud travels across the area is very short.

The values of the dispersion parameters were extrapolated from values for unstable conditions and puff releases. As is standard for instantaneous releases, it is assumed that $\sigma_{x}=\sigma_{y}$. The release height for this calculation is assumed io be 8 to $10 \mathrm{~m}(25$ to 30 ft$)$. It was arbitrarily assumed that the centerpoint of the cloud of particulates released from the facility traveled downwind with the gust-front with no deposition at speeds of $42.5 \mathrm{~m} / \mathrm{s}$ (95 mph) and $67.0 \mathrm{~m} / \mathrm{s}$ (150 mph). Centerline-centerpoint concentrations are given in Table IX.

> Table IX Centerline-Centerpoint Concentrations Resulting from Straight-Line Vind Dispersion of a $1-\mathrm{kg}$ Source
> $42.5 \mathrm{~m} / \mathrm{s}$ and $67.0 \mathrm{~m} / \mathrm{s}$

Distance (km)	Concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
0.8	381
2.4	23
4.0	6
5.6	3
7.2	2
12.1	0.4
24.1	0.1
40.2	0.02
56.3	0.01
72.4	0.004
80.0	0.003

To determine the area impacted by che particulate cloud and the time it takes to pass, concentration limits set at two-siama, or 0.135 , of the centerline-centerpoint concentration. The dimensions of a particulate cloud at a point and time of its passage are given in Table X.

Table X Dimensions of a Particulat. Cloud at a Point and Time of Passage of the Cloud, $42.5 \mathrm{~m} / \mathrm{s}$ and $67.0 \mathrm{~m} / \mathrm{s}$

		Time (s)	
Distance $(k$	$y, x(\mathrm{~m})$	$42.5 \mathrm{~m} / \mathrm{s}$	$67.0 \mathrm{~m} / \mathrm{s}$
0.8	140	7	4
2.4	380	18	11
4.0	610	29	18
5.6	820	39	24
7.2	1025	48	31
12.1	1700	80	51
24.1	3200	151	96
40.2	5200	245	155
56.3	6800	320	203
72.4	8400	395	251
80	10300	485	307

D. ECOLOGY OF THE SITE AND ENVIRONS

The Excxon Nuclear site is located in a relatively flat, desert steppe. Sagebrush and antelope bitterbrurh predominate among the pristine plant communties in the area. Cheatgrass, brome, and Sandberg bluegrass prevail in the understory. The annual herbage production meter. 12 estimater 100 gms of dry matter per square

Throughout the years, the local vegetation has been disturbed by homesteading, fire, and grazing, leaving areas exposed to wind erosion and dune formation. As a result, vegetation such as Russian thistle, mustard, and rabbitbrush have encroached on the homesteading his few barely surviving locust trees testify to the area of approximately 19,000 severildfire in 1970 encompassed an of the Exxon Nuclear site, but it did the Hanford Reservation north Triangle. The fire destroyed a matid not spread into the Hom Rapids forbs, and grasses in its path. 13 jority of the established shrubs, areas is dominated by annual grasses Initial revegetation of disturbed with little or no perennial plant recovery forbs, such as cheatgrass, The most abundant mamals in the vicinity of the site are pocket mice and deermice. Tackrabbits and coyotes are also scattered throughout which subsists largely on the seeds of grasses. Larger and more the Columbia piver, wis mule deer, prefer the shores and islands of steppe. In the fall and winter use of the more barren, inland inland to forage upon the shoues however, the mule deer may wander smaller twigs of bitterbrush. In theatgrass and the leaves and found in the distant Rattlesnake Hills.

The most abundant reptile is the side-blotched lizard. Snakes, especially the gopher snake and the Pacific rattlesnake, are occasionally encountered.

