November 15, 2019

U.S. Nuclear Regulatory Commission Nuclear Materials Licensing Section Region III 2443 Warrenville Road Lisle, IL 60532-4351

RE: Jubilant Draximage Radiopharmacies, Inc. d/b/a Triad Isotopes RAM License #09-32781-04MD 3101 Terrace St Kansas City, Missouri, 64111

Dear License Reviewer,

Please amend the above referenced radioactive material license to reflect the following modifications:

- 1. Please correct the State listed in the address for Condition 10B. The State should be Missouri not Kansas.
- Please remove Condition 10A from our radioactive material license. We ceased operating a nuclear pharmacy at 712 Westport Rd., Kansas City, Missouri, 64111 on October 11, 2019.

All of the radioactive materials handled at this facility location were relatively short-lived or extremely short-lived materials that are used in the practice of nuclear medicine. All radioactive materials and decayed waste materials have been removed from this facility location. The biomedical waste was disposed of through Stericycle Inc. All sealed sources were transferred to our 3101 Terrace Street, Kansas City, Missouri location. All nuclear pharmacy operations are now operated out of 3101 Terrace Street, Kansas City, Missouri, 64111.

Enclosed please find a Final Status Survey Report which discusses the radiological data collected in conjunction with the final status surveys for the Jubilant DraxImage Radiopharmacies Inc. d/b/a Triad Isotopes Nuclear Pharmacy located at 712 Westport Road, Kansas City, MO 64111. Triad Isotopes contracted Ameriphysics, LLC (Ameriphysics) to perform the final status survey activities described in the attached report.

RECEIVED NOV 1 8 2019

4205 Vineland • Suite L1 • Orlando, FL 32811

We are requesting an expedited review of this license amendment request so we may exit our lease as soon as possible per landlord request. All other items relating to our radioactive material license and established Radiation Safety Program remain unchanged at this time. We greatly appreciate your attention to this request. Please, forward the amended radioactive materials license to Jubilant Draximage Radiopharmacies Inc. d/b/a Triad Isotopes 790 Township Line Road, Suite 175, Yardley, PA 19067. Should you have specific questions about this amendment request, you may contact me at (407) 257-8998 or by email at craig.kinne@jubl.com

Sincerely,

Craig S. Kinne, CHP, MHP Jubilant DraxImage Radiopharmacies Inc. d/b/a Jubilant Radiopharma Radiopharmacies Radiation Safety Officer 4205 Vineland Road, Suite L1 Orlando, Florida 32811 (407) 257-8998 (Cell) (407) 455-6755 (Office)

Attachments

cc: David Persinger, R.Ph – Staff Pharmacist/RSO Debra Rogers, MA - Paralegal, Licensing and Regulatory Coordinator Jubilant Radiopharma Quality and Safety Department

4205 Vineland • Suite L1 • Orlando, FL 32811

Final Status Survey Report 1169-PR-001 Rev.0

Prepared for:

US Nuclear Regulatory Commission Radioactive Materials License Number 09-32781-04MD

Triad Isotopes – Kansas City Nuclear Pharmacy

712 Westport Road, Kansas City, MO 64111

November 1, 2019

Prepared by:

AMERIPHYSICS 9111 Cross Park Drive, Suite D200 Knoxville, TN 37923 800.563.7497

RECORD OF REVISIONS

Final Status Survey Report, Triad Isotopes, Kansas City, MO Nuclear Pharmacy

Contents

1.	EXECUTIVE SUMMARY	5
2.	FACILITY DESCRIPTION	5
2.1.	Site Location and Facility Description	5
3.	LICENSE REVIEW AND HISTORICAL USE	7
4.	PROJECT RELEASE CRITERIA	8
5.	SURVEY INSTRUMENTATION	9
5.1.	Instrument Calibration	9
5.2.	Daily Response Checks	9
5.3.	Determination of Counting Times and Minimum Detectable Concentrations	9
5.3.1.	Static Counting	9
5.3.2.	Ratemeter Scanning	. 10
5.3.3.	Removable Contamination Measurement Counting	. 11
5.4.	Instrumentation Specifications	11
5.5.	Background Determination	12
6.	SCOPING / CHARACTERIZATION SURVEYS	12
7.	FINAL STATUS SURVEY DESIGN	13
7.1.	Data Quality Objectives	13
7.2.	Area Classification	14
7.3.	Survey Unit Identification	15
7.1.	Beta and Gamma Scan Surveys	16
7.2.	Total Surface Activity Measurements	16
7.3.	Determining the Number of Sample Locations	17
7.4.	Determination of Sampling Locations	18
7.5.	Removable Contamination Measurements	18
7.6.	Survey Documentation	18
8.	FINAL STATUS SURVEY RESULTS	19
8.1.	Data Validation	19
8.2.	Total Surface Activity Sample Results	19
8.3.	Removable Contamination Results	20
9.	CONCLUSION	21
10.	REFERENCES	21

Attachment 1, DandD Summary Report for I-131 Attachment 2, Instrument Calibration Certs Attachment 3, Scoping/Characterization Survey Reports Attachment 4, Final Status Survey Packages Attachment 5, MDC Calculations

Abbreviations and Acronyms

ALARA	As Low as Reasonably Achievable
Ameriphysics	Ameriphysics, LLC
cpm	counts per minute
DCGL	Derived Concentration Guideline Level
dpm	disintegration per minute
DQO	Data Quality Objective
HSA	Historical Site Assessment
LBGR	Lower Bound of the Gray Region
MARSSIM	Multi-Agency Radiation Survey and Site Investigation Manual
MDC	Minimum Detectable Concentration
NRC	U.S. Nuclear Regulatory Commission
TEDE	Total Effective Dose Equivalent
у	Year

، ۲

1. EXECUTIVE SUMMARY

The purpose of this Final Status Survey Report is to provide and discuss the radiological data collected in conjunction with the final status surveys for the Jubilant DraxImage d/b/a Triad Isotopes Nuclear Pharmacy located at 712 Westport Road, Kansas City, MO 64111. Triad Isotopes contracted Ameriphysics, LLC (Ameriphysics) to perform the final status survey activities described in this report. All work was accomplished under Triad Isotopes U. S. Nuclear Regulatory Commission (NRC) radioactive material license.

Final Status Surveys were developed using the guidance provided in NUREG-1757, "Consolidated Decommissioning Guidance" and NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)" and provided the approach, methods, and techniques for the radiological surveys of the impacted areas of the facility. These methods ensure technically defensible data are generated to aid in determining compliance with the release criteria specified in Title 10 of the Code of Federal Regulations, Part 20, Subpart E, Radiological Criteria for License Termination, of 25 mrem/year.

Ameriphysics' personnel arrived onsite on October 22, 2019 and began preparing the remaining radioactive material for shipment to Triad Isotopes' new Kansas City pharmacy. The radioactive material was shipped on the morning of October 23, 2019. Following the removal of the radioactive material, Ameriphysics began performing the final status surveys.

This report demonstrates that building structural surfaces included in this report are significantly less than the release criterion of 25 mrem/y and are suitable to release for unrestricted use. Based on the results of the final status surveys, the maximum Total Effective Dose Equivalent (TEDE) to an individual is <0.0074 mrem/y. Final status survey results are described and tabulated more specifically in Section 8 of this report.

2. FACILITY DESCRIPTION

The Kansas City nuclear pharmacy is a single story reinforced concrete structure with concrete masonry block and brick infill.

2.1. Site Location and Facility Description

Figure 2-1 provides a satellite view of the Kansas City nuclear pharmacy location. The map was obtained online from Google. Figure 2-2 provides the floorplan of the Kansas City nuclear pharmacy.

Figure 2-1 - Location of Kansas City Nuclear Pharmacy

٠

.

Figure 2-2 - Layout of the Kansas City Nuclear Pharmacy

 1169-PR-001, Rev. 0
 Ameriphysics, LLC

 Final Status Survey Report, Triad Isotopes, Kansas City, MO Nuclear Pharmacy

November 1, 2019 Page 6 of 21

3. LICENSE REVIEW AND HISTORICAL USE

The pharmacy is approximately 4,600 square feet and is located within a light industrial area in Kansas City, MO.

Radionuclides historically used in the Kansas City facility and their dates of last use are summarized in Table 3-1.

Radionuclide	Half-Life	Approximate Date of Last use	Form
Cobalt-57 ¹	270.9 Days	October 18, 2019	Sealed
Gallium-67	3.261 Days	October 18, 2019	Liquid
Strontium-89 ²	50.55 Days	December 2015	Liquid
Yttrium-90	64.1 Hours	October 18, 2019	Liquid
Molybdenum-99	66.02 Hours	October 18, 2019	Liquid
Technetium-99m	6.02 Hours	October 18, 2019	Liquid
Indium-111	2.83 Days	October 18, 2019	Liquid
lodine-123	13.13 Hours	October 18, 2019	Liquid/Solid
lodine-125 ²	60.14 Days	December 2014	Liquid
lodine-131	8.040 Days	October 18, 2019	Liquid/Solid
Barium-1331	10.5 Years	October 18, 2019	Sealed
Xenon-133	5.245 Days	October 18, 2019	Gas
Cesium-137 ¹	30.17 Years	October 18, 2019	Sealed
Europium-1521	13.6 Years	October 18, 2019	Sealed
Samarium-153	46.7 Hour	October 18, 2019	Liquid
Thallium-201	73.06 Hours	October 18, 2019	Liquid

Table 3-1: Restricted and Non-Restricted Area Summary

¹Denotes Sealed Sources

²These radionuclides may be removed from the list because they have fully decayed (over 10 half-lives) since last use.

Procedures pertaining to radiological use within the laboratory were well maintained. All sealed sources were leak tested every six months and there is no history of any leaking sealed sources at the facility. Therefore, the sealed sources listed in Table 3-1 can be eliminated as radionuclides of concern.

Of the radionuclides used in dispersible forms listed in Table 3-1, all are currently in use except for Sr-89 and I-125. These exceptions can be eliminated as radionuclides of concern based on their half-lives and date of last use. This report summarizing the surveys will be submitted to the NRC approximately three weeks following the completion of the surveys. This would result in approximately five weeks from the time operations have ceased and provide ample decay time (>10 half-lives) to eliminate most of the remaining radionuclides of concern with shorter half-

lives: Ga-67, Y-90, Mo-99, Tc-99m, In-111, I-123, Sm-153, and Tl-201. All that could possibly remain by the time the NRC receives this report would be I-131 and Xe-133.

4. PROJECT RELEASE CRITERIA

Radiological requirements for license termination are described Title 10 of the Code of Federal Regulations, Part 20, Subpart E, Radiological Criteria for License Termination, which states that a site will be considered acceptable for unrestricted release if the residual radioactivity that is distinguishable from background radiation results in a total effective dose equivalent (TEDE) to an average member of the critical group that does not exceed 25 millirem per year (mrem/y), and the residual radioactivity has been reduced to levels that are as low as reasonably achievable (ALARA).

Because the release criterion must consider dose from a variety of exposure pathways, it cannot be measured directly. Consequently, exposure pathway modeling is used to translate the release criterion into concentration limits. MARSSIM uses the term derived concentration guideline level (DCGL) to describe the radionuclide-specific activity concentration that could result in a dose equal to the release criterion. DCGL for this project was calculated using the NRC DandD Modeling Code, version 2.1.0. The code was used with default parameters to determine a DCGL for I-131 corresponding to a 25 mrem/y limit. The DandD summary report is provided in Attachment 1 of this plan. Table 6-1 shows the DCGL for this project.

DCGLs reflect total residual radioactivity concentration and assume that 10% of the total activity is removable. Table 4-1 shows the project DCGL and the removal contamination limit for this project.

Radionuclide	Half-life	Predomin:ant Emissions	DCGL (dpim/100cm²)	Remova ble Contamin:ation Limit (dpm/100km ²)
lodine-131	8.04 Days	Beta	1.18E+06	1.18E+(05
Xe-133	5.245 Days	Beta	N/A ⁽¹⁾	N/A

Table 4-1: Facility Release Criteria

⁽¹⁾ Xe-133 is not listed in DandD Version 2.1.0. Nor is it list ed in the RESRAD Build code.

Xe-133 is a noble gas and due to its snort half-life and low radiotoxicity, it stands to reason that it would have higher DCGL than I-131. It is therefore conservative to use the I-131 DCGL as the project release criterion.

5. SURVEY INSTRUMENTATION

Based on potential contaminants, their associated radiations, and the types of residual contamination categories to be evaluated, the detection sensitivities of various instruments and techniques were evaluated for use. Instruments were evaluated for use during surface scans, direct measurements, and analysis of removable contamination smears.

5.1. Instrument Calibration

Laboratory and portable field instruments were calibrated at least annually with National Institute of Standards and Technology traceable sources and to radiation emission types and energies that provide detection capabilities similar to the nuclides of concern. Instrument calibration certificates are provided for the instruments used during the decommissioning surveys in Attachment 2.

5.2. Daily Response Checks

For radiological instruments operated by Ameriphysics, a reference source was measured prior to use each day. The result is accurate if it falls within $\pm 20\%$ of originally determined values. This is consistent with the guidance in Section 6.5.4 of MARSSIM, Instrument Calibration.

Background readings are taken as part of the daily response checks and compared with the acceptance range for instrument and site conditions.

All instruments passed daily response tests within ±20% of originally determined values.

5.3. Determination of Counting Times and Minimum Detectable Concentrations

Minimum counting times for background determinations and counting times for measurement of total and removable contamination were chosen to provide minimum detectable concentrations (MDCs) that meet the Data Quality Objectives (DQOs). Count times and scanning rates are determined using the equations in the following sections.

5.3.1. Static Counting

Static counting MDC at a 95% confidence level is calculated using the following equation, which is an expansion of NUREG 1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions", Table 3.1 (Strom & Stansbury, 1992):

$$MDC_{static} = \frac{3 + 3.29\sqrt{B_r \cdot t_s \cdot (1 + \frac{t_s}{t_b})}}{t_s \cdot E_{tot} \cdot \frac{A}{100cm^2}}$$

Where:

B_r

MDC_{static} = minimum detectable concentration level in dpm/100cm²

- = background count rate in counts per minute
- t_b = background count time in minutes
- t_s = sample count time in minutes
- Etot = total detector efficiency for radionuclide emission of interest (includes combination of instrument efficiency and surface efficiency)¹
 - A = detector probe area in cm²

¹. Surface efficiency applied will be in accordance with the recommended value of 0.5 for all beta emitters with eMax >400keV.

Using the background rate of 346 counts per minute (cpm) (highest background rate among the surveys performed using the Ludlum 43-93 detector) and a surface efficiency of 0.5, the calculated MDC_{static} is 530 dpm/100cm². Lower background rates result in lower MDC values. See Attachment 5 for MDC_{static} calculations.

5.3.2. Ratemeter Scanning

Scanning MDC at a 95% confidence level is calculated using the following equation which is a combination of MARSSIM equations 6-8, 6-9, and 6-10:

$$MDC_{scan} = \frac{d'\sqrt{b_i}\left(\frac{60}{i}\right)}{\sqrt{p} \cdot E_{tot} \cdot \frac{A}{100cm^2}}$$

Where:

MDCscan	= minimum detectable concentration level in dpm/100 cm ²
ď	= desired performance variable (1.38)
bi	= background counts during the residence interval
i	= residence interval
p	= surveyor efficiency (0.5)
Etot	 = total detector efficiency for radionuclide emission of interes (includes combination of instrument efficiency and surface efficiency¹)

A = detector probe area in cm²

¹. Surface efficiency applied will be in accordance with the recommended value of 0.5 for all beta emitters with eMax >400keV.

Using the background rate of 346 cpm (highest background rate among the surveys performed using the Ludlum 43-93 detector) and a surface efficiency of 0.5, the calculated MDC_{scan} is 1,664 dpm/100cm². Lower background rates result in lower MDC values. Using the background rate of 748 cpm (background rate among the surveys performed using the Ludlum 43-37 large area detector) and a surface efficiency of 0.5, the calculated MDC_{scan} is 389 dpm/100cm². See Attachment 5 for MDC_{scan} calculations.

5.3.3. Removable Contamination Measurement Counting

Removable contamination measurement (smear) counting MDC at a 95% confidence level is calculated using the following equation, which is NUREG 1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions", Table 3.1 (Strom & Stansbury, 1992):

$$MDC_{smear} = \frac{3 + 3.29\sqrt{B_r \cdot t_s \cdot (1 + \frac{t_s}{t_b})}}{t_s \cdot E \cdot \frac{A}{100cm^2}}$$

Where:

*MDC*_{smear} = minimum detectable concentration level in dpm/smear

B_r = background count rate in counts per minute

t_b = background count time in minutes

- t_s = sample count time in minutes
- $E = 4\pi$ instrument efficiency for radionuclide emission of interest
- A = physical area of the smear in cm²

Using the background rate of 61 cpm (background rate for the surveys performed using the Ludlum 3030E/43-10-1 detector) the calculated MDC_{smear} is 151 dpm/100cm². See Attachment 5 for MDC_{smear} calculations.

5.4. Instrumentation Specifications

The instrumentation used for facility final status surveys is summarized in the following tables. Table 5-1 lists the standard features of each instrument such as probe size and efficiency. Table 5-2 lists the actual operational parameters such as scan rate, count time, and the associated MDCs.

Table 5-1 - Instrumentation Specifications

Detector Model	Detector Type	Detector Area	Meter Model	Window Thickness	Actual Total Efficiency ¹
Ludlum 43-93	Alpha/Beta Scintillation	100 cm ²	Ludlum 2360	0.8 mg/cm ²	16.90 % (Tc-99) – Beta
Ludlum 43-10-1	Alpha/Beta Scintillation	100 cm ²	Ludlum 3030	0.4 mg/cm ²	26.00% (Tc-99) – Beta
Ludlum 43-37	Alpha/Beta Scintillation	584 cm ²	Ludlum 2360	0.8 mg/cm ²	18.21% (Tc-99) – Beta
Ludlum 44-17	Low Energy Gamma Scintillation	17.8 cm ²	Ludium 2221	43 mg/cm²	22% - I-129 – Gamma ² 41% - I-125 – Gamma ²

¹The surface efficiency of 0.5 was used since the I-131 predominant beta is 606.3 keV E_{MAX}. ²Typical efficiencies from Ludlum Specification Sheet.

Measurement Type	Detector Model	Meter Model	Scan Rate	Count Time	Background (cpm)	MDC (dpm/100cm ²)
Surface Scans	43-93	Ludlum 2360	7 cm/sec.	N/A	346	1,664 – Beta
Total Surface Activity	43-93	Ludlum 2360	N/A	60 sec.	346	530 – Beta
Surface Scans	43-37	Ludlum 2360	13.4 cm/sec.	N/A	748	389 – Beta
Removable Beta Activity	43-10-1	Ludlum 3030	N/A	60 sec.	61	151 – Beta
Gamma Surface Scans	44-17	Ludlum 2221	0.25 m/sec.	60 sec.	1,436	N/A ¹

Table 5-2 –Instrument Operating Parameters and Sensitivities

¹Instrument was used for comparison the background only.

5.5. Background Determination

The use of reference background areas or paired background comparisons was not necessary for the purposes of this plan because the release criteria were sufficiently higher than the ambient background. An ambient background measurement taken at waist level in the center of the nonrestricted area was used for all of the survey units except for those used for bare concrete. A bare concrete background was obtained from bare concrete in the unrestricted area. The background values were subtracted from the applicable gross measurement count rates (in cpm) to determine the net measurement count rates.

6. SCOPING / CHARACTERIZATION SURVEYS

During initial scans in the unrestricted area (with the Ludlum 43-37 floor monitor), the technician found elevated activity on the carpet adjacent to the entrance to the restricted area. The Ludlum 43-93 hand-held detector was used to isolate and quantify the contamination at 22,142 dpm/100 cm². The surrounding area was 100% scan surveyed with the floor monitor. No additional contamination was identified. However, the areas around the doorway was upgraded from

Impacted – Class 3 to Impacted – Class 1 (see Section 7.2). The contamination at this location was decontaminated using a simple tape press.

Once it was determined there was no more contamination in the unrestricted area, the floor monitor was brought into the restricted area. Contamination was found on the floors of the restricted area Main Lab at an additional nineteen locations. These locations were isolated and total activity (static) measurements were performed with the Ludlum 43-93. The total activity ranged between 3,402 – 412,870 dpm/100 cm². No removable contamination measurements were collected prior to decontamination. All locations were successfully decontaminated by either tape press, simple scrub/wipe down, and/or removal of the floor tile.

Following the decontamination efforts, a post decontamination survey was performed. The documentation of the pre and post decontamination surveys is provided in Attachment 3.

7. FINAL STATUS SURVEY DESIGN

Final status surveys were performed to demonstrate that residual radioactivity in each survey unit satisfied the predetermined criteria for release for unrestricted use. The final status survey was conducted using the DQO process described in MARSSIM.

Final status surveys were conducted by performing required scan surveys, total direct surveys, and removable contamination measurements. All survey data was documented on survey maps and associated data information sheets.

