A User's Guide to EPIC, a Computer Program to Calculate the Motion of Fuel and Coolant Subsequent to Pin Failure in an LMFBR

by

P. A. Pizzica, P. L. Garner, and P. B. Abramsor.

\qquad
ARGCNNE NATIONAL LABORATORY, ARGONNE, ILLINOIS
Prepared for the U. S. NUCLEAR REGULATORY COMMISSION under Interagency Agreement DOE 40-550-75

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance, with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Carnegie-Mellon University
Case Western Reserve University
The Univerinty of Chicage
University of Cincinnati
Illinois Institute of Technolopy University of Illinois Indiana University The University of Iowa Iowa State University

The University of Kansas Kansas State University Loyola University of Chicago Marquette University The University of Michigan Michigan State University University of Minnesota University of Missouri Northwestern University University of Notre Dame

The Ohio State University Ohio University
The. Pennsylvania State University Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin-Madison

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assun, es any legal liability or responsibility for any third party's rse, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Available frum
GPO Sales Program
N. H.S. Nuclear Regulatory Commission Washington, D.C. 20555
and
National Technical Information Service
Springfield, Virginia 22161

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonue, Illinois 60439

```
A User's Guide to EPIC, a Computer Program to Calculate the Motion of Fuel and Coolant Subsequent to Pin Failure in an LMFBR
```

by
P. A. Pizzica, P. L. Garner, and P. B. Abramson

Applied Physics Division

[^0]NRC FIN No. A2015

A User's Guide to EPIC, a Computer Program to Calculate the Motion of Fuel and Coolant Subsequent to Pin Failure in an LMFBR

by
P. A. Pizzica
P. L. Garner
\therefore B. Abramson

ABSTRACT

The computer code EPIC models fuel and coolant motion which results from internal fuel pin pressure (from fission gas or fuel vapor) and possibly from the generation of sodium vapor pressure in the coolant channel subsequent to pin failure in a liquid-metal fast breeder reactor. The EPIC model is restricted to conditions where fuel pin geometry is generally preserved anc is not intended to treat the total disruption of the pin structure. The modeling includes the ejection of molten fuel from the pin into a coolant channel with any amount of voiding through a clad breach which may be of any length or which may extend with time. One-dimensional Eulerian hydrodynamics is used to treat the motion of fuel and fission gas inside a molten fuel cavity in the fuel pin as well as the mixture of two-phase sodium and fission gas in the coolant channel. Motion of fuel in the coolant channel is tracked with a type of particle-in-cell technique. EPIC is a Fortran-IV progran requiring 400 K bytes of storage on the IBM 370/195 computer.

NRC FIN No.

Title

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY 1

1. Introduction 3
2. Mathematical Models and Numerical Methods 7
2.1 The Fuel Pin 7
2.2 The Coolant Channel 16
2.3 The Pressure-Equilibration Ejection Model 32
3. Programming Considerations 37
3.1 Description of Subroutines and Functions 37
3.2 Sequence of Execution 40
3.3 Facility Requirements and General Operational Information 40
4. Input and Output Description 43
4.1 Input Description 43
4.2 Output Description 53
5. Sample Problem 57
5.1 Description of Input for Sample Problem 57
5.2 Description of Output for Sample Problem 69
APPENDIX A: Energy Division Algorithm 89
APPENDIX B: Material Properties 93
APPENDIX C: Dictionary of VAriables 97
APPENDIX D: List of Symbols Used in Text 111
ACKNOWLEDGEMENTS 114
REFERENCES 115
6. Schematic of the EPIC Model. 4
7. Schem c Showing the Sample Problem Specifications. 58

EXECUTIVE SUMMARY

The EPIC (Eulerian Particle In Cell)computer code was written to calculate material motions following pin failure in a Liquid Metal Cooled Fast Breeder Reactor (LMFBR) during a loss-of-flow (LOF) transient as well as a transient overpower (TOP) accident. EPIC assumes that the pin structure is generally intact after pin failure such as would be the case in the burst failure conditions resulting from fission gas pressure or differential expansion loading of the cladding. This would result in a localized cladding breach allowing communication between the interior of the fuel pin and the coolant channel. The EPIC model is inappropriate for pin failure which involves a massive disruption of pin structure such as would occur when the cladding is in a partially or fully molten state.

The EPIC model is appropriate for pi.l failures in TOP conditions. It is also capable $0^{\text {* }}$ modeling pin failures in middle and lower power subassemblies under loss-of-flow-driven TOP (LOF-TOP) conditions. If a fast reactor core voids incoherently enough and if there is sufficient sodium void reactivity insertion from the higher power subassemblies to bring the reactor into the vicinity of prompt-critical, a rapid power rise will result so that middle and lower power subassemblies will experience conditions similar to those in a TOP with some or all of the sodium coolant still present. This LOF-TOP situation is not unusual in larger fast reactors with honogeneous cores. It is not inconceivable that failures near the center of the core may occur, so that the calculation of fuel motion is crucial to the determination of reactivity effects.

To a large extent, EPIC is a parametric code. Our lack of knowledge of the physical processes involved requires this approach. Many of the significant features of the model are parameterized, and often only a partial mechanistic treatment is done. For example, initial cladding rip length, fuel particle size, and most heat transfer rates must be specified as input. This parametric approach provides a certain flexibility in the use of the code, and it also reflects a reluctance to treat highly complicated and poorly understood phenomena with models that are supposedly accurate and well-founded but actually make highly significant but unjustifiable assumptions.

EPIC models a single fuel pin with its associated coolant which represents part of or all of a subassembly or a group of similar subassemblies under pin failure conditions. This is similar to the approach used in the SAS4A accident analysis code (and also for the whole SAS code series). A number of such representative pins can take into account incoherencies within or among subassemblies due to different power levels, voiding histories, coolant flow, etc. The EPIC code begins at the point of cladding failure and models the subsequent events. There must, of course, be some molten fuel in the fuel pin at the start of the calculation since EPIC models the motion of fuel and the concomitant motion of sodium.

A one-dimensional Eulerian calculation of the hydrodynamics inside a moltenfuel cavity is explicitly coupled to a one-dimensional Eulerian calculation in the coolant channel by means of a fuel-ejection model. This ejection model
the Eulerian cell or cells in the fuel pin which delimit the failure length and in the corresponding Eulerian cell or cells in the coolant channel directly in front of the pin failure cells.

ERIC uses a full donor cell spatial differencing scheme with cell-centered densities, pressures and temperatures, and with cell-edge velocities. A combination of explicit, semi-implicit, and fully implicit differencing in time is used. An explicit calculation is done to predict end of time step values; these are then used to compute average values over the step. The average values are in turn used to compute updated end-of-time-step values. There is an option to make the time differencing strictly explicit after a specified time point, as for example, when conditions are no longer changing rapidly. Velocities in both the pin and channel are computed implicitly ia time, however. These are computed on each pass which is semi-implicit for the rest of the variables besides velocity or when the calculation is fully explicit in time for the variables besides velocity.

This user's guide describes: the mathematical models used to specify the physical phenomena including the numerical approximations employed the structure of the computer program and the various subprograms the input specifications and output; and a sample problem which will serve as a paradigm for the user.

1. INTRODUCTION

The EPIC (Eulerian Particle In Cell)computer codel,2 was written to calculate saterial motions following pin failure in a Liquid Metal Cooled Fast Breeder Reactor (LMFBR) during a loss-of-flow (LOF) transient as well as a transfent overpower (TOP) accident. EPIC assumes that the pin structure is generally intact after pin failure such as would be the case in the burst failure conditions resulting from fission gas pressure or differential expansion loading of the cladding. This would result in a localized cladding breach allowing communication between the interior of the fuel pin and the coolant channel. The EPIC model is inappropriate for pin failure which involves a massive disruption of pin structure such as would occur when the cladding is in a partially or fully molten state.

