

Docket No. 50-346

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

FEB 14 1978

Die make ajons

T. Monsel

LICENSEE: Toledo Edison Company

FACILITY: (Davis-Besse Nuclear Power Station, Unit No. 1 (DB-1)

Dobok

SUBJECT: SUMMARY OF MEETING ON NATURAL CIRCULATION TEST - (DB-1)

On February 7, 1978 representatives from the Toledo Edison Company (TECO), the Babcock & Wilcox Company and the Bechtel Corporation met with the NRC staff to present their bases for not needing to conduct a natural circulation test for DB-1. A list of attendees is provided in Enclosure 1.

At 2243 hours on November 29, 1977, DB-1 experienced a transient (temporary loss of 13.8 KV power) which tripped all four reactor coolant pumps, and for approximately 15 minutes until 2258 hours, reactor decay heat was removed by natural circulation. During the 15 minute period the data-recording reactimeter was in operation and TECO analyzed the data to see if natural circulation could be justified during the loss of station power transient.

TECO concluded from their analysis of the data that the transient did not satisfy the NRC test requirements for a natural circulation test. Because of (1) the imbalance of the once-through-steam generators (OTSG) during the transient, (2) the lack of data for the loop 1 hot leg temperature, and (3) the non-equilibrium state of the NSSS during the transient; TECO could not analyze and qualify the transient as a satisfactory natural circulation test.

The NRC staff concurred with TECO that the loss of site power transient did not confirm a steady-state natural circulation flow rate required for the natural circulation test.

TECO then reiterated their previous position that the elevated position of OTSG's for DB-1 would increase the natural circulation flow of DB-1 above that observed by test for Oconee No. 1. A summary of TECO's position is provided in Enclosure 2.

TECO stated that the test procedures for conducting a steady-state natural circulation test would include 14 hours at 5% of full power to reach stable Xenon conditions and an additional 8 hours for both phases of the test. Similar tests conducted in the past have required about three days.

TECO stated that the present coal supplies available for electric power generation in the state of Ohio have reached a critical point and DB-1 cannot be off-line and at reduced power for the time required to run the natural circulation test without impacting load requirements for their grid system and increasing the use of rapidly diminishing coal supplies.

The NRC staff stated that the question of requiring DB-1 to run a natural circulation test had been considered prior to issuance of the Operating License for DB-1 when the NRC staff had concluded that DB-1 was not considered as a similar plant to the prototypic Oconee 1 since DB-1 was the first B&W 177 NSSS to use the elevated OTSG's.

Both the NRC staff and TECO indicated they would be in contact with each other in the near future regarding these matters.

Leon Engle, Project Manager Light Water Reactors Branch No. 1 Division of Project Management

Enclosures:

Attendance List

2. Summary of TECO Technical Position ENCLOSURE 1

ATTENDANCE LIST

FOR

MEETING HELD ON FEBRUARY 7, 1978

WITH

THE TOLEDO EDISON COMPANY

DAVIS BESSE, UNIT NO. 1

DOCKET NO. 50-346

Nuclear Regulatory Commission

- B. Clayton
- L. Engle
- C. Graves
- J. Mazetis
- P. O'Reilly
- D. Riehm

Toledo Ediosn Company

- C. Domeck
- F. Miller
- R. Sund

Babcock & Wilcox Company

- R. Davis
- J. Lauer
- C. Tally

Bechtel Corporation

D. Dismokes

The AP which results in natural circulation flow can be expressed by the fol

where AP - differential pressure available for natural circulation flow Le - vertical distance from bottom of core to bottom of temperature transition zone in steam penerator.

pe . density of cold leg water

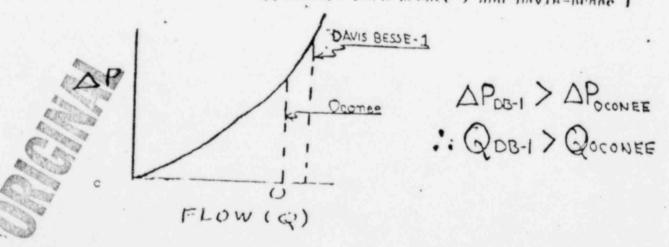
I ft - depth of temperature transfillon zone in steam generator

plm . log mean density of water

12 ft - active core length (transition rone)

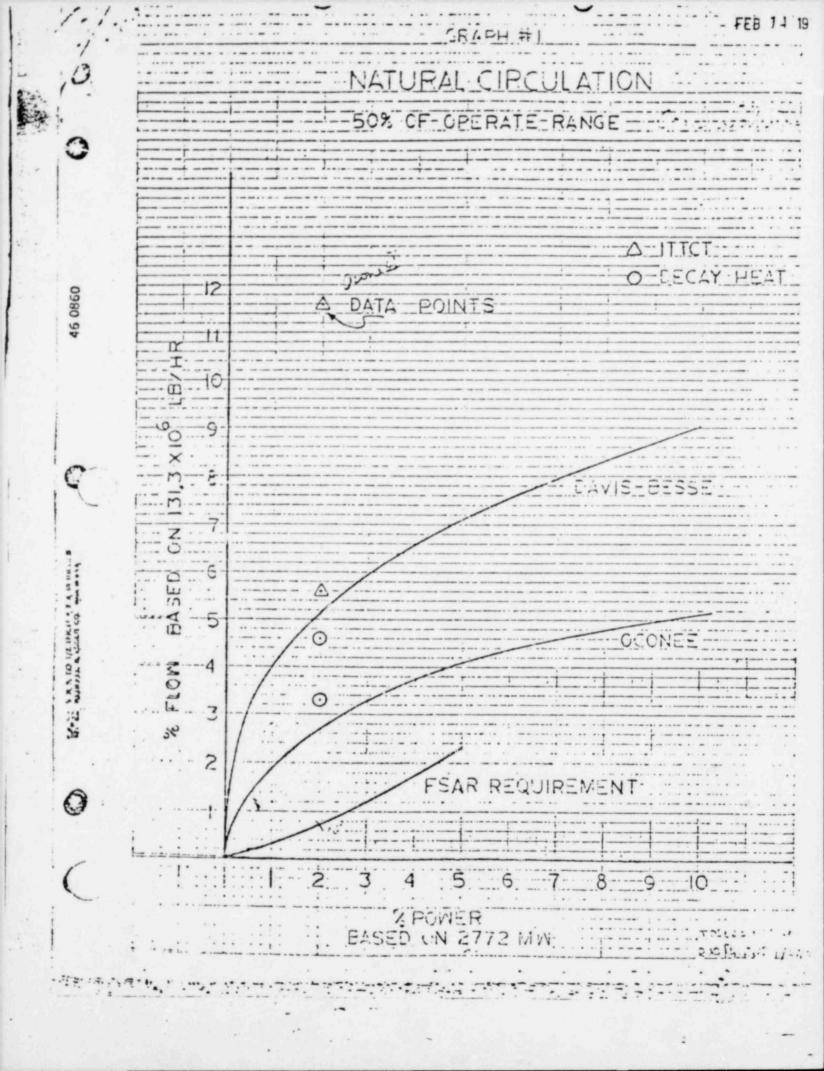
The vertical distance from top of core to top, temperature transition zone, in steam generator

ph - dennity of hot leg water


Comparing Oconee I and Davin Besse 1:

Increased
$$\Delta P = (23.6 \text{ (1)} \text{ (pr - ph)} = 23.6 \text{ (1.5)}$$

- 0.25 1b/1n2


The only difference between Oconce I and Davin Bence I is in the rained steam generators, which only tend to increase AP in Davis-Resec I and hence increase

For the system curve that applies to both Oconee I and Davis-Benne 1

Attachment 2, Graph 1, shows calculated and actually measured Oconee 1 natural circulation flows, compared to FSAR requirement. Graph 1 also shows calculated flow for Davis-Besse 1.

