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ABSTRACT

The neutron kinetics model developed for the THOR code is described.
The kinetics model calculates the energy deposition in the reactor core
due to fission and radioactive decay. This calculation is performed
using one of three user-selected options: (1) Table lookup of total
power as a function of time, (2) point kinetics, or (3) 1-group, 1-dimen-
sional (axial) space-dependent kinetics. Feedback effects due to
changes in fuel temperature, coolant temperature, and coolant density
are included in both the point and space-dependent options. The space-
deéendent option also includes the capability to calculate the initial
critical axial power distribution, and to represent explicitly the

movement of cc-trol rods in and out of the core.



NOMENCLATURE

C,(t)
D

E

fk(t)
”n(t)

GREEK

Te

Density of delayed neutron aroup i (MW)
Diffusion coefficient (cm)

Effective energy fraction of decay heat gqroup n
Control density in mesh interval k
Decay power of decay heat group n (M)
lumber of celayed neutron groups

llet current (n/cmz-sec)

Effective multiplication factor
Instantaneous fission power (M)

Total power (M)

Total reactivity

Fuel temperature reactivity

Mccerator temperature reactivity
Moderator density reactivity

Fxternal perturbation reactivity

Time (sec)

THOR operating system

Average fuel temperature (°K)

Reference average fuel temperature (°K)
Average mocerator temperature (°K)
Reference average moderator temperature (°K)
Neutron speed (cm/sec)

Axial position (cm)

Fuel temperature reactivity-feecback coefficient (°K

-1/2

)



?odf “ar temperature reactivity-feedback coefficient
or I:

Hoder;gur density reactivity-feedback coefficient
Fig/emd)-1]

Average moderator void fraction

Reference average moderator void fraction

Total delayed reutron fraction

Delayed neutron fraction of delayed neutron group i
Decay constant of delayed neutron group -i (sec'l)

Decay constant of decay heat group n (sec'])
Prompt neutron generation time (sec)

Neutron flux (n/gnz-sec)

Normalized steady-state axial power shape
Macroscopic absorption cross-section (cm")
Macroscopic fission cross-section (cm'])
“Controlled" c-sss-section (cm'1)
“Uncontrol :¢" cross-section (cm'])

Average number of neutrons per fission



1 INTRODUCTION

1.1 Background
The THOR (THermohydraulic Of Reactors) computer code‘ is presently

under developme it in the Thermal Hydraulic Development Division at
Brookhaven National Laboratory under the sponsorship of the Reactor
Safety Research Division of the U.S. Nuclear Regulatory Commission.

The code is designed as a fast-running "best estimate” computer program
to predict normal and hypothetical accident-induced, thermohydraulic
transients in light-water cooled reactor systems. The purpese of this
report is to describe the neutron kinetics model which has been developed

for incorporation into the THOR code.

1.2 Basic Description of the Models

The neutron kinetics model caiculates the energy deposition in the
reactor core due to fission and radioactive decay during a reactor tran-
sient. This calculation is performed using one of the following options:
(1) Table lookup of reactor power as a function of time, (2) point
kinetics, or (3) l-group, 1-dimensiunal (axial) space-dependent kinetics.
The table lookup and point kinetics options are both formulated under
the assumptionthat the power shape does not change throughout the
transient. In the table lookup option, the total power is simply ob-
tained from a user-specified table of reactor power as a function of
time. Linear interpolation is used to obtain values lying between the
table entries. The point kinetics option calculates the total power
using the standard point-reactor kinetics equations, and requires that
the user specify a table of reactivity values as a function of time.

While the table lookup method does not account for thermohydraulic



feedback, the point kinetics option does calculate reactivity contri-
butions due to (.ore-averaged) changes in the fuel temperature, modera-
tor temperature, and moderator density. These contributions are calcu-
lated under the assumption that the reactivity varies linearly with
changes in these thermohydraulic properties. The linear coefficients
(e.g. the Doppler coefficient) are required as input data. The point
kinetics model is described further in Section 2.

The space-dependent kinetics option solves the 1-group neutron
diffusion equation in 1 space-dimension with up to six groups of delayed
neutrons. A set of 1-group cross sections must be supplied by the user
for each nuclear region. These cross sections are generally obtained
from a more detailed multigroup calculation and must be appropriately
averaged in the x-y plane to yield the required cross sections for the
1-dimensional axial equations. The initial condition is calculated by
the solving the steady-state eigenvalue problem for the critical flux
shape and effective multiplication factor. Space-dependent feedback
effects are included in both the steady-state and transient calculations,
and are modeled under the assumption that the cross sections vary
linearly with both the square root of the fuel temperature and the
moderator temperature, and quadrtically with the coolant void fractionzt
These feedback coefficients must be supplied by the user. Control rod’
movement due to rod withdrawal and scram is represented explicitly. De-

tails of the space-dependent kinetics model are given in Section 3.



