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PART I

RATIONALE FOR A LINEAR PERTURBATION METHOD
TO DEAL WITH THE FLOW FIELD PERTURBATIONS
IN COMPLEX FLUID-STRUCTURE INTERACTION PROBLEMS*

Ain A. Sonin

Department of Mechnical Engineering
Massachusetts Institute of Technology
Cambridge, Ma. 02139

ABSTRACT

A formal justification is developed for a method in which hydrodynamic
data for a transient in a rigid-wall system (derived, for example, from a
small-scale experimental simulation) is used as input in a linear computation
for the perturbation flow field due to actual wall flexibility. The method
is useful in problems where the basic flow transient is so complex that it
can be quantified only empirically, and where the fluid-structure interaction
is too complex for the fluid side to be represented by a priori defined

equivalent mass.

*Work supported by the U.S. Nuclear Regulatory Commission, Office of Nuclear
Regulatory Research, Division of Reactor Safet) Research, under Contract
No. NRC-04-77-011.



1. INTRODUCTION

The analysis of loads resulting from complex flow transients in
vessels is often further complicated by the effects of elastic boundaries.
Numerical methods are almost invariably required, and even so, only
relativley simple problems can be solved practicably [1]. The purpose
of this paper is to identify a class of such problems where it is useful
to separate the flow field into a component which would result if the
walls were perfectly rigid, and a perturbation which arises because of
wall flexibility. We will show rigorously that the effects of the wall
flexibility can be derived separately by means of a perturbation analysis
which in most cases is considerably simpler than the general problem.

The pressure of the rigid-wall flow field appears as a forcing function
at the boundary of the perturbation flow field.

This result is useful in two ways. First, it simplifies analysis.
The calculation for the flow transient with assumed rigid boundaries can
be done first and the additioral effects of wall flexure can be deriveu by
a separate perturbation calculation in which the fluid behaves linearly.

The second utility of our result arises in cases where the flow transient
is so complex that a computation for it, or for its rigid-wall component, is
difficult or impossible. In such cases, the first claculation can be replaced
by experimental data for a small-scale simulation using rigid walls. Our

analysis provides a formal justification for a method of using such data as



input in a relatively simple calculation for the perturbation caused by wall
flexibility. Such a combined empirical/analytical approach is often more
practical than a compiete empirical ismulation which includes both the
effects of wall flexure and the fluid dynamic transient proper.

The technique of applying the experimental rigid-system load as a
forcing function to compute structural oscillations has been used widely
to solve problems involving flow-induced vibrations of cylinders and similar
structures [2]. In those applications, the question of how one deals with
the inertially induced pressure filed in the fluid is resolved simply by
introducing an equivalent mass, one which can be determined semi-empirically
for a given body geometry. The method we propose here is useful in more
complex problems where an equivalent water mass cannot be specified & priori,
and where a solution must be derived for the flow field perturbation which
results from wall flexibility.

The method suggested here is not novel. Bedrosian [3], for >xample, has
applied essentially this method to compute the fluid-structure intevactior
effects in pressure-suppression containment vessels of boiling-water reactors.
Thi: purpose of the present paper is to give the method a formal basis, and
to specify the conditions which must be satisfied if it is to be valid.



2. ANALYSIS

We consider a class of problems where an essentially inviscid motion
is induced in a liquid by the transient application of pressure at one or
several of the places where the liquid is bounded by gas. Elsewhere, the
liquid is bounded by solid, but flexible, walls. The general case is best
illustrated with an example (Figure 1).

A vertical pipe is partially submerged in a 1iquid pool which is
initially at rest, and bounded above by a region of gas. An event is trig-
gered by a sudden discharge of gas or vapor into the pipe from above, causing
the clearing of the liquid from the pipe, the formation of a gas bubble at the
pipe end, and the rise or oscillation of the Tiquid in the pool. If the pool
boundaries are rigid, the resulting pressure histury at some point on the
pool floor, for example, might be the one sketched in Figure 2. If the bound-
aries are elasti., they, and together with them the pool, would be set into
oscillation, and the resulting pool acceleration and deceleration would give
rise to an additional oscillatory component of pressure, as ind cated on the
figure. We aim to show how these two contribution to the pressure can be
separated.

The 1iquid dynamics in governed by the equation of motion,

*
o(3F ¢ VW) = - - pgvz, (1)
the quation of mass conservation,

%% +# 9 (pv) = 0 (2)
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and the isentropic pressure-density relation, dp/dp = c?. We shall assume

that the latter applies in the linear approximation,
- 2 -
P =By =c,’ (07p,) (3)

where Po* co. and Po are the pressure, speed of sound and density,
respectively, in the undisturbed fluid.

The boundary conditions must be specified for Eqs. 1 - 3 at the free
surfaces and at the solid walls. We assume that the pressure at any free
surface is uniform and, for the purposes of the analysis of the liquid,
given. In Figure 1, the trapped gaseous space above the liquid is one
free surface, and the bubble emerging from the pipe is another. The free-

surface boundary condition can thus be express as

p=p;(t) at the i'th free surface. (4)

At the solid walls one must apply a boundary condition like
v, o= o= (5)

where ¥, is the fluid velocity component directed perpendicularly into

the wall, and x is the displacement of the wall (away from the fluid) from
its initial, equilibrium position under hydrostatic conditions. The wall
displacement x is governed by a structural equation of motion which can be

expressed symbolically as

d dx d?x
m=— = (p-p.) “o0(x,35, = ,...., t) (6)
. ° dt * g¢2



where m is the local mass of the wall per unit area, p is the local
instantaneous pressure in the fluid, Po is the initial hydrostatic
pressure, and o is a local structural restraining force per unit area,
whose magnitude depends on the displacement x of the wall from its
initial equilibriun position, on the time derivatives of x, and possibly
also on the time t it.elf. The form of o is governed by structural
considerations. Note th't when the displacements x are small, the
boundary condition embodie. in Eqs. 5 and 6 can to a good approximation
be applied at the equilibrium, or undisturbed, location of the wall
rather than at the actual, instantaneous deflected position.

We separate the varibles into three components by writing

V=04V (Fot) 4V (F, t) (7)
pepy(F) +p (F.t)+p (Ft) (8)
0 =Py *e (F, t) + °, (F, t) (9)

where the subscript 0 refers to the values corresponding to the initial
static conditions in the fluid, the subscript 1 refers to the hypothetical
perturbation which would be caused if the imposed blowdowr occurred in the
system with rigid walls, and the subscript 2 refers to the remainder of
the quantity, and represents the perturbation which can be attributed to
the flexibility of the walls. The initial pressure distribution Po is

assumed to be hydrostatic,

p, = constant - p gz (10)



By definition, the rigid-wall flow is the solution of Egs. 1-3 with

72 . p2 and 0, equal to zero. Thus,
av % s
(o, +0) (—L+v .Wv)= -vp - pgvz (1)
] 1 9t 1 1 1 1
i TGP v 12
-gf + VI'VC)x + (po + Dl) V'Vl =0 ( )
- 2
pl pxco “3)

where we used £q. 10 toeliminate Po* and assumed fo to be constant.