November 29, 1977 transient data shows that during 15 minutes that reactor coolant pumps were idle, heat was being removed (loop Tb and TC decreasing).

Babcock & Wilcox

Power Generation Division

P.O. Box 1260, Lynchburg, Va. 24 Telephone: (703) 384-5111

July 16, 1975

SOM #055 620-0014 12B13; SIP 14/028; TP

JAN 20 19

Mr. J. G. Evans, Station Superintendent Davis-Besse Nuclear Power Station 5501 North State Route #2 Oak Harbor, Ohio 43449

Subject: Justification for Deletion of the NSSS Natural Circulation Test

Dear Jack:

Our Engineering Department has completed an in depth analysis of the NSSS natural circulation characteristics of Davis-Besse Unit I. The analysis was based on the Duke Power Company Occnee I natural circulation test results and an analytical extrapolation of results by comparison of Occnee I and Davis-Besse Unit I designs. As a result of this analysis, it was concluded that Davis-Besse Unit I will exhibit more natural circulation flow than Occnee I due to the elevated position of the steam generators with respect to the reactor vessel.

In lieu of the Oconee I natural circulation test results and the analysis by our Engineering Department the following is recommended:

- 1. The natural circulation steam generator water level setpoint, Integrated Control System FW 20.4 and FW 21.9, should be reduced from 95% to 50% on the operating range instrumentation. 50% is the setpoint used in the Oconee I natural circulation test and the engineering analysis.
- 2. The natural circulation test at Davis-Besse Unit I need not be conducted per Regulatory Guide 1.68, Appendix A, Part D.la (November, 1973) which states as follows:

"Natural circulation tests to confirm sufficient cooling capacity. Comparison of adequate flow data with the performance of previously tested plants of like design may be substituted for this test."

In order to support item 2 above, the following information should be useful in deleting the requirement for a natural circulation test.

	TIV WOOD COMMOTICAL
<u>=L=L-:L-:</u>	OCODEE I MATURAL CIRCULATION
.11	TEST WITH DECAY HEAT
	The second secon
=======================================	
=======================================	
	A Loop Ourist
555	
======	
	ITTET - LANY-
550	
595	A LOOP INLET
	(WR Scale) - \
540	
EX ====	
7.1	\\\\\\
1-1-635	
	A LOOP LIMET
(20	
530	
CO.F.	
525	
1-1-1-1	
	12 14 16 18 50 52 54
	The second secon
1	
Early Services	
	The property of the second sec

Si-3 Chairman

Date

Recommended by

1. PURPOSE

The purpose of this precedure is to verify that on loss of all forced reactor coolant flow, natural circulation will begin to provide adequate core cooling for all possible levels of decay heat generation. The procedure provides two methods of measuring primary flow rate under natural circulation conditions.

The test is performed in two phases. Since under natural circulation condition To will change significantly from the value at which power range instrumentation was calibrated, it will be necessary to measure the effect of a change in To condition the indicated neutron flux. This is accomplished in Phase I. Phase II is the natural circulation test itself. With reactor power at 2 - 4% FP, Auxiliary Feedwater flow is established to the OTSG's. While maintaining the reactor critical, the operating RC pumps are tripped. When steady state conditions are established, primary flow will be measured by calculation using reactor Δ T and by measurement of loop transit time.

2. EQUIPMENT NEEDED

2 1	The second of the second
2.1	Reactimeter

2.2	Brush Recorder (6 Channel)	Equip.	No.
2.3	Digital Voltmeter	 Equip.	No.

3. REFERENCES

- 3.1 Davis-Besse Final Safety Analysis Report, Section 15.2.5.
- 3.2 Power Escalation Controlling Procedure, TP 800.00.
- 3.3 Reactor Protective System Operating Procedure, SP 1105.02.
- 3.4 Physics Test Manual (BsW) TG 000.23.
- 3.5 TECo Nuclear Quality Assurance Manual.
- 3.6 AD 1801 series on the Conduct of the Preoperational & Startup Test Program.
- 3.7 Auxiliary Feedwater System Operating Procedure, SP 1106.06.
- 3.8 Power Operations, PP 1102.04.
- S) 3.9 Davis-Besse Technical Specifications:

TS 3.10.3 Special Test Exception - Reactor Coolant Loops
TS 3.4.1 Limiting Condition for Operation - Reactor Coolant Loops
TS 3.2.5 Limiting Condition for Operation - DNB Parameters

TS 3.1.1.4 Limiting Condition for Operation - Minimum Temperature for Criticality

- TS 3.1.1.2 Limiting Condition for Operation Boron Dilution
 TS 3.7.1.3 Limiting Condition for Operation Condensate Storage Tank
- 3.10 SP 1103.15, Reactivity Balance.
- 3.11 ST 5030.11, RPS Power Range Calibration
- 3.12 TP 800.05, React vity Coefficients at Power
- 3.13 IC 2000.03, Setting RPS Overpower Trip Bistable Setpoints.
- 3.14 ST 5030.02, RPS Monthly Check

4. TIME & PERSONNEL REQUIRED

- 4.1 Each Phase of this test will require approximately 4 hours to complete. Note that this dies not include the time required to establish the required plant conditions, notably Xenon conditions, which will require on the order of 1 hours at ~5% FP.
- 4.2 Personnel Required
 - Phase I Reactor Operator at Diamond Station
 Reactor Operator controlling feedwater
 Reactimeter Operator
 Test Leader
 - Phase II Reactor Operator for Primary Plant Controls
 Reactor Operator at Diamond Station
 Reactor Operator at feedwater controls
 Reactimeter Operator
 Brush Recorder Operator
 Equipment Operator at Auxiliary Feed Pumps
 I&C Trohnicians to jumper RPS, Measure NNI voltages; etc.
 Test Leader
 Shift Foreman in Control Room

5. LIMITATIONS & PRECAUTIONS

5.1 When on natural circulation, manually trip the reactor and start one reactor coolant pump in each loop if any of the following limits are reached:

PARAMETER	HIGH LIMIT	LCM LIMIT
Indicated Reactor Power (NI5,6,7, or 8)	5% FP*	-
Reactor Coolant Pressure (PRS RC2B2, RC2A2)	2300 PSIG	1990 PSIC
Pressurizer Level (LRS RC14)	280 IN.	50 IN.
OTSG Pressure (PI SP12B or PI SP 12A)	1020 PSIG	