2. THE POINT KINETICS MODEL

2.1 The Point Kinetics Equations

The standard point kinetics equations are solved in conjunction
with an additional equation describing the deposition of decay heat

in the core. These equations take the form

I

%f st} « [R ) - e] p(t) + E] 3 (1) (2.1)

& Cy(t) = _851_ Cy(t) = A Cq(t) intenn] (2.2)

dE () = EP(L) - AWH (8], n=l,eee N (2.3)
where

P(t) = amplitude function (often interpreted as instantaneous
fission power)

Ci(t) = density of delayed neutron group i

Hn(t) = decay power of decay heat group n

R(t) = total reactivity

B = total effective delayed neutron fractfon

A = prompt neutron generation { ‘me

A = decay constant of delayed neutron group i

8i = effective delayed neutron fraction of delayed neu*ron group i
En = effective energy fraction of decay heat group n,

Aﬂ = decay constant of decay heat group n.



The total power deposited in the core due to fission and radioattive

decay is given by
N N
H 4
pT(t) = [1 = EE‘ En] P(t) + Eg% Ay Hn(t) ’ (2.4)

The number of delayed neutron groups (I) and number of decay heat
groups (M) are presently fixed at 6 and 11, respectively. With the ex-
ception of R(t) and A, which must be provided by the user, the constants
appearing in Egs. (2.1) to (2.3) are built into the code, and are iden-
tical to those used in the TRAC2 and RELAP3 Ludes.

2.2 Solution of the Point Kinetics Equations

Equations (2.1) to (2.3) are solved using simple implicit techniques.

Equation (2.1) is discretized in the following manner:

] i H.g 1. j
7&; [P(tjﬂ)- P(tj)] & [-J P(tj”) + (1-0Y) P(tj)]
. (2.5)

¥ 3 J J
+ ;:3 A [od ci(tj+]) + (“Od)ci(tj)]-

where Atj = tj*] - tj, oY and eg are parameters discussed below, and
R denotes the average reactivity over the time step. Equation (2.2)

is formally integrated over a time step, i.e.

X At

t At q-t)
e RN i+ it idl .
C‘(tjﬂ) . Ci(tj)e + Ai ftj dt P(t)e

(2.6)
The integral in this equation is approximated by assuming that P(t)
varies linearly over the time interval Atj; the following equation is
thus obtained:

-Aibtj 1 ]_e'xiﬁtj -kiAtj i

= —— - e
Ciltyy) = Cyltyle M [ WAt ] i
-h.At

§2%5
1-e
'[_—_‘1‘“3 -1] P(ts,) } :

(2.7)



The same procedure is used to approximate Eq. (2.3). Using Eq. (2.7),
the ci(tj+l) can be eliminated from Eq. (2.5), and the resulting equation
readily solved for P(tj+]). Once P(tj+]) is known, the Ci(tj+l) and
Hn(tj+l) are updated separately using Eq. (2.7) and the analagous equa-
tion for the Hn(tj+]):

The parameters 8’ and eg are chosen in order to improve the accuracy
of the sclution and to insure numerical stability. Currently 8% is fixed
at 5, while ej is chosen as follows

1/2 ) Rj > 0.5 8

a4 (2.8)
! , M<o053.

This formula is used since Oj =1, is more accurate for less stiff problems
(i.e. transients approaching prompt critical), while ej = 1 is necessary
for an accurate representation of the stiff modes present in a delayed
supercritical or subcritical transient. The neutronics time step Atj
controlled such that the power does not change by more than 10% over
a time step.

The power distribution returned to the heat conduction segment of

THOR is calculated from

PZt) = Pilt) v (2,0) , (2.2)

where y(z,0) is the normalized steady-state axial power shape. [Equation
(2.9) also used in the tatle lookup option, with PT(t) obtained directly

from the user-supplied power versus time curve.]

2.2. The Point Kinetics Feedback Model

A table of reactivity as a function of time must be supplied by the

user. This reactivity can be either the total reactivity R(t), or the



react) ity contribution Rext(t) due solely to external perturbations such
as control rod movement. In the latter case, the total reactivity is
calculated as the sum of components due to thermohydraulic feedback and
external perturbations:

R(t) = RTf (t) + RTm (t) + R°m (t) + R, (t) | (2.10)

where RT (t), Ry (t), and R_(t) are the reactivity components due to

f m Pm
changes in the fuel temperature, moderator temperature, and moderator
density, respectively. These components are calculated in terms of the

core-averaged thermohydraulic properties:

an (t) = N (/7 f?'f" ) (2.11a)

Rp (t) =ap (T - T (2.11b)
m m

Rom (t) = o (P = By ) (2.1¢)

Here the starred quantities denote core-averaged reference (i.e. steady-
state) properties. The coefficients an. uTm' aCm are generally given
in a Safety Analysis Report (SAR), and must be supplied by user with

reactivity given in terms of Ak/k.



3. THE SPACE-DEPENDENT KINETICS MODEL

3.1 The Time-Dependent Neutron Diffusion Equition

The space-dependent neutron kinetics rodel solves the time-de-

pendent 1-group, 1-dimensional neutror diffusion equation:

%53.“ (Z,t) = 3 0 (Z,t) 2y e (2,t) + 2(Zit) ¢ (Z,1)
1 (3.1)
+ 52% AiCi(Z.t) .
where
o (2.t) = (1-8) veT(Z,t) - :%(Z.t) (3.2)
an

¢ = neutron flux

C. = density of the ith

delayed neutron precursor
D = diffusion coefficient

vi' = nu, the number of neutrons per fission, times the macroscopic
fission cross section

2% = macroscopic absorption cross section

g = total delayed neutron fraction

L. = decay constant of delayed neutron group i
I = number of delayed neutron groups

2z = axial position.

