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LIGHT WATER REACTOR SAFETY RESEARCH PROGRAM
QUARTERLY REPORT

1. Mbolten Core/Concrete Interactions Study

1.1 Summary

The Molten Core/Concre‘e Interactions Study was initiated on July 15, 1675, to provide a
qualitative, extensive exploration of the phenomena associated with contact between molten-core

materials and concrete, The experimental elements of this study are divided into four categories:

a, Deposition of Corium-type melts onto concrete,
b. Kinetics and stoichiometry of the thermal decomposition of concrete,
¢, Response of concrete to high-heat fluxes at one surface,

d, Simulation experiments that explore phenomena at the interface

between a melt and a decomposing solid,

When experimental results have been incorporated in a computer model, a scaling analysis will be
made, This will establish scaling parameters for the system and identify key elements of the meltl

vnncrete interaction, A complete project description of the study was issued in December 1915

During this quarter, development of the small-scale test chamber continued with the addition
of instrumentation, Aerosol detectors, gas flow-rate measurements, and gas-phase temperature
measurements have been incorporated, These devices will significantly increase the useful data
from each test, In addition, a Corium A+R thermite has been successfully developed which includes

fission product simulants,

Data reduction and interpretation of the large-scale tests continues, The metal slug used in
one of the tests was successfully sectioned, revealing the internal structure and the location of the

various melt constituents,

Work on the heat-flux experiments includes a reporting of the measurements of erosion and
some preliminary insight into the effects of heating environment on erosion rate, Detailed analysis

of the its is well under way and a draft report is essentially complete,

An improved version of the melt/concrete interaction model INTER has been distributed to
all known users, Work is progressing on the heat-transfer model for the melt/concrete interface

and on the m=tal oxidation models,



e e

PpeeSSENE T NN NSNS

1,2 Small-Scale Melt/Concrete Interaction
Tests (D, A, Powers)

The containment fixture successfully tested earlier for controlling the interaction hetween
concrete and melts generated m=tallothermically has been upgraded to include a wide variety of
instrumentation, A photograph of the assembly is shown in Figure 1 with a key to the symbols
listed in the NOTES, Instrumentation to monitor the nature of the melt/concrete interaction includes:

a, Acoustic penetration sensors

b, Concrete temperature sensors

¢, Concrete displacement gages

d, Aerosol collectors

e, Aerosol detector

f, Hygrometer

g. Gas sampling apparatus
h, Gas pressure sensors
i, Gas flow sensors

j. Sound recorder

Aerosol collection is based on the aerodynamic diameter of the particulate material, Collec-
tion is accomplished by inertial cascade impaction on an eight-stage collector, Size fractionation

of this device oo curs over the range of about 34 to 0,5 u,

Aerosol detection is done by light scattering between an incandescent source and a photovoltaic
receiver, Integration of the detection signal and normalization with the aerosol collection results

allow aeroso] generation rates to be determined,

Gas flow measurements are made by monitoring the pressure drop across a laminar flow
element, Clogging of the element is prevented by a Pyrex glass wool total=filter stage immediately

in front of the device,

Temperature measurements of the gas stream are monitored by thermocouples, These

sensors are equipped with stainless-steel shields to limit radiant heat losses,

The hygrometer was included in the instrumentation because of the difficulty of monitoring
the water content of the gas samples extracted during the tests, The device operates on a capaci-
tance principle with an aluminum oxide element, The sensing head is shielded with fritted stainless

steel, Other devices in the lixture have been previously described,
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Corium melts to be used in the small-scale experiments have been tested, The reactive
mixture has the composition:

|
g

| U ke wsnrneion-df; & Wio

1 P I T e———— § 2]

)

: Cl‘oa """"" SRS EE N 7.8 W’O

I

" NiQ  =meeeene cmmemmmaen 2.3wlo
L e “---= 23, 0wlo

Type 304 stainless -
steel rowder =--==-=smese- 7.5 wlo

The product of reaction has approximately the Corium A+R composition if stoichiometric and

complete reaction is assumed:

Mo wamenenydeniaennmi) 53,9 w/o

Stainless steel
(18 w/o Cr, 8 w/o Ni,
balance Fe) ~===-ccmenceax 30,0 w/o

The reaction mixture is also charged with fission product modes, Ideal melt compositions,
that is, compositions assuming stoichiometric reactions, are listed in Table I, Strontium and
cesium uranates rather than the respective oxides were included in the charge to avoid the hygro-
scopic and carbon-dioxide-absorbing character of the oxides, The uranates were prepared by

firing stoichiometric mixtures of the hydroxides and uranium dioxide (UOQ ) in air at 700°C for

. 2,2
24 hrs, The fired mixtures were crushed and refired two additional times,

. 1.3 Large-Scale Melt/Concrete Interactions
(D, A, Powers)