The toundary conditions for the rigid-wall solution are that

’, * y. ¥ pi(t) at the i'th free surface (14)

and that

(VL), =0 at solid walls (15)

The equations for the perturbation (2) due to wall flexure is
obtained by substituting Fgs. 7-10 into Eqs. 1 and 2, and subtracting

Eqs. 11 and 12, respectively. One obtains the equation of motion

v
(b, *+p +p) (32+V W +V W 4+v . %y) =
0 1 2 at 1 2 2 2

2 1
v
B o> VPZ - ngvz - pz (a—t— + ;1 -Vvl) (]6)
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and the mass conservation equation

Y
a5

+V Up +V Vp +v Up +p Vv
1 2 2 1 2 2 2 1

+log +p *+p )0V =0, (17)

and the pressure-density relation,

P, *p,6, (18)

Assuming that the wall flexure does not actually affect the gas pressure
at the free surfaces, we can write the free-surface boundary condition

as

P, * 0 at the i'th free surface (19)

The boundary condition at the solid walls is

dx
(VL)2 B (20)

where x(t) is given by Eq. 6.
Eqs. 16 and 17 can be simplified considerably under conditions which

are often not very restrictive in practice. Let

- typical amplitude of P

o typical amplitude of p2
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L = characteristic length over which gradients in
velocity and pressure occur during the transient

1 = characteristic time of the oscillation caused by
wall flexure

x = typical wall displacement during wall flexure

p
'2 << 1 (21)
0%
p
—-L—-Z— << (22)
p.C
0o
_ﬂ_%_ << (23)
cO
T p
—ZL— B-L << (24)
0
% ' Y (25)

The implication of these assumptions becomes apparent when we analyze
the orders of magnitude of the various “erms in Eqs. 11 and 12 and Eqs. 16
and 17,

We assume that the velocity v, arises from the acceleration of the liquid
by a pressure difference p) acting over a distance L. The time of the accel-
eration is of order L/vl. The order of magnitude of v can then be estimated

from the equation of motion as

v ~ef + (26)
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The remaining order of magnitude estimates are self-evident:

]
v~ i (27)
X
\l2 ~ -{- (28)
2
s W (29)
at 1 2
2
p o
al |
ot T 1 (30)

In addition, Eqs. 13 and 18 give 8 and p2 in terms of pl and pz.
respectively.

Using these estimates, we are in a position to estimate the relative
orders of magnitude of the various terms in the governing equation. We
find that Eqs. 21 and 22 imply, first of all, that e, and e, are small
compared with Po Eq. 21 also implies that the second terms in Eq. 12
is small compared with the third. Eq. 23 is equivalent to the assumption
that the gravitational term in Eq. 11 is negligible compared with the
pressure gradient term. Hence, the equations for the rigid-wall flow reduce

in good approximation to.

v
—t s VOV ) = 1
Po (at .. v Vvl) -Vpl (31)
ap -
=+ pVwv =0 (32)
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p, = plcoz (33)
The boundary conditons for the rigid-wall flow are given by Eqs. 14 and
15.

On the left-hand side of Eq. 16, the second and third velocity terms
are negligible compareu uith the time-derivative term when Eq. 24 applies,
and the fourth term is neglibible when Eq. 25 applies. On the right-hand
side cf the same equation, the pressure-gradient term is large compared
with the terms involving ;1 when .q. 21 applies, and also large compared
with the gravitational term if Eq. 23 applies. In Eq. 17, the second and
fifth terms on the left are small compared with the first when Eq. 24
applies. The third is small compared with the last one (the sixth) if
Eq. 21 applies, and the fourth is small compared with the last one if
Eq. 22 applies. Thus, the equations for the perturbation field caused

by wall flexure reduce to

a-b
at = e
ap
el v =
ol poV v, 0 (35)
2
P, ® €0, (36)

The boundary conditions for this perturbation field are Eqs. 19 and 20.
Consistent with the small-perturbation assumption, the free-surface
boundary condition, Eq. 19, is to be applied at the free surface location
obtained from the rigid-wall solution (or experiment), and the wall

boundary condition, Eq. 20, is to be applied at the imitial, undisturbed
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wall location (which is the wall location in the rigid-wall solution).
The displacement x(t) which appears in the boundary condition at the wall
(Eq. 20) couples the perturbation field to the structural behavior of
the wall. In the symbolic representation of Eq. 6, x(t) is governed by

the equation

- dx, d’x
maE =P, +tp o0 (x, at dtz,..... t) (37)

Note that the equation 34-36 for the perturbation field do not
themselves explicity involve the rigid-wall solution. The perturbation
field due to wall flexure is coupled to the rigid-wall flow field only
through the pressure P, which appears in the structural dynamic equation
of the wall (e.g. Eq. 37) and through the instantaneous locations and shapes
of the free surfaces (governed by the rigid-wall solution), where the
boundary condition Eq. 19 must be applied. It is as if the rigid-wall
pressure p)(t) appears as an externally applied transient pressure on the
wall, and drives the waii (and fluid) oscillation calculated by the
perturbation (2). Thus, if one has obtained, analytically or experimentally,
the rigid-wall pressure distribution history p1 at the walls and the time-
dependent shapes of the free surfaces, one can apply the boundary conditions
on the solution 2 and calculate the perturbations in velocity and pressure,
throughout the fluid, caused by wall flexibility.

Eqs. 34-16 are the linearized acoustic equations for the liquid, and
can be solved for example by the usual linear method of characteristics with
the sound speed [ taken as a constant. The liquid is, as it were, regarded

somewhat as a "gel" with its free surface boundaries prescribed as a function
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of time by the rigid-wall flow field. In the particular case where the
period T of the wall oscillations is much longer than the acoustic
transit time rr./c° across the system, 2 being the characteristic length of

the liquid pool,

(38)
Eqs. 34-36 reduce to the simple, l1inearized incompressible flow form
av 19
s ok * —VO (39)

at

7v = 0 (40)

This constitutes a particularly simple case, since the pressure p2 now

satisfies Laplace's equation.
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3. DISCUSSION OF APPLICATIONS

The analysis outlined here has an important application in the design
of large vessels, such as the pressure-suppression containment systems of
boiling-water reactors, where transient 1iquid flows are induced and wall
flexibility effects must be accounted for. In many such cases the basic
transient flow phenomena are very complex and can be quantified only by
means of small-scale experimental simulation [4, 5]. Often it is
impracticable to model both the effects of wall flexibility and the hydro-
dynamics on a small scale. The question then arises whether one can use
the hydrodynamic data derived from small-scale tests with rigid walls,
and derive from that the strains in the walls of a real, full-scale system
where wall flexure may occur.

The present analysis gives a rigorous basis for such a procedure.
Consider the situation in Fig. 1 as an example. Let us say we have available,
from an experimental simulation with rigid walls, the pressure history p‘(t)
at every point on the walls and the locations of the free surfaces as functions
of time. One can then obtain a numerical solution of the relatively simple,
linear fluid equations, Eqs. 34-36 (or Eqs. 39-40, if Eq. 38 applies) for the
perturbations caused by wall flexibility. The rigid-wall pressure p‘(t) appears
as a driving force in the wall boundary condition for the perturbation field
(Eq. 20 and 37), applied at the initial undisturbed wall location, and the
specified free surface locations define where the free surface boundary

condition, Eq. 19, is to be applied.
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The method is valid as long as the inequalities expressed in
Egs. 21-25 apply. The requirements expressed by Eqs. @1) - (23)
are satisfied in most practical cases. In water, for example, it
suffices that p, and p_ be small compared with 2 x 10* bar, and
that the characteristic length L of the flow transient be small
compared with 2 x 10* km. Eq. @5) is also satisfied in many
practical cases: it merely requires that the wall deflections x
be small in amplitude compared with L.

