Transcript of Proceedings

```
UNITED STATES OF AMERICA
PRESIDENT'S COMMISSION ON THE ACCIDENT AT
THREE MILE ISLAND
```

DEPOSITION OF: LEON 3. ENGTE

Bethesda, Maryland
August 3, 1979

```
Acme Reporting Company
Offecal Rejorers
\(1411 \times\) Strem. v.W.
Wasningtan. 2. こ 20CCS
2E2) \(323-4888\)
```

2RESIDENT'S COMMISSION ON THE ACCIDENT AT
THREE MILE ISLAND

DEPOSITION OF: LEON 3. ENGEE

Room 6072
7735 Old Georgetown Road Bethesda, Maryland

Augus= 3, 1979
1:30 o'clock 2.m.

APPEARANCES:
On Behalf of the Commission:
GARY M. SIDELL, ESQ.
Associate Chief Counsel 2100 M Street, N.W. Washington, D.C. 20037

On Behal $\{$ of NRC:
SHEZECN TRUZATCR, ESQ. Oftice of the General Counsel 1717 H Street, N. \%. Washincter, J.C.

$\underline{\underline{1}} \underline{\underline{D} E} \underline{x}$

WITNESS:
Leon 3. Ingle Exumanazon

2

ExHIBITS

No. 1
IDENTIFIED

3

No. 2

Whereupon，

エEO：3．ZNGEE

havinç been first duly sucrn was zalled as a witness ierein जas examined and testikied as follows：

EXAMIMMIION
3Y MR．SIDELL：
Q．Mould you state your name for the record，Please， Ar．Engla．

A．Leon 3．Engle．
2．And your current gosition in the SPC．
A．At the present time I have been temporarily assigned 3ulletin and Orders Task Group，MMI，and I am presentiy on loan to \mathbb{M} ．Volmer，Division of Opera：ing Reactozs，in zegards to the TMI－I restazt ordez．
（f）You have provided me with a copy of your zesume which is four pages．Is this correct and a complete copy of your professional and educational backg＝ound？

2 Yes．
Q．I notice on Page 4 on of your publications entitied ＂Reactor ？ower Excursion Studies，＂authored by you anc a Donald Peterscn as well as \％．3．St＝ateon．Is that 3i11 Stratton formerly of the Acas？
\therefore It is．Yes．
2．You appeaz $=0$ have authorad a number ：aュニicies
with Mr. §tratton.

1 That is corzect. Nhen I \%as emploved in Zos Riamos I Wcri:ed EczDr. Stzatton.

MR. SIDILI: Iet' s have this marked as Exhibit No. 1 to the Engle degcsition.
(The document referred tc was marlied for identification as Deposition Exinibit No. 1.)

MR. SIDEIT: $:$ In. Zngle, have you ever had your deposition taiken be太ore?

THE NTTMESS: Never.
MP. SIDEII: Let me tell you briefly then what we are going to be doing. Your testimony is swozn, of course, and as suon, even though we are in the Chaiman's office in the NRC 3uilding in Bethesda, Maryland, it ias the same efzed as thouç it were given in a court oz law bezore either a Judge or jury. Therefore, it is necessazy that you be as zrecise and accurate in your responses to my cuestions as you can be.

If there is an occasion where you don't understand
a Guestion tiat I ask, Dlease ask me for cla=i̇icavion, and = will try to explain to you what I am looking Eovin tie way oz a zesponse.

Since tie court repor=er is taking tins testinon\%
down, it woula be helŋたul if you would not answer guestions
Acme Reporting Sompeny

```
With either a nod of the head or otier gestures but ratier
audibly so that you responses may be accuratel% recorded.
    Furthermore, I would ask that you wait until I
Einish a çuestion before you begin your response, even though
you may know where the question might be headed. I will also
try and restrain myself Erom asking my next question before
you Einish your answers, since it is obviously much easier
for the reporter to record one of us speaking at a time.
                    At the conclusion of the deposition your testimony
will be transcribed and presented to you to review, to correct
if you find any necessity for correction and to sign. If
you do find corrections that are required in your opinion,
You may make them, of course. Should we deem those changes
to be of a substantial nature, we will be entitled to comment
on those chançes, and those comments may aciversely affect
your credibilit%, Therefore, the necessity again arises to
be as precise and accurate in your =esponses now as you can
be.
                            Do you have any guestions concerning what I have
just stateč?
    MHE NITNESS: NO.
    3Y MR. GIDETH:
    2. In 1973, approximataly the midule o太 the year, wha=
posizion did you hold with the NPMC?
    2. In Eie midi\e of 1978 こ vas ?=ojecた Nanage= in =ie
```

Light
Thiten Water Reactors Branch No. 1, Division oき Project Vanagement.
Q. And in that position were you responsible in one aspect or another for the operation of Javis-3esse unit 1 in Ohio?
A. Yes, I was at tiat time.
Q. Can you tell me what your sesponsizi..ities included relative to Davis-fesse Unit 1 at that time?
A. At that time the primary concerns vere providing amendments to either licensing conditions or technical specification requests that the licensee may have provided. At that time there was also, I believe, in April of 78 the problem coming up on burnable poison rod assemblies which at first happened at Crystal River. And being a generic problem the Toledo Edison Company, the licensee for DavisBesse 1 vas beginning to indicate that they would be taking the latch assemblies out on these burnable zoison zod assemblies, and that that would recuire a major amendment. I was engaged in setting up the staff zeview for that item.

At that time I also had responsibility for tie 3SA. 205 Standard Plant. And at that time we were into what you would call Q-2's, which were positions coing out zela=ive to what the staュే's review vas at tinat =i-a.
3. To you zecali having conversa=ici.s in La=e or middie 1973 witi an individual jy the name oz James crastivell?

2．Yes．I believe that relates to burnabla poison zod assemblies．I thin I Ezizst met Mr．Crestweil at a meet－ ing held at the Phillips 3uilding．

6 That is the Phillips Building in Sethesda？
A．Bethesca．That is my fizst zememberance of Mr ． Czestwell．

6．Do you recall the day of that meeting？
A．No；I ©o not．
8．Did there come a time after your initial meeting with Mr．Crestotell wien you discussed matters relating－－ other matters relating to Davis－3esse in tie fall of 1978？

A．：：o．I do not remember directly talking to Mr ． Crestwell．Most of my conversations with I\＆E Region III， which incidently was where $M r$ ．Crestwell was located，was with the inspector on Davis－3esse 1，which was Tom Tamblin and also with Tom＇s chief which was Dick knopp．

2．Are you aware o太 how Mr．Crestivell Eits into the －－ganizational structure with Mr．Knopp and Mr．Tamblin？

1．It was my understanding tinat he had been assigned to that partieular group inspection and that he also was making inspections out there at Davis－ミesse as छaこも of that group．

6．And Mr．Crestiveli＇s area of concern was more Iimi＝a己 or Annts then Au．Zamblin＇s azea of zesponsibilizy？

of licensing on Davis-3esse 1, and my -- Tom had been on Davis-3esse for a long, long time, and my main intezactions were with either Tom or his immediate superior, Dick Knopy.
Q. Do you recall speaking with Mr . Grestwell about the problem of the Davis-Besse operator blocking the safety actuation system before and turning off the aPI system; that occurred on December 29, 1977 at Davis-3esse? Strike that.
-- event occurring on September 24, 1977 a た Davis-Besse?
A. I do not remember directly talking to Mr. Crestivell about that event.
2. Dic you speak with Mr. Taribin about that event?
A. Oh, many, many times.
Q. What was the substance of your conversation with him?
A. That gces back to the very initial beginning of the event.
6. The September 27,1977 tzansiene?
A. September 24, 1977.
Q. I mispoke. You are cozrect.

That transient, not the Moveriber, 1977 tuansient?
A. The event $I a m$ thiniking of is the September 24,

1977 transient $a=$ Davis-3esse.
Q. And vhat was the suistance 0 そ your canro=sations with Nr. Tambiin conceming tiat =ransien= at Davis-Eesse?
A. They covered many days azte= that event in determining and assessing all the matters that related to that event as far as ecuipment that vould need to be prepared or the status of the plant. And I think the Eizst time that : -Mr. Tamblin was sent out as part of a team right after that event. I believe he was sent out on the 25 th. The event occurred Saturday night, and as I Ienember he was sent out Sunday as part of a Team.

And then I had various conversations with him later on, the status of the plant relating to the various systems that had been involved in that incident.

Q Die you discuss any zroblems with loss of gressurize level indications?
A. Only generally as the event went. Ne discussed a lot of items. That is one I did not discuss in detail. On as it related to the overall scenario of events that has happened.
Q. What did you discuss conceming reessurizez level indications?
A. I don't remember any item with syecificity, just in relation so as events occuzred, as the pzessurizer level came up, as the operator nay have seen it coming up and shut off the hiçh zressure saEevy injection, actuation. Zike -he initial occurrence when tie pressurizer level went up and the operator saw that level going up, an manuaily scramed
the raactor．

2．Tad You before the September 24， 1977 Davis－3̄esse transient been aware of any other instances of 3 \＆i：reactors where there was a loss of pressurizer level incication off scale high？

A NO．

C．Nould you consider that this particular instance of loss of pressurizer indication level high was zather exceptional？

A．：̈o；I did not at that time．
s．Thy was that？
A I was interested in the overall jerfomance of the plant，the total transient，and all matters related，like the auxiliary feed water system，the secondary system，the prinary system，damage which had occurzed to the event，such as stripping off insulation on the ：̈o． 2 stean gencrator， spurious trip in the steam feed water and rupture control system，the cavitation of the meactor coolant purns．

Z was concerned that the transient in regazes to ＇u design specifications of the equipment hac not been exceeded by tie transient．I was concerned in all of tiese events total zicture as zelating to getting tha二 きlant，which I knew they would sconez or Iater vant to こestart，and＝
 taそen care of゙．
8. Prior to September of 1977 vere you aware of what reliance an operator placed on pressurizez level indication?
A. I knew that it was one of the parameters which he observed.
6. Would you say that you knew it was one of the more significant or substantial elements that he observed?
A. Yes.
\& Would you also say that at time you knew the operator relied almost exclusively on pressurizer level indication to inform as to the status of core inventory?

A No.
2. Have you since that accident learned that to be case for operators of 3 st reactors?
A. Based on history from that date it has become very apparent that the pressurizer level was an extrenely important indication to the operator.
8. Nould you conclude that it is an equally important indicator in terms of accuracy of the information provided the operator?
A. No. I think the pressurizer level may not be as important as other parameters.
? Nell, Mr. Engle, Z jelieve my guestion was dizected more to the accuracy of tie pressurizer ievel indication as to its importance to tie operatoz in zunning the systen. Zミ my question ras unclaaュ -- Z am lockinc fov the deưae

```
of accuracy you now believe the z=essurizer level indication
to inare in 3%N reacto=3.
```

A. It should be as accurate as can be feasibly macie.
Q. It should be, but is it?
A. At the present time Z Nould say based on past events, no.
¢. And which gast events are you specificaliy referzing to?
A. Three Mile Islanc.
0. Any other situations?
i. No.
Q. Are you aware of loss of pressurizer level indicaticn problems occurring atRancho Seco?
A. No.
? At TMI-II in :tarch, 1973?
a. Hien Yes
Q. At Arkansas-I?
A. Yes. I recentiy have been project nanagez for Arkansas Nuclear-I unit-2. And in discussion with the licensee after Three :Ifle Island-II and discussing some of the simiaritins with the Davis-Eesse event in the first siz minutes as compared to MII-II, the Licensee mentioned to me that tiey had had a problem in this reçazd.
Q. Did they teI1 you when the accident occu=zed?
2. Z zon't zemember if they diz or Aid nct in fia=

```
discussion.
```

9. Can you recall if it were before the accident $a=$ Three Mile Island?
A. It was after the accident that I talked to them.
10. Do you know whether or not they Eiled a Licensee Event Report on that problem?
A. No; I do not.
(1) Would you be in a position to be apprised of that fact if they had done so?
A. No; I would not, because I was not project nanager for Unit-1. I was project manager £o Unit-2. Unit-1 is a Bsin plant; Unit-? is a Combustion Engineering plant.
11. Do you know izthere is any cross-licensing betveen the two plants for operators?
A. In sore areas there are zrobably areas where the operators ire trained for both plant operations. But I could not state just what those areas are.
Q. Are you fairly certain that some operators aze licensed to operate both units a A-kansas?
12. I would guess that they aze.
13. Why would you make that conclusion?
A. Because it is very zossible that some of thein senior operators may have hac the necessary experience $=0$ Galizy them for both 3än plants and Combustion Engineez=! ミ1anะ3.
14. Are you familiar with the control rooms of both Arkansas units?

A :Bo; I am not.
2. Do you know whether or not both control zooms are the same in terms of setup?
A. No; I am not.
Q. Are you Eamiliar with the Atstinctions between the Combustion Engineering and 3 sw Eacilities?
A. As regards the nuclear steam supply systen, I have a general knowledge of the differences in the two systems.
0. Does the Combustion Engineering system have a oncethrough steam generator?
A. No; it does not.
8. Does the Baiv system have that Eeature?
A. Yes; it does.
8. And as a result of the once-through steam generator do you know the length of time it takes the 3 an reactor to boil dry?
A. To the best of my recollection it is about 30 seconds.
2. Do you know the length of time that it takas for
a CE-Meactor to boil dry its stean generator?
A. Based on the best evidence to data Z think it is abcut 20 minutes.
6. And those are recircuiating staan generato 3 in ミ CE sustam?

ג．Yes．
2．Do you know of any otiez distinctions between the two steam plants，CE and Baw？Zor instance，does a 3 sif Re－ actor have a 尹oRv？

A．Would you reseate the question？
2．Yes．Dces a $3 \& N$ Reactor have a PORV？
A．Yes；it does．
Q．Does a CSE Reactor have a PORV？
A．In most cases that it true．However，on Arkansas Nuclear－1 Unit－2 there is no PoRV．

8．Is there merely a cocie saミety valve？
A．That is correct．
Q．Do you know how many there are？
A．I believe there are two．
Q．Do you know how many there are on the 3 sit Reactor？
A．Two．
Q．Do you know of any other distinctions between
a 3\＆iN Reactor and the CE－Reactor at Arkansas？
A．One difference is in the 3 in plants they have the vent valves in the core．Comb istion Engineering plants do not have that valve．

8．$A=a 11$ ．
$\therefore \quad A t a 11$ ．The reactor ccolanた punps and Eheiz actual elevations－－：can＇＝＝3member the exact ¿istances thouç－－
elevation positions for zaactor coolant pumps, the hot and cold leg, where the surge line for the pressurizer connects to the hot leg, I would imagine -- if I could look at the FSAR -- : would find a lot of little distinctions where there are di_ferences.
Q. Dces a speciEic CE-Reactor at Arkansas have a zressurizer level indication to indicate core inventory?
A. Would you repeat that question?
6. Does the CE-Rcactor at Arkansas have a pressurizer level incication to indicate core inventory?
:12. TRUBATCK: IE we could break the question up --
I think it is the existence of the indicator first -3Y MR. SIDELI:
8. Does the CE-Reactor at the Arkansas Plant have a pressurizer level indicator?
A. Yes.
6. What is the purpose oE it?
A. The primary purpose of the pressurizer level is to indicate the -- is to give an indication of zeactor coolant volume.
0. In the core.
A. In the core.
8. That is tie same Eunction as the pressurizer level indicator places in the 3 siw zeactor; is i= not?

A That is =ight.
Q. Is there any difference between the two reactors at Arkansas whether or not the operator relies on one or the other in different mannezs or they are approximately the same?
A. I an not that familiar with those operating procedures to answer that question.
8. Are there alternative methods that the operator at Azkansas-1 and the CE-Reactor can determine what's going on in the core besides pressurizer level indication? For instance, temperature, pressure in the primary system.

A Now, I am quoting from memory Erom the FSAR, yes, they have primary coolant pressure. They had thot, Tcold for the primary system, and they also can integrate that to Taverage.
6. Do you know what the normal operating temperature of the tail pipe on the Cz-Reactor at Arkansas is?
(Pause.)
The average or normal operating temperature on the tail pipe at the CE-Reactor at Arkansas.
A. Tail pipe encomparses a lot of items. I need further specificity on what you mean by a tail pipe.
8. The reactor temperature durinc nomal oserations.
A. The use of the nome..clature "tait pipe" = can oni? asscciace with the pipe downstraam of the ZoVR. I do not relate it to any other item.

8．That is what I am looking for，the temperature at that location during normal operating conditions．

A．I just do not remember that maximum temyerature that would be on theze．

Q．How about Eor tie 3 âw zeactor at Arkansas？

A．I do not know at Arkansas．
Q．Would a range $0=180$ to 210 or 220 degrees be about right for normal operating temperatures？

3．That certainly would put it in a range compared to the opening of a valve under gressure，and I would tinik it would be more towards the 220 degrees than the 180 ．
？Would an operator at the CI or $3 \& \%$ Reactor at Arkan－ sas be able to conclude whether or not the PORV was opened it he read a temperature at the tail pipe oz approximately 260 degrees？

A．260？

Q．Yes．

A $A t 260$ degrees he would either know that that valve was open or had been opened．

8．Based on your prior response at a range of 180 to 220 degrees at the tail pize woula be normal coerating temŋera－ ture for either the 3 ain or the CE－ミeactoz at Avisansas．Z gathez you would concluda that a temŋerature oz 504 decrees Nould be excessiveiy abnormai．I woula tiat be a Eaミー con－ clusion？

```
        MR. IRUSATCH: MaY we go ofz the record.
        MR. SIDEZI: OEF Ehe record.
        (0\f the record.)
        MR. SIDEII: Back on the record.
        THE WITMIESS: Yes; that would be abrormal.
        BY MR. STDEZこ:
    G. Nould a temperature of approximately 604 degrees
```

 Eairenheit at the tail pipe on either oz the Arkansas reactors
 indicate that the PORV had failed opened?
 A Ges; it would.
 8. Rather than merely open as a temyozary release of
 steam and then close.