The EPIC model is appropriate for pin failures in TOP conditions. It is also capable of modeling pin failures in middle and lower power subassemblies under loss-of-flow-driven TOP (LOF-TOP) conditions. If a fast reactor core voids incoherently enough and if there is sufficient sodium void reactivity insertion from the higher power subassemblies to bring the reactor into the vicinity of prompt-critical, a rapid power rise will result so that middle and lower power subassemblies will experience conditions similar to those in a TOP with some or all of the sodium coolant still present. This LOF-TOP situation is not unusual in larger fast reactors with homogeneous cores. ${ }^{3,4}$ It is not inconceivable that failures near the center of the core may occur, ${ }^{5}$ so that the calculation of fuel motion is crucial to the defermination of reactivity effects.

To a large extent, EPIC is a parametric code. Our lack of knowledge o. the physical processes involved requires this approach. Many of the significant features of the mode are parameterized, and often only a partial mechanistic treatment is done. For example, initial cladding rip length, fuel particle size, and most heat transfer rates must be specified as input. This parametric approach provides a certain flexibility in the use of the code, and it also reflects a reluctance to treat highly complicated and poorly understood phenomena with models that are supposedly accurate and well-founded but actually make highly significant but unjustifiable assumptions.

EPIC models a single fuel pin with its associated coolant which represents part of or all of a subassembly or a group of similar subassemblies under pin failure conditions (see Fig. 1). This is similar to the approach used in the SAS $4 A^{6}$ accident analysis code (and also for the whole SAS code series). A number of su:h representative pins can take into account incoherencies within or among subassemblies due to different power levels, voiding histories, coolant flow, etc. The EPIC code begins at the point of cladding failure and models the subsequent events. There must, of course, be some molten fuel in the fuel pin at the start of the calculation since EPIC models the motion of fuel and the concomitant motion of sodium.

A one-dimensional Eulerian calculation of the hydrodynamics inside a moltenfuel cavity is explicitly coupled to a one-dimensional Eulerian calculation in the coolant channel by means of a fuel-cjection model This ejection model equilibrates the pressure (instantaneously at the end of a given time step) in

Fig. 1. Schematic of the EPIC Model.
the Eulerian cell or cells in the fuel pin which delinit the failure length and in the corresponding Eulerian cell or cells in the coolant channel directly in front of the pin failure cells.

EPIC uses a full donor cell spatial differencing scheme with cell-centered densities, pressures and temperatures, and with cell-edge velocities. A combination of explicit, semi-implicit, ${ }^{7}$ and fully implicit differencing in time is used. An explicit calculation is done to predict end of time step values; these are then used to compute average values over the step. The average values are in turn used to compute updated end-of-time-step values. There is an option to make the time differencing strictly explicit after a specified time point, as for example, when conditions are no longer changing rapidly. Velocities in both the pin and channel are computed implicitly in time, however. These are computed on each pass which is semi-implicit for the rest of the variables besides velocity or when the calculation is fully explicit in time for the variables besides velocity.

This user's guide describes: the mathematical models used th specify the physical phenomena including the numerical approximations employed (Section 2); the structure of the computer program and the various subprograms (Section 3); the input specifications and output (Section 4); and a sample problem which will serve as a paradigm for the user (Section 5).

2. MATHEMATICAL MODELS AND NUMERICAL METHODS

2.1 The Fuel Pin

The time-dependent transient response of the fuel pin is calculated in r-z space as depicted in Fig. 1. This choice of coordinates is appropriate for the cylindrical shape of the undisrupted fuel pin. The space containing the pin is divided into an arbitrary number I of axial cells having equal length. From the axis to the outer surface of the pin, each axial cell is further divided into concentric shells. The partition is done so that an arbitrary number $\ell_{\max }$ of equi-volume radial subdivisions result in each axial cell. The Eulerian mesh in which the calculation of the pin variables is carried out thus contains $I \cdot \ell_{\max }$ subcells. The radial subdivisions of each axial cell are referred to as radial subcells. (The option exists to carry out the calculation without radial division of the space containing the pin.)

Unlike the space in which the fuel pin is described, the coolant channel has no defined radial subdivisions. The channel is considered to lie parallel to the fuel pin. There is no connection in the ralculation between the fuel outei radius and the cladding inner and outer radius. The cladding outer radius is only used to calculate the coolant flow area. The cladding inner radius is used to calculate the cladding mass for the cladding temperature calcuation. It is assumed that the user's input is realistic and self-consistent, but there is no necessary internal inconsistency in the code between an outer fuel radius which varies axially and inner and outer clad radii which are constant axially. The length of the coolant channel is divided into an integral number of axial cells of the same length as is used in the pin. Each channel cell lies adjacent to its corresponding axial pin cell and is capable of communicating with it when the pin cell contains some molten fuel and is an "ejection cell." Further discussion of the coolanc channel is deferred to a later section.

It is assumed that some calculation of the transient prior to pin failure exists, and that initial values at pin failure of all the significant variables associated with each mesh cell are known. An axial power profile together with a time-dependent power function that specifies the instantaneous power as the transient proceeds are provided by the user. It is assumed that there is a pocket of molten fuel in the pin at pin failure (the point where the EPIC calculation begins). This pocket of molten fuel may increase in size during the EPIC calculation. During each time step, the condition of each radial subcell is examined and updated. Whenever a radial subcell becomes fully liquid, it is added to the molten portion of the axial cell which contains it. Axial mesh structure is thus preserved in the molten fuel cavity, although radial mesh structure is eliminated in the molten region of each axial cell.

The molten fuel cavity may thus have a shape such as that shown in Fig. 1 at the point of pin failure when the EPIC calculation begins. If the fuel has been irradiated, it is assumed that a known amount of fission gas is entrained in the solid fuel. The gaseous fission products are released when the solid fuel melts into the molten fuel cavity during the transient and are added to the fission gas already present in the cavity.

The iiquid fuel and fission gas are considered to exist as a froth in the molten fuel cavity. The two components of the froth are always treated as having the same temperature. Flow of the froth is treated as homogeneous.

Two equations are written to describe the instantaneous composition of the froth, one for the fission gas and the other for the liquid fuel. The continuity equation for the fission gas in the molten region of any axial cell i is

$$
\begin{align*}
\frac{\partial}{\partial t} & \left(v_{p}(t, z) \cdot \rho_{f g, p}(t, z)\right)+\frac{\partial}{\partial z}\left(v_{p}(t, z) \cdot \rho_{f g, p}(t, z) \cdot u_{f r, p}(t, z)\right) \\
& =S_{f u, \text { melt }}(t, z) \cdot X(z)-S_{f g, e j}(t, z), \tag{2.1.1}
\end{align*}
$$

$t=$	time			
$z=$	axial coordinate			
$V_{p}=$	volume of fuel pin cavity in axial cell to which equation			
	is applied	\quad		
---:	:---			
$\rho_{f g, p}=$	smear density (total mass in cell divided by volume of cell) of			
	fission gas in cell to which equation is applied $\left(V_{p} \cdot \rho_{f g, p}\right.$ is			
	therefore the mass of fission gas in the cell)			

The finite difference form of Eq. (2.1.1) is

$$
\begin{align*}
\frac{1}{\Delta t} & \left(v_{p}^{i, n+1} \cdot \rho_{f g, p}^{i, n+1}-v_{p}^{i, n} \cdot \rho_{f g, p}^{i, n}\right)+\frac{1}{\Delta z} \cdot(\text { TOP-BOT }) \\
& =S_{f u, \text { melt }}^{i} \cdot x^{i}-s_{f g, e j}^{i} \tag{2.1.2}
\end{align*}
$$

$$
\begin{aligned}
& T O P= \begin{cases}\overline{v_{p}^{i} \cdot \rho_{f g, p}^{i} \cdot U_{f r, p}^{i+1 / 2}} & \text { if } \overline{U_{f r, p}^{i+1 / 2}}>0 \\
\overline{v_{p}^{i+1} \cdot \rho_{f g, p}^{i+1} \cdot U_{f r, p}^{i+1 / 2}} & \text { if } \overline{U_{f r, p}^{i+1 / 2}}<0\end{cases} \\
& B O T=\left\{\begin{array}{l}
\overline{v_{p}^{i-1} \cdot \rho_{f g, p}^{i-1} \cdot U_{f r, p}^{i-1 / 2}} \\
\overline{v_{p}^{i} \cdot \rho_{f g, p}^{i} \cdot U_{f r, p}^{i-1 / 2}} \\
\Delta t=\text { time point } n \\
\Delta z=\text { Eulerian cell length }
\end{array}\right. \\
& \begin{array}{ll}
U_{f r, p}^{i-1 / 2}>0
\end{array} \\
& \Delta z \overline{U_{f r, p}^{i-1 / 2}}<0
\end{aligned}
$$