-

(TS)

		경기 경기 기계		IP 600.04.	
	Any I	Incore T/c (T511 - T562)		650 F	
	Th (T	T RC3B1, RC 3A1)		600 F	
	CST I	evel (Tank in Service)		_	10 FT.
*	Corre	cted (See Section 7.1)			
5.2	using	on natural circulation, munu a main feed pump if at any iary feedwater flow is lost	time an auxiliar	v feed nump i	in feedin s lost or
5.3	Do no coola	t change reactor coolant bor nt pumps are off. (TS 3.1.1	on concentration	during the t	ime react
5.4	avail heate relie	on natural circulation, pre- fore pressure control of the able are changing OTSG level r control, letdown & makeup, f. Monitor temperature and n well in advance to minimiz	e RCS will be slow using auxiliary and (in an emergoressurizer level	w at best. The feedwater, progency) electron trends and the feed and t	ne means ressurize anatic
PRER	EQUISIT:	IES			
6.1	Prerex	quisites for PHASE I.			
		The plant is at ~15% FP p	er PP 1102.04, Pc	wer Operation	ıs.
			Verified	Date	
	6.1.2	RCS boron concentration is II will be run.	+ 30 ppmb of the		
			Verified	Date	
	NOTE:	Phase II will be conducted Xe, with GP. 6/7 60-80% W	at 2 - 4% FP, ap		
	6.1.3	Feedwater demand stations I demand is on Low Level Limit	FIC ICS 32B/32A a	re in HAND.	Feedwater
			Verified	Date	
	6.1.4	Pressurizer Level is ~200' there are 2 letdown coolers	; Makeup tank 1 in service.	evel is~85"	, and
			Verified	Date	
	6.1.5	The reactimeter is set up t	o record data pe	r Attachment	1.
			Verified_	Date	

3

			Verified	Date
			-	
	6.1.7	Group 6/7 position is 70-	-80% WD.	
			Verified	Date
	6.1.8	The NSS heat balance proc checked and is computing	gram in the Plan core thermal po	t Computer has been wer accurately.
			Verified	Date
	6.1.9	The following parameters operator's console.	are on computer	trend recorders on t
		MN FW Flow (Loop 1) MN FW Flow (Loop 2) GEN. MW		F674 F682 J427
			Verified	Date
6.2	Prereq	wisites for PHASE II		
	6.2.1	The plant is in power esc Escalation Sequence.	alation testing	per TP 800.00, Power
	6.2.1	The plant is in power esc Escalation Sequence.	alation testing Verified	per TP 800.00, Power
		The plant is in power esc Escalation Sequence. The following testing has	Verified	Date
		Escalation Sequence.	Verified been completed y Coefficients a g at Power Ealance	Date at 15% FP:
		The following testing has TP 800.05, Reactivit TP 800.08, ICS Tunin TP 800.22, NSS Heat	Verified been completed y Coefficients a g at Power Ealance	Date at 15% FP:
	6.2.2	The following testing has TP 800.05, Reactivit TP 800.08, ICS Tunin TP 800.22, NSS Heat	Verified	Date Date Date Date Date
	6.2.2	The following testing has TP 800.05, Reactivit TP 800.08, ICS Tunin TP 800.22, NSS Heat TP 800.02, NI Calibra Reactor Power is at 2-4% pump and 2 RC pumps in open	Verified	Date Date Date Date Date
	6.2.2	The following testing has TP 800.05, Reactivit TP 800.08, ICS Tunin TP 800.22, NSS Heat TP 800.02, NI Calibra Reactor Power is at 2-4% pump and 2 RC pumps in open	Verified been completed y Coefficients a g at Power Balance ation at Power Verified FP per PP 1102.0 eration. The Mai S/G's is in ope Verified proaching equili- etween the start han .04% \(\) k/k.	Date Date

Heat Balance & NI Calibration (ST 5030.11, RPS Power Range
Calibration) have been completed at 4% FP at the boron concen-
tration at which the test will be run.

Verified	Date
Control and Contro	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN

6.2.6 A minimum of 47 incore thermocouples (TE 1M01 - TE 1 M14) are operable.

Verified	Date

6.2.7 Moderator temperature coefficient has been measured per TP 800.0! Reactivity Coefficients at Power, and is predicted to be no more positive than 0.0% △k/k oF at the power level and boron concentration at which this test will be run.

NOTE: The core must have been expended ~4 EFPD before the temperature coefficient is negative.

6.2.8 Pressurizer Level is approximately 150". Pressurizer & Makeup tank are within + 30 ppmb of RCS concentration. There are 2 letdown coolers in service.

Verified Date

6.2.9 The reactimeter & Brush Recorders are set up and calibrated to record data as specified in Attachment 3.

Date

6.2.10 The Plant Computer is set up to record data as specified in Attachment 4.

Ver	rified	Date
	and the same of th	

' 6.2.11 The ICS Configuration is as follows:

STATION		STATUS
HS ICS 1	Unit Master	Track
	Turbine	Tripped
HIC ICS 13	S/G - RX Master	Hand
HIC ICS 20	RX Demand	Track ·
HC NI 44	Diamond	Manual
FIC ICS 32B FIC ICS 32A	F/W Demand	Hand (0%)
HIC ICS 30	△ Tc'	Hand (50%)
HIC ICS 36A HIC ICS 36B	Main Feed Pumps (one)	Auto
FIC ICS 35B FIC ICS 35A	Main FW Valves	Auto
FIC ICS 33B FIC ICS 33A	SALPS Values	

1

	6.2.1	of RPS Overpower Tri RPS Channels. (TS 3	ip has been reset per IO p Bistable Setpoints, to .10.3)	2 2000.03, Setting 5 10% FP on all 4
			Verified	Date
	6.2.1	3 Both condensate store quality water to a le	age tanks are filled witevel of > 30'.	th secondary makeup
			Verified	Date
1 -	6.2.1	4 The Auxiliary Feedwar per SP 1106.06, Auxil up to normal operation		The Aux boiler is fi
			Verified	Date
1	6.2.1	5 Boron concentration : was completed. Batch to the Makeup Tank.	in the RCS is + 30 panb calculations have been	of that when Phase I performed for addition
1			Verified	Date
(TS)	6.2.1	6 The high flux trip po be completed within 1	ortion of ST 5030.02, RP. 12 hours of starting Pha	S Monthly Check, must se II. (TS 4.10.3.2)
			Verified	Date
7. P	ROCEDURE			
7	produc natura	ratures on indicated nece a correction to indicate al circulation test.	use I is to measure the eutron flux. This data was cated power which can be tes of 6.1 are complete.	will be used to se used during the
			Verified	Date
	7.1.2	Obtain Shift Foreman'	s permission to begin th	nis Phase.
	Time_	Shift Foreman	Verified	Date
	7.1.3	Adjust imbalance to 0	+ .5% using the APSR's.	
			Verified	Date
	7.1.4	Shift Reactor Demand MANUAL. Maintain rea MANUAL.	Station HIC ICS 20 & Dia ctor power at 15% contro	amond Sta ion to olling rods in
			Verified	Date
1	7.1.5	Station another react to control feedwater.	or operator at the feeds	vater demand stations 1 control (LJC RC-14)