The key requirement is Eq. @4). The characteristic length L
is the length over which gradients in velocity and pressure occur
in the fluid during the transient. Usually, this can be taken as
the system size. The depth of the pressure suppression pool in a
boiling water reactor, for example, is about 5m. With L = 5 m and
P, 7 1 bar, Eq. (24) would be satisfed if the wall oscillation
frequency is large compared with 2 Hz. A more conservative inter-
pretation of the requirement would set L equal to the smallest
characteristic flow length in the system. This would be of the
order of 1 m in the example, and thus the conservative requirement
in the example would be that the wall oscillation frequency should

be large compared with 10 Hz.
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SYMBOLS

speed of sound in liquid
gravitational acceleration

characteristic length associated with gradients in
velocity, density and pressure

wall mass per unit area

pressure

time

velocity

component of velocity directed perpendicularly into wall

displacement of wall from equilibrium position, in
perpendicular direction away from fluid

direction measured vertically upward, against gravity
liquid density

characteristic time associated with the wall flexure (e.q.
period ofwall vibration).

Subscripts:

0

value corresponding to the initial conditions in the static
fluid.

perturbation which would be caused if the event occurred in
a rigid-wall system.

remainder of the quantity, i.e. additional perturbation
caused by wall flexibility.
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Figure 1: Example of flow transient. (a) Initial condition.
(b) Time t in system with rigid walls. (c) Time
t in system with flexible walls.
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Figure 2: Sketch of pressure histories in rigid-wall
and in flexible-wall systems.
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PART 11

A PERTURBATION METHOD FOR
ANALYZING FLUID-STRUCTURE INTERACTIONS
IN FLEXIBLE CONTAINERS PARTIALLY
FILLED WwITH LIQUID*

P. W. Huber, K. M. Kalumuck, A. A. Senin
ABSTRACT

A perturbation method for analyzing the pressure fields
developed when a complex hydrodynamic transient occurs in a
liquid contained in a slightly flexible structure is outlined.
The method involves a two step procedure in which the bulk
1iquid hydrodynamics are determined first, by analysis or
experiment, and then used as an input to a calculation that
predicts the perturbations to the pressure fields produced by
structural flexibility. A treatment of the fluid-structure
interface boundary conditions consistent with the assumptions
underlying the perturbation method allows for the use of
eulerian fluid equationc and lagrangian structural equations.
Criteria are oresented for determining when the conditions of
a specified problem lend themselves to this analytical approach.

*jork sponsored by the U.S. Nuclear Requlatory Commission,
Office of Nuclear Regulatory Research under Contract No.
04-77-011.
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1 Introduction

In this paper we discuss a class of fluid-structure interaction
(FSI) phenomena with a combination of characteristics that distinguish
it from most other FSI problems. Our analysis is motivated by problems
involving complex hydrodynamic transients in vessels partially filled
with Tiquid which arise in boiling water nuclear reactor containment
systems, [1-5], inconventional power plant applications, and in the
chemical process industry.

We consider a system (Figure 1, for example) consisting o~ a
complex flexible structure partially filled with an incompre-sible
liquid. Transient injection of a gas at one or more noints produces
a complex hydrodynamic transient in the liquid pcol. The liquid
expe. iences both buik motion (driven by the rapid growth uf one or
more gas regions) and small displacement accelerations due to oscilla-
tion of the structure in response to the hydrodynamic excitation.

In addition to the initial hydrostatic loadina, two types of pressure
loading are felt by the structure: the dynamic pressure due to

the bulk fluid motion and the pressure arising from the relatively
high frequency fluid acceleration associated with the structural
response. Both pressures can be, in general, of the same order. Thus
the 1iquid pressure fields can be significantly different from those
that would be nresent if the structure were not flexible. The distin-
quishing feature of this class of FSI problems is that a hydrodynamic
transient of arbitrary complexity is considered and significant liquid

redistribution is allowed.
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Analysis of problems of such complexity requires a numerical
approach. Computer codes such as PELE-IC [6] attempt to solve for
both the hydrodynamics and the FSI effer.s and employ separate fluid
dynamics and structural dynamics alrorithms. An iteration loop at
each time step assures that the joverning equations are satisfied
for both the fluid and the structure and that continuity of pressure
and velccity is satisfied at the fluid-structure boundary. Such
schemes are costly in terms of both computer time and storage. These
costs escalate rapidly with both the geometric complexity and the
number of spatial dimensions that must be considered. In many
FSI problems, an "added" mass distribution is comouted for the fluid
and used in conjunction with a structural dynamics 2iaorithm. For
transients such as those we consider, in which there is significant
redistribution of the liquid, the added mass would have to be
recalculated as the mass distributiion changed. Si~ iar comments can
be made about the boundary intejral or singqularity method [7]. Analysis
based on a modal superpositiun method is also difficult due to the
change in system eigenv>rlves accompanying the liquid mass redistribution.

A promising analytical method that can supnlement or serve as an
alternative to existing analytical apnroaches is the “perturbation
method" outlined in [8]. Under certain conditions, often satisfied
in situations of practical interest, the FSI response can be modeled
by this technique. Tk~ fluid flow fields are expressed as the super-
position of components due solely to the strucutral oscillation and
components due solely to the bulk fluid motion - the same

components that would be present in an otherwise identical rigid walled
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system undergoing an identical hydrodynamic transient. The analysis
then becomes a two step procedure. The bulk fluid hydrodynamics are
first determined by analysis and/or experimentation in a structurally
rigid system. The results are then used as an input to a calculation
which determines the perturbations caused by wall flexibility by
solving a relatively simple set of equations which, in the fluid

at least, are linear. This technique decouples the FSI effects from
che bulk fluid motions. It does not decouple the fluid from the struc-
ture in as much as calculation of the perturbations involves simultan-
eous consideration of both the fluid and the structure. A concept
similar to this is employed ir [9] for coupling FSI effects to
thermal-hydraulic effects.

The perturbation analysis simplifies the p-oblem by enabling a
full set of resources and specialized techniques to be devoted to one
task at a time - resources that involve not only computer time and
storage, but also development effort. The perturbation analysis
can also make direct use of experimentally obtained hydrouynamic data
- a capability of great utility when the analysis of the hydrodynamic
transients alone is extremely complex.

In this paper we outline a perturbation method for analyzing
incompressible FSI problems arising in flexible structures partially
filled with liquid and undergoing complex hydrodvnamic transients,
Criteria for the applicability of this method are developed. In a
companion paper [10] we demonstrate the implementation of this method

for a laboratory te:st system and compare the predictions with experiment.
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2 Fluid Domain Equations and Boundary Conditions

The perturbation equations in the fluid recions can be de-
rived by a method similar to that of [8]. For an incompressible
fluid the equation of motion and the equation of mass conservation

are:
3-‘; e 9 WZ*
g(a—t- + v'Ov)= -7 (P+pgz) + uvv (1)
V‘; = 0 . (2)
We define:

P=Py+Ppt Pp (3)

V=gt Yo (4)

where P, is the initial hydrostatic pressure, P, and VR are
the pressure and velocity fields that would be developed in a
and V_ are the perturbation

p p
fields developed in an otherwise identical flexihle structure.

completely riagid system, and P

The fluid dynamics of the completely rigia system are, of

course, also governed by equations (1) and (2) with

P =Pyt Pp
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If the equations obtained from the substitution of these ex-
pressions into equations (1) and (2) are subtracted from those
obtained by substitution of expressions (3) and (4) into
equations (1) and (2), the result is

v
P - r > . -+
p(at * v va + Vg Wp * Vp v vP)
= - UP_ + uy? Vp (5)
7.v_ =0 (6)

When the characteristic length and time scales for the
hydrodynamics are much larger than the corresponding scales for
effects due to structural flexibility, the three convective
terms in (5) can be neglected compared to the temporal

acceleration term yielding

©
Q)| @
2.2

== P+ wviv_
o ¥ WY (7)

We discuss criteria for this simplification later. Equations

(6) and (7) yield Laplace's equation for the perturbation pressure,

B =
v Pp 0o , (8)

which lends itself to relatively straightforward, standard

numerical solution techniques.
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Fluid equations traditionally use an eulerian formulation
while structural equations are usually cast in Tagrangian terms.
‘With appropriate treatment of the interface boundary conditions
this distinction can be preserved in the simultaneous solution

of the fluid and structural equations.

