Gravity Reflood Oscillations in a Pressurized Water Reactor

Prepared by Y. L. Cheung, P. Griffith

Department of Mechanical Engineering Massachusetts Institute of Technology

Prepared for U. S. Nuclear Regulatory Commission

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

POOR ORIGINAL

Available from

GPO Sales Program Division of Technical Information and Document Control U. S. Nuclear Regulatory Commission Washington, D. C. 20555

and

National Technical Information Service Springfield, Virginia 22161

NUREG/CR-1314 R2

Gravity Reflood Oscillations in a Pressurized Water Reactor

Manuscript Completed: December 1979 Date Published: February 1980

Prepared by Y. L. Cheung, P. Griffith

Department of Mechanical Engineering Massachusetts Institute of Technology Boston, MA 02139

Prepared by Division of Reactor Safety Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN No. A-4060

ABSTRACT

The thermal-hydraulics of reflood oscillations in a pressurized water reactor is studied. Violent steam generation beneath the core water level and subsequent expulsion of the coolant are proposed as the physical mechanisms responsible for driving the oscillations. A computer model of the gravity reflood process is formulated based on a simplified boiling curve and one-dimensionl fluid mechanics. In general, model calculations compare favorably with experiments. The core coolant level, however, cannot be calculated with certainty because the model does not account, in sufficient details, for interactions beyond the reactor core. Calculated vapor velocities at the core exit indicate that draining of carryover coolant from the upper plenum is possible.

TABLE OF CONTENTS

Abstrac	et		111
Table (of Conte	nts	v
List of	f Figure	S	vii
Nomenc	lature		viii
1. Inti	roductio	on	
1.1 1.2 1.3 1.4	Loss o Refloo Refloo Scope	of Coolant Accident od Dynamics od Heat Transfer of Study	1 2 4 6
2. The	ory		
2.1 2.2 2.3	Drivin Dynami Heat T	ng Mechanisms Lcs of the Continuous Liquid Column Fransfer Model	9 13 16
	2.3.1 2.3.2 2.3.3	Wall-to-Liquid Heat Transfer Rod Conduction Model Heat Transfer Beyond Core	
3. Rest	ults		
3.1 3.2	Predic Discus	ction on Experiments sions and Recommendations	21 33
	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	Driving Mechanism Frequency and Amplitude Vapor Generation Beyond Core Prediction on Core Head Draining of Carryover Liquid Single-Phase Assumption Liquid Level vs. Liquid Head	
4. Cond	clusions	3	37
Referen	nces		38

v

Appendix A.	Summary of Analytical Model		
	A.1 Hydrodynamic Equations	39	
	A.2 Heat Transfer Package	40	
	A.3 Initial and Boundary Conditions	41	
Appendix B.	REFLUX2 Calculations on Forced Oscillatory Reflood Tests	43	
Appendix C.	Listing of Computer Program	48	

LIST OF FIGURES

Fig	ure	Page
1.1	A Generalized Boiling Curve	5
1.2	Two-Phase Flow Boiling Regimes in Reflood	7
2.1	Heat Flux vs. Core Elevation When Liquid Level is (a) Below, (b) Above, Quench Front	10
2.2	Schematic of Gravity Reflood Model	11
2.3	Heat Flux as Function of Superheat for Transition and Film Boiling at 60 psi	17
2.4	Heat Flux vs. Superheat During Reflood at 60 psi	18
3.1	Location of Differential Pressure Transducers for Semiscale Tests	25
3.2	Measured and Calculated Downcomer Head for FLECHT-SET #4923	26
3.3	Measured and Calculated Downcomer and Core Heads for Semiscale Test S-07-4	27
3.4	Measured and Calculated Downcomer and Core Heads for Semiscale Test S-07-5	28
3.5	Calculated Downcomer Head and Calculated Downcomer Level for FLECHT-SET Run #4923	29
3.6	Calculated Downcomer Head and Calculated Downcomer Level for Semiscale Test S-07-4	30
3.7	Calculated Downcomer Head and Calculated Downcomer Level for Semiscale Test S-07-5	31
3.8	Calculated Vapor Velocity at Core Exit for FLECHT-SET Run #4923	32
B.1	Inlet Velocity Function Used in Calculating ANL Tests	45
B.2	Measured and Calculated Quench Times for ANL Tests	46
B.3	Measured and Calculated Wall Temperatures for ANL Run #33	47

NOMENCLATURE

A _c	Core flow area
ABP	Bottan plenum flow area
A _d	Downcomer flow area
Aγ	Loop piping flow area
A _w	Wall surface area
Е	Energy
e	Acceleration due to gravity
h	Heat transfer coefficient
H	Specific enthalpy
k	Thermal conductivity
K _e	Resistance coefficient for $K_c = \left[\frac{\Delta P}{\frac{1}{2}\rho_f v_f}\right] core + downcomer$
κl	Loop resistance coefficient, $K_l = \left[\frac{\Delta P}{\frac{1}{2} \int_{g^v g}^{v}}\right]_{loop}$
m	Mass
m _e	Mass of liquid slug
'nſ	Core-to-downcomer liquid mass flow rate
mg	Rate of vapor generation in core
minj	Mass flow rate of coolant injection
mout	Mass flow rate of vapor out the break
Ρ	Pressure
Pe	Pressure of vapor pocket
Po	System pressure

Pu	Pressure in upper plenum
Q	Heat transfer rate
R	Gas constant
t	Time
Т	Temperature
v	Velocity
٧	Vapor volume
Ve	Volume of vapor pocket
Vu	Volume of upper plenum & loop piping
z	Elevation based on bottom of heated length
z _c	Liquid level in core
zd	Liquid level in downcomer
ze	Elevation of liquid plug
μ	Dynamic viscosity
P	Density
~	Surface tension

Subscripts

BP	Bottom plenum
C	Core
d	Downcomer
e	Pertaining to the liquid expulsion mechanism
f	Liquid
g	Vapor

1	Loop
sat	Saturation condition
u	Upper plenum & loop
W	wall

1. INTRODUCTION

1.1 LOSS OF COOLANT ACCIDENT

To assure safe operation of nuclear power plants, the Nuclear Regulatory Commission requires the plants to be able to withstand various component and system failures-without releasing unacceptable amounts of fission products. One of the possible failures considered is the rupture of a major coolant pipe, leading to a loss of coolant accident (LOCA). The most severe LOCA is postulated to result from a double-ended break in the cold leg of the primary coolant system, since such a break is calculated to lead to the highest hot spot cladding temperatures in the fuel rods.

The phases of a LOCA following the pipe break can be identified as blowdown, refill, and reflood.

Immediately following the rupture, the blowdown phase is a series of severe transients in coolant flow, system pressure, and fuel rod heat transfer. The reactor vessel decompresses rapidly from its operating condition of about 2250 psia (15.5 MPa) to containment pressure, with accompanying loss of coolant. The water coolant flashes to steam as its pressure drops to saturation pressure. A pressure difference between the upper and lower plena builds up in sufficient magnitude to force a stagnation, then reversal, of the core flow. Although the plant protection systems have shut down chain nuclear reactions upon sensing the decompression, radioactive decay of fission products and actinides continue to generate energy at over 5% of the operating power level. Fueled by this decay energy, the reactor core heats up at a rate of up to 20 $^{\circ}$ F/sec (11 K/sec), since local and bulk voiding have reduced heat removal from the core.

At about 30 seconds into the LOCA, the blowdown phase is almost complete as the vessel pressure falls to containment pressure and the reactor core is empty of coolant. At different points during blowdown, the various injection components of the emergency core cooling system (ECCS) have been activated by sensing pressure and coolant levels. After the injected coolant has refilled the bottom plenum, it enters and marches up the core, which has by now attained a temperature in excess of 1000 °F (811 K). The fuel rods are initially cooled by film boiling, then by transition and nucleate boiling as the cladding temperature drops below the Leidenfrost temperature. Due to the opposing steam pressure, the reflood rate is limited to about 1 in./sec (2.54 cm/sec).

The LOCA is successfully contained only if the core is completely reflooded before destructive processes, such as rod melting and metalwater reactions, take place.

1.2 REFLOOD DYNAMICS

In a PWR, emergency coolant is injected into the cold leg or downcomer. Gravity pushes the coolant around the bend in the bottom plenum and up the hot channels.

The single most important parameter in reflood analysis is the flooding rate, the net rate at which coolant crosses the inlet of the

core. It has been demonstrated in forced-feed, bottom reflood experiments, such as FLECHT [1], that provided the core flooding rate is high enough, the rod temperatures will stay within safe limits. The flooding rate is determined primarily by two quantities: the downcomer hydraulic head, which drives the flow, and the back pressure in the core, which impedes it. Sirce vapor generated in the core must vent through paths of consederable resistance, back pressure builds up in the core and limits the flooding rate.

Gravity oscillations are possible during reflood, if driving mechanisms are present. Recently, U-tube type oscillations have been observed in scaled reflood experiments such as FLECHT-SET [2] and SEMISCALE. [3] The frequency of the observed oscillations correlates closely to the natural frequency (about 0.3 Hz) of the systems under test.

The U-tube type oscillations are believed to be generated by the following mechanism. When emergency coolant rushes into the hot core, violent boiling suddenly begins at some point beneath the free surface of the coolant. The high rate of vapor generation creates a pressurpulse which momentarily forces liquid out of the core. After the vapor has vented and the pressure pulse has disappeared, coolant rushes back and the process repeats.