7.1. Data Quality Objectives

The process of designing a final status survey begins with development of DQOs. On the basis of these objectives and the known or anticipated radiological conditions at the site, the numbers and locations of measurement and sampling points used to demonstrate compliance with the release criterion are then determined. Finally, survey techniques appropriate to develop adequate data are selected and implemented.

Survey results obtained in accordance with the MARSSIM guidelines were used to select between one condition of the environment (the null hypothesis, H_0) and an alternative condition (the alternative hypothesis, H_a). The null hypothesis is treated like a baseline condition that is assumed to be true in the absence of strong evidence to the contrary. Acceptance or rejection of the null hypothesis depends upon whether or not the particular survey results are consistent with the hypothesis.

A decision error occurs when the decision maker rejects the null hypothesis when it is true, or accepts the null hypothesis when it is false. These two types of decision errors are classified as Type I and Type II decision errors.

A Type I decision error occurs when the null hypothesis is rejected when it is true, and is sometimes referred to as a false positive error. The probability of making a Type I decision error, or the level of significance, is denoted by alpha (α). Alpha reflects the amount of evidence the decision maker would like to see before abandoning the null hypothesis and is also referred to as the size of the test.

A Type II decision error occurs when the null hypothesis is accepted when it is false. This is sometimes referred to as a false negative error. The probability of making a Type II decision error is denoted by beta (β). The term (1- β) is the probability of rejecting the null hypothesis when it is false and is also referred to as the power of the test.

The null hypothesis for this decommissioning project is that the residual radioactivity concentrations exceed the release criterion. Acceptable decision error probabilities for testing the hypothesis are set at $\alpha = 0.05$ and $\beta = 0.05$.

7.2. Area Classification

Classification is a critical step in the survey design process. The working hypothesis of MARSSIM is that all impacted areas being evaluated for release have a potential for radioactive contamination above the DCGL. This initial assumption means that all areas are initially considered Class 1 areas unless some basis for reclassification as Class 2, Class 3 or non-impacted is provided. Consistent with this approach, Class 1 areas have the greatest potential for contamination and, therefore, receive the highest degree of survey effort, followed by Class 2 and then Class 3 areas.

Areas that have no reasonable potential for residual contamination do not need any level of survey coverage and are designated as non-impacted areas. These areas have no radiological impact from site operations and are typically identified during the Historical Site Assessment (HSA).

As discussed previously, impacted areas are areas that have some potential for containing contaminated material. They can be subdivided into three classes:

- Class 1 areas: Areas that have, or had prior to remediation, a potential for radioactive contamination or known contamination. Examples of Class 1 areas include site areas previously subjected to remedial actions, locations where leaks or spills are known to have occurred, former burial or disposal sites, waste storage sites, and areas with contaminants in discrete solid pieces of material high specific activity.
- Class 2 areas: These areas have, or had prior to remediation, a potential for radioactive contamination or known contamination, but are not expected to exceed the DCGL. To justify changing an area's classification from Class 1 to Class 2, the existing data (from the HSA, scoping surveys, or characterization surveys) should provide a high degree of confidence that no individual measurement would exceed the DCGL. Examples of areas that might be classified as Class 2 include locations where radioactive materials were present in an unsealed

form, potentially contaminated transport routes, upper walls and ceilings of rooms subjected to airborne radioactivity, areas where low concentrations of radioactive materials were handled, and areas on the perimeter of former contamination control areas.

Class 3 areas: Any impacted areas that are not expected to contain any residual radioactivity
or are expected to contain levels of residual radioactivity at a small fraction of the DCGL,
based on site operating history and previous radiological surveys. Examples of areas that
might be classified as Class 3 include buffer zones around Class 1 or Class 2 areas, and areas
with very low potential for residual contamination but insufficient information to justify a
non-impacted classification.

The floors and lower walls (< 2 meters) of the Main Production Lab classified were impacted Class 1. The floors and lower walls of the Waste Storage Room and Product Storage Room were classified as impacted Class 1. The floors and lower walls of the Unrestricted area office space adjacent to the west side of the restricted area were upgraded to a Class 1 due to the contamination that was found just outside the entry door to the Main Laboratory Area. The balance of the non-restricted area floors was classified as impacted Class 3. The balance of the facility, including the upper walls and ceilings in the restricted area, were classified as nonimpacted. See Table 7-1 for a matrix demonstrating area-specific survey unit classifications.

7.3. Survey Unit Identification

A survey unit is a physical area consisting of structures or land areas of specified size and shape for which a separate decision is made as to whether or not that area exceeds the release criterion. As this decision is made as a result of the final status survey, the survey unit is the primary entity for demonstrating compliance with the release criterion. To facilitate survey design and ensure that the number of survey data points for a specific site is relatively uniformly distributed among areas of similar contamination potential, the site was divided into survey units that share a common history, other characteristics or that are naturally distinguishable from other portions of the site.

A survey unit should not include areas that have different classifications. The survey unit's characteristics should be consistent with exposure pathway modeling that is used to convert dose or risk into radionuclide concentrations. For indoor areas each room may be designated as a survey unit. Indoor areas may also be subdivided into several survey units of different classification, such as separating floors and lower walls from upper walls and ceilings (and other upper horizontal surfaces) or subdividing a large warehouse based on floor area.

The impacted areas at Kansas City nuclear pharmacy include the restricted areas and the unrestricted area. Final survey unit classifications are as follows:

Survey Unit ID	Description	Approximate Area (m ²)	Initial Classification
SU 1	Main Laboratory Area - floor and lower walls	81 (floor) 163 (total)	Class 1 Impacted
SU 2	Waste Storage Room and Product Storage Room – floor and lower walls	20 (floor) 71 (total)	Class 1 Impacted
SU 3	Office Areas Outside of Laboratory Entrance.	76 (floor) 153 (total)	Upgraded to Class 1 Impacted
SU 4	Balance of Unrestricted area: Office and Reception Areas – floors only	250 (floor)	Class 3 Impacted

Table 7-1: Final Survey Unit Classification

MARSSIM states that survey units should be limited in size based on classification, exposure pathway modeling assumptions, and site-specific conditions. MARSSIM also suggests size limitations, which for Class 1 structural surfaces is 100 m² or less (floor area). The Class 1 survey units are all less than the size recommendation of 100 m² (floor area). MARSSIM does not have a suggested limit for Class 3 survey units.

7.4. Beta and Gamma Scan Surveys

Scan surveys were performed for beta on 100% of the accessible surfaces in both Class 1 and Class 3 survey units. In addition, gamma scan surveys were performed on these surfaces for low energy gamma using a thin window sodium iodide detector (Ludlum 44-17). Although these low energy gamma surveys are not required for the I-131 or Xe-133 (since they are detectable by beta scans), these low energy gamma scans were performed for the short lived radionuclides that were not of concern (due to short half-lives) that could still have been present at the time of the surveys. Many of these decay by electron capture or isomeric transition and would not be detectable by the beta scans. Following the decontamination discussed in Section 6, no elevated activity exceeding background was detected during the beta or gamma scans.

7.5. Total Surface Activity Measurements

Direct beta surveys (static measurements) were performed on building surfaces to the extent practical in impacted areas utilizing instrumentation of the best geometry based on the surface at the survey location.

Total surface contamination measurements for gross beta were taken at statistically determined sample locations. Scaler count times are based on achieving detection sensitivity below the DCGL. In addition, total surface activity measurements were performed on the remaining ductwork

and/or sink drains in Survey Units 1 and 2. Surface activity measurements were collected in Survey Units 1 - 4 and the results are provided in the individual survey unit packages in Attachment 4.

7.6. Determining the Number of Sample Locations

For situations where the contaminant is not present in background or is present at such a small fraction of the DCGL as to be considered insignificant, a background reference area is not necessary. Instead, the contaminant levels are compared directly with the DCGL value. In these instances, a sample design according to the methodology specified for the -sample Sign test was used to statistically demonstrate compliance with the release criterion.

The lower bound of the gray region (LBGR) was selected to be one-half the DCGL and was used as an arbitrary starting point for developing an acceptable survey design along with target values of 0.05 for α and β . The width of the gray region, equal to DCGL minus the LBGR, is a parameter that is central to the Sign test. This parameter is also referred to as the shift, Δ .

The absolute size of the shift is actually of less importance than the relative shift, Δ/σ , where σ is an estimate of the standard deviation of the measured values in the survey unit. Values estimated for σ include both the real spatial variability in the quantity being measured and the precision of the chosen measurement system. The relative shift, Δ/σ , is an expression of the resolution of the measurements in units of measurement uncertainty.

The importance of choosing appropriate values for σ must be emphasized. If the value is grossly underestimated, the number of data points will be too few to obtain the desired power level for the test and a resurvey may be recommended. Therefore, in the interest of conservatism a larger value is selected even though the number of data points determined is increased.

Table 5.5 of MARSSIM provides the number of data points used to demonstrate compliance using the Sign test for selected values of α , β , and Δ/σ . The sample numbers in Table 5.5 of MARSSIM were calculated using the methodology presented in MARSSIM and increased by 20% to account for missing or unusable data.

Since an actual value for σ was not known, it was preliminarily assumed to be no more than 30 percent of the DCGL. This important assumption was confirmed by a post-survey analysis of σ . Using this estimate of σ , the relative shift is calculated using a LBGR of 50% of the DCGL ($\Delta = 1 \times DCGL - 0.5 \times DCGL$). This calculation is shown below.

Relative shift =
$$\frac{\Delta}{\sigma} = \frac{1 - 0.5}{0.3} = 1.6$$

The value extracted from the table using the expected site-specific parameters is 17 and represents the minimum number of measurements performed in each survey unit.

Based on the post survey analysis of the survey data, the initial assumptions of less than 50% of the DCGL for the LBGR and less than 30% of the standard deviation (σ) were confirmed (see Section 8.2). Thus, a sufficient number of measurements were collected.

7.7. Determination of Sampling Locations

Class 1 survey units were sampled using a random start, systematic grid system. After determining the number of samples needed in the survey unit, sample spacing was determined from MARSSIM equation 5-8:

$$L = \sqrt{\frac{A}{n}}$$
 for a square grid

Where:

L = sample spacing interval

A = the survey unit area

n = number of samples needed in the survey unit

Maps were generated of the survey unit's permanent surfaces included in the statistical tests (floors and lower walls,) and folded out in a 2-dimensional view. A random starting point was determined using computer-generated random numbers coinciding with the x and y coordinates of the total survey unit. A grid (based on the random start point and the determined sample spacing) was then plotted across the survey unit surfaces. A measurement location was then plotted at each intersection of the grid plot. This is automated using the Visual Sample Plan software.

For the Class 3 survey unit, sample locations were selected using a simple random selection process. Random X and a random Y distances were determined, and the locations were plotted on the map. This is automated using the Visual Sample Plan software.

7.8. Removable Contamination Measurements

Removable contamination measurements (smears) were collected on building surfaces at each total activity sample location to determine the potential removable contamination. An area of approximately 100 cm² was wiped.

7.9. Survey Documentation

A survey package was developed for each survey unit containing the following:

- Survey Instruction Sheets
- General survey requirements
- Instrument requirements with associated MDCs, count times and scan rates
- Survey Maps

- Overview maps detailing survey locations and placement methodology
- Survey sub-unit maps with additional sample location information, as needed
- Survey Data Sheets
- Signature of Data Collector and Reviewer

8. FINAL STATUS SURVEY RESULTS

Attachment 4 contains the survey packages executed in conjunction with the Final Status Survey.

8.1. Data Validation

Field data was reviewed and validated to ensure:

- Completeness of forms and that the type of survey was correctly assigned to the survey unit.
- The MDCs for measurements met the established data quality objectives; independent calculations were performed for a representative sample of data sheets and survey areas.
- Instrument calibrations and daily functional checks were performed accurately and at the required frequency.

8.2. Total Surface Activity Sample Results

The highest total activity measurement was obtained in Survey Unit 2 on a wall. The net result at this location was 485 dpm/100 cm² which is less than the static MDC of 530 dpm/100 cm² (background of 346 cpm). Since all of the other survey units had total activity results below this level, it can be determined that all surface activity survey units are in compliance with the release criterion.

In addition to simply comparing the data against the release criteria, basic statistical quantities were calculated for the data obtained from the survey units. First, the average and the standard deviation of the data set were calculated. The average of the data is compared to the DCGL to get a preliminary indication of the survey unit status. Where remediation is inadequate, this comparison would have readily revealed that a survey unit contains excess residual radioactivity even before applying statistical tests. However, if every measurement in the survey unit is below the DCGL, the survey unit clearly met the release criterion.

The value of the sample standard deviation is especially important. If the value was too large compared to that assumed during the survey design, this would have indicated an insufficient number of samples were collected to achieve the desired power of the statistical test.

The highest <u>average</u> activity was 263 dpm/100 cm² and the highest standard deviation was 313 dpm/100 cm². The total activity DCGL is 1,800,000 dpm/100 cm². This results in an average of 0.015% of the DCGL and a standard deviation of 0.02% of the DCGL. Since these values are

significantly less than the 50% for the LBGR and 30% for the standard deviation assumed during planning, a conservative number of measurements were made. See Section 7.5.

The median is the middle value of the data set when the number of data points is odd and is the average of the two middle values when the number of data points is even. Thus 50% of the data points are above the median, and 50% are below the median. Large differences between the average and the median are an early indication of skewness in the data. In all instances, the difference between the average and median is less than one standard deviation. Thus, the data is not unusually skewed.

Examining the minimum and maximum of the data also provides useful information. The range should not be unusually large. Since there are 30 or fewer data points, values of the range much larger than about 4 to 5 standard deviations are considered unusual. For larger data sets the range might be wider. In all cases, the difference between the minimum and maximum values is less than 5 standard deviations.

Survey Unit	Location	Minimum	Maximum	Median	Average	Standard Deviation
SU 1	Main Laboratory Area - floor and lower walls	-243	379	-68	-5	199
SU 2	Waste Storage Room and Product Storage Room – floor and lower walls	-485	485	24	109	313
SU 3	Office Areas Outside of Laboratory Entrance.	-462	408	53	-9	237
SU 4	Balance of Unrestricted area: Office and Reception Areas – floors only	118	450	23	263	114

Table 8-1: Summary of T	Total Surface Activity*
-------------------------	-------------------------

Note: The results are reported in net dpm/100 cm².

8.3. Removable Contamination Results

Removable contamination results are summarized in Table 8-2. The highest removable contamination measurement is 42 dpm/100 cm² and was obtained in Survey Unit 2. This result is significantly less the removable MDC of 151 dpm/100 cm². The purpose of evaluating removable activity measurements is to ensure that they are less than 10% of the DCGL. Since this is the case in all instances, we can confirm that the model used to develop DCGLs was conservative.

Survey Unit	Location	Minimum	Maximum	Median	Average	Standard Deviation
SU 1	Main Laboratory Area - floor and lower walls	-46	38	4	1	22
SU 2	Waste Storage Room and Product Storage Room – floor and lower walls	-58	42	13	1	31
SU 3	Office Areas Outside of Laboratory Entrance.	-58	27	0	-8	23
SU 4	Balance of Unrestricted area: Office and Reception Areas – floors only	-69	35	0	-7	26

Table 8-2: Summary of Removable Contamination Results*

^{*}Results are in units of net dpm/100 cm²

9. CONCLUSION

Attachment 4 contains the survey packages executed in conjunction with the Final Status Survey performed at the Kansas City nuclear pharmacy. The survey results are summarized in Tables 8-1 and Table 8-2.

No total activity surface measurements results exceeding the DCGL were observed. Survey Unit 2 returned the highest total surface activity <u>average</u> at 263 dpm/100 cm² which is below its corresponding MDC of 530 dpm/100 cm². Using the MDC value, which is <0.03% of the DCGL of 1,800,000 dpm/100cm² corresponding to <0.0074 mrem/y.

10. REFERENCES

- 1. Title 10 of the Code of Federal Regulations, Part 20, Subpart E, "Radiological Criteria for License Termination"
- 2. NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual" (MARSSIM)
- 3. NUREG-1505, "A Nonparametric Statistical Methodology for the Design and Analysis of Final Decommissioning Surveys"
- 4. NUREG 1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions"
- 5. NUREG 1757, Volume 1 "Consolidated NMSS Decommissioning Guidance," Appendix B
- 6. NUREG 1757, Volume 2 "Consolidated NMSS Decommissioning Guidance,"
- Triad Isotopes Radioactive Materials License Number 09-32781-04MD, Amendment No. 10

Attachment 1 DandD Summary Report for I-131

•

٦

DandD Building Occupancy Scenario

DandD Version: 2.1.0 Run Date/Time: 10/9/2019 11:42:32 AM Site Name: Triad Isotopes - Kansas City Description: DCGL for I-131 @ 25 mrem/y FileName:C:\Users\tpratt\Documents\I-131 at 25 mrem.mcd

Options:

Implicit progeny doses NOT included with explicit parent doses Nuclide concentrations are distributed among all progeny Number of simulations: 100 Seed for Random Generation: 8718721 Averages used for behavioral type parameters

External Pathway is ON Inhalation Pathway is ON Secondary Ingestion Pathway is ON

Initial Activities:

Nuclide	Nuclide Area of Contamination (m ²)		Distribution		
131I	UNLIMITED	CONSTANT(dpm/100 cm**2)			
Justification for concentration: DCGL Determination		Value	1.18E+06		

Site Specific Parameters:

General Parameters:

None

Correlation Coefficients:

None

Summary Results:

90.00% of the 100 calculated TEDE values are < 2.46E+01 mrem/year. The 95 % Confidence Interval for the 0.9 quantile value of TEDE is 2.43E+01 to 2.50E+01 mrem/year Attachment 2 Instrument Calibration Certs

.

GRIFFIN INSTRUMENTS

		OFFIC		-	-					7744
CALIBR	RATION	CERTIF	ICATE	FC	DR	2	360	SERIA	L# 29	1//44
Owner:	AMERIA	PHYSICS			minute production					
DA	TE:	04/03/19				LOCA	ATION:		G	Briffin Inst
TE	CH:	E.M. Glen	n			DATE	LAST CAL	EXPIRES:		03/16/19
		- Ith and and			O Due F	Callbard		0.	Densis (Con	Demarke)
Rea	ason For C	alibration:			Due Fo	or Californi	ion	0	Repair (See	Remarks)
	an a		Harrison Spectra Street		O Other	(See Rem	arks)	01	Due and Re	pair (See Remarks)
			NIST TRA	CEA	BLE EQUI	PMENT U	SED DURING	CALIBRAT	ION	
		500.0		OF		204054		CAL		02/10
INC	DEL:	200-2		aci	MAL #:	204931		CAL	DUE. IC	103/18
	Te sudle				CR Custon			-		
	Audio	Response			Geotro	pism	CAL	SLE LENGI	H: 5	
CONDITION			E MECHA	MIC	AL 7580.	0	A1	MECHANIC	AL ZERO.	0
CONDITION			T MECHA	DAIC	AL LENU.			. MEGNANIC	ML LENU.	0
NEW BATTI	ERIES:	0	Yes (9	NO	BATTERY	CHECK:	Sat		interrettighter allegen or and and a granteet of the
HV (+/-10%	AS FO	UND HV	ASL	EFT	THY	WIN	DOW SETTI	NGS:	A.F.	A.L.
500 V:		500		A.F		BT	(3.5 mV +/- 1	mV):	3.6	A.F.
1000 1/		000				DIA	120 -11 -1 2		20	AE
1000 4.		000		A.F		DW	(30 ma +1-3	mv).	29	A.F.
1500 V:	1	500	and Martin	A.F	-	AT (120 mV +/-10	0 mV):	115	A.F.
		RAT	TE MET	ΓE	R				SC	ALER
	SCALE	RATE CPM	AS FOUL	ND	% ERROF	AS LEFT	% ERROR	AS FOUND	% ERRO	R AS LEFT % ERROR
	and are well	400	100		0.0%	LAF				
	x.1 or x1	100	100		0.0%	A.F.		240	0.4%	LAFI
		400	400	-	0.0%	AF	-	240	0.470	
	x1 or	1000	1000		0.0%	A.F.	1	101.31		
	x10	2500	2500		0.0%	A.F.		i den s		
		4000	4000		0.0%	A.F.				
	x10 or	10K	10	K	0.0%	A.F.		1 - V		
	x100	25K	25	K	0.0%	A.F.				
		40K	40	K	0.0%	A.F.		32. U.A		
	x100 or x1000	100K	250	K	0.0%	A.F.				
		400K	400	K	0.0%	A.F.		1.5		
				1		-	1			
	Is	the As Foun	d Data Wi	thin	20% of th	e Set Poir	t?:	• Ye	s O M	lo
Overland	laht	() Adl	isted / Mad	fied		Adi				nagannan an anijar na kata kan santan - tej na
REMARKS		O vole	19190 / 401	1100		r muj.				
Does Instr	ument Me	et Final Acce	ntance Cri	iteri	a?.		Ves	0	lo	
							0	0.		
Calibration	n Sticker A	ttached?:					() Yes	01	No	
Date Instru	ument is D	ue For Next (Calibration	n:			04/03/20			
INSTRUM	ENT MARR	IED WITH		43-3	7	#PR160	079			
Performed	d/Reviewed	iby: S	ONT GP	a	\$ 10p	Date: 4/3	/2019		Entered b	y: Ge Initials
-		0.	Ju Dien	0		4	Calibo	tions performed	to ANSI N3234-	1997 standards
							Contrast of	part of the of		

4 •

.