Figure 1 illustrates the various domains and their
boundaries in a sketch of a liquid pool contained within a
structure of circular cross section prior to a transient driven
by the injection of air throuah two vertica} pipes (Figure la)
and during such a transient when the structure is completely
rigid (Fiqure 1b). We identify a structural domain, a liquid
domain Vz(t)’ and gas domains vgi(t)’ i=1,...,n. Liquid-gas
interfaces are denoted by Szgi(t)‘ The iritial wall-fluid
interface, denoted by swf(o), has a local outward laarangian
normal wa(o). Locations in any domain can be specified by use
of an eulerian position vector X in a fixed reference frame.

Thus wa(O) specifies the position of a point on Swf(O).

Figure ¢a illustrates the deformation which occurs
when the structure is flexible. This deformation is characterized
by the difference between the location of the initial wall-fluid
interface Swf(O) and the location of the wall-fluid interface at
time t, Swf(t). Figure 2b, an enlarged local region depicts the

change with time of wa' It also introduces a lagrangian position



vector U, which specifies the position at any given time of a
particular particle of the structure. In general, u and its
time derivatives will be part of the governing structure equations.
The displacement of any point on the structure is implicitly a
function of its initial position xw(O).
Coupling between the gas, liquid, and structure domains
occurs through interaction at the various interface surfaces.
Proper accounting for this requires continuity of velocity and
(in the absence of surface tension) pressure across the interfaces.
Under the assumption (discussed later) that the liquid-gas,
interfaces Szgi(t) are not affacted by wall flexure, the pressures
in the gas regions are specified solei, by the hydrodynamics

and, therefore

Pp =0 in Vgi(t) . (9)

At Swf(t), continuity of velocity must be satisfied. Thus
>, > za—-b-b
vix,t) T (x,t) on S.of (t) . (10)

Using (4) and (10) and recoanizing that ;P must be zero on

Swf(t), we can write

v (x,t) =

3 U (X,t) on S,¢(t) - (11)

Lo % J W% )
ot
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For small wall displacements, this boundary condition
may be applied to the fluid domain at the initial wall-fluid

interface swf(o), a stationary surface:

> > '_a_-o -

vp(x,t) 5% uwf(x,t) on Swf(O) (12)
where

U e(X,t) = U(x(0),t) (13)

Solution of (8) requires that (12) be transformed from a velocity
to a pressure formulation. In almost all applications the effects
of viscosity on fhe perturbation motions can be neaglected and
equation (7) written as

3v
o-——E-=- P
at P

Taking the component of this equation normal to the wall and

using equation (12) we arrive at a Neumann boundary condition

"-0
“u
* P

o

- . nwf(o) = - VPp-nwf(O) on Swf(O) . (18)
Thus the governing fluid equation (8) is solved in the
region Vl(t) bounded by the initial wall-fluid interface Swg(o)

and the hydrodynamically determined liquid-gas interfaces Slgi'
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3 Applicability of the Perturbation Equations

We now discuss the physical implications of the assumptions
made in deriving equation (8) and boundary conditions (9, 14).
Criteria are developed in terms of order of magnitude estimates of
various physically meaningful quantities to provide a measure of
the accuracy of the perturbation method as applied to any particular
problem. More quantitative verification and error estimation can
be obtained by comparison of a test case with experiment or an
otherwise known solution. A summary of the criteria derived
below is presented in Table 1.
We defind a number of characteristic length and time scales:
LR: characteristic hvdrodynamic lenqth over which
gradients in velocity occur. Typically, this will
be a 1iquid or gas reqion dimension.
L\: smailest characteristic wavelenath of wall

oscillation.

Lg: characteristic gas region dimension.
LO: characteristic pool (fluid domain) dimension.
Lw: characteristic wall displacement during oscillation

(estimated from the rigid system wall pressure his-

tories and structural properties).
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Tp! characteristic hydrodynamic time (estimated from the
bulk fluid motion in a rigid system).

T longest characteristic time for wall oscillation
(estimated from the period of oscillation of the
liquid filled structure).

Tg:  minimum excitation time constant (estimated from

the rigid system wall pressure histories).

3.1 Incompressible Perturbations

The fluid perturbation equations model the perturbation flow
fields as incompressible. Although the present derivation has
also assumed the unpertirbed (rigid structure) flow to be
incompressible, this assumption is not necessary. It has been
adopted here for the sake of brevity, and a derivation incorporating
compressible effects in the unperturbed flow and resulting in
equation (8) is possible [8]. It is quite possible for the
driving hydrodynamic transient to include a component that intro-
duces compressibility effects into the unperturbed flow while the
structure oscillations introduce negligible compressible effects.
The necessary criteria for neglecting compressibility effects

in the perturbed flow are:

(—5)¢ , (=)t et (15)
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where <, is the liquid speed of sound. The acoustic transit times
through the liquid, LO/LE and Lx/cz must be small compared to the

characteristic wall oscillation period A
3.2 Frequency of Wall Oscillations

The effects of nonlinear coupling between the convective
accelerations associated with the unperturbed hydrodynamics and
the perturbed flows will be small compared to the effect of the
perturbation flow temporal acceleration provided the longest
characteristic wall oscillation time is small compared to the
shortest time g characterizing the bulk fluid motions. The

exact formulation of this criterion is two-fold:

_, —— << 1 . (16)

The factor of LR/LA arises if gradients in Vp occur over a length
LX when a different length LR characterizes the unperturbed motions.
The shortest time characterizing the hydrodynamically induced
pressure transinets, Tgs May be considerably shorter than the time
associated with the bulk fluid motion (see 3.6 below). The time
scales of relevance here are those associated with the liquid

displacements, Tpe which can be estimated from the hvdrodynamics

in a straightforward manner.
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Estimation of = is not as simple, Filling a structure with
1iquid can lower its natural frequency considerably. Rough
estimates can oe made by treating some significant fraction of
the 1iquid mass as an added structural mass. Criterion (16) can,
however, always be checked by performing a perturbation analysis

and examining the calculated frequencies.

3,3 Amplitude of Wall Displacements

In order to neglect the nonlinear convective effects of *he

perturbation motions relative to the effects of perturbation f ow

w

temporal acceleration, the macnitude of Lw rust be small cowpa 2d
to the shortest length scale Lx over which aradients in pertur ation

velocity occur:
— << 1 ., (17)

Criteria (15, 17) lead to a linearized form of the fluid equation
of motion. The other constraints imposed on Lw arise from con-
sideration of the boundary conditions.