A metal slug extracted from the crucible used in test .SB-2 is shown in Figure 2, This slug
was cut, with much difficulty, to show the internal structure of the solidified metal, This sectioned
metal after abrasive polishing is shown in Figure 3, The metal is compact at the bottom with few

voids or inclusions, Voids appear in the metal about midplane of the lug and become progressively
more numerous toward the top of the slug, Inclusions which appear to be solidified slag are found
primarily only in the top 2 in, of the metal, These inclusions were the source of difficulties en-

countered in cutting the metal, These inclusions suggest that the surface of the melt was vigorously

agitated during solidification, but the dramatic density differences between slag and metal prevented
extensive mixing of the two phases, Were the slag composed of more dense constituents, such as

('rzoa or ”02' more intimate mixing might have occurred,

10



The ¢ross section shown in Figure 3 demonstrates the inadequacy of making small incisions
or drillings to determine the quality of solidified melts, The complexities of the structure are
typically deep within the metal while metal near the surfaces of the slug is fairly compact,

TABLE 1

Ideal Melt Compositions

Species Steel Melt Corium Melt
vo, 2,11 51,8
Z!‘O2 0,92 15,48
g 0 5.4
Fe 51,0 22,2
Ni 0 2,4
A 1203 41,3 0.0
SrO 0.36 ‘ 0,66
('520 0,32 0,21
Mo()3 1,05 0,72
(‘e()2 0,92 0,64
1.3203 0,92 0.64
.‘sn()2 0,92 0.64

11
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1,4 Melt/Cosucrete Model
. (W, B, Murfin)

A new version of the INTER code, designated INTER1, has been distributed to all users,
This version corvecis some programming errors that had been made in the previous version;
however, the model is similar to *hat previously reported, This version has been extensively

exercised in a study of containment meltthrough for both PWR's and BWR's,

A need has been seen to include some alternate heat-transfer models in addition to the
empirical model currently employed, Models being investigated include a vapor film model based
on Berenson's film boiling analysis and a discrete bubble model, It would also be useful to revise
the gas/metal reaction model, The oxidation of iron and nickel should be dependent on the Hzlﬂzo
ratio, This dependence is not specifically included; however, the system of reaction preferences
in . = model suppresses the oxidation of nickel when Zr and Cr are being oxidized, at which time
the "2" 3220 ratio is high, Thus nickel oxidation is somewhat slowed, However, the rate of iron

oxidation is too high and should be similarly suppressed,

It would also be helpful to users to be able to determine rationally the proper time step,
Because of the exireme nonlinearity of the code, this will have to be based on numerical experiments,

1.5 Response of C'ccrete to High-Heat Fluxes
(J, F, Muir)

The response of concrete to severe thermal attack on one surface is studied while uncoupled
from the overall molten core/concrete interaction situation, Primary emphasis is on defining the
mechanism and rate of surface erosion, and the effects thereon of aggregate material and size,
heating environment, material removal mechanism, and conduction of heat into the concrete through
exposed reinforcing rods, Activity since the last report focused on completion of the posttest

surface erosion measurements and reduction, plotting, and analysis of the data,

AMicrometer measurements were made on 16 of the 19 plasma-jet test samples and on 9 out
of the 12 radiant-heat test samples to determine eroded surface profiles and the overall erosion of
the concrete, Hydration and carboxylation of the limestone samples following the tests caused the
initially hard eroded surfaces to turn to a soft powder to a depth varying from about 0,3 to 2,0 cm
below the original posttest profiles, Also during the posttest period, the solidified melt layer
covering the surfaces of the basalt samples tested in the radiant heat facility loosened and, in most
cases, fell away or could be easily removed from the samples, As a result, surface erosion
measurements were made, where possible, both before and after these occurrences, For simplicity,
both types of oceurrences will be referred to as 'hydration”’ and the erosion data designated as either
"hefore hvdration or "after hvdration’’, In those instances where neither phenomenon occurred
{i,e,, for the basaltic samples tested in the plasma-jet) the erosion data are designated 'no hydra-
tion"', Wnen surface degradation did occur, all loose material was scraped off the samples with a
blunt instrument prior to making the "after bvdration' measurements,

13



l Average overall erosion depths were determined from the posttest erosion data for each set
of profiles (i, e,, "before hydration”, "after hydration", or "no hydration") for each sample for
which posttest measurements vere made, This was accomplished by folding the various profiles
of each set about the sample centerline and superimposing them on each other along one radius,
The average value for the set was subsequently determined by passing a straight line through
an appropriate portion of the profile and perpendicular to the sample centerline, For the plasma~-
jet samples, the portion selected was the relatively flat region on top of the central hump (i, e, , in
the stagnation region of the jet), while for the radiant-heat samples, s much of the eroded surface
as possible was selected, The results are summarized in Table II (no average erosion depths were
obtained for the samples containing reinforcing rod), The uncertainty in the average overall surface
erosion depth is estimated to be the greater of +0, 05 ¢m or #5% for all samples tested,