The effects of the oscillations on the flooding rate and core heat removal are not fully understood. The oscillations may enhance core cooling since they increase local fluid velocities and thus local heat

transfer coefficients. Reflood tests conducted at the Argonne National Laboratory indicate that such effects are small.[4] However, if the oscillations become too violent, emergency coolant may be thrown out of the reactor core, thus reducing liquid inventory in the core.

1.3 REFLOOD HEAT TRANSFER

Heat transfer from the fuel rods during reflood is a temperaturecontrolled process. The temperature excursion of the fuel rods can be best explained by a generalized boiling curve shown in Fig. 1.1, which is typically a log-log plot. Since the initial temperature of the fuel rod is high, reflood heat transfer proceeds from the high temperature region to the low temperature region through film boiling, transition boiling, and nucleate boiling.

The key to reflood heat transfer analysis is an accurate knowledge of film boiling heat transfer and minimum film boiling temperature (MFBT), which, being a minimum point on the boiling curve, is an unstable operating condition. At surface temperatures above the MFBT, a vapor film blankets the fuel rod surface so coolant has no direct contact with the surface. Because heat flux is low under such conditions, rod temperature decreases slowly or may even rise if decay heat exceeds surface heat removal.

Once the MFBT is crossed, however, surface heat flux rises rapidly as a result of direct contact between liquid and rod surface, causing surface temperature to drop a few hundred degrees F in a matter of seconds.

Fig. 1 1 A Generalized Boiling Curve

S

A good knowledge of two-phase flow patterns along the length of the fuel rods is also essential to reflood heat transfer analysis. Fig. 1.2 shows the flow patterns that can be identified in a vertical channel having an initial temperature higher than the MFBT. Nucleate and transition boiling dominate the inlet region of the channel since surface temperature is lower there. Downstream of the point at which the MFBT is anchored, inverted annular film boiling dominates. In inverted annular film boiling, a superheated vapor film flows around a liquid core. Heat is transferred by convection through the vapor film. Further downstream, the vapor flow rate is so high that the liquid core becomes unstable and breaks up into droplets, which accelerates upwards and out of the channel. In this droplet flow region heat transfer deteriorates significantly since liquid-surface contact is sporadic and contact area is small.

The foregoing description applies only to a steady-state situation, in which case the surface temperature is the important parameter in determining heat flux and flow patterns. During flow and pressure transients, analysis is more difficult because other parameters such as flow velocities and void fractions, which cannot be accurately measured, come into play.

1.4 SCOPE OF STUDY

The purpose of this research is to study the dynamics and heat transfer of coolant flow during the oscillatory phase of bottom reflood

Fig. 1.2 Two-Phase Flow Boiling Regimes in Reflood

and to identify the physical mechanisms responsible for driving and sustaining the oscillations.

A computer model of the reactor system under reflood conditions is developed. The model features single-phase, one-dimensional fluid mechanics with lumped resistance, inertia, and capacitance. Thermodynamic properties are evaluated at system pressure, which is assumed to be constant. Axial conduction in the fuel rods and thermodynamic non-equilibrium between the liquid and vapor phases are ignored. Radial heat transfer coefficients are calculated from a simplified boiling curve in which rod surface temperature is the only dependent variable.

Due to the abundance of published experimental data, no experiments are performed under this research. The FLECHT-SET and Semiscale tests produce reflood data under a wide range of conditions.

From comparisons of the computer model calculations with available experimental results, the assumptions and simplifications in the model are re-examined. The physical phenomena associated with the reflood process, the reflood oscillations in particular, are evaluated and discussed.

2. THEORY

2.1 DRIVING MECHANISM

The large amplitude and sustained nature of the reflood oscillations suggest that a repetitive driving force is at work during reflood. This study proposes a mechanism by which the oscillations can be driven.

Figure 2.1 shows, conceptually, how rod heat flux varies with core elevation. The presence of liquid on the wall makes a difference; therefore we have two cases. In case (a), the liquid level is below the quench front. Since heat flux is low and the liquid is subcooled at the inlet, not very much vapor is being generated. In case (b), the liquid level rises above the quench front, where heat flux is high. If subcooling is removed, rapid vapor generation will begin.

When emergency coolant rushes into the hot core, it overshoots the quench front, where rod heat flux is highest. When the coolant flow stagnates, subcooling is rapidly removed and violent boiling begins at some point beneath the free surface of the liquid. If the rate of vapor generation is so high that the vapor cannot vent fast enough, the liquid trapped above the vapor pocket will be accelerated upwards. Simultaneously, the resulting pressure pulse pushes core coolant downwards. After the vapor has vented, the coolant rushes back up the core and the process repeats.

Figure 2.2 shows a schematic of this coolant flow path for our

Fig. 2.1 Heat Flux vs. Core Elevation When Liquid Level is (a) Below, (b) Above, Quench Front.

Fig. 2.2 Schematic of Gravity Reflood Model

reflood model. It also shows, at the quench front, the vapor pocket which is expelling liquid above it. In general, some vapor vents through the trapped liquid and exerts a drag force on the liquid. For simplicity, we assume that no vapor vents through so that the trapped liquid acts like a piston. Approximating the pressure P_e of the vapor pocket by the ideal gas law, PV = mRT, one obtains after differentiation and rearrangement:

$$\frac{dP_e}{dt} = \frac{\dot{m}_g RT - P_e A_c (\dot{z}_e - \dot{z}_c)}{A_c (z_e - z_c)}$$
(2.1)

A force balance on the liquid plug gives:

$$m_e z_e = (P_e - P_u)A_c - m_e g \qquad (2.2)$$

We assume that the liquid slug accelerates upward to its maximum velocity and stays at that velocity until it reaches the upper plenum. It is not allowed to decelerate. Heat transfer to the liquid slug is ignored.

Although the actual mechanism may differ in details from the one described above, some form of liquid expulsion from the core is evident in the reflood experiments. In the single-tube experiment of White and Duffey [5], they noted occassional discharge of large plugs of water from the heated tube. In the FIECHT-SET Phase A tests, sheets of water droplets were observed passing the window at the 9 ft (2.74 m) elevation with a period of about 3 sec. For simplicity, we have modeled the expelled liquid as a piston. In reality, the expelled liquid is more likely to break up into smaller fractions. Whatever the case may be, the upward acceleration of the expelled liquid must be balanced by a downward acceleration of the continuous reflood column.

The quantitative conditions under which the liquid expulsion occurs are not well understood. The local vapor velocity seems to be the most important parameter. We postulate that liquid expulsion begins when the superficial vapor velocity exceeds a critical value. Lacking better estimates, we will use a critical superficial vapor velocity of 20 ft/s (6.1 m/s) to determine the occurrence of liquid expulsion.

In general, only a fraction of the liquid above the vapor pocket is expelled and carried over to the upper plenum. The other fraction returns to the core due to non-uniform vapor velocities and break-up of the liquid plug. In our calculation we will assume that fraction to be 50%.

2.2 DYNAMICS OF THE CONTINUOUS LIQUID COLUMN

The liquid in the downcomer and core is modeled as a continuous, one-dimensional column of single-phase liquid. The single-phase assumption means that no vapor voids are allowed in the continuous liquid column. All the vapor generated in the core beneath the liquid surface are assumed to rise immediately to the surface. In effect, we assumed an infinite bubble rise velocity but ignore the associated

vapor momentum flux. Furthermore, thermal equilibrium and saturation conditions at system pressure are assumed throughout the system.

First, consider this case in which liquid expulsion is not in progress. Then the pressure in the core is approximately equal to that in the upper plenum, P_u . With reference to Fig. 2.2, the force balance on the liquid column in the core is,

$$\rho_{f}A_{c}z_{c} \frac{d(v_{f})_{c}}{dt} = (P_{u} - P_{2})A_{c} + (\rho_{f}A_{c}z_{c})g - \frac{1}{2}(K_{c})_{c}\rho_{f}(v_{f})_{c}|(v_{f})_{c}|A_{c}$$
(2.3)

Writing $\dot{m} = \rho A v$ and rearranging:

$$\frac{z_{c}}{A_{c}}\frac{d\dot{m}_{f}}{dt} = (P_{u} - P_{2}) + \rho_{f}z_{c}g - \frac{(K_{c})_{c}\dot{m}_{f} |\dot{m}_{f}|}{2\rho_{f}A_{c}^{2}}$$
(2.4)

Similarly for the bottom plenum and downcomer:

$$\frac{L_{BP}}{A_{BP}} \frac{d\dot{m}_{f}}{dt} = (P_{2} - P_{1}) - \frac{(K_{c})_{BP}\dot{m}_{f} |\dot{m}_{f}|}{2 \rho_{f} A_{BP}^{2}}$$
(2.5)

$$\frac{z_{d}}{A_{d}}\frac{d\dot{m}_{f}}{dt} = (P_{1} - P_{o}) - \rho_{f}z_{dg} - \frac{(K_{c})_{d}\dot{m}_{f} |\dot{m}_{f}|}{2 \rho_{f}A_{d}^{2}}$$
(2.6)

Adding (2.4), (2.5), and (2.6), we get,

$$\left(\frac{\mathbf{z}_{c}}{A_{c}} + \frac{\mathbf{L}_{BP}}{A_{BP}} + \frac{\mathbf{z}_{d}}{A_{d}}\right) \frac{d\dot{\mathbf{m}}_{f}}{dt} = (P_{u} - P_{o}) - \boldsymbol{\rho}_{f}(\mathbf{z}_{d} - \mathbf{z}_{c})g - \frac{K_{c}\dot{\mathbf{m}}_{f}\left|\dot{\mathbf{m}}_{f}\right|}{2 \boldsymbol{\rho}_{f}A_{c}^{2}}$$
(2.7)