ג. Yes. To get it up to 604 that would have reant that you had steam or steam water passing tirough tinere. Q. Which under normal oceza=ing conditions would not have?
A. That is cojvect. That woulz put you back down around within the 180 =o 220 =egime.
9. What resulted Enom the inspection by severai geople whom I believe you indicated went to investigata tise Septembe= 1977 Davis-3esse transient? \%as theze a report that was generated?
\therefore Yes. There were severa. zeports generated. İ is
 gating that event was somewhere in liovemine , 2977. Z be之ieve
it was around November 22, 1977.
Q. Here they be太ore the November transient aた DavisEesse?
A. Yes.
8. Can you recall the conclusions of that report?
A. The conclusions of that report went into the investigations in the early days right after the event and ensuing , inspections they made to insure that the equipment such as the reactor coolant pumps, spurious haif-trip and the stean feed water zupture control system, the turbine governor on the \#o. 2 steam generator, and design basis specifications for equipment had not been exceeded in the transient.
8. Can you recall whether or not there was as a result 0 © the Septomber transient the installation of a position actuation switch or indicator for the PORV?
A. I remember in the IsI Report -- I believe it was either the $I \& E$ Report or the Iicensee supplement to the $\tau \Sigma$? where they stated that they were guing to put position incicating in there so that they could have specizicity on the determination of the Povr. But that really was related to the magnetic solenoid valve which vould give an indicazion whether the stem on the release valve was open or closed.
2. Fould that merely mean that there would be an indication where the opezator conclude tiat an eiectaicai signai was sent to ciose the value but not that in fact the raive
was actualiy closed?
A. I believe tat was the guoted design that would be put in there, that the signal was reacing, that the solenoid valve was in the correct position.
8. But not merely that the valve itself was where it should be?
A. I believe that's correct.
2. Can you recall the manufacturer's design of the PORV at Davis-3esse?
A. It will come to me sooner or later. I remember that name. I cannot think of it at this moment.
Q. Nould it be a Crosby valve?
A. That's it.
2. Is that distinct from the tyoe of manufacturer PORV's at other 3 siw plants?
A. I believe Davis-Besse was the only one that had that tyze of vaive.
Q. Do you know why?

ג. No; I do not.
0. Are you familiar with the mechanical distinctions between the two types of Porv's?

1. Not at this point. I would have =o lock a= the desะgn.
2. Do 7ou know whether or not it is easier to put on indicators showing an actual posi=ion of a C=oshy ?oRy than
```
it is Eor a.Dresser PoRV?
```

A. I coulan't becin to answer that without looking $a t$ the design diagrams.
6. Let me show you a packet of information which is addressed to Mr. James G. Keppler, K-E-P-P-エ-E-R, from Toledo Edison -- dated of document 11-14-77 and date received is 11-25-77, which includes a November 14, 1977 letter to Mr. Repoler from Terry D. Hurray, Station Superintendent, DavisBesse Nuclear Power Station, entitled "Supplement to Recordable Occurrence NP-32-77-16 Concerning the September 24, 1977 occumrence," which is some 59 pages in length, and asl: you if you have ever seen this document before. (:Anding document.)
A. (Perusing document.) I have seen that document before.
8. This document just referred to also appears to have your name written across the front page; does it not?
A. Yes, sir; it does.
Q. Is that your hancwriting?
A. (Perusing document.) No; that is not my handwziting.
8. Do you recall whetier or not this copy of tie report was dist=ibuted to you?
A. A copy went to me because Z vas the project manacer on the case at that time, anc thereEore, = woula zeceive a copy.

Asme Reporting Company

8．Could this particular document that I have just shown you be your copy or a copy of the one that was sent to you？

A．No．I still have my copy．
2．Could this then be a Kerox of the one you still have？

A．It couid well be．
Q．And，therefore，the reason for the appearance of your name on the cover page？

A．It could very vell be．As I remember I made some Kerox copies so people could see some of the information．

8．Do you recall whether or not you made a copy or provided the original of this report to anyone yesterday？

A．＇To，not yesterday．
MR．SIDELI：Let＇s have this mazked as Exhibit No．
2 to this deposition．
（The document referred to was marked
※or identiミiaation as．Deposition Exhibit No．2．）

3Y MR．SIDELL：
（2）Do you recoliect any conversations with ：In．James Crestwell of ？eçion III in late Eall or eaニly winter of 1973 dealing with the inspection of tie Davis－jesse Septericez，1977 せュansient？
$\therefore \quad$ Z do not fernmer ever having talked to ir．Crestieli
other than tiat meeting that $=$ spoke to eariier－We11，I only zemember şeaking to Mr．Crestwell dizectiy at what I believe was the Apri1， 1978 meeting where we were discussing the burnable poison rod assembly．

UR．SIDEII： $0 \in\{$ the record．
（Off the record．）
MR．SIDEIL：Back on the zecord．

BY MR．SIDELI：

2．Mr．Engle，did you particizate in the on－site inspection of Davis－3esse in September，1977？

A．I was out on a trip to Davis－3esse on September 30，1977．The occurzence of that－－I was notizied on the Szukiewioy эrevious iednesday by an Andy Sukubieen（ph．）who was in the Instrumentation and Control Branch that DSS was planning to make a trip to Davis－Besse．And he asked me iz were going I answered him，＂I did not know about the triz．＂

I then called Jerry Mazetis of tie Reactor Sys Branch and asked Jerry if he knew about this twio，and Jer＝y indicated he was going．I then notiEied wy branch chiez－ina this trip was going to transpire and I EeIt tiat I should go．

That happened about Wednesciay noon，as $=$＝emerieer．
I did not get any word unti，I believe，it was mhursday nocr that my manacement had decided that I would go on tha二ヒットン．
 woこk very Aast to get \cdots v．trave：set ug．

Acme Reporting Company

I did go to tiat meeting on September 30 th.
Domeck
Q. Can you remember whether there was M . Jemieit (y . .) representing Te-Co. at that meeting?

Domeck
A. There was a Chuck Semie there. He had just, I think, recently made project manager for Davis-Besse-1.
8. Can you remember whether Terry Harpster (ph.) from Region-3 was there?
A. Oh, yes. I rememieer Terry very well.
() And $N . S$. Little from Region-3?
A. I do not remember i̛. S. Little distinctly as being able to relate to him.

Q How about E. C. Novak Erom Toledo Edison?
2. Yes, very well, because I had dealt with him during the licensing process on Davis-Besse.
Q. And Lowell Rowe (ph.)
A. I know Lowell Rowe very well because I hac aiso dealt with Lowell on licensing mattezs.
8. And Arthur Mc3ridge from Baiv?
A. I know there were 3 sin people there. I can't relate to Mcヨride himselє.

Q Were there also people from Bechtel there?
A. There were a-so people from ミechtel tieze.
9. In other words, a pretty suibstantial meeting.
A. = would say àsut -- oh, thinking of that zou.

50 seople there.
2. And as one 0 : the topics of conversation of this meeting at Davis-3esse on September 30,1977 , was there mention of the fact that the operator had turned off the HPI systam shortly azter it was initiated on the basis of his observation of increasing pressurizer indication level?
A. There have been so many scenarios on that, and I was involved in so many scenarios I cannot really state .remember that it was mentioned there, but I believe it was because I personally tried to see that that meeting describe the overall scena:io of the various input parameters related to it.
3. And was there also mentioned at that meeting of the PORV Łailing open?
A. Absolutely.
Q. Do you remember the length of time into the transient that the operator recognized that the ?ORV was stuck open and as a result closed the block valve?
A. 20 minutes as scram -- manual scram.
3. So, the operator scramned the reactor, not that an; automatic scram was instituted; is that correct?

1. That's zight. That operator =ight after -- on, approximately tvo minutes azter the spurious signai in the steam feed water and zupture conteol system saw the pressurizez Level =apidlz building up, and te manua:l\% scrammed =hat reactor. Anc as $=$ =ememieer 20 minutes to ciosure oz tie zlock
```
valve is based on I equals zevo at the manual sczam.
```

6. "T" as time or temperature?
a. Time.
7. Can you recall whether or not there was any report that was produced as a result of the September 30 , 1977 meeting at Davis-Besse?
A. After that meeting on the 30 th, where we got their zeactimeter data, which was data that 3 siw -- which was a -णर
Reactimeter measures rapid intervals data during the startup of the 3 siv reactors during startand testing. I received a lot of data. And on my way home Friday night I became very interested in this data and I spent the weekend, Saturday and Sunday, producing a poster-size graph which I felz would describe the overall events. I worked both days on that.

This is the graph. I would be glad to get reproductions. I would like to keep it. It is a souveni= $=0$ me, but I would be glad to get copies of it. (Manding chart.)

I transcribed abscissas and coordinates from that zeactimeter data and produced what I Eelt was signizicent curves zelating to the incident.

On Monday morning $=$ briefed my branch chief as to the meeting. And shortly thereazter Jer=y Mazevis caliez me and told me that LSS was going so have a t=iz =epcr= -neevng -- =hat was somewhere a=ound 3:30.
Q. So you =ecall the date of that meeting?

2．That would have been－－Let＇s see．We went out there Friday，the 30 th，and October 1st and 2nd was Sasurday and Suncay when I worked on that graph，and Monday would have been October 3rd，I believe．

8．And that was the date of the meeting．
A．In the morning．
I told Jerry I had this graph，and it was large size，and it might help him in explaining to the DSS people the overall transient．He said，＂Cnre on cown．＂Anc I went there．Ee did use that to give the general overall picture． I got the feeling that it was fre DSS meeting and understood that Jerzy was going to be producing the trip report．

6 Is that a standard report after an accident such as this one？

A．That depends on various matさers．A trip report should be issued．During the course of that meeting，it was determined－－the meeting being described here－－that the office of Enforcoment and Inspection would maintain leac responsibility on investigating the accicent．At that ti－e Z became very concerned that I wanted to Eollow througit very， very closely on equipment that may have broken down，equigment that needed repairs，and Est＝that Z had to interEace very， very ciosely with Z E and to keep a close－－and also the Licensee to keep a close status on how plant nepains were progzessing，そecause a三́ver all I was the project manager，
and I knew that sooner or later the licensee would want to bring the plant back up．Ifelt it was my responsibility to see that those repairs，based on IsE＇s inspection，had been completed prior to the time they brought the plant back up． So，I waited to issue a trip report based until Ifelt that $I \& E$ and the inspectors who were out in the field actually at the plant，going through it in detail，had reached some definite conclusions．

Q．Did there come a time when the inspectors did make specisic conclusions about the September 24,1977 transient？

3．Yes．I think it was in that week that I am speaking of－－I think it was on October 6 th，which would have been a Thursday－－I called－－it was eithe $=$ Tom Tamblin or Dick Knopp．I called them constantly．I was making a botier of mysele．

But I called eitier Dick Knopp or Tom Tamblin and wanted to know based on thei＝inspection what actions they were going to take prior to allowing tie plant to come back to－－to operate．They incicated to me－－I believe by Friciay， which would have been the 7 tih，that they were going to issue what is called an immediate action orter specizying to the licensee what actions would se required．

2．Do you know iz they in fact dia tile that zejoz？？
A．＝cannot remember actually seeing a cosy of tia＝
imeそiaze action letzez，うuた K knw that the licensee，in
talking to them about thincs that were going on, that IsE had actually specizied "mhere are things you are going to co. Like you got to make 3 siv analysis of the excursion in case D\&BR had been exceeded, any fuel zupture, whether they were within their design basis accidents." For instance, "Check out that spurious signal on the steam Eeed water =upture control system. Check your reactor coolant pumps in case -- because of cavitation for reactor seals and impellers." of course, they had to get that insullation back on that steam -- No. 2 steam generator. Theze was another item that I became very concemned about, and that was the zelay valve in the electromagnetic solenoid.

Q Controlling the PORV.
A. Controliing the PORV.

It became apparent that that relay had been missing,
and I became very, very concerned about that melay valve missing. I called both $I S E$ and the licensee, the man you just mentioned, M. Jowell Rowe, and Eugene Novak. I was concerned that there had jeen a breakkown in procedures somewhere that "Why was that valve -issing?"

Now, it must be uncerstood that that particulaz
item is non-safety gracie. So, it doesn' $=$ go through our nomal QA procedure. But the :icensee had what vas called a ye:low check-ozz list which tiev make durinc zre-operational zests, which incicated that that valve had been vorking =ight.

```
    So, at that time -- back in time that relay had
been in there, but that =elay was missing. And that is what
caused that PORV to stick open.
    I was concerned "Nas it sabotace," or "tere there
other relays of that type missing?"
```

2. Would the operator have had to ever clean the relays in the PORV during use? In other words, would he have to take it apart and clean it, and put it back togetier again at all?
A. Mould you state that guestion again?
Q. Would the operator ever have to take the PoRv apart to clean the relay that was apparently missing on the date of September 24, 1977?
A. First, I'll answer your cuestion this way. Eizst of all, if you are speaking of an operator in the control sooz I con't think he would be in that area making -- cleaning zelays.

Item 2, inasmuch as that was not a saミ̃ty grade QA item to check, I co not know with any specificity what the licensee's check procedur may have been on that zelay. Sut, nevertheless, the zelay was missing, and that concerned me very much.
8. Hell, wy srior question did not deal exclusively with the control zoom operator, but wtth anyone as pa=t oz Toledo Edison who may have been invelved with cleaning =ite
relay and taking it apart. Do you know if that is a situation that occurs, the relay is periocically cleaned or is the unit a sealed unit and is not subject to maintenance?
A. Since it is not a safety grace item, I con't know what the licensee's procedure would be in repair of that. But I would like to say I became very concerned about that relay valve, and I talked to Lowell Rowe, who is vice-president of construction, I believe, at roledo Edison, and I talked to the IEE people.

I think based both on my concern and the licensee's concern, and IsE's concern, Toleco Ecison made a through-plant search where other relays of that type were to assure themselves that they were in there. As I remember they also put some notices up on the wall asking anyone who knew anything about this relay missing to core forware and to tell them about it.
8. Nere you at all involved in the investigation of the electrical setup of the PORV at Davis-Besse on September 24 th ?
A. Not to any greater specificity than I have just been relating. If there had been a matter come up that $\mathrm{I} \dot{\mathrm{a}} \mathrm{E}$ wanted us to spectifically address, IdE would have issued a transEe= of zesponsibility to DSS and then I would have zeen involvec in setting up tife time to ge= the nevtewers $=0$ lock $a=$: and there never was a transfer of leac nespcnsinility.

8．Do you know as oz tins data whether or not there was a problem with the electrical setup of tie PORV at Davis－ ese？

A．Inasmuch as that＝elay was missing，there was an upset．

Q．Is that based on the missing component or the alec－ trical wiring of the valve？

A．To my knowledge it is the missing＝elay which cut off the signal．

Q．So，at this date you are unaware of any problem that existed with the electrical wining of tire RORV at Davis－ Besse in September of 1977；is tint correct？

A．We11，to get current from one place to another you can say that a relay is part of tie electrical system．
？Another ミzoblem exclusive oz the relay？
A．No；I did not．
Q．And you currently are unaware of any problem in－ volving tie electrical system of tie PORV at Davis－3esse ex－ cluding the relay at this point and time？

A At tins point and time．
（8）Do you recall who was at the Monday，October sud meeting？

A．Z remember a Lot oz them，and ivy came in at ふiニー Efren＝times． 0 course，tineze was Jeच＝r vino I fac mentioned．

8．Jez＝y Mazeさts．

```
Szukiewicz
1．I believe Andy Sunvin was there．Jim knight of the Mechanical Engineezing Branch was tiere．Z believe Jai Raj N．Rajau
rege hojen（ph．）was there who had been one of the NRR people that went out to the site．Vince Leung， \(\mathcal{L E}-\mathrm{U}-\mathrm{N}-G\) ，was there， and he is with the Auxiliary Systems Branch．
2．How about Carl Seyさ̌it（ph．）？
A．Carl Seyfrit was there．Je was with IaE．
2．ERow about Rocer Mateson？
A．Roger Matteson，Director of DSS，was there．
Q．Sandy Israel？
A．Sandy Isarel was－－Now，I am remembering faces at that meeting．I don＇t remember seeing Sancy－－I can＇t remember，but I would certainly think he had been there．
Q Tom Novak？
A．Yes，Tom Novak was there．
Q Denny Ross？
A．I don＇t speci£ically zemember Denny Ross being theze． I don＇t believe he was．I don＇t remember seeing him there． They were coming in and out．
2．Were there any discussion during this meeting of the operator relaying on pressurizar level incication zurninc ofミ the \(\# P Z\) system grematurely？
A．As I Iemember，no．That was not specizieaily brouçit up there．Anc as Z related bez̃ore，Jeご！started ouv using this graph to go through tie overall scenario．People vere
```

coming in interestec in tieir particular area of expertise. A person would come in and say, "Hhat do we have to do with the 'aux' feed system?' What do we have to do with tilis system. There were a lot of interruptions.
6. Were you there for the entire meeting?
A. Yes.
2. So, if the matter of an operator relying on pressurizer level indication turning off the $H P I$ system premature Iy did come up, you would have known about it?
A. Yes. Now, I would like to state that based on this graph where it indicates scme of the action, they may well have said that the HPI's were turned of. at such and such a point.

6 Did you present this graph at this October 3rd meeting?
A. I had made it up because $0 \equiv$ my interest. When $=$ saw there was going to be this trip report I volunteered this to Jerry Mazetis to use, and he did use it.
2. Did you volunteer this to Mr. Mazetis during the meeting on October 3zd, Monday?
A. On, yes. Sefore it beçan I said, "Jerz\%, this migh help you. I made this up."

8 Did he during the meeting $=e l y$ on this diaçam?
․ Se did earliez -- - mean as much as he was =-\%ing to use that scoge out the transient as a function of time.

Q．There appears to be no incication on this diagram or graph of pressurizer level indication－－

A．Oh，yes．
Q．Let me finish．－－going oft scale high at the time the BPI pumps were turned ofミ；is there？It appears the HPT pumps were turned off at approximately four－and－a－ialz minutes into the accient；is that correct？

A．That is correct．
8．And at that time the pressurizer level indication appears to be at approximately 220 inches？

2．That＇s correct．
8．And do you recall what the pressurizer level indica－ tion maximum reading was at Davis－Besse during tiis transient？ Was it greater or less than 220 inches？

A．Oh，it was greater．
Q．So，according to this graph，pressurizer level is increasing but still on scale at the tine the HPI pumps were turned off；is that correct？

A．That is correct．Anc that is one of the reasons that the operator who saw his pressu＝izer level coming up to about normal operating，so he shut off his $E P Z$ pumps．

2．What vould be the nomal level of operation for pressurizer level indication？

A．Without going to the こऽAR，as zest as I zememien亡t would be about 220.

