

METROPOLITAN EDISON COMPANY SUBSIDIARY OF GENERAL PUBLIC UTILITIES CORPORATION

POST OFFICE BOX 542 READING, PENNSYLVANIA 19603

February 28, 1979 GQL 0186

TELEPHONE 215 - 929-3601

Director of Nuclear Reactor Regulations U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Dear Sir:

Three Mile Island Nuclear Station, Unit 1 Operating License No. DPR-50 Docket No. 50-289 Steam Generator Operating History No. 2

Enclosed please find our second completed questionaire concerning steam generator operating history. Should you have any questions concerning this response, please contact R. O. Barley at Three Mile Island Nuclear Station.

J. C. Herbein Vice President-Generation

JGH:DGM:jdp

Enclosure

## ENCLOSURE 1 STEAM GENERATOR OPERATING HISTORY QUESTIONNAIRE No. 2

# NOTE: All percentages should be reported to four significant figures.

I. BASIC PLANT INFORMATION

Plant:

Startup Date: Utility:

Plant Location:

Thermal Power Level:

Tube Size and Material:

Nuclear Steam Supply System (NSSS) Supplier:

Number of Loops:

Steam Generator Supplier, Model No. and Type: Number of Tubes Per Generator: Three Mile Island - Unit 1 2 September 1974 Metropolitan Edison Company Middletown, Pennsylvania 2535 MWT Pabaaak & Wilcon

Babcock & Wilcox

2 B&W, N/A, OTSG 15, 531

0.625" 0.D./0.034" wall 56' 2 3/8" Inconel

11. STEAM GENERATOR OPERATING CONDITIONS

Normal OperationPrim.Sec.Temperature: $602.8^{\circ}F/570^{\circ}F$ Flow Rate: 65.6 x 10<sup>6</sup> LB<br/>HR /5.3x10<sup>6</sup> LBAllowable Leakage Rate: 1 gpm / 2 Steam GeneratorsPrimary Pressure:2200 psiaSecondary Pressure:925 psiaAccidentsDesign Base LOCA Max. Delta-P:925 psiaMain Steam Line Break (MSLB) Max. Delta-P:2200 psiaIII.STEAM GENERATOR SUPPORT PLATE INFORMATION

Material:Carbon SteelDesign Type:Broached OpeningDesign Code:SA-212-BDimensions:118 3/8" DiameterFlow Rate: $5.3 \ge 10^6 \frac{LB}{HR}$ Tube Hole Dimensions: $\simeq 0.320$  in. min. radius/tubeFlow Hole Dimensions: $\simeq 0.135$  sq. in./tube

STEAM GENERATOR BLOWDOWN INFORMATION Frequency of Blowdown:

| Normal Blowdown Rate:              | NA |
|------------------------------------|----|
| Blowdown Rate w/Condenser Leakage: | NA |
| Chemical Analysis Results:         | NA |

- 2 -

Results

Parameter Control Limits

Not Required

NA

#### NA

### V. WATER CHEMISTRY INFORMATION

#### Secondary Water

Type of Treatment and Effective Full Power (EFP) Months of Operation: Ammonia and Hydrazine added to feedwater - Powdex polishing 32 EFPM

| Typical Chemistry or Impurity Limits: | Ammonia    | 2-20     | ppm  |
|---------------------------------------|------------|----------|------|
|                                       | Hydrazine  | >50      | ppm  |
| Catalyzed                             | Hydrazine  | >25      | ppm  |
|                                       | pH @77°F   | 9.5-10.5 |      |
| Cation Con                            | nductivity | <10      | µmho |
|                                       | Na         | <1.0     | ppm  |
|                                       | C1         | <1.0     | ppm  |

#### Feedwater

| Typical C | hemistry o | or Impurity Limit | s; pH @77°F    | 9.3-9.5 |      |
|-----------|------------|-------------------|----------------|---------|------|
|           |            |                   | Max Solids     | <50     | ppb  |
|           |            | Cation            | a Conductivity | <5      | µmho |
|           |            |                   | Max 02         | 7       | ppb  |
|           |            |                   | Max Si 0       | 20      | ppb  |
|           |            |                   | Max. Fe        | 10      | ppb  |
|           |            |                   | Max. Cu        | 2       | ppb  |
|           |            |                   |                |         |      |

#### Condenser Cooling Water

| Typical Chemistry or Impurity Limits: | 2. | Concentration controlled to 2-3x river<br>water solids concentration by blowdown<br>Maintain 0-0.5 L'Angelier Index by adding<br>sulfuric acid<br>Chlorination 0.4 ppm free Cl by adding<br>for the 15 minute periods per day during<br>warm months only |
|---------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Demineralizers - Type: None

Cooling Tower (open cycle, closed cycle or none): Closed Cycle

.IV.