Equation (2.7) governs the dynamics of the continuous liquid column. Mass balances give the liquid levels in the downcomer and core:

$$\rho_{fA_d} \dot{z}_d = \dot{m}_{inj} + \dot{m}_f \tag{2.8}$$

$$\rho_{\rm f} A_{\rm c} \dot{z}_{\rm c} = -\dot{m}_{\rm f} - \dot{m}_{\rm g} \tag{2.9}$$

By differentiating and rearranging the ideal gas law, PV = mRT, we get for the pressure in the upper plenum:

$$\frac{dP_u}{dt} = \frac{(\dot{m}_g - \dot{m}_{out})RT + P_u A_c \dot{z}_c}{V_u}$$
(2.10)

If we ignore vapor acceleration, then the vapor flow rate out the break, \dot{m}_{out} , is given by:

$$\dot{m}_{out} = A_{l} \sqrt{\frac{2 \rho_{g}(P_{u} - P_{o})}{K_{l}}}$$
(2.11)

When the liquid expulsion mechanism described in Section 2.1 occurs, two more equations: Eqs. (2.1) and (2.2), are required. Furthermore, the term P_u should be changed to P_e in Eq. (2.7); and \dot{z}_c should be changed to \dot{z}_e in Eq. (2.10).

The rate of coolant injection, \dot{m}_{inj} , is a boundary condition. The vapor generation rate, \dot{m}_g , is an output from the heat transfer model, which is described in the following section.

2.3 HEAT TRANSFER MODEL

Rod heat transfer provides an important input to the dynamics of the liquid column: the rod heat flux, which yields the vapor generation rate. The complete heat transfer model consists of two parts: a rod conduction model to calculate rod temperature, and a scheme for calculating wall-to-liquid heat flux.

2.3.1 Wall-to-Liquid Heat Transfer

Below the core liquid level, post-CHF heat flux is calculated from Hsu's correlation: [6]

$$h_{W} = h_{Hsu} + h_{Mod. Bromley}$$

= 1456 P·558 exp[-0.003758 P·1733 ΔT_{sat}]
+ 0.62 $\left[\frac{gkg^{3} \rho_{g}(\rho_{f} - \rho_{g})H_{fg}}{T_{sat} \mu_{g}} \frac{1}{2\pi} \sqrt{\frac{g(\rho_{f} - \rho_{g})}{\sigma}}\right]^{\frac{1}{4}}$ (2.12)

Figure 2.3 shows heat flux calculated from the equation plotted against reflood data. Hsu's correlation is chosen because it is based on low void fraction, reflood data. It covers both transition and film boiling and gives heat flux as a function of wall temperature only

Above the core liquid level, heat transfer consists of two components: heat transfer to vapor by forced convection, and heat transfer to entrained liquid droplets by film boiling. Calculation of the droplet component in an unsteady flow is a formidable task by itself. To keep the model simple, we forgo a detailed calculation and allow a

Fig. 2.4 Heat Flux vs. Superheat During Reflood at 60 psi

constant heat transfer coefficient of 5 Btu/hr-ft²- $^{\circ}$ F (28.4 W/m²K) for this regime.

After the quench, decay heat is removed by nucleate boiling. However, the selection of nucleate boiling equation is not critical because the low levels of decay heat are always entirely removed by nucleate boiling. McAdam's equation is used here: [6]

$$h_w = 0.074 (T_w - T_{sat})^{2.86}$$
 (2.13)

Fig. 2.4 shows heat flux vs. superheat for all three regimes.

2.3.2 Rod Conduction Model

The function of the rod conduction model is to keep track of the rod temperature. It is derived by applying the energy equation to the heater rod:

$$\frac{d}{dt} (E_{stored}) = \dot{Q}_{decay} - \dot{Q}_{W} \qquad (2.14)$$
where $\dot{Q}_{W} = h_{W}A_{W}(T_{W} - T_{f}) \qquad (2.15)$

While Eq. (2.14) guarantees an overall energy balance for the rod, the accuracy of the transient temperature profile generally depends on the degree of sophistication of the solution technique, which usually entails finite-difference methods. See, for example, the work of Kirchner [7] and Yadigaroglu [8].

For this study, we will use a simple model that is based on two lumped thermal capacities connected by a lumped thermal resistance:

We believe that this second-order model should produce adequate transient response since the cladding is very thin.

2.3.3 Heat Transfer Beyond Core

Heat transfer from bottom quench in the core does not account for all the vapor generation within the primary coolant loop. Some vapor is generated by quenching from the top; some more is generated by evaporation in the upper plenum, loop piping, and steam generators. None of these sources of vapor generation is physically modeled here.

3. RESULTS

3.1 PREDICTION ON EXPERIMENTS

Based on the analytical models presented in Section 2, a computer program is written to obtain numerical solutions. A summary of the analytical models, as well as the initial and boundary conditions for the specific predictions, are given in Appendix A. Appendix C contains a listing of this computer program.

The hydrodynamic equations in Sections 2.1 and 2.2 are solved with the Runge-Kutta method. Numerical stability requires that a small time step of about 1 millisecond be used. The finite-difference equations of the heat transfer model are implicit so that numerical stability is not a concern. As a compromise between accuracy and computation time, a time step of 0.1 sec and axial nodal size of 0.1 ft are used for the heat transfer model.

Three runs selected from Semiscale Mod-3 [3] and FLECHT-SET Phase A [2] have been calculated. They are FLECHT-SET Run #4923 and Semiscale Tests S-07-4 and S-07-5. The runs conditions are listed in Table 3.1.

Table 3.2 lists the parameters that are specific to the computer calculations. The resistance coefficients K_c and K_l are deduced from information provided by the data reports. The vapor generation rate in the upper plenum, hot leg, and cold leg is an assumed value based on order-of-magnitude estimates. As mentioned in Section 2.3.3, such an effect has not been included in our physical model. However, omission of this effect produces unreasonable results because loop pressure drop, and core and downcomer levels are adversely affected. More meaningful

results are obtained if a reasonable rate of vapor generation is allowed in the upper plenum and legs. The parameters pertaining to the driving mechanism are also assumptions. For a detailed list of initial and boundary conditions, refer to Appendix A.

Throughout this report, the term "head" refers to the pressure drop, expressed in liquid height, across a column of liquid. Elevation 0 refers to the bottom of the core heated length. Thus, core head is the pressure drop across the core heated length, from elevation 0 to elevation 3.66 m (12 ft). Downcomer head is the pressure drop, across the downcomer, from elevation 0 to the top of the downcomer.

In the Semiscale tests, core and downcomer heads are measured by differential pressure transducers placed across the core and downcomer. The locations of these pressure transducers are indicated in Fig. 3.1. In FLECHT-SET, the pressure tranducer for the downcomer measures from elevation 0 to the top of the downcomer, the exact elevation of which is not given in the data report.

In Figures 3.2, 3.3, and 3.4, the calculated and measured downcomer and core heads vs. time plots are presented. It should be noted that the quantities compared in these figures are the total liquid heads, or the total pressure drops across the downcomer or core. The pressure drop is the sum of three terms: gravity, acceleration, and friction. During reflood oscillations, the friction term is small, but the acceleration term can be quite large since it responds instantaneously to forces acting on the liquid column. It is the acceleration term that gives rise to the sharp fluctuations observed in the measured and

calculated heads. However, the excessively large amplitudes seen in the calculations may be, at least partly, numerical in nature.

Figures 3.5, 3.6, and 3.7 show calculated downcomer heads and calculated downcomer levels for the three runs. The difference between the calculated head and the calculated level represents essentially the calculated acceleration head. It can be seen that the level oscillations are much smoother than the head oscillations. Thus it can be deduced that the sharp pulses in the head oscillations arise from the acceleration term. In fact, the level is equal to the liquid acceleration, which produces the acceleration head, integrated twice with respect to time.