5
|
|
TABLE 11
Summary of Average Overall Erosion Depths

Average Average Erosion (cm)
Measured
Test-Sample Type of Heat Flux Test Time No Hydration or After
; No, Concrete (W/ vmz) (min) Before Hvdration Hydration
% P3-14 L, F 243 2.42 1,67 1,81
P5-18 L, F 121 3,58 . 0,93
P6-15 B, F 274 2,75 2, 30 __we
P7-28 B, C 121 3,90 2, 00 __ ua
Po-10 .8 120 3,40 0, 41 0, 84
| P10-10 L, F 270 1.77 1,19 1,28
'p P11-34 B, F 124 3,43 0, 64 _ ux
‘ P12-27 B, ¢ 275 1.78 1,78 e
l P13-11 P 201 1.77 1,38 1,55
~ P14-20 L, F 134 2,07 0, 10 0,50
E P18-20 B, F 302 1.05 1,17 .
| P10-30 B, F 233 1,73 2,03 e
|
i RH2-6 L0 116 5.10 r s 1,03
l RH3-15 L, F 118 1,86 Fote, 1,40
| RH4-25 B, C 105 8,33 e 1+ 2,22
| RH7-4 1, C 105 8,56 2. 66 3,07
| RH8-31 B, F 104 8,05 2,21 2,50
RH10-26 B, C 104 11,17 2.13 2,51
RI11-16 L, F 32 59,8 -0, 11 1,74
RIT12-32 B, F 64 20,8 3,10 4,00

Hydration occurred and surface ¢ rumbled prior to making "Before Hydration' measurements,
No Hydration occcurred,

L. = limestone, B - Bagalt, I - Fine, C - Coarse

14



\ clearer insight into the dependence of concrete erosion on heat-flux level is provided by
Figure 4 which presents the tabulated average overall erosion depths as a function of test time,
average measured heat flux (determined from calorimeter data), aggregate material and size, and
test facility, The dashed lines, which represent constant erosion rates, were drawn so as to
generally bracket the ''no hydration' or "before hydration' results for the four nor.inal heating
conditions, Except for the two lowest heating conditions (at which there was only one test cach),
the results generally lie within the boundaries indicated, The two most noticeable exceptions to
this are the values for the plasma-jet test samples P9-10 and P14-20, Both of these samples
experienced very little erosion, Since the average erosion before hydration amounted to no more
than 0, 16 and 0, 10, respectively, of the maximum aggregate dimension, they are probably not
representative of the long-term hehavior of each concrete during ablation to depths of the order

of, or several times, the characteristic aggregate dimension,

TEST TIME, min

Figure 4, Summary of Average Overall Erosion Results

The overall ercsion obtained during the tests ranged from essentially zero (at the lowest heat

flux condition) to a maximum of about 3 cm (before hydration) with the bulk of the data falling

between about 1 and 3 em, The corresponding constant erosion rates are seen to vary from zero to

a maximum of approxima

No appreciable melting or erosion, of the concrete was experienced during the hour-long
radiant heat test at this heating condition,
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Average overall erosion rates were computed from the posttest surface erosion data by
dividing the "no hydration'" and "'before hydration” average erosion depths by the corresponding test
time (i, e, , the values in columns 5 and 4 of Table II, respectively), In the case of the four test
samples for which hydration and surface crumbling occurred before any surface erosion measure-
ments were made, average 'before hydration' depths were estimated based on the "after hydration'
measurements for these samples and differences between the "before’ and "after hydration”

measurements for like samples exposed to similar heating conditions,

These results are presented in Figure 5 versus the average measured heat fluxes. The
latter are indicative of the heating environments provided by the facilities rather than the heat
fluxes into the concrete samples, Erosion rates are presented for ail but test samples P9-10 and
P14-20 for which the ratios of average erosion to maximum aggregate dimension are too small for
the results to be considered meaningful, The dashed lines erclosing the data are included to
illustrate the trend of increasing erosion rate with heat flux noted above and to indicate the overall

scatter in the results (from approximately 15 to 25 cm/hr),

AGGREGATE MAXIMUM
MATERIAL SIZE, cm

LIMESTONE 2.5 © HIGH PRESSURE
LIMESTONE 1.0 @ AIR TEST GAS
BASALT 29
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100 -

opb 0o O
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%F  NO FLAG - BEFORE HYDRATION - -~ a
OR NO HYDRATION
FLAG - ESTIMATED BEFORE ~ o o -
HY DRATION -~ -

AVERAGE OVERALL EROSION RATE, cm/hr

e 1
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AVERAGE MEASURED HEAT FLUX, Wiem?

