
NUREG/CR-1313

_ . _ _

Rationale for a Perturbation Method
for Analyzing Fluid-Structure
Interactions in BWR
Pressure-Suppression Containment
Systems

1

P epared by P. W. Huber, K. M. Kalumuck, A. A. Sonin

Massachusetts institute of Technology

i . Nuc ear Regulatory
Commission

i

* "

,s9
_

| 7 g-

80_os3ggy,j1-



NOTICE
*

This report was prepared as an account of work sponsored by
an agency of the United States Goverrment. Neither the
United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or imphed, or
assumes any legal liability or responsibility for any third
party's use, or the results of such use, of any information,
apparatus product or process disclosed in this report, or
represents that its use by such third party would not infringe
privately owned rights.

'D"m)D )D
' Y Y b

e e R\ s JuM. N m

Available from

GP0 Sales Program
Division of Technical Information and Document Control

U. S. Nuclear Regulatory Commission
Washington, D. C. 20555

and

National Technical Information Service
' Springfield, Virginia 22161



NUREG/CR-1313
R4

Rationale for a Perturbation Method.

for Analyzing Fluid-Structure
Interactions in BWR
Pressure-Suppression Containment
Systems

__

Manuscript Completed: January 1980
Date Published: February 1980

Prepared by
P. W. Huber, K. M. Kalumuck, A. A. Sonin

Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

Prepared for
Division of Reactor Safety Research
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555'

NRC FIN No. B6167

l
'

,

I

l

l

____ __ _ _ _ . _ _ _ . - _ . -__ . _.-- __._, .



-1-

TABLE OF CONTENTS

Page

PART I: RATIONALE FOR A LINEAR PERTURBATION METHOD TO DEAL'WITH
THE FLOW FIELD PERTURBATIONS IN COMPLEX FLUID-STRUCTURE
INTERACTION PROBLEMS.

Abstract.................................................. 3

1. INTRODUCTION.......................................... 4

2. ANALYSIS.............................................. 6

3. DISCUSSION OF APPLICATIONS............................ 16

References................................................ 17

Symbols................................................... 19

Figures................................................... 20

PART II: A PERTURBATION METHOD FOR ANALYZING FLUID-STRUCTURE
INTERACTIONS IN FLEXIBLE CONTAINERS PARTIALLY FILLED WITH
LIQUID.

Abstract................................................. 22

1. INTRODUCTION......................................... 23
2. FLUID DOMAIN EQUATIONS AND BOUNDARY CONDITIONS. . . .. .. 26

3. APPLICABILITY OF THE PERTURBATION EQUATIONS.......... 31'

3.1 Incompressible Perturbatiens . . . . . . . . . . . . . . . . . . . . 32

3.2 Frequency of Wall Oscillations............./.... 33-

3.3 Amplitude of Wall Displacements................. 34

3.4 Inviscid Perturbations.......................... 35

3.5 Zero Gas Region Perturba tion Pressure. . . . . . . . . . . 36

3.6 Excitation Time Constant........................ 37

4. TREATMENT OF THE STRUCTURE........................... 38

5. CONCLUSIONS.......................................... 39

References............................................... 40

Tab 1es................................................... 41 :

Figures.................................................. 42

J



-2-

Page

PART III: A PERTURBATION ANALYSIS OF FLUID-STRUCTURE INTERACTIONS
IN A MODEL TEST SYSTEM

,

Abstract................................................. 45

1. I N TRO DU CT I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6

2. SUMMARY OF EXPERIMENTS............................... 46

3. PERTURBATION METHOD ANALYSIS. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Governi n g Equa ti ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Computa tio nal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4. PERTURBATION METHOD PREDICTIONS AND COMPARISON WITH

EXPERIMENT........................................... 56

5. DISCUSSION........................................... 59

6. CONCLUSIONS.......................................... 63

References............................................... 64

Tab1es................................................... 65

Figures.................................................. 67~
4

!

!

|

- -, _ _ ._ . .



-3-

PART I

RATIONALE FOR A LINEAR PERTURBATION METHOD

TO DEAL WITH THE FLOW FIELD PERTURBATIONS

IN COMPLEX FLUID-STRUCTURE INTERACTION PROBLEPS*

Ain A. Sonin

Department of Mechnical Engineering

Massachusetts Institute of Technology
Cambridge, Ma. 02139 ,

ABSTRACT

A formal justification is developed for a method in which hydrodynamic

data for a transient in a rigid-wall system (derived, for example, from a

small-scale experimental simulation) is used as input in a linear computation

for the perturbation flow field due to actual wall flexibility. The method

is useful in problems where the basic flow transient is so complex that it
i

can be quantifled only empirically, and where the fluid-structure interaction

is too complex for the fluid side to be represented by a priori defined

equivalent mass.

* Work supported by the U.S. Nuclear Regulatory Commission, Office of Nuclear
Regulatory Research, Division of Reactor Safety Research, under Contract
No. NRC-04-77-011.
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1. INTRODUCTION1

The analysis of loads resulting from complex flow transients in

vessels is often further complicated by the effects of elastic boundaries.

Numerical methods are almost invariably required, and even so, only

relativley simple problems can be solved practicably [1]. The purpose

of this paper is to identify a class of such problems where it is useful

to separate the flow field into a component which would result if the

walls were perfectly rigid, and a perturbation which arises because of

wall flexibility. We will show rigorously that the effects of the wall

flexibility can be derived separately by means of a perturbation analysis

which in most cases is considerably simpler than the general problem.

The pressure of the rigid-wall flow field appears as a forcing function

at the boundary of the perturbation flow field.

This result is useful in two ways. First, it simplifies analysis.

The calculation for the flow transient with assumed rigid boundaries can

be done first and the additioral effects of wall flexure can be derived by

a separate perturbation calculation in which the fluid behaves linearly.

The second utility of our result arises in' cases where the flow transient

is so complex that a computation for it, or for its rigid-wall component, is

difficult or impossible. In such cases, the first claculation can be replace'd

by experimental data for a small-scale simulation using rigid walls. Our

|
analysis provides a formal justification for a method of using such data as

!
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input in a relatively simple calculation for the perturbation caused by wall

fl exibil ity. Such a combined empirical / analytical approach is often more

practical than a complete empirical ismulation which includes both the

effects of wall -flexure and the fluid dynamic transient proper.

The technique of applying the experimental rigid-system load as a

forcing function to compute structural oscillations has been used widely

to solve problems involving flow-induced vibrations of cylinders and similar

structures [2]. In those applications, the question of how one deals with

the inertfally induced pressure filed in the fluid is resolved simply by

introducing an equivalent mass, one which can be determined semi-empirically

for a given body geometry. The method we propose here is useful in more

complex problems where an equivalent water mass cannot be specified & priori,

and where a solution must be derived for the flow field perturbation which

results from wall flexibility.

The method suggested here is not novel . Bedrosian [3], for example, has

applied essentially this method to compute the fluid-structure interaction

effects in pressure-suppression containment vessels of boiling-water reactors.

The purpose of the present paper is to give the method a formal basis, and

to specify the conditions which must be satisfied if it is to be valid.

|
|
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2. ANALYSIS
1

We consider a class of problems where an essentially inviscid motion
i

is induced in a liquid by the transient application of pressure at one or

several of the places where the liquid is bounded by gas. Elsewhere, the

liquid is bounded by solid, but flexible, walls. The general case is best

illustrated with an example (Figure 1).

A vertical pipe is partially submerged in a liquid pool which is

initially at rest, and bounded above by a region of gas. An event is trig-

gered by a sudden discharge of gas or vapor into the pipe from above, causing

the clearing of the liquid from the pipe, the formation of a gas bubble at the

pipe end, and the rise or oscillation of the liquid in the pool. If the pool

boundaries are rigid, the resulting pressure history at some point on the

pool floor, for example, might be the one sketched in Figure 2. If the bound-

aries are elastie, they, and together with them the pool, would be set into

oscillation, and the resulting pool acceleration and deceleration would give

rise to an additional oscillatory component of pressure, as indicated on the

figure. We aim to show how these two contribution to the pressure can be

separated.