Application of boundary relation (14) assumes that the wall
displacements are normal to the initial wail-fluid interface. The

angle between ﬁwf(t) and wa(O) is of order Lw/Lx‘ If

—

<< |

—i
> X
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the displacements will be "quasi-normal" and will introduce only
a small error. Tiis criterion is the same as (17) and is thus
satisfied whenever the linearized perturbation equation (7) applies.
Perturbation analyses should therefore take advantage of this
inherent boundary condition simplification.

A1l fluid domain boundary conditions are applied at the

unperturbed boundary locations. This necessitates that

L
2 <} (18)
Lty

in considering the wall-fluid interface boundary. Cansideration
of this approximation at the liquid-gas interfaces may require a
geometry dependent modification to (18) depending on the shapes

and sizes of the pool and gas regions, and on the structure modes

and wavelenqths of oscillation.
3.4 Inviscid Perturbations

In the formulation of the fluid boundary condition at a
moving wall (14), viscous effects on the perturbation motions are
neglected. This assumption is valid provided the product of the
Reynolds and Strouhal numbers for the perturbation flow is much

larger than unity:

ol .
=4 » 1 . (19)
w
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It should be noted that this is a constraint on the perturbations
only and is not a limitation on the unperturbed (rigid structure)

flows that can be analyzed.
3.5 Zero Gas Region Perturbation Pressure

The nerturbation pressure at all liquid-gas interfaces is
assumed to be zero. For this assumption to be valid, the gas
perturbation pressures must be small compared to the liquid
perturbation pressure at the wall-fluid interface. This is
true when:

1. the pressures arising from fluid acceleration are much

smaller in the gas than in the liquid and thus

-ﬂ-‘-_——q‘O << ] (20)

where Py and °g are the liquid and gas densities;
2. the transient perturbation pressures in the gas arising

from compressibility effects are small and thus
L
e - ) (21)
g w

where cg is the speed of sound in the gas; and
3. the quasistatic equilibrium gas pressure changes

are small. This requires that the changes in volume
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of the gas regions are a small fraction of their

unperturbed volumes or typically that

L
E! o (22)
g

This criterion may be modified somewhat by such
factors as geometry and the oscillation modes and

wavelengths.

3.6 Excitation Time Constant

Flexible system responses having perturbations of large enough
amplitude to be of interest arise when the system excitation has a
period To of the same or of smaller order than the system charac-

teristic period 8 {117 or when

. e (23)

Consideration of criteria (16, 23) shows that for the perturbation
method to be both useful and applicable the rigid system must
contain two characteristic time scales: one over which changes in
bulk velocity occur, TR’ and a much shorter time scale, To which
excites the structural response. Examples of practical applications
in which this occurs include the sudden injection of gas into a

liquid or the condensatior collapse of a steam bubble within a
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liquid. Both cases involve changes in pressures in the pool
that are much more rapid than the bulk pool displacements associ-

ated with them.
4 Treatment of the Structure

The traditional treatment of the fluid domain by an eulerian
formulation and the structural domain by a lagrangian formulation
can be preserved in a perturbation analysis by proper handling
of the boundary conditions at the wall-fluid interface. Continuity
of velocity leads to relation (14,!ﬁTT‘4 equates the eulerian
fluid velocity at a stationary su-face to the time derivative of
a lagrangian structural displacement (12, 13). Continuity of
pressure is achieved by equating the eulerian fluid pressure
(Pp + PR) at a point iwf(o) along Swf(O) to the loading in the

lagrangian structural domain along Swf(t) at t'e point

Ut (K
not present a problem for decoupling the hydrodynamic and

0),t). The inclusion of P, as part cf the loading does

nerturbation motions. It will appear in the structural equations
as a forcing function [8] and is known in advance from separate
calculations and/or experiment.

One simplification to the structural equation is neglecting
the inertia of the structure relative to that of the liquid.

This will be valid when the effective 1iquid inertia - or



-39-

"added mass" - is larae compared to the structural inertia.

The structural equations are then considerably simplified. The
system can be thought of as moving through a series or quasistatic
states. However, the transient oscillatory character of the FSI

perturbation pressure fields will nevertheless be present.

5 Conclusions

The perturbation method is a powerful, practical tool for
the analysis of the response of flexible structures partially
filled with 1iquid undergoing complex hydrodynamic transients.
It involves a two step procedure which requires the determination
of the bulk hydrodynamics followed by a calculation of the induced
FST dynamics. This sequence of analysis permits an independent
set of resources and specialized techniques to be exploited in
each step. It aamits the use of experimentally obtained data
for the determination of the bulk fluid hydrodynamics. The
treatment of the fluid-structure interface conditions allows
the use of eularian fluid equations and lagrangian structural
equations. The potential suitability of a perturbation analysis
approach to any specified problem can be determined a priori by

evaluating a number of defined, dimensionless aroups.
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Table 1 Criteria for the applicability of

the perturbation equations

Criterion Section discussed in
(16) Tw/TR << 3.2
y o -
R
(16) =~ — << 1 3.2
b
(23) /T, 5 3.6
(17) Lw/Lx << 1 3.3
(18) LN/LO << 3.3
}
(22) L /Ly << 3.5 ‘
|
2 |
(15) (Lo/clrw) << 1 3.1 ;
N A0
(15) (LK/CZ‘“) << 1 3.1
2
(21) (Lg/cgrw) << 1 3.5 1
1
119) QQL)\/'“TW >> | 3.4 |

(20) ngg/°zLo << 1 3.5
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PART 111

A PERTURBATION AMALYSIS OF
FLUID-STRUCTURE INTERACTIONS
IN A MODEL TEST SYSTEM*

K. M. Kalumuck and P W. Huber

ABSTRACT

A perturbation analysis of fluid-structure interactions
in a model test system of controlled flexibility excited by a
complex hydrodynamic transient is presented. The analysis
demonstrates the important features of the perturbation method
and its implementation. Comparison of predictions with experiment
provides a test of the analytical procedure and its underlying
assumptions. The results illustrate the importent effect of

transient liquid mass redistribution on the flexible system response.
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1 Introduction

The previous paper [1] outlines a preturbation method for
analyzing the response ¢f fluid filled flexible structures undergoing
complex hydrodynamic trancients and develops the criteria for the
applicability of this method. In this paper we compare predictions
based on perturbation method calculations with experimental results
obtained in a simple test system. This paper has three purposes:
to demonstrate the implementation of a perturbation method fluid-
structure interaction (FSI) calculation in a simple system, to
explore the basic physics of FSI in a system undergoing a complex
hydrodynamic transient, and to provide one set of tests for verifying
the numerous underlying assumptions of the perturbation method. The
development of a general algorithm for modeling FSI phenomena was not

one of our goals.

2 Summary of Experiments

Figure 1 shows a schematic of the cylindrical single downcomer
test system partially filled with water in which our FSI experiments
were conducted. Detailed descriptions of the test system, experimental
procedure, and results have been documented elsewhere [2]. Only those
experiments and results analyzed in this paper are summarized here.
The test system's sidewalls and top are made of thick steel and are
effectively rigid. The base consists of an interchangeable aluminum

plate clamped at its periphery. Changing the base plate thickness



-47-

introduces different degrees of structural flexibility into the
system. The rigid structure system characteristics are obtained
by use of a 1.9 cm thick base plate. Sidewall taps enable
pressure measurements to be taken at several stations in the
liquid pool.