The delayed neutron precursors satisfy the equation

3 . a <o (7 ¢)e R
3 Ci(z't) = Byvi (Z,t)s(Z,t) xici(l.t),

(3.3)
where j=l,eee,1

Bi = fraction of fissions which produce an ith group delayed neutron

precursor.



3.2 The Spatial Finite Difference Approximation

Equations (3.1) and (3.3) are spatially discretized using a "mesh-
centered” finite difference formulation in which the unknowns are the
average fluxes and precursor densities within each mesh interval (rather
than the pointwise values at the mesh interval interfaces). The axial

dimension is divided into K mesh cells using the following notation:

£ (t),0%(t)
6*-] }‘-k -64(4»]
zk-3/2 zk-l/2 zk+l/2 zk+3/2

gk - K12 k=172

The cross sections (i.e. Dk(t), Xk(t)) are assumed to be spatially con-
stant within a mesh cell. Integrating Eqs. (3.1) and (3.3) over the
interval [zk']/Z. zk*]/ZJ, and then dividing by az* yields

- -
Q.lﬁ.

-k - - -
i) =k skt « il (3.4)

d ek = 5; vkt g,

(3.5)
where i=l, sos,I,
k¥
ok )

(t) = dz ¢ (Z,t) (3.6a)

o S

k 1 Z“+5
G (0= % ﬁk-'a az C,(Z,t) . (3.6b)

The first term on the right hand side of Eq. (3.4) represents the net

leakage across the surfaces of the mesh cell: this leakage can be written



k+1/2

in terms of the net currents J(z ,t) on the mesh cell surfaces, i.e.

k 1 3 2e7*
O 3 LACUE R0 R
] K+ k-
= - 1 J(Z27%L) -3 (7 2t . 3.7
w8 ) ] (3.7)
This leakage term is approximated using first order differences, i.e.
k - 2 k k -k = k-
L(t) §$« ~=pgx D (t){ s thy-s*) | - [3fe)-o (¢ : ’ (3.8)
(aZ%) [ &) ] [ r o )]
ktl/2

ktl/2

where ¢ (t) are pointwise fluxes evaluated at the surfaces z = 2

These "halfpoint" values are calculated by requiring that the next
ktl/2

currents be continuous at z =2 i.e.
205 () [ -k#1 k 20%(t) [ k#ks, .\ <k

o el Ea O R O I s U R Ol (3.9)
¥4 Al -
20571 (t) [ .k k- 20%(t) [ -k k-1 ]

" [o “(t) - ¢ }t)] & S [¢ (t) - ¢ *(t)] . (3.9b)
AZ™" AL

Solving Egs. (3.9) for the halfpoint values yields

5(e) = [0 o)+ B0 a**‘(t)]/[b"(t) AU IRNERTY
&) =[BT e+ o) @“(t)]/[’b“"(t) O IERTS

where

k
bk(t) = D—]((Q
al
Substituting Eqs. (3.10) into Eg. (3.8) and then rearranging yields

-k+1

Koy ¥ (K 350+ Koike « e e (3.11)
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where the coupling coefficients introduced here are defined by
2 B ')

O k-1
o2% Br(e) + BT, (3.12a)
gy -2 B B .
CT o B« e, (3.12b)
NG EER P RS Ol I (3.12)

Zero flux boundary conditions are specified on the outer surfaces of the

reactor. Letting K denote the mesh cell adjacent to an outer surface such

K+1/2

that zk“/2 denotes the outer surface and ¢(2 ,t) = 0, the coupling

coefficients for this cell are given by

Koy - . 2 B B

Y DY S D (3.13a)
ey = o (3.13b)
2. [yk'(t) + 2 B ] ; (3.13¢)

Substituting Eq. (3.11) into Eq. (3.4), and then rewriting the result in

matrix form yields

I
1 d L
V Hf'i(t) = ; [- L(t) J + [z (t)]s ¢ (t) + | yigi(t), 13.14)
where
Q_(t) = Col [;](t)."',ak(t)."': ;K(t)] ’ (3.153) 5

1

=1 - .
.C.i(t) z Col [ci(t)‘.'.' C:(t)."-, C§(t)] s (3.15b)
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[z(t)] 5 disg [z‘(:).---. 1] z"(t)] d (3.15¢)

and the entries of the tridiagonal matrix [L(t)] are the coupling
coefficients defined in Egs. (3.12) and (3.13). Equations (3.14) and
(3.5) can be combinod to yield

Fe@w=[am]emw (3.16)
where
y_(t) - Col [i(t)' _C_](t)o"'o g_i(t),"'. ‘C-I(t)] » (3-]7)

and the matrix [A(t)] is defined by comparison with Eqs. (3.5), (3.14),
and (3.16). The solution of Eq. (3.16) is discussed in the foliowing

section.