.

Model 2360 Log Data Date: 04/03/2019 Time: 08:22:12 AM Page: 1

Header 1: John Q. Public Header 2: SN: 297744 Header 3: SN: PR160079 Header 4: Site: Bldg 1 Header 5: RM 008, S. Wall Header 6: Comment Location: Hello

Calibration Due Date: 04/03/2020 Model 2360 Date: 04/03/2019 Model 2360 Time: 08:21:01 AM

Logged Samples: 0

User PC Scaler Count Time: 6.0 minutes

	1	Alpha	Ratemeter	Alarm	Setpoint:	999999
		Beta	Ratemeter	Alarm	Setpoint:	999999
Alpha	+	Beta	Ratemeter	Alarm	Setpoint:	999999

	7	Alpha	Scaler	Alarm	Setpoint:	9999999
		Beta	Scaler	Alarm	Setpoint:	9999999
Alpha	+	Beta	Scaler	Alarm	Setpoint:	999999

GRIFFIN INSTRUMENTS

12,070 cpm

11,190 cpm

9,370 cpm

8,530 cpm

18,660 cpm

27.59%

CALIBRATION CERTIFICATE FOR **PROBE #** PR160079 43-37 Owner: AMERIPHYSICS DATE: 04/03/19 LOCATION: Griffin Inst TECH: E.M. Glenn DATE LAST CAL EXPIRES: 03/16/19 **REASON FOR CALIBRATION:** Due For Calibration O Repair (See Remarks) Other (See Remarks) O Due and Repair CABLE LENGTH: INPUT SENSITIVITY: DUAL 5' NIST TRACEABLE EQUIPMENT AND STANDARDS USED DURING CALIBRATION 2360 297744 04/03/20 MODEL: SERIAL #: CAL. DUE: NIST TRACEABLE SOURCES USED Source Number leotope 4 pi Activity Assay Date 2 pi Activity P2-149 Tc99 SS 21,949 dpm 02/01/17 P2-152 Th230 22,166 dpm 02/01/17 2696-00 Pu239 18,500 dpm 12/02/09 Sr90 03/01/00 2697-00 12,200 dpm PX-726 C14 48,780 dpm 01/21/08 Efficiencies from last cal.: 16.06% Condition: 0 Sat Unsat Pu: Sr Th: 20.88% C14: Tc ss: 13.17% Tc Ni: As Found (AF) Efficiencies: HV / Vernier: Tc-99 Source Response Pu-239 Source Background (CPM): Tc-99 Source Response Stainless Steel (CPM): Nickel (CPM): Response (CPM): B ch. B ch. Net Eff. B ch. A ch. B ch. Net Eff. A ch. Net Eff. A ch. A ch. 1700 / N/A 633 16.36% 447 19.41% 3034 7 3 4707 Net A to B B to A Xtalk: Xtalk: <10% <1% 5.8% <1% Pu239 Tc99 Ni Tc99 ss Th-230 Sr90 C-14 AF CPM: 3034 4707 3446 2284 7093 23.84% 13.62% 16.36% 19.41% 15.51% AF 4 pl eff: 32.31% 35.29% 30.73% 34.10% 35.62% AF 2 pl eff: O No (See Remarks) Is as found efficiency within 20% of the efficiency from the last cal? Yes Note: If the as found data is within 10% of the last calibration and the B-A Xtalk is <1% and the A-B Xtalk is <10%, then the technician may N/A the plateau section and go directly to remarks 1

PROBE #: PR160079 04/03/19 Date:

HV / Vernier:	Tc-99 5	Source Re	sponse):	Pu-	239 S conse	ource (CPM):	Backgrou	Ind (CPM):	Net A to B Xtalk: <10%	B to A Xtalk: <1%
and the second	A ch.	B ch.	Net Eff.	A ch.	Bc	h. Net Eff.	A ch.	B ch.	Sec. Sec. St. 1	
1675	2	4396	18.5%	2766	523	3 14.9%	1	342	6.1%	<1%
1700	1	4719	19.6%	2895	627	15.6%	2	414	6.9%	<1%
1725	4	4819	19.2%	3467	836	18.7%	3	606	6.2%	<1%
1750	2	4739	18.2%	3524	948	8 19.0%	3	743	5.5%	<1%
Alpha / B	Beta Bkg	(cpm)	6	4	191			v <u>, i</u>	*3.97	
HV / Vernier		Pu	-239	Tc-99	9 NI	Tc-99	SS Th	-230	<u>C-14</u>	<u>Sr-90</u>
1710 / N/A	CP	M: 3	178			4886	36	688	7092	2464
4 pi AL E	fficiencie	es: 17.	15%			20.02	% 16.	61%	13.53%	25.61%
2 pl AL E	fficienci	es: 33.	.85%			36.41	% 32.	90%	35.38%	36.62%
REMARKS:										
Does Instrument M	leet Final	Acceptar	nce Criteri	ia?:	0	Yes	O No			
Calibration Sticker	Attached	?:			0	Yes	O No			
Date Instrument is	Due For	Next Calil	bration:		04/0	3/20				
INSTRUMENT M	ARRIED	WITH		2360	t a la	# 29774	4			
Performed/Revie	ewed by	<u>.</u>	DR. Gle	acel	ヤ	Date: 4/3	3/2019		Entered by:	Initial
t pi efficiencies denoted	d in italics.			'				Calibrations p	erformed to ANSI N3	23A-1997 standar
										1.000