VI. TURBINE STOP VALVE TESTING (applicable to Babcock & Wilcox (B&W) S.G. only)

VII.

| Frequency of Testing                    |             |              |          |      |      |
|-----------------------------------------|-------------|--------------|----------|------|------|
| Actual: 1                               | per month   |              |          |      |      |
| Manufacturer Recommendation: 1          | per day     |              |          |      |      |
| Power Level At Which Testing Is Conduct | ed          |              |          |      |      |
| Actual: 50%                             |             |              |          |      |      |
| Manufacturer Recommendation: Not a      | pecified    |              |          |      |      |
| Testing Procedures (Stroke length, stro | ke rate, et | :c:)         |          |      |      |
| Actual: 100% stroke @ <1                |             |              | close    |      |      |
| Manufacturer Fecommendation: Not speci  | fied        |              |          |      |      |
| STEAM GENERATOR TUBE DEGRADATION HISTOP | Y           |              |          |      |      |
| (The following is to be repeated for ea |             | ed ISI)      |          |      |      |
| Inservice Inspection (ISI) Date:        |             |              | 3/78     |      |      |
| Number of EFP Days of Operation Since L | ast Inspect | tion:        | 287      |      |      |
| (The following is to be repeated for ea |             |              |          |      |      |
| Steam Generator Number:                 |             |              |          | А    | В    |
| Percentage of Tubes Inspected At This   | ISI:        |              |          | 12%  | 9%   |
| Percentage of Tubes Inspected At This   | ISI That Ha | d Been Insp  | ected At |      |      |
| The Previous Scheduled ISI:             |             |              |          | 3%   | 3%   |
| Number of Tubes Plugged Prior to Th     |             |              |          | 4    | 9    |
| Number of Tubes Plugged At This IS      |             | 1.1.1.1.1.1  | limite . | 0.1  | .00% |
| Percentage of Tubes Plugged That Did No | ot Exceed D | egradation i | Limits.  |      | .00% |
| Percentage of Tubes Plugged As A Result | t of Exceed | ance of Deg  | radation |      | 0.11 |
| Limits:                                 |             |              |          | 100% | 0%   |
| Sludge Layer Material Chemical Analysi  | s Results:  | Not applic   | able     |      |      |
| Sludge Lancing (date):                  |             | NA           |          |      |      |
| Ave. Height of Sludge Before Lancing:   |             | NA           |          |      |      |
| Ave. Height of Sludge After Lancing:    |             | NA           | Priofly  |      |      |
| Replacement, Retubing or Other Remedia  | 1 Action Co | nsidered: (  | brienty  |      |      |
| Specify Details)                        |             | NA           |          |      |      |
| Support Plate Hourglassing:             |             | NA           |          |      |      |
| Support Plate Islanding:                |             | NA           |          |      |      |
| Tube Metalurgical Exam Results:         | - 00 T      | I M MAN      |          |      |      |
| ിതത്ത                                   | a Ulkus     |              |          |      |      |
|                                         |             |              |          |      |      |

MARR

IT

- 3 -

Fretting or Vibration in U-Bend Area (not applicable to B&W S.G.) AS OF (4)

| Percentage of Tubes Plugged                                                                    | Ot      | her P         | reven | tive | Meas  | ures            |
|------------------------------------------------------------------------------------------------|---------|---------------|-------|------|-------|-----------------|
| NA                                                                                             |         |               |       |      |       |                 |
|                                                                                                |         |               | Ś     |      |       |                 |
| Wastage/Cavitation Erosion AS OF (4)                                                           | 2       | •             |       |      |       |                 |
| Hot Leg: (Repeat this information f<br>(C.E.) and Westinghouse (                               | for the | ne co<br>.G.) | ld le | gon  | Combu | stion Engineeri |
| Area of Tube Bundle (1)                                                                        | 2       | I b           | c     | 1 d  | e     | I NA.           |
| % of Tubes Affected by<br>Wastage/Cavitation Erosion                                           | NOT     | APPI          | ICABI | E    |       | 1               |
| & of Tubes Plugged Due to<br>Exceedance of Allowable<br>Limit (2)                              |         |               |       |      |       |                 |
| of Tubes Plugged That<br>Did not Exceed Degradation<br>Limit                                   |         |               |       |      |       | -               |
| ocation Above Tube<br>Sheet (3)                                                                |         |               |       |      |       |                 |
| ax. Wastage/Cavitation Erosion<br>Rate for Any Single Tube<br>(Tube Circum. Ave) (Mills/Month) |         |               |       |      |       |                 |
| ax. Wastage/Cavitation Erosion<br>in Any Single Unplugged Tube<br>(Tube Circum. Ave) (Mills)   |         |               |       |      |       |                 |