Figure 3.8 shows the calculated vapor velocity at the core exit vs. time for FLECHT-SET Run #4923, which is representative of the other two Semiscale runs. The exit vapor velocity periodically falls below the flooding velocity, which is about 30 ft/s (9.1 m/s) at 40 psia (276 kPa). During these low velocity periods the carryover liquid in the upper plenum should be able to drain into the core. Table 3.1 Initial Conditions for Selected Runs

	FLECHT-SET #4923	Semiscale S-07-4	Semiscale S-07-5
System Pressure (kPa)	421	421	127
Peak Power (kW/m)	2.3	2.1	1.3
Peak Clad Temperature (K)	873	800	960
ECCS Injection:			
Coolant Temperature (K)	343	334	350
High Rate (kg/s)	4.78	1.22	1.16
Low Rate (kg/s)	0.54	0.10	0.15
Duration of High Rate (s)	14	16	12

Table 3.2 Parameters in Computer Simulation

	FLECHT-SET #4923	Semiscale S-07-4	Semiscale S-07-5
Core Resistance Coefficient, K _C	11	15	15
Loop Resistance Coefficient, Kl	31	400	400
Vapor Generation Rate in Upper Plenum + Both Legs (kg/s)	0.14	0.05	0.02
Driving Mechanism:			
Critical Vapor Velocity (m/s) 6.1	6.1	6.1
Fraction of Liquid Expelled	0.5	0.5	0.5

Fig. 3.1 Location of Differential Pressure Transducers for Semiscale Tests

*

Fig. 3.3 Measured and Calculated Downcomer and Core Heads for Semiscale Test S-07-4 (60 psia) Initial Clad Temp.: 980 F, Peak Power: 0.63 kW/ft, Injection Temp.: 141 F Injection Flow Rate: 2.69.1b/s First 16 s, 0.21 1b/s thereafter

Fig. 3.4 Measured and Calculated Downcomer and Core Heads for Semiscale Test S-07-5 (18.4 psia) Initial Clad Temp.: 1268 F, Peak Pow r: 0.405 kW/ft, Injection Temp.: 170 F Injection Flc: Rate: 2.55 lb/s First 12 s, 0.34 lb/s thereafter

Fig. 3.6 Calculated Downcomer Head & Calculated Downcomer Level for Semiscale Test S-07-4

Fig. 3.7 Calculated Downcomer Head & Calculated Downcomer Level for Semiscale Test S-07-5

Fig. 3.8 Calculated Vapor Velocity at Core Exit for FLECHT-SET Run #4923

3.2 DISCUSSIONS & RECOMMENDATIONS

3.2.1 Driving Mechanism

The calculations show that the proposed driving mechanism can indeed start and sustain coolant oscillations during reflood. However, the quantitative conditions under which the liquid expulsion mechanism occurs are not well understood. What is the minimum vapor generation that can cause liquid expulsion? What fraction of the liquid trapped above the vapor pocket is expelled and carried into the upper plenum? The answers to these questions affect intimately the dynamics of the reflood oscillations. It should be worthwhile to perform a single-tube experiment with observing and analyzing such a mechanism in mind.

3.2.2 Frequency and Amplitude

While the frequencies of the calculated oscillations agree quite well with data, the amplitudes do not agree as well. The amplitudes depend on the magnitude and duration of the driving force, which in turn depend on the mass of liquid expelled and the history of vapor generation during a quench. The mass of liquid expelled is sensitive to the assumptions of the driving mechanism. The history of the vapor generation rate during a quench is sensitive to the slope of the boiling curve in transition boiling, and to the nodal and time step size of the numerical solution.

3.2.3 Vapor Generation Beyond Core

In the scaled experiments, the thermal capacity of the metal in

the upper plenum and loop piping is large so that a significant amount of vapor will be generated if the metal temperature is above the saturation temperature of the fluid. Moreover, fluctuating vapor flow rates may give rise to condensation and evaporation cycles. When vapor flow rate increases, so do the pressure and the saturation temperature. Some vapor condenses, heating up the metal. When vapor flow rate decreases, the pressure falls so that the stored vapor and carryover liquid become superheated. Evaporation then takes place.

We believe that the above interactions are peculiar to the scaled experiments due to the large ratio of metal surface area to flow volume in those experiments. In full-scale reactor, the effects of such interactions will be much less, since the area/volume ratio is much smaller.

3.2.4 Prediction on Core Head

By making an assumption on the amount of vapor generated in the upper plenum and loop piping, we have been able to increase the loop pressure drop and raise the downcomer liquid head to match the data more closely. However, the calculated core liquid head is low due to two reasons. First, in the experiments, core head is measured from the bottom plenum to the top of the upper plenum. The measurements thus include the head of liquid stored in the upper plenum. Second, the driving mechanism may be expelling too much liquid from the core, thereby reducing both downcomer and core heads.

3.2.5 Draining of Carryover Liquid

The calculated vapor velocity at core exit fluctuates widely. It periodically falls way below the flooding velocity, which is about 30 ft/sec (9.1 m/s) at 40 psia (276 kPa). During these low velocity periods the carryover liquid in the upper plenum should be able to drain into the core.

3.2.6 Single-Phase Assumption

The single-phase assumption on the core liquid works out quite well. It allows lumping of the fluid mechanics, thus avoiding a full-blown finite-difference solution.

Core heat transfer is probably underestimated. In reality, the liquid column swells due to void formation, thus providing more area for heat transfer. Conceivably, one can retain the single-phase assumption in modeling the dynamics of the liquid column, and calculate the swollen liquid level with a quasi-steady void model.

3.2.7 Liquid Level vs. Liquid Head

Care should be taken when one interprets the data on differential pressure, or liquid head, across the core and downcomer. Liquid level and liquid head are equivalent only in a static situation.

In a dynamic situation, liquid head is the sum of three components: the gravity, friction, and acceleration heads. The gravity head is equal to the liquid level in a single-phase liquid, or to the "collapsed"

liquid level in a liquid/vapor two-phase system. During reflood oscillations, the friction head is quite small, but the acceleration head is comparable in magnitude to the fluctuation in the gravity head.

Figures 3.5, 3.6, and 3.7 show the calculated downcomer heads and calculated downcomer levels. The difference between the two quantities is significant.

4. CONCLUSIONS

- The proposed driving mechanism initiates and sustains oscillations during reflood. However, the details of the mechanism are not well understood, and should be investigated.
- 2. The calculations show that the vapor velocity at the core exit should exhibit cyclical variations. When the vapor velocity is low, carryover liquid that is stored in the upper plenum should be able to drain back into the core.
- 3. In the scaled experiments, the loop piping provides large metal surface areas on which evaporation and condensation may take place. These interactions are not expected to be significant in a fullscale reactor.

REFERENCES

- Westinghouse Electric Corporation, FLECHT Reports WCAP-7435, 7444,7544,7665,7931,8651,8838, Westinghouse Electric Corporation, 1970-1978.
- 2. J.A. Blaisdell et al, "PWR FLECHT-SET Phase A Report," WCAP-8238, Westinghouse Electric Corp., Dec. 1973.
- 3. R. L. Gillins et al, "Experimental Data Reports for Semiscale Mod-3 Reflood Heat Transfer Test S-07-4," NUREC/CR-0254, TREE-1224, Aug. 1978.
- Argonne National Laboratory, "Light-Water-Reactor Safety Research Program: Quarterly Progress Report," NUREG/CR-0828, ANL 79-18, pp. 12-18, April 1979.
- E.P. White and R.B. Duffey, "A Study of the Unsteady Flow and Heat Transfer in the Reflooding of Water Reautor Cores," Annals of Nuclear Energy, Vol. 3, pp. 197-210, 1976.
- Y.Y. Hsu, "Proposed Heat Transfer 'Best Estimate' Packages," draft, USNRC, Nov. 1977.
- 7. W.L. Kirchner and P. Griffith, "Reflood Heat Transfer in a Light Water Reactor," NUREG-0106, NRC-24, 1976.
- G. Yadigaroglu and L. Arrieta, "Analytical Model for Bottom Reflooding Heat Transfer in Light Water Reactors (The UCFLOOD Code)," EPRI NP-756, Project 248-1, Key Phase Report, Aug. 1978.
- 9. Y.L. Cheung and P. Griffith, "A Revision of Post-CHF Heat Transfer for the REFLUX Code," a report prepared for USNRC, April 1978.

Appendix A. SUMMARY OF ANALYTICAL MODEL

- A.1 HYDRODYNAMIC EQUATIONS The assumptions are:
- 1. One-dimensional, uniform, single-channel flow for core and downcomer.
- Single-phase liquid along continuous liquid column, in which void fraction is either 0 or 1.
- 3. Liquid expulsion starts when the cumulative vapor generation rate below a core elevation exceeds a critical value; 50% of the liquid above that elevation is then expelled. Expelled liquid behaves as a piston.

Equations for the "unforced" dynamics are:

$$(\frac{z_{c}}{A_{c}} + \frac{L_{BP}}{A_{BP}} + \frac{z_{d}}{A_{d}}) \frac{d\dot{m}_{f}}{dt} = (P_{u} - P_{o}) - \rho_{f}(z_{d} - z_{c})g - \frac{K_{c}\dot{m}_{f} |\dot{m}_{f}|}{2\rho_{f}A_{c}^{2}}$$

$$(A.1)$$

$$\rho_{f} A_{d} z_{d} = \dot{m}_{inj} + \dot{m}_{f}$$
(A.2)

$$\boldsymbol{\rho}_{f} A_{c} z_{c} = - \dot{m}_{f} - \dot{m}_{g}$$
(A.3)

$$\frac{dP_u}{dt} = \frac{(\dot{m}_g - \dot{m}_{out})RT + P_uA_c\dot{z}_c}{V_u}$$
(A.4)

$$\dot{m}_{out} = A_l \sqrt{\frac{2\rho_g(P_u - P_o)}{K_l}}$$
(A.5)

Liquid expulsion occurs at $z = z_c$ in the core when

$$j_g(z_e) > (j_g)_{crit}$$
(A.6)

where

$$j_g(z_e) = \int_{z=0}^{z=z_e} \frac{dm_g}{\rho_g A_c}$$
(A.7)

and

$$(j_g)_{crit} = 20 \text{ ft/s} (6.1 \text{ m/s})$$
 (A.8)

Mass of liquid expelled or "carried over" is 50% of the liquid above z :

$$\mathbf{m}_{e} = \frac{1}{2} \rho_{f} \mathbf{A}_{c} (\mathbf{z}_{c} - \mathbf{z}_{e}) \tag{A.9}$$

Pressure of the vapor pocket is

$$\frac{dP_{e}}{dt} = \frac{\dot{m}_{g}RT - P_{e}A_{c}(\dot{z}_{e} - \dot{z}_{c})}{A_{c}(z_{e} - z_{c})}$$
(A.10)

Equation of motion of the liquid plug:

$$\mathbf{m}_{e} \ddot{\mathbf{z}}_{e} = (\mathbf{P}_{e} - \mathbf{P}_{u})\mathbf{A}_{c} - \mathbf{m}_{e}\mathbf{g}$$
(A.11)

A.2 HEAT TRANSFER PACKAGE

Below continuous liquid level (z < $z_{\rm c}$), heat transfer coefficient is determined by rod temperature ${\rm T}_{\rm w}$:

 $T_w > T_{CHF}$:

$$h_w = h_{Hsu} + h_{Mod. Bromley}$$
 (Eq. 2.12) (A.12)

T_{Boil} < T_w < T_{CHF}:

$$h_w = 0.074(T_w - T_{sat})^{2.86}$$
 (A.13)

Tw < TBoil:

$$h_w = 0.023 \frac{k_f}{D} \text{Re}^{0.8} \text{Pr}^{0.4}$$
 (A.14)

 T_{CHF} and T_{Boil} (incipience of boiling) are determined from the intersection of the three equations. In Eq. (A.14), the Reyrolds number Re and Prandtl number Pr are based on a constant liquid velocity of 1 in/s (2.54 cm/s) and saturated liquid conditions.