"3.3 Solution of the Time-Dependent Equations

Equation (3.16) is time-differenced as foliows:

3%{ [ e (tiy) -y (t)) ] =0 [ A (tj*,)] ¢ (tj‘]) (3.18)

+ (1-0) [A(tﬁ] ¢ (1)),

341 " tj' and ¢ is an input parameter. DNote that setting

& = 1 results in a fully implicit scheme, while the Crank-Nicholson

hhere At.j g -

method is obtained with 6 = 1/2. The use of 6 < 1/2 is not allowed
since numerical stability can no longer be guaranteed in this case.

Equation (3.18) is solved by first eliminating the precursor den-
sities at the current time step from the flux equation, and then in-
verting the remaining tridiagonal matrix (witl, dimension K) using a
standard LU decomposition with forward elimination-backward substitu-
tion to solve for the current flux valyss. Once the fluxes are known at
the current time step, it is a simple matter to update the precursor
densities.

The instantaneous fission power generated in mesh cell k at time

tj is given by



e el e e L G

PK(tJ) . uaz"z""s"(tj) " (3.19)

where [l is a constant relating ficsions/sec to power in Md. In the

event of a reacior scram, the decay power PS(tJ) is also calculated: .

Pk (t,) = Py (tg) Fy (8 - t) (3.20)
where P#(tj) is the total power at time t, at which the scram occurs,
and Fo(tj'ts) is the decay heat fraction calculated from the ANS stan-
dard decay heat curve.4 The total power returned to neat conduction
segment of THOR is calculated as the sum of the contributions due to
fission and decay heat.

The neutronics time step is controlled such that the pointwise
power does not change over any time interval by more than a user-speci-
fied input parameter. The time step ‘tself is always smaller tnan or
equal to the TO time step and is in“ipendently adjusted to accommodate

important neutronic events such as prompt criticality.

3.4 Calculation of the Initial Condition

The initial condition for the transient calculation is obtained by

solving the steady-state neutron diffusion eugation written in the form

: 3 Lsf 2
- =y D(Z) =y #(2) + 1 (2) 0 (2) = T (2)e(2) (3.21)
where A 1s an eigenvalue which will be unity to a physically critical
reactor. Equation (3.21) is discretized as in Section (3.2). The re- -

sulting equations can be written in the matrix form

Me=1[e » (3.22)

wnere ¢ is a vector containing the discirete valves of the flux, [M] is a

.k

tridiagonal matrix, and [F] is a diagonal matrix of vi. values.

#105 = TICR operating system
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Equation (3.22) is solved using the powe. method:S

s(M < [r) o™V (3.23a)
(n) _ _1 <1 (n)
- ) ["] S (3.23b)

(n)
3 () o 5 (n-1) —%—IIS - (3.23¢)
1

where n denotes the fission source iteration index, and || - ||] is the
L] vector norm. The indicated matrix inversion is performed using a

direct matrix factorizatior tnchnique;5

a forward elimination, backward
substitution procedure is tnen used to calculate the fluxes at each
iteration. The iterative procedure given by Eq. (3.23) 1s accelerated
using a simple asymptotic source extrapolation tec.mique.6 (A Wielandt
iteration procedure applied to Eq. (3.22) may be more efficient than

this accelerated power method; the use of the Wielandt method to solve
Eq. (3.22) should be investigated as part of future work.) The converged
eigenvalue is equal to the effective multiplication factor (keff)' To

insure that the reactor is critical, the vxf valves are divided by keff

prior to beginning the transient calculation.

3.5 Tne Space-Dependent Feedback Model

The feedback model used in THOR is the same as that used in the

BHL-TWIGL code.’

Cross section variations with average fuel temperature
(ff). average moderator temperature (fﬁ). and average moderator void
fraction (ah) in each axial heat conduction node are represented in the

form
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- * e 'Z —
W % -1 T By, R,

B T Gy a) + Ca an) (3.2¢)
m
where I represents the absorption cross section, the fission'cross sec-
tion, or the diffusion coefficient, and the starred quantities denote
reference values. A set of.feedback coefficients | %;r ’ %%6 ' et )
and reference cross sections must be supplied by the user for each '
nuclear composition. The reference thermclyvdreulic properties are taken
to be the converged THOR steady-state properties. However, if there is
iteration between the neutronics and thermohydraulic segments during the
steady-state calculation, the thermohydraulic properties (on which the
reference cross sections are based) must be supplied by the user as well.
At each time step of the transient calculation, the thermodydraulic
properties ?f. fﬁ. and Eh are calculated using the axial power distribu-
tion from the previous time step. These new pru.erties are used in Eq.
(3.24) to update the cross sectic s, which are then used to solve for the
new axial power distribution as described in Section 3.3. A similar
transfer of information can be used during the steady-state calculation
in order to insure that the final converged critical power distribution

is consistent with the final steady-state thermohydraulic properties.

3.6 Representation of Control Rod Motion

Control rod movement as a result of a reactor scram or rod withdrawal
is modeled in the same manner® as in the BNL-TWIGL code.” A control
density fk(t) is defined as the fraction of contrgl rods present in mesh
interval k as a function of time such that 0« fk(t) < 1. The cross sec-

tions in each mesh interval are then calculated as weighted averages of



15

the 'controllcd“(tt) and "uncontrolied” (z:c) cross sections, i.e.