The liquid dynamics in governed by the equation of motion,

pgVz , (1)p( + v.vv ) = -Vp -

|
( the quation of mass conservation,

h+V- (py) 0 (2)=

|
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and the isentropic pressure-density relation, dp/dp = c . We shall assume2

that the latter applies in the linear approximation,

2p-p =c (p p ) (3)o 9

where p , c , and p are the pressure, speed of sound and density,g

respectively, in the undisturbed fluid.

The boundary conditions must be specified for Eqs.1 - 3 at the free

surf $ces and at the solid walls. We assume that the pressure at any free

surface is uniform and, for the purposes of the analysis of the liquid,
given. In Figure 1, the trapped gaseous space above the liquid is one

free surface, and the bubble emerging from the pipe is another. The free-

surface boundary condition can thus be express as

p = p4(t) at the i'th free surface. (4)

At the solid walls one must apply a boundary condition like

h (5)v =

where v is the fluid velocity component directed perpendicularly into

the wall, and x is the displacement of the wall (away from the fluid) from

( f ts initial, equilibrium position under hydrostatic conditions. The wall

displacement x is governed by a structural equation of motion which can be

expressed symbolically as

m = (p-p ) o (x, h , .....,t) (6)g

;
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where m is the local mass of the wall per unit area, p is the local

instantaneous pressure in the fluid, p is the initial hydrostaticg ,

pressure, and o is a local structural restraining force per unit area,

whose magnitude depends on the displacement x of the wall from its

initial equilibriun. position, on the time derivatives of x, and possibly

also on the time t itJelf. The fonn of a is governed by structural

considerations. Note trat when the displacements x are small, the

boundary condition embodied in Eqs. 5 and 6 can to a good approximation

be applied at the equilibrium, or undisturbed, location of the wall

rather than at the actual, instantaneous deflected position.

We separate the varibles into three components by writing

v = 0 + v, (I, t) + v (f,t) (7)

p = p (f) + p, (7, t) + p (f,t) (8)g

p=p +p (7, t) + p (E,t) (9)g

where the subscript 0 refers to the values corresponding to the initial

static conditions in the fluid, the subscript i refers to the hypothetical

perturbation which would be caused if the imposed blowdowr, occurred in the

system with rigid walls, and the subscript 2 refers to the remainder of

the quantity, and represents the perturbation which can be attributed to

the flexibility of the walls. The initial pressure distribution p isg

| assumed to be hydrostatic,

l

p = constant p gz (10)
g g

{
l
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By definition, the rigid-wall flow is the solution of Eqs.1-3 with

v, , p, and p equal to zero. Thus,
,

' av
(p + p,) ( + v Vi ) = -Vp p gvz (11)

2

2 2 2 2Bt

30
2 + 'YP + IP +P) Y'V 0 (12)=3t i i o 3 3

2
p, = 0,c (13)9

where we used Eq.10 to eliminate p , and assumed p to be constant.g g

The boundary conditions for the rigid-wall solution are that

+ p, = p (t) at the l'th free surface (14)p jg

and that

(v )i,E0 at solid walls (15)
'

|

The equations for the perturbation (2) due to wall flexure is

obtained by substituting Eqs. 7-10 into Eqs. I and 2, and subtracting

Eqs.11 and 12, respectively. One obtains the equation of motion
:

av
(p +p +p) (Bt-2.+y .yy + i .yy + ; .y; ) ,

o 1 2 2 1 1 2 2 2

| Sv

(Ot +7.Vy1) (16)i - vp - p gVz - p=

| 2 2 2 1

)
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and the mass conservation equation

30
d + 7 Vp + v Vp +y Vp +pVv
Ot 1 2 2 1 2 2 2 1

! + (p +p +p)Vv =0, (17)
o 1 2 2

and the pressure-density relation,

2

(18)P, = p,c

Assuming that the wall flexure does not actually affect the gas pressure

at the free surfaces, we can write the free-surface boundary condition

as

p, = 0 at the i'th free surface (19)
'

The boundary condition at the solid walls is

h (20)(v ) =
y

where x(t) is given by Eq. 6.

Eqs.16 and 17 can be simplified considerably under conditions which

are often not very restrictive in practice. Let

p = typical amplitude of p,

p = typical amplitude of p

._. . _ , _ - _ __ . -, ,.
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L = characteristic length over which gradients in
velocity and pressure occur during the transient

T = characteristic time of the oscillation caused by
a wall flexure

x = typical wall displacement during wall flexure

We assume that

P' << 1 (21)Pc,
oo

P
<< 1 (22)

poo

I << 1 (23)*
C

T

i [p << 1 (24)
o

f<<1 (25)

The implication of these assumptions becomes apparent when we analyze

the orders of magnitude of the various +,erms in Eqs.11 and 12 and Eos.16

| and 17.

We assume that the velocity vi arises from the acceleration of the liquid
I

by a pressure difference p acting over a distance L. The time of the accel-
1

eration is of order L/v,. The order of magnitude of v can then be estimated

from the equation of motion as

t P
lj v (26)

~

I p
o

|

..
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The remaining order of magnitude estimates are self-evident:

V-f (27)

~h (28)v

2

av
g 1- (29)2

2

BP

[p (30)-

|at
2

In addition, Eqs.13 and 18 give p and p in tenns of p and p ,
i 2 1 2

respectively.

Using these estimates, we are in a position to estimate the relative

orders of magnitude of the various terms in the governing equation. We

find that Eqs. 21 and 22 imply, first of all, that p, and p are small
compared with p . Eq. 21 also implies that the second terms in Eq. 12g

,

is small compared with the third. Eq. 23 is equivalent to the assumption

that the gravitational term in Eq.11 is negligible compared with the

pressure gradient term. Hence, the equations for the rigid-wall flow reduce

in good approximation to.

l

ai
+ 'Y )" ~V P, (31 )o (atP

i

3p
+PY* =0 (32)

at o i

I

i

--+7 - ,wq. m
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2
P, = p c (33)

3

The boundary conditons for the rigid-wall flow are given by Eqs.14 and

15.

On the left-hand side of Eq.16, the second and third velocity terms

are negligible compareu nith the time-derivative term when Eq. 24 applies,

and the fourth term is neglibible when Eq. 25 applies. On the right-hand

side of the same equation, the pressure-gradient term is large compared

'with the terms involving v when Cq. 21 applies, and also large compared

with the gravitational term if Eq. 23 applies. In Eq. 17, the second and

fifth terms on the left are small compared with the first when Eq. 24

applies. The third is small compared with the last one (the sixth) if

Eq. 21 applies, and the fourth is small compared with the last one if

Eq. 22 applies. Thus, the equations for the perturbation field caused

by wall flexure reduce to

av
P Yat P (34)o "

3D

g+pVv =0 (35)g

2

o p, (36)p, " C

The boundary conditions for this perturbation field are Eqs.19 and 20.

| Consistent with the small-perturbation assumption, the free-surface

boundary condition, Eq.19, is to be applied at the free surface location

obtained from the rigid-wall solution (or experiment), and the wall
i

boundary condition, Eq. 20, is to be applied at the initial, undisturbed
i
|
J
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i

wall location (which is the wall location in the rigid-wall solution).

The displacement x(t) which appears in the boundary condition at the wall

(Eq. 20) couples the perturbation field to the structural behavior of'

the wall. In the symbolic representation of Eq. 6, x(t) is governed by

the equation'

p, o (x, h' .....,t) (37)* +m = p,

Note that the equation 34-36 for the perturbat. ion field do not

themselves explicity involve the rigid-wall solution. The perturbation

field due to wall flexure is coupled to the rigid-wall flow field only

through the pressure p which appears in the structural dynamic equation

I of the wall (e.g. Eq. 37) and through the instantaneous locations and shapes

of the free surfaces (governed by the rigid-wall solution).. where the

boundary condition. Eq.19 must be applied. It is as if the rigid-wall

pressure p,(t) appears as an externally applied transient pressure on the

wall, and drives the wall (and fluid) oscillation calculated by the

perturbation (2). Thus, if one has obtained, analytically or experimentally,

the rigid-wall pressure distribution history p, at the walls and the time-

dependent shapes of the free surfaces, one can apply the boundary conditions

on the solution 2 and calculate the perturbations in velocity and pressure,

throughout the fluid, caused by wall flexibility.