A.3 INITIAL & BOUNDARY CONDITIONS

Initial conditions used in the calculations are derived from the experimental run conditions, Table 3.1. Initial vapor flow rate is assumed to be zero. Initial rod temperatures are interpolated from a truncated sine curve fit to initial rod temperature data:

$$0 < z < z_{p}: T_{w}(z) = T_{w}(0) + \left[\frac{T_{w}(z_{p}) - T_{w}(0)}{z_{p}}\right] z$$

$$z_{p} < z < z_{m}:$$

$$T_{w}(z) = T_{w}(z_{p}) + \left[T_{w}(z_{m}) - T_{w}(z_{p})\right] \sin \frac{\pi(z - z_{p})}{2(z_{m} - z_{p})}$$
(A.15)

where z_m is the mid-plane elevation and z_p is the intersection of the linear and sine curve fit. The function is symmetrical about $z = z_m$.

Boundary conditions are less well-defined than initial conditions. Coolant temperature at core inlet is determined from test data, using a bottom plenum fluid temperature that is closest to the core inlet. Two linear segments with slopes s_1 , s_2 , are then fitted to the data:

$$t < t_{1}: T_{in} = T_{1} + s_{1}t$$

$$t > t_{1}: T_{in} = T_{2} + s_{2}(t - t_{1}) (A.16)$$

The amount of steam generated beyond the core, \dot{m}_v , is given by:

$$t < 10s$$
 $\dot{m}_{v} = \dot{m}_{vo}t/10$
 $t > 10s$ $\dot{m}_{v} = \dot{m}_{vo}$ (A.17)

Injection flow rates are given in Table 3.1. Decay heat is calculated from a curve fit to the ANS+20% curve. Table A.1 gives the values of the parameters in Eqs. (A.15), (A.16), (A.17).

	FLECHT-SET #4923	Semiscale S-07-4	Semiscale S-07-5
Truncated sine curve fit to initial wall temperatures:			
T _w (0) (K)	533.3	420	350
$T_w(z_p)$ (K)	644.4	460	740
$T_{w}(z_{m})$ (K)	866.7	800	960
z_p (m)	0.61	0.15	0.7
Linear fit to inlet coolant temperature:			
т ₁ (к)	358.3	366.7	350
т ₂ (к)	369.4	338.9	350
s ₁ (K/s)	1.11	-1.39	0
s ₂ (K/s)	-0.25	0	0
t ₁ (s)	10	20	50
Mapor generation rate beyond core, m _{vo} (kg/s)	0.136	0.046	0.023

Table A.1 Parameters for Initial & Boundary Conditions

Appendix B. REFLUX2 CALCULATION C RCED OSCILLATORY REFLOOD TESTS

Argonne National Laboratory (ANL) has run single-tube reflood tests by forcing an oscillatory flow into the preheated tube. (For details of the tests, refer to reference [4].) Quench times for various oscillatory frequencies do not differ significantly, suggesting that steady-state heat transfer correlations can be applied to oscillatory reflood conditions.

Three ANL runs have been calculated with the REFLUX2 code [9], a modified version of the REFLUX code [7]. The calculations were made before the experimental results were available. The experimental run conditions are listed in Table B.1. The initial tube wall temperature varies almost linearly from 1000 °F (811 K) at the inlet to 1250 °F (950 K) at the 10 ft (3.05 m) elevation. The inlet velocity function used in the calculations is shown in Figure B.1. Figure B.2 shows the comparison on quench times. Figure B.3 shows temperature vs. time at the 3 ft (0.91 m) and 6 ft (1.83 m) elevations for Run #33.

The most striking discrepancy between the calculated and experimental quench times is that in the experiments, the entrance region of the heated section quenches much earlier. Part of this discrepancy can be attributed to the lack of details in the initial temperature distribution used in the calculations. Other than that, the early quench of the entrance region in the experiments would indicate a high value for the effective heat transfer coefficient. REFLUX2, however, predicts film boiling since the initial wall temperature is about 1000 °F (811 K) and calculates a much lower heat transfer coefficient. REFLUX2 also ignores axial conduction in the tube wall.

The agreement between measured and calculated values is good, considering the various uncertainties of the heat transfer calculation in REFLUX2. Since REFLUX2 uses steady-state heat transfer correlations, the comparisons would suggest that such correlations are valid under oscillatory flow. Table B.1 Run Conditions for ANL Reflood Tests

2 ا

ش 👔

.

	Run #32	Run #33	Run #36
Frequency of inlet flow oscillations (Hz)	0.95	2.94	C
Coolant inlet temperature (K)	338	338	338
Average inlet velocity (cm/s)	20.6	21.1	20.8
Average inlet velocity during forward flow (cm/s)	46.1	47.1	20.8
Average inlet velocity during reverse flow (cm/s)	5.0	4.9	0

.

Fig. B.1 Inlet Velocity Function Used in Calculating ANL Tests

ł.

45

Fig. B.2 Measured and Calculated Quench Times for ANL Tests

Fig. B.3 Measured and Calculated Wall Temperatures for ANL Run#33

APPENDIX C

LISTING OF COMPUTER PROGRAM

100		PROGRAM REWET
200		REAL KWFT.ME.KC.KF.KOUT
300		INTEGER OLEVEL
400		DIMENSION GEVAP(1200) . Y(7) . YNEW(7) . FILM(1200)
500		COMMON /TEMP/ TEMPW(1200) . TEMPC(1200) . TEMPE(1200) . HTCW(1200)
600		1.GROD(1200)
700		COMMON/HTC/LIBOIL, DICHF. DIMIN. HSPL. HFILM. FBA. FBE
800		COMMON/ROD/SNBN.SHSS.RHOBN.RHOSS.ACORE.ACLAD.PERG.PERK.HTCG.DT
900		1.PF.NSTEP.TF
1000		COMMON /RK/ YRK(7) . FN(7) . WINJ. WC. ME. NVAF. WGUP
1100		COMMON /PRO/ PSYS.TSAT.RHOFS.RHOGS.CPFSAT.CPGSAT.HFC.TSATP.H
1200		COMMON /GEOM/ AXLD.AXLC.BPL.AD.AC.ABP.AOUT.VOLUP.PER.KC.KF.KCUT
1300		COMMON /DYNA/ ZD.ZC.WF.PUP.DZEDT.ZE.PE
1400		COMMON/INJECT/TSHI.FRHI.FRLI.TEMP1.SLOFF1.TIME2.TEMP2.SLOPE2
1500		COMMON/HOUSE/TEMPH(1200)
1600		EGUIVALENCE (ZD.Y(1))
1700		DATA 0/4.17E08/.P1/3.1416/
1800	С	
1900	С	READ AND WRITE INPUT DATA
2000	С	
2100		READ 2000 NTYPE NRUN
2200		IF (NTYPE.EQ.O)PRINT 2001.NRUN
2300		IF (NTYPE.EQ.1)PRINT 2002.NRUN
2400		READ 2010.PO.TCOOLI.KNFT.TTSF
2500		PRINT2010.PO.TCOOLI.KWFT.TISF
2600		READ 2020.TSAT.RHOFS.RHOGS.CPFSAT.CPGSAT.HFG
2700		PRINT2020.TSAT.RHOFS.RHOGS.CPFSAT.CPGSAT.HFG
2800		READ 2030 DTS .FTIME . NODEC . NODE . INPRNT . NTW1 . NTW2 . NTW3
2900		PRINT2030.DTS.FTIME.NODEC.NODE.INPRNT.NTW1.NTW2.NTW3

"心"。"你们

a france			
the second	3000		R
E-	3100		P
	3200		R
	3300		P
(- <u>H</u> -2)	3400		R
and the second s	3500		P
Contraction of the second	3600		R
	3700		P
	3800		R
55	3900		PI
	4000		R
	4100		PF
	4200		IF
	4300		RE
	4400		PF
	4500	5	CC
	4600	2000	FC
	4700	2001	e 1