Figure 5 Variation of Average Overall Erosion Rate with
Measured Heat Flux



Since differences between the points for the *wo facilities and for the different concrete types
are of the same order as the uncertainties in the results, the effects of heating environment and

aggregate material and size on erosion rate cannot be evaluated from these results,

Attention is directed to the fact that the above results are applicable only to the conditions
and environments of the present experiments (detailed descriptions of which are contained in
previous quarterly reports 1-4), Extrapolation to other situations outside the regimes of the

experiments should be undertaken with considerable caution,

Analyses of the net heat fluxes to the melting concrete surfaces and of the in-depth tempera-
ture data are almost complete, A comprehensive topical report on the concrete heat-transfer

experiments is in draft form,

17



e

e e e e e e I e e

2, Steam Explosion Phenomena (L., S. Nelson and L., D, Buxton)

2,1 Summary

A summary of the primary accomplishments during this quarter is given below:

a, The parametric variations initiated last quarter with "oxidic" Corium-E simulant trig~

gering experiments were continued this quarter, as follows:

(i)

{ii)

(iif)

The effects of initial composition of the oxide melt on steam -explosion
triggering were studied further as a function of the initial atom percent

of oxygen, holding the iron:zirconium:uranium atom ratio constant, In

the previous quarter.5 conipositions with 62, 5 aiom percent and 61, 5 atom
percent initial oxvgen gave rise to steam explosions, fine fragmentations,
and interaction-generated pressure pulses with high probability, Melts
which initially contained only 53, 2 atom percent oxygen did not show steam
explosion triggering activity, In this quarter, we studied two compositions
intermediate between these, 59, 1 and 56, 4 atom percent initial oxygen,
The material with 59, 1 atem percent showed fine breakup and produced
mild pressure pulses, while the 56, 4 atom percent oxygen material frag-
mented in only one experiment out of seven and never yielded an interaction-

generated pressurization,

The effect of increased water temperature was studied by flooding the known
explasive, 61,5 initial atom percent oxygen-containing Corium-E simulant,
with 333 to 343 K water, No explosion or fragmentation could be detected,
However, it is not certain whether the melts were of sufficiently high tempera-
ture, Also, with the increased water temperature, the mechanics of flooding

were slightly different and the boiling films would be expected to be thicker,

The effect of the mode of pressure transient introduction was studied further
by use of the beneath-the-earth detonator-projectile combination, Several
samples of the il 5 initial atom percent oxygen-containing Corium-E simulant
were flooded with =293 K water and the pulse from the projectile applied at
times bracketing the time of suspected greatest explosivity during the flooding,

No explosions or fragmentation were recorded in these experiments,

b, Debris analysis was continued on one of the specimens reported on previouslys which

exploded (62, 5 initial atom percent oxygen-containing Corium-E simulant), It was shown



that the finer sieve fractions contain mostly the nonspheroidal debris, the intermediate
size fragments are mostly spheroidal, and the largest fragments are jagged and often

nonmelted material,

. Some exploratory melting experiments were performed with fully oxidic Corium=A, both
in the Centorr and the floodable arc-melting apparatus, Melting in argon and subsequent
cooling were performed, but flooding was not attempted, In addition, uranium dioxide
was subjected to the conditions of arc-melting, The melting was poor, with considerable
vaporization and wall deposition, The uranium dioxide behaved much like the metallic

Corium=~E reported previously,

d, Several triggering experiment apparatus improvements wer: worked on, These include
installing the new hot water system, doing further v ork with the projectile-minidetonator
pressure transient generator, and experimentation with time encoding of the tape deck

and high-speed camera records,

e, Preliminarv analyses of containment breaching by steam-explosion generated missiles
were performed during the gquarter, Both large missiles (such as the reactor vessel
head) and small missiles (such as pipes and rods) were considered, There were no
indications in the analyses that such missiles could not penetrate the containment, but

the analyses were admittedly fraught with uncertainties,

f. Two papers on steam-explosion triggering were presented at the American Nuclear
Society 1977 annual meeting in New York,s' . A rough draft of a document on the need
and scope of scaling experiments was submitted to the Fuel Behavior Research Branch,
Oftice of Nuclear Begulatory Research, U,S, Nuclear Regulatory Commission for