' k
(1) -z:c + £ () [z'c‘ -zuc] . (3.25)

(The time-dependence of the cross sections zt and Ztc due to feedback
(Eq. (3.24)) has been suppressed here.) The initial controlled and un-
contcplled cross sections for each nuclear composition and the initial
control densities fk(O) must be supplied by the user. Control rod move-
ment is represented by shifting the control density distribution at a
constant (user-specified) rod velocity. The control rods can enter from

either the top or the bottom of the core.
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4. RESULTS AND DISCUSSION

The point kinetics and space-dependent kinetics options were initially
debugged by solving simple problems for which analytical solutions can be
obtained. The neutron kinetics model has been successfully linked with
the coding for the core thermalhydraulics. A detailed description of the
input data required for the neutron kinetics model is given in Appendix A.

The input data and output for a sample problem is given in Appendix
B. This problem represents a control rod withdrawal from an initial
critical condition, and was solved using the space-dependent kinetics
option. All feedback coefficients for this sample problem were set to
zero. The reactor power is initially 3400 MW, and remains constant
during the time interval 0 < t < 0.3 s. At t = 0.3 s, a control rod is
withdrawn and the power increaces gradually until t = 2.9 s. A reactor
scram occurs at this time since the total power has reached the user-
specified trip value of 3700 MW. Following the scram, the total power
decreases rapidly until it is only 390 MW at t = 4.0 s. This sample
problem (with 28 spatial mesh points) required only 0.1 s on the BML
CDC 7600 computer to calculate the initial (critical) condition and the
transient solution shown in Appendix B.

In conclusion, the flexibility of the neutron kinetics model de-
scribed in this report allows the accurate calculation of the axial
power distribution for a wide ranée of reactor transients. Future work
should include the extension of the l-group space-dependent kinetics
model to include 2 prompt neutron energy groups. The 2-group model
would thus eliminate the need to collapse the often available 2-group
cross section and feedback data in order to obtain the 1-group constants.

Furthermore, the 2-group model would also provide a mcre accurate



representation of the significantly different effects on the fast and
thermal cross sections due to changes in the core thermohydraulic

properties.

17
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APPENDIX A: PREPARATION OF INPUT DATA

The following data for the neutron kinetics calculation must be
supplied by the user:
CARD 1
Format: 1615

ICALC Calculation Uption:

1 for table look-up method

2 for point kinetics

i

3 for space-dependent kinetics
CARD 2 (omit if ICALC # 1)
Format: 1615
NTPTS No. of time points at which either total power (ICALC = 1)
or reactivity (ICALC = 2) are specified.
CARD 3 (omit if ICALC # 1)
Format: 8E 10.0
TPT(1), POWT(1), ...., TPT(NTPTS), POWT(NTPTS)
A sequence of tine (sec) intervals and corresponding total powers (MW).
CARD 4 (omit if ICALC # 2)
Format: 15,3£10.0, I5
NTPTS No. of time intervals
GENT Prompt neutron generation time (sec)
TBETA Total delayed neutron fraction
POWER Initial total power (M)
IREAC Option of reactivity input
= 0 for table look-up

= |1 for feedback calculation
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CARD 5 (omit if ICALC # 2)

F.rmat: 8E10.0

A s jquence of time (sec) intervals and corresponding reactivities ($).
TP1:1), POWT(1), ...., TPT(NTPTS), POWT(NTPTS)

CARD 6 (omit if ICALC # 2 or IREAC # 1)

Format: 8E10.0

Point kinetics feedback coefficients [Eq. (2.11)]
PKFBC(1) [°K'1/2] with respect tc changes in the fuel temper ture
PKFBC(2) [°K']] with respect tc changes in the moderator temperature

PKFBC(3) [(g/cn3)'1] vith respect to chanoes in the moderator density
CARD 7 (omit if ICALC # 3)

Format: 1615
NOVL No. of overlay regions (<6)
NCP No. of different compositions
NLP No. of mesh points in lower plenum

NCORE No. of mesh points in core

NUP No. of mesh points in upper plenum

NONG No. of delayed neutron groups (0 < NDNG - 6)
IMOVE Control rod motion

-1 for withdrawal

0 for no motion

1 for scram

INIT Initial power shape

0 for read

1 for calculation
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CARD 8 (omit if ICALC # 3 or INIT # 1)
Format: 215, 3E10.0
ITERSS Iterate between neutronics and thermalhydraulics at steady-

state.