0000		ALAU 2040 ALCAROUI AOUI VELOOD FRACT STEAM
3100		PRINT2040.KC.KOUT.AOUT.VELOOD.FRACT.STEAM
3200		READ 2050 . DTBOIL . DTCHE . DTMIN. HSPL . HEIL M. FRA. FRB. HVAD
3300		PRINT2050, DIBOIL . DICHF. DIMIN. HSPL. HFILM. FRA. FUR. HVAL
3400		READ 2060 NPIVOT TCEND TCP TWCI
3500		PRINT2060 • NPIVOT • TCEND • TCP • TUCI
3600		READ 2070 AD. ABP. AC. PER. AXID. FPI . AXIC. VOLUP
3700		PRINT2070 AC ABP AC PER AXID OF AVIC. VOLUD
3800		READ 2080 DCLAD DCORF SHSS SHEN PHOSS PHOEN HTCC
3900		PRINT2080 DCLAD DCORF SHSS SHRN BHOSS BHORN HTCC
4000		READ 2090 . TSHI . FRHI . FRII . TEMPI . SLOPEI . TIME2. TEMP2. SLOPES
4100		PRINT2090 TSHI FRHI FRI I TEMPI SI OPEL TIME2 TEMP2 SI OPEN
4200		IF (NTYPE .NE . 0) GOTO 5
4300		READ 2100 PERHS AXHS . RHOHS . CPHS
4400		PRINT2100 PERHS AXHS BHOHS CPHS
4500	5	CONTINUE
4600	2000	FORMAT(315)
4700	2001	FORMAT(FLECHT-SET A . IF)
4800	2002	FORMAT(SEMISCALE MOD3 . 15)
4900	2010	FORMAT(8F10.2)
5000	2020	FORMAT(8F10.3)
5100	2030	FORMAT(2F10.3.615)
5200	2040	FORMAT(2F10.2.F10.4.3F10.2)
5300	2050	FORMAT(6F10.2.E10.J.F10.2)
5400	2060	FORMAT(15.3F10.2)
5500	2070	FORMAT(8F10.4)
5600	2080	FORMAT(2F10.4.6F10.2)
5700	2090	FORMAT(8F10.2)
5800	2100	FORMAT(8F10.4)
5900	С	
6000	С	DETERMINE NORMALIZING FACTOR FOR DECAY CURVE & SET AVIAL DEDETER
6100	С	ALL PAIRS PROFIL
6000 6100	c	DETERMINE NORMALIZING FACTOR FOR DECAY CURVE & SET AXIAL PR

1

9100		TEMPW(NODEC+1-I)=TEMPER
9200	30	2=2+1.
9300		PRINT3000.(TEMPW(I).I=1.NODEC)
9400	3000	FORMAT(INITIAL WALL TEMP (//(10F10.1))
9500		DO 40 I=1,NODE
9600	40	TEMPC(I)=TEMPW(I)
9700	С	
9800	С	INITIALIZE VARIABLES FOR DYNAMIC SOLUTION
9900		PSYS=P0+144.
10000		TEMPG=TSAT
10100		R=85.76
10200		TSATR=TSAT+460.
10300		2C=0.0
10400		ZD=0.0
10500		FN(5)=0.0
10600		WF=0.0
10700		PUP=PSYS
10800		DZEDT=0.0
10900		ZE=0.0
11000		PE=PSYS
11100		WG=0.0
11200		NVAR=4
11300		LEVEL=0
11400		TFBP=TCOOLI
11500		NPRNT=0
11600		NSTEP=0
11700		DT=DTS/3600.
11800		TS=0.0
11900		TIME=0.0
12000		VAR1=PER +DZ/(AC+CPFSAT+RHOFS)
12100		VAR2=PER*DZ/(HFG*PHOGS*AC)
12200		IF (NTYPE.EC.O) VAR4=DT*PERHS/(AXHS*RHOHS*CPHS

12300			DHEG=4 . * AC/PER
12400			NDHEQ=1.+DHEQ/DZ
12500			OFLOOD=VFLOOD/VAR2+3600.
12600			VSTR=DZ/DT
12800			QHS=0.0
12900			PERW=PI*DCLAD/12.
13000			PERG=PI+DCORE/12.
13100			ACORE=PI*DCORE*DCORE/(4.*144.)
13200			ACLAD=PI*DCLAD*DCLAD/(4.*144.)-ACOPE
13300			COF=0.0
13400			COG=0.0
13500			DO 50 1=1.NODE
13600		50	TEMPF(1)=TEMPG
13700	С		
13800	С		START TIME LOOP
13900	С		
14000		100	CONTINUE
14100			NSTEP=NSTEP+1
14200			NPRNT=NPRNT+1
14300			TS=TS+DTS
14400			TIME=15/3600.
14500			WINJ=FLOWIN(TS)
14800			PF=PFDK(TS+TTSF)
14810			ZEOLD=ZE
14820			DZEOLD=DZEDT
14830			WFOLD=WF
14840			NGUP=STEAM
14850			HVAPOR=HVAP
14860			IF(TS.GT.10.)GOTO 105

14870		WGUP=STEAM*TS/10.
14880		HVAPOR=HVAP.TS/10.
14890	105	CONTINUE
14900	С	
15000	С	RENEW STATE VARIABLES BY RUNGE KUTTA METHOD
15100	С	TIME STEP IS REDUCED IN CASE OF ENTRAINMENT
15200	С	
15300		ITR=10
15400		IF (NVAR.EQ.7) ITR=100
15500		XITR=ITR
15600		DT=DTS/(3600.*XITR)
15700		DO 160 J=1,ITR
15800		DO 110 I=1.NVAR
15900	110	YRK(1)=Y(1)
16000		CALL RUNGE
16100		DO 120 I=1.NVAR
16200		FDT=FN(I) *DT
16300		YRK(1)=Y(1)+0.5+FDT
16400	120	YNEW(I)=Y(I)+FDT/6.
16500		CALL RUNGE
16600		DO 130 I=1.NVAR
16700		FDT=FN(I) +DT
16800		YRK(I)=Y(I)+0.5*FDT
16900	130	YNEW(I)=YNEW(I)+FDT/3.
17000		CALL RUNGE
17100		DO 140 I=1.NVAR
17200		FDT=FN(I)+DT
17300		YRK(I)=Y(I)+FDT
17400	140	YNEW(I)=YNEW(I)+FDT/3.
17500		CALL RUNGE
17600		DO 150 I=1.NVAR
17700		YNEWI=YNEW(I)+FN(I)+DT/6.

17800		FN(I) = (YNEWI - Y(I))/DT
17900	15	0 Y(I)=YNEWI
18000	160	CONTINUE
18100		DT=DTS/3600.
18200	С	가슴 잘 잘 다 가슴 가지 않는 것 같이 다 가슴 감사 봐. 아내가 잘 가져졌다. 가슴 것이 가지 않는 것
18300	С	END RUNGE-KUTTA METHOD START THERMAL CALCULATIONS
18400	С	and a second of the second of
18500		IF (ZD.GT.AXLD) ZD=AXLD
18600		OLEVEL=LEVEL
18700		LEVEL = IFIX(ZC/DZ)
18800		IF (LEVEL.LT.O)LEVEL=0
18900		VF=WF/(AC*RHOFS)
19000		IF(LEVEL.GE.NODE)LEVEL=NODE-1
19100	С	
19200	CO	COMPUTE ACCELERATION PRESSURE DROP AND DIFFERENTIAL PRESSURES
19300	CA	CROSS DOWNCOMER AND DRE
19400	С	
19500		ACCEL = (WF-WFOLD) / (DT+S+RHOFS+4C)
19600		FRICT=0.5*KC*VF*ABS(VF)/(G*(70+7C))
19700		DPD=2D+(1ACCEL+AC/AD-FRICT)
19800		DPC=ZC+(1.+ACCEL+FRICT)+(FE-FUP)/RHOFS
19900		DPLOOP=(PUP-PSYS)/RHOFS
20000	С	
20100	С	CHECK IF ENTRAINED LIQUID HAS REACHED MAXIMUM VELOCITY
20200	С	
20205		IF(ZE.EG.0.0.0R.(DZEDT-DZEOLD).GT.0.0)GOTO 180
20210		IF (DZEDT.GT.0.0)G0T0 165
20220		ZE=0.0
20230		DZEDT=0.0

20240		ZC=ZC+EXPEL
20250		COF=COF-ME
20260		GOTO 170
20270	165	CONTINUE
20300		DZEDT=DZEOLD
20400		ZE=ZEOLD+DZEDT+DT
20800	170	NVAR=4
20900		PE=PUP
21000	180	CONTINUE
21100	С	
21200	С	CALCULATE HEAT TRANSFER IN VAPOR FLOW REGION AND UPDATE
21300	С	ROD TEMPERATURES
21400	с	
21500		QVAPOR=0.0
21600		J=LEVEL+1
21700		DO 270 I=J.NODE
21800		HTCW(I)=HVAPOR
21900		TF=TSAT
22000		QVAPOR=QVAPOR+HVAPOR * (TEMPW(1)-TSAT)
22100		CALL TROD(I)
22200	270	CONTINUE
22300	С	
22400	с	CALCULATE FLUID TEMP WITH AN IMPLICIT BACKWARD DIFF METHOD
22500	С	
22600		IF(LEVEL.LT.1)GOTO 360
22700		IF(VF.LT.0.0)GOTO 310
22800		LV=0
22900		LS=1
23000		VFABS=VF
23100		TFBP=TCOOL(TS)
23200		TFNEW=TFBP
23300		GOTO 320