&
comment.
2,2 Experimental Apparatus

Imorovements were made on the upward-driven projectile apparatus discussed briefly in the
previous quarterly report.3 These consisted mainly of improvenents in the mode of recording
velocity information for the projectile, In that regard, a dual-beam, dual-time-base oscilloscope

was installed to record the wire-clipping information,

\ hot water svstem was mstalled to allow higher temperature water for the triggering experi-
ments, The hot water svstem consisted of a 1650-W, 6-gal-capacity hot water heater, a circulating
pump, and a pair of solenoid valves in both the inlet and outlet lines to the outer chamber of the arc
melting/flooding apparatus, [n use, the water is brought to a predetermined temperature and just
prior to the experintent is circulated through the outer chamber of the arc melting/flooding

apparatus, A few tenths of a second prior to sleeve release, the solenoid valves in both the inlet

19
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and outlet lines are closed off; afterward, water is no longer circulated, in order to preserve the
debris which may form, Using this system, it has been possible to flood the melts with 333 to 343 K

water,

The hot water system was built with a simple water overflow outlet standpipe in the outer
chamber to adjust the maximum water level, The height of the standpipe was chosen to achieve a
flooding water volume identical to that of the previous cold water experiments, Unfortunately, the
standpipe used did not have sufficient capacity to carry *he excess water away rapidly enough,
nstead, the hot water actually filled the outer chamber completely, with the circulation then being
controlled by the pump pressure, Consequently, the flooding for the hot water experiments was
perhaps different from that for the cold water experiments because of both the larger total quantity
of water involved and the possibility of a slightly elevated system pressure, This is in addition,
of course, to any possitle differences caused by changed film boiling characteristics as the water

temperature increased,

2.3 Instrumentation and Diagnostics

Lffort was initiated this quarter on setting up an Ampex high-speed (120 ips), 14-channel,
Al nagnetic tape deck for simultaneous recording of various data associated with the steam-explo-
sion triggering experiments, The data are ultimately intended to include the pyrometer and thermo-
couple outpit, pressurization signals from the multiple lithium niobate transducers, and initializa-
tion pulses from *he transient generator circuit, In addition to the experimental data, a common
time code is to be applied to one channel of the tape record using an IRIG-A time code generator,
The generator to he used produces hoth a modulated 10-kHz sine wave signal for FM tape recording
and a train of de pulses containing the same information, The train of de pulses can be used to
drive a light-emitting diode (LED) in t}.. high-speed camera which will thus encode the film edge,
The time code application to both tvpes of records allows absolute time cross referencing of all

data, The svstem is not vet implemented completely because of signal conditioning problems,
Further exploration of the possible use of high-speed digital oscilloscopes was also carried
out this quart: r,
2.4 Results of Triggering Experiments
As in previous quarterly reports, the results of the individual steam-explosion triggering

experiments are presented in Table lII, This is a summary of all experiments done during this

quarter,
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Summars of Resuits of Triggering Experiments

TABLE W
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2,4, 1 Effects of Composition on Steam-Explosion Triggering

To extend the work on the effect of the initial oxygen content of the Corium-E simulants which

as reported last quarter, two new intermediate compositions have been studied, both interacted
with 283 to 303 K water,

summarized in Table IV,

TABLE 1V

Corium Simulant Compositions

The compositions of all the various Corium=-E simulants used to date are

Metal Atom
Weight Percent Total Atom Percent Percent
10, | 2 ‘e | "1 O |2Zr | Fe | U | Zr | Fe
Composition U308 l.O2 Zr ZrO2 Fe Pezos U ot

Metallic Cortum-E | -- {35,0]/10.0] -- 55 - 8,74(17,49| 7,.30(66,39(10,59| 8,95/8). 46
Oxidiec Corium-E
with 62, 5a/o oxygen| 28,3| ~- | --1 10,5 -~ 61.4 | 3.96|62,51| 3,34|30,1910,55] 8,92|¢0,52
Oxidie Corium=E
with 61,5a/o0 oxygen| =-- 127.6] --| 10,7| -~ 61,8 | 4,09/{61.51| 3,47/30.94/10,61| 9.,01}:'0,37
Oxidic Corium E
with 59,1a/o oxygen| -- |28,2{ -- | 10,9| 56| 552 | 4.34/59.10] 3,68|37.89(10.60| 8,99|80.40
Oxidic Corium<-E ]
with 56,4a/o oxygen| -- (28,9} -- | 11,2 11,5 48,4 | 4,62/56,37| 3.93!35.08[10,59| 9,00}80.40
Oxidic Corium-E ‘
with 533,2a/o oxygen| -- |290.7| -- | 11,5 (17,8] 41,0 | 4,97(53,80| 4.22|37,62{10.62| 9.01]80.37
Metallic Corium=A -- |65,0/18,0f -- [17.0 -- 19,7 139,3 |16,1 [24.9 |32.4 |26,6 |41.0
Oxidic Corium=A
with 64,2a/o oxygen| =-- |57.3| --| 21.4| -- | 21.4 |11.6 [64,2 | 9.5 [14,7 [32.4 |26.6 |41.0