where the bars indicate time averages; i.e. $\bar{z}=\left(z^{n+1}+z^{n}\right) \cdot 1 / 2$ and for products, $\overline{W \cdot z}=\left(w^{n+1} \cdot z^{n+1}+w^{n} \cdot z^{n}\right) \cdot 1 / 2$, where the n values are at the beginning of the time step and the $n+1$ values are at the end. All quantities are cell centered except the velocities, which are at the cell edge, $U^{i+1 / 2}$ being at the top of cell $i, U^{i-1 / 2}$ being the velocity of the lower boundary of cell i. The spatial differencing is a varient of the full donor-cell technique made compatible with semi-implicit differencing in time. ${ }^{7}$ Semi-implicit differencing means that initially a strictly explicit calculation is done, i.e. the t^{n+1} values are set equal to the t^{n} values. Then the values at t^{n+1} that were generated explicitly are used to form average values over the time step as above. New values are then generated for t^{n+1} and the process ends, although it could be continued.

The continuity equation for molten fuel in the cavity is

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(V_{p}(t, z) \cdot \rho_{f u, p}(t, z)\right)+\frac{\partial}{\partial z}\left(V_{p}(t, z) \cdot \rho_{f u, p}(t, z) \cdot U_{f r, p}(t, z)\right) \cdot Y \\
& =S_{f u, m e l t}(t, z)-S_{f u, e j}(t, z), \tag{2.1.3}
\end{align*}
$$

$\rho_{\mathrm{fu}, \mathrm{p}}=$ fuel emear density (i.e., the mass of fuel in a cell divided by the voiume of the cell)
Y $=$ user-specified function which mofels fuel-fission gas slip during convection. Y is the ratio of the volume of fuel to the volume of fission gas convected across the boundaries of the cell
$S_{f u, e j}=$ the amount of fuel ejected during the time step
The finite difference form of Eq. (2.1.3) is

$$
\begin{align*}
& \frac{1}{\Delta t}\left(V_{p}^{i, n+1} \cdot \rho_{f u, p}^{i, n+1}-v_{p}^{i, n} \cdot \rho_{f u, p}^{i, n}\right)+\frac{1}{\Delta z}(T O P-B O T) \cdot Y \\
& =S_{f u, m e l t}^{i}-S_{f u, e j}^{i}, \tag{2.1.4}
\end{align*}
$$

$$
T O P= \begin{cases}\overline{v_{p}^{i} \cdot \rho_{f u, p}^{i} \cdot U_{f r, p}^{i+1 / 2}} & \text { if } \overline{U_{f r, p}^{i+1 / 2}}>0 \\ \overline{v_{p}^{i+1} \cdot \rho_{f u, p}^{i+1} \cdot U_{f r, p}^{i+1 / 2}} & \text { if } \overline{U_{f r, p}^{i+1 / 2}}<0\end{cases}
$$

$$
B O T= \begin{cases}\overline{v_{p}^{i-1} \cdot \rho_{f u, p}^{i-1} \cdot U_{f r, p}^{i-1 / 2}} & \text { if } \overline{U_{f r, p}^{i-1 / 2}}>0 \\ \overline{v_{p}^{i} \cdot \rho_{f u, p}^{i} \cdot U_{f r, p}^{i-1 / 2}} & \text { if } \overline{U_{f r, p}^{i-1 / 2}}<0\end{cases}
$$

The numerical values of the variables in Eqs. 2.1.2 and 2.1 .4 must be adjusted at the end of each time step to provide input for the succeeding calculation. The source term S_{fu},melt represents the amount of liquid fuel to be added to the molten region of each axial cell as a resuit of melting of solid fuel during the time step. Whenever this occurs, the volume of the molten region of the axial cell i is also increased. Because of the placement of tie radial subcell boundaries (so as to maintain constant subcell volume), the increments of mass and volume are always integral multiples of the unit subcell, i.e.

$$
\begin{align*}
& v_{p}^{i, n+1}=v_{p}^{i, n}+\frac{1}{\ell_{\max }} \cdot \pi \cdot\left(r_{f u}^{i}\right)^{2} \cdot \Delta z \tag{2.1.5}\\
& \ell_{\operatorname{maX}}=\text { number of radial subcells in fuel at axial cell i } \\
& r_{f u}^{i}=\text { outer radius of the solid fuel at axial cell } i
\end{align*}
$$

The addition of volume as well as mass of fuel and fission gas to the molten fuel cavity is treated as follows. The temperatures of the radial subcells of residual solid fuel as well as the fractions of the heat of fusion satisfied in each subcell are continually updated during the calculation. The amount of fission energy added to each radial subcell is calculated. This additional energy changes the temperature and/or the fraction of the heat of fusion satisfied. When any radial subcell of solid fuel has become completely molten, it is added to the liquid portion of the axial cell. This means that an amount of energy equal to the total heat of fusion of the material in the radial subcell must be added after the solidus temperature is reached. Heat conduction in the solid fuel is disregarded, and only fission heating causes an addition of energy. Whenever a radial subcell of liquid fuel is added to the molten portion of an axial cell, the material is homogenized in the molten cavity, and the previous radial boundaries in the liquic region are disregarded from then on.

Note: In the general case, where mixed oxide fuel might be considered, the "heat of fusion" would be a function of the mixture ratio, as would be the solidus and liquidus temperatures. Average values for the specific heats of the solid and liquid fuels as well as a latent-heat function across the solidusliquidus region would have to be provided. Under these conditions, the criterion for addition of liquid fuel to the cavity would be attainment of the liquidus temperature in the particular radial subcell. At present, EPIC considers the fuel to be a pure substance with a unique melting point and latent heat of fusion. For a mixed-oxide fuel, average values for these quantities would have to be determined to describe the phase-change region.

The amount of energy (per unit mass) deposited by fission in any radial subcell of axial cell i during a time step is given by

$$
\begin{equation*}
Q^{i, \ell}=W^{i} \cdot \Phi^{n} \cdot \Delta t \tag{2.1.6}
\end{equation*}
$$

$Q_{i}^{i, \ell}=$	energy per unit mass at axial cell i, radial subcell ℓ over time step
$W^{i}=$	nominal power per unit mass at axial cell i
$\phi^{n}=$	normalized power level at t^{n} (a user-specified function of time)

In the solid fuel, $Q^{i, \ell} / C_{p, f u}\left(C_{p}, f u\right.$ is the specific heat of solid fuel which is a function of temperature) therefore gives the temperature rise over Δt if the particular radial subcell has not reached the solidus temperature and $Q^{i, \ell} / H_{s f, f u}$ is the fraction of the heat of fusion, $H_{s f, f u}$, that is satisfied over Δt if the cell is above the solidus temperature. After the heat of fusion has been satisfied, the mass of fuel in the radial subcell becomes part or all of the source term $S_{f u \text {,melt }}$ in Eqs. (2.1.1) and (2.1.3).

Define

$$
\begin{equation*}
Q_{e x}^{i, \ell}=Q^{i, \ell}-H_{s f, f u^{\prime}} \cdot(1-F) \tag{2.1.7}
\end{equation*}
$$

F F. fraction of heat of fusion satisfied at the beginning of the time step.

During successive time steps, the temperature of each radial subcell continues to rise as fission energy is deposited until the melting point (solidus temperature) is reached. Eventually, during some time step if enough energy is added, addition of increment Q^{1}, ℓ will carry the fuel in radial subcell $\&$ up to the melting point and begin melting the solid fuei. The factor F is the ratio of the energy in excess of the heat required to reach the melting point to the heat of fusion. If, during the next time step, the energy increment Q^{i}, ℓ is not sufficient to melt the remaining solid fuel in radial subcell ℓ, Qex will be negative and the factor F is recomputed. When Qex becomes non-negative, all of the fuel in the radial subcell is melted and the residual energy $Q_{\text {ex }}$ raises the temperature of the iiquid above the melting point. When the entire radial subcell becomes liquid, the subcell is added to the already liquid region of the axial cell and homogenized with it.