Eqs. 34-36 are the linearized acoustic equations for the liquid, and

can be solved for example by the usual linear method of characteristics with

the sound speed c, taken as a constant. The liquid is, as it were, regarded

somewhat as a " gel" with its free surface boundaries prescribed as a function

. . . . ._. . . _ _ _ . _ _
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of time by the rigid-wall flow field. In the particular case where the

period T of the wall oscillations is much longer than the acoustic

transit time t/c, across the system,1 being the characteristic length of

the liquid pool,

E 1, (38)4

7 : o

Eqs. 34-36 reduce to the simple, linearized incompressible flow form

8p 2 -Vp (39)=
O 2at

Vd, = 0 (40)

] This constitutes a particularly simple case, since the pressure p, now
satisfies Laplace's equation.

(
,

!

__ . _ _ -- - .
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3. DISCUSSION OF APPLICATIONS

The analysis outlined here has an important application in the design

of large vessels, such as the pressure-suppression containment systems of

boiling-water reactors, where transient liquid flows are induced and wall

flexibility effects must be accounted for. In many such cases the basic

transient flow phenomena are very complex and can be quantified only by

means of small-scale experimental simulation [4, 5]. Often it is

impracticable to model both the effects of wall flexibility and the hydro-

dynamics on a small scale. The question then arises whether one can use

the hydrodynamic data derived from small-scale tests with rigid walls,

and derive from that the strains in the walls of a real, full-scale system

where wall flexure may occur.

The present analysis gives a rigorous basis for such a procedure.

Consider the situation in Fig. I as an example. Let us say we have available,

from an experimental simulation with rigid walls, the pressure history p(t)j

at every point on the walls and the locations of the free surfaces as functions

of time. One can then obtain a numerical solution of the relatively simple,

linear fluid equations, Eqs. 34-36 (or Eqs. 39-40, if Eq. 38 applies) for the

perturbations caused by wall flexibility. The rigid-wall pressure p (t) appearsj

as a driving force in the wall boundary condition for the perturbation field

(Eq. 20 and 37), applied at the initial undisturbed wall location, and the

specified free surface locations define where the free surface boundary

condition, Eq.19, is to be applied.

!

l

!
!

__
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The method is valid as long as the inequalities expressed in

Eqs. 21-25 apply. The requirements expressed by Eqs. 01) - (23)

are satisfied in most practical cases. In water, for example, it

suffices that p, and p be small compared with 2 x 10' bar, and

that the characteristic length L of the flow transient be small
2compared with 2 x 10 km. Eq. 05) is also satisfied in many

practical cases: it merely requires that the wall deflections x

be small in amplitude compared with L.

The key requirement is Eq. 04). The characteristic length L

is the length over which gradients in velocity and pressure occur

in the fluid during the transient. Usually, this can be taken as

the system size. The depth of the pressure suppression pool in a

boiling water reactor, for, example, is about 5 m. With L = 5 m and

p, ' 1 bar, Eq. (24) would be satisfed if the wall oscillation

frequency is large compared with 2 Hz. A more conservative inter-

pretation of the requirement would set L equal to the smallest

characteristic flow length in the system. This would be of the

order of 1 m in the example, and thus the conservative requirement

in the example would be that the wall oscillation frequency.should

be large compared with 10 Hz.
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SYMBOLS

c speed of sound in liquid

g gravitational acceleration
,

L characteristic length associated with gradients in
velocity, density and pressure

m wall mass per unit area

p pressure

t time

v velocity

v component of velocity directed perpendicularly into wall
1

x displacement of wall from equilibrium position, in
perpendicular direction away from fluid

z direction measured vertically upward, against gravity

liquiddensithp

t characteristic time associated with the wall flexure (e.g.
2 period ofwall vibration).

Subscripts:

0 value corresponding to the initial conditions in the static
fluid.

1 perturbation which would be caused if the event occurred in
d rigid-Wall system.

2 remainder of the quantity, i.e. additional perturbation
caused by wall flexibility.

I
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PART II

A PERTURBATION METHOD FOR

ANALYZING FLUID-STRUCTURE INTERACTIONS

IN FLEXIBLE CONTAINERS PARTIALLY

FILLED WITH LIQUID *

P. W. Huber, K. M. Kalumuck, A. A. Sonin

ABSTRACT

A perturbation method for analyzing the pressure fields
developed when a complex hydrodynamic transient occurs in a
liquid contained in a slightly flexible structure is outlined.
The method involves a two step procedure in which the bulk
liquid hydrodynamics are determined first, by analysis or
experiment, and then used as an input to a calculation that
predicts the perturbations to the pressure fields produced by
structural flexibility. A treatment of the fluid-structure
interface boundary conditions consistent with the assumptions
underlying the perturbation method allows for the use of
eulerian fluid equationc and lagrangian structural equations.
Criteria are presented for determining when the conditions of
a specified problem lend themselves to this analytical approach.

* Work sponsored by the U.S. Nuclear Regulatory Commission,
Office of Nuclear Regulatory Research under Contract No.
04-77-011.
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1 Introduction

|

| In this paper we discuss a class of fluid-structure interaction

(FSI) phenomena with a combination of characteristics that distinguish

it from most other FSI problems. Our analysis is motivated by problems

involving complex hydrodynamic transients in vessels partially filled

with liquid which arise in boiling water nuclear reactor containment

systems, [1-5], in conventional power plant applications, and in the

chemical process industry.

We consider a system (Figure 1, for example) consisting o" a

complex flexible structure partially filled with an incomprer sible

liquid. Transient injection of a gas at one or more points produces

a complex hydrodynamic transient in the liquid pool. The liquid

experiences both bulk motion _(driven by the rapid growth of one or

more gas regions) and small displacement accelerations due to oscilla-
!

tion of the structure in response to the hydrodynamic excitation. !
|

In addition to the initial hydrostatic loading, two types of pressure !

!
loading are felt by the structure: the dynamic pressure due to !

the bulk fluid motion and the pressure arising from the relatively

high frequency fluid acceleration associated with the structural

response. Both pressures can be, in general, of the same order. Thus

the liquid pressure fields can be significantly different from those

that would be' present if the structure were not flexible. The distin-

guishing feature of this class of FSI problems is that a hydrodynamic

transient of arbitrary complexity is considered and significant liquid

redistribution is allowed.

,_ . -.
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Analysis of problems of such complexity requires a numerical
,

approach. Computer codes such as PELE-IC [6] attempt to solve for

both the hydrodynamics and the FSI effeNs and employ separate fluid

dynamics and structural dynamics algorithms. An iteration loop at

each time step assures that the governing equations are satisfied

for both the fluid and the structure and that continuity of pressure

and velccity is satisfied at the fluid-structure boundary. Such

schemes are costly in terms of both computer time and storage. These

costs escalate rapidly with both the geometric complexity and the

number of spatial dimensions that must be considered. In-many

FSI problems, an "added" mass distribution is comouted for the fluid

and used in conjunction with a structural dynamics elgorithm. For

transients such as those we consider, in which there is significant

redistribution of the liquid, the added mass would have to be

recalculated as the mass distribution changed. Sim iar comments can

be made about the boundary intedral or singularity method [7]. Analysis

based on a modal superposition method is also difficult due to the

change in system eigenv0lves accompanying the liquid mass redistribution.

A promising analytical method that can supplement or serve as an

alternative to existing analytical approaches is the " perturbation

method" outlined in [8]. Under certain conditions, often satisfied

in situations of practical interest, the FSI response can be modeled4

by this technique. The fluid flow fields are expressed as the super-

position of components due solely to the strucutral oscillation and

components due solely to the bulk fluid motion - the same

components that would be present in an otherwise identical rigid walled

.