&
Com position simplified from Reference 9,

Seven experiments (numbers 9-134-1 through 0-136-2 iu Table III) were performed with
material which initially contained 59,1 atom percent oxvgen, The samples were flooded and sub-

jected to a bridgewire pulse under known explosive conditions for the more highly oxidized corium-E

(=3
(&

- 5,10
simalants as described previously,

Three experiments showed no breakup or appreciable in-

teraction between the melt and the water, A typical unfragmented globule of this composition is

shown in Figure 6, Four out of the seven experiments, however, vielded fragmentation and

generated second-stage pressure pulses, although these pulses were small compared with those

produced with the more oxidic Corium~E simulants, The fragmentation was extensive and the

particle sizes are thought to be small, but no analyses or sieve separations have been performed

as vet on these samples,
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TABLE V

Oxidic Corium=-E Explosivity as a Function of Initial Oxygen Content

Initial Atom

Percent n Observation
62,5 Violent explosion
61,5 Violent explosion
59,1 Mild explosion
56, 4 Slight explosion
53.2 Inert
17,5 Inert (limited data base)

2,4,2 Effect of Water Temperature on the Interaction

Here, the new hot water circulating system described earlier was used to produce 332 to 343K
water in the outer chamber of the reaction vessel prior to flooding. A series of seven hot-water
experiments (numbers 9-138-3 through 1-143-1 in Table III) was performed, The Corium-E simu~-
lant used was one known to be explosive with cold water for the applied transients used, Only very
coarse fragmentation was observed for the most vigorous of these experiments, No pressurizations

occurred, and some of the samples remained completely intact,

Besides the earlier mentioned problems with the hot water system, another characteristic of
this sequence of experiments is that the pyrometer readings just prior to flonding were all low:
less than 1873 K, Prior to these experiments, the copper hearth had built up some black deposits
which may have been interfering with electrical conduction and/or heat transfer to the hearth and
thus may have changed the properties of the melt, Several more experiments are planned in which

the temperature of the melt will be higher at the time of initiation of flooding, The use of larger
applied transients will also be explored.

2,4,2 Effect of the Mode of Pressure Transient introduction

The sequence of experiments initiated last quarter to investigate ‘he effect of the mode of
pressure-transient introduction into the hot-liquid/cold-liquid system was conunue.d. In each of
the experiments performed this quarter, the pressure transient was introduced into the melt with-
out involving the water by the method in which a projectile moving at velocities of 50 m/s strikes
the stainless-steel rod projecting from the bottom of the heu-th.5 This method was used because it
was shown to be the most effective method tried in the preliminary experiments, The projectile
velocities were measured as described in the previous report by causing the projectile to sequen-
tially clip a pair of current-carrving fine wires which were threaded through two pairs of vent holes
in the end of the inverted gun barrel (see Figure 2,1, 2 of Reference 4), As also reported previously,
pressure transients of the order of 1 MPa in magnitude and 50 us in duration were produced in
static water at the normal sample location with this method,



Five through-the-hearth experiments (numbers 9-125-1 through 9-129-2 in Table III) were
performed in the current series with the pressure transients applied from 0,05 to 0,27 s after
flocding was initiated, The known cxplosive, oxidic Corium-E simulant with 61,5 a/o initial
oxvgen content, was used for the series, Initial melt temperatures. ranged from 1931 to 2094 K;
floodi g water had temperatures between 287 and 204 K, Not even coarse fragmentation of the melt
occurred for these experime.s, although it did occur for the single previously reported experiment
(9-124-1) using this method of pressure transient introduction,

To eliminate the possibility that the particular batch of oxidic Corium-E simulant material

used in the through-the-hearth triggering experiments was somehow different from previous batches,

a control experiment (9-130-1) was performed in which a sample of the same batch was melted in
argon, flooded with room-temperature water, and subjected to a bridgewire-generated transient in
the standard through-the-water method, A two-stage fragmentation and pressure-generating inter™

action occurred, just as in the previous experiments of that type,

There is still concern that the through-the-hearth pressure pulses which are measured in
static water just above the hearth at the sample location in the test experiments are not necessarily
representative of the transients seen by the molten sample in an actual triggering experiment, The
fact that a small amount of typical fri pmentation debris, part of which was in the form of spherules
in the 30- to 60-um-dia ranre, was produced in the one similar experiment performed last quarter
(9-124-1) suggests that the pressure transients introduced by this;method may be marginal for
triggering the interaction, At present, therefore, it is felt that the experiments performed to date
neither prove nor disprove the ability of through-the-hearth pulses to initiate steam explosions,