Q．Anc at some time within about a halz hour and anter －－Well，as a matter of fact within tiree minutes after the operator turned off the HPI system，pressurizez level indica－ tion went off scale high；is that correct？
（Pause．）
At least it went up to a level of about 310 inches． Would that be off scale high？

A．That would be very close to off scale．
MR．SIDELL：If we can get a copy of this graph，I would like it as Exhibit No． 3 to the deposition．Do you know how we can reproduce this？Does the NRC have some metiod to prod：ace something of this size？

THE WITMESS：If I could use your request as part of the President＇s Commission，I could probably expedite them making me a copy．I would be glad to give this，but I went through a lot oE work that weekend．It has been on my wall ever since．

MR．SIDELI：Iた ceェvainly appears it．We can use a copy of this．

THE NITNESS：I will get it to you as quickly as possible．

MR．SIDELL：Do you know iz iた is gossi々之e to make a copy that has the same cotor or coior differentiavions as appeaz on tie original？

THE NIMNESS：Z can try．Z cannce say．
Acme Reporting Company

3Y : AR. SIDETE:
2. And you produced this diagram based on the computer readings o₹ the actual event at Davis-3esse in September?
A. Yes, from that Friday 30 th meeting and the reactimeter data they gave me.

If I had to do it over again, I zight put more curves on there or less. But those are the items that I was interested in at the time, and it was primarily the primary system.
Q. Well, I think this more than adequately deals with what we are zoncerned with.

MR. SIDELL: For the record, let me just state that this is titled "Davis-3esse Unit-1 Reactor Trip from about Nine Percent Full Power at 2130 :̛ours, September 24, 1977," a diacram which plots reactor core pressure, PSIG versus time 0 \# the transient with several characteristics including pressurizer level indication, cold temperature, hot tempezature, reactor core pressure, saturation pressure, and various operator actions occurring at a time of something less than two minutes preceeding the transient to a time of 63 minutes into the transient.

At the first opportunity Mr. Engle has agreed to provide us with a copy of this diagram.
$3 Y$ MR. SIDELZ:
Q. Based on the operatov's action in tumning off the

Asme Reporting Compony

H2I system by his zeliance on the pressurizer level indication as depicted in this diagram，Exhioit ：io． 3 to this eeposi＝ion， would you conclude that pressurizer level incication would be an important characteristic or parameter of the primary system on which the operator relied during the abnomal conditions？

A．It is one of several important indications that he should wateh．

8．Nell，based on this diagram，it appears as though it is one of four characteristics：hot temperature，cold temperature，saturation pressure，and pressurizer level indi－ cation；is that correct？

A．That＇s right．
8．Do you have any information in investigating this transient that allows you to concluce gressurizez level inci cation was relied upon more heavily than the other three parameters by the operator？

A．In that December 30 th meeting out at Davis－Eesse where I mentioned the people were－－
（0）Excuse me．I believe you said December 30 たin．Did you mean to say Octobe 30 th at Davis－Besse？

A．I mean the September 30 th meeting where the $s=a \approx Z$ ジころた vent out．

We talked with the onerators to some Jengti．And
I remembez＝Etelded several questions to the opera＝ors
"What did you do," "Why die you do it?" At that time I remember the question was brought up "Why did you turn the high pressure injection ozz?" And his answer was "ive zelied very, very heavily on pressurizer level." \#owever, I think it is only fair to state that in our questioning and the licensee's response the operator went on to realize that he was reaching p-sat concition, saturation conditions.
\#e was an operator who to me knew something about steam thermodynamics. He also fron that graph at certain points tripped two cf his reactor coolant pumps. And as I remenber his reason for tripping those reactor coolant pumps was because he knew that he had reached p-sat conditions -saturation conditions -- he had some steam beginning to form in there. And inasmuch as Davis-Besse had only been oretating at nine percent power, and only had one effective full power day of operation -- They had just been coming up in pre-op tests .-. the reacter coolant pumps were supplying as much heat -- Those pumps each procuce about Eive negawatts of powe=.

In those concitions the man vas concemned that he was going to tri? two of those pumps to keep down heat generation, down there in the impelier blade area to cut down on possibie, larger bubble entrai-ment.

I personaily was quite impressed with- tian man
at ニhat =i-n.

Q．Do you recall his name？
A．I do not recall the man＇s name，and I should remember it．
（2）Do you recall whether or not Mr ．Mazetis made a copy of your diagram and used it with his trip report？

A．No：I do not．
8．Is it likely that you would have remembered if he had made a copy？

A．Yes；I think so．
Q．Do yourecali when he returned your original diagram to you？Was it within a Eew days after this meeting，September 30th or a couple of months later？

A．I am not sure if I took it back with me from that meetine＇I just don＇t remember．But I know I have kept it on my wall ever since except for lately．

6．Why haven＇t you kept it on your wall lately？
A．Because after one day after MI－II it disappeared Irom the wall and people were asking to see it．

8．Do you know how it disappeared Erom your wall？
A Mell，it disappeared one night．I became interestec
－－because this is $£ i m i y$ embedded in my mind．The nex \quad day
it was back there and then several peocle began asking me in the halls what happened to Davis－ミesse with some spectỉcity and I would te：l them to come on down to the oEミice and will show you．＂亡＇ve gct my graph．＂And ther people zeç：

```
borrowing it. They wanted it as a backup in the eaz1% hours
of the event to try and see if there was any relation.
    2. Do you know if anyone who borrowed it took it to
the Incicent Response Center?
```

A. No; I don't. I don't know where it went. I know it was going all over everywhere, and my concern was both that it was being usesul and also would I ever get it back.
2. Is that what prompted you to write "Return to Leon Engle" in the upper righthand corner?
A. Yes.
2. So, that was not included on the diagram when you originally prepared it?
a That occurred after mi.
2. Can you recall the names of anyone who borrowed your diagram? SpeciEically, did Sandy Israel borzow it?

1. Well, the first man who borrowed it who I had a real conversation regarding some of the technicalities was Rulum
a Stuartifeee (ph.) in the Division of Operating Reactors.

 the assistance group up there. \#e askad if he could have i= because there were neview groups se: up that tnterspersed with JSS and all the groups at that tire, and he said he wanted to use $:=$ because he Eel= it showed hin some signíicant
I told him, "Go ahead and use it." I know from
there it went all over the building because people in the
hall would say "Hey, we saw your graph."
2. Which building was this?
A. Phillips Building.
3. The new Phillips or the old Phillips?

A Both.
6 Do you know Sandy Israel?
A. Yes; I know Sandy Israel.
8. Do you know if he saw your graph?
A. I do not know if he saw my graph.

Q What about Tom Novak?
A. I do not know if Tom saw it. I would think they might have during those discussions.
\& After MI-II?
A. After TMI-II.
Q. Do you know if Roger Matteson saw it?
A. Nell, they all should have seen it back at that

Monday morning meeting for the trip report.
6. Well, I am specifically referring to some time shortly after the MI-II accident oz this year.
A. Inasmuch as I was not there, I cannot answer that.
2. So, the on ir person you specifically know that your Rubin graph was viewed by was S stuart five, you believe his name to be?

```
\(\therefore\) What is correct. I know it was goinc elsewhere.
2. Did he indicate tiat to you?
A. Yes, because I asked him about it, too. "There is
my graph? Be sure I get it back."
            There were several people that saw that graph before
TMI-II that I had discussions with.
Q. Sandy Iszael?
A. No.
Q. Tom Novak?
A. NO.
8. Jerry Mazetis?
A. No.
8. Who did you discuss it with bezore \(-M I-I I ?\)
A. Fivell, some time during the geriod of January, 1978 and Aprif of 1978 I had a conversation with a Mr. Jack Rowe (ph.) who is in the Safeguards Branch.
Q. What is his position or what does he do?
A. \#e is involved in industrial security.
8. Is that something that involves security over fue: for reactors on there way to or zzom the reactor?
A. It is more invoivec in the secu=ity of a giantin. the way of sabotage and those trpe oz matters.
\& Did Mr. Rowe believe tiere was sabotage involved at Davis-Sesse in Septemisez, 1977 ?
A NC. Jut he was inta_jsted in the scenażo znom one
```

of the same standpoints, and that was that that reiay was missing. And he asked me if he could reproduce this to emphasize on licensees how iz some little item might be missing, what could happen. And I believe he sent that to Los Alamos because Los Alamos was involved in Eart of the saÊequards review.

There were two other people that had interests in
that graph prior to MI-II. Another person was a Dominie Dilanni
Theodent (ph.) in the Division of Operzting Reactors. And I think at that time he was involved with the Mechanical Engineering Branch at DOR.

Dominic came down to $m y$ zoom and said he was investigating the LER.
Q. On September 24,1977 Eor Davis-Besse?
A) That's right. And I pointed out this curve to the young man, and Z think he took it for a short time. The amount of time I don't remember.

There was another man that $=$ shower this curve to which was very short after we got back from that meeting. That was Robert McDermott (ph.) Bob -- I have been involved very closely with him because he is involved in staz=-up anc
 through this geziod.

I showed this to 30b, and he used it in Nut=ing
zuounot
a =eport to his assistant dizecto= in QA, 工onald ševaì (弓h.),

Acme Reporting Company

and my name was on that note for a copy attached. Skovhot
S. Do you know if Mz . Skovait saw the diagzam?
A. No; I do not know iz :1r. Gkovait saw tie diagram. Sko hott
8. Sut in Bob's note to Frovati he indicated that he had talked to me and he went through the assessment of the incident. And his concluding paragraph said, "I am having further communications with the $I \alpha E$ inspector regarding the relay."
Q. Did he mention the specific IsE inspector's name?

A No; he did not.
Q. Nould that have been Tom Tamblin?
A. It would have eithe zeen Tom Tamblin or Terry Harpstar because those men were most deeply involved in invest tigating that event at that time. Tom was -- 3oti. Tom and Terry were at the very beginning and then were three or four other inspections they had out there prior to the time DavisBesse came back on the line.

I remember that one or the other might be back in headquarters, because $i \neq I$ called one and couldn't get them I called another. I was calling boti of them.
Q. At tinis September 30ti meeting, Moncay, I believe you previously stated you couldn't recall whether or not theze was any mention of premature termination by the opeza-
 Level incication; is that cor=ect?

A I don't think the word "premature" was used at that time, but I highly imagine it was mentioned that the opezator turned the HPI's off.
Q. So, there was discussion about operator termination of the HPI system based on his viewing of the pressurizer level incication?
A. I remember Jerry followed fairly closely these particular parameters on this graph, and I am sure that came out.
Q. Do you recall whether or not during the course of that meeting there was a statement by Mr. Seyfrit that IaE would follow up on investigating or resclving the guestions raised by the September 24,1977 transient?
A. Yes; I remember that.
2. Mr. Seyfrit did indicate IsE would follow up?
A. Right, that lead responsibility was still with IsE.
8. Do You know whether or not there was any Eoliow up by Mr. Seyfrit or someone in Isz --

1. Oh, there was follow-up based on their inspections out there, there conclusions and report that IsE made. I think I mentioned that. I think october 22nd. And tien the licensee supplement, which you have mentioned, indicates actions that they had taken. And I calied Cazi on several times because $o f$ my concern in cetting these items ali zone. Z talked to Carl several times and "Yow is the insjection
going．
8．That＇s Carl Seyfrit？
3 Yes．

Q．I also had a concern，and I think I must have talke to Carl Seyfrit，Jerry Klingier（ph．），Tom Tamblin，Terry Harpster，and also Dick Knopp，all of IsE，whether during theiz evaluation at any time they thought they might transfer leac responsibility to us on some matters．Now，this is of great concern to a project manager，because iz that occurs then he must make the responsibility of getting all the troops toçeher that will zeview that item，and they may be all busy on all other types of reviews and schedule，and you don＇t want to hold something up．

I was very concerned about that．That was my＝espon－ sibility．

8．Do you recall iz there vas any emphasis on tie possible safety rami太ications of an operatoz prematurely teminating the MPI system based on his observations of pres－ suzizez level indication？

A．To the best of my knowledge，no．
8．Was that a concern to you at the time？
A．At the time I don＇t believe it was as much a concezn to me as the missing relay and seeing that all tha ecuipment was checked out．

8．母as there any investigation oz a suçestion oき an
Acme Reporting Company
investigation that tie pressurizer level indication should be checked out?
A. At that time, no.
\& Did everyone presume the pressurizez level indication to be an accurate measure of core inventory at the time?
A. I didn't heaz anvthing that would have indicated otherwise.
Q. There is no indication of core inventory on your diagram, which we will mark as Exinibit lo. 3 to this deposition; is there, Mr. Engle?
A. There is no plot of core inventory syecizicaly. However, one can certainly infer core inventory from some of those parameters.

ใ. Temperature, 刀ressure?
A. Yes. It is not a definite incication, but if you know the reactor coolant system from Thot, Tcold and pressure, you can come to a Eairly good conciusion on what the overail inventory is in the core. And by inventor" in the core tinat you are not late getting to core uncovery.

Q So, at aporoximately seven minutes into tie acciaent -- or zrom six minutas into tie acciaent, accordinz to your む̇agะan, we have an increasing pressurizer iavel inaica=ion which apgeazs on Your diaçam as a zed line, but decreasing temperature both of tie hot leg and tie coiz ieg of the
reactor; is that correct?
A. That's correct.
9. Would that be the expected, nomal results of those parameters to go in divergent directions?
A. Not to the extent that you see on that graph. Aowever, there was another event going on at this time. Another transient that I haven't pictured there. And that involves the steam generators.

Hay back when you get to the beginning -- what Eizst caused the oroblem was that there was a spurious signal. By spurious, nobody knew where it zame from. In the start-up steam water valve for the :lo. 2 steam generator, this spurious signal locked into the logic an.z closed that startup Eeed water valve. That immediately began to lower tiee water level in No. 2 steam generator. And at the goint where the Low level in the steam generator that locked in the other Yaテt of the half-trip and caused a full-trip of the main steam line isolation valves and started for Davis-3esse and the steam feed water and zupture control system the auxiliazy Eeed water system pumps.

Now, because of tiat dzop in the water jeved and closure of tine main steam line isolation valves, that =aised tine tempezature in tine zeactor coolant system and caused an. expansion oz tine zeactor cooiant and that caused a rise in tie ̧resurize= ปevel also and also in tine zeactoz cooiant
pressure. And the reactor coclant pressure continued so reach that point where we get to where we discussed before that the POVR opens and we discussed.

Now, getting back to the No. 2 steam generator, when the auxiliary feed water system came on for the :To. 2 steam generator -- The auxiliary feed water pump is a steam driven turbine feed water pump -- and it failer, to come up rited to itz rated speed of 3600 mpm . It only 3 about 2600 rom because of a linkage bar fault in the governor, and at that point the 2600 rpm's did not provide suEsicient head compared to the steam generator to allow water to go on into the No. 2 steam generator. So, during this event the No. 2 steam generator went dry.

Now, I didn't put any items of the secondary systam
on that graph at that time because I felt that that transient although itcertainly gets involved in the parameters that are on the graph -- I wanted to keep track of tie reactor coolant system, the primary system. There has been much talk about what happened since, especially at $\mathbb{M I}$. I stand on this: I think the opening of the ?ORV was more signi三teant than any of the malEunctions in the aux Eeed system for DavisBesse, because the design basiz accident and analysis Eo= Davis-3esse was based इaニtly on the assump=ion tha= t= vould opezate within its specs on only one steam geneza=or. Ane they had that io. I stean generator.

But whenever you cone up with any graph it is the sum of many of thesa different transients.
8. Can you recall any reports procuced as a result of the September, '77 Davis-3esse transient that concemed chang ing operating procedures Eor turning off the HPI system?
A. No; I do not.
8. Aave you seen a copy of Jerry Mazetis' trip report on this transient?
A. So; I have not.
8. So, as far as you know, one doesn't exist?
A. I have heard Jerry mention it.
8. Would you normally in the course of procedures at the NRC receive a trip report iz an accident occurred ae a plant for which you were project manager?
A. Yes; I would.
Q. And you have not received a trip report concening this transient at Davis-Besse?
A. No: I have not.
8. And based on that would you assume that a trip report was or was not produced?
A. I don't know.
8. So, iz someone from Region-3 called you up and said,
"Is tiere a triz zeport on tinis transient," even up un=i2
today, what would your zesponse be to tiem?
A. I have not seen a trip repor= cross $m y$ desk.

Q．So，would you sell the inquirinc incividual that noth：．．existed by way of a trip report？

A．Yes．
2．Because you would expect to be copied on－－
A．I would see it－－be getting a copy reit．
Q．Would you characterize premature c jerator temina－ tion of the HPI as an unresolved safety issue？
（Pause．）
Do you undezstand my question，：Ir．Engle？
A．In what time period？
2．If the operator observing pressurizer level indica－ tion turns off the $A P I$ system before he properly should turn it off，would that be an unrecolved safety problem in your view？

A．Based on MI－II，yes．But it is being looked into now．

Q．In the lessons learned－－
A．Lessons learned－－Bulletin and Orders Group．That is gart of the questions that have gone out relating to ope．a－ toz procedure．

2．Did you consider the prematura apy sermination by the opezator at Davis－Besse in September， 1977 based on his observation of pressurizer level indication to be an unresolved saニezy Matヒer？

A．No；こ did not aた ーinat time．
? Do you know whether IaE considered it to be an unresolved safety matter at that time?
A. I Zon't know.
Q. If $I \times E$ considers, this problen to be an unresolved saEety question, would they have provided you with copies of any documents they would have generated in attempting to resolve the problem?
A. If they thought that their manpower did aot encompass the expertise to review that area, they would have sent a formal transfer of responsibility specifying that area where we should have evaluated.
8. And to your knowledge you have not seen such a trans fer of responsibility?
A. To my recollection there neve= was a transfer of zesponsibility on the Davis-3esse event.
6. Would you concluce on that basis then that IsE Eat that they had sufficient technical staff to resclve the question?
A. Yes.
6. Would the fact that you did not see any zeports dealing with gremature termination of the HPI system as an unzesolved safety matter indicate to you that IsE did not consider it a safety problem?
A. Nould you repeat that question?

MR. SZDEZE: Nould you reac it back, Flease.
（Whereupon，the pending question was read by the reporter．）

THE NITHESS：I don＇t know．
3Y MR．SIDELL：
Q．You didn＇t conclude one way or the other by not seeing an IaE report whether or not they believed it to be a safety problem or not？

A．I just don＇t know． MR．SIDELL：off the record．
（Discussion off the record．）
MR．SIDELL：Back on the record．
$3 Y$ MR．SIDELE：
8．Am I correct in concluding that you previously staud，Mi．Engle，that $a t$ the Monday meeting on September 30 th there was no indication that HPI Eermination by the operator was viewed as a safety concern when ISE accepted zesponsibility for resolving the matter？
i Repeat．
9．Did you previously state that there was no mention during the Monday，September 30 th meeting that BPI termination occurring in Davis－3esse in September，＇ 77 was vieved as a safety matter when IsE agreed to look into things？

MR．TRUBATC：：Nas or was not viewed as a saニ̃ev？
－ 3 ニニeこ？
MR．SZDEZニ：Nas net riewed as a safazy mateer．

THE NITHESS: I don't know. I don't know what was in tineiz minds.