7.1.6	Start the trend recorder	s on the operato	or's console.
		Verified	Date
7.1.7	Begin recording data on Begin recording data on a Obtain NSS heat balance of Record a minimum of 5 mg	Attachment 2 at calculation from	1 minute intervals.
		Verified	Date
7.1.8	Using feedwater demand st increase feedwater demand	tations FIC ICS	32B/32A in HAND, SLOWLY
	NOTE: This is an increas pressurizer level	se of only ~ 4 " ~ 25 ".	SUR level and will reduce
	Do not move control reds creasing or decreasing po	unless necessar wer.	y to turn steadily in-
		Verified	Date
7.1.9	With Tav steady, balance is the same as recorded i be necessary to adjust re to achieve desired Tav &	n step 7.1.6, 7	It may at this mint
7.1.10	Wait		
.1.10	balance from the plant condi- equals that determined in	mouter. Verify	ze & request NSS heat that Calculated MWth 20 MWth.
		Verified	Date
7.1.11	Stop recording data on the recorder to complete its	e reactimeter (' last record, the	O" Switch), allow the in resume recording data.
		Verified	Date
7.1.12	Record 5 minutes of data	on Attachment 2.	
		Verified	Date
7.1.13	Repeat steps 7.1.7 - 7.1.7 + 1 F.	12 at \sim 5° incre	ments until Tav = 559
		Verified	Date
7.1.14	SLOVLY reduce FW demand un	nuil FW demand i	s on low level limit.
		Verified	Date

	7.1.15	Return the ICS to the lin	neup specified by the Sh	nift Foreman.
			Verified	Date
	7.1.16	Stop recording data on the	he reactimeter and data	sheets.
			Verified	Date
	7.1.17	Inform the Shift Foreman	that this Phase is comp	plete.
			Verified	Date
	7.1.18	Delog reactimeter data ar power using the method or		factor for indic
			Verified	Date
7.2	PHASE	II - Natural Circulation	n Measurement	
	7.2.1	Verify that all prerequis	sites for Phase II, Sect	tion 6.2, have be
			Verified	Date
	7.2.2	Obtain the Shift Foreman	's permission to begin t	this Phase.
	Time_	Shift Foreman	Verified	'Date
	7.2.3	Start taking data on the Start the Erush Recorder		ond intervals.
			Verified	Date
	7.2.4	Manually start Auxiliary Auxiliary Fredwater Syste (HIS 107A) (C5717). With in MANUAL, adjust speed to	em, by opening MS 106 (Hi n Mode Switches HIS 5208	
		NOTE: Be prepared to add	water to the MU tank a	as required.
			Verified	Date
	7.2.5	Trip the SFRCS in the Los HIS 4869E & HIS 4870E (CS Feed Pump to its respect control in HAND (LLC RC-1	5721). This will align ive steam generator. Pl	each Auxiliary lace press. level
			Verified	Fate
	7.2.6	Slowly & evenly increase and HIS 521A to raise sto Range. The S/U Feedwater This will cause a cooldor ponding 45" drop in presentat mini-feed is in open	eam generator level to a r Valves will shut as le wn of about 90F from 543 surizer level which is a	v100" on the S/U evel is increased SCF and a corres-

TP 800.04.1 7.2.7 Maintain SG level at 100" on the SUR using the Aux FW pumps. Verify that both wire S/U and Main Feedwater Valves are shut. S the SUFP then bring on the Aux Boiler and shift the Aux steam he to the Aux boiler. Shift the Main FW pump to the Aux steam head and shift gland steam to the Aux Steam header. Decrease Main FW pump as directed by the Shift Foreman. 7.2.8 Allow temperature and pressures to stabilize and reverify the following initial conditions: 2-4% FP (Corrected*) Reactor Power (As specified in step 6.2.4) Xe Condition (As specified in step 6.2.15) Boron concentration 100 - 150" Pressurizer Level 2 LD Coolers in service Correct indicated power for temperature using correction determined in Phase I (See Attachment 8). Verified Date 7.2.9 Defeat lc 3 of flow trips in the Reactor Protective System by completin, Attachment 5. Verified Date 7.2.10 Using dig al voltmeter measure compensated loop flow voltage in NNI at commensated flow multiplier output. NNI LOCATION LOOP 1 7-6-5 LOOP 2 4-3-9 voltages o., Attachment 9. Verified Date 7.2.11 Begin trending computer data as specified in Attachment 4.

Record 5 minutes of flow voltages at 30 second intervals. Record

Verified Date

7.2.12 Trip the running reactor coolant pumps after observing the Notes of this step and step 7.2.13.

NOTE: Flow coastdown time will be approximately 30 seconds. As flow coasts down, reactor \triangle T will increase and should stabilize around 30-40°F. with flow sustained by natural circulation. With negative moderator coefficient, reactor power should be stable, but response to temperature transients will be sluggish due to low flow.

Primary temperature will tend to increase due to the reduced flow, with corresponding increase in pressurizer level.

7.2.13	Carefully monitor RCS temperatures, pressures, pressurizer level
	and reactor power. Minimize the effects of the primary temperatur
	increase by over feeding the steam generators and allowing level
	to increase to a maximum of 50% OR The primary pressure transient
	may also be mitigated by increasing letdown flow.

Manually trip the reactor and start two RC pumpsin each loop if auxiliary feedwater flow is lost or if any of the following limit: are reached:

	are reached:		
	PARAMETER	HIGH LIMIT	LOW LIMIT
	Indicated Reactor Power (NI5,6,7 or 8)	5% FP *	
	Reactor Coolant Pressure (PRS RC2B2, RC2A	2) 2300 PSIG	1990 PSIG
	Pressurizer Level (LRS RC14)	280 IN.	50 IN.
	OTSG Pressure (PI SPRB or PI SP12A)	1020 PSIG	
	Any Incore T/c (T511 - T562)	650 F	
	Th (TI RC3Bl, RC3Al)	600 F	
	CST Level (Tank in Service) RCS Tave	-	10 FT. 525°F
	* Corrected (See Section 7.1) Verified	Dat	e
7.2,14	Move control rods only as required to keep 1 & 4% FP (Corrected).	p reactor power	r between
	· Verified	Dat	e
7.2.15	Allow Th. To and BCS pressure to stabilize	e Verify tha	t'natural

7.2.15 Allow Th, Tc and RCS pressure to stabilize. Verify that natural circulation has begun by observing that reactor ΔT has stabilize in each loop. This may take up to $\frac{1}{2}$ hour. Expected natural circulation flow is on the order of 7% which will result in a reactor ΔT of about 30°F.

		Verified	Date
1			

7.2.16 Cently adjust reactor power and steam generator level to achieve stable conditions at 40% OR level and 2-4% FP corrected.

NOTE: Intermediate Range level may provide a more accurate scale for controlling reactor power.