Further experiments are being designed to remove this uncertainty,

2.5 Debris Analyses
The analyses of debris produced by the interaction of highly oxidized cori..'.:r -+ simulants with
water were extended this quarter, Effort in that area was confined mainly to scanning electron
microscopy of the various fractions obtained by sieving the residue fetrieved from experiment
6-102-1, That experiment, as previously mported,5 produced a 1,47-MPa pressure pulse in the
second stage of the interaction which occurred approximately 6 ms after the application of the
bridgewire pulse, The initial oxygen content of the Coritm-E simulant used in that experiment was

62,5 atom nercent,

From Figure 8, which 1s a corrected version of Figure 11 of Reference 5, it can be seen that
tne debris from Experiment 0=102-1 was scparated into seven fractions extending from the residue
which passed through o screen with 45-um-dia openings to the residue which was retained on a
siove with 830-um=dia openings. The peak of the mass lay in the fraction which was retained on

the 45= and passed through 75=-um sieves,
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Scanning electron microscopy was performed on the three smaller diameter sieve fractions:
through the 45-um, through the 75-um, and caught on the 45-um; and chrough 150-um and caught in
the 75-um sieves, Typical scanning electron micrograph images ~i theose fractions are shown in

Figure 9,

It is noteworthy that the smaller size fractions shown in Figure 9 contzin only a few
spheroidal particles, Most of the particles have mossy or shard-like morphologies, (But, as
reported last quarter, both the spheroid and mossy morphologies have identical metal atom com-
positions, as shown by in situ EDAX analyses in the microscope during imaying.)

A few of the larger particles were also examined, A particle from the next to largest fraction
(through the 850-um but caught on the 425-um sieve) is shown in Figure 10, Only a few spheroidal
particles were also found in the fractions which contain the largest particles, Most particles were

unmelted artifacts,

Since there were few spheroidal particles in either the largest or the smallest size fractions,
it can be concluded that if there are significant quantities of spheroidal particles in the debris from
Fxperiment 9-102-1, they must be predominantly in the intermediate sieve fractions (150~ to 425-

um-dia fractions),

/i few particles from the 150/75- and 75/45-um sieve fractions were examined at higher magni-
fication for unusual or interesting structures, Images from these particles are shown in Figures 11
and 12, respectively, Little interpretation of these images has been attempted as yet, except to
note that dendritic crystal growth has been observed in some of the structures, By determining the

interdendritic spacings, it is possible to estimate the cooling rates of the individual par'ticles.11

Further studies of debris are being planned in which specimens will be cross sectioned by
polishing and examined again by scanning electron microscopy techniques. An attempt will also be

made to determine the phase structures of the particles 'y electron diffraction techniques,

Scanning electron micrographs wer~ also taken of the small amount of debris produced in
Experiment 9-124-1, an interaction between 61,5 a/o initial oxygen-containing Coriumn-E simulant
and water initiated by a through-the -hearth pressure tr'ansient.5 Images of the debris produced are
shown in Figure 13, Although there are a number of particle morphologies, there are many
spheroidal particles, Their similarity o the debris generated in the bridgewire experiments
suggests that possibly a small degree ol interaction was, in fact, triggered by the through-the-

hearth pulse,

"~
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2.8 Exploratory Meluing Experiments

Two exploratory melting experiment; with a fully oxidic Cor -A simulant (58,3 w/o UO,,
20,9 w/o ZrO,, 20,8 w/o Fe O,; composition calculated from the metal atom ratios of Peehe ) re-

sulted in what appears to be a one-phase liquid which froze in argon in a we'l-behaved manner

rlobules were obtained which are similar to the argon-frozen globules produced with the fully

- 1) of oxidic Cor <A simulant frozen

Corium-E simulant, A photograph of a sample (9-

in argon: is shown in Figure 14, No floodings of Corium-A compositions were atterrpted this quarter
A similar attempt to arc-melt pure uranium dioxide was disappointing [t was not possible to

hieve significant quantities of melt, and the pellet yhich was being heated showed a concave

A £
glass nterior 1ing, quite similar to the experiments performed with the metallic ( -E
simulant, In addition to incomplete melting, there was copious evolution of vapor which pro
iced large quantities of aerosol in the chamber and much wall depositior, A photograzh of the
mple on which melting in Figure 15, (Note the simils rity to the sample
f metallic Corium-E sin ) of 10,)

U t. Photograph of a 088§ -Sectione Figure 15. Photograph of a Cross-Sectioned
ample of Oxid yrium-A Simu- sample of Uranium Dioxide Which
) A 181 een Ar ~v“;.‘ i ted to Ar ”“.‘-‘
nd Froze rg ) 1) ng Frozen in Argon
r 1S i m=w -1 'T‘.f'i':‘;,'f'r
2, 7T Containment Breachiang Analysis
0
I'w revio juarterly reports ontained discussions on the molten-core/water-contact
nalysis wnich has been performed as one task of the fiscal 1977 steam-explosion phenomena
rogran I'hat task is intended to address one portion of the probability of containment damaging
eam ex sions o rri luring a hypothetical core-melt accident, specifically the probability
{ large amount f molten core materials contacting similar amounts of water. The triggering

experiments address another portion of the containment breaching question: the probability of any

steam explosior urring, 7 he efficiency scaling studies will address a third portion: the prob-



ability of explosions which might occur being sufficiently efficient and large enough to actually fail
the containment building, The containment breaching probability also involves identifying a con-
tainment failure mechanism, which is the topic of this section,