A hydrodynamic transient initiated by the opening of a
fast acting valve is generated by injection of air from a large
constant pressure reservoir or "drywell." The pressure beneath
the plate is maintained constant at the initial pool surface pressure
throughout the transient. The air injection forces the water out
of the downcomer and forms a bubble that rapidly grows and
redistributes the water in the pool causing the pool to "swell."
Figure 2 shows the pool swell history traced from high speed
film records in a geometrically similar rigid plexiglass system
subject to a properly scaled but otherwise identical hydrodynamic
transient initiated at t = 0. A dimensionless time t* = t/g9/2a,
where a is the pool radius, has been defined in accordance with the
hydrodynamic scaling laws for this system [3].

Typical pressure histor es measured along the sidewall 5 cm
above the base plate are presented in Figure 3 where the measured
pressures have been nondimensionalized by the constant reservoir
(drywell) pressure, PD. The top oscillogram shows the rigid system
pressure history containing a very rapid rise in pressure at the time
the downcomer is cleared of water followed by a much more gradual
change. The other three oscillograms show the measured pressure

histories for plat thicknesses of 0.2, 0.16, and 0.1 em [2].
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3 Perturbation Method Analysis

3.1 Governing Equations

Figure 4 shows schematically the governing equations and
boundary conditions used in implementing a perturbation method
analysis for our test system. These follow directly from those
outlined in [1]. The shaded liquid region, in which we ignore
the presence of the downcomer, is bounded by four surfaces 51,

""54‘ The governing 1iquid region equation is:

2 - 1
vpp 0 (1)

where Pp is the perturbation pressure. The free surfac2 boundary

condition is

Pp =0 on 51, S2 (2)

where S, is the pool surface (a~proximated as horizontal throughout
the transient) and S2 is the bubble surface. The solid wall

boundary conditions are:

3P

-3;2 = 0 ons, (3)
3P .

5 " P 3F on S, (4)

where S3 is the rigid sidewall, Sa is the initial plate-fluid
interface, z is measured vertically upward from 54, r is measured
radially outward from the center of 54, w is the downward plate

displacement from 54. and p is the liquid density. A further
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approximation is made here in neglecting the small plate deformation
due to the initial hydrostatic loading. Hence, S4 is taken as
being perfectly flat. The displacement w shown in Figure 4 is
exaggerated for clarity.

The governing equation and boundary conditions for the clamped

circular base plate are:

4 =
07w PR+Pp on S, (5)
W " -
w=0and = 0 at r=a (6)
3w

— é—- 2 = =
= 0 and D i 7*w = 0 at r=0,(7)

Here D is the plate flexural rigidity and P, is the hydrodynamically

R
induced pressure in the rigid system. Experiments have shown PR
to be uniform over the base plate [4] -- varying only with time.
In equation (5), the plate inertia has been neglected -- an assumption
easily justified for our system by the much larger water inertia felt
by the plate through Pp. The test system and imposed hydrodynamic
transient are axisymmetric. This leads to boundary condition (7).
Equation (5) enables the plate to be viewed as moving through a
series of quasistatic states.

For solution of (5-7), a Green's function approach is adopted.

The Green's function for this problem is found to be [5]:

for b<vr,

urob) = gl e 4 ey L1 ; (8a)
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for bir.

wir,b) = grst@=ba i) | sy 10 by L (an)

Here b is the radial position of an arbitrary annular load. The

plate displacement is then given by:

w(r,t) = g 2mb[Pp(t) + P (r=b,z=0,t)] w(r,b)db . (9)

The plate displacement is also related to the plate acceleration:

(¥ »
wir,t) = Vo o 8 wir,t) dt d¢ . (10)

The complete set of equations to be solved then consists
of the liquid (1) and structure (9) equations, boundary conditions
(2-4), and identity (10). Coupling between the fluid and structure
equations occurs through both boundary condition (4) and the loading

in equation (9).
3.2 Computational Model

The technique adopted to solve the set of governing equations
and their boundary conditions is a numerical time stepping one. A
fully implicit second order accurate five-point finite difference
scheme utilizing central differencing in an axisymmetric geometry
as presented in [6] is used in the fluid domain. The radial derivatives
are expanded prior to discretization. Appropriate forms of second
order accurate boundary conditions are used. A detailed description

of the scheme employved can be found in [7]. The finite difference
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equations are solved in a two-dimensional time varying mesh.

A typical mesh employed is shown in Figure 5. Two different
axial mesh spacings are used such that the mesh point density

is greater in the lower region of the poel than in the upper
region. This provides a sufficient number of points between

the bubble and the base plate to resolve the pressure gradient
at the plate with reasonable accuracy. The number of mesh
points varied with time from about 500 to 600. The location

of each mesh point is fixed in time, but points are removed

as the bubble grows and added as the pool rises. Mesh points
are denoted by a pair of indices (i,j), 1 =1,...,I; § = 1,...,J.
The radial (r) and axial (z) mesh spacings are denoted by

5r and 5z such that r = (i-1)«4r and z « (j-1).82. The
derivative boundary conditions (3,4) are approximated by the
introduction of a fictitious set of mesh points. The perturbatic

pressure Pk at the point (i,j) and time step k (the subscrij.

i,J
"p" being dropped for brevity) is set to zero for points that

are along the pool or bubble surface or within the bubble. The
equations corresponding to these points are removed prior to solution.
The remaining set of fluid domain simultaneous equations can be

expressed as

AP = F . (1)

Here, A i5 a square, non-symmetric matrix containing the coefficients

of the unknown P? j arranged along five diagonals and is of order
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(I)-(J-])-NB where N is the number of mesh points lying on

the surface of or within the bubble. Ep is a column vector

whose elements are the unknown P:'j. fp is a column vector

which contains the inhomogenous terms of the mesh point equations.

The equations comprising (11) are arranged in the order (1,1),

SRR & P 1 SRR | IS, | [NROWRE, | | RO | B ¢ e I T 2 ARG, SR T g
The Green's function solution (9) to the plate equation

is numerically integrated. In general, by selecting the radial

locations of the plate nodes to correspond to those of the fluid

mesh, one can express the downward displacement W at node i

and time step k as

W = é,cf,z“’i,ﬁ":)' f=1,...,1 (12)

where P: is the value of PR along the base plate at time step k.

The expressions for Ci,l depend upon the Green’s function expression
» (8) and the integration scheme. Investigation of the behavior

of the product bw shows that it varies more rapidly with radius

than does the load, Pf’] + P:. Thus a Simpson's rule integration

is performed over a much smaller interval than the mesh spacing
(typically sp/8). Values of the perturbation pressure between

mesh points are obtained by interpolation using a piecewise

quadratic curve fit to the values of Pﬁ’]. The interpolation weights
are also accounted for in the values of ci.l'

The displacement at node i is obtained from the acceleration

history at that node from (1C) using a double trapezoidal integration.
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For zero initial displacement, velocity, and acceleration, this can

be expressed at time t = kit (where 5t is the time step size) as

u K
K kel . 1 .us 9%
R o SO I S 1T )

pt* ¢
where
- k-1 Y
Wil st T (k-0)(2Y) (13b)
2=1 at? i

Calculation of the flexible system response involves the
simultaneous solution of four sets of linear algebraic equations:
the fluid finite difference equations (11), the plate displacement
equations (12), relaticn (13), and a discretized form of equation