The cell temperature in the cavity is calculated as follows. There are three stages in the calculation of $T_{f u, p}^{i, n+1}$ from $T_{f u, p}^{i, n}$. Define $T_{f u, p}^{\prime}$ and $T_{f u, p}^{\prime \prime}$ as the results of the first and second stages, respectively.

$$
\begin{aligned}
& T_{f u, p}^{\prime}=T_{f u, p}^{i, n}+\frac{Q_{e x}^{i} \cdot S_{f u, m e l t}^{i} \cdot \Delta t+W^{i} \cdot \phi^{n} \cdot \Delta t \cdot v_{p}^{i, n} \cdot \rho_{f u, p}^{i, n}}{v_{p}^{i, n} \cdot \rho_{f u, p}^{i, n} \cdot C_{P, f u}} \\
& \mathrm{~T}_{\mathrm{fu}, \mathrm{p}}^{\mathrm{i}, \mathrm{n}} \quad=\text { temperature of cavity cell i at time point } \mathrm{n} \\
& \text { in } \Delta t \\
& S_{\text {fu,melt }}^{i}=\text { sum of fuel mass over radial subcells } \ell \text { which have melted } \\
& \text { into the cavity in } \Delta t
\end{aligned}
$$

Thus, $\mathrm{T}_{\mathrm{fu}, \mathrm{p}}^{\prime}$ is the temperature of the cavity cell adjusted to take into account the remainder of the heat of fusion to be satisfied, or the excess heat that is represented by the radial subcell or subcells of solid fuel melting in; $T_{f u, p}^{\prime}$ also includes the fission heating of the cell over the time step.

$$
\begin{equation*}
T_{f u, p}^{* *}=\frac{T_{f u, p}^{\prime} \cdot v_{p}^{i, n} \cdot p_{f u, p}^{i, n}+T_{m e l t} \cdot S_{f u, m e l t}^{i} \cdot \Delta t}{v_{p}^{i, n} \cdot \rho_{f u, p}^{i, n}+S_{f u, m e l t}^{i} \cdot \Delta t} . \tag{2.1.9}
\end{equation*}
$$

$T_{\text {melt }}=$ fuel melting temperature
$T_{f u, p}^{\prime \prime}$ is the equilibrated temperature of cell i after $\mathrm{S}_{\mathrm{fu}, \mathrm{melt}} \cdot \Delta t$ of fuel melt-in.

$$
\begin{align*}
T_{f u, p}^{i, n+1}= & {\left[M^{n+1} \cdot T_{f u, p}^{\prime \prime}+Y \cdot \Delta t \cdot\left(\overline{\left(v_{p}^{k} \cdot \rho_{f u, p}^{k} \cdot T_{f u, p}^{k} \cdot U_{f r, p}^{i-1 / 2}\right.}-\overline{\left.\left.V_{p}^{j} \cdot \rho \rho_{f u, p}^{j} \cdot T_{f u, p}^{j} \cdot U_{f r, p}^{i+1 / 2}\right)\right]}\right.\right.} \\
& \div\left[M^{n+1}+Y \cdot \Delta t \cdot \overline{\left(v_{p}^{k} \cdot \rho_{f u, p}^{k} \cdot U_{f r, p}^{i-1 / 2}\right.}-\overline{\left.\left.v_{p}^{j} \cdot \rho_{f u, p}^{j} \cdot U_{f r, p}^{i+1 / 2}\right)\right]} \quad\right. \text { (2.1.10) }
\end{align*}
$$

where the bars are defined as for Eq. (2.1.2)

$$
\begin{aligned}
& M^{n+1}=V_{p}^{1, n+1} \cdot \rho_{f u, p}^{1, n+1} \\
& Y=\text { ratio of volume of fuel to volume of fission gas during convection } \\
& V^{k} \cdot \rho_{f u, p}^{k} \cdot U_{f r, p}^{i-1 / 2}=\text { gains or losses from convection across the lower boundary } \\
& V^{j} \cdot \rho_{f u, p}^{j} \cdot U_{f r, p}^{i+1 / 2}=\text { gains or losses from convection across the upper boundary } \\
& k=i \text { if } \overline{U_{f r, p}^{i-1 / 2}}<0 \text { and } k=i-1 \text { if } \overline{U_{f r, p}^{i-1 / 2}}>0 \\
& j=i \text { if } \frac{U_{f r, p}^{i+1 / 2}}{k}>0 \text { and } j=i+1 \text { if } \frac{U_{f r, p}^{i+1 / 2}}{f_{f}}<0
\end{aligned}
$$

Thus, $T_{f u, p}^{i, n+1}$ is the final temperature at t^{n+1}, accounting for all convection including melt-in and all fission heating. The value of $T_{f u, p}^{i}$ has been computed in semi-implicit fashion, since the values of $V_{p}, \rho_{f u, p}$, and $U_{f r, p}$ at t^{n+1} are set equal to those at t^{n} for the first pass and then updated as discussed above. When temperatures are time-averaged at cell i, the average is formed with $T_{f u, p}^{i, n}$ and $T_{f u, p}^{\prime \prime}$. One final adjustment is made to $T_{f u, p}^{i, n+1}$. This is due to the energy loss to the fuel which results from the vaporization of liquid fuel to keep the fuel vapor pressure at saturation.

The primary justification for this two-step technique, that allows the convenient use of algebraic expressions, is that the fuel temperature in the pin (as well as the sodium temperature in the channel) varies slowly with respect to time step size and is a stable function of time. In addition the errors implicit in this procedure are small compared to the errors in the treatment of other aspects of the energy balance, e.g., the discretized radial temperature shape in the fuel pin, the neglect of heat conduction in the pin and the approximate treatment of sodiun-fuel heat transfer, and condensation in the channel.

The momentum conservation equation for the fue in the molten fuel cavity is

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(V_{p}(t, z) \cdot \rho_{f u, p}(t, z) \cdot U_{f r, p}(t, z)\right)+v_{p}(t, z) \cdot \rho_{f u, p}(t, z) \cdot U_{f r, p}(t, z) \cdot \frac{\partial}{\partial z} U_{f r, p}(t, z) \\
& =-V_{p}(t, z) \cdot \frac{\partial}{\partial z} P_{p}(t, z)-V_{p}(t, z) \cdot \rho_{f u, p}(t, z) \cdot g-S_{f u, e j} \cdot U_{f r, p}(t, z) \\
& -\frac{1}{2 D_{c}} f(\operatorname{Re}) \cdot \rho_{f u, p}(t, z) \cdot V_{p}(t, z) \cdot U_{f r, p}(t, z) \cdot\left|U_{f r, p}(t, z)\right| \tag{2.1.11}
\end{align*}
$$

where the last term on the right hand side of the expression represents a viscous drag force.

$$
\begin{aligned}
& P_{p}=\text { total pressure } \\
& g \text { gravitational acceleration } \\
& D_{c}=2 \cdot\left[V_{p}(t, z) /(\Delta z \cdot \pi)\right]^{1 / 2} \\
& f(\operatorname{Re})=a \operatorname{Re}^{b} \\
& \operatorname{Re}=D_{c} \cdot\left|U_{f r, p}(t, z)\right| \rho_{f u, p}(t, z) / \mu_{f u} \\
& a, b=\text { constants (appropriate for the flow regime) } \\
& \mu_{\mathrm{fu}}=\text { absolute viscosity of molten fuel }
\end{aligned}
$$

