DUKE POWER COMPANY

POWER BUILDING

422 SOUTH CHUNCH STREET, CHARLOTTE, N. C. 28242

**

1.10

VILLIAM O. PARKER, JR. VICE PRESIDENT STEAM PRODUCTION

TELEPHONE AREA 704 373-4083

October 10, 1975

Mr. Ben rd C. Rusche Directo of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Attenticu: Mr. R. A. Purple, Chief Operating Reactors Branch 1

Re: Oconee Nuclear Station Docket Nos. 50-269, -270, -287

Dear Mr. Rusche:

With regard to your letter of September 8, 1975 concerning the need for additional information relative to assumptions made in Topical Report BAW-10103, the attached response is provided.

Very truly yours, 6 ashe William O. Parker, Jr.

MST:vr

Attachm its

0891 7912040 6

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION FORWARDED BY MR. R. A. PURPLE'S LETTER OF SEPTEMBER 8, 1975

Question

<u>Net Free Containment Volume</u> - Justification should include the total gross internal containment volume and the internal structures and equipment and their volumes which are subtracted to obtain the net free containment volume. A discussion of the uncertainties should be provided.

RESPONSE

A summary of the gross containment internal volume and the internal structures and equipment volumes are presented in Table 1. The Oconee values were calculated from the as-built information and contain a minimum of uncertainty. The 20 percent conservatism in the Oconee volume as compared to the BAW-10103 is more than adequate to account for uncertainties which may exist.

Question

<u>Passive Heat Sinks</u> - Provide the actual passive heat sink structures for your plant. Discuss the method of determining the passive containment heat sinks. Identify each heat sink by category (i.e., cable tray, equipment support, floor grating, crane wall, etc.) and provide surface area, thickness, materials of construction, thermal conductivity and volumetric heat capacity, by component category used in the containment transient analysis code.

RESPONSE

The passive heat sink data was calculated based upon a review of as-built design information. In support of these calculations, the containment heat sink data for Duke Power Company supplied components is described in Table 2 and the heat sink data for Babcock and Wilcox supplied equipment is described in Table 3. A summarization of the total Oconee heat sink data in comparison to those values provided in BAW-10103 is presented in Table 4. The slight variations in the values of Table 4 relative to the July 9, 1975 ECCS submittal are the result of further refinement of the calculations of Babcock and Wilcox supplied equipment.

Question

Starting Time of Containment Cooling System(s) - Discuss the factors that show that the start time(s) assumed in the containment response analysis represent the earliest possible initiation of system(s) operation.

RESPONSE

Topical Report BAW-10103 a sumes a starting time of zero for the Reactor Building cooling units. This is compatible with Oconee operation since the Technical Specifications require operation of the Reactor Building cooling units during reactor operation.

With regard to the Reactor Building Spray System, BAW-10103 assumes a starting time of 65 seconds assuming no loss of off-site power. The actual time delay, including ESF time delay, pump starting time and the time necessary to fill the spray headers has been calculated to be 83.6 seconds for Oconee. Therefore, the Oconee units are quite conservative relative to the generic model utilized in BAW-10103.

Question

Containment Initial Conditions - Compare the initial values of temperature, pressure and relative humidity in the containment with the range of values that will be permitted during plant oper: ion.

RESPONSE

The initial containment temperature, pressure and relative humidity used in BAW-10103 were derived from measured data at Oconee Unit 1. These initial conditions continue to be conservative for this analysis.

Question

Containment Spray Water Temperature - Show that the value of containment spray water temperature used in the containment response analysis is the lower bound temperature consistent with plant operating conditions and that the spray flow rate used is suitably conservative.

RESPONSE

The containment spray water temperature assumed in BAW-10103, 40° F, is the lowest temperature which is permitted by Oconee Technical Specifications. Therefore, the values assumed are suitably conservative. The Oconee spray flow rate is less than the 1800 gpm assumed in BAW-10103.

Question

Fan-Cooler Heat Removal Rate - Compare the maximum fan-cooler heat removal rate for your plant with that assumed in BAW-10103. Show that minimum operational values of service water temperature have been used.