PLATEAU AND SET POINT DATA

GRIFFIN INSTRUMENTS

al al

TECH: E.M. Ginn Date LAST CAL EXPIRES: 03/16/19 Resson For Calibration: 	CH: E.M. Glenn DATE LAST CAL EXPIRES: 03/19/15 asson For Cellibration:	DAT	E:	04/03/19				LOCA	TION:		G	riffin Inst	
TECH: E.M. Semin Due To Calibration Reason For Calibration Repair (See Remarks) Other (See Remarks) Other (See Remarks) Other (See Remarks) Due and Repair (See Remarks) NIST TRACEABLE EQUIPMENT USED DURING CALIBRATION NIST TRACEABLE EQUIPMENT USED DURING CALIBRATION NODEL: 10/03/19 MODEL: 500-2 SERIAL #: 284951 CAL. DUE: 10/03/19 MODEW BATTERNES: Yes NE MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 MOD V: 500 A.F. BT (3.6 mV +/-1 mV): 3.3 3.5 100 1000 A.F. BW (30 mV +/-5 mV): 28 30 1600 V: 1000 A.F. BW (30 mV +/-5 mV): 28 30 16 A.F. A.F. A.F. A.F.	Chr. E.M. GMININ DATE LAST CAL EXPINES. Using the point (See Remarks) © Due For Calibration Other (See Remarks) © Due and Repair (See Remarks) © Other (See Remarks) © Due and Repair (See Remarks) © Due and Repair (See Remarks) IST TRACEABLE EQUIPMENT USED DURING CALIBRATION Outer (See Remarks) Due and Repair (See Remarks) MST TRACEABLE EQUIPMENT USED DURING CALIBRATION ODD(S) Due and Repair (See Remarks) MAID CALL 2ERO: Second Pair (See Remarks) O(D) M Audio Response M Geotropism CALL EURG TH: M AS EQUIND HY AS LEFT HY MINDOW SETTINGS: AE OOO AF B M (30 mV +/1 mV): AS Sold AF AT (10 mV): 115 Sold AF AF Conce Sold AF <t< td=""><td>TEC</td><td></td><td>EM Clas</td><td></td><td></td><td></td><td>DATE</td><td>LAST CAL</td><td>EVDIDES.</td><td></td><td>02/16/40</td><td></td></t<>	TEC		EM Clas				DATE	LAST CAL	EVDIDES.		02/16/40	
Reason For Calibration: (a) Due For Calibration Cepair (See Remarks) Other (See Remarks) Due and Repair (See Remarks) NIST TRACEABLE EQUIPMENT USED DURING CALIBRATION MODEL: 500-2 Set AF MECHANICAL ZERO: 0 Audio Response Image: Geotropism CABLE LENGTH: 5' ONDITION: Sat AF MECHANICAL ZERO: 0 ALMECHANICAL ZERO: 0 MODEL: 500 V Soto A.F. BT (3.5 mV +/-1 mV): 3.3 1000 V: 1000 A.F. BT (3.5 mV +/-1 mV): 1000 V: 1000 A.F. BW (30 mV +/-3 mV): 1000 V: 1000 A.F. BW (30 mV +/-3 mV): 1000 V: 1000 A.F. BW (30 mV +/-1 mV): 1000 V: 1000 1000 0.0% A.F. SCALE RATE METER SCALE RATE CPM AS FOUND ½ ERROR AS LEFT ½ ERROR AS FOUND ½ ERROR AS LEFT ½ ERROR 1000 1000 0.0% A.F. 1100 100 100 0.0% A.F. 1100 100	esson For Calibration: 	IEC	л;	E.W. Gien	n		-	DATE	LAST CAL	EAPIRES:		03/10/19	
○ Other (See Remarks) ○ Due and Repair (See Remarks) NIST TRACEABLE EQUIPMENT USED DURING CALIBRATION MODEL: 500-2 SERIAL 8: 284951 CAL. DUE: 10/03/19 Image: Control of the service of the	○ Other (See Remarks) ○ Due and Repair (See Remarks) NIST TRACEABLE EQUIPMENT USED DURING CALIBRATION ODEL: 500-2 SERIAL #: 284951 CAL. DUE: 10/03/19 ② Audio Response ⑦ Geotropism CABLE LENGTH: 5' N: Sat AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 Sat AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 Example 500 A.F. BT (3.5 mV +/-1 mV): 3.3 3.5 1000 A.F. BW (30 mV +/-3 mV): 28 30 1500 A.F. BW (30 mV +/-1 mV): 115 120 RATE CPM AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % AF. 250 0.0% 1000 100 0.0% A.F. 250 0.0% 11000 1000 0.0% A.F. 250 0.0% A.F. 11000 1000 0.0% A.F. 250 0.0% A.F. 11000 1000 0.0% A.F. 250 0.0% A.F. 11000 </td <td>Rea</td> <td>son For C</td> <td>alibration:</td> <td></td> <td></td> <td>Due F</td> <td>or Calibrat</td> <td>ion</td> <td>0</td> <td>Repair (See</td> <td>Remarks)</td> <td></td>	Rea	son For C	alibration:			Due F	or Calibrat	ion	0	Repair (See	Remarks)	
HIST TRACEABLE EQUIPMENT USED DURING CALIBRATION MODEL: 60'2 SERIAL 8: 284951 CAL DUE: 0/03/19 MODITION: St AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 MODITION: St AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 MODITION: St AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 MODITION: St AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 MODIV: 1000 AF. BT (3.5 mV +/-1 mV): 3.3 3.5 1000 V: 1000 AF. BW (30 mV +/-3 mV): 28 30 1600 V: 1500 AF. BW (30 mV +/-1 mV): 115 120 CALE EM METER MODIO AF. AT (120 mV +/-10 mV): 115 120 SCALE SOLA RATE CPM AS FOUND SERROR AS LEFT & ERROR AS FOUND SERROR AS LEFT & ERROR 1000 10000 10000 00% AF. 00% AF. 0 0 No 1000 10000 00% AF. 0	NIST TRACEABLE EQUIPMENT USED DURING CALIBRATION ODEL: 500-2 SERIAL 8: 284951 CAL. DUE: 10/03/19 Image: Colspan=100 and the sequence of the sequence	menter and the second				the second second	O Other	(See Rema	irks)	0	Due and Rep	pair (See R	lemarks)
MODEL: 500-2' SERIAL #: 284951' CAL DUE: 1003/19' MODEL: 60-2 SERIAL #: 284951' CAL DUE: 1003/19' MODEL: Station Response Image: Calibration Sector Participation Participation Participation Participation Participation Participation Participation Participation Sector Participation Participation MODEL: Sector Participation Sector Participation Partipation Sector Partipation Participation<	ODEL: 500-2 SERIAL 8: 284951 CAL. DUE: 10/03/19 Mudio Response			1	IST TRAC	CEA	BLE EQU	PMENT US		CALIBRA	TION		
Madio Respons	Image: Set Set 2000 set 20	MO	DEL:	500-2		SEI	RIAL #:	284951		CAL.	DUE: 10	/03/19	
CONDITION: St AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 NEW BATTERIES: Yes No BATTERY CHECK: Catal Catal MinDOWS SETTINGS: A.F. BW (30 mV +/-1 mV): 3.3 3.5 3.000 V: 1000 A.F. BW (30 mV +/-1 mV): 3.3 3.5 3.6 3.7 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.0 3.6 3.6 3.7 3.8 3.8 3.8 3.9 3.9	N: St AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 TERNES:		Audio	Response		- 1	Geotro	pism	CAE	LE LENGT	'H: 5'		
CONDITION: Sat AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 IEW BATTERIES: Ves @ No BATTERY CHECK: Sat HV (-/-10%) AS FOUND HV AS LEFT HV WINDOW SETTINGS: A.F. A.F. BT (3.5 mV +/-1 mV): 3.3 3.5 1000 V: 1000 A.F. BT (3.5 mV +/-1 mV): 3.3 3.5 1000 V: 1000 A.F. BW (30 mV +/-3 mV): 28 30 1600 V: 1500 A.F. AT (120 mV +/-10 mV): 115 120 RATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ER x1 or x1 100 100 0.0% A.F. 250 0.0% A.F. x1 or x1 1000 1000 0.0% A.F. 250 0.0% A.F. x100 250K 250 K 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: @ Yes No Overload Light: @ Adjusted / Verified _ Not Adj. REMARK	N: Sat AP MECHANICAL ZERO: U AL MECHANICAL ZERO: U TERIES: Yes No BATTERY CHECK: Sat S0 A.F. BT (3.5 mV */-1 mV): 3.3 3.5 1000 A.F. BT (3.5 mV */-1 mV): 3.3 3.5 1000 A.F. BT (3.5 mV */-1 mV): 3.3 3.5 1000 A.F. BT (120 mV */-3 mV): 28 30 1500 A.F. AT (120 mV */-10 mV): 115 120 RATE METER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS LEFT % ERROR X1 or x1 100 100 0.0% A.F. x1 or x1 1000 1000 0.0% A.F. 100 x100 2550 250 0.0% A.F. 100 x100 2500 2500 0.0% A.F. 100 x100 250K 250 0.0% A.F. 100 x100 250K 250 0.0% A.F.<			1.5	E NEOU								
No DATIENCES: O TOS NO DATIENT CHECK: Sat HV (4/-10%) AS FOUND HV AS LEFT HV WINDOW SETTINGS: A.F. A.F. A.F. BT (3.5 mV +/-1 mV): 3.3 3.5 1000 V: 1000 A.F. BT (3.5 mV +/-1 mV): 3.3 3.5 1000 V: 1000 A.F. BW (30 mV +/-3 mV): 28 30 1500 V: 1500 A.F. AT (120 mV +/-10 mV): 115 120 RATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ER x1 or x1 100 100 0.0% A.F. 250 0.0% A.F. x1 or x10 2500 2500 0.0% A.F. 400 4000 0.0% A.F. x100 25K 250 0.0% A.F. 400 400 K 0.0% A.F. x100 250K 250 K 0.0% A.F. 400 No 0.0% A.F. x100 250K 250 K 0.0% A.F. No No	LEVICS: Test MO EATTERY UNEXA: Sat 31 AS FOUND HY AS LEFT HY WINDOW SETTINGS: A.F. A.F. A.F. BT (3.5 mV +/-1 mV): 3.3 3.5 500 A.F. BT (3.5 mV +/-1 mV): 3.3 3.5 1000 A.F. BW (30 mV +/-3 mV): 28 30 1500 A.F. AT (120 mV +/-10 mV): 115 120 RATE METER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR \$CALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR \$FOUND 100 0.0% A.F. \$x1 or x1 100 100 0.0% A.F. 100 100 0.0% A.F. \$x1 or 1000 1000 0.0% A.F. 100 100 K 0.0% A.F. 100 \$x100 250K 250 0.0% A.F. 100 100 K 0.0% A.F. 100 \$x100 250K 250 0.0% A.F. 100 100 K 0.0% A.F. 100 \$x100 250K 250 0.0% A.F. 100 100 K 0.0% A.F. 100 100 K 0.0% A.F. 100 K <t< td=""><td>UNDITION:</td><td>58</td><td></td><td>F MECHA</td><td>NIC</td><td>AL ZERO</td><td>DATTERN</td><td>AL</td><td>MECHANI</td><td>CAL ZERU:</td><td>0</td><td></td></t<>	UNDITION:	58		F MECHA	NIC	AL ZERO	DATTERN	AL	MECHANI	CAL ZERU:	0	
HY (4/-10%) AS FOUND HY AS LEFT HY WINDOW SETTINGS: A.F. AL 500 V: 500 A.F. BT (3.5 mV +/-1 mV): 3.3 3.5 1000 V: 1000 A.F. BW (30 mV +/-3 mV): 28 30 1600 V: 1500 A.F. AT (120 mV +/-10 mV): 115 120 RATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ER 1000 1000 0.0% A.F. 250 0.0% A.F. 101 100 1000 0.0% A.F. 250 0.0% A.F. 101 1000 1000 0.0% A.F. 250 0.0% A.F. 102 2500 2500 0.0% A.F. 400 4000 4000 0.0% A.F. 101 or 1000 1000 0.0% A.F. 102 2500 2500 0.0% A.F.	Xi AS FOUND HV AS LEFT HV WINDOW SETTINGS: A.F. A.E. A.L. 500 A.F. BT (3.5 mV +/-1 mV): 3.3 3.5 1000 A.F. BW (30 mV +/-3 mV): 28 30 1500 A.F. AT (120 mV +/-10 mV): 115 120 RATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR \$\$ CALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR \$\$ 100 at 100 100 0.0% A.F. \$\$ 400 400 0.0% A.F. \$\$ 400 400 0.0% A.F. \$\$ 400 4000 0.0% A.F. \$\$ 100 or 100K 100 K 0.0% A.F. \$\$ 400 400 K 0.0% A.F. Initials \$\$ 100 or 100K 100 K 0.0% A.F. \$\$ 100 or <td>CAN DATTE</td> <td>RIES</td> <td>0</td> <td>Tes</td> <td>2</td> <td>NO</td> <td>BATIERT</td> <td>GRECK:</td> <td>381</td> <td>All and a second se</td> <td></td> <td>1963 - Marina jasta</td>	CAN DATTE	RIES	0	Tes	2	NO	BATIERT	GRECK:	381	All and a second se		1963 - Marina jasta
500 V: 500 A.F. BT (3.6 mV +/-1 mV): 3.3 3.5 1000 V: 1000 A.F. BW (30 mV +/-3 mV): 28 30 1500 V: 1500 A.F. AT (120 mV +/-10 mV): 115 120 CATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ER 100 100 0.0% A.F. 250 0.0% A.F. 1000 1000 0.0% A.F. 250 0.0% A.F. 400 400 A.F. 400 A.F. 400 A.F. 400 A.F. 400 A.F. A.F	500 A.F. BT (3.5 mV +/-1 mV): 3.3 3.5 1000 A.F. BW (30 mV +/-3 mV): 28 30 1500 A.F. AT (120 mV +/-10 mV): 115 120 RATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR 100 100 0.0% A.F. 250 101 100 100 0.0% A.F. 250 101 2500 2500 0.0% A.F. 400 101 2500 2500 0.0% A.F. 400 101 2500 2500 0.0% A.F. 400 100 1000 100% A.F. 400 A.F. 100 2500 2500 0.0% A.F. 400 1000 1000 0.0% A.F. 400 A.F. 1100 2500 2500 0.0% A.F. 400 A.F. 1000 2	HV (+/-10%	AS FO	UND HV	ASL	EFT	HV	WIN	DOW SETTI	NGS:	<u>A.F.</u>	A.L.	
1000 Y: 1000 A.F. BW (30 mV +/.3 mV); 28 30 1600 Y: 1500 A.F. AT (120 mV +/.10 mV); 115 120 CATE CPM AS FOUND & ERROR AS LEFT & ERROR AS FOUND & ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND & ERROR AS LEFT & ERROR AS FOUND & ERROR AS LEFT % ERROR Not to a structure of the structur	1000 A.F. BW (30 mV +/-3 mV): 28 30 1500 A.F. AT (120 mV +/-10 mV): 115 120 RATE METER SCALE SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AF. SCALE AT 000 1000 00% A.F. 100 100 0.0% A.F. 2500 2500 0.0% A.F. 100 2500 2500 0.0% A.F. 100 2500 2500 0.0% A.F. 1000 2500 2500 0.0% A.F. 1000 2500 2500 0.0% A.F. 1000 2500 2500 0.0% A.F. 11000 2500 2500 0.0% A.F. 11000 2500 2500 0.0% A.F. 11000 2500 0.0% A.F. A.F. 11000 2500 K 2500 0.0% A.F. 11000 2500 K 0.0% A.F. No	500 V:		500		A.F		BT	3.5 mV +/- 1	mV):	3.3	3.5	
1500 V: 1500 A.F. AT (120 mV +/-10 mV): 115 120 RATE METER SCALER SCALE RATE CPM AS FOUND & ERROR AS LEFT & ERROR AS FOUND & ERROR AS LEFT & ERROR SCALE RATE CPM AS FOUND & ERROR AS LEFT & ERROR AS FOUND & ERROR AS LEFT & ERROR Not the state of th	150 A.F. AT (120 mV +/-10 mV): 115 120 RATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR A F. SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR A F. SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR S FOUND % ERROR AS LEFT % ERROR A dout a do	1000 V:	1	000		A.F		BW	(30 mV +/-3	mV):	28	30	
Idoury: Idou A.F. ALT (120 mV 9/-10 mV): This 120 RATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR March colspan="2">SCALE SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR March colspan="2">SCALE SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR March colspan="2">March colspan="2">SCALE SCALER March colspan= 2000 Advod 400 0.0% A.F. Advod 4000 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: @ Yes No Overload Light: @ Yes No Colspan= Criteria?: @ Yes No Calibration Sticker Attached?: 04/03/20	Index A.F. AT (120 MV */-10 MV): This 120 RATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR ALF. 250 0.0% A.F. X1 or x1 or x1 000 1000 10000 0.0% A.F. x10 or 100K 100 K 0.0% A.F. X100 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: @ Yes No Is the As Found Data Within 20% of the Set Point?: @ Yes No Is the As Found Data Within 20% of the Set Point?: @ Yes No In Sticker Attached?: @ Yes No on Sticker Attached?: @ Yes No O Mot Adj.320 Entered by: Initials <td>4500 14</td> <td></td> <td>500</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>445</td> <td>120</td> <td></td>	4500 14		500	-						445	120	
KATEMETEK SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR	KATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % Error %	1000 V:	1	000		A.F		AI (120 mV +/-10	/ mv):	115	120	
SCALE RATE CPM AS FOUND SERROR AS LEFT SERROR AS FOUND SERROR AS LEFT SERROR AS	SCALE RATE CPM AS FOUND SERROR AS LEFT SERROR AS FOUND % ERROR AS LEFT % ERROR x1 or x1 100 100 0.0% A.F. 250 0.0% A.F. x1 or x1 100 1000 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 250 0.0% A.F. x10 2500 2500 0.0% A.F. 250 250 1.0% 1.0% x100 25K 25 k 0.0% A.F. 2.0% 1.0% 1.0% 1.0% 1.0% 1.0% A.F. 2.0% 1.0% 1.0% 1.0% A.F. 2.0% A.F. 2.0% 1.0% 1.0% 1.0% A.F. 2.0% No 1.0% 1.0% 0.0% A.F. 2.0% No 1.1% 1.0% 1.0% 0.0% A.F. 1.0% 1.0% 1.0% 1.0% 1.1% 1.1% 1.1%			RAT	EMET	E	R	N la Mar	ALL		SC	ALER	
x1 or x1 100 100 0.0% A.F. 250 0.0% A.F. 400 400 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 0.0% A.F. x10 2500 2500 0.0% A.F. 0.0% A.F. x10 2500 2500 0.0% A.F. 0.0% A.F. x10 2500 2500 0.0% A.F. 0.0% A.F. x100 251 25 K 0.0% A.F. 0.0% A.F. x1000 250K 250 N.0% A.F. No 0.0% A.F. stee As Found Data Within 20% of the Set Point?: Yes No Calibration Sticker Attached?: <l< td=""><td>x1 or x1 100 100 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 400 4000 4000 A.F. x10 or 100K 10 K 0.0% A.F. 400 400K 400% A.F. x100 25K 25 K 0.0% A.F. 400K 400K 400% A.F. x100 250K 250 K 0.0% A.F. 400K 400K A.F. x100 250K 250 K 0.0% A.F. A.F. 400K 400K A.F. x100 250K 250 K 0.0% A.F. A.F. A.F. x1000 250K 250 K 0.0% A.F. A.F. A.F. Light: @ Adjusted / Verified Not Adj.</td><td></td><td>SCALE</td><td>RATE CPM</td><td>AS FOUN</td><td>ND</td><td>% ERRO</td><td>AS LEFT</td><td>% ERROR</td><td>AS FOUN</td><td>D % ERROR</td><td>AS LEFT</td><td>% ERROF</td></l<>	x1 or x1 100 100 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 400 4000 4000 A.F. x10 or 100K 10 K 0.0% A.F. 400 400K 400% A.F. x100 25K 25 K 0.0% A.F. 400K 400K 400% A.F. x100 250K 250 K 0.0% A.F. 400K 400K A.F. x100 250K 250 K 0.0% A.F. A.F. 400K 400K A.F. x100 250K 250 K 0.0% A.F. A.F. A.F. x1000 250K 250 K 0.0% A.F. A.F. A.F. Light: @ Adjusted / Verified Not Adj.		SCALE	RATE CPM	AS FOUN	ND	% ERRO	AS LEFT	% ERROR	AS FOUN	D % ERROR	AS LEFT	% ERROF
Z50 Z50 0.0% A.F. Z50 0.0% A.F. 400 400 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F.	250 250 0.0% A.F. 250 0.0% A.F. 400 400 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 250 0.0% A.F. x10 2500 2500 0.0% A.F. 400 4000 4000 4000 4000 A.F. 400 4000 4000 A.F. 400 4000 A.F. 400 400 A.F. 400 A.G. 50 No A.F.		x.1 or x1	100	100	-	0.0%	LAF				a contral	
400 400 0.0% A.F. x1 or 1000 1000 0.0% A.F. 4000 4000 0.0% A.F.	400 400 0.0% A.F. x1 or 1000 1000 0.0% A.F. x10 2500 2500 0.0% A.F. x10 2500 2500 0.0% A.F. x10 25K 25 K 0.0% A.F. x100 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. is the As Found Data Within 20% of the Set Point?: <			250	250	-	0.0%	A.F.		250	0.0%	A.F.	
x1 or 1000 1000 0.0% A.F. x10 2500 2500 0.0% A.F. 4000 4000 0.0% A.F. x10 or 10K 10 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 or 100K 100 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. No Stope 250K 200K 0.0% A.F. No Overload Light: @ Adjusted / Verified Not Adj. REMARKS:	x1 or 1000 1000 0.0% A.F. x10 2500 2500 0.0% A.F. x10 or 10K 10 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?:			400	400		0.0%	A.F.					
x10 2500 2500 0.0% A.F. 4000 4000 0.0% A.F. x10 or 10K 10 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. is the As Found Data Within 20% of the Set Point?:	x10 2500 2500 0.0% A.F. 4000 4000 0.0% A.F. x10 or 10K 10 K 0.0% A.F. 400 25K 25 K 0.0% A.F. 400 40K 40 K 0.0% A.F. x100 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. is the As Found Data Within 20% of the Set Point?: Yes No Light: Adjusted / Verified Not Adj. work on Sticker Attached?: 		x1 or	1000	1000		0.0%	A.F.					
4000 4000 0.0% A.F. x100 10K 10 K 0.0% A.F. 25K 25 K 0.0% A.F.	4000 4000 0.0% A.F. x100 25K 25 K 0.0% A.F. 40K 40 K 0.0% A.F.		x10	2500	2500		0.0%	A.F.					
x10 or 10K 10 K 0.0% A.F. x100 25K 25 K 0.0% A.F. 40K 40 K 0.0% A.F. x100 or 100K 100 K 0.0% A.F. x100 or 100K 100 K 0.0% A.F. x100 or 100K 100 K 0.0% A.F. x100 or 250K 250 K 0.0% A.F. is the As Found Data Within 20% of the Set Point?: Yes No Overload Light: <l< td=""><td>x100 or 10K 10 K 0.0% A.F. 25K 25 K 0.0% A.F. 40K 40 K 0.0% A.F. x100 or 100K 100 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. is the As Found Data Within 20% of the Set Point?: (a) Yes No Light: (a) Adjusted / Verified Not Adj. s: rument Meet Final Acceptance Criteria?: (a) Yes No n Sticker Attached?: (a) Yes No No nument is Due For Next Calibration: 04/03/20 No No IENT MARRIED WITH 43-93 # PR323025 No //Reviewed by: (b) (c) (c) (c) (c) (c) (c) //Reviewed by: (c) (c) (c) (c) (c) (c) (c) (c) (c)</td><td></td><td></td><td>4000</td><td>4000</td><td></td><td>0.0%</td><td>A.F.</td><td></td><td>Teachte</td><td></td><td></td><td></td></l<>	x100 or 10K 10 K 0.0% A.F. 25K 25 K 0.0% A.F. 40K 40 K 0.0% A.F. x100 or 100K 100 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. is the As Found Data Within 20% of the Set Point?: (a) Yes No Light: (a) Adjusted / Verified Not Adj. s: rument Meet Final Acceptance Criteria?: (a) Yes No n Sticker Attached?: (a) Yes No No nument is Due For Next Calibration: 04/03/20 No No IENT MARRIED WITH 43-93 # PR323025 No //Reviewed by: (b) (c) (c) (c) (c) (c) (c) //Reviewed by: (c) (c) (c) (c) (c) (c) (c) (c) (c)			4000	4000		0.0%	A.F.		Teachte			
X100 25K 25 K 0.0% A.F. 40K 40 K 0.0% A.F.	K100 25K 25 K 0.0% A.F. 40K 40 K 0.0% A.F.		x10 or	10K	10	K	0.0%	A.F.		L 194			
40K 40 K 0.0% A.F. x100 or 100K 100 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. Is the As Found Data WithIn 20% of the Set Point?: Image: Construction of the Set Point?: Overload Light: Image: Construction of the Set Point?: Image: Consthe Set Point?: Image: Const	40K 40 K 0.0% A.F. x100 or 100K 100 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. is the As Found Data Within 20% of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: Image: Constraint of the Set Point?: <td></td> <td>X100</td> <td>25K</td> <td>25</td> <td>K</td> <td>0.0%</td> <td>A.F.</td> <td></td> <td>2 7 1-4 1</td> <td></td> <td></td> <td></td>		X100	25K	25	K	0.0%	A.F.		2 7 1-4 1			
X100 or 100 k 0.0% A.F. 1000 250 k 250 k 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: Yes No Overload Light: Adjusted / Verified Not Adj. REMARKS: Does Instrument Meet Final Acceptance Criteria?: Yes No Calibration Sticker Attached?: Yes No Date Instrument is Due For Next Calibration: 04/03/20	x100 or 100 k 0.0% A.F. 250K 250 k 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: Yes No Light: Adjusted / Verified Not Adj. rument Meet Final Acceptance Criteria?: Yes No ns Sticker Attached?: Yes No rument is Due For Next Calibration: 04/03/20 IENT MARRIED WITH 43-93 # PR323025 d/Reviewed by: Summer Market by: Summer Market by:<			40K	40	K	0.0%	A.F.		1			
Low Low Low A.F. 400K 400 K 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Yes No Overload Light: Adjusted / Verified Not Adj. REMARKS: Does Instrument Meet Final Acceptance Criteria?: Yes No Calibration Sticker Attached?: Yes No Date Instrument Is Due For Next Calibration: 04/03/20	200 K 200 K 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: Yes No Light: Adjusted / Verified Not Adj. S: rument Meet Final Acceptance Criteria?: Yes No In Sticker Attached?: Yes No Insticker Markied With Yes No Initials # PR323025 Initials Initials		x100 or	100K	250	K	0.0%	A.F.		8-5-34 V.			
Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Overload Light: Adjusted / Verified Not Adj. REMARKS: Does Instrument Meet Final Acceptance Criteria?: Overload Light: Does Instrument Meet Final Acceptance Criteria?: Overload Light: Does Instrument Meet Final Acceptance Criteria?: Overload Light: Does Instrument Meet Final Acceptance Criteria?: Does Instrument Meet Final Acceptance Criteria?: Overload Light: Overload Light: Does Instrument Meet Final Acceptance Criteria?: Overload Light: Does Instrument Meet Final Acceptance Criteria?: Overload Light: Overload Light: Does Instrument Meet Final Acceptance Criteria?: Overload Light: Does Instrument Is Due For Next Calibration: Overload Light: Overload L	Is the As Found Data Within 20% of the Set Point?: Yes No Light: Adjusted / Verified Not Adj. rument Meet Final Acceptance Criteria?: Yes No In Sticker Attached?: Yes No Is the As Found Data Within 20% of the Set Point?: Yes No Is the As Found Data Within 20% of the Set Point?: Yes No Yes No Yes No In Sticker Attached?: Yes No Yes No Is Due For Next Calibration: 04/03/20 IENT MARRIED WITH 43-93 Is the Asset Yes Yes Yes No Initials Yes Yes Yes Yes Yes Yes Yes Yes Yes			4006	400	K	0.0%	A.F.					
Is the As Found Data Within 20% of the Set Point?:	Is the As Found Data Within 20% of the Set Point?: Light: Adjusted / Verified Not Adj. S: rument Meet Final Acceptance Criteria?: In Sticker Attached?: In			JUUIT	400	IN	0.070	1 1.1.				and the	
Overload Light: Adjusted / Verified Not Adj. REMARKS: Does Instrument Meet Final Acceptance Criteria?: Yes No Calibration Sticker Attached?: Yes No Date Instrument is Due For Next Calibration: 04/03/20 INSTRUMENT MARRIED WITH 43-93 # PR323025 	Light: Adjusted / Verified Not Adj. Trument Meet Final Acceptance Criteria?: Trument Meet Final Acceptance Criteria?: Trument Meet Final Acceptance Criteria?: Trument Is Due For Next Calibration: Trument Is Due For N		Is	the As Found	d Data Wit	thin	20% of th	e Set Poin	7:	· Ye		0	
Overload Light: (a) Adjusted / Verified Not Adj. REMARKS: Image: Content of the state of t	Light: (a) Adjusted / Verified () Not Adj. S: rrument Meet Final Acceptance Criteria?: (a) Yes () No In Sticker Attached?: (a) Yes () No rument is Due For Next Calibration: 04/03/20 IENT MARRIED WITH 43-93 # PR323025 d/Reviewed by: (b) (from the form of the form o		mental spectrum	0			0						
REMARKS: Does Instrument Meet Final Acceptance Criteria?: Calibration Sticker Attached?: Date Instrument is Due For Next Calibration: INSTRUMENT MARRIED WITH 43-93 #PR323025	S: rument Meet Final Acceptance Criteria?: In Sticker Attached?: In Sticker Attached?:	Overload L	ight:	Adju	sted / Veril	fied	O No	t Adj.					
Does Instrument Meet Final Acceptance Criteria?: Yes No Calibration Sticker Attached?: Yes No Date Instrument is Due For Next Calibration: 04/03/20 INSTRUMENT MARRIED WITH 43-93 #PR323025	trument Meet Final Acceptance Criteria?: Yes No on Sticker Attached?: Yes No rument is Due For Next Calibration: 04/03/20 IENT MARRIED WITH 43-93 #PR323025 d/Reviewed by: Off Official Date: 4/3/2019 Entered by: Initials 	REMARKS:											
Does Instrument Meet Final Acceptance Criteria?: Yes No Calibration Sticker Attached?: Yes No Date Instrument is Due For Next Calibration: 04/03/20 INSTRUMENT MARRIED WITH 43-93 #PR323025	In Sticker Attached?: Image: Sti	-		and the second second	-				0	-			
Calibration Sticker Attached?: Yes No Date Instrument is Due For Next Calibration: 04/03/20 INSTRUMENT MARRIED WITH 43-93 #PR323025	IENT MARRIED WITH 43-93 #PR323025 d/Reviewed by: 5 Off Glandbe (1) Date: 4/3/2019 Entered by: Initials	Does Instru	ument Mee	at Final Accep	otance Crit	teri	a?:		() Yes	0	No		
Date Instrument is Due For Next Calibration: 04/03/20	rument is Due For Next Calibration: 04/03/20 IENT MARRIED WITH 43-93 #PR323025 d/Reviewed by: 5 of Gradie 10 Date: 4/3/2019 Entered by: 11 Initials	Calibration	Sticker A	ttached?:					• Yes	0	No		
INSTRUMENT MARRIED WITH 43-93 #PR323025	IENT MARRIED WITH 43-93 # PR323025 d/Reviewed by: 5 Off Grades (1) Date: 4/3/2019 Entered by: 11 Initials	Date Instru	ment is D	ue For Next C	alibration				04/03/20				
INSTRUMENT MARRIED WITH 43-93 #PR323025	IENT MARRIED WITH 43-93 # PR323025 d/Reviewed by: 5 Off Glading (1) Date: 4/3/2019 Entered by: 11 Initials	Same mout		LUI UN NUMERIC	andration				04100120				
INSTRUMENT MARRIED WITH 43-93 #PR323025	IENT MARRIED WITH 43-93 # PR323025 d/Reviewed by: 5 ON GR. (1) Date: 4/3/2019 Entered by: 1 Initials												
	d/Reviewed by: 5 ON GR db () Date: 4/3/2019 Entered by: dr Initials	INSTRUME	NT MARP	ED WITH		12.0	3	# PR323	025				
delin	d/Reviewed by: 5 On Glass (1) Date: 4/3/2019 Entered by: 64 Initials		and months in			de	0/10					de	
I Calibrations performed to ANSI N323A-1997 standards				1.00									

Header 1: John Q. Public Header 2: SN: 315452 Header 3: Det: PR323025 Header 4: Site: Bldg 1 Header 5: RM 008, S. Wall Header 6: Comment Location: Table 007

Calibration Due Date: 04/03/2020 Model 2360 Date: 04/03/2019 Model 2360 Time: 03:45:22 PM

Logged Samples: 0

÷

4

User PC Scaler Count Time: 12.0 minutes

	1	Alpha	Ratemeter	Alarm	Setpoint:	999999
		Beta	Ratemeter	Alarm	Setpoint:	999999
Alpha	+	Beta	Ratemeter	Alarm	Setpoint:	999999