Verified Date

7.2.17 Record data for at least 10 minutes after reactor △T and reactor power have been stabilized.

Verified	1	Cate

1

7.2.25 Manually trip the reactor. Verified

Date

1			7.2.26	Start two RC pa Feed Pump Mode and back Auxili	Switches III	IS 520B & HIS	521B (C5709	in MANUAL	
						Verified		Date	
			7.2.27	Carry out React	tor Trip Pro	cedure, EP 12	02.04.		
						Verified		Date	
1			7.2.28	As steam general and control on up to speed and	tors steam Low Level S i stop the S	down, verify Setpoint. Bri SUFP as direct	S/U Feedwate ng the runn ed by the S	er Valves open ing Main FW pu hift Foreman.	
						Verified		Date	
1			7.2.29	Return the Aux SP 1106.06, Aux	iliary Feed xiliary Fee	water System t iwater System.	o Standby O	peration per	
						Verified		_Date	
			7.2.30	Stop taking dat	a on reacti	mater, record	er and compa	iter.	
				*		Verified		Date	
			7.2.31	Remove jumpers	installed o	on RPS in Step	7.2.8.		
						Verified		Date	
(TS)			7.2.32	Reset high flux (TS 3.10.3)	trip as di	rected by PES	Test Coord	inator.	
						Verified		Date	
			7.2.33	Inform Shift Fo	oreman that	this portion	of the test	is complete.	
						Verified		_Date	
			7.2.34	Calculate natur	al circulat	ion flow per	Attachment (5.	
						Verified		Date	
	8.	ACCE	PTANCE CI	RITERLA					
		8.1	Natura: 6 equa:	l circulation fl ls or exceeds th	lowrate dete	ermined by eitspecified by A	her method : ttachment 7	in Attachment	
						Verified		Date	
(9.	RESULTS DISTRIBUTION							
		9.1	B&WS	Site Operations	Manager				
		9.2	TECO Po	wer Engineering	& Construc	tion Division			

	let up the reactimeter to		SIGNAL	
	PARAMETER .	RANGE	RANGE	TP NO.
	Generated MW	0-1000 MV	1-100 MV	22
	MU Tank Level	0-100"	-10 + 10 VDC	35
	Int. Range Flux (NI3)	$10^{-11}-10^{-3}a$.	0- ± 10 VDC	40
	Int. Range Flux (NI4)	$10^{-11}-10^{-3}a$.	0- + 10 VDC	41
	Power Range Flux (NIS)	0 - 125% FP	0 - + 10 VDC	42
	Power Range Flux (NIS)	0 - 125% FP	0 - + 10 VDC	43
	Power Range Flux (NI7)	0 - 125% FP	0 - + 10 VDC	44
	Power Range Flux (NI8)	0 - 125% FP	0 - + 10 VDC	45
	Loop 2 Th	520 - 620 F	-10 - + 10 VDG	50
4000	Loop 1 Th	520 - 620 F	-10 - + 10 VDC	51
	Press. Level (Comp.)	0 - 320"	-10 - + 10 VDC	52
	NR RCS Pressure	1700 - 2500 PSIG	0 - + 10 VDC	53 ~
	Loop 2 Tc (1-2-1)	520 - 620 F	-10 - + 10 VDC	58
	Loop 2 Tc (1-2-2)	520 - 620 F	-10 - + 10 VDC	60
	Loop 1 Tc (1-1-1)	520 - 620 F	-10 - + 10 VDC	62
	Loop 1 Tc (1-1-2)	520 - 620 F	-10 - + 10 VDC	64
	S/U FW Flow Loop 2	0 - 1.5.10 ⁶ #/Hr	-10 - + 10 VDC	70
	S/U FW Flow Loop 1	0 - 1.5.10 ⁶ #/Hr	-10 - + 10 VDC	71
	MN FW Flow Loop 2	0 - 7.10 ⁶ #/Hr	-10 - + 10 VDC	75 ·
	MN FW Flow Loop 1	0 - 7.10 ⁶ 0/Hr	-10 - + 10 VDC	76
	Feedwater Temp.	0 - 600 F	-10 - + 10 VDC	74
	Group 6/7 Position	0 - 100 %	0 - 5 VDC	3
	OTSG 2 Outlet Press.	0 - 1200 PSIG	-10 - + 10 VDC	72

יים סגנידע י

14 THE TOLEDO EDISON COMPANY POWER PRODUCTION DEPT.

TEST PEADINGS

·tation	1231 KEADINGS
icst of	. OF
Fest No.	
Pate	

Sheet No. _ 1 of 2 Page No.

ite									0030	rs	
ine								1			
-	FI SP 3B	FI SP 3A	FI SP 4B	FI SP 4A	JI 6003		T	T	1	NSS HEAT BAL	ANCE
	LOOP 1	S/U FW	MN FW	LCOP 2	GEN I	,				PLANT COMPUTER FUNCT.9 GOUP 22	
			•								
							1				
					•						
						 	1				

Test of_

THE TOLEDO EDISON COMPANY POWER PRODUCTION DEPT.

TEST READINGS

OF

Sheet	No.	2 of	2
_			

Observers ____

Pate NOTE: If Tave drops below 532°F

			reco	ord all	reading	gs at 1	5 Min.	interval	5	
Int. Range Flux	Range Flux	Range	Pwr. Range	Pwr. Range	Pwr. Range	NR O-	OP 1 To	LOC NR)P 2	
(Amps)	(Amps)	(% FP)	(% FF)	(% FP)	(% FP)	F		F		
		i								
				-						+
1										
	211									
								·	t	
		<u> </u>							1	- 12
					1	i				
		-				-				
		. +			i					
				1				i	1.0	1
i	<u> </u>	-								
					-					
										-
								-		
										-i
					!				1	
	TIUM	Range Range Flux Flux	Int. Int. Pwr. Range Range Range Flux Flux (Amps) (Amps) (% FP)	NI-3 NI-4 NI-5 NI-6 Int. Int. Pwr. Pwr. Range Range Range Range Flux Flux (Amps) (Amps) (% FP) (% FF)	NI-3 NI-4 NI-5 NI-6 NI-7 Int. Int. Pwr. Pwr. Pwr. Range Range Range Range Range Flux Flux (Amps) (Amps) (% FP) (% FF) (% FP)	NI-3 NI-4 NI-5 NI-6 NI-7 NI-8 Int. Int. Pwr. Pwr. Pwr. Pwr. Range Range Range Range Range Range Flux Flux (Amps) (Amps) (% FP) (% FF) (% FP)	NI-3 NI-4 NI-5 NI-6 NI-7 NI-8 TT4Bl Int. Int. Pwr. Pwr. Pwr. Pwr. LCX Range Range Range Range Range Range NR Flux Flux (Amps) (Amps) (% FP) (% FF) (% FP)	NI-3 NI-4 NI-5 NI-6 NI-7 NI-8 TT4B1 TT4B3 Int. Int. Pwr. Pwr. Pwr. Pwr. LOOP 1 Range Range Range Range Range NR Tc Flux Flux (Amps) (% FP) (% FF) (% FP)	NI-3 NI-4 NI-5 NI-6 NI-7 NI-8 TT4B1 TT4B3 TT4A1 Int. Int. Pwr. Pwr. Pwr. Pwr. LCOP 1 LCO Range Range Range Range Range Range NR Tc NR Plux Flux (Amps) (% FP) (% FF) (% FP) (Amps) (Amps) (% FP) (% FF) (% FP)	Range Range Range Range Range Range Range Range NR Tc NR Tc OF OF NR Tc OF