.
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system undergoing an identical hydrodynamic transient. The analysis

then becomes a two step procedure. The bulk fluid hydrodynamics are

first determined by analysis and/or experimentation in a structurally

rigid system. The results are then used as an input to a calculation

which determines the perturbations caused 'by wall flexibility by

solving a relatively simple set of equations which, in the fluid

at least, are linear. This technique decouples the FSI effects from

che bulk fluid motions. It does not decouple the fluid from the struc-

ture in as much as calculation of the perturbations involves simultan-

eous consideration of both the fluid and the structure. A concept

similar to this is employed in [9] for coupling FSI effects to

thermal-hydraulic effects.

The perturbation analysis simplifies the p oblem by enabling a

full set of resources and specialized techniques to be devoted to one

task at a time - resources that involve not only computer time and

storage, but al so development effort. The perturbation analysis

can also make direct use of experimentally obtained hydrodynamic data

- a capability of great utility when the analysis of the hydrodynamic

transients alone is extremely complex.

In this paper we outline a perturbation method for analyzing
i incompressible FSI problems arising in flexible structures partially

filled with liquid and undergoing complex hydrodynamic transients.

Criteria for the applicability of this method are developed. In a

companion paper [10] we demonstrate the implementation of this method

for a laboratory test system and compare the predictions with experiment.
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2 Fluid Domain Equations and Boundary Conditions

The perturbation equations in the fluid regions can be de-

rived by a method similar to that of [8]. For an incompressible

fluid the equation of motion and the equation of mass conservation

are:

p( + i Vv)= -V (P+pgz) + uv y (1)a

v .7 = 0. . (2)

We define:

P=P0+PR+P (3)
p

(4)R*Ypy=v

where P is the initial hydrostatic pressure, P and v are
0 R R

the pressure and velocity fields that would be developed in a

completely rigid system, and P and v are the perturbation
p p

fields developed in an otherwise identical flexible structure.

The fluid dynamics of the completely rigid system are, of,

course, also governed by equations (1) and (2) with

P=P0+PR

v=v
R

. . , , _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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If the equations obtained from the substitution of these ex-

pressions into equations (1) and (2) are subtracted from those

obtained by substitution of expressions (3) and (4) into

equations (1) and (2), the result is

av

*VR 'YV P'YVR+VP'Y P)p(at +
p

= - VP + pV2i (5)p p

7.v =0 (6)p

When the characteristic length and time scales for the

hydrodynamics are much larger than the corresponding scales for

effects due to structural flexibility, the three convective

terms in (5) can be neglected compared to the temporal

acceleration term yielding

37
P=- VP + pV y (7)2p ,

at p p

We discuss criteria for this simplification later. Equations

(6) and (7) yield Laplace's equation for the perturbation pressure,

2VP =0 (8),

p,

,

which lends itself to relatively straightforward, standard-

: numerical solution techniques.

i

i
- - .

_. _ _ , _ _
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Fluid equations traditionally use an eulerian formulation

while structural equations are usually cast in lagrangian terms.

With appropriate treatment of the interface boundary conditions

this distinction can be preserved in the simultaneous solution

of the fluid and structural equations.

Figure 1 illustrates the various domains and their

boundaries in a sketch of a liquid pool contained within a

structure of circular cross section prior to a transient driven

by the injection of air through two vertical pipes (Figure la)
,

'

and during such a transient when the structure is completely

rigid (Figure Ib). We identify a structural domain, a liquid

domain V (t), and gas domains Vg$(t),i=1,...,n. Liquid-gasg

gg (t). The iritial wall-fluidinterfaces are denoted by S j

interface, denoted by S f(0), has a local outward lagrangian

normal 3,f(0). Locations in any domain can be specified by use

of an eulerian position vector I in a fixed reference frame.

Thus x,f(0) specifies the position of a point on S f(0).

Figure 2a illustrates the deformation which occurs

when the structure is flexible. This deformation is characterized

by the difference between the location of the initial wall-fluid

interface Syf(0) and the location of the wall-fluid interface at

time t, Syf(t). Figure 2b, an enlarged local region depicts the

change with time of n It also introduces a lagrangian position
yf.

|

!
!
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vector U, which specifies the position at any given time of a

particular particle of the structure. Ingeneral,5andits

time derivatives will be part of the governing structure equations.

The displacement of any point on the structure is implicitly a

function of its initial position x,(0).
Coupling between the gas, liquid, and structure domains

occurs through interaction at the various interface surfaces.

Proper accounting for this requires continuity of' velocity and

(in the absence of surface tension) pressure across the inte'rfaces.

Under the assumption (discussed later) that the liquid-gas,

interfaces Sgg;(t) are not affected by wall flexure, the pressures

in the gas regions are specified solely by the hydrodynamics

; and, therefore

g4(t)P =0 in V (9).

p

At Sgf(t), continuity of velocity must'be satisfied. Thus

v(x,t)=hu(x,t)onS f(t) (10)
2

.

Using (4) and (10) and recognizing that vp,must be zero on

S,f(t), we can write

| v (x,t) = h E (x,t) on S,f(t) . (11)p

_
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For small wall displacements, this boundary condition

may be applied to the fluid domain at the initial wall-fluid

interface S,f(0), a stationary surface:

I(x,t)=kU,f(I,t)onS,f(0) (12)
p

where

5,f(I,t)=U(x,f(0),t) (13)

Solution of (8) requires that (12) be transformed from a velocity
I

to a pressure formulation. In almost all applications the effects
'

of viscosity on the perturbation motions can be neglected and

equation (7) written as

ai
P=- VPp .

at P

Taking the component of this equation normal to the wall and

using equation (12) we arrive at a Neumann boundary condition

3 g # . n,f(0) = - VP I ,f(0) on Sgf(0)(14)
2

"
o .

p

Thus the governing fluid equation (8) is solved in the

region V (t) bounded by the initial wall-fluid interface S,f(0)g

and the hydrodynamically detennined liquid-gas interfaces Sgg .g

i

|
'

__ _ __



- 31 -

3 Applicability of the Perturbation Equations

We now discuss the physical implications of the assumptions

made in deriving equation (8) and boundary conditions (9,14).

Criteri'a are developed in terpis of order of magnitude estimates of

various physically meaningful quantities to provide a measure of

the accuracy of the perturbation method as applied to any particular

problem. More quantitative verification and error estimation can

be obtained by comparison of a test case with experiment or an

othenvise known solution. A summary of the criteria derived

below is presented in Table 1.

We defind a number of characteristic length and time scales:

L: characteristic hydrodynamic length over which
R

gradients in velocity occur. Typically, this will

be a liquid or gas region dimension.

L: smallest characteristic wavelength of wally

oscillation.

L: characteristic gas region dimension.
g

L: characteristic pool (fluid domain) dimension.
O

! L,: characteristic wall displacement during oscillation

(estimated from the rigid system wall pressure his-
| tories and structural properties).

|
|

i

|

I
L
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R:
characteristic hydrodynamic time (estimated from theT

bulk fluid motion in a rigid system).

T,: longest characteristic time for wall oscillation

(estimated from the period of oscillation of the

liquid filled structure).

Te: minimum excitation time constant (estimated from

the rigid system wall pressure histories).

3.1 Incompressible Perturbations

The fluid perturbation equations model the perturbation flow

fields as incompressible. Although the present derivation has

also assumed the unpertJrbed (rigid structure) flow to be

incompressible, this assumption is not necessary. It has been

adopted here for the sake of brevity, and a derivation incorporating

compressible effects in the unperturbed flow and resulting in

equation (8) is possible [8]. It is quite possible for the

driving hydrodynamic transient to include a component that intro-

duces compressibility effects into the unperturbed flow while the

structure oscillations introduce negligible compressible effects.

The necessary criteria for neglecting compressibility effects

in the perturbed flow are:

( 0 )2 ( b )2 u1 (15),

c T,c T,! gg

|

!

- .-. . , , _ .
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where c is the liquid speed of sound. The acoustic transit timesg

through the liquid, LO ''t and L /c must be,small compared to the3 g

characteristic wall oscillation period T g.