BY MR. SIDELL:
8. But at the September 30 th meeting did you previously state termination of the HPI was not mentioned to be a safety matter -- safety problem?
A. To the best of my knowledge it was not specizied as a given safety problem.
a. Alternatively there was no emphasis by Mr. Novak, Mr. Israel, Mr. Mazetis or anyone at that meeting to IaE to consider in their investigation that premature termination of the HPI system was a safety concern that they should look into and resolve?
A. Not to my krowledge. I would like to state that meeting was a little hectic. People coming in and asking questions. Some people may have been hearing one thing. They didn't all get there at the same time, and being a project manager that sort of went against my grain because I normaily conduct meetings. 3ut they were all --

In the time the meeting went on the most specificity
was given at the very ミizst when Jerry was descrizing this event.
2. Do You zecall the length of the meeting, staニt so Einish?
A. I don' = believe is was ovez an hour.

Acme Reporting Company
Q. Were people inzormed of the existence of the meeting by telephone call or was there a formal memoranda sent around to participants?

1. I don't believe so. However, I was calling a lot of people trying to get some input as regazds certain items.

Q It was essentially notification by phone?
A. Notification by phone. I had many, many telephone calls with IsE. Like I said, I was concerned whether there was going to be a transfer of lead responsibility. I was also concerned with what was going on. I was very concemed about that relay missing.

6 But in order to get people to this Monday morning meeting most people to your knowlecge were notified by telephone?
A. Oh, absolutely.

8 And then you subsequently Eollowed it up with IsE with further telephone calls?
A. That is correct.
8. Who did you speak with in IsE, iz you can recall?
A. It is a variety of individuals. Shortly atter the event it was -ostly Mervy Jarpstar and Zom Tamilin and their boss, Dick Knopp. I also talked to Jez=y Glifenter (ph.i
 also talked to Carl Seytrit several times.

6 So, you spoke with zecple zoth in 'egion-3 and
Acme Reporting Company
in IsE headcuarters here in Bethesda?
A. Right.
8. In your conversations with Tom Tamblin Erom Region3, did he indicate to you that there was no safety concern from Recion-3's perspective of tumning off the HPI system prematurely?
(?ause.)
Do you understand the question, Ir. Engle?
A. I understand the question. I am just trying to Give you the -- I do not remember wheriez shut off of the EPI's specifically whether I discussed that with Tom Tamblin. It seems to me our conversations were more related to their investigations of what had caused the transient and corrective actions that they were taking.
Q. So, it appeared to you that Region-3 was not paying an overly great amount of attention to the manual over=ide of the BPI system?
A. No. That is not correct, because I was not overly sensitized to that item at that time, too. So, I can't say that I was -- had some -- I, myself, was not paying too much attantion to that item.
8. But would you conclude that Reyton-3 also was not devoting a grea= deal of time to that matこez?

```
    3. : Nas so involved a= #ie vime in these orier
things = can'= answez that in tiav =ime invezval. In nincsich=
```


Acme Reporting Compeny

I would say yes．
8．Region－3 was not spending a great deal oきtite investigating turning ozz the $H P I$ system？

A．In hindsignt，yes．
Q．In hindsight do you think they should have？
A．In hindsight we all should have．
2 Are you aware of any inspection and investigation reports filed by Jim Crestwell concerning tine September，＇77 Davis－3esse transient？

A．Not specifically．
Q．Have you heard of them by word of mouth？
A．I have heard of them by word of mouth relating to tiat event，event Eurther on，and then matters relating to －－I Hinnk it＇s pressurizez level aぞter I transfez＝ed Davis－ Bessie to DOR．

Q．Do you recall when you heard oz Mr．Crestivel1＇s ェepo＝t？

A．I think it was right at the very time that ma was happening．

Q．Shortly before or aftez，if you can zecai1？
A A very，very naz＝c，senc，vary，very sinoryly betore．
Q．Do you remember how you heard of Mr．Crestiveli＇s
こセ戸๐ロさ？
A．I heazd it oy Noze of mouti．

 being curious and getting a copy of that．There was so much That was in the TMI event．That＇s when I got it because there was so much going on then，and I did get it from somebody but there are so many people involved in what I was doing then，I just can＇t remerber who I got it from．

8．So，your best recollection is that your received copies of Mr．Crestwell＇s report afte＝MI occurred？

A．That is right．
6．Vere those reports dealing with the September，＇77 transient or the November， 177 transient at Davis－3esse？

A．To my best recollection November of＇77．
6．Have you seen any reports authored by Mr．Crestwell conceming the September event？

A．：’o；I have not．
\＆Eave you heard of any？
a ：：\％I have not．
Q．Are you familiaz with something referved to as tie Michaelson＝eport？

A．I certainiy am now．
Q You were not preceeding $M I-I$ oミ ニ゙is year？
ג．No，si＝．
6 Jave you read the＝eport？

a11 my－－

Acme Reporting Company
8. Do you have a copy of iz?
a. I do not.
Q. Do you know the essential thesis of the Michaelson report?
A. The basic thesis I believe is that in a certain size break there may well be transiants that need further investigation as far as adequate core soo:ing. And I believe that includes the diameter break on the PORV valves -- I mean the diameter size that would have been for Davis-3esse and Eor MI.

6 Mould you concluce that Mr. Michaelson's central thesis is that the design basis for LOCA's, at least in 3 si reactors, did not adequately deal with very small break LoCA's?

1. My best answer to that is that it would demand that analysis be made in that rance of breaks, which is now being cone:
2. Are you involved in that analysis?
A. Only very indirectly, and that is involving lieensing matters of actions that had to be completed and based on the Bulletin and Orders Group's upwriting of safety evaluation based on licensees input.
Q. Have you heard of a memorandun by in. : : 0 vaf -- 5om Sovak?
A. Tom writes a lot of memoranduns. What memorandum?
(Specizically dealing witi the accumacy or ambiguiz?
```
of pressurizer level indication and an operator's zeliance
on pressurizez level indication and tuzning off the n2T sys-
tem.
```

A. I have never received a copy.
2. Have you heard of it?
A. I have heard of it recentiy.
0. After the accident?
A. After the accident.
Q. Not before?
A. Not before.

MR. SIDELL: At this point, Mr. Engle, I have no
further questions. What we have been doing as our general procedure is zather than adjourn the deposition we will merely recess it in the event that we have further questions for you we can more easily continue the deposition.

I will advise you that we have not yet secalled any deponent to continue his deposition, although we expect to do that in a very small number of cases. I at this point and time would doubt that we would Eind that necessazy in your case but merely to be consistent with our prior golicies we will recess rather than acjourn the deposition. And we wil await a copy of your diagram deaitng with the september 24, 1977 Javis-Besse transient as Exhỉi= Mo. 3 to this deposi=ion.
\%US NZTNESS: Can I get Your name and wheze Z can get this to you?

MR. SIDELL: You certainly may. Anci iz counsel will so stipulate that upon receipt of a copy of Mr. Engle's diagram it will be included as an after-included exnibi= as No. 3.

MR. TRUBATCH: We so stipulate.
MR. SIDELL: off the record.
(Whereupon, at 4:00 o'clock p.m., the taking of the deposition was recessed.)

```
I have read tie foregoing pages, 1
through 62, and they are a true and
accurate record of my tustimony
therein recorded.
```

 LEON 3. EITGLE
 Subscribed and sworn to before me this \qquad day of \qquad , 1979

Notary Public
Hy Commission Expizes: \qquad


```
DCCKEZ NCMSER:
CASE IITこZ: Accident at Three Mile Island
                    deposition of Leon 3. Engle
\XiEA\OmegaZNG DAこE: August 3, 1979
JOCATION: Sethesda, Maryland
    I hereby ceztizy that the proceecings and evidence
hezein are contained Eu11% and accu"ataly in =te noves
taken by me at the hearing in the aicve case tefcre the
President's Commission on the Accident at Three Mile Island
and that this is a true and corvect ==anscriz= of fhe
same.
```

Date: August 7, 1979

Laon 3. Mclo

Uconsing Profect Lanager
Light ifatar hoactor Group Xo.
Difision of zrofeot Kanagamen:,
Difision of zrojeot Kanagament, office of Nuciear zcauter iogudation

- . Ent Micã

צo7. 1974 to present

- Commission - 1974)

Staif Member - Liconsing Project Lanacer
Responsible for managing and coordinatinc staff revion and
interfaaing, with applicants and licensecs for radiciofical saioty
\because raviews and for plant operation and praparation of Snicty zrciuation Zeports, Supplaments, pperating Licenses (Avendments) and pororting to the AdFisory Comnttiee on Reactor Saieguards on the fintiowing muclear power plants: (1) Daris-Zesso Muchenr ?ower Fluñ, Unit: (Oh10), (2) Standerd Balance of Flant Joppsar-JS:2-203 (:11inois), (3) Palo Verde Nuclear Power Station, Units 4 द 5 (Artzorni, (4)
 Fower Plant, Unit 3 (Florida), (6) Hidiand Nuciear Powor P1:nt,
 (Hichigan). Also, managing Arkaneas Nuclew Ond, Unit 2 operating ticensingmatiars. Presentty engaged in licensing matters tegarding NRC Conomi ssinneris Opder trgatimg the astint ot Thas $H_{1} l_{2}$ Island, Unit 1.

Jund 1971 to
Kay 1973

Jan. 1967 to June 197

Group $N-2$, LOS ALAUOS SCTENTIFIC LABOFATORY Staff Member - Physicist

Analysis of LWrar hypothetical acsidents for code and model develocment; Equation-of-state studies and testing of the calculational method Apolication of code and methods to existing and proposed reactor desizns and to concoptual experisents accrocriate to resctor safety; Basic physies includes the use of a coupled neutronics-hydrodynamie code, the use of neutron-transsort theory, heat transfer, and dyramic forces; Analysis of experimental and theoretical results associated with enerky release for critical assesplies; Progress reports to RDT, 1971, 1972 and 1973; The use and cnovlecige of computers (CDC 6600 and $53 M 7090$).
 Staff Member - Physicist.

Calculation of enerf release assoctated with resctor aceidents as input to safety analysis; Evaluation of experimental results from critisal assemblies for theoretical coce develoment; Fas: reactor parametrac studies; Tasting and using transport, kinetie, and drnamie reactor models; Liaison win corsultants to $\mathrm{N}=2$ or reactor aceident calculations; Studies as related io ?over reactors for design and start-1p analizis; Fortran codine and use of cemruters; Faniliar vith AEC regulations: ractation, safesp and environment.

Jan． 1969 to van． 1972

 Policy－naking and regulatory juriscičion in cnvinconont public health，anc soctal services；joard member uns：－．．．．．．．．．．．．． with drafting and steertig toward acoption（ن゙a．．．－y
 of New Nexdco；Kathematical evaluation o：Zour Corners jower plant complex；Zoard representative as Viraid seminar for recional implementation plans，Kansas City，次．（van．2970）； Kow ：Kexdco representative at innal consultation on Four cormers Interstate Air Guality Region（Nov．1970）：Hearing ofticer （Эoard）for air pollution reg．：Interchange inth Foderab ind State Acencies（M．．．．．Colo．，Utah，iriz．．Tecas，ese．）on in： pollution，and with industry，conservationists，a．：d elected officials regarding envinonmental problens；Personal and roup mectings wth Medical Socteties，health insthtutions，Jntians， Welfare and Ninority Groups：nequadnted with Clean hir ict （ 42 U．S．C． 1857 et seq．）and a土～quality criterian（garticuinees， $\mathrm{SO}_{x}, \mathrm{NO}_{x}$ ，etc．）；issessment of effictency of electrostatic prectpitators in power generation utilizing low－suliur，hicin－
Jan． 1959 t
van． 2967
 Stafe Kember－Fhystedst

Neution Transport and तinetic calculazions for safezz analjesis on proposed nuclear jower plants；Parametine studies for fover reactors for design and startip analysis；neuvente assessment of Fhoeous 2 nuclear rocket reactor；computer jro－ zraming and calculations for successive zocicip joutigs use in expertmental conifgurations for criticalivi deterninazions； developed computer prograins for data analusts of experi－ne：ts controlled cratuas fron fast neutron itssion and oporated and controlled critical assembly used in experiment．

Jan．19\％．
Staff Wemher－Physicist

sections for reactor studies；liffusion ：Hec．7 stuctas ：z …－， to critical assemblies；Cperstion of criaical assr－biles：her－jz：z－ tion and asscssenent of reactivity contributions of varíuiz eleunis in critical assemblies．

Suly 1051 to
April 1955

Research issiztant，＂hroscist
woapon deaign and evaluation；fadioactive mont：ortne，＝2：to？ survaillance，statistical anal－sis，cualitif centrol；Dzeciorment of orocedures，trainiag，and sufervision of Tilitan ：nd c！palin personnel as related to vespons asacabiz；Superisesc ：－ in monitoring and quality control；Supertised $=111 \mathrm{ta}_{\mathrm{F} \%}$ duc ．．．．．．．．．．． erovs（ $4=5$ persens）for sizumenth interials．

$1946-1950$

1955-1958

Jan. 1970
0.3., Thysiez and Yathematics: Colorado Collerm, Colorado Sprines, Colorado.

Kov. 1970 .
Iniversity of Nex Mexíco Exteryion Courser, Los ilamaz Scientific Lahorator; ; Yuclear ? cactor Tecinclof, and Ëncinenerng; Statistical inalysia; ilatrix Theorg; and Electrochnamics.

Seainar for Regional Tmplementation Plons, lational di= Pollution Control ddalnistration, Kansaz City, …o.
itr Collution Control Technolog7, iational itr Foliution Control idiainistration, University of Fexas, Auntin.

Su17, 1973
 Garbridimn, bas-nciuset,ta.
 Cormission, lethosdo, harrlad.

Oct. 1978
dan. $1979-$ May 1979

Boiling Water Reactor Systems Fundamentals, N.R., Bethesda, Mary land

Envinonmental Impact of Energy; Nuclear; Fosil,
Catholie University, Washugton, $D . C$.

MOFESSIONAL 3gFERENCES:

Tッ. Gorden 2. Hansen
Tr. M111:am © Strattcn
Fr. H. C. Paxton
Los ilamuz Scientifis Lanorstory, Los ilamos, \because. v.
Mr. Joint Stolz
Ligit Water Keactors Brancin No.1, opm, NRR
 1943-1946

Soveこうe: 14, 1977
Docker: No. 50-346 License So. NPF-3

L77-380
FILE: RR.2 ($\mathrm{MP}-32-77-16$)
M. James G. Kepler

Regional Director, Region III
Office of Inspection and Enforcement
U. S. Nuclear Regulatory Commission

799 Roosevelt ..ac
Glen Ellyn, Illinois 60137
Dear M. Kepler:
Supplement to Reportable Occurrence NP-32-77-16
Davis-3esse Nuclear ?over Station Unit 1
Date of Cccurzerce: September 24. 1977
Enclosed Find three copies of Licensee Event Report NP-32-77-16 Supplement, which is being submitted in accordance with Technical Specification 5.9 to provide addtional information of the subject occurrence.

Please note this report also satiszifes the special oo day report requirement of Technical Specification 6.9 .2 for the Berzgency Core Cooling Actuation on Septembet 24, 1977.

Yours truly,

```
    FangD oprumen
Ferry D. Murzay
Stazion Superin:enden=
Davis-3esse Nucleaz ?ower Station
```


Enclosures
ce: Dr. Erst 7olgenau, Director
Office of Inspection and Enforcement
Encl: 40 copies Supplement
Mr. William G. McDonald, Director
Of: ice of management:
Zaforantion and ?zogran Control
Enc:: 3 copies Supplement

On Septamer 24, 1977, a series of events occurred at the Davis-3esse Unit 1 which resulted $f=$ depressurization of the primary system from a normal operating pressure of 2150 psi to 900 psi in approxinateiy 8 minutes, and the release of approximately 11,000 gallons of water in the form of steam within the corrainment through the pressurizer quench tank rupture disc.

On the aftermoon of Saturday, September 24, 1977, the zain turbine tas shut down to repaiz a leak in a pressure sensing connection on a sceam line from the turbine governing valves to the turbine inlet. The reactor was being held critical at approximately 97 theral powez.

At 2134 hours, a spurtous half trip oceurred in the Steam Feedwazer Rupture Control System (SERCS). This caused the startup feedwater valve on the No. 2 steam gecerator (which is the gormal feed path as this power level) to close. Closure of this vaive resulted in a 1 cw No. 2 steam generator level, which than resulted in a aorzal full trip of the SFRCS for this coadition and taiziation of the SRRCS. SFRCS initiation closes both main steam isolation valves and initiates feedwater flow to both steam gemerators from their individual stean-driven auxlliary feedpums.

The half trip and resul:ing full tzip of the SFRCS caused a recuesion in heat renoval frem the primary system and a coznesponding temperatura/ pressure rise in the primary system. The pressure rise in the primary system caused the pressurizer powez relief valve to lift. This vaive then rapidily oscillated closed-co-open approximately aise times and remained in the full opes position.

The temperature tise in the primary system caused an incrase in the pressuifzer level, and the operator manuain. -mipped the reacsor on high pressurizer level approximiely (ion minutes efter the half trip on the SFRCS occurred.

The pressurizer power velief valve, in the full open posizton, rapidiy reduced the primary systea pressure, and a Sċety Features Actuation Sys (SFAS) itip occurred at the 1600 psi setpoine of the p=i=anj system. The power reliaf valve iischarge gues to the pressurizer quanch sank, which became overloaded and overpressurized, and approximately 4in rinutg after reactor crip the rupture dise in this zank zelifeved jue to ovenressure, venting the staam into the containaent. Approxi=ately 20 minutes after reactor trip, the operators diagnosed the reason for the pri=ary systam depressurization as being the power relief valve, and 5 som the conczol soom closed the notorts. Slock valve anead of the power relief valve, temi=azing the loss of pza... coctainaert.

Subsequen operator action using =akeup \quad praps and high pressure injection purps stabilized the prinar: systam pressura and pressurinee level and a cs=e:olied shuticem to cold shutdown cendizions followed.