Cracking AS OF (4) Caustic Stress Corrosion Induced in C.E. and  $\underline{W}$  S.G. Flow Induced Vibration Caused in B&W S.G.



A CAR STOLLAR STOLEN STOLEN STOLEN STOLEN

- 4 -

Cracking (Con't)

Hot Leg: (Repeat this information for the cold leg on C.E. and  $\underline{W}$  S.G.)

| Area of Tube Bundle (1)                                     | la  | Ь    | c     | d | e |
|-------------------------------------------------------------|-----|------|-------|---|---|
| % of Tubes Affected<br>By Cracking                          | NOS | APPI | IÇABI | E |   |
| % of Tubes Plugged Due to<br>Cracking                       |     |      |       |   |   |
| % of Tubes Plugged That Did<br>Not Exceed Degradation Limit |     |      |       |   |   |
| Location Above (3) -<br>Tube Sheet                          |     | 1£   |       |   |   |
| Rate of Leakage From<br>Leaking Cracks (gpm)                |     |      |       |   |   |

Denting (Not applicable to B&W S.G.) AS OF (4)

Hot Leg: (Repeat this information for the cold leg on C.E. and W S.G.)

| Area of Tube Bundle (1)                                                      | a  | b      | c     | d | е |
|------------------------------------------------------------------------------|----|--------|-------|---|---|
| % of Tubes Affected by<br>Denting                                            | NO | r appi | ICABI | Æ |   |
| % of Tubes Plugged Due to<br>Exceedance of Allowable<br>Limit (2)            |    |        |       |   |   |
| % of Tubes Plugged That<br>Did Not Exceed Degradation<br>Limit               |    |        |       |   |   |
| Rate of Leakage From<br>Leaking Dents (gpm)                                  |    |        |       |   |   |
| Max. Denting Rate for Any<br>Single Tube (Tube<br>Circum. Ave) (Mills/Month) |    |        |       |   |   |
| Max. Denting in Any Single<br>Unplugged Tube (Tube<br>Circum. Ave) (Mills)   |    |        |       |   |   |

POOR ORIGINAL

Denting (Con't)

1

| Support<br>Plate<br>Levels | Max. Denting in Any Single<br>Tube in Bundle Area<br>(Tube Ave) (Mills) (1) |        |    |     |   | % of Tubes Affected By<br>Denting in Bundle<br>Area |   |   |   |   |
|----------------------------|-----------------------------------------------------------------------------|--------|----|-----|---|-----------------------------------------------------|---|---|---|---|
|                            | a                                                                           | b      | с  | d   | e | а                                                   | ь | c | d | e |
| 1                          | NOT AI                                                                      | PLICAE | LE |     |   |                                                     |   |   |   |   |
| 2                          |                                                                             |        |    |     |   |                                                     |   |   |   |   |
| 3                          |                                                                             |        |    |     |   |                                                     |   |   |   |   |
| 4                          |                                                                             |        |    |     |   |                                                     |   |   |   |   |
| 5                          |                                                                             |        |    |     |   |                                                     |   |   |   |   |
| 6                          |                                                                             |        |    |     |   |                                                     |   |   |   |   |
| 7                          |                                                                             | 1      |    |     |   |                                                     |   |   |   | - |
| 88                         |                                                                             |        |    | . 1 | 1 |                                                     |   |   |   |   |
| 9                          |                                                                             |        |    |     |   |                                                     |   |   |   |   |
| 00                         |                                                                             |        |    |     |   |                                                     |   |   |   |   |
| 1                          |                                                                             |        |    |     |   |                                                     |   |   |   |   |
| 2                          |                                                                             |        |    |     |   |                                                     |   |   |   |   |