	1	Alpha	Scaler	Alarm	Setpoint:	999999
		Beta	Scaler	Alarm	Setpoint:	999999
Alpha	+	Beta	Scaler	Alarm	Setpoint:	999999

Owner: AM	ERIPHYS	SICS	CATE	-		93		FROBE			3025
DATE: 04/03	3/19		Contraction of the second s			LOCA	TION:	terre and	(Griffin Ins	it
ECH: E.M.	Glenn					DATE	LAST CA	AL EXPIRES		03/16/1	9
Due For C	alibration	0	Repair (8	ASON F	or CALIBI	Oth	l: er (See R	(emarks)	O Di	ue and R	epair
CABLE	LENGTH:	5'			17.71	INPUT	SENSITI	VITY: DUA	L		
										100	
	NIST TR	ACEA	BLE EQUI	PMENT	AND STAN	DARDS	USED D	URING CAL	BRATIO	<u>IN</u>	
NODEL:	2360		SE	RIAL #:		315452		CAL. DUE:		04/03/2	:0
	-		NIS	TTRAC	EABLE SO	URCES	USED	1.1.1			
Source Nu	mber 02.140		Isotope		4 pi Act	tivity		Assay	Date		2 pl Activit
1.00	P2-149		Th230		22,10	66 dpm		02	/01/17		11,190 c
2	696-00		Pu239		18.5	00 dpm		12	/02/09		9.370 c
2	607.00		0012		12 20	mqb 00		03	/01/00		8,530 c
	.087-00		0150		I das dat						
446	PX-726		C14		48,7	80 dpm		01	/21/08		18,660 c
	PX-726	-	C14		48,7	80 dpm		01	/21/08		18,660 c
24-10-1 24-10-1	PX-726		C14		48,71	80 dpm		01 Efficienc	/21/08 ies from	last cal.	18,660 c
Condition:	 PX-726 Sat 	C	C14		48,7	80 dpm Pu		01 Efficienc Th:	/21/08 les from 22.09	last cal.	18,660 c : Sr: 32.4
Condition:	 PX-726 Sat 	C	C14		48,7	80 dpm Pu Tc s	: . 19.	01 Efficienc Th: 25% C14:	/21/08 les from 22.09 9,80	last cal. 1% 1 18% Tc 1	18,660 c : Sr: 32.4 NI:
Condition: As Found (A	 Sat F) Efficien 	cies:	C14		48,71	80 dpm Pu Tc s	: 19.	01. Efficienc Th: .25% C14:	/21/08 les from 22.09 9,80	last cal. 3% 1 3% Tc	18,660 c : Sr: 32.4 Ni:
Condition: As Found (A HV / Vernier:	 Sat F) Efficien Tc-99 So Nic 	cies: urce R kel (CF	C14 Unsat	Pu-2 Resp	48,71 48,71 239 Source onse (CPM	80 dpm Pu Tc s:):	: =2 19. Backgrou	01 Efficienc Th: 25% C14: und (CPM):	/21/08 les from 22.09 9.80 Tc-99 S Stainle	last cal. % 1 3% Tc 3% Tc cource Re ess Steel	18,660 c : Sr: 32.4 NI: esponse (CPM):
Condition: As Found (A HV / Vernier:	 Sat F) Efficien Tc-99 So Nic A ch. 	cies: urce R kei (CF B ch.	C14 Unsat	Pu-2 Resp A ch.	48,71 239 Source onse (CPM B ch. Ne	80 dpm Pu Tc s): at Eff.	Backgrou A ch.	01 Efficienc Th: .25% C14; und (CPM): B ch.	/21/08 les from 22.09 9,80 Tc-99 S Stainle A ch.	last cal. 3% 1 3% Tc 3% Tc source Re ess Steel B ch.	18,660 c : Sr: 32.4 NI: esponse (CPM): Net Eff.
Condition: As Found (A HV / Vernier: 800 / N/A	Sat Sat F) Efficien Tc-99 So Nic A ch.	cies: urce R kel (CF B ch.	C14 Unsat	Pu-2 Resp A ch. 4358	48,71 48,71 239 Source onse (CPM B ch. Ne 550 23	80 dpm Pu Tc =): at Eff. 3,52%	: 19. Backgrou A ch. 6	01. Efficienc Th: 25% C14: und (CPM): B ch. 235	21/08 les from 22.09 9.80 Tc-99 S Stainle A ch. 2	last cal. 9% 1 9% Tc l source Re source	18,660 c : Sr: 32.4 NI: esponse (CPM): Net Eff. 19.04%
Condition: As Found (A HV / Vernier: 800 / N/A	Sat Sat Tc-99 So Nic A ch.	cies: urce R kel (CF B ch.	C14 Unsat	Pu-2 Resp A ch. 4358	48,71 48,71 39 Source onse (CPM B ch. Ne 550 23 at A to B	80 dpm Pu Tc s): at Eff. 3,52%	Backgrou A ch. 6 Xtalk:	01. Efficienc Th: .25% C14: und (CPM): B ch. 235	/21/08 les from 22.09 9,8/ 7c-99 S Stainle A ch. 2	last cal. 9% 1 9% Tc source Re ess Steel B ch. 4413	18,660 c : Sr: 32.4 NI: esponse (CPM): Net Eff. 19.04%
Condition: As Found (A HV / Vernier: 800 / N/A	 Sat F) Efficien Tc-99 So Nic A ch. 	cies: urce R kel (CF B ch.	C14 Unsat	Pu-2 Respi A ch. 4358 Ne Xta	239 Source onse (CPM B ch. Ne 550 23 ot A to B lik: <10%	80 dpm Pu Tc =): st Eff. 8.52% B to A	: 19. Backgrou A ch. 6 Xtalk: 1%	01. Efficienc Th: .25% C14: und (CPM): B ch. 235	21/08 les from 22.09 9,80 Tc-99 S Stainle A ch. 2	last cal. 19% 1 19% Tc 1 19% Tc 1 19% Source Ress Steel B ch. 4413	18,660 c : Sr: 32.4 NI: esponse (CPM): Net Eff. 19.04%
Condition: As Found (A HV / Vernier: 800 / N/A	 Sat F) Efficien Tc-99 So Nic A ch. 	cies: urce R kel (CF B ch.	C14 Unsat	Pu-2 Respi A ch. 4358 Ne Xta	239 Source onse (CPM B ch. Ne 550 23 of A to B lik: <10% 6.7%	80 dpm Pu Tc =): at Eff. 3.52% B to A <	: 19. Backgrou A ch. 6 Xtalk: 1% 1%	01. Efficienc Th: 25% C14: und (CPM): B ch. 235	22.08 9.80 Tc-99 S Stainle A ch. 2	last cal. 9% 1 9% Tc 1 Source Ress Steel B ch. 4413	18,660 c : Sr: 32.4 NI: Sr: 32.4 NI: (CPM): (CPM): (CPM): Net Eff. 19.04%
Condition: As Found (A HV / Vernier: 800 / N/A	 Sat F) Efficien Tc-99 So Nic A ch. 	cies: urce R kel (CF B ch.	C14 Unsat M): Net Eff. Tc99 Ni	Pu-2 Respi A ch. 4358 Ne Xta	48,71 48,71 39 Source onse (CPM B ch. Ne 550 23 at A to B alk: <10% 6.7% cg9 ss	80 dpm Pu Tc s): et Eff. 3.52% B to A < Th-	: 19. Backgrou A ch. 6 Xtalk: 1% 1% 230	01. Efficienc Th: .25% C14: und (CPM): B ch. 235 Sr90	/21/08 ies from 22.09 9,8/ 7c-99 S Stainle A ch. 2	last cal. 19% 1 19% Tc 1	18,660 c : Sr: 32.4 NI: esponse (CPM): Net Eff. 19.04%
Condition: As Found (A HV / Vernier: 800 / N/A	 Sat F) Efficien Tc-99 So Nic A ch. 	cies: urce R kel (CF B ch.	C14 Unsat	Pu-2 Respi A ch. 4358 Ne Xta	48,71 48,71 39 Source onse (CPM B ch. Ne 550 23 tt A to B lik: <10% 6.7% c99 ss	80 dpm Pu Tc s): st Eff 3.52% B to A < C Th- 48	: 19. Backgrou A ch. 6 Xtalk: 1% 1% -230	01. Efficienc Th: .25% C14: und (CPM): B ch. 235 Sr90 2803	21/08 les from 22.09 9,80 Tc-99 S Stainle A ch. 2	last cal. 3% 1 3% Tc l source Re ss Steel B ch. 4413 <u>C-14</u> 483	18,660 c : Sr: 32.4 NI: ssponse (CPM): Net Eff. 19,04%
As Found (A HV / Vernier: 800 / N/A AF CPM: AF 4 pi eff:	 Sat F) Efficien Tc-99 So Nic A ch. Pu239 4358 23.52% 	cies: urce R kel (CF B ch.	C14 Unsat	Pu-2 Respi A ch. 4358 Ne Xta I	48,71 48,71 239 Source onse (CPM B ch. Ne 550 23 et A to B lik: <10% 6.7% 6.7% 6.7% 6.7%	80 dpm Pu Tc #): at Eff. 3.52% B to A < C Th- 48 21.7	: 19. Backgrou A ch. 6 Xtalk: 1% 1% -230 15 0%	01. Efficienc Th: 25% C14: und (CPM): B ch. 235 Sr90 2803 33.33%	22.08 9,80 Tc-99 S Stainle A ch. 2	last cal. 9% 1 9% 1 9% 1 9% Tc	18,660 c : Sr: 32.4 NI: 2 %
As Found (A HV / Vernier: 800 / N/A AF CPM: AF 4 pi eff: AF 2 pi eff:	 Sat F) Efficien Tc-99 So Nic A ch. Pu239 4358 23.52% 46.45% 	cles: urce R kel (CF B ch.	C14 Unsat M): Net Eff. Tc99 Ni	Pu-2 Respi A ch. 4358 Ne Xta I	48,71 48,71 39 Source onse (CPM B ch. Ne 550 23 et A to B lik: <10% 6.7% 6.7% 6.7% 6.7% 6.7%	80 dpm Pu Tc s): et Eff. 3.52% B to A < C Th 48° 21.7 42.9	: 19. Backgrou A ch. 6 Xtalk: 1% 1% -230 15 0%	01. Efficienc Th: 25% C14: und (CPM): B ch. 235 Sr90 2803 33.33% 47.67%	/21/08 les from 22.09 9,8/ Tc-99 S Stainle A ch. 2	last cal. 9% 1 9% Tc 1 9% Tc 1 9% Tc 1 9% C-14 483 9.42 94.64	18,660 c : Sr: 32.4 NI: esponse (CPM): Net Eff. 19.04% 2 %

PROBE #: PR323025 04/03/19 Date:

PLATEAU AND SET POINT DATA

HV / Vernier:	Tc-99 S	ource Re SS (CPM	esponse):	Pu- Resp	Pu-239 Source Response (CPM):			nd (CPM):	Net A to B Xtalk: <10%	B to A Xtalk: <1%
	A ch.	B ch.	Net Eff.	A ch.	B ch.	Net Eff.	A ch.	B ch.	at the estimate	Sec.
775	5	3705	16.0%	4278	343	23.1%	1	185	3.6%	<1%
800	5	4395	18.9%	4454	549	24.1%	0	256	6.2%	<1%
825	3	4686	20.2%	4411	772	23.8%	1	246	10.7%	<1%
		in the second							- Tailer -	L L Hall
alle - M		N. C. Y.								

Alpha / Be	ta Bkg (cpr	n) 0	254				
HV / Vernier		Pu-239	Tc-99 NI	Tc-99 SS	<u>Th-230</u>	<u>C-14</u>	<u>Sr-90</u>
800 / N/A	CPM:	4408		4333	4958	4869	2864
4 pi AL Eff	iciencles:	23.83%		18.58%	22.37%	9.46%	33.87%
2 pl AL Eff	liciencies:	47.04%		33.79%	44.31%	24.73%	48.45%
z pi de ch	referretes.	41.0476		33.1370		24.1376	40.4076

REMARKS: Cleaned screen and replaced mylar due to high alpha bkg as found.

Does Instrument Meet Final Acceptance Criteria?: • Yes No O Calibration Sticker Attached?: Yes 0 No Date Instrument is Due For Next Calibration: 04/03/20 # 315452 2360 INSTRUMENT MARRIED WITH Slenn EM

Performed/Reviewed by:

Date: 4/3/2019

2

Entered by: Call Initials

Calibrations performed to ANSI N323A-1997 standards.

2 pi efficiencies denoted in italics.

Owner: AMERIPHYSICS	OR							
DATE: 04/02/10			3030	E	SERIAL	_#	328270	
DATE: 04/03/19	and the second	L	OCATIO	DN:			Griffin In	st
TECH: E.M. Glenn		D		AST CAI	LEXPIRES:		05/18/1	18
Reason For Calibration:	Due	For Call	bration		0	Repair	(See Remar	ks)
CABLE LENGTH: 39"	O Oth	er (See R	emarks	3)	0	Due a	nd Repair (Se	e Remarks)
NIST TRA	CEABLE EO	UIPMEN	TUSED	DURIN		TION		
MODEL: 500-2	SERIAL #	2849	51		CAL	DUE:	10/03/19	
MODEL	SERIAL #				CAL	DUE		
					SAL	J. J. L.		
Condition; 🖲 Sat 🔿 Unsa	t	AF M	echani	cal Zero	N/A			
		AL M	echani	cal Zero	: N/A			
Scaler Function Check	-	As Fo	und	A	s Left			
Beta Channel Window (4-50 mV):		4	-48		4-50			
Alpha Channel Window (175 mV, 120 for 30	30):	1	10		120			
Alpha Counts w/Pulser @ 10,000 CPM:		9.	966		A.F.		% Error:	0.3%
Beta Counts w/Pulser @ 10,000 CPM:		9.	966		A.F.		% Error:	0.3%
HIGH VOLTAGE POWER SUPLY CAL. (2929 only)							
1 KV Reading (R-6 on HV Board):		1.	025		1.0			
Max HV (1500 V +):		0	Sat	0	Unsat			
REMARKS		*******			1			
Does Instrument Meet Final Acceptance Criteria	2: 0	Yes	0	No				
Calibration Sticker Attached?:	0	Yes	Ö	No				
Date Instrument is Due For Next Calibration:	04/	03/20						
INSTRUMENT MARRIED WITH 4	3-10-1	#PR	337591					
Performed/Reviewed by: <u>E.M. Glen</u>	er fr	Date:	4/3/20	19		Ente	red by: <u>CC</u>	P_Initials

1

Judlum Measurements, Inc. dodel 3030 Parameters 1/3/2019 L:41:42 PM feader 1: John Q Public leader 2: Serial#328270 leader 3: DET#PR337591
leader 4: Room 7 EastWall leader 5: More Comments? Header 6: More Comments? Calibration Due Date: 4/3/2020 Model 3030 Date: 4/3/2019 Model 3030 Time: 1:41:45 PM Count Time Switch (min): 1.0 Jser PC Time (min): 2.0 Alpha Alarm: 999999 Beta Alarm: 999999 Alpha + Beta Alarm: 999999 High Voltage (VDC): 775 Loss of Count Time (min): 30.0 Count Mode: SCALER Alpha Efficiency 8: 34.6 - Th 230 C. 6. 4.3.19 Beta Efficiency 8: 26.0 - To 99 Background Subtract: OFF Alpha Background: 0.0 Beta Background: 51.0 Crosstalk Correction: OFF Alpha to Beta Crosstalk %: 4.9 Beta to Alpha Crosstalk %: 0.0 Show Parameters during startup: Enabled Daily QC Check: OFF Update Efficiency/Background Subtract from QC: SUB Override QC Count Time: ON Last Alpha Efficiency %: 35.1 Last Beta Efficiency %: 23.8 Standard Alpha Efficiency %: 30 Standard Beta Efficiency %: 27 Allowable Alpha QC Efficiency ± %: 20 Allowable Beta QC Efficiency ± %: 20 Alpha Source Size (dpm): 19584 Alpha Source Size (Bq): 326.4 Alpha Source Size (µCi): 0.00882162162 Beta Source Size (dpm): 25950 Beta Source Size (Bg): 432.5 Beta Source Size (µCi): 0.01168918919 Alpha QC Count Time (min): 1.0 Beta QC Count Time (min): 1.0 Background QC Count Time (min): 10.0 Last Alpha QC Background: 0.0 Last Beta QC Background: 0.3 Alpha Background Upper Limit (cpm): 3.0 Alpha Background Lower Limit (cpm): 0.0 Beta Background Upper Limit (cpm): 80.0 Beta Background Lower Limit (cpm): 0.0 Next Sample Number: FULL User-defined Comment: AAAAAAAAAA Logging Mode: Log All

Logging Mode: Log All Recycle Mode: OFF Printer Mode: OFF
Owner: AM		RTIF		OR	43	-10-1		PROBE	#	PR33	7591
DATE: 04/0	3/19		A.	1253		LOC	ATION:		C	Griffin Ins	it
TECH: E.M	. Glenn					DATI	E LAST C	AL EXPIRES	:	05/18/1	8
Due For C	Calibration	C	Repair (S	ee Rem	OR CALIB arks)	O Ot	N: her (See l	Remarks)	O Du	e and R	epair
CABLE	E LENGTH:	39"	4			INPUT	SENSIT	IVITY: DUA	L		
	NIST TH	RACEA	BLE EQUI	MENTA	ND STAN	DARD	S USED I		BRATIO	N	
MODEL:	3030E		SE	RIAL #:		32827	0	CAL. DUE:		04/03/2	0
มเต้างง ว้างจากตุลแสด์ใหม่มีใจ ได้ที่สุดทางจุญภิณณ	gananana di seki ti inga		NIS	T TRACI	EABLE SO	DURCE	S USED		1911 - 4V		
Source N	umber		Isotope		4 pi Ac	tivity		Assay	Date		2 pi Activity
	P2-149		Tc99 SS		21,9	49 dpn	n	02	/01/17		12,070 c
	P2-152		Th230		22,1	66 dpm	n	02	/01/17		11,190 cp
100.00	2696-00		Pu239		18,5	i00 dpn	n	12	/02/09		9,370 cr
1000	2097-00 BY 726		SINU		12,2	200 dpr	n	03	101/00		18 660 c
and the second s	and the state	ann gint finne ann		n	· · · · · · · · · · · · · · · · · · ·			10. 11 mm		40	
								Efficienc	ies from	last cal.	
			*			-				0/	
Condition:	💿 Sa	t C) Unsat			P	U:	Th:	34.97	70	Sr: 43.6
Condition:	Sa	t () Unsat			TC	u:	Th: 9.19% C14:	34.97	70 TC	Sr: 43.6
Condition: As Found (/	Sa AF) Efficient	t () ncies:) Unsat			TC	u: ss: 29	9.19% C14:	34.97	70 TC	Sr: 43.64
Condition: As Found (/ HV / Vemier:	 Sa AF) Efficier Tc-99 Sc Nic 	t C ncies: purce F skel (Cl	Response PM):	Pu-2 Respo	39 Source	P Tc A):	u: ss: 29 Backgro	5.19% C14:	34.97 14.96 Tc-99 S Stainle	ource Re ss Steel	Sr: 43.64 Nij Isponse (CPM):
Condition: As Found (/ HV / Vernier:	 Sa AF) Efficier Tc-99 Sc Nic A ch. 	t () ncies: burce F ckel (Cl B ch.	Response PM): Net Eff.	Pu-2 Respo A ch.	39 Source onse (CPM B ch. N	P Tc A): et Eff.	Backgro A ch.	Dund (CPM):	14.96 Tc-99 S Stainle A ch.	ource Re ss Steel B ch.	Sr: 43.6/
Condition: As Found (/ HV / Vernier 750 / N/A	Sa Sa Sa AF) Efficien Tc-99 Sc Nic A ch.	t C ncies: burce F kel (Cl B ch.	Response PM): Net Eff.	Pu-2 Respo A ch. 6927	39 Source onse (CPM B ch. N 416 3	P Tc 1): et Eff. 7.44%	Backgro A ch. 0	Dund (CPM): B ch. 40	34.97 14.96 Tc-99 S Stainle A ch. 1	ource Re ss Steel B ch. 5701	Sr: 43.61 Nii (CPM): Net Eff. 25.79%
Condition: As Found (/ HV / Vernier: 750 / N/A	Sa Sa Sr Sc-99 Sc Nic A ch.	t () ncies: burce F kel (Cl B ch.	Response PM): Net Eff.	Pu-2 Respo A ch. 6927 Ne Xta	39 Source onse (CPM B ch. N 416 3 t A to B lk: <10%	P Tc 1): et Eff. 7.44%	Backgro A ch. 0 A Xtalk: <1%	Dund (CPM): B ch. 40	34.97 14.96 Tc-99 S Stainle A ch. 1	ource Re ss Steel B ch. 5701	Sr: 43.64 Nij (CPM): Net Eff. 25.79%
Condition: As Found (/ HV / Vernier 750 / N/A	Sa Sa AF) Efficien Tc-99 Sc Nic A ch.	t (C ncies: Durce F ekel (Cl B ch.	Response PM): Net Eff.	Pu-2 Respo A ch. 6927 Ne Xta	39 Source onse (CPM B ch. N 416 3 t A to B lk: <10% 5.1%	P Tc 1): et Eff. 7.44%	u: ss: 29 Backgro A ch. 0 A xtalk: <1% <1%	Dund (CPM): B ch. 40	34.97 14.90 Tc-99 S Stainle A ch. 1	ource Re ss Steel B ch. 5701	Sr: 43.61
Condition: As Found (/ HV / Vernier: 750 / N/A	Sa Sa AF) Efficien Tc-99 Sc Nic A ch. Pu239	t C ncies: Durce F kkel (Cl B ch.	Response PM): Net Eff. Tc99 Ni	Pu-2 Respo A ch. 6927 Ne Xta	39 Source onse (CPM B ch. N 416 3 t A to B lk: <10% 5.1% c99 ss	P Tc 1): et Eff. 7.44%	u: ss: 29 Backgro A ch. 0 A ch. 0 A xtalk: <1% <1% n-230	Th: 9.19% C14: Dund (CPM): B ch. 40 Sr90	34.97 14.96 Tc-99 S Stainle A ch. 1	ource Ress Steel B ch. 5701	Sr: 43.61
As Found (/ HV / Vernier: 750 / N/A	Sa Sa AF) Efficier Tc-99 Sc Nic A ch. Pu239 6927	t C ncies: Durce F kkel (Cl B ch.	Cinsat Response PM): Net Eff. Tc99 Ni	Pu-2 Respo A ch. 6927 Ne Xta	39 Source onse (CPM B ch. N 416 3 t A to B lk: <10% 5.1% c99 ss	P Tc 1): et Eff. 7.44% B to / TI	u: ss: 29 Backgro A ch. 0 A ch. 0 A ch. 0 A ch. 0 A ch. 0 A ch. 0 A ch. 0 A ch. 0 A ch. 3 3 3 3 3 3 3 3 3 3 3 3 3	Th: 9.19% C14: Dound (CPM): B ch. 40 <u>Sr90</u> 3350	34.97 14.96 Tc-99 S Stainle A ch. 1	70 TC 1 000000 Re ss Steel B ch. 5701 <u>C-14</u> 722	Sr: 43.6 Nij (CPM): Net Eff. 25.79%
As Found (/ HV / Vernier: 750 / N/A AF CPM: AF 4 pl eff:	 Sa AF) Efficient Tc-99 Sc Nic A ch. Pu239 6927 37.449 	t (Crimer of the second	Conset	Pu-2 Respo A ch. 6927 Ne Xta I	39 Source onse (CPM B ch. N 416 3 t A to B lk: <10% 5.1% <u>c99 ss</u> 701 3.79%	P Tc 1): et Eff. 7.44% B to / II 7(34.	u: ss: 29 Backgro A ch. 0 A Xtalk: <1% <1% h-230 53%	Th: 9.19% C14: Dound (CPM): B ch. 40 <u>Sr90</u> 3350 42.96%	34.97 14.96 Tc-99 S Stainle A ch. 1	70 TC 1 000/CC Re SS Steel B ch. 5701 <u>C-14</u> 722 14.73	Sr: 43.61
Condition: As Found (/ HV / Vernier: 750 / N/A AF CPM: AF 4 pl eff: AF 2 pi eff:	 Sa AF) Efficient Tc-99 Sc Nic A ch. Pu239 6927 37.449 73.939 	t Charles: Durce F Skel (Cl B ch.	Cinsat Response PM): Net Eff. <u>Tc99 Ni</u>	Pu-2 Respo A ch. 6927 Ne Xta I I 5 25 25 46	39 Source onse (CPM B ch. N 416 3 t A to B lk: <10% 5.1% c99 ss 701 3.79% 3.90%	P Tc 1): et Eff. 7.44% B to / II 7/ 34. 68.	u: ss: 29 Backgro A ch. 0 A ch. 0 A ch. 0 A ch. 0 A ch. 39%	Th: 9.19% C14: Dund (CPM): B ch. 40 Sr90 3350 42.96% 61.44%	34.97 14.96 Tc-99 S Stainle A ch. 1	70 Tc 1 3% Tc 1 3% Tc 1 3% Tc 1 38 ch. 5701	Sr: 43.6 Nii (CPM): Net Eff. 25.79%
Condition: As Found (/ HV / Vernier: 750 / N/A AF CPM: AF 4 pl eff: AF 2 pi eff:	 Sa AF) Efficient Tc-99 Sc Nic A ch. Pu239 6927 37.449 73.939 	t (Crimer of the second	Conset	Pu-2 Respo A ch. 6927 Ne Xta I I 5 25 25 46	39 Source onse (CPM B ch. N 416 3 t A to B lk: <10% 5.1% c99 ss 701 3.79% 8.90%	P Tc 1): et Eff. 7.44% B to / II 7/ 34. 68.	u: ss: 29 Backgro A ch. 0 A ch. 0 A ch. 1% <1% <1% s53 53% 39%	Th: 9.19% C14: Dund (CPM): B ch. 40 Sr90 3350 42.96% 61.44%	34.97 14.96 Tc-99 S Stainle A ch. 1	70 TC 1 0000000 Re 000000 Re 0000000 Re 000000 Re 0000000 Re 000000000000000000000000000000000000	Sr: 43.61