The sa:c physical dumaga fran the facidenc was to the reflective metal fnsulation on the lower part of the No. 2 ssean generator, which received the jet of steam coming from the pressurizer quench tank. A ventilating duct in the area of the quench tank was dinpled and requitad straightening. Nventy-chree panels of reflective mesal fnsulation required replacement. Entry into the conzaizment was made at 0550 Sumday, September 25, 1977, for cleanup operations.

Another event occurred in the course of this incident that did not contribute atarially to the above events, but did result in the No. 2 steam generator going diry. This was the failure of the No. 2 auxiliagy feedpump to come up to full speed following the SFRCS trip. This feedpump came up to approxizately 2600 rpm and stayed at this level with no 51 w ce the scaam generator metil approximateiy 12 ginutes after reactor trip, when the operators placed its control in manual and brought it up to full speed (crmencing feedwater flow to the steam genezator).

The depressurdzation of the primary system resulted fa stean formazien in the pri=any system, but evaluation has shown there was ne appreciable boiling in the core. The pressure/temperature transients in the prizasy system components including the steam generator, zeactor coolant pump and fuel were severe, but analysis and subsequent pump testing has shown that these transients are within the design allowables and that zo detrizental effects are to be expected on the prinary systen, pumps or fuel.

System/component =aloperation or Eailure ocsurred in three areas: STZCS (half-trip initiation), pressuzizer power religf valve (oscillation and failing in the open position) and aveiliary feedpum (Eailure to come up to full speed). The causes of these maloperation/failures have been finvestigated and corrective action taken to prevent recurrence. Addi:ional system/equipment modificacions have been conpleted or initiated, and additional training has been initiated so strengtien the systems intelligence available to the operators and facilisate opezator action.

At no time during the sequence of events was there any feopariy to the healst and safety of the public or plant operazors, and there was mo release of radioactivity to the envizonment. Activity levels within the containazat at no time fimeded containment aceess.

All safety systens performed theiz desigr functions in the proper manner. Opezator action was timely and proper throughout the seqquezce of events.

2. EvENT DESCRIPTTOM

At the EIme this facident occurred, the zaactineter data logging system was in service which recorded at high speed a atmber of systam parametars that would not have been availabla on such a time base through normal station instrumentation and records. This information, togecher with the computer alar= logging, has peritied a very detailed plotting of the transient conditiens in the priangy and secondazy systams keyed to the system, component and operazor actions. $\mathrm{Th}^{*} 3$ data is plottad on four Figures in Exhibit 3. Figure 1 is an 11 -minuta plot of primary system paramesers from one (1) minute pricr to event inf:さation (SFRCS half t=ip). Figure 2 is a 130 -minute plot of three primary system paranesers. Figures 3 and 4 are 95 -minure plots of pressura and cemperature for steam gonerators No. 1 and No. 2 respectively.

The event started at time 21:34:20 ($I=0$) on Septamier 24, 1977. The plant was in Mode 1 with Power ($M \mathrm{~m} /$) $=253$. Toe turbine had been shutdown earlier in the evening to repair a leak in the main steam line at an instrument concection between the turbine stop valves and the high pressure turbine. At this time a balf trip of the Steam and Feedwater Rupture Control Systam (SRRCS) was initiated by an unknown cause. The trip closed the startup feedwater valve to No. 2 stean generator and stopped all feedwater to this generator (at this low power level the main feedvater block valve is closed, isolating the mann feedwater control valve). The low level alas= was seached in No. 2 steam generator at $I=24 \mathrm{sec}$. Before the operator could identify and correct the problen, this low level in No. 2 steam generator correcsif produced a full trip of the SFRcS. This trip closed the main steam isolation valves and Eeedwatez isolation vaives in boch steam generators ($I=58$ sec.). SERCS iniziation also started both auciliary feedwater pump. The zumber one pump performed as fnranded, however, number two aurilian? feedrater pump only came up to 2600 rpm , insufficient to feed its steam generator (No. 2).

The loss of feedwatar, first to one and thez both seeam generators, caused an incraase in reactor coolant temperature, which resulted in an increase in pressurizer level and reactor coolant system pressure. At 2255 ?SIG the pressurizer elecrromate zeliez valve received an open signal. During the next 40 seconds, it received open and close signals, cycied close-to-open ni=e times and the= :amained oper. This provided a continuous vent pach from the pressurizer to the guench tauk. When pressurizer level rose to $290^{\prime \prime}$, the operator aanually tripped the reactor ($\%=1$ min. 47 sec .). Energy escaping through the electromatic zalief vaive and nain stem =elfef valves caused a zapıd cooldown and depressurization of the reacter coolant systas. Reaceor coolant systam pressure dropped to 1600 ?SIG ($=2$ ニun. 51 sec.) Intitiating the Safety Features Ac:uation Systam Csinn This started the high pressure injection pups med closec Rezain contafament isolation valves.

With the eleczromaste relief valve still open, the quench tank rupture disc ruptured ($=6$ min.), relieving steam into the containment.

When the reactor coolant system pressure decayed to approximately 1500 prig full high pressure injection flow was established and started to raise pressurizer level. Az $=6=1 \mathrm{n}$. sec . the operator stopped the high pressure injection props. (The openers had been heavily involved before this time in regaining seal inject tin flow to the reactor coolant pumps which hat been stopped by the SFAS actuation. By $T=5$ min. 20 sec , the appropriate SpAs signals had been overridden and normal flows restored to the seals of the $p u m s)$. Reactor coolant system pressure continued to deczase until saturation pressure was ranched and steam began to form is the reactor coolant system (approxinatein $=8$ ain). This caused an insurge of water into the pressurizer dmunereressurizer level went off scale at 320 inches. During this level increase the operator, seeing average reactor coolant system temperature and pressurizer level inczalsinze stopped one reactor coolant pump in each loop ($\%$ = ain.) to reduce the heat inputs fin to the reactor coolant system.

Due to decreasing pressure in No. 2 steam generator, the SFRCS system gave a 10 pressure block permit signal at $T=14 \mathrm{~min} .13 \mathrm{sec}$. This alerted the operator to the low level and feed condition of No. 2 star generator. Ie blocked the low pressure trip $(:=15$ min. 13 sec.$)$, took manual control of the speed of No. 2 auxiliary feedrater pump, which commenced full feedwaser flow to No. 2 steam generator ($T=16$ gin.). The operator saw the rapid addition of cold feedwater into Yo. 2 steam generator was dropping the reactor coolant system :emperature and reduced the feedzater addition to this generator.

At approximately $=21$ =in., it was determined that the power relief valve was remaining open and the block valve was closed, isolating the power relief valve on the pressurizer and stopping the venting of the reactor coolant system to the quench tank. At $\mathrm{F}=31$ \#in., pressurizer level came back on scale. At $\mathbf{I}=41$ min. the operator started a second makeup pump to try and stop the pressurizer level
 decrease. This additional cold water started the reactor coolant system on a slow decreasing temperature :ransient. At $T=43$ min., pressurizer level ranched the lou level interlock and cut off i the pressurizer heavers. AET 49 wiz. the operator stared a high pressure injection pun or wi censor the decreasing pressurizer level.

The level and pressure in So. 2 steam generator again deceased $: 0$ the point where the SERCS gave a low pressure block permit signal. The operator again blocked the trip ant, through =annual speed control of its auxiliary faedwater pump, restored havel and pressure in Mo. 2 steam generator ($=51$ min.)
\＃ith pressu：ize＝ stopped the high $T=57$ 2in．he $:$ ： stopped the slow which started at under control anc and a normal plar

3．SZSTER－EOUTPMETM

A．General
There were ： failure oce：1：

1．Steam Fes initiatier

2．Power kel position）

3．Auxiling
The SERCS is $:$ the steam q ene system under a

These hypothes slow，steac $1:$ gents of this systems，main auxiliary feec steam and feer： description $0:$ герогт．

A half teip of starsup feed：a resulead in a spurious or ：－ occurring，azi

The pressurizt relief valve motor－operas： imeediately power＝elis？
1zaz pres ASME Code

```
:11 - .s : so recovering, the operatar
<e injec:fon pump (I * 53 min. 24 sec.). At
    reactoz coolait makeup Elow to nom=al. Thts
    -\thereforeg Ivaここ0z = :\ant Eamperature transient
    *in. Al1 plz = parameters were now Eulig
    -Aut was orous.it to a steady state condftion,
    :**n ssarted.
```

 2
    ```
*-s/componen: * where malopezation or
    * the even*. Inese are:
*--Nren Con---N Sustem - SFRCS (halE-trip
::- (oscillat %- and failing in the open
ailure some up to (ull speed)
-# sistam des jaad to provide feedwatar to
    *) remov** " decay heat from the primary
*, \capf hypoth:e zed plazt operating conditions.
    \therefore:ivions in: fe loss of normal feedwater
    .. L.d Eaec := line breaks. The compo-
- -ucuude sano ; systems, logic and inista:ion
    csolation val n%, staam turbine-driven
        is, feec: isolation valves, auxilian
    *oply valves :-d cross connect valves. A
    e...*)
        ": initiut Tis event by closing the
            t.) the steam gezerztor, which
        :% due to 1 :sam generator level. This
        .. half tri d possible =easons for i=
    s.d in =ore ifl below.
```



```
..- so the :% s.ae pressurdzer with a
    :idz or blec ive located in the line
            a =alic: The pumpose of this
        se provic ins of nelieving pressur-
        :こqu゙ご:ミ :-Non of the spring-loaded
    %.
```

During this event, the power-operated relief valve opezed, oscillated closed-to-open and then failed to close and remained in the open position. Operator action from the control room closed the isolation valve ahead of the power relief valve about 20 minutes after zeactor tzip.

The reasons for the oscillations and the failure of the power relief valve to close are discussed in more detail below.

The steam turbine-driven auxilazy feedwater pumps are a part of tha SFRCS. Cpon initiation of the SFRCS, the auxiliary steam supply valve to the feedwater pump turbine opered as called for. The No. 2 aucdifary feedwater pump turbine came up to 2600 rpm and zemained at this speed zather than continuing up to 3600 rpm , which is the destign speed. Cperator action at 14 \#̈nures after raaceor trip brought this pump up to des 1 gn speed by placing the control (in the conerol room) in manual. Failure of this putp to come up to speed did not materially concribute to this event, but did result in the No. 2 steam generator boiling dry, which added to the transient condition in the primary system.

The reasons for this feedwater pump turbine to come up to speed are discussed in detail below.

3. SFRCS

The initiating event zas a Steam and Feedwater Rupture Contzol System (SFRCS) Channel 2 momentary one-half trip from an unknown cause that went back to normal before the station computer could record the source. Tais one-half trip caused the following events:

1. The startup feedwater control valve (SP7A) on stean generator No. 2 closed. This caused a loss of feedwater fncident on steam generator No. 2.
2. A one-half irip on Chamel 2 sealed in on both rati steam line isclation valves (MSIV). This one-half $=$:ip deenergized at least one solenoid valve on each uSI7, and resulted in a "Mn Stm Iso 1 (2) Inbi" alara on the station computer for bech wSIV's.

This momentary one-half erip could have been caused by a spurious contact opening or a coose connection in a wire in a SRRCS input signal froma sump onemser low pressure swisth, a steam generator low level bistable or a zain Eeedwater high pressure diEEarential switch. The momentazy one-half trip could also have been caused by trouble intaral to the SFRCS cabinets. All possible causes zere investigated. is a result of this investigation, it was desarained that an input buffar card had failed.

C. Auxilian Feechoum Turbine Govemor

The auriliary Eeecoump No. 2 Eatled to aceelerate to the noralal speed one The stean isolation valve opened properly and the pump came up to about 2600 rpm. The govemor, a Woodward Type ?G-2I with a speed changer motor driving the manual speed setting knob, was calling for a higher speed (the speed changer yotor was turning in the "facrease" direction). As required, the govemor was left in accordance with procedures with the speed adjustment at the "full speed" position when the pump zas shutdown. Winen the pump was called on to auto-start, with steaf generator level below setpoint; the speed changer motor continued to drive, through a slip clutch, in the "increase" direction. Bowever, the speed setting mechanism tas already at its mechanical high speed stop applying a binding torque to the "m" Jar, a portion of the "feed back" linkage, not allowing it to drop down and allow the piscon rod to move down in the incraase speed direction. The undesired binding in the feedbaci linikage gave the governor a false sigal that the turbine was at tha desired speed. Once the torque was removed, by operator ranote manual action, from the "T" bar, the "T" bar dropped dorm and the auxiliary feed pump turbine proceeded to the bigh speed stop (3600 ppm).

D. Pzessurizer ?ower Relief Valve

When the reactor coolant system pressure reached the setpoint for the power relief valve, 2253 psig, the val'e opened properly. \#owever, there is a seal-in relay which then keeps the valve open until gressure is reduced to a lowez "reset" pressure (2205 psig). This seal-in relay that corzrois the closing of the valve was missing from the eireuis. Withou: the relay, the valve reclosed as soon as pressure decreased below the "open" setpoint. The resule was open-close cycles as pressure went above and below the "open" setpoint pressure instead of one or two longer blows to relieve the high pressure down to the "reset" pressure.

Afzer approxiaately nine open-ciose cycles the power relief valve remained in the open position. When the vaive was disassembled it was found that the pilot valve was stuck in the open position causing the =ain valve to stay opez. The oilet
 zaterial binding the stam in the zuide azea of the pisof valve nozzle.

4. SYSTEM TRGUSEENS AND AHALYSIS

A. Ezansients

During this rapid depressurization event (see section 2 above and Erhibit 3, Figures 7-1 through 7-4), the raactor coolane systam pressure dzopped frou about 2300 psig to about 930 psig in $7 \frac{1}{2}$ miautes and gradually recovered to 1800 psig in two hours (see Figure 4-1). During this $7 \frac{1}{2}$ ginutes the reactor coolant outlet tempezazure dropped at varying rates from about 580 E to about 533 Z. Approxinately 30 =inutes after this initial temperature change, a secend slower and smaller temperature changz from 540 F to 505 F occurrad over a 21 -minute period. Following this second temperature decrease, the temperatura gradually increased over a 2 -hour period to 525%. The reaztor coolant inlet temperature changes and durations were similar so those of the reactor coolant outlat semperature (see Figure 4-2).

The secondary side prassure in steam generator No. 1 reached a maximum of 1050 psig and decreased to about 360 psig within 15 Iinutes (see Figure 4-3). The secondany side pressure in steam generator No. 2 reached a maxinum of 980 psig, decreased to 610 psig in 14 ginutes, and retumed to 860 psig in 2 minutes. Twenty minuras later the pressure in steam generator No. 2 again decreased to 610 psig and gradually secovered over a 2 -hour period (see ह̈igure 4-4).

3. Analysis of the Reactor Coolant Systee

3 sin has completed fes evaluation of the September 24 transients and has foumd so haraful short or long-teme effects on the reacsor coolant system components. For this evaluation it was consarvatively assumed that the total temperature decrease occurred at the inftial tate. This results in a 49° F decrease in the reactor coolant outlet tempezature over a 6 -minute period.

The design spectification for Davis-3ెesse Unit 1 zequized the evaluation of 40 eveles of a sapid depressurization event, which included a decraase in the reactor coolant pressura fzom 2200 psig to 800 psig, a change in the reactor coolant system average temperature $5=0 \mathrm{~m} 563 \mathrm{~F}$ to 500 F in 15 . minutes, and a decrease in secondary system pressure from 1050 psig to 640 psig.

The major difference between the actual transient and the design transient is the iate of the temperature change in the reactor coolant systam. The actual zate of temperature change vas voriza the rate of the design transient, but the total temperature change was only 78\% of that of the design tannsiant. Fhe zet zesult is that the fatigue usage of this one rapid depressurization is about the same as that predictad for one cycte of the design transiemt.

As a more direct comparisce, the tzansient event identified ras amalyzed for the reactor vessal shell and compazed to the design transient. The results were that the zange in thermal radiai gradient stress for the actual tzansient was 5400 psi, and the range of thermal radial gradient stress for the design transient was 6600 psi. This corparison would be zepresencative of other thicknesses throughout the reactor coolant system pressure boundary.

The conclusions of the analysis are:
(1) Stresses in the pressure boundary did not exceed those already calculated on a design basis. This is verified by the actual pressure not exceeding 2500 psig and the thermal transient being less severe than a combination of design transients for a rapid depressurization and a reactor trip.
(2) Fatigue life of the ractor coolant components is not affected if one cycle of the reactor trip design transient and two cycles of a rapid depressurization design teansient are considered to be used for this transient. Two eycles of the rapid depressurization transient are necessary because the IPI system was actuated trice during the event and two cycles are necessary to reflec the theral trassient in the high pressure injection nozzie.

The effect of the entire event on the fatigue life of the steam generators can be accounted for by using one cycle of the design transient Sor rapid depressurizztion and one cycle of the design transient for loss of feedwater to one generator.
(3) The effect of the change in water level on the pressurizer has a very minor effect on the pressurizez shell stzesses. The pressurizer has been proviously analyzed for the thermal effect of water-steam interface, and the change of level does not affect that malysis.
(4) No significant thermal shock should occur to the heaters, because the heaters were deactuvated due to a low water level sensor and not reactivazed until the level zecovared.
(5) No dynamic effects were caused by the zapid pressure decrease. No spectific analysis yas cone, but a dyamic =esponsa of the shells would zequire a large pressure change in the order of milliseconds, and the actual change was on the scale of zinutas.

The reduced Eeedwatez 51 ow to stam genezator No. 2 was not sufficient to maintain a warar level during the Eizst Eive minutes of the event and this steam generator boiled dzy. The primany concera with a. dry gemerator is the tube to shell tamperature difference. In this event a water level was escabiished before the system cooldown was started, and acceptable tube to shell temperature differences were aaiztaized. This condition is similar to the loss of feedwater design transient, followed by restart of a dry pressurized generator usiag the auxiliary feedwater systam.

The burst rupture disc on the pressurizer quench tank resuleed in a stream of steam and water impinging on steam generator No. 2. This stream removed a section of insulation 10^{\prime} higi and 20° wide from the lower shell of the generator and impinged directiy on the generator shell. The temperature of the impinging water was assumed to be 212° F. A conservative avaluation of the zapid temperature change in this local region of the vessel sheli was performed. The results of this evaluation indicate that this one event used less than $1 z$ of the total Eatigue life of the vessel. The predicted fatigue usage factor for the 40 -year design 1ife of the vessel in this area was less than 0.10 . This jet impingement did not significantiy reduce the fatigue life of the steam generazor.

The reactor coolant pumps (RC?) experienced the following concintions during the Septamber 24 transient.

All four RC.pumps were subjected to the Eollowing:

Br-mp 1-1:

7:04
7:45
36:07

36:30
1:12:55
1:17:07
?ump tzipped
Shatt stopped
About one चinure of jow seal infectioc Elvw
(near 2 gpm)
Elow i=ibalance sEamred seal infection
Seal vetura valve shut
Stancpipe level higi
Standpife Ievel nor=al

| ?ump 2-2: $\begin{array}{r} 4: 20 \\ 7: 00 \\ 36: 07 \\ 36: 22 \end{array}$ | |
| :---: | :---: |
| Checkout of t whether =aint the transiezt | tor coolant funos was initiated to assess
 -nd/or repait yas required as a result of |
| Operational c cant damage $:$ The Efirst se: operationa: in Mode 3. duration not paramerers $\mathbf{z e}$. | -a reçuirei . . demonstrate that no sigaifi--red to the : - o beariags, shaft and seals. bests were performed in Mode 5 tue to
 \because 3. Late: : enational chacks were performed
 is so be . :seed individually for a :ed ten (10) Ginutes, providing all defined is es =c. -i limits. |
| The opezation. | ance was as ollows: |
| 1. Lift pump: Torque vi vas p: วvi housi=3 | :ied and shafts rotated by hand. oot to $=\quad$ 200 ft-lbs. A sterhoscope Nis was sa stactorily completed on $10 / 3 / 77$). |
| 2. Mode 5 ses | -. 22 psis . |
| 2.1 Intre. | - tc: Requize. |
| a. τ | ; 'ower cav jressures - all £our pums. |
| b. 3 | .-A-nneal vibr . 22 probes - all ¢our pums. |
| c. 5 | Fressure or s ction pressure. |
| d. ∇, | .. 2 e on - -p. |
| e. S : | , ,kage ... $\backslash 1$ ecsed and measured during |
| 2.2 Compt | - |
| Print every | e recial su- v :rend for running kc ? s. |
| 2.3 The | a) 1 Lニ䒑ts \%e. t to be exseaded: |
| d | :azion - : \% pezik to peak. |

b. Total stancipipe leakage (upper seal teakage) plus seal return should not exceed 0.6 gpw. If, during the test this lizit is exceeded, the possibility exists of an open seal. In an case will total seal leakage be allowed to exceed 1.5 gpm . If this limit is excseded, =aintenance will be required before further pump operation.
c. All other normal plant ifaits and precautions prevail.
2.4 Sequence of Operation:
a. Secure stancipipe Elush.
b. Estaolish seal injection in accoriance *ith plant operating procedure.
e. Measure and zecord stancipipe leakace and retura flow. Confin that total leakage limits are net exceeded.
d. Assure cormunication between control room and personel stationed at RCP standpipe leakage dzain line.
e. Countdown from 10 to 0

Start scrip chart recorders at high speed; Start Reactor Coolant ?ump 2-2 in accordance with plant operating procedure. After approximately 11 sec., reduce stzip chart speed.
6. Kun pump for =wo (2) Mizutes unless any above límits are exceeded.
g. Data assessment by $3 \delta{ }^{2}$ and 3yron-Jackson representatives.
h. Following assessment of data, pump aay be run for an addftional Eive (5) =inutes so allow for venting procedure requizements.

1. Follow above seq̣uence on 2-1, 1-2 and 1-1.
f. Assessment of this data will deternine whether any maintenance is requitred before high pressure operation is allowed.
2. Sinilar tests vere zepeated with system pressura as greatar than 1300 psiz before a Eimal deremination on the condition of the pumps zas =ade.
A. four reactor coolant pumps were tun on 10/5/77 with she following results:

RC? 2-2 10/5/77 Run (2 miz.):

Steam pressure 225 psig 3rd Seai Ieakage
2nd Seal cavity pressure 165 psig 3rd Seal cavity pressure 123.9 psiz Eorizontal vibracion $5-7.5$ mils ∇ ertical vibration .25 =ils

AEter the 2-ainute \quad m, the pump was mn for 10 minutes for systam renting. About 30 seconds before the pump was shutdown, tiere was a step incraase in vertical vibration to 2.5 mils. The pump was tun again on 10/6/77 for 10 minutes to checix out this phenemenon. The vertical vibration was agaia . 25 =its until about 5 seccnds before shutdown, when it inczeased to 2.5 zils. To allow a longer run time, $2-1$ and $2-2$ pumps were Jun together for 10 minutes, ther $2-2$ was run alome for 10 minutes. The vertical vibration stayed at .25 mils for the entire run. This was monizored during pump runs during plant heat up. It should be notad that the step increase in vertical vibration was later assessed to be spurzous instrment noise as a result of a loose connector on an instzument ine. After the comnector was tightened, vertical vibzation zamained less than . 25 mils peak-to-peak amplitude.

RCP 2-1.

Steam pressure 225 psig
2nd Seal cavizy pressure 132 psig
3rd Seal cavity pressure 70 psig Eorizoncal vibration $5-7.5$ mils

3rd Seal leakage pius retura Elow

KCP 1-2
System pressure 225 psig
2nd Seal caviz7 pressure 40.29 psis
3rd Seal leakage 3rd Seal cavity pressura 81.3 psig Eordzeatal vibration $5-7.5=i 1 s$

RC2 1-1

| | e | |
| :---: | :---: | :---: |
| -viry pressure | 17.98 msig plus | | 3rd Seal cavizy pressura 89.27 psig Eorizontal Vibration $5-7.5$ mils

plus seal retura flow <. 4 grm