= 0 yes

=1 no
IMAX Maximum No. of steady-state iterations
ERRSS Pointwise convergence criterion at steady-state
ERRSE Source extrapolation criterion (use 0.1)

CARD 9 (omit if ICALC # 3)
Format: 15, 3E10.0

HSMAX Maximum No. of neutronics time steps per thermohydraulics time
step

EPS Error test constant

THET Time-differencing theta

CARD 10 (omit if ICALC # 3)
Format: 8E10.0

VEL Weutron velocity (cr/sec)
XU Average number of neutrons per fission
XNORM Fissions to power conversion (3.203 x 10']7)

POWER Initial power (MW)
CARD 11 (omit if ICALC # 3)
Format: I5, 3E10.0

NTER Control rods enter from:

-1 for top

1 for bottom
PTRIP Overpower trip value (MW)

VSCRAM Control rod scram velocity (cm/sec)
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CARD 12 (omit if ICALC # 3 or IMOVE = 0)
Format: B8E10.0
TMOVE Time when scram or withdrawal is initiated (sec).
CARD 13 (omit if ICALC # 3 or IMOVE # -1)
Format: I5, 3E10.0

IRE Control bank where a rod or a group of rods is withdrawn
FRE Fraction of control density of the withdrawn rod(s)

VRE Withdrawn rod velocity (cm/sec)

DRE Duration of rod withdrawal (sec)

CARD 14 (omit if ICALC # 3)
Format: 1615
NPP No. of piecewise constants of initial control density pro-
file. [f(0), Eq. (3.25)].
A sequence of pairs of mesh points bounding each different piecewise con-
stant,
121(1), 122(1), ..., 1Z1(NPP), IZ2(NPP).
CARD 15 (omit if ICALC # 3)
Format: B8E10.0
FPP(1), ..., FPP(NPP)
Piecewise constants for initial control density p;ofile.
CARD 16 (omit if ICALC # 3)
Format: 315, 7D10.0
NLPT Left hand boundary of region
NRPT Right hand boundary of region
NCOMP(NR) Nuclear composition in each region

DZ(NR) Width of each mesh interval for each region (cm)
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CARDS 17-24 contain the nuclear cross sections and feedback data [-

Eq. (3.24)]. The second subscript in each array denotes the cross sec-

diffusion coefficient

tion type: |
2 = absorption cross section
3 = nu time fission cross section.
Hence, for example,

REFXS(NC,1) = Diffusion coefficient for composition NC (cm)

REFXS(NC,2) = Absorption cross section for composition NC (cm'])
REFXS(NC,3) = Nu times fission cross section for composition Nc(cm']).

CARDS 17 (omit if ICALC # 3)

Format: 8E10.0

Cross sections at zero void (uncontrolled)

1 card for each nuclear composition (NC)

REFXS(NC,1), REFXS(NC,2), REFXS(NC,3)

CARDS 18 (omit if ICALC # 3)

Format: 8E10.0

Cross sections of zero void (controlled)

1 card for each nuclear composition (NC)

REFXS(NCP + NC,1), REFXS(NCP + NC,2), REFXS(NCP + NC,3)

CARDS 19 (omit if ICALC # 3)

Format: B8E10.0

Linear coefficients for void effect (uncontrolled)

1 card for each nuclear composition (NC)

VOID(NC, 1, 1), VOID(NC, 2, 1) VOID(NC, 3, 1)

CARDS 2Q (omit if ICALC # 3)

Format: 8E10.0

Linear coefficients for void effect (controlled)



1 card for each nuclear composition (NC)
VOID (MCP + NC, 1,1), VOID(NCP + NC, 2,1), VOID(NCP + NC, 3,1)
CARDS 21 (omit if ICALC # 3)

Format: B8E10.0
Quadratic coefficients for void effect (uncontrolled)

1 card for each nuclear composition (NC)

VOID(NC,1,2) VOID(HC,2,2), VOID(NC,3,2)

CARDS 22 (omit if ICALC # 3)

Format: 8E10.0

Quadratic coefficients for void effect (controlled)

1 card for each nuclear composition (NC)

VOID(NCP + NC, 1,2), VOID(NCP + NC, 2,2), VOID(NCP + NC, 3,2)
CARDS 23 (omit if ICALC # 3)
Format: B8E10.0

Fuel temperature coefficients (cm'] °K°]/2)
1 card for each nuclear composition (NC)
FBC(NC,1,1), FBC(NC,2,1), FBC(NC,3,1)
CARDS 24 (omit if ICALC # 3)

Format: B8E10.0

Coolant temperature coefficients (cm'] °K'1/2)

1 card for each nuclear composition (NC)
FBC(NC,1,2), FBC(NC,2,2), FBC(NC,3,2)

CARDS 25 {(omit if ICALC # 3 and ITERSS # 1)
Format: 8E10.0

Reference thermohydraulic properties [Eq. (3.24)]
1 card for each nuclear composition

REFP(NC,1) = Fuel temperature (°K) for composition NC
REFP(NC,2) = Moderator temperature (°K) for composition HC



REFP(NC,3) = Void fraction for composition NC
CARD 26 (omit if ICALC # 3)

Format: 8E10.0

Group delayed neutron fractions,fﬁ

BETA(1), ..., BETA(NDNG)

CARD 27 (omit if ICALC # 3)

Format: B8E10.0

Group delayed-neutron decay constants, ) (sec'])
DECAY(1), ..., DECAY(NDNG)

CARD 28 (omit if INIT = 1)

Format: 8E10.0

Initial power shape

FLUX(1), ..., FLUX(M),

where M is the total number of meshpoints.
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APPENDIX B:

B.1 Sample Input Data

REOK
3
K - 2 24
o 500 1 OE=05
X2 0.2% .
2 AEAOS 2.40
-1 3,5%E403
0.3
1 » 2
1% 20
k.| v 4
L 2 |
k. 2 2
27. 2| 3
) L0 | e e
3.0 Q,0F-N2
0,0 .0
0,0 0,0
0,0 0.0
0,0 0.0
N, n N, 0
NN RINR}
1.0 1 . NE~N]
1.0 i SR~
0. N £y )
NN N,0
n.6 N0
.0 0.0
A n,n
0.0 00
2, 8SNE-=0A 1 ,4$8E-03

1 (24E-02 3.09E-02

- .