RESPONSE

The maximum fan-cooler heat removal rate obtained from data presented in the FSAR and modified for 40F cooling water temperature is compared to that used in BAW-10103, in Figure 1. As can be seen from this comparison, the fan cooler heat removal rate assumed in BAW-10103 is equal to or greater than

that for Oconee at any given containment (RB) atmosphere temperature. The service water temperature used in both cases is 40F, however, the minimum operational value stated in the FSAR is 45F thereby adding additional conservatism.

Question

If any of the above parameters are less conservative for your plant than used in the generic evaluation of BAW-10103, provide the sensitivity of these parameters to the overall containment pressure response. This evaluation should demonstrate the overall conservatism of your containment parameters to those used in BAW-10103.

RESPONSE

In the preceding responses, it has been shown that containment volume, Reactor Building Cooling System initiation times and capacities, initial atmospheric conditions, and spray water temperatures for the Oconee units are conservative in relation to the generic model used in BAW-10103.

With regard to containment heat sink data, Table 4 reflects variations between Oconee Nuclear Station and BAW-10103 data; however, the net effect is conservative. This is clearly evident by a comparison of the total internal steel volume and concrete area used at Oconee (5979 ft³ and 152,791 ft²) as opposed to that assumed in the generic model (9219 ft³ and 245,785 ft²). Since the values of steel and concrete used at Oconee are very conservative and several orders of magnitude more than any other heat sinks, the overall conservation of the Oconee heat sinks plus the smaller net free containment volume will yield a higher containment backpressure than calculated in BAW-10103.

CCONEE NUCLEAR STATION CONTAINMENT VOLUME AND HEAT SINK DATA

Volume Information

1.	Gross Volumes Lower Compartment (ft ³) Upper Compartment (ft ³)	730,958
		1,314,947
	Total Containment (ft ³)	2,045,905
2.	Internal Structures Volume Lower Compartment	
	Civil Items (ft ³)	142,567
	Electrical Items (ft ³) : Mechanical Items (ft ³)	5,122
		7,878
	Upper Compartment Civil Items (ft ³)	34,669
	Babcock and Wilcox Co. Supplied Equipment Volume of Primary Equipment (Fluid Volume Only)(ft ³)	12,185.3
	Volume of Secondary Side Equipment (Steam Generators) (ft ³)	6,982.7
	Volume of Passive Heat Sinks (ft ³)	1,568.0
	Fluid Volume of 2 CFT's and Piping (ft ³)	
	and riping (it)	2,900.0
	TOTAL	213,872 ft ³
3.	Net Free Containment Volume (ft ³)	1,832,033

NOTE: The dividing line between the upper and lower compartments is the operating floor, Elevation 844 + 6.

OCONEE NUCLEAR STATION REACTOR CONTAINMENT BUILDING VOLUME AND HEAT SINK INFORMATION

Passive Heat Sink Information

- Note: 1. The dividing line between the lower and upper compartments is the operating floor, Elevation 844 + 6.
 - The thermal conductivity (BTU/Ft. Hr. ^oF) shown is for the material only, it does not include that of the surface coating.
 - Coating information is for type and thickness for its thermal conductivity and specific heat as follows:

Type A = .04/Mil (BTU/FT. Hr. ${}^{o}F$) and 23.5 (BTU/Ft ${}^{3}{}^{o}F$) Type B = .18/Mil (BTU/Ft. Hr. ${}^{o}F$) and 28.8 (BTU/Ft ${}^{3}{}^{o}F$) Type X = No Coating

4. Material Designations:

Steel = Carbon Steel S. Steel = Stainless Steel Al. = Aluminum Copper Concrete

5. Material Properties:

Туре	Thermal Conductivity (BTU/Ft. Hr. F)	Density (#/Ft ³)	Specific Heat (BTU/# ^O F)
Carbon Steel	32.0	490	.12
Stainless Steel	9.4	501	.11
Aluminum	95.0	174	.211
Concrete	1.05	150	.213
Copper	223.0	554	.091