PROBE #: PR337591 Date: 04/03/19

PLATEAU AND SET POINT DATA

Dah Mat FH						ALDIN1070	\$170
B CR. Net Eff.	A ch.	B ch.	Net Eff.	A ch.	B ch.	and the second second	La la maistra
				all's set			
		1392		2010-00			
			-	a series			

Alpha / Bet	a Bkg (cpr	m) 0	51				
HV / Vernier		Pu-239	Tc-99 Ni	Tc-99 SS	Th-230	<u>C-14</u>	Sr-90
775 / N/A	CPM:	6835		5758	7669	7337	3415
4 pl AL Effic	ciencies:	36.95%		26.00%	34.60%	14.94%	43.66%
2 pl AL Efficience	ciencies:	72.95%		47.28%	68.53%	39.05%	62.44%

REMARKS:

Does Instrument Meet Final Acceptance Criteria?:	0	Yes	0	No
Calibration Sticker Attached?:	\odot	Yes	0	No

Date Instrument is Due For Next Calibration:

INSTRUMENT MARRIED WITH

3030E

Performed/Reviewed by:

E. D.K. Slenn alp

Date: 4/3/2019

2

328270

04/03/20

Entered by: de Initials

Calibrations performed to ANSI N323A-1997 standards.

2 pi efficiencies denoted in italics.

Ludlum Meagurements, Inc. Model 3030 Plateau Data
4/3/2019 1:28:37 PM
Header 1: John Q Public Header 2: Serial#328270 Header 3: DET#PR337591 Header 4: Room 7 EastWall Header 5: More Comments? Header 6: More Comments?
Calibration Due Date: 4/3/2020
Model 3030 Date: 4/3/2019 Model 3030 Time: 12:46:45 PM
User PC Time: 2.0
Alpha Isotope: Pu-239, # 2696-00, 12/02/2009 Alpha Source Size (dpm): 18500 Alpha Source Size (Bq): 308.33 Alpha Source Size (µCi): 0.008333333
Beta Isotope: Tc-99, #P2-149, 02/01/2017 Beta Source Size (dpm): 21949 Beta Source Size (Bq): 365.82 Beta Source Size (μCi): 0.009886937
Starting High Voltage: 650 Starting High Voltage: 850 High Voltage Increment: 25
Plateau Count Mode: SCALER Source Count Time (min): 1.0 Background Count Time (min): 1.0

HV	Source	(Beta)	ALPHA Background	Eff	CrossTalk	Source	(Alpha)	BETA Background	Eff	Crosstalk
650	5997	(394)	0	32.4%	6.0%	3300	(1)	33	14.98	0.0%
675	6478	(335)	0	35.0%	4.98	3877	(0)	19	17.68	0.0%
700	6518	(326)	0	35.28	4.68	4557	(0)	28	20.6%	0.08
725	6631	(301)	0	35.8%	4.08	4969	(0)	34	22.58	0.0%
750	6998	(319)	0	37.8%	3.88	5251	(0)	51	23.78	0.0%
775€	6835	(385)	0	36.9%	4.98	5758	(1)	51	26.0%	0.08
800	7036	(715)	1	38.0%	9.48	5951	(1)	56	26.98	0.08
825	6892	(866)	1	37.28	11.28	6044	(0)	94	27.18	0.08
850	6995	(999)	1	37.88	12.08	5906	(0)	158	26.2%	0.0%

Safety and Ecology Corporation SEC PROCEDURE # SEC-IS-403 Rev 4

1093 Commerce Park Drive, Suite 300 Oak Ridge, TN 37830

Calibration Certificate

Page 1 of 1 10/11/2019

Calibra		icate for 2	221, Serial	# 18399	05, Bar Co	de # ,Proj	perty #	SEC-53	19	Salvon			
Location	- 000000	Date	ast call Exp	105. 00/	00/20	Reas	on For C	alibration	Due for	Calibration			
LUCATION	. 333333,	with two							, Due loi		-		
				EQUIP	MENTUSED	DURING	ALIBRA	TION					
		MO	DEL: 500-2	5	SERIAL #: 26	68940	.C.	AL DUE:	05/06/20				
		MO	DEL:	S	ERIAL #:		C	AL DUE:					
AS FO	UND DATA	Geotropi	sm: SAT	AS F	OUND Instru	ument Cond	lition:	SAT	AS	LEFT Instru	ment C	ondition:	SAT
HIGH	VOLTAGE	AS	FOUND HV	AS LE	FT HV	Ne	w Batter	ies?	AF Med	chanical Zer	ro: 0		
(+/- 10%	tolerance)	500 V:	500 V	5	i03 V	Threshold	ratio: 10	0=10mV	AL Med	chanical Zei	ro: 0		
		1000 V:	993 V	10	00 V	AF THRES	HOLD:	10 mV	AF HV	Reading:	950	v	
		1500 V:	1486 V	14	96 V	AL THRES	HOLD:	10 mV	AL HV	Reading:	950	v	
Ser Co		RATE N	IETER	Contraction of the second	1222		Contest	DIC	GITAL S	CALER	10		(Stat
SCALE	RATE CPM	AS FOUND	% ERROR	AS LEFT	% ERROR	AF 250-	250	% FPR.	0.00%	AL 250	AF	% F88.	0.00%
x.1 or	100	100	0.00%	AF	0.00%	AE 2500.	2498	W EDD.	0.08%	AL 2500.	AE	% EPD.	0.08%
XI	250	250	0.00%	AF	0.00%	AF 2500:	24 98 K	% ERR.	0.08%	AL 2500:	AF K	% ERR.	0.08%
v1 or	1000	1000	0.00%	AF	0.00%	AE SEAK	240.8 K	W EDD.	0.09%	AL 250K.	AFK	% EDD.	0.00%
x10	2500	2500	0.00%	AF	0.00%	AF 200K:	249.0 K	70 ERR:	0.00%	AL 250K:		70 ERR:	0.00%
	4000	4000	0.00%	AF	0.00%	\checkmark	is the A	s Found	Data Withi	n 20% of th	e Set Po	oint?	
x10 or	10K	10	0.00%	AF	0.00%		130	7.建筑化	INGS	CALE	William.	18:425	1
x100	25K	25	0.00%	AF	0.00%	WACON S		1 483 - 3 4	1003	UALL	5	The second	POTATA .
	40K	40	0.00%	AF	0.00%	AF 200:	200	% ERR	: 0.00%	AL 200:	AF	% ERR	: 0.00%
x100 or	100K	100	0.00%	AF	0.00%	AF 2000:	2000	% ERR	0.00%	AL 2000:	AF	% ERR	: 0.00%
x1000	250K	250	0.00%	AF	0.00%	AF 20K:	20 K	% ERR	0.00%	AL 20K:	AF	K% ERR	: 0.00%
	400K	400	0.00%	AF	0.00%	AF 200K:	200 K	% ERR	0.00%	AL 200K:	AF	K% ERR	: 0.00%
🗹 Is i	the As Found	Data Within	20% of the S	et Point	?		Is the A	s Found	Data Withi	n 20% of th	e Set Po	oint?	
	- English	REPROD	UCIBILIT	TY	Contraction of	157			Audio R	esponse: S	AT		
x.1	or x1 Scale:	250	2	50	250				Audi	o Divider S	ΔΤ		
x1 (or x10 Scale:	2500	25	00	2500				Duch	Butteres C			
x10 or	x100 Scale:	25 K		25 K	25	к			Push	Buttons: 3	AI		
x100 or	x1000 Scale:	250 K	2	50 K	250	к				Lamp: S	SAT		
									Scale	or/Digital: S	AT		
	Are the Indi	vidual Coun	ts Within 109	6 of the A	Average?		¥ Fa	ast / Slow	Response	Function F	Properly	17	
Comm	ents: Mai	rried as a set	with: M	odel: 44	-17	Serial #:	PR2508	369	Ba	r Code #:			
	Does Instrur	nent Meet Fi Date Instru	nai Acceptan ment is Due	ce Criter For Next	ria? Calibration:	10/11/	Calibrati 20	on Sticke	r Attached	?			
Pe Pr	erformed by:-	Jacob G	L G	Am with	Re	eviewed by		I N3234	HE 2013		2/1/19	; 4	

 Safety and Ecology Corporation
 SEC PROCEDURE #
 SEC-IS-415 Rev 4

 1093 Commerce Park Drive, Suite 300 Oak Ridge, TN 37830
 Page 1 of 1

Calibration Certificate

Page 1 of 1 10/11/2019

Calibration Certificate for 44-17, Serial # PR250869, Bar Code # , Property # SEC-6458 Date: 10/11/19 Date Last Cal. Expires: 03/30/18 Technician: Jacob Galyon Location: 999999. Reason For Calibration: Due for Calibration EQUIPMENT USED DURING CALIBRATION CAL DUE: 10/11/20 MODEL: 2221 SERIAL #: 183995 MODEL: SERIAL #: CAL DUE: NIST TRACEABLE SOURCES USED SOURCE ISOTOPE ACTIVITY ASSAY DATE 211 728-36 Ba-133 0.2958 uCi 3/5/2018 99CS250-0288 Cs-137 5.9048 uCi 3/5/2018 Efficiency from Last Calibration: 1.85 % **HV From Last Calibration:** 950 V **Calibration Threshold:** 10 mV AS FOUND DATA 1 MINUTE COUNTS (CPM) AS LEFT DATA after repair of HV adjust AS FOUND Instrument Condition: SAT AS LEFT Instrument Condition: SAT HV: 950 V 950 V HV: Center: 11608 Center: 11608 Background: 704 Background: 704 4 π Probe Efficiency: Ba-133 1.66% 4 π Probe Efficiency: Ba-133 1.66% "AF" in the AL Efficiency fields means to refer to the AF Efficiencies in the AS FOUND DATA Section V Is the As Found Efficiency Within 20% of the efficiency from the last cal.? Reproducibility: Isotope:Ba-133 11595 11511 11343 Average: 11483 🗹 Are the individual counts within 10% of the average? * If As Found Efficiency (even after repair) is within 10% of the last calibration and uniformity is <10%, the lochalcian may N/A the Plateau Data and proceed to Comments. Geometry # Nat probes are 4 1/2" from source. All other probes are in contact with surface unless otherwise specified. PLATEAU AND SET POINT DATA (CPM) **High Voltage** Source Response Background HV CENTER Background **4 π Efficiency** N/A 950 V Ba-133 Cs-137 23409 0.17% 704 Comments: Married as a set with: Serial #: 183995 Model: 2221 Bar Code #: Does Instrument Meet Final Acceptance Criteria? Calibration Sticker Attached? Date Instrument is Due For Next Calibration; 10/11/20 Performed by: **Reviewed by:** Date:/0/1// Printed Name: Jacob Galvon All instrumentation is calibrated in accordance with the QAP to meet the criteria of ANSI N323AB-2013

Attachment 3 Scoping/Characterization Survey Reports

Radiation Survey Record

	20 AMER	RIPHYSICS		Project: Triad	- KC	Project Number: 1169	Survey Area	: nination Survey	Survey Num	l ber:	Date: Time:	10/22/2019 11:00	Page 1	L of 2
		Contal	turn beau	Dete	-	Farial Number	Cal. D	ue Date	2 PI	4 PI	Backg	round	MC	C
Instr	ument	Serial r	umber	Dete	ctor	Senai Number	Instrument	Detector	Efficiency	Efficiency		Units		Units
Ludium	26-1 Dose	PFOO	7054	N/	Ά	N/A	4/3/2020	N/A	N/A	N/A	0.01	mR/hr	N/A	N/A
Ludiur	n 3030E	328	270	43-1	.0-1	PR337591	4/3/2020	4/3/2020	N/A	26.00%	61	cpm	151	dpm
Ludiu	m 2360	315	452	43-	93	PR323025		4/3/2020	N/A	16.90%	253	cpm	456	dpm
N	/A	N	/A	N/	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Surveyor:	rveyor: Robert Hansen Signature:		qA	TH	Reviewer:	Тог	m Hansen	ш	Signature:	1	.1	14		
			Total Activ	rity Results		1			Re	movable Act	tivity Results			
Item	Alp	ha	Beta-0	Samma		Comments	Item	Alp	ha	Beta-	Gamma		ommente	
Number	Gross CPM	Net DPM	Gross CPM	Net DPM	-	Comments	Number	Gross CPM	Net DPM	Gross CPM	Net DPM		omments	
1	N/A	N/A	3995	22142		See Below	R							
2	N/A	N/A	1038	4645		See Below								
3	N/A	N/A	4299	23941		See Below			-					_
4	N/A	N/A	975	4272		See Below								
5	N/A	N/A	2347	12391		See Below								
6	N/A	N/A	7042	40172		See Below								
7	N/A	N/A	7172	40941		See Below					-			
8	N/A	N/A	5813	32899		See Below								
9	N/A	N/A	3735	20604		See Below	-					-		
10	N/A	N/A	70028	412870		See Below								
11	N/A	N/A	12202	70704		See Below				1				
12	N/A	N/A	2011	10402		See Below				Ц N,				
13	N/A	N/A	2747	14757		See Below								
14	N/A	N/A	9430	54302		See Below								
15	N/A	N/A	1167	5408		See Below								
16	N/A	N/A	828	3402		See Below	-							
17	N/A	N/A	39478	232101	5	See Below								
18	N/A	N/A	18042	105260		See Below					-	1	1	
19	N/A	N/A	1522	7509		See Below	_						1	
20	N/A	N/A	4877	27361	-	See Below	_		-					
N/A	N/A	N/A	N/A	N/A		N/A	_		-			-		1
N/A	N/A	N/A	N/A	N/A		N/A								-

Radiation Survey Record

Radiation Survey Record

	AMERIPHYSICS			Project: Triad - KC		Project Number: 1169	Survey Area Clean Contan	Survey Area: Clean Contamination Survey		Survey Number: 2		Date: 10/22/2019 Time: 14:30		of 2		
Inches	umant	Forield	lumber	Data	etor	Forial Number	Cal. D	ue Date	2 PI	4 P1	Backg	round	MD	C		
Instr	ument	Serial	vumber	Dete	ctor	Serial Number	Instrument	Detector	Efficiency	Efficiency		Units		Units		
Ludium	26-1 Dose	PFOC	7054	N/	A	N/A	4/3/2020	N/A	N/A	N/A	0.01	mR/hr	N/A	N/A		
Ludlur	m 3030E	328	3270	43-1	0-1	PR337591	4/3/2020	4/3/2020	N/A	26.00%	61	cpm 151		dpm		
Ludiu	m 2360	315	452	43-93		43-93		PR323025	4/3/2020	4/3/2020	N/A	16.90%	346	cpm	530	dpm
N	I/A	N	/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	/A N/A	N/A	N/A		
Surveyor:	rveyor: Robert Hansen Signature			Signature:	qA	TH	Reviewer:	Tor	n Hansen	111	Signature:	1	-1	14		
			Total Activ	ity Results		/			Re	movable Act	ivity Results					
Item	Alp	ha	Beta-G	Gamma		Comments	Item	Alp	ha	Beta-0	Samma		omments			
Number	Gross CPM	Net DPM	Gross CPM	Net DPM		Comments	Number	Gross CPM	Net DPM	Gross CPM	Net DPM		omments			
1	N/A	N/A	380	201		See Below	1	N/A	N/A	70	35		See Below			
2	N/A	N/A	343	-18		See Below	2	N/A	N/A	64	12		See Below			
3	N/A	N/A	372	154		See Below	3	N/A	N/A	66	19		See Below			
4	N/A	N/A	399	314		See Below	4	N/A	N/A	56	-19		See Below			
5	N/A	N/A	359	77		See Below	5	N/A	N/A	61	0		See Below			
6	N/A	N/A	410	379		See Below	6	N/A	N/A	53	-31		See Below			
7	N/A	N/A	409	373		See Below	7	N/A	N/A	50	-42		See Below			
8	N/A	N/A	394	284		See Below	8	N/A	N/A	72	42		See Below			
9	N/A	N/A	411	385		See Below	9	N/A	N/A	53	-31		See Below	-		
10	N/A	N/A	370	142		See Below	10	N/A	N/A	69	31		See Below			
11	N/A	N/A	351	30		See Below	11	N/A	N/A	62	4		See Below			
12	N/A	N/A	361	89		See Below	12	N/A	N/A	56	-19		See Below			
13	N/A	N/A	415	408		See Below	13	N/A	N/A	62	4	-	See Below			
14	N/A	N/A	371	148		See Below	14	N/A	N/A	49	-46		See Below			
15	N/A	N/A	359	77		See Below	15	N/A	N/A	61	0		See Below			
16	N/A	N/A	323	-136	-	See Below	16	N/A	N/A	66	19		See Below	_		
17	N/A	N/A	325	-124		See Below	17	N/A	N/A	55	-23		See Below			
18	N/A	N/A	334	-71		See Below	18	N/A	N/A	54	-27		See Below	-		
19	N/A	N/A	405	349		See Below	19	N/A	N/A	59	-8		See Below			
20	N/A	N/A	308	-225		See Below	20	N/A	N/A	55	-23		See Below			
N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A		N/A			
N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A		N/A			

Radiation Survey Record

Radiation Survey Record

	2 Амен	RIPHYSICS		Project: Triad	- КС	Project Number: 1169	Survey Area Waste	: e Survey	Survey Num	nber: 3	Date: Time:	10/23/2019 10:30	Page 1	of 1
Inste		Conial B	lumber	Dete	ter	Corial Number	Cal. D	ue Date	2 PI	4 PI	Backg	round	MD	C
Instr	ument	Serial r	aumber	Dete	ctor	Serial Number	Instrument	Detector	Efficiency	Efficiency	-	Units	-	Units
Ludium	26-1 Dose	PFOO	7054	N/	A	N/A	4/3/2020	N/A	N/A	N/A	0.01	mR/hr	N/A	N/A
Ludiur	m 3030E	328	270	43-1	0-1	PR337591	4/3/2020	4/3/2020	N/A	26.00%	61	cpm	151	dpm
N	I/A	N	/A	N/	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N	/A	N	/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Surveyor:	urveyor: Robert Hansen			Signature:	qA	1H	Reviewer:	Tor	m Hansen	Ш	Signature:	1	.1	14
			Total Activ	ity Results		/			Re	movable Act	tivity Results			
Item	Alp	ha	Beta-0	Gamma		Comments	Item	Alp	ha	Beta-0	Samma		Comments	
Number	Gross CPM	Net DPM	Gross CPM	Net DPM		comments	Number	Gross CPM	Net DPM	Gross CPM	Net DPM			
R							1	N/A	N/A	51	-38	Drum 1169	-01 (inner co	ontainer)
1							2	N/A	N/A	56	-19	Dr	um 1169-01	
							3	N/A	N/A	61	0	Dr	um 1169-01	
							4	N/A	N/A	62	4	Dr	um 1169-01	
-							5	N/A	N/A	51	-38	Drum 1169	-02 (inner co	ontainer)
					_	and the second	6	N/A	N/A	53	-31	Dr	um 1169-02	
_	-						7	N/A	N/A	68	27	Dr	um 1169-02	
							8	N/A	N/A	67	23	Dr	um 1169-02	-
-				<u> </u>			R							
			N	/A										
					1		-				/			_
						/								
							-			-			~	_
-		-									-			X
Comments:		Drums to be	transported	by Interstate \	entures to	new facility located in Ka	nsas City (Shipm	nent # 1169-19	9-0001).					
		Contain	ner 1169-01: I	Highest dose r	ate on conta	act was 1.25 mR/hr; High	est dose rate at	1 meter was 0	.03 mR/hr. S	hipped as Ra	dioactive Yell	ow-11		
		Contai	ner 1169-02:	Highest dose	ate on cont	act was 9.3 mR/hr; Highe	est dose rate at	1 meter was 0	.18 mR/hr. Sh	nipped as Rac	dioactive Yello	ow-II		