```
The apparent discrepancy on seal cavizz% pressures on 1-1
and 1-2 was checked on 10/6/77 by installing pressure gauges
at the pressure E=ansmitzers.. The gauges reac as follows:
1-1:
\begin{tabular}{ll} 
2nd Seal Cavicy Pressure & - 184 psig \\
3rd Seal Cavisy ?ressure & - 111 psig
\end{tabular}
1-2:
    2nd Seal Cavis7 ?-essure - 184 psig
    3rd Saal Caviry ?ressure
    - 112 psig
Tae readings indicate the seals are staging properly.
3ased on the above perfomance, 3ảw saw =0 concern which would
justify maintenance at the time.
By 10/13/77 all four reactor coolant pumps had been rum at a
system pressure greater than 1300 psig.
RC Pumps 2-1 and 2-2 have continued to Fun from the fmitial
cold pump starts. Below is a typical line of dava from each
pump.
RC? 2-1
\begin{tabular}{|c|c|}
\hline System ?r & - 1650 psi \\
\hline 2nd Seal Cavizy ?ressure & 1034 \\
\hline 3rd Seal Cavity Pressure & 500 \\
\hline Eorizontal Vibration & 3 mt \\
\hline
\end{tabular}
RCP 2-2
System ?ressure - 1650 psig
2nd Seal Cavisy ?ressure - 1075 psi3
3rd Seal Caviry ?ressure - 588 psig
#orizontal Vibzation - 3.5 mils
3CP 1-1
Steam Pressure - 1650 psig
2ad Seal Cavity ?zessure - 1056 psig
3rd Seal Cavisy ?zessure - 540 psig
#orizontal \nablaibration - 4 #fls
RC? 1-2
\begin{tabular}{|c|c|}
\hline ? 2 essura & 1530 psig \\
\hline 2nd Seal Cavizy ?ressure & 920 psiz \\
\hline 3rd Seal Cavizy ? \({ }^{\text {a }}\)-essuze & 520 2sig \\
\hline Eorizontal Vi゙vaston & 3 =ils \\
\hline
\end{tabular}
```

3ased on the above data, Beiw felt that all four pups were in good operating condition and zequize aothing zore at this time than periodic monitoring.

3 Wiin has reviewed the results of the operational checks and has concluded that no detectable damage has oceurted to the pump components. 3 ain considers the zeaceor coolant pumps to be serviceable for sustained full operational condieions with no requirements for maiatenance.

A zore detailed analysis was completed to assess the core theral conditions during the September 24 depressurizazion event at Davis-Besse Unit 1 . Core condisions were analyzed to (1) deternine if steam was produced in the core, (2) determine the maximu internal fuel rod pressure dusing the transient, and (3) deteraine if maximum lift force exceeded the li=1:.

Figure 4-5 shows transient thermal conciticas as monitored by the reactimeter. The system pressure is measured at the pressure tap, which is approximately 65 feet above the top of the core. The RC pressure at the to0 of the are is anomanin
 threcoverable and elevation gressure losses. As shown in Figture 4-6, the predicted cere coolant semperatuse is slightiy higher than the ginizum saturation temperature (based upon measured pressure); however, there is some uncertainty in both the =easurement and the prediction. Therefore, it is Jossible that sore vapor bubble formation (stean ouboles in vatez) could have occurred cining ene care. An examination of the reacziveser tark (iigure 4-7) indicazes that the RCS press:re level was near the saturation pressure for fess ehan one houn and that during this time period the pressura oscillated with a variation of ± 50 psi. Therefore, the maximum time period during which the core could have been subjected to bubbly flow was less than one hous. If bubbles were fermed duriag this period, the formation would be in the liquid as well as on the surface, as opposad to formation from a hot surfiace. Toth the temperatures, ti=e duration, and type of formation, no stgntificant efifect on the components would be predistad.

Prior to the depressurization event the vascear had seen operating at 157 power for approximately one zeok. imediately prior to reactor trip the power level was 97 of satad power. The core burnup was 1 ErPD, therefore $n 0$ significant fission gas production had oceurrad and none was released. During the 60-minute time period in which the incicatad aCS pressura was estimated to vary from 900 to 1000 psia at the 500 of the core, the average coolant temperature vas less than $540^{\circ} \equiv$ and $=0$ significant heat generation occurred in the fuel. da inizial
evaluation had predicsed tenstle stresses in the cladding based upon a marinu pressure differential across the cladding of 200 to 300 psi. This evaluation had been based upon a 3CL IARY analysis with an arbitrary safety facter added to ensure that actual condteions would be bounded by the pradiceion. A mere recent analysis, again using tart, has resulted in a predicted maxizum incernal fuel rod pressure of 1000 psia. This analysis considered as-built fuel properzies and hot, neaz zero power conditions at a coolant avezage temperature of $540^{\circ} \mathrm{F}$. On the basis of this analysis it is concluded that the fuel rod cladding was not subjected to any s-gnificant lavel of tensile stress during the subject depressurization event.

3ecause the cladding was not subjected to a large, long tarz tensile stzess, no significant long tern effec:s on the cladding resulted. The tenstle stresses which could have occurred would have little effect on the cladding due to the small stress level and the short duration of the tensila stress.

Assuming a coolant temperature of 537 F and $150 \mathrm{X} 10^{6} \mathrm{lb} / \mathrm{min}$ system flow (pe: Fifures $4-8$ and $4-9$), the net lift force will be less than 375 lb . The maximum allowable lift force is 472 lb . Therefore, we conclude that fuel assembly lift-off did not oceur.

$12 \cdot 0 \%$

FIGURE 4-4

33: : :

5. EOHTPME:T DAMACE. CEEATC? AND REPAIR
A. Entzy and Cleanup

Prior te entaring contaiment, air samples were coliected at aES030 (containment air zonisor) sor zadioactive zoble gases, particulates, focines, and tritiim; so airborne radioactive matarials were detected. When contai=ment was first entered at 0550 on September 25,1977 , to deteraine the levels of contamiation, dizt was found on the waikways on elevation 565' and 585' in the eass side of containment, and on 545' elevation the flocr was completely covered with dirt which was washed down during the pertod when steam was being reledsed from the quench tank and condensing on containment structures. The dirt was sentaminated with activation products of $C=-51$, $0-187, \operatorname{Co}-58,2 \pi-97$, and Ma-24 which were present in the reactor coolant system, Smears of the dirt indicazed levels up to $40,000 \mathrm{dpm} / 100 \mathrm{~cm}^{2}$.

Decontamination was accomplished by shoveling gross amounts of dirt into drums, and vacuum sweepiag the remainder. The level of contamination in walinays was reduced to meet clean area limits. Air samples collected duzing the decentamination work verified that consamination did not become airborne.

The outer surface of saeam generator $1-2$ was inspected in the region whate the metal reflective insulation was blown off. 3otic ; 3 were obsarved on the outer surfiace of stean generz --i; however, thase nizute quantities do not present any concerz since the raperature of these suzfaces are on the order of $500^{\circ} \mathrm{E}$.
3. Equifpent Damage

The pressurizer quench tank zupture dise ruptured from high pressure in the quench tank. The steam crev the pressurizer quench tank vent damaged metal seflective insulation on the lower part of No. 2 sseam generator. A ventilating duce above the quench tank was bent, and a ventilation louver had to be replaced. Several pressurizer heaser cables wera dampered from the woisture, causing low insulation resistance, and had to be dried out. Four cables were also found shozed to ground, but it is not known if the failures vere a diract result of the incident. Two light fistures and a combustion detector sensor in the quench tank araa uere also damaged.

Nventy-three (23) panels of reElec:ive insulation were deEor=ed, loosened or derached Ezom the lower exterior of the staam generator. The parels, Ezbrteazed fron thin stainless steel sheers with aiz spaces betwean them, are approxi=ately $36^{\prime \prime} \times 30^{\prime \prime} \times 4^{\prime \prime}$.

The panels are formed to the contour of the steam gemerator and attached to the exterior on a frame to support the weight. Buckles and clips fisten the panels tegether. ?anels blow frow the steam generator fell to the EIoor, piping and ventilation duct in the impediate Vicinisy. Some panels were ropaired and reused; ochers had to be zeplaced. The damaged panels were incact but were bent.

C. Repaizs

All damaged equipment was repaired or replaced. Instrumentation and equuppent in the area was checked or tested for possible damage from the steam and water.

Trensy-three (23) panels of raflective insulation were zaplaced. The ocher effected panels were stzaightened, repositioned and reinstalled on the staam generator.

A11 essential and autamatically-contzolied pressuzizez heatezs were raturaed to service. The wet prassurizer heatez cables were baked, heated or aiz dried to rastere iasulation zesistance to vendor recommended values. Only two of the four cables shorted to ground were replaced with spares. The other two are on order.

A nez rupture disc was installed on the pressurizez quench tank.
The defor=ed ventilation duct was straightened and a sev icuver was installed in the duct.

The damaged Iight Efxtuze and coss stion detector we: raplaced.

A. SFRCS

The Davis-Besse Instrument and Control (IaC) Group has tested logic channels 2 and 4 (channel 2) of the SFRCS, siace it was 1ndicated that the closure of SP7A (start-up feedwater valves) Ied to the sequence of events on 9/24/77. Logic channels 2 and 4 are the only SERCS channels that actuate SP7A.

On 9/26/77, Maintenance Work Order (MNO) IC-622-77 was tritten to check the main steam line pressure switehes ?S 3687A through PS 3687日. A calibration check aas completed on 9/27/77. A11 pressure switches actuated within ± 2 psig of the 612 psig setpoints. ISC personel had nothing to report from the Fisual inspection.

On 9/27/77, WiO IC-636-77 was written to fivestigate the remaining inputs to the SFRCS. ?ressure differential switches 2586C, 2586D, 2685A and 26853 vere tested par ST 5031.14, Section 6.3. The secpoint of the pressure differential switches testec zanged from 176 psig to 187 psig, the satpoint being 177 ± 20 psig.

The steam generator level inputs to the SFRCS were tested per ST 5031.14, Sec:ion 6.4. Again, logic channels 2 and 4 zere tested. All bistables tripped at the destred setpoints. The desired trip setting is $.509 \pm .013$ voles and the range of voltages for the bistables tested were from .5054 volts so . 509 volts. . In addition, the level transmiteer calibration was checked per ST 5031.16. TAC tested for amy nonlinearities besween tzansmitzer input and output, espectain7 at the lower :anges. LI-SP9A.8, LI-SP9A9, LI-S?936, and LTSP937 were well within the acceptable limits as specified by ST 5031.16 and no =on-1inearities wera obsaryed.

The faputs to the SFRCS Erom the loss of 4 reactor coolant pumps were zot tested sfnce this imput actuates auxiliang feedwater only. This input does zet affect the feedwater valves or majn steam isolatien valves.

In addition to testing all the imput devices, ISC checked C5792. This is the cabinet for logic chamnels 2 and 4. A11 inputs and outpues zere mozeal for existimg plant conditions. ISC checked zechanical connections on the input and output buffers, and induced zechanical vibration on the input buffezs, output buffers, =ain logic panels, and output zelays rithout any system effect. The $=a i n$ logic panels were heated slightiy with a heat lamp and slowiy cooled to check for tienal rasiations, but this had to effect on the systam.

On September 29, IAC : following are the res.:

1. Screws on 2337 (y is an input to th.
2. In CS721 (Feedwa: Terminal 17 (left
to thoroughly tig to logic channel:
3. In C5721, 217327 Ternimal 3oard) h steam pressure st

Terainal 18 (:igt a turn. This is Logic channel j .. slighty. This 1

On Septamber 30, aIS 4: These are stacked swit! but the entrize paciaje being leose would p: 2bs jumpers ware installed valve closure durimz 5 :

On Ocsober 6, 1977, she out. IEC was specifiza. caused an erzoneous cri (typical) AC noise. $D C$

On Oetober 3, 1977, ei§ the systez for continue the attached sheers. T pressure diff:rential a: Since the SFRCS was blo trips *ere initianead anc reading. These pressurt SERCS monthly, ST 5031. recorders has indicated