REACTIMETER & RECORDER DATA FOR PHASE II

Set up the reactimeter to record the following data:

PARAMETER	RANGE	SIGNAL RANGE	SUIP N
RCS Campensated Flow Loop 1	0 - 90.106	-10 - + 10 V	48
RCS Compensated Flow Loop 2	0 - 90.106	-10 - + 10 V	47
MU Tank Level	0 - 100"	-10 - + 10 VDC	35
Power Range Flux (NI 5)	0 - 125% FP	0 - + 10 VDC	42
Power Range Clux (NI 6)	0 - 125% FP	0 - + 10 VDC	
Power Range Flux (NI 7)	0 - 125% FP	0 - + 10 VDC	43
Power Range Flux (NI 8)	0 - 125% FP	0 - + 1.0 VDC	44
Loop 2 Th	520 - 620 F		45
Loop 1 Th	520 - 620 F	-10 - + 10 VDC	1-1-2-
Press Level (Comp.)	0 - 320"	-10 - + 10 VDC	51
NR RCS Pressure	1700 - 2500 PSIG	-10 - + 10 VDC	52
Loop 2 T _C (1-2-1)	50 - 650 F	0 - + 10 VDC -	53
Loop 2 T _C (1-2-2)		-10 - + 10 VDC	59
Loop 1 T _C (1-1-1)	50 - 650 F	-10 - + 10 VDC	61
Loop 1 To (1-1-2)	50 - 650 F	-10 - + 10 VDC	63
	50 - 650 F	-10 - + 10 VDC	65
Group 6/7 Position	0 - 100%	0 - 5 VDC	3
OTSG 2 Outlet Press	0 - 1200 PSIG	-10 - + 10 VDC	72
OTSG 1 Outlet Press	0 - 1200 PSIG	-10 - + 10 VDC	73
	0 - 100%	-10 - + 10 VDC	77
OTSG 1 Operate Level	0 - 100%	-10 - + 10 VDC	
JTSG 2 S/U Level	0 - 250"	-10 - + 10 VDC	79
OTSG 1 S/U Level	0 - 250"	-10 - + 10 VDC	78
		, 10 VIL	80

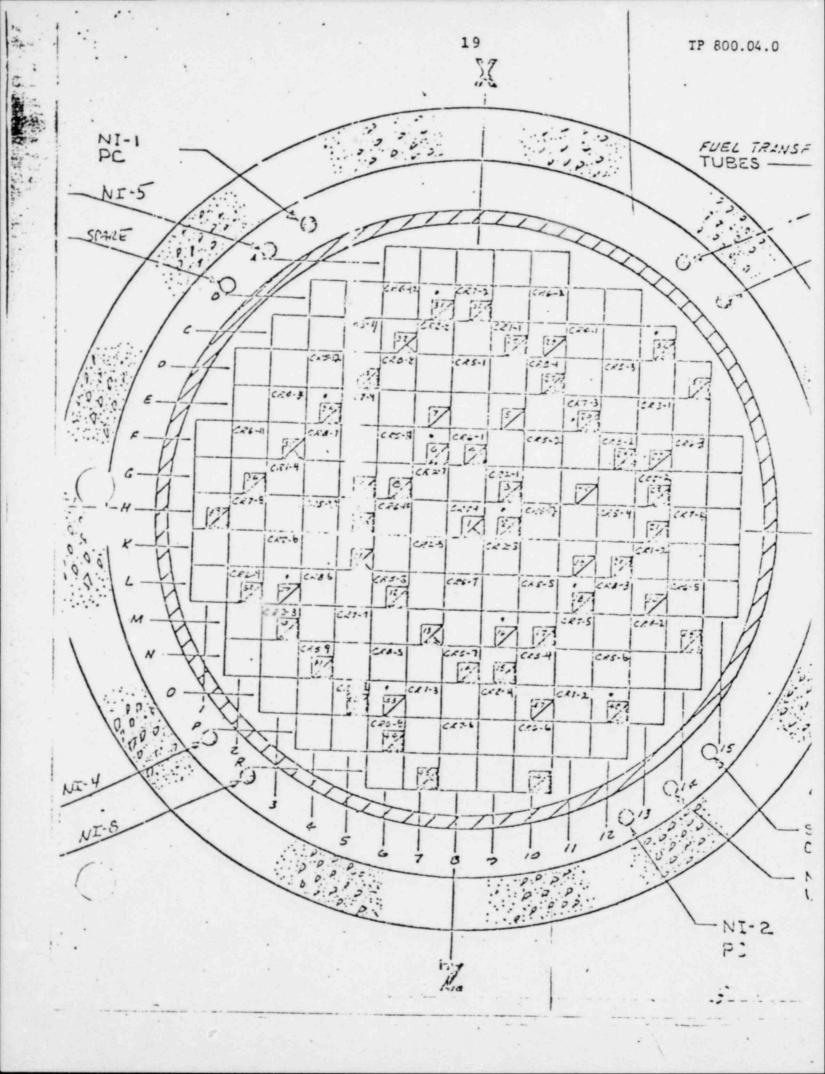
REACTIMETER & RECORDER DATA FOR PHASE II

- 2. Set up Brush Recorders as follows:
 - A. Recorder No. 1

TRACE	PARAMETER		RANGE	SUIP !
1	Loop 2 Th		520 - 620 F	50
2	Loop 1 Th		520 - 620 F	51
3	Loop 2 T _C (1-2-1)	(WR)	450 - 650 F	59
4	Loop 2 T _C (1-2-2)	(WR)	450 - 650 F	61
5	Loop 1 T _C (1-1-1)	(WR)	450 - 650 F	63
6	Loop 1 T _C (1-1-2)	(WR)	450 - 650 F	65

NOTE: This recorder must be positioned in the Control Room so that the Test Leader can see it.

COMPUTER DATA - PHASE II


- Program an alarm point for incore thermocouple temperatures T511 T562 in the plant computer with setpoint 645 F.
- 2. Place the following parameters on trend recorders on the Operator's Console:

Loop 1 Th	T 721
Loop 2 Th	T 730
Loop 1 Tc (WR)	T 781
Loop 1 Tc (WR)	T 801
Loop 2 Tc (WR)	T 821
Loop 2 Tc (WR)	T 841
Loop 1 Comp. Flow	F 727
Loop 2 Comp. Flow	F 732

3. Place the following incore thermocouples on the line printer to print at 1 minute intervals:

CORE LOCATION	P	T.	ID.	NO.
H - 9		Т	541	
F - 7		T	531	
M - 9		T	542	
L - 11		T	552	
E - 11		T	549	
L - 3		T	515	
P - 6		T	528	
C - 13			556	
• 0 - 12			555	
B - 7		T	529	
E-4	* .	T	517	
н - 5		T	521	
L - 6		T	526	
G - 11		T	550	
E - 9		T	539	
G - 2		Т	512	
N - 4		T	518	
R - 7		T	533	
N - 9		T	543	
C - 10		T	544	

(Refer to the next page for core map.)