Birds are not abundant in the sagebrush-bitterbrush type of vegetation. The most common resident birds are meadowlarks and horned larks. The loggerhead shrike, although not an abundant bird, is conspicuous. During periods when food and cover are adequate, game birds, such as the chukar partridge, quail are phoasant, and mourning dove may site. The region is used as a such as the marsh hawk and goiding ground for birds of prey, burrowing owl and Swainson's ande in the winter and the Is occasionally observed in the in the summer. The bald eagle is the only wildilfe species in area, and the southern bald eagle of endangered species. 14 During the vicinity that is on the list flocks of Canadian geese forage the fall and winter, migrating in the vicinity of the site.

W-trfowl are of major importance in the area. Approximately 200 pairs of Canadian geese reside on the river islands in the vicinity of the site, and produce an average of An estimated 100 pairs of ducks also roughly 700 goslings annually. islands, one near kingold and anotho rest on these islands. Two as rookeries by colonies of Califor near Coyote Rapids, are used Approximately 6000 nesting pairs prifa and ring-billed gulls. annually.

REFEP.ENCES

1. Planning Study; Horn Rapids Triangle, Richland, Washington; Prepared for City of Richland, Washington by Cornell, Howland, Hayes, and Merryfield; June, 1970.
2. 1978 Survey, Washington State Department of Transportation, Yakima, Washington.
3. U.S. Atomic Energy Commission, Directorate of Licensing, "Safety Evaluation of the Fast Flux Test Facility," 31 October 1972.
4. U.S. Atomic Energy Commission, Directorate of Licensing, "Final Environmental Statement Related to the Proposed Hanford Number Two Nucle r Power Plant," Washington Public Power Supply System, Docket No. 50-397, December 1972.
5. Tri-City Herald, Progress Edition, February 1980.
6. 1967 Census of Manufacturers, Washington, U.S. Department of Commerce. Bureau of the Census; November 1970.
7. W. A. Stone, D. E. Jenne, and J. M. Thorpe. "Climatology of the Hanford Area." Battelle Pacific Northwest Laboratory, BNWL-1605, June 1972.
8. "Local Climatological Data, Annual Summary, Yakima, Washington." National Climatic Center, Asheville, NC, 1976.
9. "The Hanford Wind Storm of January 11, 1972." Battelle Pacific Northwest Laboratory, BNWL-1640, February 1972.
10. U.S. Nuclear Regulatory Comission. "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors." Regulatory Guide 1.111, Office of Standards Development.
11. U.S. Nuclear Regulatory Commission. "Atmospheric Dispersion Models for Potential Accident Consequence Assessments of Nuclear Power Plants." Regulatory Guide 1. XXX, Hydrology-Meteorology Branch, Draft Technical Position, 1978.
12. Applicant's Environmental Report; Hanford Number Two Nuclear Power Plant; Washington Public Power Supply system, Amendment 2, USAEC Docket No. 50-397.
13. T. P. O'Farre11, et al., "Wildfire, an Important Natural Modulation of the Desert-Steppe, " in BNWL-1550, Pacific Northwest Laboratories, Richland, Washington, Vol. 1, p. 1.1 (1971)
14. "Endangered Species of the United States," Department of Interior, Bureau of Sport Fisheries and Wildlife Service (1970).
15. Applicant's Environmental Report; Hanford Number Two Nuclear Power Plant; Washington Public Power Supply System; USAEC Docket No. 50-397, Section 2.3.6.1, P. 2.

[^0]: houst or blowim dust, visibility 59.9 An 16 ml .
 'All tog regardiess of visibllity.
 fvivibility $0.4 \mathrm{ken}(1 / 4 \mathrm{mi})$ or less.
 rroe stane, Jenne, and thorpa, "Clinatology of the Manford Arma." anml-1605, June 1912. ${ }^{\text {4 }}$ 1912-1970, unlers otherwise indirated. $\begin{array}{ll}\text { bies. than } 0.5 \text { day per month. } & \text { 1996-1970. } \\ \text { cigas-1970. } & \\ \text { 1946-1970. }\end{array}$ 1945-1970. S1950-19\%O.