Structure	(Item and Remarks)	Material	Area (Ft ²)	Thickness	Coating
I. LOWER	COMPARTMENT				
A. C:	ivil Items				
1.	. Reactor Building Exterior Wall				
	a. Liner Plate (Backed with Concrete) b. Wall (Faced with ½" Steel) c. Shielding	Steel Concrete Concrete	22,330 22,330 2,976	.25" 3'-9" 5'-3"	A = 10 Mi1 X A = 10 Mi1
2.	Reactor Building Exterior Slab				
	a. Liner Plate (Backed with Concrete) b. Slab (Backed with ½" Steel)	Steel Concrete	8,890 8,890	.25" 8'-6"	A = 7 Mil X
3.	Grating	Steel	33,324	.093"	x
4.	Handrail	Steel	3,869	.15"	A = 8 M11
5.		Concrete Concrete	1,215 810	9" 12"	B = 10 M11 B = 10 M11
6.	Elevator Siding	Al.	8,886	.016"	х
7.	Floors	Concrete Concrete Concrete	5,190 630 6,636	4" 1'-0" 1'-6"	B = 7 Mi1 B = 7 Mi1 B = 7 Mi1
8.	Floors				
	a. Liner Plate (Backed with Concrete)* b. Slab (Faced with ½" Steel)	Steel Concrete	833 833	.25" 4'-0"	x x

Sheet 3 of 8 Sheets

Structure (Item and Remark	<u>s)</u>	Material	Area (Ft ²)	Thickness	Coating
9. Miscellaneous	Shielding	Concrete Concrete Concrete Concrete	269 96 385 6	1'-0" 4" 4½" 5" 6"	B = 7 Mil $B = 7 Mil$ $B = 7 Mil$ $B = 7 Mil$ $B = 7 Mil$
10. Liner Plate (B	acked with Concrete)*	Concrete Steel	268 8,741	.25"	B = 7 Mil
11. Walls					
a. Walls (Fac	ed with է" Steel)*	Concrete Concrete	760 1,724	1'-3" 2'-0"	X X
*Note:	Plate is Lukens MN-3 Clad, with A-36 Backing.	Concrete	3,982 2,275	2'-3" 2'-6"	x x x
b. Walls	Clad is Type 304 Stainless at 20% of	Concrete Concrete	760 164	1'-3" 1'-6"	B = 10 Mil $B = 10 Mil$
	Total Thickness	Concrete Concrete	19,993 1,382	2'-0" 2'-3"	B = 10 Mil $B = 10 Mil$
		Concrete	4,274	2'-6"	B = 10 M11
12. Tank		S. Steel	1,369	.50"	B = 15 Mil
13. Miscellaneous					
a. Rod		Steel Steel	63 197	1.00"Ø .75"Ø	A = 7 Mil $A = 7 Mil$
b. Winch c. Hoist		Steel Steel	22 12	9"Ø 6"Ø	A = 7 Mil $A = 7 Mil$

2

Structure (Item and Remarks)	Material	Area (Ft ²)	Thickness	Coating
14. Miscellaneous	Steel	280	.09"	A = 7 Mil
14. MISCELLANGUES	Steel	983	.10"	A = 7 Mil
(Columns, Beams, Flat Plate,	Steel	10,564	.11"	A = 7 Mil
Ladders, Rail, etc.)	Steel	7,957	.12"	A = 7 Mil
hadders, harr, coor,	Steel	2,116	.13"	A = 7 Mil
	Steel	423	.14"	A = 7 Mil
	Steel	16,547	.15"	A = 7 Mil
	Steel	2,516	.16"	A = 7 Mil
	Steel	1,041	.17"	A = 7 Mil
	Steel	2,441	.18"	A = 7 Mil
	Steel	4,836	.19"	A = 7 Mil
	Steel	2,530	.20"	A = 7 Mil
	Steel	1,091	.22"	A = 7 Mil
	Steel	3;384	.25"	A = 7 Mil
	Steel	2,286	.26"	A = 7 Mil
	Steel	213	.27"	A = 7 Mil
	Steel	836	.29"	A = 7 Mil
	Steel	2,904	.33"	A = 7 Mil
	Steel	1,195	.37"	A = 7 Mil
	Stee1	579	.38"	A = 7 Mil
	Steel	3,976	.40"	A = 7 Mil
	Steel	473	.43"	A = 7 Mil
	Steel	466	.46"	A = 7 Mil
	Steel	2,012	. 47"	A = 7 Mil
	Steel	51	.49"	A = 7 Mil
	Steel	706	.50"	A = 7 Mil
	Steel	1,409	.57"	A = 7 Mil
	Steel	1,463	.75"	A = 7 Mil
	Steel	. 1,965	.84"	A = 7 Mil
	Steel	758	1.00"	A = 7 Mil
	Steel	1,261	1.25"	A = 7 Mil
	Steel	224	1.75"	A = 7 Mil
	Steel	1,425	2.00"	A = 7 Mil
	Steel	11	3.50"	A = 7 Mil
	Steel	720	.06"	A = 7 Mil