# POOR ORIGINAL

## TABLE KEY

- NOTE: All percentages refer to the percent of the tubes within a given area of the tube bundle.
- (1)

| Are | ea of the Tube Bundle                                                           | No. of Tubes Within the Area         |
|-----|---------------------------------------------------------------------------------|--------------------------------------|
| а.  | Periphery of Bundle<br>(wi/20rows for B&W<br>wi/10 rows for C.E. and <u>W</u> ) | -6870                                |
| ь.  | Patch Plate<br>(wi/4 rows)                                                      | NA                                   |
| c.  | Missing Tube Lane (B&W only)<br>(wi/5 rows)                                     | $\sim770$ (including 200 from part / |
| c.  | Flow Slot Areas (C.E. and $\underline{W}$ only) wi/10 rows)                     | NA                                   |
| đ.  | Wedge Regions (C.E. and <u>W</u> only)<br>(wi/8 rows)                           | NA                                   |
| e.  | Interior of Bundle<br>(remainder of tubes)                                      | ~ ∿8090                              |

## (2)

Allowable Limit for Wastage/Cavitation Erosion: 40%

Allowable Limit For Danting: Not Applicable

(3)

- 1. Specifies area between the tube sheet and the first support plate
- 2. Specifies in the following locations: (list the additional locations) Wastage/Cavitation Erosion: NA

Cracking: NA

(4)

Specify the date of the inspectior for which results have been tabulated.



# VIII. SIGNIFICANT STEAM GENERATOR ABNORMAL OPERATIONAL EVENTS

| DATE                                                              | SUMMARY                                                                                                                                                                                                  |                                                         |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|                                                                   | (Include event description; unscheduled ISI                                                                                                                                                              | results; if per-                                        |
|                                                                   | formed; and subsequent remedial actions)                                                                                                                                                                 |                                                         |
| Date                                                              | Event                                                                                                                                                                                                    | OTSG                                                    |
| 1. HFT*<br>2. 12/76<br>3. 12/76<br>4. 11/77<br>5. 10/77<br>6. HFT | 11 cycles on EF nozzles<br>1 hr. @500°F with FW <90°F<br>½ hr. @ 520°F with FW <90°F<br>6½ hr. @ 532°F with FW <90°F<br>3.6 pH for about 3 hours (secondary)<br>OTSG Level <97% RC>300 F numerous cycles | A & B<br>A & B<br>A<br>A & B<br>A & B<br>A & B<br>A & B |

- 8 -

IX. CONDENSER INFORMATION:

| Condenser<br>Material | Date Rate (gpm) | Detectable<br>Limit | Detection Method   |
|-----------------------|-----------------|---------------------|--------------------|
| 304 SS                | HFT* 160 gpm    | 0.1-0.2 gpm         | Cat. Cond. High    |
|                       | 6/9/76 0.4-1.5  | 0.1-0.2 gpm         | Souium High        |
|                       |                 |                     | Powdex Performance |

X. RADIATION EXPOSURE HISTORY WITH RESPECT TO STEAM GENERATORS

| Date | Exam Dosage (Man-Rem) | Repair Dosage (Man-Rem) | Comments      |
|------|-----------------------|-------------------------|---------------|
| 76   | Data not available    | NA                      |               |
| 77   | 12.834 Man-Rem        | 9.467 Man-Rem           |               |
| 78   | 12.913 Man-Rem        | 1.085 mrem              | Tube Plugging |

\*HFT = Hot Functional Testing Period

1

.

XI. DEGRADATION HISTORY FOR EACH TYPE OF DEGRADATION EXPERIENCED FOR TEN REPRESENTATIVE, UNPLUGGED TUBES FOR WHICH THE RESULTS OF TWO OR MORE ISI'S ARE AVAILABLE

If the results for ten tubes are not available, specify this information for all those tubes for which results are available.

(repeat the following information for each tube and degradation type)

Steam Generator No:

Tube Identification: NOT APPLICABLE Type of Degradation: (specify denting, wastage, cavitation erosion, caustic stress corrosion cracking, or flow induced vibration cracking)

(repeat the following information chronologically for each IS1 for which results are available)

ISI Date: Amount of Degradation: (specify amount and units) EFP Months of Operation Since Last ISI for Which Results are Given:



- 9 -