(4) which can be expressed as

k
3P 2k
(;{E) “p (28, (14)
s at? i

These equations are reduced to a single system of equations by
combining (12) and (13) and substituting the result by use of (i4)

into Fk of (11). The resulting expression for Fk is a function of

~

Pk. Rearrangement of this set of equations leads to a new set of

-~

equations to be solved for the unknown perturbation pressures:

axk p: a gk (15)

The elements of F*k are given as
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I -
k 52 (oK k-1
Fa" 2 8p === (Pp s ] Co,=w " )ym=1,...,]
m stz R ogey MméE W
koo, m>1 . (16)
m

The elements of A*k are given by A;kn = A: . ! G when
b , ’

bothm < I and n < I and by A** = AX

whenever m > [ or n > I.
m,n - -

The matrix A** is banded with a bandwidth of 21 + 1. The
presence of nonzero elements arising from the Cm ) expressions
precludes a solution by a block tridiaconal algorithm. A standard

banded matrix solution routine was used to solve equation (15) fer

P: at each time step.‘ We did not attempt to develop a more

~

efficient solution algorithm that would take advantage of the

many zero elements within the band of A*<. After P: is found

2 K
: and (a—g are found from equations (12-14).
atc i
It is interesting to note a possible interpretation of the

from (15), w

effect of equations (12-14) on the fluid equations (11). Using
these equations, the pressure gradient normal to the plate can

be expressed as:

) -
kY. P k k , ¢ ke

C

W

T L]

! LEQT1B from the International Mathematical and Statistical Libraries,
Inc. -- "IMSL."



?'] i -nown from the history of the plate motion

The term w
and does not depend on any quantities at :ime step k. At any

time step, then, all unknown quantities are expressed in terms

of the perturbation pressure field. The structure can be viewed

as imposing a special type of boundary condition or constraint

on the fluid: the normal perturbation pressure gradient at any

point of the plate-fluid interface is a function of the pressure

at every point of the interface (17). This is simply the result

of the boundary integral nature of the problem.

Due to the fully implicit nature of the solution algcrithm,
the time step size is not limited by a stability criterion. It is
limited, however, by a resolution requirement. That is, &t must be
small enough to adequately resolve the expected frequencies of
oscillation. With this in mind, &t was selected such that a
minimum of about eight time steps occurred within the experimentally
observed oscillation period.

The 1iquid configuration as a function of time is an input to
the model. The bubble is approximated as an ellipsoid with three
parameters fit by trending from the observed bubble history (Figure 2).
The boundary is further approximated by taking it to lie along the
mesh lines which are closest to the computed boundary. The change
in the location of the pool surface is computed from continuity once
the change in bubble volume is known and is also approximated to lie
along a mesh line. A comparison of approximated bubble shapes and
pool heights with those observed is shown in Figure 6 for three

selected times.
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Also input to the model is the experimentally determined rigid
system base plate pressure history (PR(t) in equation (9)) and the
rigid system pressure history at a'l other locations at which the
flexible system response is desired. W!th this information, the
complete perturbation pressure field is valculated at each time
step. The predicted flexible system pressure is then the sum of
the computed perturbation pressure and the rigid system pressure

at the location of interest.

4 Perturbation Method Predictions and
Comparison with Experiment

The predicted flexible system perturbation pressure ampli-
tudes vary significantly throughout the pool. Figure 7 shows the
oredicted 0.2 cm flexible base plate system pressure history
nondimensionalized by PD at two sidewall locations and two base
plate locations. The 0.1 cm base plate case exhibits similar
behavior. The peak value of the flexible system’ pressure varies
by about a factor of 2.5 between stations (a) and (d) of Figure 7.
The perturtation pressures are largest at the base plate and decrease
to zero at all liquid-gas interfaces. In Figure 7d the line of zero
absnlute system pressures dip below this value several times in the
central region of the plate. This suggests the possibility of
some cavitation occurring in the experimental tests which has not
been investigated experimentally nor accounted for in our model .
The maximum predicted flexible system pressure at the plate center

represents an overshoot of about 50% when compared to the rigid

system plate pressure.
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Figure 7 also shows that the predicted perturbation pressure
amplitudes decay after their first peak at rates which vary
throughout the pool. That a decay should be predicted at all is
at first surprising since the model does not account for structural
damping or fluid viscosity. The decay is, in fact, the result
of the liquid redistribution driven by the bubble growth. Otherwise
identical calculations conducted without a growing bubble exhibited
no perturbation decay.

Figires 8 and 9 show the predicted perturbation prescure
distributions at two selected times. They illustrate the change
with time of this distribution and thus the relative importance of
the perturbations in various regions of the pool. The figures also
include the predicted flexible system response and measured rigid
system pressures along the sidewall at z/a=0.7 and z/a=1.7. The
predicted flexible system pressures at the instants of time at which
the Pp isobars are calculated are indicated by arrows on the pressure
histories. In the region of the pool at elevations less than that
of the bubble, the perturbation pressures are large (of the same
order as the rigid system pressures) and decrease with elevation
roughly linearly. At elevations at or above that of the bottom of
the bubble they are much smaller. Thus it appears that there are
two regions of influence within the pool: one beneath the bubble
and relatively near the p'ate in which FSI effects are important and
a second near and above the bubble in which the influence of the
plate oscillation is much less. As the bubble grows, its region of

influence grows and the large amplitude perturbation isobars
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p
(IEE} > 0.1, say) move closer to the plate. Such behavior leads to
0 ~

t.e predicted decay in perturbation amplitudes. (In comparing the

magnitudes of Pp/PD in Figures 8 and 9, it must be remembered that

these figurec represent different times in the osciliation cycle.)
Model pressure history predictions on the pool sidewall at

z/a = 0.7 are compared with experiment for the cases of a 0.1 cm

and a 0.2 cm thick base plate in Figures 10 and 11, A brief comparison

of the predicted frequency content, peak pressures, and decay

rates with those experimentally observed is presented in Table 1.

Values of the per cycle decay rates, d, are calculated from the

formula:

Pon Pp’0(1-d)" (18)

where n is the number of cyles considered, P is the amplitude

p,0
of the perturbation pressure at the beginning of the first cycle
considered, and Pp,n is the amplitude n cycles later. The

agreement is generally good. The initiation of a large amplitude
decaying oscillation at the "spike" in the rigid system pressure
history is clear in both calculations and experiment. For both

plate thicknesses, an increase in perturbation frequency is predicted
and observed experimentaily. For both plates, the predicted
frequencies are somewhat lower than observed experimentally (25 - 30%
low for the 0.1 cm plate and 15 - 20% low for the 0.2 cm plate).

For the 0.1 cm plate the model predicts a slight (2%) undershoot

in comparing the peak value of the flexible system pressure history

to that of the rigid system while an overshoot of about 21% is
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observed experimentally. The model predicts an overshoot of about
6% for the 0.2 cm plate which agrees well with experiment. The
predicted model decay rates are somewhat low but comparable to
those observed.