Structu	are (Item and Remarks)	Material	Area (Ft ²)	Thickness	Coating
в.	Electrical Items 15. Miscellaneous Cable Tray, Terminal Boxes, Junction Boxes, etc.	Steel Steel Steel Steel Steel	5,485 113 2,950 882 753	.06" .09" .12" .15" .18"	X X X X X
		Steel Steel Steel Steel	4,168 57 223 21	.09" .18" .37" .50"	A = 7 Mil A = 7 Mil A = 7 Mil A = 7 Mil A = 7 Mil
	16. Plate	A1.	1,006	.12"	Х
	17. Cable	Copper Copper Copper	43 260 424	.40" .53" .81"	X X X

Note: All Electrial Items to be in Lower Compartment.

Structure (Item and Remarks)	Material	Area (Ft ²)	Thickness	Coating
C. Mechanical Items				
18. Piping, Valves, Tanks, etc.	S. Steel	2,599	.120"	x
ion riping, mirror, ionic, ionic,	S. Steel	374	.134"	Х
	S. Steel	1,046	.148"	X
	S. Steel	253	.165"	X
	S. Steel	357	.280"	X
	S. Steel	32	.322"	X
	S. Steel	350	.375"	X
	S. Steel	48	.437"	Х
	S. Steel	9	.531"	Х
	S. Steel	478	1.000"	Х
	S. Steel	495	1.125"	Х
	S. Steel	37	1.406"	X
	S. Steel	364	3.205"	Х
	S. Steel	168	.187"	х
	Steel	124	.203"	A = 7 Mil
	Steel	295	.216"	A = 7 Mil
	Steel	146	.237"	A = 7 Mil
	Steel	1,094	.508"	A = 7 Mil

Note: All Mechanical Items to be in Lower Compartment.

Stiucture	(Item and Remarks)	Material	Area (Ft ²)	Thickness	Coating
II. UPPER	COMPARTMENT (ALL CIVIL ITEMS)				
1.	. Reactor Building External Wall				
	a. Liner Plate (Backed with Concrete) b. Wall (Faced with ½" Steel)	Steel Concrete	36,047 36,047	.25" 3'9"	A = 7 Mil X
2.	Reactor Building External Dome				
	a. Liner Plate (Backed with Concrete) b. Dome (Faced with ½" Steel)	Steel Concrete	16,230 16,230	.25" 3'-3"	A = 7 Mil X
3.	Walls	Concrete Concrete	4,200 7,560	1'-6" 2'-0"	B = 10 Mi1 B = 10 Mi1
4.	Shielding				
	a. Plate (Backed with Concrete)b. Plate (Backed with Concrete)c. Slab (Faced with Plate Both Sides)	Steel Steel Concrete	903 903 1,806	.25" 1.0" 1'-6"	A = 7 Mil A = 7 Mil X
5.	Floors	Concrete	1,100	4"	B = 7 Mil
6.	Grating	Steel	10,646	.093"	x
7.	Handrail	Steel	214	.15"	A = 8 Mil
8.	Polar Crane	Steel	7,247	2.0"	A = 7 M11

Structure (Item and Remarks)	Material	Area (Ft ²)	Thickness	Coating
9. Miscellaneous (Beams, Columns, Flat Plate, Ladders, Rails, etc.)	Steel Steel Steel Steel Steel Steel Steel Steel Steel Steel Steel Steel Steel Steel Steel Steel	1,249 551 768 165 93 430 854 1,691 2,343 1,864 1,715 1,009 .644 41 68	.12" .16" .20" .22" .25" .26" .28" .28" .29" .31" .40" .43" .50" .63" .75" .19"	$A = 7 \text{ Mil} \\ A = 7 \text{ Mi}$