Attachment 4 Final Status Survey Packages

1 2

Building: Triad/Jubilant Kansas City, MO Facility Survey MARSSIM Classification: Class 1 Room Nos. Included in Survey Unit: Main Lab

Approvals

Prepared By:

mp 14 Tom Hansen III

Print Name / Signature

Reviewed By:

Tim Pratt Print Name / Signature

10/11/2019 Date 10/11/2019 Date

Completion and Review

Data Collected and/or Converted By:

m 1 LL

Tom Hansen III/Robbie Hansen Print Name / Signature

Reviewed and Verified By:

Tim Pratt

Print Name / Signature

10/23/2019 Date

10/29/2019

Date

Building: Triad/Jubilant Kansas City, MO Facility Survey MARSSIM Classification: Class 1 Room Nos. Included in Survey Unit: Main Lab Radionuclides of Concern: I-131 and Xe-133

 Release Limits (DCGLs)

 Total Activity Limits
 Removable Activity Limit
 Limits Based On:

 Beta/Gamma
 1.18E+06 dpm/100 cm²
 1.18E+05 dpm/100 cm²
 25 mrem/y I-131

Applicable Survey Unit Surfaces	% of Accessible Surface for Scan Surveys
Floor	100
Lower Walls	100
Upper Walls	n/a
Ceiling	n/a
Structures (Interior and Exterior Surfaces)	100

Required Survey Instrumentation	Measurement Type	Sample Time	Background Count Time	Scan Rate	Efficiency Based On
Ludlum 2360 / 43-93	Beta Scans / Beta Statics	1 minute	1 minute	7 cm/sec	Beta Tc-99
Ludlum 2360 / 43-37	Beta Scans	N/A	N/A	13.4 cm/sec	Beta Tc-99
Ludium 3030E / 43- 10-1	Beta Removable Activity	1 minute	1 minute	N/A	Beta Tc-99
Ludlum 2221 / 44-17	Gamma Scans	N/A	1 minute	0.3 m/sec	Gamma Ba-133

Buildir	ig: Triad/Jubilant Kansas City, MO Facility
Survey	
MARS	SIM Classification: Class 1
Room	Nos. Included in Survey Unit: Main Lab
Survey	Instructions
1)	Perform the required beta and gamma scan surveys at the rates prescribed on the previous page. Document the performance of the scan surveys on the attached survey maps using markings and legends as necessary to allow the reviewer enough information to verify that sufficient area has been covered.
2)	The estimated number of static measurement locations needed for the statistical evaluation of this survey unit is 17.
3)	For Class 1 and Class 2 survey units, the locations are determined by using a random start point and a systematic spacing from this point. Due to this method, the actual number of plotted locations may vary. In this case, collect the actual locations provided on the survey map even if this number is greater than 17.
4)	Locate and mark the required measurement locations using the provided survey map(s). Survey maps have been provided with the required measurement locations. Sufficient detail has been provided on these maps to measure and locate all of these locations.
5)	Collect static measurements for gross beta at each identified location. Collect wipe samples for gross beta at each sample location. Document the results on the associated data results sheets. Additional measurements may be taken in suspect areas at the discretion of the Project Manager or survey technician. However, these additional locations are not included in the analysis of the statistical sample set.
6)	Notify the Project Manager if any static measurement or applicable removable contamination measurements exceeds the applicable investigation level.
7)	Collect 5% duplicate static measurement for gross beta. Collect 5% duplicate wipe samples for gross beta. Document results on the associated beta result sheet.
8)	Ensure that all package information is completed and signed prior to turning in this survey package to the Project Manager for review.

Building: Triad	/Jubilant Kansa	is City, MO Fai	cility		
Survey					
MARSSIM Class	sification: Clas	s 1			
Room Nos. Incl	uded in Surve	y Unit: Main L	.ab		_
Type	Location	Surface	х	Y	
Systematic	1	Floor	2.71	0.26	
Systematic	2	Floor	5.72	0.26	
Systematic	3	Floor	8.73	0.26	
Systematic	4	Floor	2.71	3.27	
Systematic	5	Floor	5.72	3.27	
Systematic	6	Floor	8.73	3.27	
Systematic	7	Floor	2.71	6.28	
Systematic	8	Floor	5.72	6.28	
Systematic	9	Floor	8.73	6.28	
Systematic	10	Wall 1	0.29	1.83	
Systematic	11	Wall 1	3.29	1.83	
Systematic	12	Wall 1	6.30	1.83	
Systematic	13	Wall 1	9.31	1.83	
Systematic	14	Wall 2	1.02	1.83	
Systematic	15	Wall 2	4.03	1.83	
Systematic	16	Wall 2	7.04	1.83	
Systematic	17	Wall 3	2.35	1.83	
Systematic	18	Wall 3	5.36	1.83	
Systematic	19	Wall 3	8.37	1.83	
Systematic	20	Wall 4	0.08	1.83	
Systematic	21	Wall 4	3.09	1.83	
Systematic	22	Wall 4	6.10	1.83	

The local X and Y coordinates are in units of meters. X and Y are measured from an origin in the southern corner for floors. Wall coordinates are from the bottom left corner. See corresponding room map.

urveyor: Tom Hansen III/I	Reviewer: Tim	Pratt			Date: 10	Date: 10/23/19		
gnature: Nh	Signature: 🛩	7.12	_		Time: 11:00			
Instrument / De	etector	Serial f	lumber	Cal. Due Date	Total Efficiency	Background (cpm)	Probe Area (cm ²)	MDC
Ludlum 2360/43-93 -	Beta - Static	315452 /	PR323025	4/3/2020	16.90%	253	100	456
Ludium 2360/43-93 -	Beta - Scan	315452 /	PR323025	4/3/2020	16.90%	253	100	1423
Ludium 3030E/43-10-1 - E	Beta - Removable	328270 /	PR337591	4/3/2020	26.00%	61	100	151
Ludlum 2360/43-37 -	Beta - Scan	297744 /	PR160079	4/3/2020	18.21%	748	584	389
Ludium 2221/4417 - G	iamma - Scan	183995 /	PR250869	10/11/2020	1.66 %	1436	N/A	N/A
		Total Activ	ity Results			Removable Ac	tivity Results	
	Al	pha	Beta-G	Samma	Alj	oha	Beta-G	iamma
Location Code	Gross Counts	Net dpm/100 cm ²	Gross Counts	Net dpm/100 cm ²	Gross Counts	Net dpm/100 cm ²	Gross Counts	Net dpm/100 cm ²
1	N/A	N/A	238	-89	N/A	N/A	65	15
2	N/A	N/A	271	107	N/A	N/A	54	-27
3	N/A	N/A	317	379	N/A	N/A	49	-46
4	N/A	N/A	272	112	N/A	N/A	62	4
5	N/A	N/A	294	243	N/A	N/A	63	8
6	N/A	N/A	265	71	N/A	N/A	69	31
7	N/A	N/A	263	59	N/A	N/A	56	-19
8	N/A	N/A	307	320	N/A	N/A	57	-15
9	N/A	N/A	302	290	N/A	N/A	54	-27
10	N/A	N/A	215	-225	N/A	N/A	63	8
11	N/A	N/A	224	-172	N/A	N/A	58	-12
12	N/A	N/A	231	-130	N/A	N/A	64	12
13	N/A	N/A	225	-166	N/A	N/A	62	4
- 14	N/A	N/A	212	-243	N/A	N/A	71	38
15	N/A	N/A	238	-89	N/A	N/A	61	0
16	N/A	N/A	286	195	N/A	N/A	62	4
17	N/A	N/A	268	89	N/A	N/A	53	-31
18	N/A	N/A	220	-195	N/A	N/A	66	19
19	N/A	N/A	245	-47	N/A	N/A	66	19
20	N/A	N/A	212	-243	N/A	N/A	57	-15
21	N/A	N/A	217	-213	N/A	N/A	69	31
22	N/A	N/A	226	-160	N/A	N/A	65	15
8 Dup	N/A	N/A	312	349	N/A	N/A	71	38
17 Dup	N/A	N/A	277	142	N/A	N/A	62	4
А	N/A	N/A	270	101	N/A	N/A	67	23
B	N/A	N/A	349	-30	N/A	N/A	67	4

Building: Triad/Jubilant Kansas City, MO Facility Survey MARSSIM Classification: Class 1 Room Nos. Included in Survey Unit: Main Lab

	Comments Section
Date	Comment
10/23/2019	All smear results less than MDC. Highest smear results were at location 14; 71 gross cpm (38 net dpm/100 cm ²).
10/23/2019	All beta static results less than MDC. Highest recorded dpm for a static reading was at location 2, 319 gross cpm (379 net dpm/ 100cm ²).
10/23/2019	100% of floors, lower walls, and structures scanned with 43-93 or 43-37, nothing distinguishable from background.
10/23/2019	100% of floors, lower walls, and structures scanned with 44-17, nothing distinguishable from background.
~	
	N/A

MARSSIM Classification: Class 1 Room Nos. Included in Survey Unit: Waste and Product Storage Rooms Approvals **Prepared By:** 24/14 Tom Hansen III 10/11/2019 Print Name / Signature Date 10/11/2019 Print Name / Signature Date **Completion and Review** Data Collected and/or Converted By: In KIL Tom Hansen III/Robbie Hansen 10/23/2019 Print Name / Signature Date

Reviewed and Verified By:

Tim Pratt

Print Name / Signature

10/29/2019 Date

Final Status Survey Design Package

Survey Unit ID: SU 2

Reviewed By:

Tim Pratt

Building: Triad/Jubilant Kansas City, MO Facility

Building: Triad/Jubilant Kansas City, MO Facility Survey Unit ID: SU 2 MARSSIM Classification: Class 1 Room Nos. Included in Survey Unit: Waste and Product Storage Rooms

Radionuclides of Concern: I-131 and Xe-133

Release Limits (DCGLs)						
	Total Activity Limits	Removable Activity Limit	Limits Based On:			
Beta/Gamma	1.18E+06 dpm/100cm ²	1.18E+05 dpm/100 cm ²	25 mrem/y I-131			

Applicable Survey Unit Surfaces	% of Accessible Surface for Scan Surveys
Floor	100
Lower Walls	100
Upper Walls	n/a
Ceiling	n/a
Structures (Interior and Exterior Surfaces)	100

Required Survey Instrumentation	Measurement Type	Sample Time	Background Count Time	Scan Rate	Efficiency Based On
Ludlum 2360 / 43-93	Beta Scans / Beta Statics	1 minute	1 minute	7 cm/sec	Beta Tc-99
Ludlum 2360 / 43-37	Beta Scans	N/A	N/A	13.4 cm/sec	Beta Tc-99
Ludlum 3030E / 43- 10-1	Beta Removable Activity	1 minute	1 minute	N/A	Beta Tc-99
Ludlum 2221 / 44-17	Gamma Scans	N/A	1 minute	0.3 m/sec	Gamma Ba-133

Buildin	g: Triad/Jubilant Kansas City, MO Facility
Survey	Unit ID: SU 2
MARSS	IM Classification: Class 1
Room I	Nos. Included in Survey Unit: Waste and Product Storage Rooms
Survey I	nstructions
1)	Perform the required beta and gamma scan surveys at the rates prescribed on the
	previous page. Document the performance of the scan surveys on the attached survey
	maps using markings and legends as necessary to allow the reviewer enough information
	to verify that sufficient area has been covered.
2)	The estimated number of static measurement locations needed for the statistical
-	evaluation of this survey unit is 17.
3)	For Class 1 and Class 2 survey units, the locations are determined by using a random start
	point and a systematic spacing from this point. Due to this method, the actual number of
	plotted locations may vary. In this case, collect the actual locations provided on the
	survey map even if this number is greater than 17.
4)	Locate and mark the required measurement locations using the provided survey map(s).
	Survey maps have been provided with the required measurement locations. Sufficient
	detail has been provided on these maps to measure and locate all of these locations.
5)	Collect static measurements for gross beta at each identified location. Collect wipe
	samples for gross beta at each sample location. Document the results on the associated
	data results sheets. Additional measurements may be taken in suspect areas at the
	discretion of the Project Manager or survey technician. However, these additional
	locations are not included in the analysis of the statistical sample set.
6)	Notify the Project Manager if any static measurement or applicable removable
	contamination measurements exceeds the applicable investigation level.
7)	Collect 5% duplicate static measurement for gross beta. Collect 5% duplicate wipe
	samples for gross beta. Document results on the associated beta result sheet.
8)	Ensure that all package information is completed and signed prior to turning in this survey
	package to the Project Manager for review.

Building: Triad/J	ubilant Ka	ansas Cit	y, MO Fa	cility			
Survey Unit ID: S	SU 2						
MARSSIM Classi	fication: (Class 1					
Room Nos. Inclu	ded in Su	rvey Uni	t: Waste	and Proc	duct Storage F	Rooms	
Туре	Location	Room	Surface	Х	Y		
Systematic	1	Waste	Floor	1.08	0.67		
Systematic	2	Waste	Floor	2.95	0.67		
Systematic	3	Waste	Floor	1.08	2.55		
Systematic	4	Waste	Floor	2.95	2.55		
Systematic	5	Waste	Wall 1	0.44	0.43		
Systematic	6	Waste	Wall 1	2.31	0.43		
Systematic	7	Waste	Wall 2	0.59	0.43		
Systematic	8	Waste	Wall 2	2.47	0.43		
Systematic	9	Waste	Wall 3	1.14	0.43		
Systematic	10	Waste	Wall 3	3.02	0.43		
Systematic	11	Waste	Wall 4	1.29	0.43		
Systematic	12	Waste	Wall 4	3.17	0.43		
Systematic	13	Product	Floor	0.82	1.23		
Systematic	14	Product	Floor	2.70	1.23		
Systematic	15	Product	Floor	0.82	3.11		
Systematic	16	Product	Floor	2.70	3.11		
Systematic	17	Product	Wall 1	1.83	1.56		
Systematic	18	Product	Wall 2	1.01	1.56		
Systematic	19	Product	Wall 2	2.89	1.56		
Systematic	20	Product	Wall 3	1.56	1.56		
Systematic	21	Product	Wall 4	0.74	1.56		
Systematic	22	Product	Wall 4	2.61	1.56		

The local X and Y coordinates are in units of meters. X and Y are measured from an origin in the southern corner for floors. Wall coordinates are from the bottom left corner. See corresponding room map.

Building: Triad/. Survey Unit ID: MARSSIM Class	Jubilant Ka SU 2 ification:	ansas Cit Class 1	y, MO Fa	cility	duct Stor	age Boor	ns	
Surveyor: Tom Hansen III / F	Robbie Hansen	ivey on	Reviewer: Tim	Pratt		age Rool	Date: 10/23/19	9
Signature:	112	•	Signature	21/2	2		Time: 16:00	
Instrument / Det	tector	Serial N	lumber	Cal. Due Date	Total Efficiency	Background (cpm)	Probe Area (cm ²)	MDC
Ludlum 2360/43-93 - E	Beta - Static	315452 /	PR323025	4/3/2020	16.90%	346	100	530
Ludlum 2360/43-93 - 1	Beta - Scan	315452 /	PR323025	4/3/2020	16.90%	346	100	1664
Ludlum 3030E/43-10-1 - Be	eta - Removable	328270 /	PR337591	4/3/2020	26.00%	61	100	151
Ludlum 2360/43-37 - 1	Beta - Scan	297744 /	PR160079	4/3/2020	18.21%	748	584	389
Ludium 2221/4417 - Ga	imma - Scan	183995 /	PR250869	10/11/2020	N/A	1436	N/A	N/A
	1	Total Activ	ity Results			Removable A	ctivity Results	
	Al	pha	Beta-G	iamma	Alj	oha	Beta-G	Samma
Location Code	Gross Counts	Net dpm/100 cm ²	Gross Counts	Net dpm/100 cm ²	Gross Counts	Net dpm/100 cm ²	Gross Counts	Net dpm/100 cm ²
1	N/A	N/A	351	30	N/A	N/A	67	23
2	N/A	N/A	348	12	N/A	N/A	65	15
3	N/A	N/A	349	18	N/A	N/A	60	-4
4	N/A	N/A	331	-89	N/A	N/A	67	23
5	N/A	N/A	299	-278	N/A	N/A	60	-4
6	N/A	N/A	417	420	N/A	N/A	59	-8
7	N/A	N/A	398	308	N/A	N/A	69	31
8	N/A	N/A	424	462	N/A	N/A	52	-35
9	N/A	N/A	416	414	N/A	N/A	54	-27
10	N/A	N/A	341	-30	N/A	N/A	67	23
11	N/A	N/A	267	-467	N/A	N/A	69	31
12	N/A	N/A	264	-485	N/A	N/A	66	19
13	N/A	N/A	316	-178	N/A	N/A	64	12
14	N/A	N/A	341	-30	N/A	N/A	46	-58
15	N/A	N/A	314	-189	N/A	N/A	48	-50
16	N/A	N/A	346	0	N/A	N/A	69	31
17	N/A	N/A	405	349	N/A	N/A	46	-58
18	N/A	N/A	414	402	N/A	N/A	55	-23
19	N/A	N/A	428	485	N/A	N/A	56	-19
20	N/A	N/A	427	479	N/A	N/A	69	31
21	N/A	N/A	396	296	N/A	N/A	66	19
22	N/A	N/A	424	462	N/A	N/A	72	42
2 Dup	N/A	N/A	348	12	N/A	N/A	71	38
14 Dup	N/A	N/A	361	89	N/A	N/A	53	-31
А	N/A	N/A	352	36	N/A	N/A	63	8
8	N/A	N/A	321	-148	N/A	N/A	60	-4
	11/6	14/14	321	-140	14/6	1 10/0	00	

Comments: Locations A, B, and C indicate various ventilation ducts inside the survey unit. All duct work was scanned and surveyed. Survey results can be seen above. No results above MDC were observed for either location.