The finite-difference form of Eq. (2.1.11) is for $U_{f r, p}$ at the upper cell edge $i+1 / 2$:

$$
\begin{aligned}
& \frac{1}{\Delta t}\left(V_{p}^{i+1 / 2, n+1} \cdot \rho_{f u, p}^{i+1 / 2, n+1} \cdot U_{f r, p}^{i+1 / 2, n+1}-v_{p}^{i+1 / 2, n} \cdot \rho_{f u, p}^{i+1 / 2, n} \cdot U_{f u, p}^{i+1 / 2, n}\right) \\
& +\overline{v_{p}^{i+1 / 2} \cdot \rho_{f u, p}^{i+1 / 2}} \cdot \overline{U_{f r, p}^{i+1 / 2}} \cdot \frac{1}{\Delta z} \cdot\left(U_{f r, p}^{j+1 / 2, n+1}-U_{f r, p}^{j-1 / 2, n+1}\right) \\
& =-\overline{V_{p}^{i+1 / 2}} \cdot \frac{1}{\Delta z} \cdot\left(P_{p}^{i+1}-P_{p}^{i}\right) \\
& -\overline{v_{p}^{i+1 / 2} \cdot \rho_{f u, p}^{i+1 / 2}} \cdot g-s_{f u, e j}^{i+1 / 2} \cdot \overline{u_{f r, p}^{i+1 / 2}} \\
& -\frac{1}{2 D_{c}^{i+1 / 2}} \cdot a \cdot\left(\frac{1}{\mu_{f u}} \cdot D_{c}^{i+1 / 2} \cdot\left|\overline{U_{f r, p}^{i+1 / 2}}\right| \cdot \overline{\rho_{f u, p}^{i+1 / 2}}\right)^{b}
\end{aligned}
$$

$$
\begin{equation*}
\times \overline{v_{p}^{i+1 / 2} \cdot \rho_{f u, p}^{i+1 / 2}} \cdot \overline{U_{f r, p}^{i+1 / 2}} \cdot\left|\overline{U_{f r, p}^{i+1 / 2}}\right| \tag{2.1.12}
\end{equation*}
$$

The values of the quantities defined at the cell edge ($\rho^{i+1 / 2}, s_{f u, e j}^{i+1 / 2}$, etc.) are obtained by averaging the cell-centered values of the two cells adjacent to the interface, e.g., $\rho^{i+1 / 2}=1 / 2\left(\rho^{i+1}+\rho^{i}\right)$,

$$
D_{c}^{i+1 / 2}=2 \cdot\left(\frac{1}{\pi \cdot \Delta z} \cdot \overline{v_{p}^{i+1 / 2}}\right)^{1 / 2},
$$

and $j=1$ if $\overline{U_{f r, p}^{i+1 / 2}}>0$ and $j=i+1$ if $\overline{U_{f r, p}^{i+1 / 2}}<0$. The v_{p}^{n+1} and $\rho_{f u, p}^{n+1}$ used in the time averages are from the solution $\neg f$ Eqs. (2.1.3) and (2.1.7). The right side can be treated as a constant. Equation (2.1.12) thus becomes a linear equation in $U_{f r, p}^{i+1 / 2, n+1}, U_{f r, p}^{j+1 / 2, n+1}$, and $U_{f r, p}^{j-1 / 2, n+1}$ (i.e. when the alternative values of j are considered, Eq. (2.1.12) is linear in $U_{f_{1}}^{i+3 / 2, n+1}$, $U_{f r, p}^{i+1 / 2, n+1}$, and $U_{f r, p}^{i-1 / 2, n+1}$). When Eq. (2.1.12) is written for all cavity cells, a system of linear equations in velocity results. The coefficient matrix is tri-diagonal and is solved by Gaussian elimination. The momentum equation is solved implicitly as above on each of the two semi-implicit passes for the continuity and temperature equations.

Molten fuel is modeled as incompressible. In analyses of fiesh fuel pins, there is nothing to prevent a cell from receiving more fuel from convection during a time step than can physically fit within the cell volume. (This overcompaction does not usually occur when modeling irradiated fuel pins since the fission gas partial pressure rapidly adjusts as mass moves from cell to cell, thus preventing too much fuel from moving into a cell.) When overcompaction occurs, cell boundary velocities are adjusted (conserving momentum wherever possible) to prevent further net mass flow into the cell. This adjustment prevents an initial overcompaction from worsening and will clear the overcompacted conditions in many cases.

The equation-of-state in the cavity is assumed to be the sum of the fuel vapor partial pressure and the fission-gas partial pressure computed in ideal gas fashion:

$$
\begin{equation*}
P_{p}(t, z)=P_{f u, s a t}\left(T_{f u, p}(t, z)\right)+\frac{R_{f g} \cdot T_{f u, p}(t, z) \cdot \rho_{f g, p}(t, z)}{1-\rho_{f u, p}(t, z) / \rho_{f u}^{p}}, \tag{2.1.13}
\end{equation*}
$$

$P_{f u, s a t}\left(T_{f u, p}\right)=$	saturation pressure of fuel corresponding to $T_{f u, p}$			
$R_{f g}$	gas constant for fission gas	\quad		
---:	:---			
$\rho_{f u, p}^{p}$	theoretical density of fuel (assumed to be constant, not a function of temperature, in the code).			

The fuel is always assumed to follow its saturation curve and no nonequilibrium boiling is treated. The fission gas is assumed to be at the fuel temperature. The expression ($1-\rho_{f u, p} / \rho_{f u, p}^{p}$) gives the volume fraction available for pressurization in the molten fuel cavity.

2.2 The Coolant Channel

In the one-dimensional model of the coolant channel, there are from one to three regions which can include two-phase sodium treated with homogeneous flow in an Eulerian mesh (see Fig. 1). However, only the region which fucludes the ejection cells may contain fission gas and fuel particles. In this region the two-phase sodium and fission ga move together without slip in a homogeneous flow treatment; the fuel motion is treated as particulate flow. This region will be called the interaction zone and can include part or all of the coolant channel so long as it includes all the ejection cells. The interaction zone extends as far as a region of single-phase liquid sodium (if there is any) which mey bound it at either or both ends. The bounding singlephase regions extend either to the end of the coolant channel mesh or to a region of two-phase sodium which may intervene. There may also be a singlephase region between the intervening two-phase region and the end of the coolant channel mesh. There is no discrimination, however, between the intervening two-phase region and any single-phase regions between it and the end of the channel mesh since all the cells beginning with the intervening two-phase region and extending to the end of the mesh are treated in a homogeneous flow mode regardless of void fraction. The single-phase region or regions bounding the interaction zone are treated incompressibly.

The continuity equation (homogeneous flow is assumed) for fission gas in the interaction zone is

$$
\begin{aligned}
& \quad \frac{\partial}{\partial t}\left(V_{c}(t, z) \cdot \rho_{f g, c}(t, z)\right)+\frac{\partial}{\partial z}\left(V_{c}(t, z) \cdot \rho_{f g, c}(t, z) \cdot U_{m, c}(t, z)\right) \\
& =S_{f g, e j} \\
& V_{c}=\text { volume of coolant channel cell to which equation is applied } \\
& \rho_{f g, c}=\begin{array}{l}
\text { smear density (i.e., total mass in cell divided by volume of } \\
\text { cell) of fissiun gas in cell to which equation is applied }
\end{array}
\end{aligned}
$$

$\mathrm{U}_{\mathrm{m}, \mathrm{c}}=$ velocity of the mixture of fission gas and two-phase sodium
$S_{f g, e j}=$ rate of fission gas mass ejection during the time step if the cell to which the equation is applied is an ejection cell (this is added instantaneously at the end of each time step)

The motion of the fission gas is tracked by geans of an interface location beyond which the gas is not allowed to convect. The velocity of the interface is determined by linear interpolation between the upper and lower cell-boundary values. In an initially unvoided channel, the fission gas interface will tend to move with the liquid slug interfaces as the slugs are expelled. In an initially voided channel, however, if an interface for the fission gas was not tracked, the fission gas would artificially convect one cell per time step (being instantly smeared across the entire cell as soon as any moved into a cell). Finally, fission gas is not allowed to penetrate the sodium liquid slug interfaces (although fuel particles are allowed).