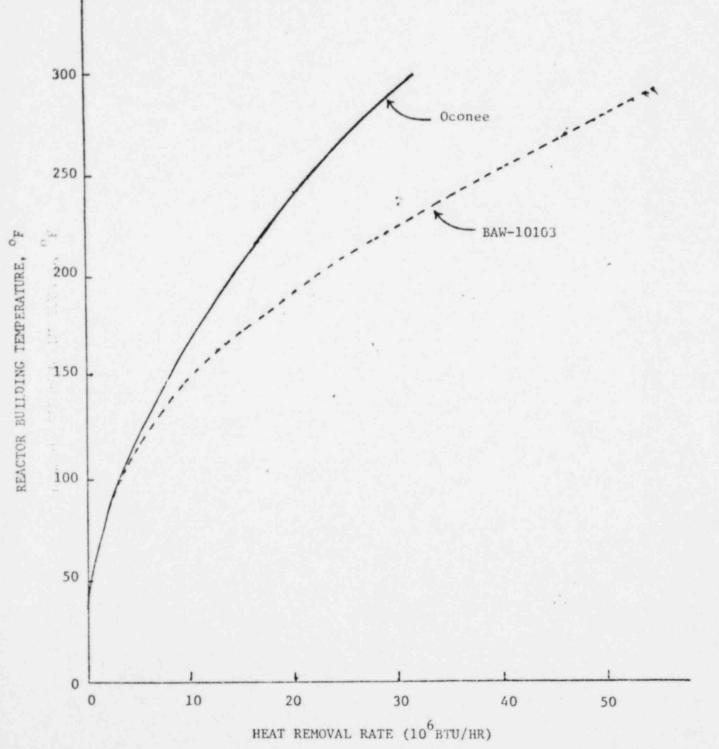
OCONEE NUCLEAR STATION CONTAINMENT VOLUME AND HEAT SINK DATA B&W SUPPLIED EQUIPMENT

Item	Weight (1b.)
Auxiliary Systems (Valves, Coolers, Etc.)	28,235
RC Pump Motor Housings	200,000
Control Rod Drive Mechanisms	42,780
Fuel Handling and Reactor Service Equipment	231,816
Reactor Vessel Support Skirt	30,322
Mirror Insulation (1/7 of total)	1,760
Steam Generator Support Skirt	31,388
Core Flood Tanks	156,486
Reactor Building Coolers	35,400
Liquid Waste Disposal System	10,014
Reactor Building Spray Nozzles	135

OCONEE NUCLEAR STATION CONTAINMENT VOLUME AND HEAT SINK DATA

Parameter		Oconee	BAW-10103
Reactor Building Free Volume (ft ³)		1.832×10^{6}	2.205×10^{6}
Building Cylinder			
Surface Area (ft ²) Thickness		61,353	67,410
Concrete (ft)		3.75	4.0 (1)
Steel (ft)		0.0208	0.05504(1)
Paint (mils)	:	7-10	10
Building Dome			
Surface Area (ft ²)		16,230	18,375
Thickness		2.05	2.0
Concrete (ft)		3,25	$3.0 \\ 0.06546^{(1)}$
Steel (ft) Paint (mils)		0.0208 7	10
Building Base			
2.		7	
Surface Area (ft ²) Thickness		8,890	
Concrete (ft)		8.5	
Steel (ft)		0.0208	
Paint (mils)		7	
Internal Concrete		6	
Surface Area (ft ²) Thickness		66,318	160,000
Concrete (ft)		1.76	1.0
Paint (mils)		7-10	10
Internal Steel (Painted)		-	
Surface Area (ft ²)		162,013	249,000
Thickness		0.0000	0 00105
Steel (ft) Paint (mils)		0.0306	0.03125
raint (mils)	1	7	10
Internal Steel (Unpainted)	1		
Surface Area (ft ²)		63,727	36 000
Thickness (ft)		0.0097	36,000 0.03125
Interness (IC)		0.0097	0.03123

TABLE 4 (CONTINUED)


Oconee	BAW-10103
10,824 0.0373	10,000 0.03125
150.0 0.213 1.05	145.0 0.156 0.92
490.0 0.12 32.0	490.0 0.12 27.0
501.0 0.11 9.4	493.3 0.11 9.1836
	10,824 0.0373 150.0 0.213 1.05 490.0 0.12 32.0 501.0 0.11

1949

,

(1) Includes the liner anchors

FIGURE 1 FAN COOLER HEAT REMOVAL RATES

•