23400	310	LV=LEVEL+1
23500		LS=-1
23600		VFABS=-VF
23700		TFNEW=TEMPF(OLEVEL)
23800	320	CONTINUE
23900		DO 350 J=1.LEVEL
24000		I=(J-LV)*LS
24100		TFOLD=TEMPF(1)
24200		IF (TFOLD.GT.TSAT) TFOLD=TFNEW
24300	С	
24400	С	DETERMINE HOUSING HTC'S & UPDATE HOUSING TEMP'S
24500	С	
24600		IF (NTYPE.NE.0)GOTO 322
24700		DTSATH=TEMPH(I)-TSAT
24800		HTCH=BOIL(DTSATH)
24900		TF=TSAT
25000		IF (DTSATH.LT.DTBOIL) TF = TFOLD
25100		THS=(TEMPH(I)+VAR4*HTCH*TF)/(1.+VAR4*HTCH)
25200		TEMPH(I)=THS
25300		QHS=HTCH*(THS-TF)*PERHS/PER
25400	322	CONTINUE
25500	С	
25600	С	DETERMINE HTC'S IN LIQUID REGION AND UPDATE ROD TEMP
25700	С	
25800		DTSAT=TEMPW(I)-TSAT
25900		HTCW(1)=BOIL(DTSAT)
26000		TF=TSAT
26100		IF (DTSAT.LT.DTBOIL) TF = TFOLD
26200		CALL TROD(I)

Land December

26300			IF (DTSAT.GT.DTBOIL)GOTO 325
26400			QU=HTCW(I) + (TEMPW(I) - TFOLD) + CHS
26500			QEVAP(1)=0.0
26600			GOTO 326
26700		325	QW=HTCW(I)*(TEMPW(I)-TSAT)+QHS
26800			IF(TFOLD.EC.TSAT.AND.TFNEW.EC.TSAT)GOTO 340
26900	С		
27000	С		ASSUME 10% OF QW GENERATES VAPOR IN SUBCOOLED BOILING
27100	С		
27200			QEVAP(1)=0.1+QW/(1.+CPFSAT+(TSAT-TFOLD)/HFG)
27300			QW=0.9*GW
27400		326	CONTINUE
27600			TFNEW=(QW+VAR1+TFOLD+VSTR+TFNEW+VFABS)/(VFARS+VSTR)
27700			IF(TFNEW.LE.TSAT)COTO 350
27800			QW=(TFNEW-TSAT)*(VFABS+VSTR)/VAR1+GEVAP(1)
27900			TFNEW=TSAT
28000		340	GEVAP(I)=GW
28100		350	TEMPF(I)=TFNEW
28200			IF (VF.GE.0.0) GOTO 360
28300			TFBP=TFBP-WF * VAR3 * (TFNEW-TCOOLI)
28400			IF (TFBP.GT.TSAT) TFBP=TSAT
28500		360	CONTINUE
28600			J=LEVEL+1
28700			DO 370 I=J.NODE
28800		370	TEMPF(I)=TEMPG
28900	С		
29000	С		TEST FOR LIQUID ENTRAINMENT AND EXPULSION
29100	С		
29200			QSUM=C.O
29300			NCHECK=1
29400			IF(LEVEL.GT.0)GOTO 405
29500			PE=PUP

29600		IF(ZE.LT.AXIC)GOTO 450
29700		ZE=0.0
29800		DZEDT=0.0
29900		NVAR=4
30000		GOTO 450
30100	405	CONTINUE
30200		IF (ZE . EQ. 0. 0. OR . ZE . GT . AVI CAGOTO 420
30300		DO 410 I=1.IFVFI
30400	410	QSUM=QSUM+QEVAP(T)
30500		GOTO 450
30600	420	DO 430 I=1.LEVEL
30700		QSUM=QSUM+QEVAP(1)
30800		IFIGSUM.LT.OFLOOD. OR .NCHECK. FC. DICOTO A30
30900		DTSAT=TEMPW(I)-TSAT
31000		IF (DTSAT.LT.DTMIN.AND. (LEVEL-I) .GE.NOHEDIGOTO 440
31100		NCHECK=0
31200	430	CONTINUE
31300		ZE=0.0
31400		DZEDT=0.0
31500		PE=PUP
31600		NVAR=4
31700		GOTO 450
31800	440	EXPEL=FRACT*(ZC-FLOAT(I)+DZ)
31900		ZC=ZC-EXPEL
32000		ME=EXPEL + AC + RHOFS
32100		LEVEL = I
32200		ZE=ZC+DHEQ
32300		DZEDT=FN(2)
32400		PE=PUP+ME/AC

32500		NVAR=7
32700		COF=COF+ME
32800	450	WG=(QSUM+QVAPOR) *PER *DZ/HFG
32900		WVAPOR = QVAPOR + PER + DZ/HFG
33000		COG=COG+WG+DT
33100	С	
33200	c	OUTPUT
33300	c	이야 한 것은 것은 것은 것은 것을 하는 것은 것을 하는 것은 것을 가지 않는 것을 가지 않는 것을 하는 것을 수 있다. 또한 것을 가지 않는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것 같은 것은
33400		IF (NPRNT.LT.INPRNT)GOTO 1500
33500		NPRNT=0
33600		JELEVEL
33700		IF(LEVEL.EQ.0)J=1
33800		PUPSI=PUP/144.
33900		PFST=PF/144.
3000		VEPS=WE/(RHOES*AC*3600.)
34000		VGPS=UG/(RH065+AC+3600.)
34100		DZEDIS=DZEDI/3600.
34200		UPITE (9.3020) TS. DPD. DPC. ZD. ZC. DPLOOP. VGPS. TEMPW(NTW1)
34300		1. TEMPU(NTU2). TEMPU(NTU3)
34400	1000	EODWAT/19,7F7,2,3F7,1)
34500	3020	PORMATCIA TS 20.7C.VEPS.VEPS.ZF.DZEDTS.PUPSI.PESI.TEMPC(J)
34600		TEMPULIN-TEMPELIN-TEMPHLUN-HTCW(J).COF.COG.LEVEL
34700		1 .ILMPW(0) .ILMPP(0) .ILMPP(0) .ILMPP(0)
34800	3010	FORMATCIX, 6F7.2, 6F7.1277.07
34900	1500	IF (IS+LI+FILME) GUIU 100
35000		STOP
35100		END

.

		전 그는 것 같아요. 이는 것 같은 것 같아요. 가지 않아? 가지 않아? 가지 않는 것 같아요. 것 같아요.
100		SUBROUTINE RUNGE
200	С	
300	С	SOLVES DYNAMIC EQUATIONS WITH RUNGE-KUTTA METHOD
400	С	
500		REAL ME.KC.KF.KOUT
600		COMMON /RK/ 20.2C. WF. PUP. DZEDT. 2F. PE. EN(7) . WIN.I. WC. ME. NVAP. WOUD
700		COMMON /GEOM/ AXLD.AXLC. BPL.AT.AC.ABP.AOUT.VOLUP.DEE.KC.KE.KOUT
800		COMMON /PRO/ PSYS.TSAT.RHOFS.FHOGS.CPFSAT.CPGSAT.HEG.TSITE.R
900		DATA 6/4.17E08/
1000		DP=PUP-PSYS
1100		RHOG=RHOGS
1200		IF(DP)10,20,30
1300	10	WOUT=-AOUT+(-2.+RHOG+G+DP/KOUT)++0.5
1400		GOTO 40
1500	20	WOUT=0.0
1600		GOTO 40
1700	30	WOUT=AOUT + (2. + RHOG + G + DP/KOUT) + + 0.5
1800	40	CONTINUE
1900		FN(1)=(WINJ-WF)/(RHOFS*AD)
2000		FN(2)=(WF-WG)/(RHOFS+AC)
2100		IF (NVAR.EQ.7) GOTO 50
2200		P=PUP
2300		WV=WG+WGUP
2400		DZDT=FN(2)
2500		GOTO 60
2600	50	CONTINUE
2700		FN(5) = (PE - PUP) * G * AC/ME - G
2800		FN(6)=DZEDT
2900		FN(7)=(WG*R*TSATR-PE*AC*(DZEDT-FN(2)))/(AC*(ZE-7C))
3000		P=PE
3100		WV=WGUP
3200		DZDT=DZEDT
3300	60	CONTINUE
3400		FN(3)=((PSYS-P+RHOFS*(2D-2C))*G-0.5*KC*WF*ABS(WF)/(RHOFS*AC*AC))
3500		1 /(ZD/AD+BPL/ABP+7C/AC)
3600		FN(4)=((WV-WOUT)*R*TSATR+PUP*AC*DZDT)/VOLUP
3700		RETURN
3800		END

.

S NOW GARDINASI?