3.2 Frequency of Wall Oscillations

The effects of nonlinear. coupling between the convective

accelerations associated with the unperturbed hydrodynamics and
4

the perturbed flows will be small compared to the effect of the

perturbation flow temporal acceleration provided the longest

characteristic wall oscillation time T,is small compared to the
shortest time T characterizing the bulk fluid motions. The

R

exact formulation of this criterion is two-fold:

w 'RT T
w

1 (16)7 T L, .

R R A

The factor of L /L arises if gradients in v occur over a lengthR 3 p

L when a different length L characterizes the unperturbed motions.
3 R

The shortest time characterizing the hydrodynamically induced

pressure transinets, Te, may be considerably shorter than the time

associated with the bulk fluid motion (see 3.6 below). The time

| scales of relevance here are those associated with the liquid
I

displacements, TR''which can be estimated from the hydrodynamics

in a straightforward manner.

1

i

.
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Estimation of T ,is not as simple. Filling a structure with

liquid can lower its natural frequency considerably. Rough

estimates can be made by treating some significant fraction of

the liquid mass as an added structural mass. Criterion (16) can,

however, always be checked by performing a perturbation analysis

and examining the calculated frequencies.

3,3 Amplitude of Wall Displacements

In order to neglect the nonlinear convective effects of the

perturbation motions relative to the effects of perturbation f~ow

temporal acceleration, the magnitude of L must be small co..pa edg

to the shortest length scale L over which gradients in pertur'tation
7

velocity occur:

[L << 1 (17).

A

Criteria (15,17) lead to a linearized form of the fluid equation

of motion. The other constraints imposed on L arise from con-

sideration of the boundary . conditions.

Application of boundary relation (14) assumes that the wall

displacements are normal to the initial wall-fluid interface. . The

angle between ngf(t) and ngf(0)isoforderLgL. If
3

w

[A-
<< 1!

|
|
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| \

| !

l
the displacements will be " quasi-normal" and will introduce only

a small error. Tiits criterion is the same as (17) and is thus

satisfied whenever the linearized perturbation equation (7) applies.

Perturbation analyses should therefore take advantage of this>

inherent boundary condition simplification.

All fluid domain boundary conditions are applied at the

unperturbed boundary locations. This necessitates that

L

[0
l (18)

in considering the wall-fluid interface boundary. Consideration

of this approximation at the liquid-gas interfaces may require a

geometry dependent modification to (18) depending on the shapes

and sizes of the pool and gas regions, and on the structure modes

and wavelengths of oscillation.

|
3,4 Inviscid Perturbations

( In the formulation of the fluid boundary condition at a

moving wall (14), viscous effects on the perturbation motions are

neglected. This assumption is valid provided the product of the

Reynolds and Strouhal numbers for the perturbation flow is much

larger than unity:
2

| pl
! n1 (19).

W

.
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It should be noted that this is a constraint on the perturbations

only and is not a limitation on the unperturbed (rigid structure)

flows that can be analyzed.

3.5 Zero Gas Region Perturbation Pressure

The perturbation pressure at all liquid-gas interfaces is

assumed to be zero. For this assumption to be valid, the gas

perturbation pressures must be small compared to the liquid

perturbation pressure at the wall-fluid interface. This.is

true when:

1. the pressures arising from fluid acceleration are much

smaller in the gas than in the liquid and thus

p L

9k 9 1 (20)
t0

|

where p and p are the liquid and gas densities;g g

2. the transient perturbation pressures in the gas arising

from compressibility effects are small and thus

L

(c T ) u1 (21)
gw

where c is the speed of sound in the gas; and
g,

3. the quasistatic equilibrium gas pressure changes

are small. This requires that the changes in volume

!

!
,

-

1
- . - . .-
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of the gas regions are a small- fraction of their

unperturbed volumes or typically that
!

a

L

[E << 1 (22).

9

This criterion may be modified somewhat by such

factors as geometry and the oscillation modes and

wavelengths.

3.6 Excitation Time Constant

Flexible system responses having perturbations of large enough
I

amplitude to be of interest arise when the system excitation has a

period T, of the same or of smaller order than the system charac-
'

teristic period T, [11] or when

T 5T (23).

e w

1

Consideration of criteria (16, 23) shows that for the perturbation

method to be both useful and applicable the rigid system must

contain two characteristic time scales: one over which changes in,

bulk velocity occur, T , and a much shorter time scale, Te, which,

excites the. structural response. Examples of practical applications

in which this occurs include the sudden injection of gas into a
|
; liquid or the condensatior. collapse of a steam bubble within a
!

.

- -
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liquid. Both cases involve changes in pressures in the pool

!that are much more rapid than the bulk pool displacements associ-

ated with them.

4 Treatment of the Structure

The traditional treatment of the fluid domain by an eulerian

formulation and the structural domain by a lagrangian formulation

can be preserved in a perturbation analysis by proper handling

of the boundary conditions at the wall-fluid interface. Continuity

of velocity leads to relation (14, T U equates the eulerian

fluid velocity at a stationary surface to the time derivative of

a lagrangian structural displacement (12, 13). Continuity of

pressure is achieved by equating the eulerian fluid pressure

(Pp + P ) at a point igf(0) along S,f(0) to the loading in theR

lagrangian structural domain along S,f(t) at t'se point

as part cf the loading doesgf(igf(0),t). The inclusion of Pgu

| not present a problem for decoupling the hydrodynamic and
j

perturbation motions. It will appear in the structural equations

as a forcing function [8] and is known in advance from separate

calculations and/or experiment.

One simplification to the_ structural equation is neglecting

the inertia of the structure relative to that of the liquid.

This will be valid when the effective liquid inertia - or

- - - _ - _ _ _ _ - _ _ _ - _ _ - .
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"added mass" - is large compared to the' structural inertia.

The structural equations are then considerably simplified. The

system can be thought of as moving through a series of quasistatic

states. However, the transient oscillatory character of the FSI
,

perturbation pressure fields will nevertheless be present.

|5 Conclusions

The perturbation method is a powerful, practical tool for
.

the analysis of the response of flexible structures partially

filled with liquid undergoing complex hydrodynamic transients.

It involves a two step procedure which requires the determination

of the bulk hydrodynamics followed by a calculation of the induced

FSI dynamics. This sequence of analysis permits an independent

set of resources and specialized techniques to be exploited in

each step. It aamits the use of experimentally obtained data

for the determination of the bulk fluid hydrodynamics. The

treatment of the fluid-structure interface conditions allows

the use of eularian fluid equations and lagrangian structural

equations. The potential suitability of a perturbation analysis

approach to any specified problem can be determined a priori by

evaluating a number of defined, dimensionless groups.

. . - - -
.- -
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Table 1 Criteria for the applicability of

i

the perturbation equations
,

.

I

1

Criterion Section-discussed in

1 3.2
| (16) TgTR
i
,

T lw R
(16) T 1 3.2

Ly

(23) T,/T,4 1 3.6
.

(17) L /L 1 3.3
7

4

(18) Lgl0 1 3.3

;

(22) L,/L 1 3.5
g

:

(15) (L /c T,) u1 3.1
O g

(15) (L /c T ,)2 1- 3.1xg
!

| (21) (L /c T,)2 u1 3.5
g g

2
-

(19) p L j T j 3.4g

i (20) p L /p LgO" '

gg

;

I
,

.
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PART III

A PERTURBATION ANALYSIS OF

FLUID-STRUCTURE INTERACTIONS

IN A MODEL TEST SYSTEf1*
4

k. M. Kalumuck and P. W. fluber
'

ABSTRACT

] A perturbation analysis of fluid-structure interactions

; in a model test system of controlled flexibility excited by a

! complex hydrodymamic transient is presented. The analysis

demonstrates the important features of the perturbation method.

and its implementation. Comparison of predictions with experiment

provides a test of the analytical procedure and its underlying

a ssumption s. The results illustrate the important effect of

transient liquid mass redistribution on the flexible system response.

!

i
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1 Introduction

The previous paper [1] outlines a preturbation method for

analyzing the response cf fluid filled. flexible structures undergoing

complex hydrodynamic transients and develops the criteria for the

applicability of this method. In this paper we compare predictions

based on perturbation method calculations with experimental results

obtained in a simple test system. This paper has three purposes:

to demonstrate the implementation of a perturbation method fluid-

structure interaction (FSI) calculation in a simple system, to

explore the basic physics of FSI in a system undergoing a complex

hydrodynamic transient, and to provide one set of tests for verifying

the numerous underlying assumptions of the perturbation method. The

development of a general algorithn for modeling FSI phenomena was not

one of our goals.