```
d :h'{- sheol: of SFRCS ter=inations. The
:hat check:
```

```
    blue) were :ightened 1/2 of a tuza. This
    un lo vol: & zic supply for CS792.
    \) one loose ecrew was found on 217311
( T2). This screw required liszle movement
"his is a main steam pressure switch input
    Ge scraws. -arminal 17 (right side of
    * tightened | *ull tum. This is a main
    ;ut to logic si:amel }3
    -ermi=al % -4) had to be tightened 1/2
une differential switch input to the SFaCS.
    *-A J:. - .2) had to be tightened
    .. sieam press_ e switch input to the SFRCS.
```

 a. C were tify sned to their mounting.
 HEch : themselves were secure,
 " the - -ing. This switch unit
 a affa syetem operation. Temporary
 ont an inac reant main staam isolation
 :Ackout.

- -. t:ator 1. . instrumentation was checked
\therefore AK for nc .. spikes that could have
anaiog inf: and outpues only had a 20 NT
= nreazed $1 a^{\prime \prime}$.
...--el chart orders were patehed into
......土ing. Th. ...vorders were conmected per
them was thex $\rightarrow+c k e d$ out for operabilisy.
* aerator level trips were tested.
.. low s. .esssure, pressure switch
:o thr : vis veriEied by a volmeter
",-uts $={ }^{-\quad \text {. }}$. $u r$ ther tested during the
...ui 6.2, .. dter date. Cornecsing tie
iest on systu: verabilizy.

LOGIC CHALNEL 1 SERCS TEST CONTECTIONS

| | Comnect comucy to | | CONMECT STG:iaL LEAD 0 | | 3ECORDER | CHANEL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPVT | 3UFEER | TES: POET | BUETER | TEST POINT | | |
| ${ }^{2}$ | 1-1 | 294 | 1-1 | TP5 | 9.1 .48 | 1 |
| ${ }^{2} 536893$ | 2-1 | T22 | 1-1 | T27 | 9.1 .48 | 2 |
| '53639C | 2-2 | TP2 | 1-1 | 729 | 9.1 .46 | 9 |
| ${ }^{2} 536890$ | 1-2 | TP4 | 1-2 | TP5 | 9.1 .48 | 4 |
| '22686 ${ }^{\text {d }}$ | 1-3 | 224 | 1-3 | TP7 | - 9.1 .48 | 5 |
| 'D2s3sc | 2-3 | TP2 | 1-3 | 129 | 9.1 .48 | 6 |
| . 2 \$7938 | 1-4 | T24 | 1-4 | TP5 | 9.1 .46 | 7 |
| . x SP9A6 | 2-4 | TP2 | 1-4 | 2P7 | 9.1 .46 | 8 |
| 5 จ. ? 5 \%er jupply Outpu: | 1-5 | TP2 | 1-5 | 7210 | 9.1 .48 | 3 |
| '53: | 2-7 | 122 | 2-7 | TP10 | 9.1 .46 | 10 |
| '6. | 2-6 | TP2 | 2-7 | TP16 | 9.1 .46 | 11 |
| . 386 | 1-6 | T22 | 1-6 | 3210 | 9.1 .49 | 12 |

LOGIC CRANEL 2 SRRCS TES: COMNECTEOMS

| COMNECR CCMOS to | | | CONNECL SIGKAL LENT TO | | SECORDER | CSANSE: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S3 A | 1-1 | TP4 | 1-1 | T25 | 9.1 .44 | 1 |
| \$36873 | 2-1 | T22 | 1-1 | 127 | 9.1 .44 | 2 |
| S36876 | 2-2 | T23 | 1-1 | T29 | 9.1 .41 | 9 |
| 536870 | 1-2 | TP4 | 1-2 | 725 | 9.1 .44 | 4 |
| 2S2535A | 1-3 | 724 | 1-3 | 727 | 9.1 .44 | 5 |
| DS2686C | 2-3 | TP2 | 1-3 | TP9 | 9.1 .44 | 6 |
| = 59936 | 1-4 | 7P4 | $1-4$ | 225 | 9.1 .41 | 7 |
| $=$ SP9A8 | 2-4 | T22 | $1-4$ | 727 | 9.1 .41 | 8 |
| 5 จ. Power upply Output | 1-5 | 722 | 1-5 | T210 | 9.1 .44 | 3 |
| 6^{-9} | 2-7 | TP2 | 2-7 | T210 | 9.1 .41 | 10 |
| 672 | 2-6 | T?2 | 2-7 | 7P16 | 9.1 .41 | 11 |
| . 396 | 1-6 | T22 | 1-6 | 2910 | 9.1 .41 | 12 |

LOGIC CHANE 3 SFRCS TEST CORAECO:CNS

| YPG: | CON2 | $\begin{aligned} & \text { COMACN TO } \\ & \text { TEST ?OLNT } \end{aligned}$ | | TEST ? OTM | RECORDER | CRANE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S. 汭 | 1-10 | T24 | 1-10 | 725 | 9.1 .47 | 13 |
| S3689\% | 2-10 | 722 | 1-10 | 727 | 9.1 .47 | 14 |
| S3689G | 2-11 | TP2 | 1-10 | TP9 | 9.1 .45 | 21 |
| S3689\% | 1-11 | T24 | 1-11 | TP5 | 9.1 .47 | 16 |
| DS268663 | 1-12 | 724 | 1-12 | 727 | 9.1.47 | 17 |
| DS2685D | 2-12 | T22 | 1-12 | 2P9 | 9.1 .47 | 18 |
| - 57939 | 1-14 | 724 | 1-13 | T25 | 9.1 .45 | 19 |
| = SP9A7 | 2-13 | 132 | 1-13 | 227 | 9.1 .45 | 20 |
| 5 จ. ? ?ษе uppl7 Ou:put | 1-14 | 122 | 1-14 | T210 | 9.1 .47 | 15 |
| 60° | 2-16 | 722 | 2-16 | T210 | 9.1 .45 | 22 |
| 671 | 2-16 | TP2 | 2-15 | 7216 | 9.1 .45 | 23 |
| . 386 | 1-15 | 722 | 1-15 | TP10 | 9.1 .45 | 24 |

LOGIC CHANBEL 4 SERCS TEST CONRECTOONS

| WPU | consect comen 70 | | COMNEGT SICMAL LE:D 0 | | RECORDER | CEAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 3UFFER | TEST POLIE | 3UFEE2 | TEST ? 0 Int | | |
| ? $5.7 E$ | 1-10 | T24 | 1-10 | TP5 | 9.1 .43 | 13 |
| ? 53637% | 2-10 | 122 | 1-10 | 127 | 9.1 .43 | 14 |
| ? 536876 | 2-11 | 122 | 1-10 | 729 | 060404 | 21 |
| ? 536873 | 1-11 | 724 | 1-11 | TP5 | 9.1 .43 | 16 |
| ? 2526353 | 1-12 | TP4 | 1-12 | TP7 | 9.1 .43 | 17 |
| ? 2 S26860 | 2-12 | 222 | 1-12 | 729 | 9.1 .43 | 18 |
| 二 52937 | 1-13 | TP4 | 1-13 | 735 | 060404 | 19 |
| IT S2949 | 2-13 | TP2 | 1-13 | P27 | 060404 | 20 |
| 15 จ. Powe: Supply Ou:pue | 1-14 | 122 | 1-14 | T210 | 9.1 .43 | 15 |
| ? $\cdot 9$ | 2-16 | 222 | 2-16 | 2310 | 060404 | 22 |
| ? 672 | 2-15 | TP2 | 2-16 | 2P16 | 060404 | 23 |
| -396 | 1-15 | 232 | 1-15 | 2910 | 060404 | 24 |

```
On 10/23/77, the SERCS again tzipped Ezom a spuzious signal. The Startup
Feedwater Valve on steam generator No. 2 went closed. This ul:imately
resulzed in a valid Sceam Generator low level t=ip input to the SFRCS
and the system functioned as intended.
This was the first spurious trip zeceived sizce the chazt recorders had been connected to the SERCS. All information on the charts could be explained except for a problem on SFRCS logic Channel 4 computer alarn, P680. This particular chamel on the zecorder was interaizten=ly failing, giving spurious trip indications. Of the 48 total chart zecorder channels, this was the only one that had failed.
IAC Technicians "checked out" the bad recorder channel for operation. They found that the channel was sensitive to any mechanical vibrazion, it did respond to a given input, and that the pens were sifghtly misaligned. Erom all of the information gathered 15 was concluded that the indicardor on the bad recorder channel was an input from the SERCS.
The logic point under question then was the computer point ("?680" Low Main Staam Pressure Tzip). Examining orher charts indicated no change in the input to SFKCS logic Channel 4. Thus it was conciuded the problem was internal to the system. In examining the logic control diagram, it was detemined 3 IC "chips", 2 input buffers and associated wiring could bave caused the fault. ISC personnel replaced all of the above equipment, with the erception of the interconnecting wiring. The wiring and buffer conmections were visually inspected, and no Éaulzs weze observed. A fumctional legic sest was performed and the systam responded satisfactorily.
Power Engineering had contacted Consolidated Controls Corporation, the manufacturer, and their representative was on site the morzing of 10/25/77. The manufacturar also recomended changing the same equipeent that TECo I\&C personnel had changed.
```

The manufacturer performed a response time check on both input bufzers in question. The response time test showed no defects. IECo İC personnel contimued to monitor one of the two input buffers in a test set. Failure of one input buffer did occur on the test set, which indicates that this was the cause of the balt ten?.

The manufacturaz's zepresentative also tock a Iook at the logic syszez تith an oscilloscope. Ze was looking for any erzazic, noisy poimes, but everything tasted appeared to be trouble fzee. The two input buffers Will remain with IECo for further cest and evaluation, while the 3 IC chips were returned to the manufacturez for evaiuation.

The mannfiac:urez's Eepresantaztve on $10 / 27 / 77$ compiled a list of addiEfonal poiats they want monitored. TECo ISC personmel ama assistiag so connect up the zecordezs.

```
Afzez the 10/23/77 ev?n
single }120\mathrm{ VAC or }12
the one-ha{z trip on :
This study zevealed th.
have caused this probl:
The followiag changes:. -ad to " lesign of the SERCS siace
the September 24, 1977
    1. Anmunciatoz :
        presently ex:
    a. Sti . :or Iave!\cdots&/Ful1 I=-p for both Channels
            1 :
            b. Ma &ir DP #a:f,.iII Irip for both Channeis I
                &
            c. Sos -tor Cc. :ump I=1p
    2. A aew annunc:
        SFRCS Eul1 T:
    3. The resetti=%
        enough to alI
        *:d% 'ia: als2 :=nducEed to see if any
        HlE fnduced veltage df? could have caused
    's aut :IOSc, the SG-2 SU contzol valve.
    #gle zi!!5 :% these power supplies could
--:
    Gave been amiet where computer alams
    -L evmputer a .~~= has been added for a
        *-SS reli: :Iarg will be delayed long
        こここ :% --N she evenc.
These changes wil1 %u: = % zocn as poss_:1e.
```


3. Auxiliant Feodoumo Turbine Govemor

Before describing the =odifications made to the auriliary feedpump turbine (AFPT) govemor, the governor action which resultad in the binding will be described. Figure $6-1$ is a drawing of the woodward Guvemor PG-FI speed setting mechanise, showing the governor in the bound up condition. The sequence of events ereating this cordition is as follows:

1. When the 3odine gotor was at a mini=um speed setting, the speed setting shaft nut was fully to the left. The link raised the collar, conzacting the base speed setting tut, raising is and the "T"-bar to an idle condition. The pivor bearing vould be contacting the floating lever.
2. Because the govemor is not zotating, the speed setzing servo remains in a fized position at idie (as shown). It cannot move until ofl pressure is available.
3. The thumbscrew is contacting the low speed stop pi=.
4. As the 3odine speed setting motor is zotared toward high speed, the following events occur:

4.1 The speed setting shafz nut goves towards the high speed stop pin.

4.2* The link allows the collaz to move downiard.
4.3 The collar moving downard, allows the base speed setting aut and "?"-לar assambly to move downward.
4.4 The floating lever is fixed at the speed setting servo piston end.
4.5 The low speed stop pin end of the link pushes down
on the thumbscrew, which pushes down on the speed
setting pilot valite uneti the dashpor land cantacts
che dashpor plag.
4.6 3ecause the floating lever is now fired on both eacs is stops yoving.
4.7 The ""n"-baz continues downazd, follewing the coliaz. The pivot bearing leaves the fleating lever. The "T"-bar continues dewnard until the retaizer screw contaces the Eloazing Iever.
4.3 The collaz separatas tron the base speed setzing tue and continues dcomari until the soop pin in tie speed shaft consacts the stop pin in the speec se:zing shaz= zut.

> 4.9 3ecause the Jocine motor continues to rotate the manual speed setzing knob, slifping the clutch, a torque is placed on the speed setting shafz nut, ilnik and collaz. this torque against the "N"-bar causes fziction that locks the "m"-bar in place.
5. When the turbine is started, the speed setting servo piston noves dowward with increasiag oil flow, faczeasing the speed seting of the govemor. Then the Eloating level contacts the pivot bearing, the speed setting pilot valve begins to raise.
6. Then the pilot valve control land covers the netering port, the speed setting servo piston stops zoving.
7. Because the torque is still present on the speed setting shaft, the "r"-bar is bound up, and the governor is at 2200-2600 =рЕ.
8. When the Bodine speed setting motor is backed off iron the stop, the "r"-baz Ealls down to its high speed stop, dzopping the pivot bearing. The pilot valve moves downward, increasi=g oil flow to the speed seteing servo until the high speed condizion is zeached.
9. Any cianges in roeed setting shaft posizion are now nomaliy followed by the "w"-bar, pivor bearing, pilot valve, and speed setting sezvo pistor.

When the AFFT govermors arzived at the *oo jarard Governor Compary factory, one of the governors was placed a the test stand. hhile observing the operation of the speed set:ing linkage, it beca=e evident that a simple link fzom the spesd setting pilot valve (plunger) to the Eloating lever would allow removal of the bellows, coupling spring, low speed pin, "C" link and dashpor piug in the speed setting pilot valve sleeve (see Figure 2). This would allow the speed setting pilot valve to overtzavel when the zotor was set in a high speed condition with the speed serzing semo at the \#inimum posizion (see Eizure 6-3).

The sequized parts were manufactured, the unneeded parts removed and the govermors were seassembied. The goveraors were sested at the Woodward factory and the tests confirmed that the modifications did zpmove all possibility of the undesirad binding of the govenors. Surveillance tasting at the station has also confizmed that the awciliaz7 Eeedpump turbine governors function proper1y.

FEN 41137

C．？messur：～

> | Oa Septe: |
| :--- |
| The mati |
| and main |
| stuck in |
| stem vas |
| guide art |
| of ehe fe |
| October |
| a pressu: |
| tasting t |
| had to br |

The val： it was： （3／8＂vs between t． （．0005＂v． opened up adjustzen suceessf： 1977，at one ti：：e

D．Relav／Eas：
Because of relief ral cherking a cabinets relays anc to determ on plant 6 found mis： affected b： aissing fu control，a and heatez tanik leve： cooling va

Netther t： the static： indicates persons a：