PROCEDURE FOR DEFEATING RPS LOSS OF FLOW TRIPS FOR NATURAL CIRCULATION TEST

1. Obtain keys for RPS Calinets from the Shift For	reman.
--	--------

2. Defeat Power/Pumps trip by installing jumpers as	as follows:
---	-------------

RPS CHANNEL	LOCATICN	PINS	JUMPER INSTALLED/DATE	JUMPER REMOVED/DATE
1	1-3-8	17 - 18	/	
2	1-3-3	17 - 18	/	
3	1-4-8	17 - 18	/	
4	1-4-8	17 - 18	/	

3. Defeat Flux/Flow trip ly installing jumpers as follows:

RPS CHANNEL	LOCAT: CN	PINS	JUMPER INSTALLED/DATE	JUMPER REMOVED/DATE
- 1	1-4-14	17 - 18		/
2	1-4-14	17 - 18	/	
3	1-5-14	17 - 18	/	/
4	1-5-14	17 - 18		/

4. Lock RPS Cabinets and return keys to Shift Foreman .

1

- 1		
	Verified	Date
- 1		

CALCULATION OF NATURAL CIRCULATION FLOWRATE

METHOD NO. 1 - REACTOR AT

This method is based on the relationship between primary flow, heat input & enthal q (BTU/HR) = W. Δ h, and assumes that for the range tested, Δ h = Δ T.

1. Average compensated loop flow voltages (Vm) which were recorded on Attachment Using the average voltage for each loop, compute compensated loop flow (Wf):

	Vm	$\frac{\text{Vm} + 10}{20}$	Wf = $\frac{Vm + 10}{20}$ (90.106) 15m/hr @ 6080 Ty
.00P 1			
OOP 2			

- Delog reactimeter and everage 1 min. of RCS temperature data just prior to RC pump trip (Step 7.2.12).
- 3. Using these averaged tamperatures, determine reactor \triangle T just prior to RC pump trip (\triangle Tf):

$$\triangle T_f = \frac{T_h (1) + T_h (2)}{2} - \frac{T_c (1a) + T_c (1b)}{4} + \frac{T_c (2a) + T_c (2b)}{4}$$

$$= \frac{C_f (1a) + T_c (1b) + T_c (2a) + T_c (2b)}{4}$$

- 4. Using the reactimeter data taken after steady state natural circulation has been established (Step 7.2.17), average 10 minutes of RCS temperature data.
- 5. Determine natural circulation reactor Δ T using the data averaged in Step 4:

$$\Delta T_n = \frac{T_h (1) + T_h (2)}{2} - \frac{T_c (1a) + T_c (1b) + T_c (2a) + T_c (2b)}{4}$$

 Using reactimeter data for time just prior to RC pump trip, average the power range levels for the 1 min. prior to the pump trip.

7. Determine the average power level prior to pump trip:

8. Using the same period of time as step 4 above, average the power range levels for the 10 minute period:

9.	Using the	correction factors	developed in Section 7.3	, correct the power rang
	levels in	Step 8 to the Tc P	rior to the pump trip.	

NI5 NI6 NI7 NI8 % FP

.10. Using the corrected power levels in Step 9, determine the average power level after natural circulation flow is established:

$$P_n = \frac{N15 + N16 + N17 + N18}{4}$$

11. Calculate natural circulation flowrate:

$$W_n \text{ (1bm/hr)} = \left(W_f \text{ (Loop 1)} + W_f \text{ (Loop 2)} \frac{\Delta T_f}{\Delta T_n} \right) \frac{P_n}{P_f}$$

12. Calculate natural circulation flowrate as % of 100% flow at 608°F:

$$\frac{W_n (100)}{131 \cdot 10^0} = \frac{\%}{131 \cdot 10^0}$$
 % Flow

METHOD 2 - INDUCED TEMPERATURE TRANSIENT TIME

This method was a direct measurement of the time for a temperature perturbation to travel from the $T_{\rm c}$ instrument to the $T_{\rm h}$ instrument.

 Plot the following reactimeter data taken during steps 7.2.18 - 7.2.22 versus time:

.LOOP 1: Th (1), Tc (1a), Tc (1b)

LOOP 2: Th (2), Tc (2a), Tc (2b)

2. From the plots in step 1, determine the time between the temperature drop at the T_c instruments and the T_h instruments in each loop.
(NOTE: This time should be on the order of 1 minute.)

△t (100p 1) = Min.

△t (loop 2) = ____Min.

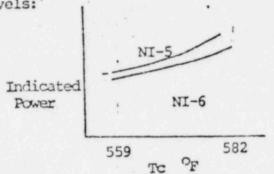
3. Calculate the natural circulation flowrate using each loop Δt :

	Δt (min.)	$W_n = \frac{44,040}{\Delta t}$	(Gal/min)
LOOP 1			
LOOP 2			

Where 44,040 - Volume of RCS (in gal.) between Tc & Th instruments.

4. Average the flowrates obtained using Loop 1 & Loop 2 △t:

$$\frac{W_n(1) + W_n(2)}{2} = W_n(av.) - GPM$$


5. Determine natural circualtion flow as a % of rated flow:

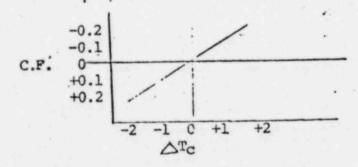
$$\frac{W_n \text{ (av.) (100)}}{352,000 \text{ gpm}}$$
 % flow

DETERMINATION OF CORRECTION FACTOR FOR INDICATED POWER

- 1. Using reactimeter data from Section 7.1, select temperature & NI Power Data for each temperature plateau of Section 7.1. Be sure to select data where power level by heat balance and feedwater flows are constant. This has been "marked" on the reactimeter data file by starting a new block of data when conditions have stabilized (See step 7.1.11).
- For the selected data records, average the four Tc values to obtain an average Tc at a given time.

3. Plot the average Tc for each plateau versus the corresponding NI3, 4, 5, 6, 7, 8 flux levels:

Indicated Power VS.
Avg. Tc for NI-5, 6


EFPD

GP 6/7

Boron Conc.

RC Press

- 4. For each detector in Step 3, linearize the data and find the slope of the line which will be the correction factor for that detector.
- 5. Using the correction factors from step 4 above, construct charts for operators use showing correction to be applied to indicated power V. To:

Make chart similar to this. Since all detectors should be approximate ly the same, it should be possible to make one chart for all power range detectors and one for intermediate range.

6. The correction factor will be used in Phase II to correct indicated power:

TP 800.04.0

THE TOLEDO EDISON COMPANY POWER PRODUCTION DEPT.