2 Summary of Experiments

Figure 1 shows a schematic of the cylindrical single downcomer

test system partially filled with water in which our FSI experiments

were conducted. Detailed descriptions of the test system, experimental

procedure, and results have been documented elsewhere [2]. Only those

experiments and results analyzed in this paper are summarized here.

The test system's sidewalls and top are made of thick steel and are

effectively rigid. The base consists of-an interchangeable aluminum

plate clamped at its periphery. Changing the ba se plate thickness
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introduces different degrees of structural flexibility into the
i system. The rigid structure system characteristics are obtained

by use of a 1.9 cm thick base plate. Sidewall taps enable

pressure measurements to be taken at several stations in the

liquid pool.

A hydrodynamic transient initiated by the opening of a

fast acting valve is generated by injection of air from a large

constant pressure reservoir or "drywell ." The pressure beneath

the plate is maintained constant at the initial pool surface pressure

throughout the transient. The air injection forces the water out

of the downcomer and forms a bubble that rapidly grows and

redistributes the water in the pool causing the pool to " swell ."

Figure 2 shows the pool swell history traced from high speed

film records in a geometrically similar rigid plexiglass system

subject to a properly scaled but otherwise identical hydrodynamic

transient initiated at t = 0. A dimensionless time t* = t/g/2a,

where a is the pool radius, has been defined in accordance with the

hydrodynamic scaling laws for this system [3].

Typical pressure histor:es measured along the sidewall 5 cm

above the base plate are presented in Figure 3 where the measured

pressures have been nondimensionalized by the constant reservoir

(drywell) pressure, P . The top oscillogram shows the rigid system
D

pressure history containing a very rapid rise in pressure at the time
;

the downcomer is cleared of water followed by a much more gradual

c hange. The other three oscillograms show the measured pressure

histories for plat thicknesses of 0.2, 0.16, and 0.1 cm [2].

1
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3 Perturbation Method Analysis

3.1 Governing Equations

Figure 4 shows schematically the governing equations and
4

boundary conditions u' sed in implementing a perturbation method

analysis for our test system. These follow directly from those
,

outlined in [1]. The shaded liquid region, in which we ignore

the presence of the downcomer, is bounded by four surfaces S),
,

...,S . The governing liquid region equation is:
4

:

VP =0 (1)2

p
,

where P is the perturbation pressure. The free surface boundary
p

condition is

(2)P =0 on S), S2p

where S) is the pool surface (a'proximated as horizontal throughout

the transient) and S is the bubble surface. The solid wall
2,

boundary conditions are:

BP
0 on S (3)=

3r 3

D "
p on S (4)=

4

where S i s the rigid sidewall, S4.is the initial plate-fluid3

interface, z i s measured vertically upward -from S , r i s measured
_ 4

radially outward from the center of S , w is the downward plate
4

displacement from S , and p is the liquid density. A further
4

, .- _ . - . . .
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approximation is made here in neglecting the small plate deformation

due to the initial hydrostatic loading. Hence, S is taken as
4

being perfectly flat. The displacement w shown in Figure 4 is

exaggerated for clarity.

The governing equation and boundary conditions for t he clamped
,

circular base plate are:

DPw = PR+P on S (5)p 4

w = 0 and h = 0at r=a (6)

h=0 and D h V w = 0 at r=0.(7)
2

| Here D is the plate flexural rigidity and P i s the hydrodynamically
R

induced pressure in the rigid system. Experiments have shown P
p,

to be uniform over the base plate [4] -- varying only with time.

In equation (5), the plate inertia has been neglected -- an assumption

easily justified for our system by the much larger water inertia felt

by the plate through P . The test system and imposed hydrodynamic
p

transient are axisynmetric. This leads to boundary condition (7).
'

Equation (5) enables the plate to be viewed as moving through a

series of quasistatic states.

For solution of (5-7), a Green's function approach is adopted.

The Green's function for this problem is found to be [5]:

for b < r,
_ ,

w(r,b) = h[ abr a[+ W + (b ,72) in "] ; (8a)2

l

|

|
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for b>r,

1 r(a -b )(32+r ) + (ba+p2) in b] . '(8b)
z 2 2^

w(r,b) = 8nD' 22a

Here b i s the radial position of an arbitrary annular load. The

plate displacement is then given by:

w(r,t) = [ 2nb[P (t) + P (r=b,z=0,t)] w(r,b)db . (9)
R p

The plate di splacement is also related to the plate acceleration:
.t t 2

w(r,t) ' .0<0 |t'w(r,t)dtdt. (10)

The complete set of equations to be solved then consists

of the liquid (1) and structure (9) equations, boundary conditions
,

(2-4), and identity (10). Coupling between the fluid and structure

equations occurs through both boundary condition (4) and the loading

in equation (9).

3.2 Computational Model

The technique adopted to solve the set of governing equations

and their boundary conditions is a numerical time stepping one. A

fully implicit second order accurate five-point finite difference

scheme utilizing central differencing in an axisynmetric geometry

as presented in [6] is used in the fluid domain. The radial derivatives

are expanded prior to discretization. Appropriate forms of second

order accurate boundary conditions are used. A detailed description-

of the scheme employed can be found in [7]. The finite difference
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equations are solved in a two-dimensional time varying mesh.

A typical mesh employed is shown in Figure 5. Two different

axial mesh spacings are used such that the mesh point density

i s greater in the lower region of the pool than in the upper

region. This provides a sufficient number of points between

the bubble and the base plate to resolve the pressure gradient

at the plate with reasonable accuracy. The number of mesh

points varied with time from about 500 to 600. The location

of each mesh point is fixed in time, but points are removed

as the bubble grows and added as the pool rises. Mesh points

are denoted by a pair of indices (1,j), i = 1,. . . ,I; j = 1,. . . ,J.

The radial (r) and axial (z) mesh spacings are denoted by

6r and 6z such tint r = (1-1).6r and ~ = (j-1).6z. Thez

derivative boundary conditions (3,4) are approximated by the

introduction of a fictitious set of mesh points. The perturbatic 1

pressure P at the point (1,j) and time step k (the subscrip
3

"p" being dropped for' brevity) i s set to zero for points that

are along the pool or bubble surface or within the bubble. The

equations corresponding to these points are removed prior to solution.

The remaining set of fluid domain simultaneous equations can be

| expressed as

F (11)AP =
.

; ~ -p ~

\

!

Here, A i s a square, non-synmetric matrix containing the coefficients

of the unknown P arranged along five diagonals and is of order i

,

-.
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(I)-(J-1)-N w re N is the number of mesh points lying on
B B

the surface of or within the bubble. P is a column vector
p

[ is a column vectorwhose elements are the unknown P .
,

which contains the inhomogenous terms of the mesh point equations.

The equations compri sing (11) are arranged in the order (1,1),

. . . ,(I ,1 ) , . . . ,(1,j ) , . . . ,(1,j ) , . . . ,(I ,j ) , . . . ,(1,J-1 ) , . . . ,(I ,J-1 ) .

The Green's function solution (9) to the plate equation

is numerically integrated. In general, by selecting the radial

locations of the plate nodes to correspond to those of the fluid

mesh, one can express the downward displacement w, at node i

and time step k as

I
k

C g(P j +P ) , i =1, . . . ,I (12)w =
g ,

kwhere P is the value of P along the ba se plate at' time step k.g R

The expressions for C depend upon the Green's function expression9 ,g

w (8) and the integration scheme. Investigation of the behavior

of the product bw shows that it varies more rapidly with radius

than does the load, P j+P. Tius a Simpson's rule integration
R

i s performed over a much smaller interval than the mesh spacing

(typically Sr/8). Values of the perturbation pressure between

mesh points are obtained by interpolation using a piecewise

quadratic curve fit to the values of P The interpolation weightsj.