4000 C UNDERTED DOD TENDE WITH A 2-NOFE- PADIAL-CONDUCTIO	N-ONLY MODEL
UNDERTED DOD TENDO UITU A SANDER, RAUSELLAUUUUU	
4100 C UPDATES RUD TEMPS WITH A 2-ROLL, ADDATES	
4200 C	LUTCH(1200)
4300 COMMON /TEMP/ TEMPW(1200) . TEMPC(1200) . TEMPC(1200)	1
4400 1.GROD(1200)	TC. 0118. V919.
4500 COMMON/ROD/SHBN.SHSS.RHOBN.RHOSS.ALUKE.ALLAD.	
4600 1 .PF.NSTEP.TF	
4700 IF (NSTEP.GT.1)GOTO 10	
4800 CC=SHEN*RHOBN*ACORC	
4900 CW=SHSS*RHOSS*ACLAD	
5000 CCDT=CC/DT	
5100 CWDT=CW/DT	
5200 B=-HTCG*PERG	
5300 A=CCDT-B	
5400 D=B	
5500 BD=8+D	
5600 10 CONTINUE	
5700 HWPW=HTCW(I)*PERW	
5800 C=QROD(I) * PF * CCDT * TEMPC(I)	
5900 E=CWDT-B+HWPW	
6000 F=HWPW+TF+CWDT+TEMPW(I)	
6100 DET=A+E-BD	
6200 TEMPC(I)=(C+E-B+F)/DET	
6300 TEMPW(I)=(A+F-C+D)/DET	
6400 RETURN	
6500 END	

6600			FUNCTION PEDK(TTS)
6700	С		
6800	С		THIS SUBROUTINE CALCULATE THE DECAY HEAT POWER FACTOR ACCORDING
6900	С		ANS STANDARD + 20%
7000	С		ADAPTED FROM THE REFLUX CODE
7100	С		
7200			IF(TTS.GT.10.0)GOTO 010
7300			A=0.0603
7400			B=0.0639
7500			GOTO 099
7600		010	IF(TTS.GT.150.0)GOTO 020
7700			A=0.0766
7800			B=0.181
7900			GOTO 099
8000		020	A=0.130
8100			B=0.283
8200		099	PU=0.001632*EXF(-0.000491*TTS)
8300			PNP=0.001596*(0.006994*(EXP(-3.41E-06*TTS)-EXP(-0.000491*TTS))
8400			1 +EXP(-3.41E-06*TTS))
8500			PFDK=1.2*A*TTS**(-B)+1.1*(PU+PNP)
8600			RETURN
8700			END
8800			FUNCTION BOIL (DTSAT)
8900	С		
9000	С		DETERMINES HEAT TRANSFER COEFFICIENTS FROM HOILING CURVE
9100	С		
9200			COMMON/HTC/DTBOIL, DTCHF. DTMIN. HSPL. HFILM. FBA. FBB
9300			IF (DTSAT.GT.DTBOIL)GOTO 10
9400			BOIL=HSPL
9500			60TO 100
9600		10	IF (DTSAT.GT.DTCHF) GOTO 20
9700			BOIL=0.07*DTSAT**2.86
9800			GOTO 100
9900		20	BOIL=FBA*EXP(FBB*DTSAT)+HFILM/DTSAT**0.25
10000		100	RETURN
10100			END

10200		FUNCTION PFAX(AX,NTYPE)
10300	С	이는 것 같은 것 같
10400	С	THIS SUBROUTINE SPECIFIES THE AXIAL POWER PROFILE
10500	С	FOR THE SEMISCALE MOD-3 AND FLECHT-SET TESTS
10600	С	
10700		Z=AX
10800	1997	IF(2.6T.6.)7=122
10900		IF(NTVPE.EQ.0)GOTO 100
11000	С	
11100	С	SEMISCALE MOD-3
11200	С	
11300		IF (Z.GT.1.) GOTO 10
11400		PFAX=0.31/1.55
11500		60TO 60
11600	10	IF(Z.GT.2.)GOTO 20
11700		PFAX=0.59/1.55
11800		GOTO 60
11900	20	IF(Z.GT.3.)GOTO 30
12000		PFAX=0.89/1.55
12100		GOTO 60
12200	30	IF(Z.GT.4.)GOTO 40
		이 것 같은 것 같
12300		PFAX=1.22/1.55
12400		GOTO 60
12500	40	IF(Z.GT.5.)GOTO 50
12600		PFAX=1.44/1.55
12700		6010 60
12800	50	PFAX=1.55/1.55
12900	60	RETURN

13000	С		
13100	С	FLECHT-SE1	
13200	С		
13300	100	CONTINUE	
13400		IF(Z.6T.1.8)60T0	110
13500		PFAX=0.26681	
13600		GOTO 200	
13700	110	1F(2.GT.2.4)GOTO	120
13800		PFAX=0.42193	
13900		GOTO 200	
14000	120	IF(2.GT.3.0)GOTO	130
14100		PFAX=0.54602	
14200		GOTO 200	
14300	130	IF(Z.GT.3.6)GOTO	140
14400		PFAX=0.67937	
14500		GOTO 200	
14600	140	IF(2.GT.4.2)60T0	150
14700		PFAX=0.79566	
14800		GOTO 200	
14900	150	IF(Z.GT.4.8)GOTO	160
15000		PFAX=0.91195	
15100		GOTO 200	
15200	160	IF(Z.GT.5.4)GOTO	170
15300		PFAX=0.94169	
15400		6070 200	
15500	170	PFAX=0.977	
15600	200	RETURN	
15700		END	

15800		FUNCTION FLOWIN(TS)
15900	С	
16000	С	RETURNS INJECTION FLOW RATE IN LB/HR
16100	С	그는 것 같은 것 같
16200		COMMON/INJECT/TSHI.FRHI.FRLI.TEMP1.SLOPF1.TIMF2.TEMP2.SLOPF2
16300		IF(TS.GT.TSH1)GOTO 10
16400		FLOWIN=FRHI+3600.
16500		RETURN
16600	1	LO FLOWIN=FRLI+3600.
16700		RETURN
16800		END
16900		FUNCTION TCOOL(TS)
17000	С	
17100	С	RETURNS INLET COOLANT TEMPERATURE
17200	С	
17300		COMMON/INJECT/TSHI, FRHI, FRLI, TEMP1, SLOPE1, TIME2, TEMP2, SLOPE2
17400		IF(TS.GT.TIME2)GOTO 10
17500		TCOOL=TEMP1+SLOPE1+TS
17600		RETURN
17700	10	TCOOL=TEMP2+SLOPE2*(TS-TIME2)
17800		RETURN
17900		END

8000		SUBROUTINE THST (NODEC)
8100	C	
8200	C	INITIALIZES HOUSING TEMPS: USED IN FIFCHT-SET BUNS ON V
8300	c	A A A A A A A A A A A A A A A A A A A
18400		COMMON/HOUSE/TEMPH(1200)
18410		INT=NODEC/6
18420		XINT=INT
18500		READ 1000,THBP,TEMPH(INT),TEMPH(2*INT),TFMPH(3+INT),TEMPH(3+INT)
18600		1.TEMPH(5*INT).TEMPH(6*INT)
18700	1000	FORMAT(8F10.2)
18800		TH2=THBP
00681		N=D
0006		DO 50 I=1.6
9100		TH1=TH2
19200		TH2=TEMPH(N+INT)
9300		DTH=CTH2-THI)/XINT
9400		D0 50 J=1.INT
9500		I+N=N
9600		TH1=TH1+DTH
0016	50	TEMPH(N)=TH1
9800		RETURN
0066		END

NRC FORM 335 (7.77) U.S. NUCLEAR REGULATORY COMMISSION BIBLIOGRAPHIC DATA SHEET		1. REPORT NUMB	ER (Assigned by DDC)
4. TITLE AND SUBTITLE (Add Valume No., if appropriate)		2. (Leave blank)	
Gravity Reflood Oscillations in a Pressurize	ed Water React	O RECIPIENT'S AC	CCESSION NO.
7. AUTHOR(S)	1	5. DATE REPORT	COMPLETED
Y. L. Cheung and P. Griffith		MONTH	YEAR
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Incl.	ude Zip Codel	Decembar DATE REPORT	1070
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code) Department of Mechanical Engineering Massachusetts Institute of Technology Boston, Massachusetts		MONTH	YEAR
		February	. 1980
		6 (Leave blank)	
		8. (Leave blank)	
U.S. Nuclear Regulatory Commission Division of Reactor Safety Pescarch	ude Zip Code)	10. PROJECT/TASK/WORK UNIT NO.	
Division of Reactor Safety Research Washington, D. C. 20555		11. CONTRACT NO).
		FIN A4060	
3. TYPE OF REPORT	PERIOD COVER	ED (Inclusive dates)	
Technical Report	1		
5. SUPPLEMENTARY NOTES		14. (Leave blank)	
reactor is studied. Violent steam generation and subsequent expulsion of the coolant are p mechanisms responsible for driving the oscill of the gravity reflood process is formulated boiling curve and one dimensional fluid mecha calculations compare favorably with experimen however, cannot be calculated with certainty account, in sufficient details, for interact Calculated vapor velocities at the core exit carryover coolant from the upper plenum is po	n beneath the proposed as th lations. A co based on a si anics. In ger nts. The core because the m ions beyond th indicate that ossible.	core water le ne physical omputer model implified neral, model e coolant leve nodel does not ne reactor core draining of	vel 1, 2.
7. KEY WORDS AND DOCUMENT ANALYSIS	17a. DESCRIPTOR	5	
76. IDENTIFIERS/OPEN-ENDED TERMS			
76. IDENTIFIERS/OPEN-ENDED TERMS	19 SECURITY	CLASS (This moon)	21 NO. OF BACCO
76. IDENTIFIERS/OPEN-ENDED TERMS 8. AVAILABILITY STATEMENT Unlimited		(CLASS (This report) SSIFIEd	21. NO. OF PAGES

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20585

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

and the second second

.....

POSTAGE AND FEES PAID U.S. NUCLEAR REGULATORY COMMISSION

POOR ORIGINAL