The finite difference form of Eq. (2.2.1) is exactly analogous to Eq. (2.1.2). The velocity of the two-phase sodium and fission gas mixture is computed at the cell edge; all other quantities are cell-centered:

$$
\begin{equation*}
\frac{1}{\Delta t}\left(V_{c}^{i, n+1} \cdot \rho_{f g, c}^{i, n+1}-V_{c}^{i, n} \cdot \rho_{f g, c}^{i, n}\right)+\frac{1}{\Delta z}(T O P-B O T)=S_{f g, e j}^{i} \tag{2.2.2}
\end{equation*}
$$

$$
\begin{aligned}
& \operatorname{TOP}= \begin{cases}\overline{V_{c}^{i} \cdot o_{f g, c}^{i} \cdot U_{m, c}^{i+1 / 2}} & \text { if } \overline{U_{m, c}^{i+1 / 2}>0} \\
\frac{V_{c}^{i+1} \cdot \rho_{f g}^{i+1} \cdot U_{m}, c}{i+1 / 2} & \text { if } \overline{U_{m, c}^{i+1 / 2}}<0\end{cases} \\
& \text { BOT }= \begin{cases}\overline{V_{c}^{i-1} \cdot \rho_{f g \cdot c}^{i-1} \cdot U_{m, c}^{i-1 / 2}} & \text { if } \overline{U_{m, c}^{i-1 / 2}}>0 \\
\frac{V_{c}^{i} \cdot \rho_{f g, c}^{i} \cdot U_{m, c}^{i-1 / 2}}{} & \text { if } \overline{U_{m, c}^{i-1 / 2}}<0\end{cases}
\end{aligned}
$$

The continuity equation for the liquid sodium (homogeneous flow is assumed) in the interaction zone and two-phase regions is

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(V_{c}(t, z) \cdot \rho_{N a}, c(t, z)\right)+\frac{\partial}{\partial z}\left(V_{c}(t, z) \cdot \rho_{N a, c}(t, z) \cdot U_{m, c}(t, z)\right)=0 \tag{2.2.3}
\end{equation*}
$$

$\begin{aligned} \rho_{n a}, c= & \text { smear density (mass in cell divided by volume of cell) of sodium } \\ & \text { in the cell to which the equation is applied. }\end{aligned}$

There are no sources or sinks for the sodiun; the mass balance for a cell is determined solely be convection. Condensation is included as a heat loss term in the sodium temperature calculation, but no corresponding mass loss is considered. There is no treatment of a sodium film. Mass loss from the liquid phase due to evaporation or mass gain due to condensation during phase change is included as an adjustment to the sodium liquid density resulting from convection. The finite difference form of Eq. (2.2.3) is analogous to Eq. (2.1.2) :

$$
\begin{aligned}
& \frac{1}{\Delta t}\left(V_{c}^{i, n+1} \cdot \rho_{\mathrm{Na}, \mathrm{c}}^{i, n+1}-V_{c}^{i, n} \cdot \rho_{\mathrm{Na}, \mathrm{c}}^{\mathrm{i}, \mathrm{n}}\right)+\frac{1}{\Delta^{z}}(\text { TOP-BOT })=0 \\
& T O P=\left\{\begin{array}{lc}
\overline{V_{c}^{i} \cdot \rho_{N a}^{i}, c} \cdot U_{m, c}^{i+1 / 2} & \text { if } \overline{U_{m, c}^{i+1 / 2}}>0 \\
\overline{V_{c}^{i+1} \cdot \rho_{\mathrm{Na}, \mathrm{c}}^{i+1} \cdot U_{\mathrm{m}, \mathrm{c}}^{i+1 / 2}} & \text { if } \overline{U_{m, c}^{i+1 / 2}}<0
\end{array}\right. \\
& B O T=\left\{\begin{array}{lc}
\overline{v_{c}^{i-1} \cdot \rho_{N a}^{i-1}, c \cdot U_{m, c}^{i-1 / 2}} & \text { if } \overline{U_{m, c}^{i-1 / 2}}>0 \\
\overline{v_{c}^{i} \cdot \rho_{N a, c}^{i} \cdot U_{m, c}^{i-1 / 2}} & \text { if } \overline{U_{m, c}^{i-1 / 2}}<0
\end{array}\right.
\end{aligned}
$$

The temperature of the fission gas is computed as the volume-weighted average of the fuel temperature and the sodium temperature in a cell as follows:

$$
\begin{aligned}
& T_{f g, c}=\begin{array}{l}
\text { fission gas temperature in channel cell to which equation is } \\
\text { applied }
\end{array} \\
& \mathrm{T}_{\mathrm{fu}, \mathrm{c}}=\begin{array}{l}
\text { average fuel particle temperature in channel cell to which equa- } \\
\\
\text { tion is applied }
\end{array} \\
& \text { tion is applied } \\
& \text { volume of the cell) of fuel in cell to which the equation is } \\
& \text { applied }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{Na}, \mathrm{c}}=\text { temperature of two-phase sodium in cell } \\
& \rho_{\mathrm{Na}, \mathrm{c}}=\text { smear density of sodium in cell } \\
& \rho_{\mathrm{Na}}^{\mathrm{p}, 1 / 2}=\text { theoretical density of liquid sodium (which is a function of } \mathrm{T}_{\mathrm{Na}, \mathrm{c}} \text {) }
\end{aligned}
$$

This assumption about the fission gas temperature is made in lieu of an accounting of the energy exchange between the fission gas and the other materials. This energy exchange process is thought to be too complicated and too poorly understood to be modeled adequately.

Liquid sodium is assumed to be in thermodynamic phase equilibrium with the sodium vapor, and the vapor pressure is assumed to be the saturation pressure corresponding to the two-phase temperature. The above assumption is made because of the difficulty of treating non-equilibrium soiling, and because geometry and flow regime are unknown. As heat is exchanged with the system, temperature changes and concomitant change of phase are treated using an algorithm that was developed to apportion the energy input into the two-phase system between boiling and heating the liquid phase (see Appendix A). The algorithm states that

$$
\begin{align*}
& \frac{\Delta E_{v a p}}{\Delta E_{E} 1 i q}=\left[\frac{\frac{d}{d T} P_{N a, s a t}\left(T_{N a, c}^{n}\right)}{P_{N a, s a t}\left(T_{N a, c}^{n}\right)}-\frac{1}{T_{N a, c}^{n}}\right] \cdot T_{N a, c}^{n} \cdot \frac{d}{d T} P_{N a, s a t}\left(T_{N a, c}^{n}\right) \cdot v_{\text {vap }}^{n} \\
& \div\left[\overline{\rho_{\mathrm{Na}, \mathrm{c}} \cdot \mathrm{~V}_{\mathrm{c}}} \cdot \mathrm{C}_{\mathrm{P}, \mathrm{Na}}\right] \tag{2.2.6}\\
& \Delta E_{\text {vap }}=\text { the part of the total energy input going into change of phase } \\
& \Delta \mathrm{E}_{\text {liq }}=\text { the part of the total energy input heating the liquid phase } \\
& \mathrm{P}_{\mathrm{Na}, \text { sat }}=\text { sodium saturation vapor pressure as a function of temperature } \\
& \mathrm{n} \quad=\text { superscript denoting beginning of the time step } \\
& \begin{aligned}
v_{v a p}^{n} & = \\
& \text { volume available for vapor in the coolant channel cell to which }
\end{aligned} \\
& C_{\mathrm{P}, \mathrm{Na}}=\text { liquid sodium specific heat }
\end{align*}
$$

Since the total energy going into the system is $\Delta_{E_{\text {tot }}}\left(\Delta_{E_{\text {tot }}}=\Delta_{E_{\text {vap }}}\right.$ $+\Delta_{E_{1 i q}}$),

$$
\begin{equation*}
\Delta_{E_{1 i q}}=\Delta_{E_{\text {tot }}} \cdot \frac{1}{1+\Delta_{E_{\text {vap }}} / \Delta_{E_{1 i q}}} \tag{2.2.7}
\end{equation*}
$$

The heat capacity of the sodium vapor is also taken into account since this becomes significant as the quality approaches unity. It should be kept in mind, however, that the assumptions inherent in the thermodynamic equilibrium treatment of the two-phase sodium system begin to break down as the quality approaches unity since the enelgy of the vapor phase begins to be important relative to the energy of the liquid phase, and it can no longer be assumed that there will be enough liquid to produce enough vapor at saturation conditions for a given volume.