For in-vessel explosions, the Reactor Safety Study analysis modol‘z assumeu that the failure
was caused by the reactor vessel head being blown through the containment butlding roof, No credit
was taken in that analysis for the energy dissipated in crushing any structures encountered in tra-
versing Lae considerable distance to the roof, Neither was any credit taken for the amount of
energy required to penetrate the roof, Only gravitational forces werc considered, Since a con-
siderable amount of energy can be expended in penetrating nearly 3 ft of reinforced concrete, a
crude analysis was performed to compare a typical vessel head and control rod structure kinetic
energy value (based on the Reactor Safety Study containment breaching analysis) with the amount of
energy needed to shear a plug from the containment roof, That analysis indicated the projectile had
approximately the right amount of energy needed to penetrate but, zs with the Reactor Safety Study
analvses, no credit was taken here either for the crushing of the control rod drive mechanism, On
the other hand, the analysis assumed that a full 50-ft-dia hole had to be punched in the roof which
is probably unrealistic since a s=all. s diamcter hole could possibly yield similar high-release con-
sequences, Unless a much more elalorate explosion model and structural model are “ombined and
they indicete otherwise, iy seems valid to assume, from a structural point of vi* w at least, that the
reactor head can indeed be given sufficient energy in a large, efficient steam ean!asion to cause

containment breaching,

Concern has also hbeen given to the probability that smaller missles might cause containment
breaching for steam explosions involving much less molten-core material, For that reason,
analyses have also been performed investigating the penetrability requirements of projectiles like
rods and pipes, These were performed using a typical empirical ballistic penetration formula
developed for low-velocity missiles, The analyses indicated that the thermal energy contained in
only a few hundred pounds of molten-core material would be more than sufficient to allow a reason-
ably large hole to be made in the containment walls or roof, The difficulty in evaluating these
small projectiles as a threat to containment integrity, however, lies in determining where such pro-
jectiles would phvsically originate in the accident situation and how the steam-explosion energy

would be effectively coupled to them, No reasonable scenarios have vet been determined,

2,8 Steam Explosion Scaling Studies

The planning of a program ‘o investigate the effects of size scaling on the efficiency of ther-
mal interactions between molten-core materials and water was continued this quarter, The main
contribution to that area was the preparation of a 'need and scope’ document for the scaling pro-
gram_ That document was issued in draft form during the quarter,a Its preparation entailed a
literature review to ensure that the latest available information on scaling had been considered as

well as communication with known investigators planning or performing a large-scale experiments,
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All available data on thermal interactions of two liquids involving 1 kg or greater quantities of
molten metals or oxides as the hot liquid were reviewed for possible application to the scaling pro-
blem Al available theories and models pertaining to scaling were also reviewed to determine
their applicability to the LWR accident analysis, The summary results of that document are given

bhelow,

The most important question about steam cxplosions in a hypothetical fuel-melt accident is
whether relatively small triggering disturbances can grow through thermal interaction into large-
scale, efficient, destructive explosions when molten light-water reactor core components contact
water, There presently is no basis for believing this cannot happen since current theoretical
explanations do not prohibit it, and very little applicable data are available to suggest otherwise,
Qualitative data are available for other systems which suggest that efficient interactions might be
E;nuible, Therefore, an investigation of scaling is required for simulated LWR fuel-melt accident

conditions,

The scaling program experiments should primarily attempt, with good diagnostic procedures,
to obtain the time dependence of thermal to mechanical energy conversion efficiencies for simple,
large-scale (1 to 25 kg) steam e xplosions, A secondary goal of the scaling program should be to
investigate the physical processes occurring during triggering and propagation, but the configura-
tions and diagnostic procedures should not be chosen to specifically optimize that portion, The pro-
gram should also provide for as complete an analysis of the data as possible in terms of all the

various theories,

It could perhaps be argued that the scaling studies should nut be performed since several
similar large-scale programs are alveady in progress, Unfortunately, those programs each seem
to lack at least one important element in addressing the efficiency question for molten LWR core
materials, The main deficiencies are that the programs are either designed for the study of in-
appropriate materials or do not include the possible use of artificial triggers. These two elements

are corsidered to be sufficiently important to justify an additional program
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