Mode! predictions at z/a=1.7 are compared with experiment
for the 0.2 cm plate case in Figure 12. Both the measured and
predicted flexible system pressure histories differ little from
the rigid system history. They exhibit minor perturbations shortly
after the rigid system history peak and essentially no perturbations

at later times.
5 Discussion

Qur calculations and comparisons with experiment illustrate
the essential features of a perturbation method FSI analysis and
demonstrate both the simplicity and promise of this method. Relatively
few refinements have been implemented in our calculations primarily
because the agreement between prediction and experiment is near
the level of experimental repeatability [2,4]. The comparisons presented
here are not intended to be an exhaustive verification of the
perturbation method, but rather to provide one systematic test of
the procedure and its underlying assumptions. Our predictions
illustrate the important effect that 1iquid mass redistribution
has on both the frequency content and the amplitude of the flexible
system's pressure fluctuations. The analysis and results can be
contracted to those of a lumped parameter model [2] which requires

prior specification an "effective" pool depth (or "added liquid
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mass") and is unable to predict any detailed FSI response features.
The criteria for the applicability of the perturbation method
are evaluated for our test system in Table 2 where ) and pg are the
Tiquid and gas densities, ) and cg are the speeds of sound in the
liquid and gas, and u is the liquid viscosity. Characteristic

Tength and time scales used are defined as [1]:

LR: hydrodynamic length over which velocity gradients occur.
L)\: snallest wall oscillation wavelength.:
Lg: gas region dimension.

LO: pool (fluid domain) dimension.

L : wall displacement during oscillation (estimated from the
rigid system pressures).

Tp: hydrodynamic time (estimated from the rigid system bulk

fluid motion).

t.: longest period for wall oscillation.

te: minimum excitation time constant.

The Tength scales LR’ Lk’ LO’ and Lg are all taken to be the
plate diameter. Both s and To are estimated from the rigid
base plate pressure history. Table 2 shows that ail criteria are
easily satisfied except for (2) for the 0.1 cm base plate system.
Thus the perturbation method assumptions should introduce ner*igible
error with the possible exception of some nonlinear coupling effects
between the perturbed and unperturbed motions not being accounted

for in the analysis of the 0.1 cm plate svstem.
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In developing a model for our test system we have made
several additional assumptions not central to the perturbation
mechod. Omission of the downcomer should introduce negligible
error. It is partly enclosed by the air bubble and is in a
region of very small le;. The approximation of the pool surface
as flat and horizontal (neglecting the growth of irreqular pool
surface instabilities; see Figure 2) should be of minor importance
for similar reasons. The initial static plate deflection due to
the weight of the water is an order of magnitude less than those
during pool swell and is easily neglected.

The better agreement between prediction and experiment for
the 0.2 cm plate than for the 0.1 cm plate may be largely due to
plate tension effects which have been neglected in the model plate
equation. Neglecting tension relative to bending stress for a
circular clamped plate of thickness h deforming under a uniform

Toad q will introduce an error that can be estimated from [8]:

ga* _ "max 1+v(ﬂmax)’
i N E

54 Dh h (19)

where wmax is the maximum plate displacement and v is Poisson's
ratio. The first term on the right-tand side of (19) is due to
bending and the second is due to tension. If we take q to be the
maximum value of PR on the plate, the estimated errors are 21% and
0.2% for plate thickness of 0.1 c¢cm and 0.2 cm, respectively. Since
tension stiffens the plate, its inclusion in the model would increase
the predicted frequencies -- enhancing agreement wi . experiment

for the thinner plate. Modification of the predicted peak pressure

overshoot should also occur.



The input data -- bubble shape and size, PR on the plate,

and Pp at various sidewall locations -- were obtained from several
di fferent experimental runs, and model predictions are compared
to data from yet other runs. To compensate for experimental variability,
the time coordinates of the data were shifted a small amount so
that they would be equivalent in each set of data. Typically
this shift was less than 2% of the total time period under consideration
(t* < 0.01) -- well within the bounds of experimental variability [4].
To save computation time, the liquid configuration was changed
at each time step only during the initial period of bubble growth.
At later times (t* > 0.25), the liquid configuration was modified
ever ' fifth time step for the 0.2 cm plate system. Thus the input
bubb'e growth lags the experimental records. This results in a
maxi.um error of about 6% in bubble "radius." Such an underapprox-
imat ‘on of bubble size will lower the predicted perturbation
frequencies and decay rates.
The run to run experimental initial liquid depth variation
was about 2% [2]. The initial liquid depth used in the calculations
is about 6% higher than the nominal experimental value. This
should result in a prediction of frequencies that are about 3% Tow.
Based on simple tests of our algorithm we believe the errors
introduced by the numerical schemes to be at most of the same order
as the other uncertainties discussed above. As described earlier,
provisions for increased accuracy were made in cituations where it
was believed useful such as an increased number of mesh points

between the bubble and the plate and integration of the plate
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equation over an interval smaller than the fluid mesh spacing.

Due to the finite time step size, the peak in the rigid system
pressure history will be missed unless it occurs at a time step.
For the 0.2 cm plate system model, this leads to an underestimation

of the input rigid base plate pressure peak by about 2 1/2%.

6 Conclusions

The perturbation method is a promising practical tool for
modeling FSI problems involving compiex hydrodynamic transients.
It allows the use of both experimental and analytical data from
rigid systems subjected to identical hydrodynamic transients.

The implementation of the perturbation method is much easier than
alternate appruaches which involve the simultaneous solution of
the nonlinear hydrodynamic equations and the structural equations.

Our anal ytical and experimental investigation of FSI phenomena
in a simple test system of controlled flexibility has demonstrated
the inportant effects that liquid mass redistributi \n has on both
the frequency content and the spatial and temporal amplitude

distributions of the perturbation pressures.
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Table 1 Comparison of oredicted flexible system sidewall
pressure histories with experiment at z/a = C.7

0.1cm base plate N.2cm base nlate
prediction experiment prediction axneriment
(P +P.)
F 0.98 .21 1.06 1.06
"R'max
Frequency (4z) X
2
average g5t1) 135(1) 250(%) 2052
Tow (single cycle) 90 125 220 275
high (single cycle) 110 145 265 320
Decay rate(3)
peak to peak 0.3¢ n.37 0.18 0.23
trough to trcugh 0.15 0.39 0.18 0.23

]Averaged over the first 7 cycles (beginning with the first nea“

in flexible system pressure occurring after (Pp)nax)

?Averaged over the first 12 cycles

3Computed from equation (18). The first 4 cycles are used for

h=0.1cm; the first 10 cycles are used for h=0.2cm,



Table 2 Evaluation of perturbation method criteria

Characteristic and physical quantities:

LW

1)

2)

3)
4)
5)
6)

7)
8)
9)
10)
n)

0.08cm!)

(2)
0.01 &
cm o

i 3

14 cm
14 cm

14 ¢cm

Criterion(4)

Lw/LX << 1
Lw/LO << |
Lw/Lg <<
(LJc,.t )2 << |
VAT

2
(LA/CQTW) << 1
(Lglchw)z <<
°zL§/“Tu >

ong/onLo << 1

_aowoNn -

For a 0.1 cm base plate
For a 0.2 cm base plate
Based on an initial gas (air) pressure of approximately 6 kPa
Taken from [1]

0.01s(1)
0.0035(2)

‘g

for our tes. system

1000 kg/m>
0.08 kg/m3(3)

0.001 kg/ms
1500 m/s

330 m/s

Value for test system

0.1 cm plate
0.25

0.25
0.7
0.006
0. 006
). 006

0. 00009
0.000u9
0.002
2,000,000
0. 00008

0.2 cm plate
0.09

0.09

2

0. 0007
0. 0007
0.0007

0.0007
0.0007
0.015
5,600,000
0.00008
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Fiaure 2 Pool swell history traced from high speed films.
Hatch marks indicate arowth of interface instability.
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Figqure 10 Comparison of sidewall perturbation calculation
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Figure 11 Comparison of sidewall perturbation calculation
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