The total energy that is transferred within a cell containing two-phase sodium and possibly ission gas and fuel particles must be defined. Sodium vapor condensation on the cladding accounts for the first mode of heat transfer. The second means of transferring heat to or from the sodium is by means of the liquid phase contacting the cladding. Fuel particles are assumed to be spherical and of uniform radius. Heat transfer from the fuel particles to the liquid sodium is included, but heat transfer to the sodium vapor is disregarded since this is negligible by comparison to the former. The energy increment that is transferred within a cell containing fuel particles and two-phase sodium during a time step Δt can thus be expressed as

$$
\Delta E_{\text {tot }}^{i}=-h_{c, c o n} \cdot A_{c l}^{i} \cdot\left(\overline{T_{N a, c}^{i}}-\overline{T_{c l}^{i}}\right) \cdot \Delta t \cdot \alpha^{i}
$$

$$
+h_{c, c l}^{i} \cdot A_{c l}^{i} \cdot\left(T_{c l}^{i}-T_{N a, c}\right) \cdot \Delta t \cdot \frac{\overline{\rho_{N a, c}^{i}}}{\rho_{\mathrm{Na}}^{p}}+\frac{\overline{\rho_{f u, c}^{i} \cdot V_{c}^{i}}}{m_{f p}} \cdot 4 \pi r_{f p}^{2} \cdot F A C \cdot \frac{k_{f u}}{r_{f p}} \cdot \frac{\rho_{\mathrm{Na}, \mathrm{c}}}{\rho_{\mathrm{Na}}^{p}}
$$

$$
\begin{equation*}
\times\left(\overline{\left(T_{\mathrm{fu}, \mathrm{c}}^{\mathrm{i}}\right.}-\overline{\mathrm{T}_{\mathrm{Na}, \mathrm{c}}^{\mathrm{i}}}\right) \cdot \Delta \mathrm{t} \tag{2.2.8}
\end{equation*}
$$

$\Delta E_{\text {tot }}^{i}=$ total energy change for the two-phase sodium for cell i
$h_{c, c o n}=$ condensation heat transfer coefficient (a constant set by the user)
$A_{c l}^{i}=$ area of cladding available for condensation of sodium vapor
$\mathrm{T}_{\mathrm{c} 1}^{\mathrm{i}}=$ temperature of cladding for cell i
$\alpha^{i}=$ void fraction in cell i
$h_{c, c l}=c l a d d i n g$ to liquid sodium heat transfer coefficient (a constant set by the user?
$\mathrm{m}_{\mathrm{f} p}=$ mass of one fuel particle of radius r_{fp}
$r_{f p}=$ radius of a fuel particle
FAC $=$ user-specified parameter
$k_{f u}=f$ uel thermal conductivity
The first term (sodium vapor condensation) is zero when $\overline{\mathrm{T}_{\mathrm{Na}, \mathrm{c}}^{\mathrm{i}}}<\overline{\mathrm{T}_{\mathrm{cl}}^{\mathrm{i}}}$. The bars again indicate time averages. The first term models condensation, the second models heat transfer between cladding and liquid sodium, and the third treats the fuel to sodium heat transfer. In the third term, $k_{f u} / r_{p}$ is the ChoWright steady-state heat transfer coefficient, ${ }^{9} \mathrm{~V}_{\mathrm{c}}^{\mathrm{i} \cdot \rho_{\mathrm{fu}}^{i}, \mathrm{c} / \mathrm{m}_{\mathrm{f}} \text { gives the number }}$ of particles in the cell (total fuel mass/mass per particle) and $4 \pi r_{\mathrm{fp}}^{2}$ is the surface area of one particle. The ratio, $\rho_{\mathrm{Na}, \mathrm{c}^{\mathrm{i}} / \rho_{\mathrm{Na}}^{\mathrm{p}} \text {, is the sodium liquid }}^{\mathrm{f} p}$ volune fraction in the cell. Multiplication by this ratio indicates that only this fraction of the surface area of the fuel particles ${ }^{10}$ (in the third term) or of the cladding (in the second term) on the average is in it:imate contact with the liquid sodium. The Cho-Wright (steady-state) model is followed in also assuming: 1) there is perfect mixing of fuel particles and sodium in the cell; 2) no interference occurs in heat transfer from the fuel to sodium as from vapor blanketing; 3) the resistance to heat transfer is solely in the fuel with its low thermal conductivity (more than an order of magnitude less than that of sodium); and 4) the temperature distribution in the particle is linear. Se user-specified parameter, FAC, can be used to control the heat transfer between fuel and liquid sodium. It can be modified without changing the rest of the calculation. In this way variations could be accounted for in such things as surface and convective effects which the above equation does not model explicitly. The $\rho \cdot \Delta V$ energy change is included as a final adjustment to the two-phase sodiua temperature.

We can thus obtain $\Delta \mathrm{E}_{\mathrm{liq}}^{\mathrm{i}}$ from Eq. $(2.2 .7)$. The temperature of the sodium liquid (the heat capacity of the sodium vapor is also included since it is important as the quality approaches unity) is calculated in two steps. In the first step, the temperature of the liquid in the cell is computed without regard for convection; and in the second, the liquid temperature is adjusted for convective mixing.

$$
\begin{align*}
& \text { Let } \mathrm{T}_{\mathrm{Na}, \mathrm{c}}^{\prime} \text { be the result of the first step, } \\
& \mathrm{T}_{\mathrm{Na}, \mathrm{c}}^{\prime}=\frac{\Delta \mathrm{E}_{1 i q}^{i}}{\mathrm{v}_{\mathrm{c}}^{i, \mathrm{n}+1} \cdot \rho_{\mathrm{Na}, \mathrm{c}}^{i, n+1} \cdot \mathrm{C}_{\mathrm{p}, \mathrm{Na}}}+\mathrm{T}_{\mathrm{Na}, \mathrm{c}}^{\mathrm{i}, \mathrm{n}} \tag{}
\end{align*}
$$

then,

$$
\begin{equation*}
T_{N a, c}^{i, n+1}=\frac{v_{c}^{i, n} \cdot \rho_{N a, c}^{i, n} \cdot T_{N a, c}^{\prime}+z \cdot \frac{\Delta t}{\Delta z}}{v_{c}^{i, n} \cdot \rho_{N a, c}^{i, n}+\frac{v_{c}^{k} \cdot \rho_{N a, c}^{k} \cdot U_{m, c}^{i-1 / 2} \cdot \frac{\Delta t}{\Delta z}-\overline{v_{c}^{j}} \cdot \rho_{N a, c}^{j} \cdot U_{m, c}^{i+1 / 2} \cdot \frac{\Delta t}{\Delta z}}{},} \tag{2.2.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& Z=\overline{V_{c}^{i-1} \cdot \rho_{N a, c}^{i-1}} \cdot \overline{U_{m, c}^{i-1 / 2}} \cdot \overline{T_{N a, c}^{i-1}}-\overline{V_{c}^{i} \cdot \rho_{N a, c}^{i} \cdot \overline{U_{m, c}^{i+1 / 2}}} \cdot T_{N a, c}^{\prime} \\
& \text { if } \overline{U_{m, c}^{i+1 / 2}}>0 \text {, and } \overline{U_{m, c}^{i-1 / 2}}>0 \\
& Z=\overline{V_{c}^{i} \cdot \rho_{N a, c}^{i}} \cdot \overline{U_{m, c}^{i-1 / 2}} \cdot T_{N a, c}^{\prime}-\overline{V_{c}^{i+1} \cdot \rho_{N a, c}^{i+1}} \cdot \overline{U_{m, c}^{i+1 / 2}} \cdot T_{N a, c}^{i+1} \\
& \text { if } \overline{U_{m, c}^{i+1 / 2}}<0 \text {, and } \overline{U_{m, c}^{i-1 / 2}}<0 \\
& Z=\overline{V_{c}^{i-1} \cdot \rho_{N a, c}^{i-1}} \cdot \overline{U_{m, c}^{i-1 / 2}} \cdot \overline{T_{N a, c}^{i-1}}-\overline{v_{c}^{i+1} \cdot \rho_{N a, c}^{i+1}} \cdot \overline{U_{m, c}^{i+1 / 2}} \cdot \overline{T_{N a, c}^{i+1}} \\
& \text { if } \overline{U_{m, c}^{i+1 / 2}}<0 \text {, and } \overline{U_{m, c}^{i-1 / 2}}>0
\end{aligned}
$$

and

$$
T_{N a, c}^{i, n+1}=T_{N a, c}^{\prime} \text {, if } \overline{U_{\mathrm{m}, \mathrm{c}}^{i+1 / 2}}>0 \text {, and } \overline{\mathrm{U}_{\mathrm{m}, \mathrm{c}}^{\mathrm{i}-1 / 2}}<0
$$

where

$$
\begin{aligned}
& k=i \text { if } \overline{U_{m, c}^{i-1 / 2}}<0 \\
& k=i-1 \text { if } \overline{U_{m, c}^{i-1 / 2}}>0 \\
& j=i \text { if } \overline{U_{m, c}^{i+1 / 2}}>0 \\
& j=i+1 \text { if } \overline{U_{m, c}^{i+1 / 2}}<0
\end{aligned}
$$