! are also accounted for in the values of C9,g.
l The displacement at node i is obtained from the acceleration

history at that node from (10) using a double trapezoidal integration.
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: For zero initial displacement, velocity, and acceleration, this can
' be expressed at time t = k6t (where 6t i s tile time step size) a s

wf = 'I + f 6tz (6)| i 1.....I, (13a)2Bt j,

where*

L{=1
(k-4)(3 ")4 (13b)

k-1~

wb-I=6t 2
.'

atz j

| Calculation of. the flexible system response involves the

j simultaneous solution of four sets of linear algebraic equations:

the fluid finite difference equations (11), the plate displacement

equations (12), relaticn (13), and a di scretized form of equation

(4) which can be expressed as
,

3P k2
!

(az )i,1 "P( ) II4)-

2St j
:
,

! These equations are reduced to a single system of equations by
<

combining (12) acd (13) and substituting the result by use of (14)_
k kinto F of (11). The resulting expression for F is a function of

,

P. Rearrangement of this set of equations leads to a new set of

equations to be solved for the unknown perturbation pressures:
1

A*k p , p,k. '(15 )
k

.

~p- -
7

-The elements of F*k are given as

|
,

;

|

|

|
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fC6z k
Ff = 8p (p )' * "'I'***'Im,4 -g

6t L=1

F*N = 0, m > I . (16)

Th! elements of A* are given by A*n n = A +C when
m,n m,n

both m < I and n < I and by A =A whenever m > I or n > I.
_ n mn

The matrix A* i s banded with a bandwidt.h of 21 + 1. T he

expre ssionspresence of nonzero elements arising from the Cm,4'

precludes a solution by a block tridiagonal algorithn. A standard

banded matrix solution routine was used to solve equation (15) for

fp at eac h time step.I We did not attempt to develop a more
efficient solution algorithn that would take advantage of the

many zero elements within the band of A*k After P i s found-.

-P-

from(15),wfand(3")k are found from equations (12-14).
28t 9

It is interesting to note a possible interpretation of the

effect of equations (12-14) on the fluid equations (11). U sing

those equations, the pressure gradient normal to the plate can

be expressed as:

3P k I I
4 k k ~k-1). (17)

.

(3[) C=p ( P +P
6t 1,4 g,) R 9 y -w-

9gj

I LEQTlB from the International Mathematical and Stati stical Libraries,
Inc. - "IMSL."

4

_ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _
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The term wf-I i r 'nown from the hi story of the plate motion

and does not depend on any quantities at :ime step k. At any

time step, then, all unknown quantities are expressed in terms

of the perturbation pressure field. The structure can be viewed

as imposing a special type of boundary condition or constraint

on the fluid: the normal perturbation pressure gradient at any

point of the plate-fluid interface is a function of the pressure

at every point of the interface (17). This is simply the result

of the boundary integral nature of the problem.

Due to the fully implicit nature of the solution algorithm,

the time step size is not limited by a stability criterion. It is

limited, however, by a resolution requirement. That i s, 6t mu st be

small enough to adequately resolve the expected frequencies of

oscillation. Wi t h t hi s in mind , 6t wa s sel ected suc h t hat a

minimum of about eight time steps occurred within the experimentally

observed oscillation period.

The liquid configuration as a function of time is an input to

the model . The bubble is approximated as an ellipsoid with three

parameters fit by trending from the observed bubble history (Figure 2).

The boundary is further approximated by taking it to lie along the

mesh lines which are closest to the computed boundary. The change

in the location of the pool surface is computed from continuity once

the change in bubble volume is known and is also approximated to lie

along a mesh line. A comparison of approximated bubble shapes and

pool heights with those observed is shown in Figure 6 for three

selected times.
|
:

|

|

;

L
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Al so input to the model is the experimentally determined rigid

system base plate pressure history (P (t) in equation (9)) and the
R

rigid system pressure history at a?1 other locations at which the

flexible system response is desired. With this information, the

complete perturbation pressure field is calculated at each time

step. The predicted flexible system pressure !s then the sum of

the computed perturbation pressure and the rigid system pressure

at the location of interest.

4 Perturbation Method Predictions and
Comparison with Experiment

Tiie predicted flexible system perturbation pressure ampli-

tudes vary significantly throughout the pool. Figure 7 shows the
,

predicted 0.2 cm flexible base plate system pressure history

nondimensionalized by P at two sidewall locations and two base
D

plate locations. The 0.1 cm base plate case exhibits similar

be havior. The peak value of the flexible systenf pressure varies

by about a factor of 2.5 between stations (a) and (d) of Figure 7.

The perturbation pressures are largest at the base plate and decrease

to zero at all liquid-gas interfaces. In Figure 7d the line of zero

| abmlute system pressures dip below this value several times in the

central region of the plate. This suggests the possibility of

some cavitation occurring in the experimental tests which has not

been investigated experimentally nor accounted for in our model .

|
The maximum predicted flexible system pressure at the plate center

represents an overshoot of about 50% when compared to the rigid

system plate pressure.

_ _ ____
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Figure 7 also shows that the predicted perturbation pressure

amplitudes decay after their first peak at rates which vary

throughout the pool . That a decay should be predicted at all is

at first surprising since the model does not account for structural

damping or fluid viscosity. The decay is, in fact, the result

of the liquid redistribution driven by the bubble growth. Otherwi se

1 identical calculations conducted without a growing bubble exhibited

no perturbation decay.

Fig' res 8 and 9 show the predicted perturbation pressure

distributions at two selected times. They illustrate the change

with time of this distribution and thus the relative importance of

the perturbations in various regions of the pool. The figures al so

include the predicted flexible system response and measured rigid

system pressures along the sidewall at z/a=0.7 and z/a=1.7. The

predicted flexible system pressures at the instants of time at which

the P isobars are calculated are indicated by arrows on the pressure
p

histories. In the region of the pool at elevations less than that

of the bubble, the perturbation pressures are large (of the same

order as the rigid system pressures) and decrease with elevation

roughly linearly. At elevations at or above that of the bottom of

the bubble they are much smaller. Thus it appears that there are

two regions of influence within the pool: one beneath the bubble

| and relatively near the plate in which FSI effects are important and

a second near and above the bubble in which the influence of the

plate oscillation is much less. As the bubble grows, its region of

influence grows and the large amplitude perturbation isobars
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I|[P] > 0.1, say) move closer to the plate. Such behavior leads to
D

tce predicted decay in perturbation amplitudes. (In comparing the

magnitudes of P /P in Figures 8 an'd 9, it must be remembered thatp D

these figures represent different times in the osciliation cycle.)

Model pressure history predictions on the pool sidewall at

z/a = 0.7 are compared with experiment for the cases of a 0.1 cm

and a 0.2 cm thick base plate in Figures 10 and 11. A'brief comparison

of the predicted frequency content, peak pressures, and decay

rates with those experimentally observed is presented in Table 1.

Values of the per cycle decay rates, d, are calculated from the

formula :

p ,0(I 'd )" (IO)P EPp,n

where n is the number of cy:les considered, P is the amplitudep,0
of the perturbation pressure at the beginning of the first cycle

considered, and P is the amplitude n cycles later. The
.n

agreement is generally good. The initiation of a large amplitude.

decaying oscillation at the " spike" in the rigid system pressure

history is clear in both calculations and experiment. For bot h

plate thicknesses, an increase in perturbation frequency is predicted

and observed experimentally. For both plates, the predicted

frequencies are somewhat lower than observed experimentally (25 - 30%

low for the 0.1 cm plate and 15 - 20% low for the 0.2 cm plate).

For the -0.1 cm plate the model predicts a slight (2%) undershoot

in comparing the peak value of the flexible system pressure history

to that of the rigid. system while an overshoot of about 21% is

__
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observed experimentally. The model predicts an overshoot of about

6% for the 0.2 cm plate which agrees well with experiment. The

predicted model decay rates are somewhat low but comparable to

those observed.

Model predictions at z/a=1.7 are compared with experiment

for the 0.2 cm plate case in Figure 12. Both the measured and

predicted flexible system pressure histories differ little from

the rigid system history. They exhibit minor pertarbations shortly

after the rigid systen history peak and essentially no perturbations
,

at later times.