1006'01
1:0

3.203E-17
150,
195,

2z 24

'
132 :5
1'\ =
12,5

0. 0E+00
0O, OE 4010
0,0

0,0
0.0
0,0

0,0

Nn. N

1. 0F -0
1. 0F-01
0.0

0.0

AN

AN

0,0

0.0

1. A7€-07F

% e A

e

.
8

ot | ]

3., 4E+03

94E-0T

OLE~O1

2
1

SAMPLE INPUT AND QUTPUT

s SNE-04
L1 AF NN

3, 20E-NA
T, OO0
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B.2 Sample Qutput

FEACTOR FOWER CALCULATED USING SPACE-DEFENDENT KINETICS®
CaRD 13

NO, OF OVERLAY FEGIONS = 3
NUMBER 0OF DIFFERENT COMPOSITIONS = =
Nu. OF MESH FOINTS IN LOWER PLENUM = =
NO. OF MESH FOINTS IN CORE = 24
MO. OF MESH FOINTS IN UPFER PLENUM = 2
NO. OF DEL 3YED NEUTRON GROUPS = &
CONTROL ROD MOTION

(=1/0/1 = WITHDRAWAL/NO/SCRAM) = ~1
INITIAL FOWER SHAPE (0/1 = READV/CALC.) = 1

CARD 22
ITERATE BETWEEN NEUTRONICS AND THERMO-
HYDRAULICS AT $-87 (0/1 = NO/YES) = 0

MAXIMUM NO. OF STEADY-STATE ITERATIONG = SOD
FOIMTWISE CONVERGENCE CRITERION AT 53-8 1,00E-0%

i i

SOURCE EXTRAFPOLATION CRITERIONM L. O0E-01
CwkD X%
MAXTIMUM NO. OF MNEUTRONICS TIME STEPS
PER THERMOHYDRAULICS TIME STEF = S
ERROR TEST CONSTANT =  2,50E-01
TIME-DIFFERENCING THETA = 1.9
carn 4
MEUTRON VELOCITY 2+ 20E+95

AVG, MO, OF NEUTRONS PER FISSIOM
FISSIONS TO FOWER CONVERSIOM
Capn $1

FOD ENTERS FROM (=1/1=TOF/BOTTOM)

2., A0E 400
3 0 :an"'l b

[N T 1]

i
|

OVERFOWER TRIFP VALUE (MW) = 3.55E+03
SCRAM VELOCITY (CM/SEC) = =1.50E4+02
UARTY &7
IimkE WHEN SCRAM OR WITHORAWAL I3
INITIATED =  F,0N0E-01
CAarD 73
COMTEOL BANK WHERE A ROD OF a4 GROUP
UF RODS IS WITHDRAWN = 1
FRACTION OF CONTROL DENSITY OF
FHE WITHDRAWN RODSS & LT
WITHORAWH FOD VELDCITY (TMZSEC) = 1 V9EE4O2
QURATION QF ROD WITRORAWGL SEC) =00 R s O 0
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MizeH AND COMPOSITION DATA!?

OUERLAY ZFOINT TO ZFQINT COMPOSTITION NELTA
1 1 2 1 12,5000
. 3 26 2 12,5000
3 27 28 1 12.5000
LRSS SECTIONS AT ZERD VOID  (UNCONTROLLED) !
COMFOSITION DIFFUSION ARSORFTION NU FISSION
1 1., 0000E+00 8,0000E-02 0.
2 1.,0000E+00 1.0000E~-01 1.,0000E~-01
CROSS SECTIONS AT ZERO VOID (CONTROLLED)
COMFOSITION DIFFUSION ARSORFTION NI FISSION
1 1,0000E+00 8,0000E-02 0.
n 1.,0000E400 1.2000E~01 1.0000E~-0D1
LINEAR COEFFICIENTS FOR VOID EFFECT  (UNCONTROLLEDD
COMPOSITION DIFFUSION ARSORPTION NU FISSION
1 0, 0, 0.
2 D 0, s I
LINEAR COEFF CIENTS FOR VOID EFFECT  (CONTROLLED) S
COMPOSITION DIFFUSION ARZORFT LON NU FISSION
1 O ’ N » ’,\ .
- 0. 0. 0,
OUALDRATIC COEFFICIENTS FOR VOID EFFECT  (UNCONTROLLET)?
COMPOSITION DIFFUSTON ARSORFTION NU FISSION
1 0. 0. 0.
- 0 . () . ) .

OQUANRATIC COEFFICIENTS FOR VOID EFFECT  (CONTFOLLED!:

COMPOSITION DIFFUSION ARSORFTION NU FISSI0N
1 N, 0. 0,
2 0 ‘ ‘3 . ” .

FUEL TEMPERATURE COEFFICIENTS?

COMFPOSITION DIFFUSTION ABSORFTION N FISSTON
1 0. O, 0,
- 0. 0, 0.