Sheet No. 1 of 1
Page No. _____
Observers _____

rst No.								Observe	Observers		
ate											
me											
Int. No.	DVM	DVM							I	T	
	NNI NNI	Loop 2 NNI								7	
Time	Camp. Flow	Camp.									
	(VOIES)	(VOILS)								T	
									!		
					-	Ţ				-	
						İ					
			!		 	ļ	<u></u>		-	!	
						1					
						+	i			1	
										-	
					<u> </u>	 					
					-	1				-	
										1	
			-+	-	-	-				:	
				-						!	
					<u> </u>					-	
						1					
	1					†					
			-1-	-	-		-			-	
						2.511.0					
										-	
1											
				-						-	
										L	
				1		<u> </u>			- :		
									- <u>;</u>		

Babcock & Wilcox

Attachment 1: Test Results Summary: Natural Circulation in Oconce I Type
Plants, "A Description of Measurements and Summary of Results'
March 21, 1974, as evaluated by B&W Nuclear Service. Natural
circulation steam generator level approximately 50% on the
operating range instrumentation.

Attachment 2: Natural Circulation

Graph 1: Flow vs Reactor Power (Decay Heat) @ Natural Circulation Level of 50% on the operating range instrumentation "Conservative analytical results".

Graph 2: Same as Graph 1, except curves represent "Realistic analytical results".

These two graphs represent our Engineering Department's evaluation of charact istics for Davis-Besse Unit I as compared to the Oconee I natural circulation characteristics normalized to Davis-Besse power and flow parameters. Graph I represents the conservative characteristics in which all heat transferred from the Reactor Coolant System to the Secondary System is assumed to occur in the lower portion of the steam generator, in the vicinity of the lower tube sheet Graph 2 represents the more realistic situation for it assumes that all heat transferred from the Reactor Coolant System to the Secondary System occurs in the vicinity of the auxiliary feedwater nozzles where feedwater is introduced to the steam generators. Both graphs are based on a natural circulation leve of 50% on the operating range and as indicated the more realistic characteristics, Graph 2, reflect more natural circulation flow than the conservative results shown in Graph 1.

In each case the natural circulation flow at Davis-Besse Unit I will always b greater than that at Oconee I, a plant of like design, for the corresponding power conditions.

I hope that this information is sufficient for deletion of the Natural Circu tion Test and for making the necessary corrections to the FSAR. If you have questions, please contact Fred Faist.

Yours truly

R. J. Baker, Jr

Site Operations Manager

RJB:FRF:nlf encl.

cc: G. M. Olds

E. J. Coppola

J. A. Lauer

R. L. Pittman

T. F. Scott

E. L. Logan

E. R. Michaud

E. C. Novak, TECo

J. D. Lenardson, TECo

T. D. Murray, TECo

ATTACHMENT 1

Natural Circulation in Oconee 1 Type Plants

Prepared BY:

A. Robeson Officer Plant Performance Service

Reviewed for Accuracy:

S.P. Milan

NATURAL CIRCULATION IN OCONEE I TYPE PLANTS

Summary

Adequate natural circulation in the reactor coolant system assumes heat removal from the reactor core upon loss of all reactor coolant pumps. Babcock & Wilcox nuclear steam systems are designed to provide natural circulation, and safety analysis verifies that in the natural circulation mode, more than adequate cooling is provided for the reactor core. As indicated in the Oconee I FSAR, the system is designed to provide natural circulation flow, at 1% decay heat, greater than that required for heat removal by a factor of five. Natural circulation tests performed on Oconee I, using two independent methods, yielded a minimum factor of ten. Although normal reactor coolant flow sensors are not intended to read flow rates in the range produced by natural circulation, a flow rate in agreement with test measurements was indicated in the control room. Thus, analysis and experimental measurements have verified that Oconee I-type plants are capable of adequate natural circulation flow in the reactor coolant system upon loss of all reactor coolant pumps.

Method of Measurement

The basis for measurement of natural circulation is determination of the reactor core transit time for a temperature transient, the "induced temperature transient circulation time (ITTCT). Decay heat from the reactor core provides the flow, and, prior to the measurement, the reactor is operated at power for a time which will insure that at least a 1% full power decay heat level will be present during the first hour following reactor shutdown. The once-through steam generators (OTSG) are operating at a level of approximately 50%, and the reactor is brought to hot shutdown condition with one reactor coolant pump (RCP) operating in each loop. The main feedwater pumps are stopped and the level in the OTSG's maintained at 50% by the emergency feedwater pump through the auxiliary nozzles.

The remaining two RCP's are tripped, and the core outlet temperature allowed to level off, indicating a stabilized natural circulation flow. The time required is about one-half hour. When natural circulation is established, a temperature drop of about 10 degrees is produced in the core inlet temperature from a rapid reduction in header pressure by opening the steam bypass valves. A measurement of the time between the break point in temperature at the cold leg and that at the hot leg, determines the circulation time.

The volume and weight of water between the two temperature measuring points and the observed transit time are the parameters necessary to determine the natural circulation flow (NCF):

$$NCF - \left(\frac{M}{ITTCT}\right)$$
 (1)

where: M - Mass of the reactor coolant between cold and hot leg RTD's at the time the ITTCT is measured in 1bm.

ITTCT - Induced Temperature Transient Circulation Time in hours.

. An alternate value for the natural circulation flow is obtained by using a calculated value of the decay heat source in the reactor at the time of introduction of the temperature breakpoint. Using a calculated decay heat curve and the recent power history of the plant, a value for the decay heat generated by the core for any time after shutdown can be obtained.

The calculated value of Q, the decay heat generated by the core (Btu/hr), permit the natural circulation flow (NCF) to be calculated by:

$$NCF = \frac{Q}{C \times (T_h - T_c)} \qquad (2)$$

- Calculated value of decay heat at time of ITTCT measurement.

- Specific heat of reactor coolant in Btu/lb F

The Temperature of hot leg at time breakpoint occurs at cold leg.

· Experimental Data

The initial experiment to measure natural circulation flow with decay heat was conducted at Oconee I on November 4, 1973. The results showed that there was adequate natural circulation, but due to problems with data retrieval, no accurat value for TTTCT could be established. A second experiment, on May 2, 1974, yield .own below.

Natural circulation measurement using Equation (1):

M - Mass of reactor coolant between cold and hot leg RTD's - 254,541 1bm

ITTCT = 1 min. (Graph 1)

NCF =
$$\left(\frac{254,541}{1}\right)$$
 x 60 min/hr = 15.3x10⁶ 1bm/hr @ 1.05% Decay Heat

The pressure transient which produced the temperature drop is shown in Graph 2.

The sharp temperature decrease (breakpoint), used as a timing indicator to measure ITTCT, produces an increase in natural circulation flow which is included in the above value of NCF. A rough correction can be made by using the results of a similar experiment performed at zero power, beginning of life (May 1, 1973) when the decay heat was essentially zero. Graph 3 shows the result of a measureme yielding an ITTCT = 4.0 min. The flow rate corresponding is then:

NCF (No Decay Heat) =
$$\left(\frac{256,947}{4.0}\right)$$
 x '60 = 3.85×10⁶ 1bm/hr

Pressure and temperature conditions were not identical in ...