```
#%_彐e\{ef Valve
    197%. :he ...'`e was comple:ely disassembled.
*s found so be clean. The seats on the rozale
    Sc vere lazr d. The pilor valve was found
    Oos "inn it was thought that the pilot
- -he -i'ot e--न wes replaced and the nozzle
-1eaned up to ronove the =arks from the galling
-Tterial. T-s "alve was reasse=bled and on
    the "alve. - stroked six (6) times with
-osure of apy.oximately 600 psi. During this
    "alve agn". -tuck and the isolation valve
    \therefore: disasse=:!: d and under closer observation
        \ie p\iot .. ..e ste= was moving too far
asized). It was also found that the clearances
            sa and zzle g:uide were too small
    * "H⿱亠䒑|um 0: .001"). The clearances ware
    4 ftroke of he pilot was shortaned by
        ncid posit: (. The valve was cested again
        - ing := ive (12) ti=es or Oczober 15,
        17 pres? of arproxi=acely 900 psi and
        - nf 2" - - - 
* Checks
- ..-..g velay . the pressurizer electromatic
    .-i- circuit. . extansive seview progran of
    : :Elay cȧ: is was perforned. All relay
        ,=. vere i. ':ted for gissing plug-in
3. A desailed aview of drawings was made
\therefore-mice of a - gissing frem and its effect
...tu. The or, ...ifional relay and ten fuses
qre replaced. 'tare were so essential functions
        Gonal : is relay and fuses. The
        -ay wer= generator iso phase bus
        İニzこさ: :\=y cabinets powe: supply
        \cdotsrits; Eeed pump turbine lube 0il
        Na; and 1: F coolant pump component
:ura valve er:.. il.
```


2. Other Actions

Foilowing this incident a training progzan was developed and presented. This program was approxizately eight (3) hours of instruction and discussion covering the events of this incident, including a detailed coverage of the transient and the actions taken by the operators, and a refresher training session covering the operazion of the steam and Eeedwater rupture control system.

The training zas presented to all in the operating shift crews, the management and staff level engineers and the QA/QC staff.

7. Exar3ITs

d. Event Chrenology
3. Event Variables Plots
C. SRRCS Rescription
D. 10 CFR Part 21 Let:ar on Auxiliary Feedpum Zurbine Govemor
E. \#istorical Log

| 21:32:20 | Startup Feecwater Valve to OTS 42 went closed on a "ly :rip" of the Steam and Feudwater Iuptura Control System (SFRCS). |
| :---: | :---: |
| 21:35:18 | Received a craplete SERCS trip due to low level in OTSG th. |
| 21:35:23 | |
| $\begin{array}{r} 21: 35: 25- \\ 49 \end{array}$ | |
| 21:36:04 | Auxiliary Feed Pump (AFP) \$1 was feeding \$1 Steam Generator (SG). AF? 42 did not core up to tull speed (3600 rpa), and the discharge pressure zas not sufficient to feed 72 SG . |
| 21:36:07 | Operator tripped the reactor. |
| 21:37:17 | Safery Features Actuation System Incident Lavels 1 and 2 were fnitiated due to zeaczoz coolant system pressure less than 1500 pst. |
| 21:37:33 | |
| 21:37:49 | EPI Pump $1-1$ zas on and had nernal flow. |
| 21:38:13 | Re-astablished Reactor Coolant Yakeup Slow. |
| 21:40:22 | Consafnment Yormal Sump ?ump came on indicating the Quench Tanik Ruptuze Disk had blown. |
| 21:40:36 | aPI Ru\#ps were shusdown. |
| 21:43:16 | Auxiliary 3otler Systerys started and at noral condizions. |
| 21:43:41 | Tripped Reactor Coolant Pumps (RC?'s) 1-1 and 2-2. |
| 21:44:05 | Re-establishad Reactor Coolant Ietdown flow. |
| 21:49:57 | Put AFP 42 in hand and zan it up to speed (3600 Fpa) and the= lorezed the speed. |
| 21:58:00 | |
| 22:15:22 | Started second Reactor Coolant Makeup ?ump. |
| 22:22:57 | Scarzed 42 H2T ?ump. |
| 22:27:24 | 3roughe f2 Main Feed ?ump back on wish duxilinsy Boilar svea=. |
| 22:27:44 | Shusdown in apt ?ump. |
| 22:33:23 | Shut down il Reaceor Coolant Makeup ?ump. |
| 22:43:54 | Stutdown it and t2 diz's. |

1

.

An

C. Sysze= Descuizeson

Steam and Feedrater Ruptrare Conszol Sustem

1. General

The steam and feedwater rupture control systam (SFRCS) is an automatic system designed to protect against the following incidents:
a. Main steam line rupture, either upstream or downstream of main steam isolation valve (MSIV). This condition, if allowed to proceed, could rapidly blow down both steam generators, resulting in a rapid RCS cool down and therefore a rapid reactivity insertion under certain core conditions.
b. Main feedwater line rupture. If on the steam generator side of the feedwater check valve, this is approximately the same aceident as the stean line rupture; on the feedwater side of the feedwater check valive this resules in a cotal loss of feedwater.
c. Loss of all feedwater. This (as well as the above inctdents) could rasule in boiling both steam generators dry. If this happens, there would be no steam available for funning auxiliary feedwatar pumps to :emove decay heat.
d. Loss of 4 zeactor coolant pumps (2CF). This zesults in loss of reactor coclant flow and therefore auxiliary feedwater is geeded to establish reactor ccolant natural cfrculation. flow.

The spacs, upon fadication of conditions a, b and c above will isolate both sceain generators (close the =ain feedwater valves and main stean line valves and tzip the turbine) and saart the auxiliary feedwater system. Auxiliary feedwater is initiated to keep steam available for the auxiliary feed pump tuzbines and to resove decay heat from the zeactor coolant system. Once this is acesmplished, the operator will have tize to begin a cool down in an orderly manner.

2. Desize Criteria

The design criteria for the STRCS and the auxiliary feedwater systam are as follows:
a. The systea zust perforn its safery function after a singie active failure has occurred. This means that the single failure of any power supply, pump, Eurbine, fnstrument or contzol system logic channel will not prevent the system frow razoving decay hest fzom the zactor coolant system.
b. A =3in stean line braak upstream of the MS. 7 or a nain Eeecwater break downstzean of the main feecwaser iscla:Eion valve will disabil one stear generator. Af:er this evert both auriliary feed pumps and surbines vill be alizned to the vamaining intac: searr generazor. This =omaining steam generator has aceçuata capacizy $=0$ re=ove the decay that froe the reactor coolant sys:ax.
3. Functional Descriation (Refer to Enciosures 1 and 2)

The SFRCS is divided for redundancy, diversizy, and testabilisy inco four logic chammels. Logic chamels 1 and 3 form channel 1 , and logic channels 2 and 4 form channel 2. In one cabinet one logic channel has an AC power supply, the other a DC supply:

Logic
Chanmel

| binet | Power Supgiv |
| :---: | :---: |
| C5762A | Y1 (120 V AC) |
| CS792 | Y2 (120V AC) |
| C5762A | D1P (125V DC) |
| C5792 | D2? (125 V DC) |

Each logic channel receives tha following inputs which will cause 15 to trip:
a. Six pressure switches, two on each main steam line set at 600 psig decreasing and one on eaci zain s:aam line set at 650 psig decreastag.
b. Two main feedwater pressure differential switcies, one from each main feedwater line (see Enclosura 1 for sensing points) set at 177 psid steam gezerator pressure higher than main feecwater line pressure.
c. Two level transmiteers with bistables, one on each steam generator set at $17^{\prime \prime}$ decreasing level on the startup range.
d. A contact from R2S pump power sensing circuit; contact opens on loss of all four ลC?'s.

The SFRCS cabiners consist basically of an AC and a $D C$ power supply, input buffers, logie zoduies, and output relays. The output relays de-energize so actuate theiz associated equipaent. They also sura out a light on the eabizet witen in the tripped szate.

Each input to SERCS has a test switeh and light so that a trip of that input can be inietated for testing purposes.

The outputs from the SFRCS zre cortacts lrem the output relays. These contacts are in the contrel circuits for the SFRCS actuated equipmene. Yost components require $\# 0$ SERCS logic channels to tifip to actuata. See Enclosure 2 for a listing of actuated eqุuipment.

There is a block feasure associazed with the low stean pressuze trip. To prevent the system frow acsuazing on croldown, each Iogic chanmel has a "3leck" pushoutzon on CS721 and on the SFRCS cabinet. When sceam pressura goes jeiow 550 psiz a block peraissive ifght is zeceived on C5721 aiong Fith anmuactator and computer alaras. When the block turson is jusited, the channel will nov
 on CST21 as well as ameunctavor and semFu:ar alazms. On a heatup the block siznal is automatiesily zanoved when the stean genezator pressuze exseeds 650 psiz.

There is anocher block which is uたilfzed on cooldown. Iz the decay heaz systaz suction valves fzz= the zeaczoz coolant system (2H1. and 12) are open, this block will prevent the opening of the stean inlez valves to the auxiliazy feed pump tuzbines. This prevents tine SF̈RCS Ezou starting the auxiliazy feed pumps when all zeactor coolant pumps aze secured on shutdonn. This "block" is autseaticaliy removed when the decay heat system is shut down on staztup.
4. Systan -octe
a. The response of the actuated components deperds on the type of trip: (refer to Enclosure 2)

1. On low staam pressure on one rain stean 1 ine, boch steam generators are isclated. In addicion, both auxiliary feed purps are aligned to the steaz generator which is above 600 psig.

If both steam generators go below 600 psig, both steam generators are isolared and no auxiliary feecivater is initiated.

If any ocher trip (such as low staam generator level) accompanies a low steam pressure trip, the valves will align per low steam prassura trip logic.
2. On high feedwater pressure differential or iow ssean generator level on one stean generazor, לcth staak generaters are isolated and each auxiliary feedwater pump is aligned to feed its raspective stean generator (1 so 1 and 2 :o 2).
3. On loss of all four zeactor coolant pumps, eaci auxiliary feedwater pump is aligned to its zespective steam genezator. The steam generators are not isolated.
4. On all of the above events, the turbine is saippad by the SFRCS.
b. The auxiliary feedwater pump goverzer control swizch in the contzol soom bus has 3 pest:tans:

Auto-Ëssantial (sRCs) ICS Manual

In the auto-essential position, the auxi1iary faedwater pump is in auto-essential lavel cantrol. In the ICS Fosizion, the auxiliary faedwater pump is su level concrol tien the ICS; via the Jand-Auso stazion. In zanual, the auxiliary feedwaser pump is centrolled by the operator with the Raise-icwer swiこch.
C. The Sミ.CS staz:ing of the auxiliany feedwazer pumps witi auzeaasically resat once the trif condizion on the fnput is re=2ved. Sione of the vaives, howaver, wit ze.uzn so theiz ozozteal posizion uncil opezazad individually tz== the conzzol zoon or a nev :zip condizion sceuzs.

3. Syster Oeveration

In order to understand the operation of the SFRCS systen, it is best to follou the various system actions under several acciden: condftions. The followiag casas will be considerad:

> a. Sceaa tine Rupture
> b. Fcedwater Line Rupture
> c. Loss of Feedwatez ?uFps
> d. Loss of Four Reactor Coolanz ?urps

Enclosures 1 and 2 should be used as an aid to undarstanding the description. All discussions assume 100% F? operation as start. Some nen-SFRCS actions are considerad to aid in understanding the transient.
(1) Stgan tine Rupture - Assume stean inne l shears downstream of MSIV. Stean pressuze will zapidiy drop. then either steam generator reaches 600 psig, all four logic chamels will trip, isolating joth stesm generators. (See Enciosure 2 Eor specific valves.) The MSTV takes Eive seconds to shut, the main feecwatar isolation valve 15 seconds. Both seeam lines will probably drop beluw 600 psig, therefora, auxiliary feedwater oill net staž until gne stean generator :ecovers to zobve 600 psig . Auxiliary feeciuater pumps rill aifzo as described in Section 3 above to feed the stean genesazor that first tecovers to 600 psig, with boch aumiliany faed pumps. The SFRCS will szip the turbine. The reastor will trisp on low pressure.

Wher both stea二 generators are above 600 psing, the trip candition automatically cleazs and the atzospheric vent valves aay be used for pressure contzol ceoldown if required and provided 20 other trips are gresent.
(2) Eacivater Rupture Inge - issume Eeedvazar line ! shears up-st-eam of the feedwater line check valive. Feedwasar pressure will rapidly drop. When either feedwater heaser drops to 177 psig less than steam genera:or pressure, the SFRCS -inl isolate both stean generators and align the auxiliaity feed pumps to their respective stean generasor (1 :0 1; 2 :o 2). The =eactor will trip on high prassure and the sEacs $\because=11$ trap the surbine.
(3) Loss of Four Reacior Cooinne ?umes - Iz all four reac:or sociant pueps :zip, the sizzine whil be tripyed by the SFaCs and the seacior protection systan will trip the raaczor. The sFRCS will inisiase auriliary feedwasar. The staa= gerarators \%ill net be isolated.

EHCD.OSURE 2
STEAALFEEDUATER BUPTURE COMTROH. SYSTEM ACTIAATIOH!

| chabiate. 1
 (c: $5 / 6 / \lambda)$ | \|his 101 | HS 100 | HS101-I
 Hote | | $\left\|\begin{array}{ll} \text { HS } & 394 \\ \text { HOTE } & 3 \end{array}\right\|$ | | $\left\|\begin{array}{ccc} \text { ICS } & 11 & 18 \\ \text { Hote } & 3 \end{array}\right\|$ | | FW 612 | | FW 780 | | SP 78 note 3 | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Chalinti. 2
 (6. 5192) | HS 101 | HS 100 | | $\begin{aligned} & \text { HS 100-1 } \\ & \text { HOTE } 3 \end{aligned}$ | | H. 375 HOTE 3 | | $\begin{aligned} & \text { ICS IIA } \\ & \text { i日OTE } 3 \end{aligned}$ | | FW 601 | | FU-799 | | SP 7A HOTE 3 |
| bou fucsshne halia Stean lifue I (<6000) | Silit | Shut | Shut | SHITH | Silitr | Silit | Stilif | Shiut | shut | simut | Silirr | Silitr | Sillit | Shitir |
| IGM Phestaine hatil Steam litne 2 (6.000) | SILIT | Shut | simy | Stillt | Silily | Shut | Salit | SHIHT | Sint | gutut | SIHT | Shut | Sutir | SHIIT |
| $\begin{aligned} & \text { SHi - INAP sif } 1 \\ & \text { Hutil (} 1 / 1 / \mathrm{rsib}) \end{aligned}$ | SIIIT | SHUT | Shut | Suut | Stuer | SIHUT | Gatut | Shur | Siltur | SHIUT | Shitr | Shut | Silut | SHILT |
| Sili. - Har st; 2 | | | | | | | | | | | | | | |
| "16al (21/ PSia) | SuHr | Shur | Sher | Suer | shut | Sutur | share | SuHT | shurs | Saurs | suut | Sumt | Silut | Sume |
| | Silut | Shur | Silltr | SHET | SHIUT | Silut | SHIUT | Slitir | Silut | SHILT | Stur | SHITI | Sher | Sillet |
| | Sility | Shlut | Silur | SuIT | SuIfr | Shilt | Silut | Stur | Shitr | Sililt | shitr | Sume | SHIIIT | SHIIT |
| | | | | | | | | | | | | | | |
| chan:ul. I
 (c: $5 / 6,2 \mathrm{~A})$ | SP 6 A | | HS 106 | | \|ns 106A | | AF3070 | | AP 3869 | | AF 608 | | MAIN TURBINE | |
| C.iAt: :Vi. 2
 (6: 5/92) | | 5P613 | | HS 107 | | 75107A | | AF3872 | | AF3871 | | AF 599 | | |
| | | | | Oren | OPEH | | | OPFM | OPEH | | | | | |
| Sitish l.tite I (<6008) | Silte | Sumr | silitr | mate 1 | HOTE I | shist | Stiors | note 1 | HOTE 1 | Shut | SILUT | OPEN | THIP | |
| | | | Or'EA | | | oren | OP'E:H | | | Oren | | | | |
| | Shilut | Shut | note I | SuIII | Shut | Hote I | mote 1 | Silltr | shut | note 1 | OPEM | Shut | THIP | |
| $S 11111 / 4 F \quad 561$ H\\|:al >1/1 P:S!" | Shint | Shut | OP'E.H | OPEN | SIItT | Silit | OPF\% | Of:ECH | Sillit | SIIIT | OPEL | OPFI | THIP | |
| stil-tuar sit 2 | | | | | | | | | | | | | | |
| 146.11 >117 rsin | Silut | Shut | OPEN | Orem | shut | Suilut | OPEN | Open | Shut | SILUT | OPEN | OP'EN | THIP | |
| limitiveit sit 1 | | | | | | | | | | | | | | |
| | Sher | Shilit | Of'EM | OP'EH | Shut | Situr | OPEL | OP'EH | Siter | Shiut | OPEH | OP'EN | THIP | |
| LiAM L.LVII. Sif 2 | | | | | | | | | | | | | | |
| (く11) Sill | Silut | Shint | OP'E: OP'EN | $\begin{aligned} & \text { OPFH } \\ & \text { OPFE } \end{aligned}$ | Shut | Silut | OP'EH | OPEN | Shut | SHUT | OPEN | OPEN | THIP | |
| | | | Hote 2 | Hore. 2 | Silirs | Silur | OPEN | OPEN | Shiut | ShiUT | OrPEH | OPEN | TRIE | |

[^0]F11e：0017，0436，：

Lows．：E．Rcs
viee Prevaine
Facirtivs bsemioinens
（A12）259－2242
Docket No．50－346

Mz．Janes G．※̈rpple：
Regional Dizecsor，Reżion ：II
OESice of inspec：ion \＆Enforseaenz
U．S．Nucieaz Rezulazory Co＝ニission
799 Roosevel：Read
Cien Ellyn，Illinois 50137
Dear Mr．Kepplar：
This latiar supersedes my lezter to you on this subject dased October 5， 1977.

In accorinnce vist： 10 CFR Part 21．2！（b），this is a report of a deミer in
 The componont involvad is the governor on the auxiliazy foed putps．

The auxiliary feed jumps were supplied by gyron Jeckson＂？ump Diviston． The stean driven purp surbine wes suppliod by Ferry Curporazion zo Jy：en Jackson．In surn，the tutbine governor was supplied so Terry Corpera：ion by Woodward Guvernor Compeny．The tuzbine governor is identified as a type i＇G－PL．，which has a servocctor centrol employing a Bodine Electric Company motor．

The defecz finvoives a pocensial for the governat to bind dndez cczsain conditions ant proventing the tu：bine from seming up io design speed． The opersting proczdures tor this cquipmant called for tha governor to be placed in the hijh spead stop position ptior so shutsing cown the turbine．Investigation hes shown thaz with the Jodine servomezoz driving against the ingh specd stop，a misalignment force is applied to the T－baz of the governor litikage．This misalignaent foree ereates a pozential for the governot to bind at a speed position less thin dasign speed upon a turbine starsup．This misalignoent forte does not always cause the governer to bind arte this＝iscitunment forez can be ：emoved by dziving the Jodine scrveroter sway from tha high speed step．

 heat were proscas in the ：eこ：こor cora．
-2-

```
The ev=iuazinn and tdentiticzzion of this detecz was provided to me on
Septemjer 30, :977, and was discussed with Mr. T. Ha=ps:er of your oftice
on Septamber 30, 1977.
Thert a=c two idcnsical auxiliary feed pumps with the tu:bine governors,
dcsc:ibed above, inscallad in the Davis-Zesce Nucloar Power S:u=ion Uni=
No. 1.
The corrective action taken was to modify the governor including the fe:movil of portions of the pneumatic speed-setting mechanism to assure that the governor will property respond to speed demand signals. The pneumatic speed-sez:ing mechanism was never an integral part of the functioning of the governor, because the governor employed servomotor content. This modification zees accomplished as the iosediarad Governor Company factititios. Subsequent testing at these fertilizes has proved the proper functioning of the governor. The modifications were completed prior to the curzon unis startup. The governors have been tested for proper functioning on auxiliary steam, and the surveillance zest will be completed during Mode 3 of the current startup.
```

Yours very : : univ,

Lowell E. Joe
Vice President:
Facilities Develop=en:
dj b/9-10
bee:
न. M. Smart, Esq.
G. Charnote, Esq.
D. H. House, Esq.
W. A. Johnson
J. S. Giant
z. C. Borak
C. R. Doreen/
J. D.tenardson
J. G. Evans
2. Rosenchal
?. ?. ines
A. \#. Lazar=

| 24 | Reactor crizical at 15π power, generator on the line at 110-140 m , pezforming contzols tuning
 1700 - Discovered steam leak on steam lead betreen *o. 2 Iurbine Contzol Valve and high prassure turbine |
| :---: | :---: |
| | 1830 - Turbine-generator taken off the line so repair steam leak. Reactor critical at about $9:$ power. |
| | 2135 - Recsived Steam and Feedwater Sup:ure Control System Actuation, zesulting in Reactor R=ip, and Safery Features Aczua=ton |
| | 2345 - Plant stable at 1800 psig, $\mathrm{T}_{\text {ave }}+525^{\circ} \mathrm{F}$ |
| Sept. 25 | 0415 - Stazted Plant Cooldown |
| | 0645 - Completed Euitial suzvey of Conzainment |
| Sepz. 26 | Cleanup and repaizs begun |
| Sept. 30 | Corpleted repait and replacement of تizaor insulation on No. 2 Stean Generasor |
| Oc=. 3 | duxiliazy Feedpu=p Governors re=oved and sent 50 Woodwazd Governer Faczory |
| | Quench Tank Rupture Disc :eplaced |
| Oct. 5 | Vented Reactor Coolane System anu run Reactor Coolan: Pumps to get data to evaluaze status of pumps and seals. |
| Oc=. 6 | Started Feečuate: Cleanup in preparation for keactor Coclant Systa= hestup |
| Oc= . 7 | 1830 - Received :RR approval to proceed wish ptast seaztup |
| Oce. 3 | 1530 - Checkout of Auxi:iazy Feezpupps (usinas Auxiliary Staan) corpleted |
| Oce. 11 | Atsampted to :ess pressurizaz power :alief vaive. Unsuceassful iue :o eizc=こさeal cizcuiz problens. |
| Oc=. 12 | ?„essurizaz power reiief vaive control cizeuiz working, stzoked valze and is ssuek open again |

CERTIFICATE

I certify that I have read this transcript and corrected any errors in the transcription that I have been able to identify, except for unimportant punctuation errors.

[^0]: HOTES:

 3. Theas valveu are closed on a $\mathrm{b}_{\mathbf{2}}$ chounel trip.