-

COOLAMT TEMPERATURE COEFFICIENTS?

COMFOSITION DIFFUSTON ABSORFTION NU FISSION
0, 0. O,
s O 05 Ny,

DELAYED NEUTRON DATA?

I BETACI) NECAY (L)
! 2, E00E=~04 1,240E-07
e 1.6V0F-07 T NSOFE -
3 1 sA7DE~DY 1, 110E~-21
: 2, 940E 0T 3 A1OE =01
Q, SO0FE ~0A 1. 1AOE &

INOE =) Y S OE LD

TeErTy = SONE T
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MTOH LAYDUT
MESH INITIAL CONTROL HEAT CONDUCT10M
INTERUAL DENSITY COMPOSITION NODE
28 .5 1 e
. 27 V5 1 3
26 .5 2 &
25 V5 2 &
B 24 .5 9 &
23 .4 2 &
22 .4 ¢ =
21 .4 2 5
i 20 .4 2 5
19 3 2 5
19 .3 2 4
_ 17 .3 2 4
; 14 0.0 2 4
15 0.0 2 4
! 14 0.0 2 3
13 0,0 2 3
l 12 0.0 2 1
! 11 0,0 2 3
. Lo 0,0 2 2
o 2.0 2 -
3 0.0 2 2
2 0,0 2 2
é 0.0 2 1
5 0.0 2 1
4 0.0 2 1
3 0,0 2 1
2 0.0 1 v
1 0.0 1 7
| Tim FISETON SOURCE ITERATIONS
FISSION SOURCE COMUERGENCE = 9, 48E~04
FIMal STEADY-STATE CONDITIONS:
POINTUTISE UALDES OF POWER!
£ . Dy 2 0, 2 7.5389E401 4 1.4243E407
L 2.5A24E4072 7 . 2,9829E412 8  3,2794E407 9 F_A40IELOD

11 3« IZ28E+02 12 3.04688E+L2 13 2.867756E402 14 2» I753E 02
14 ?.2453E+01 17 2v27290E101 18 S.8170E4+00 1 1,3709E400

. 21 S,7401E-02 22  1.,1804E~02 23  2,40%26-03 24 4,22778-09
24 2815E-05 27 0, 28 0.

EFFECTIVE MULTIPLICATION FACTOR
, INTTIAL REACTOR FOWER (MWD

LRP73515
3, A00E407

HE

e e e T S - e < Ry — - = - — e — = — iy Se—



T R N T S

B R R o T e e T P TN TS T ara—

TRANSTENT RESULTS?

TIiMHE = 1.000E-01

TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIHE
TIME
T IME
TImE
TIME
TIME
TIME
TIME
TIME
TTHME
TIMNE
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TINE
TImE
TIME
TIME

TR O ]

CE L

% i

i

# B B B H A # H WA

i @ i

4 0 8 H i

2,000E-01
3.000E-01
4,000E-01
S.000E-01
&.0O00E-01
7,000E-01
8.000E-01
?.000E-01
1.000CE+00
1. 100E+Q0
1.200E400
1, 300E+00
1.400E400

SO0E+290
1-&00"+0ﬁ
1. 800E+OU
1,?00E400
2,000E4+00
2.100E+00
2.200E400
2+ 300E+00
“.400F+00
2, B00E+00)
2, 800E400
c- LI Ong *00
2,800E+00
2.,900E4+00

QNOE+00
3,100E4+00
3, 200E+4+00
3. 300E+0D
3. 400E400
3,500E+00
3, 400E400
3. 7O0E+00
1. 300E+00
3. .INOE+OD
A NNDOBEF 40N

REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REALTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
FEACTOR
REACTOR
REACTOR

POWEFR
FOWER
FOWER
FOWER
FOWER
FOWER
POWER
POWER
FOWER
FOWER
POWEF
FOWER
FOWER
POWER
FOWER
FOWER
FOWER
FOWER
FONER
FOWNER
FOWER
FOWER
FOLKER
FOWER
FOMER
FOWER
FOWER
FOUER
FONER

REACTORFOWER =

REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOR
REACTOE
REACTOR
REACTOR

FOWER
FOWER
FOWER
FOWER
FOWER

TER
EOMER
FOWER
FOWER
FOWE R

oW OB OB oWl O oMoW R OH®H BB NN

O I O

W o0 OH

i

R O oW W

o0

T

tH

3,400E+03
3,400E+03
3.,400E+03
3,48%E403
349126403
3.5146E4+03
3.519E+03
3.S2LE$03
J.53JE+03
3, 523E+03
3.327E+403
S2BE+03
3.,530E+03
3, 5326403
3. 332E4+02
3,933E+03
...q.5 E+03
3+ SI6EH+03
3+ S38E403
3,539E+03
J,5940E+03
3.542E+03
3,943E+03
3...!44F"')~
3+ 5940E403
3.9547E403
3.548E403
2,.549E403
2. 951E4002

. .‘.qu.“n’

2,8%4E403
2. 457E407
2, 057E4+03
1.672E403
1,271E4073
. 5ILE4O2
7.171E402
5, G4 7E O
4, 52LE4N2
3,897E402