5 Di scu ssion

Our calculations and comparisons with experiment illustrate

the essential features of a perturbation method FSI analysis and

demonstrate both the simplicity and promise of thi s mettod. Relativel y

few refinements have been implemented in our calculations primarily

because the agreement between prediction and experiment is near

the level of experimental repeatability [2,4]. Tre comparisons presented

here are not intended to be an exhaustive verification of the

perturbation method, but rat ter to provide one systematic test of

the procedure and its underlying assumptions. Our predictions
i

!

|
illustrate the important effect that liquid mass redistribution

has on both the frequency content and the amplitude of the flexible'

system's pressure fluctuations. The analysis and results can be

contrasted to those of a lumped parameter model [2] which requires

prior specification an " effective" pool depth (or "added liquid

|

|

1
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mass") and is unable to predict any detailed FSI response features.

The criteria for the applicability of the perturbation method,

are evaluated for our test system in Table 2 where og and p are t he

liquid and gas densities, c and c are the speeds of sound in theg g

1iquid and ga s, and u is the liquid vi scosity. C haracteri stic

length and time scales used are defined as [1]:

L: hydrodynamic length over which velocity gradients occur.R

L: snallest wall o scillation wavelength.-y

L: ga s region dimension.
g

L: pool (fluid domain) dimension.
O

L: wall displacement during oscillation (estimated from the

rigid system pressures).

R: hydrodynamic time (estimated from the rigid system bulkT

fluid motion).

T,: longest period for wall oscillation.

e: minimum excitation time constant.t

The length scales L , L , L , and L are all taken to be the '

R y O g

plate diameter. Both T and T are estimated from the rigidR e

ba se plate pressure . history. Table 2 shows that all criteria are

easily satisfied except for (2) for the 0.1 cm base plate system.

Thus the perturbation method assumptions should introduce nen'igible

error with the possible exception of some nonlinear coupling effects

between the perturbed and unperturbed motions not being accounted

for in the analysis of the 0.1 cm plate system.

____ __ _ _ _ _ . _ _ _ _ _ .
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In developing a model for our test system we have made

several additional assumptions not central to the perturbation

mei; nod. Omission of the downcomer should introduce negligible

error. It is partly enclosed by the air bubble and is in a

region of very small |P | . Tre approximation of the pool surfacep

as flat and horizontal (neglecting the growth of irregular pool

surface instabilities; see Figure 2) should be of minor importance

for similar reasons. The initial static plate deflection due to

the weight of the water is an order of magnitude less than those

during pool swell and i s easily ~ neglected.

The better agreement between prediction and experiment for

the 0.2 cm plate than for the 0.1 cm plate may be largely due to

plate tension effects which have been neglected in the model plate

equation. Neglecting tension relative to bending stress for a

circular clamped plate of thickness h deforming under a uniform

load q will introduce an error that can be estimated from [8]:

, " max ,1 +v(" max) 2q a ''
h 2 h () 9)64 Dh

where w is the maximum plate displacement and v is Poisson'smax

ratio. The first term on the right-land side of (19) is due to

bending and the second is due to tension. If we take q to be the,

!
i maximum value of P on the plate, the estimated errors are 21% and

R

0.2% for plate thickness of 0.1 cm and 0.2 cm, respectively. Since

( tension stiffens the plate, its inclusion in the model would increase

the predicted frequencies -- enhancing agreement wf a experiment

for the thinner plate. Modification of the predicted peak pressure
| overshoot should al so occur.

|
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The input data -- bubble shape and size, P on the plate,
R

and P at various sidewall locations -- were obtained from several
R

different experimental runs, and model predictions are compared

to data from yet other runs. To compensate for experimental variability,

the time coordinates of the data were shifted a small amount so

that they would be equivalent in each set of data. Typically

this shift was less than 2% of the total time period under consideration

(t* < 0.01) -- well within the bounds of experimental variability [4].

To save computation time, the liquid configuration was changed

at each time step only during the initial period of bubble growth.

At later times (t* > 0.25), the liquid configuration was modified

ever fifth time step for the 0.2 cm plate system. Ttus the input

bubble growth lags the experimental records. Thi s resul't s in a

maxiuum error of about 6% in bubble " radius." Suc h an underapprox-

imat'on of bubble size will lower the predicted perturbation

frequencies and decay rates.

The run to run experimental initial liquid depth variation

wa s about 2% [2]. The initial liquid depth used in the calculations

i s about 6% higher than the nominal experimental value. Thi s

should result in a prediction of frequencies that are about 3% low.

Based on simple tests of our algorithn we believe the errors

introduced by the numerical schemes to be at most of the same order

as the other uncertainties discussed above. As described earlier,

|

| provisions for increased accuracy were made in ef tuations where it
!

|
was believed useful such as an increased number of mesh points

between the bubble and the plate and integrat*on of the plate

L
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equation over an interval smaller than the fluid mesh spacing.

Due to the finite time step size, the peak in the rigid system

pressure history will be missed unless it occurs at a time step.
4

For the 0.2 cm plate system model, this leads to an underestimation
,

of the input rigid ba se plate pressure peak by about 21/2%.

6 Conclu sions

The perturbation method is a promising practical tool for

'modeling FSI problems involving complex hydrodynamic transients.

It allows the use of both experimental and analytical data from

rigid systems subjected to identical hydrodynamic transients.

The implementation of the perturbation metted is much easier than

alternate approaches which involve the simultaneous solution of

the nonlineer hydrodynamic equations and the structural equations.

Our analytical and experimental investigation of FSI phenomena

in a simple test system of controlled flexibility has demonstrated

the important effects that liquid mass redistributi in has on both

the frequency content and the spatial and temporal amplitude

distributions of the perturbation pressures.

i:
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'

Table 1 Comparison of predicted flexible system sidewall
pressure histories with experiment at z/a = 0.7

,

,

i'
O. lcm base plate 0.2cm base plate

prediction experiment prediction experirent

(P +P )*** 0.98 1.21 1 . 06 1 .06
(p ) maxR

Frequency (Hz)
0) 135(I) 250( ) 295(2)average 95

j low (single cycle) 90 '125 220 275

high (single cycle) 110 145 255 320
;

i

Decay rate (3)

peak to peak 0.3E 0.37 0.18 0.23'

j
trough to trough 0.15 0.39 0.18 0.23

i

I Averaged over the first 7 cycles .(beginning with the first peak
j in flexible system pressure occurring after (P ) max)p,

j Averaged over the first 12 cycles
3

'

Computed from equation (18). The first 4 cycles are used for
h=0. lcm; the first 10 cycles are used for h=0.2cm. - ''

,

t

!
!

a

L.

, ,y- m r--
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Table 2 Evaluation of perturbation method criteria for our tesi system

Characteristic and physical quantities:

II) 3! L 0.08cm L 14 cm p 1000 kg/m
0.01cm(2) 0.08kg/m(3)3

T 0.04 s pp g

'R 14 cm
T 0.007 s y 0.001 kg/ms

e
0.01 s(I) c 1500 m/s|

L 14 cmy T g

L 14 cm 0.0035(2)'0 c 330 m/sg
,

i

Criterion (4) Value for test system<

0.1 cm plate 0.2 cm plate

1) T,/TR 1 0.25 0.09

2) T, L
R u1 0.25 0.09

,R g
A

3) T /Tw4 1 0.7 2e

4) L,/L3 u1 0.006 0.0007

'

5) L,/LO a 0. 0% 0.0007

6) L,/L u1 0.006 0.0007g

7) (L /c t,)2 u1 0.00009 0.0007O g

8) (L /c T,)2 u1 0.00009 0.0007y g

9) (L /c T,)2 1 0. 0 02 0. 01 5g g

10) p Lf/pt, n 1 2,000,000 5,600,000g

11) p L /p l u1 0.00008 0.000mgg g0

I For a 0.1 cm base plate
2 For a 0.2 cm ba se plate

-

3
Based on an initial gas (air) pressure of approximately 6 kPa

4
Taken from [1].
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