Building: Triad/Jubilant Kansas City, MO Facility Survey Unit ID: SU 2 MARSSIM Classification: Class 1 Room Nos. Included in Survey Unit: Waste and Product Storage Rooms

Comments Section

Date	Comment
10/23/2019	All smear results less than MDC. Highest smear results were at location 22; 72 gross cpm (42 net dpm/100 cm ²).
10/23/2019	All beta static results less than MDC. Highest recorded dpm for a static reading was at location 19; 428 gross cpm (485 net dpm/ 100cm ²).
10/23/2019	100% of floors, lower walls, and structures scanned with 43-93 or 43-37, nothing distinguishable from background.
10/23/2019	100% of floors, lower walls, and structures scanned with 44-17, nothing distinguishable from background.
~	
	N/A

Арр	orovals
Prepared By:	
Tom Hansen III Print Name / Signature	10/23/2019 Date
Tim Pratt Print Name / Signature	10/24/2019 Date
Completio	n and Review
Data Collected and/or Converted By:	
Tom Hansen III/Robbie Hansen Print Name / Signature Reviewed and Verified By:	<u>10/24/2019</u> Date
Tim Pratt Print Name / Signature	10/29/2019 Date
Ρ	age 1 of 8

Tim Print

Building: Triad/Jubilant Kansas City, MO Facility Survey Unit ID: SU 3 MARSSIM Classification: Class 1 Room Nos. Included in Survey Unit: Office Area

Tim

Building: Triad/Jubilant Kansas City, MO Facility Survey Unit ID: SU 3 MARSSIM Classification: Class 1 Room Nos. Included in Survey Unit: Office Area

Radionuclides of Concern: I-131 and Xe-133

Release Limits (DCGLs)					
Total Activity Limits Removable Activity Limit Limits Based					
Beta/Gamma	1.18E+06 dpm/100cm ²	1.18E+05 dpm/100 cm ²	25 mrem/y I-131		

Applicable Survey Unit Surfaces	% of Accessible Surface for Scan Surveys
Floor	100
Lower Walls	100
Upper Walls	n/a
Ceiling	n/a
Structures (Interior and Exterior Surfaces)	n/a

Required Survey	Measurement	Sample	Background Count	Scan	Efficiency Based	
Instrumentation	Туре	Time	Time	Rate	On	
Ludlum 2360 / 43-93	Beta Scans / Beta Statics	1 minute	1 minute	7 cm/sec	Beta Tc-99	
Ludlum 2360 / 43-37	Beta Scans	N/A	N/A	13.4 cm/sec	Beta Tc-99	
Ludium 3030E / 43- 10-1	Beta Removable Activity	1 minute	1 minute	N/A	Beta Tc-99	
Ludlum 2221 / 44-17	Gamma Scans	N/A	1 minute	0.25 m/sec	Gamma Ba-133	

Buildin	ig: Triad/Jubilant Kansas City, MO Facility
Survey	Unit ID: SU 3
MARSS	SIM Classification: Class 1
Room	Nos. Included in Survey Unit: Office Area
Survey	Instructions
1)	Perform the required beta and gamma scan surveys at the rates prescribed on the
	previous page. Document the performance of the scan surveys on the attached survey
	maps using markings and legends as necessary to allow the reviewer enough information
	to verify that sufficient area has been covered.
2)	The estimated number of static measurement locations needed for the statistical
	evaluation of this survey unit is 17.
3)	For Class 1 and Class 2 survey units, the locations are determined by using a random start
	point and a systematic spacing from this point. Due to this method, the actual number of
	plotted locations may vary. In this case, collect the actual locations provided on the
	survey map even if this number is greater than 17.
4)	Locate and mark the required measurement locations using the provided survey map(s).
	Survey maps have been provided with the required measurement locations. Sufficient
	detail has been provided on these maps to measure and locate all of these locations.
5)	Collect static measurements for gross beta at each identified location. Collect wipe
	samples for gross beta at each sample location. Document the results on the associated
	data results sheets. Additional measurements may be taken in suspect areas at the
	discretion of the Project Manager or survey technician. However, these additional
	locations are not included in the analysis of the statistical sample set.
6)	Notify the Project Manager if any static measurement or applicable removable
	contamination measurements exceeds the applicable investigation level.
7)	Collect 5% duplicate static measurement for gross beta. Collect 5% duplicate wipe
	samples for gross beta. Document results on the associated beta result sheet.
8)	Ensure that all package information is completed and signed prior to turning in this
	survey package to the Project Manager for review.

and the second se					
Building: Triad/	Jubilant Kansa	s City, MO Fac	ility		
Survey Unit ID:	SU 3				
MARSSIM Class	sification: Class	s 1			
Room Nos. Incl	uded in Survey	y Unit: Office	Area		
Туре	Location	Surface	X	Y	
Systematic	1	Floor	1.02	2.00	
Systematic	2	Floor	3.71	2.00	
Systematic	3	Floor	6.40	2.00	
Systematic	4	Floor	1.02	4.69	
Systematic	5	Floor	3.71	4.69	
Systematic	6	Floor	6.40	4.69	
Systematic	7	Floor	1.02	7.38	
Systematic	8	Floor	3.71	7.38	
Systematic	9	Floor	6.40	7.38	
Systematic	10	Floor	3.71	10.07	
Systematic	11	Floor	6.40	10.07	
Systematic	12	Wall 5	2.21	1.04	
Systematic	13	Wall 4	2.82	1.04	
Systematic	14	Wall 4	0.13	1.04	
Systematic	15	Wall 3	0.94	1.04	
Systematic	16	Wall 2	6.65	1.04	
Systematic	17	Wall 2	3.96	1.04	
Systematic	18	Wall 2	1.27	1.04	
Systematic	19	Wall 1	6.08	1.04	
Systematic	20	Wall 1	3.39	1.04	
Systematic	21	Wall 1	0.70	1.04	
Systematic	22	Wall 6	9.71	1.04	
Systematic	23	Wall 6	7.02	1.04	
Systematic	24	Wall 6	4.33	1.04	
Systematic	25	Wall 6	1.64	1.04	

The local X and Y coordinates are in units of meters. X and Y are measured from an origin in the southern corner for floors. Wall coordinates are from the bottom left corner. See corresponding room map.

Survey Unit ID: MARSSIM Class Room Nos. Incl	SU 3 sification: luded in Su	Class 1	it: Office	Area				
Surveyor: Tom Hasnen III /	Robbie Hansen		Reviewer: Tim	Pratt			Date: 10/24/1	9
Signature:	ny.	12	Signature: 🗸	210			Time: 9:00	
Instrument / De	etector	Serial N	Serial Number		Total Efficiency	Background (cpm)	Probe Area (cm ²)	MDC
Ludium 2360/43-93 -	Beta - Static	315452 /	PR323025	4/3/2020	16.90%	253	100	456
Ludlum 2360/43-93	- Beta - Scan	315452 /	PR323025	4/3/2020	16.90%	253	100	1394
Ludlum 3030E/43-10-1 - E	Beta - Removable	328270/	PR337591	4/3/2020	26.00%	61	100	151
Ludlum 2360/43-37	- Beta - Scan	297744 /	PR160079	4/3/2020	18.21%	748	584	389
Ludlum 2221/4417 - 0	Samma - Scan	183995 /	PR250869	10/11/2020	1.66%	1436	N/A	N/A
	-	Total Activ	ity Results			Removable A	ctivity Results	
	Al	pha Beta-		Gamma Al		oha	Beta-0	Gamma
Location Code	Gross Counts	Net dpm/100 cm ²	Gross Counts	Net dpm/100 cm ²	Gross Counts	Net dpm/100 cm²	Gross Counts	Net dpm/100 cm
1	N/A	N/A	282	172	N/A	N/A	62	4
2	N/A	N/A	295	249	N/A	N/A	56	-19
3	N/A	N/A	285	189	N/A	N/A	65	15
4	N/A	N/A	275	130	N/A	N/A	55	-23
5	N/A	N/A	286	195	N/A	N/A	64	12
6	N/A	N/A	415	408	N/A	N/A	55	-23
7	N/A	N/A	286	195	N/A	N/A	61	0
8	N/A	N/A	295	249	N/A	N/A	63	8
9	N/A	N/A	271	107	N/A	N/A	59	-8
10	N/A	N/A	270	101	N/A	N/A	53	-31
11	N/A	N/A	275	130	N/A	N/A	46	-58
12	N/A	N/A	224	-172	N/A	N/A	63	8
13	N/A	N/A	216	-219	N/A	N/A	55	-23
14	N/A	N/A	215	-225	N/A	N/A	64	12
15	N/A	N/A	229	-142	N/A	N/A	51	-38
16	N/A	N/A	247	-36	N/A	N/A	58	-12
17	N/A	N/A	249	-24	N/A	N/A	64	12
18	N/A	N/A	262	53	N/A	N/A	61	0
19	N/A	N/A	235	-107	N/A	N/A	64	12
22	N/A	N/A	225	-166	N/A	N/A	55	-23
23	N/A	N/A	175	-462	N/A	N/A	68	27
24	N/A	N/A	182	-420	N/A	N/A	67	23
25	N/A	N/A	184	-408	N/A	N/A	47	-54
4 Dup	N/A	N/A	254	6	N/A	N/A	62	4
15 Dup	N/A	N/A	231	-130	N/A	N/A	54	-27

Comments: # 6 was on bare concrete. Bare Concrete BKG was 346 cpm. MDC = 530 dpm/100 cm² Wall locations #20 and #21 fell on an opening. No measurements were recorded for these locations, and they were removed from statistical analysis.

Building: Triad/Jubilant Kansas City, MO Facility Survey Unit ID: SU 3 MARSSIM Classification: Class 1 Room Nos. Included in Survey Unit: Office Area

Comments Section

Date	Comment
10/24/2019	All smear results less than MDC. Highest smear results were at location 23; 68 gross cpm (23 net dpm/100 cm ²).
10/24/2019	All beta static results less than MDC. Highest recorded dpm for a static reading was at location 6; 415 gross cpm (408 net dpm/ 100cm ²).
10/24/2019	100% of floors and lower walls scanned with 43-93 or 43-37, nothing distinguishable from background.
10/24/2019	100% of floors and lower walls scanned with 44-17, nothing distinguishable from background.
~	
	N/A
Building: Triad/Jubilant Kansas City, MO Facility Survey Unit ID: SU 4 MARSSIM Classification: Class 3 Room Nos. Included in Survey Unit: Balance of Unrestricted area - Floors

Approvals

Prepared By:

24/14 Tom Hansen III

Print Name / Signature

Reviewed By:

Tim Pratt Print Name / Signature

10/23/2019

Date

10/24/2019

Date

Completion and Review

Data Collected and/or Converted By:

Jul 12

Tom Hansen III/Robbie Hansen Print Name / Signature

Reviewed and Verified By:

Tim Pratt

Print Name / Signature

10/24/2019 Date

10/29/2019 Date Building: Triad/Jubilant Kansas City, MO Facility Survey Unit ID: SU 4 MARSSIM Classification: Class 3 Room Nos. Included in Survey Unit: Balance of Unrestricted area - Floors

Radionuclides of Concern: I-131 and Xe-133

	Release Limits (DCGLs)					
	Total Activity Limits	Removable Activity Limit	Limits Based On:			
Beta/Gamma	1.18E+06 dpm/100cm ²	1.18E+05 dpm/100 cm ²	25 mrem/y I-131			

Applicable Survey Unit Surfaces	% of Accessible Surface for Scan Surveys
Floor	10-100
Lower Walls	n/a
Upper Walls	n/a
Ceiling	n/a
Structures (Interior and Exterior Surfaces)	n/a

Required Survey	Measurement	Sample	Background Count	Scan	Efficiency Based
Instrumentation	Туре	Time	Time	Rate	On
Ludlum 2360 / 43-93	Beta Scans / Beta	1 minute	1 minute	7 cm/sec	Beta Tc-99
	Statics				
Ludium 2360 / 43-37	Beta Scans	N/A	N/A	13.4 cm/sec	Beta Tc-99
Ludlum 3030E / 43- 10-1	Beta Removable Activity	1 minute	1 minute	N/A	Beta Tc-99
Ludium 2221 / 44-17	Gamma Scans	N/A	1 minute	0.25 m/sec	Gamma Ba-133

Building	g: Triad/Jubilant Kansas City, MO Facility
Survey	Unit ID: SU 4
MARSS	IM Classification: Class 3
Room N	Nos. Included in Survey Unit: Balance of Unrestricted area - Floors
Survey In	nstructions
1)	Perform the required beta and gamma scan surveys at the rates prescribed on the
	previous page. Document the performance of the scan surveys on the attached survey
	maps using markings and legends as necessary to allow the reviewer enough information
	to verify that sufficient area has been covered.
2)	The estimated number of static measurement locations needed for the statistical
	evaluation of this survey unit is 17.
3)	For Class 3 survey units, the locations are determined randomly. Due to this method, the
	actual number of plotted locations is 17.
4)	Locate and mark the required measurement locations using the provided survey map(s).
	Survey maps have been provided with the required measurement locations. Sufficient
	detail has been provided on these maps to measure and locate all of these locations.
5)	Collect static measurements for gross beta at each identified location. Collect wipe
	samples for gross beta at each sample location. Document the results on the associated
	data results sheets. Additional measurements may be taken in suspect areas at the
	discretion of the Project Manager or survey technician. However, these additional
	locations are not included in the analysis of the statistical sample set.
6)	Notify the Project Manager if any static measurement or applicable removable
	contamination measurements exceeds the applicable investigation level.
7)	Collect 5% duplicate static measurement for gross beta. Collect 5% duplicate wipe
	samples for gross beta. Document results on the associated beta result sheet.
8)	Ensure that all package information is completed and signed prior to turning in this
	survey package to the Project Manager for review.

						-				
Building: Triad/	Building: Triad/Jubilant Kansas City, MO Facility									
Survey Unit ID:	SU 4									
MARSSIM Class	ification: Clas	is 3								
Room Nos. Incl	Room Nos. Included in Survey Unit: Balance of Unrestricted area - Floors									
Туре	Location	Surface	X	Y						
Systematic	1	Floor	0.39	13.26						
Systematic	2	Floor	23.85	0.75						
Systematic	3	Floor	20.40	11.28						
Systematic	4	Floor	13.50	2.51						
Systematic	5	Floor	27.30	7.77						
Systematic	6	Floor	14.15	4.26						
Systematic	7	Floor	21.05	14.79						
Systematic	8	Floor	3.80	1.34						
Systematic	9	Floor	24.50	3.09						
Systematic	10	Floor	8.98	4.85						
Systematic	11	Floor	22.78	10.11						
Systematic	12	Floor	19.33	0.36						
Systematic	13	Floor	26.23	10.89						
Systematic	14	Floor	1.21	2.12						
Systematic	15	Floor	21.91	3.87						
Systematic	16	Floor	11.56	0.95						
Systematic	17	Floor	25.36	6.21						

The local X and Y coordinates are in units of meters. X and Y are measured from an origin in the southern corner for floors. See corresponding room map.

urveyor: Tom Hansen III /	Robbie Hansen		Reviewer: Tim	Pratt		192	Date: 10/24/1	9
ignature:	14		Signature:	7.15			Time: 11:00	
Instrument / Detector Serial N		lumber	Cal. Due Date	Total Efficiency	Background (cpm)	Probe Area (cm ²)	MDC	
Ludlum 2360/43-93 - I	Beta - Static	315452 /	PR323025	4/3/2020	16.90%	253	100	456
Ludlum 2360/43-93 -	Beta - Scan	315452 /	PR323025	4/3/2020	16.90%	253	100	1394
Ludlum 3030E/43-10-1 - B	eta - Removable	328270/	PR337591	4/3/2020	26.00%	61	100	151
Ludium 2360/43-37 -	Beta - Scan	297744 /	PR160079	4/3/2020	18.21%	748	584	389
Ludlum 2221/4417 - Ga	amma - Scan	183995 /	PR250869	10/11/2020	1.66%	1436	N/A	N/A
		Total Activ	ity Results			Removable A	ctivity Results	
	Alp	oha	Beta-G	iamma	Alp	oha	Beta-G	amma
Location Code	Gross Counts	Net dpm/100 cm²	Gross Counts	Net dpm/100 cm ²	Gross Counts	Net dpm/100 cm ²	Gross Counts	Net dpm/100 cm
1	N/A	N/A	297	260	N/A	N/A	63	8
2	N/A	N/A	283	178	N/A	N/A	61	0
3	N/A	N/A	408	367	N/A	N/A	52	-35
4	N/A	N/A	327	438	N/A	N/A	63	8
5	N/A	N/A	273	118	N/A	N/A	70	35
6	N/A	N/A	288	207	N/A	N/A	49	-46
7	N/A	N/A	416	414	N/A	N/A	67	23
8	N/A	N/A	292	231	N/A	N/A	58	-12
9	N/A	N/A	275	130	N/A	N/A	62	4
10	N/A	N/A	280	160	N/A	N/A	43	-69
11	N/A	N/A	418	426	N/A	N/A	59	-8
12	N/A	N/A	286	195	N/A	N/A	66	19
13	N/A	N/A	422	450	N/A	N/A	59	-8
14	N/A	N/A	295	249	N/A	N/A	63	8
15	N/A	N/A	277	142	N/A	N/A	55	-23
16	N/A	N/A	294	243	N/A	N/A	54	-27
17	N/A	N/A	299	272	N/A	N/A	63	8
10 Dup	N/A	N/A	269	95	N/A	N/A	67	23
17 Dup	N/A	N/A	279	154	N/A	N/A	59	-8
+								
		-						
	-		N					

dpm/100cm².

Building: Triad/Jubilant Kansas City, MO Facility Survey Unit ID: SU 4 MARSSIM Classification: Class 3 Room Nos. Included in Survey Unit: Balance of Unrestricted area - Floors

Comments Section

Date	Comment
10/24/2019	All smear results less than MDC. Highest smear results were at location 5; 70 gross cpm (35 net dpm/100 cm ²).
10/24/2019	All beta static results less than MDC. Highest recorded dpm for a static reading was at location 13; 422 gross cpm (450 net dpm/ 100cm ²).
10/24/2019	100% of floors scanned with 43-93 or 43-37, nothing distinguishable from background.
10/24/2019	100% of floors scanned with 44-17, nothing distinguishable from background.
~	
	N/A

Attachment 5 MDC Calculations

· ·

.

1. Instrument Information

 Meter Model Number
 2360
 Meter Serial Number
 297744

 Probe Model Number
 43-37
 Probe Serial Number
 PR160079

Application:
Beta
Appla
Removable

2. Background Determination

	Background		
Background Count Time (min)	Counts (counts)	Background Count Rate (cpm)	Sample Count Time (min)
1	748	748	1

3. Preliminary Calculations

i - Residence Interval (sec) = Detector Width (cm) ÷ Scan Rate(cm/sec)

Detector Width (cm)	Scan Rate (cm/sec)	i (sec)
13.40	13.4	1.00

b_i - Background Counts during

 $b_i(counts) = i (sec) \times \frac{background \ count \ rate \ (counts/min)}{60 \ (sec/min)}$

Residence Interval			00(
i (sec)	Background Count Rate (cpm)	Constant - Minutes to Seconds	b _i (counts)
1.00	748	60	12.46666667

E total - Total Detector Efficiency

 $E_{total} = 2\pi \ efficiency \times surface \ efficiency$

2π Instrument Alpha Efficiency	2π Instrument Beta Efficiency	Surface Efficiency	Beta <i>E _{total}</i>	Alpha E _{total}
N/A	36.41%	50.00%	18.21%	N/A

$$MDC_{scan}(dpm/100cm^2) = \frac{d'\sqrt{b_i} \left(\frac{60}{i}\right)}{\sqrt{p}E_{total} \frac{A}{100cm^2}}$$

4. MDC_{scan} Calculation

ď	b; (counts)	i (sec)	p	E total	A (cm ²)	MDC _{Scan} (dpm/100 cm ²)
1.38	12.4666667	1.00	0.50	18.21%	584	389

1. Instrument Information

Meter Model Number 2360 Meter Serial Number 315452

Probe Model Number 43-93 Probe Serial Number PR323025

Application: 🛛 🖾 Beta 🖓 Alpha 🔅 🖓 Removable

2. Background Determination

	Background		
Background Count Time (min)	Counts (counts)	Background Count Rate (cpm)	Sample Count Time (min)
1	346	346	1

3. Preliminary Calculations

i - Residence Interval Residence Interval (sec) = Detector Width (cm) + Scan Rate(cm/sec)

Detector Width (cm)	Scan Rate (cm/sec)	i (sec)
7.00	7	1.00

b i - Background	Counts	during
------------------	--------	--------

$b_i(counts) = i (sec) \times \frac{background \ count \ rate \ (counts/min)}{60 \ (sec/min)}$

Residence Interval			60 (
i (sec)	Background Count Rate (cpm)	Constant - Minutes to Seconds	<i>b</i> ; (counts)
1.00	346	60	5.766666667

E total - Total Detector Efficiency

 $E_{total} = 2\pi \ efficiency \times surface \ efficiency$

2π Instrument Alpha Efficiency	2π Instrument Beta Efficiency	Surface Efficiency	Beta <i>E</i> total	Alpha E _{total}
N/A	33.79%	50.00%	16.90%	N/A

A

$$ADC_{scan}(dpm/100cm^2) = \frac{d'\sqrt{b_i}\left(\frac{60}{i}\right)}{\sqrt{p}E_{total}\frac{A}{100cm^2}}$$

4. MDC_{scan} Calculation

ď	b; (counts)	i (sec)	р	E total	A (cm ²)	MDC _{Scan} (dpm/100 cm ²)
1.38	5.76666667	1.00	0.50	16.90%	100	1664

1. Instrument Information

 Meter Model Number
 2360
 Meter Serial Number
 315452

 Probe Model Number
 43-93
 Probe Serial Number
 PR323025

Application: Beta Alpha Removable:

2. Background Determination

Background Count	Background Count Background		Sample Count
Time (min)	Time (min) Counts (counts)		Time (min)
1	346	346	1

3. Preliminary Calculations

 E_{total} - Total Detector Efficiency $E_{total} = 2\pi \ efficiency$

 $E_{total} = 2\pi \, efficiency \times surface \, efficiency$

2π Instrument Alpha Efficiency	2π Instrument Beta Efficiency	Surface Efficiency	Beta E _{total}	Alpha E total
N/A	33.79%	50.00%	16.90%	N/A

4. MDC_{static} Calculation

$$MDC_{static}(dpm/100cm^2) = \frac{3 + 3.29\sqrt{B_r \times t_s \times \left(1 + \frac{t_s}{t_b}\right)}}{t_s \times E_{total} \times \frac{A}{100cm^2}}$$

B, (cpm)	t _ø (min)	t _s (min)	E total	A (cm ²)	MDC _{Static} (dpm/100 cm ²)
346	1	1	16.90%	100	529.86

h.

1. Instrument Information

Meter Model Number	3030	Meter Serial Number	328270
Probe Model Number	43-10-1	Probe Serial Number	PR337591
Application: 🛛 Beta	🗆 Alpha	Removable Nuclide:	Tc 99

2. Background Determination

Background Count Time (min)	Background Counts (counts)	Background Count Rate (cpm)	Sample Count Time (min)
1	61	61	1

3. Preliminary Calculations

E total - Total Detector Efficiency

4. MDC_{static} Calculation

 $MDC_{static}(dpm/100cm^2) = \frac{3 + 3.29\sqrt{B_r \times t_s \times \left(1 + \frac{t_s}{t_b}\right)}}{A}$ $t_s \times E_{total} \times \frac{A}{100 cm^2}$

B _r (cpm)	t _o (min)	t _s (min)	E _{total}	A (cm ²)	MDC _{Static} (dpm/100 cm ²)
61	1	1	26%	100	151

NO

https://www.fedex.com/shipping/html/en/PrintlFrame.html

Page 1 of 1