The change in the cladding temperature with time is treated according to the following equation:

$$
\begin{align*}
& T_{c l}^{i, n+1}=T_{c l}^{i, n}+\underset{C_{p, c l} \cdot M_{c l}^{i}}{\frac{\Delta t}{}} \cdot\left[h_{c, c o n} \cdot A_{c l}^{i} \cdot\left(\overline{T^{i}}-\overline{T^{i}}\right) \cdot \alpha\right. \\
& -h_{c, c l} \cdot A_{c l}^{i} \cdot\left(\overline{T_{c l}^{i}}-\overline{T_{N a, c}^{i}}\right) \cdot \frac{\overline{\rho_{N a, c}^{i}}}{\rho_{N a}^{p}}+h_{b} \cdot A_{c l, i n}^{i} \cdot\left(T_{f u, p s}^{i}-\overline{T_{c l}^{i}}\right) \\
& \left.+h_{c, f u} \cdot A_{c l}^{i} \cdot\left(\overline{T_{f u, c}^{i}}-\overline{T_{c l}^{i}}\right) \cdot \alpha\right] \tag{2.2.11}\\
& c_{p, c 1}=\text { specific heat of cladding } \\
& M_{c l}^{i} \quad=\text { mass of cladding in cell } i \\
& h_{b} \quad=\text { gap conductance (between fuel and cladding) } \\
& A_{c l, i n}^{i}=\text { area of inner cladding wall exposed to fuel } \\
& T_{f u, p s}^{i}=\text { temperature of fuel in fuel pin at fuel-cladding interface } \\
& h_{c, f u}=\text { fuel vapor condensation heat transfer coefficient }
\end{align*}
$$

The first term in the brackets represents heat transferred by sodium vapor condensation on the cladding, which is zero when $\overline{T_{\mathrm{Na}}^{i}, c}<\overline{\mathrm{T}_{\mathrm{c} 1}^{i}}$. The second term represents the heat transfer between the cladding and liquid sodium. The third term represents the heat transfer between fuel and the cladding across the gap within the pin. The last term represents heat transferred by fuel vapor condensation on the cladding, which is zero when T_{fu} is below $3800^{\circ} \mathrm{K}$.

The conservation of momentum equation for the fission gas and sodium mixture (homogeneous flow is assumed) in the interaction zone and the two-phase regions is

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left[V _ { c } (t , z) \cdot \left(\rho_{N a, c}(t, z)+\rho_{f g}, c\right.\right. \\
& \left.(t, z)) \cdot U_{m, c}(t, z)\right]+V_{c}(t, z) \cdot\left(\rho_{N a}, c\right. \\
& +\rho_{f g}(t, z) \\
& (t, z)) \cdot U_{m, c}(t, z) \cdot \frac{\partial}{\partial z} U_{m, c}(t, z)
\end{aligned}
$$

$$
\begin{align*}
& =-V_{m}(t, z) \cdot \frac{\partial}{\partial z} P_{c}(t, z)-v_{c}(t, z) \cdot\left(\rho_{N a}, c(t, z)+\rho_{f g}(t, z)\right) \cdot g \\
& -V_{c}(t, z) \cdot\left(\rho_{N a}, c(t, z)+\rho_{f g, c}(t, z)\right) \cdot U_{m, c}(t, z) \cdot\left|U_{m, c}(t, z)\right| \cdot \frac{f(\operatorname{Re})}{2 \cdot D_{c}} \\
& -h_{c, c o n} \cdot A_{c l} \cdot\left(T_{N a, c}(t, z)-T_{c l}(t, z)\right) \cdot \alpha \cdot \frac{U_{m, c}(t, z)}{H_{f g, N a}}-\rho_{f u, c} \frac{1}{m_{f p}} \\
& \times\left(U_{m, c}(t, z)-U_{f u, c}(t, z)\right) \cdot\left|U_{m, c}(t, z)-U_{f u, c}(t, z)\right| \cdot V_{c}(t, z) \\
& \times\left(\rho_{\mathrm{Na}, \mathrm{c}}(t, z)+\rho_{f g, c}(t, z)\right) \cdot r_{f_{p}}^{2} \cdot \frac{\pi}{2} \cdot C_{D}\left(\operatorname{Re}_{f p}\right) \cdot \varepsilon^{-2 \cdot 7} \tag{2.2.12}\\
& \mathrm{~V}_{\mathrm{m}} \quad=\begin{array}{l}
\mathrm{V}_{\mathrm{c}}-\text { volume of fuel particles in cell to which equation is } \\
\\
\text { applied (defined at cell edge) }
\end{array} \\
& \mathrm{P}_{\mathrm{C}} \quad=\text { total pressure in coolant channel in cell } \\
& \mathrm{U}_{\mathrm{fu}} \mathrm{c}=\text { average velocity of all fuel particles one-half cell on either } \\
& \text { side of cell edge where } U_{m, c} \text { is defined, so that } U_{f u, c} \text { also } \\
& \text { becomes the approximation to a cell-edge velocity } \\
& \mathrm{H}_{\mathrm{fg}}, \mathrm{Na}=\text { heat of vaporization for sodium } \\
& \mathrm{D}_{\mathrm{C}} \quad=\text { hydraulic diameter of coolant channel (defined at cell edge) } \\
& f(\operatorname{Re}) \quad=a \operatorname{Re}^{b} \\
& \operatorname{Re} \quad=\left(1 / \mu_{\mathrm{m}}\right) \cdot \mathrm{D}_{\mathrm{c}} \cdot\left(\rho_{\mathrm{Na}, \mathrm{c}}+\rho_{\mathrm{fg}, \mathrm{c}}\right) \cdot\left|\mathrm{U}_{\mathrm{m}, \mathrm{c}}\right| \cdot \mathrm{V}_{\mathrm{c}} / \mathrm{V}_{\mathrm{m}} \\
& \mu_{\mathrm{m}} \quad=\text { effective viscosity of the mixture } \\
& \mathrm{a}, \mathrm{~b} \quad=\text { constants appropriate for the flow regime } \\
& C_{D}\left(\operatorname{Re}_{f p}\right)=\left\{\begin{array}{l}
\frac{18.5}{\operatorname{Re}_{f p}^{0.6}} \text { if } \operatorname{Re}_{f p}<500 \\
0.44 \text { if } \operatorname{Re}_{f p}>500 \text { (Ref. 11) }
\end{array}\right. \\
& \operatorname{Re}_{f p}=2 \cdot r_{f p} \cdot\left|U_{m, c}-U_{f u, c}\right| \cdot\left(p_{N a, c}+\rho_{f g, c}\right) / \mu_{m} \\
& \varepsilon \quad=V_{m} / V_{C}
\end{align*}
$$

The third term on the right side of Eq. (2.2.12) represents the mixture/wall drag and the last term represents the fuel/sodium drag. $V_{m} / \Delta z$ is the area on which the cell pressure acts to accelerate the mixture.

The finite difference form of Eq. (2.2.12) for $U_{c}^{i+1 / 2}$ is

$$
\times \frac{1}{2} \cdot \frac{1}{D_{c}^{i+1 / 2}} \cdot a \cdot\left[\frac{1}{\mu_{m}} \cdot D_{c}^{i+1 / 2} \cdot\left(\overline{\rho_{N a}^{i+1 / 2}}+\overline{\rho_{f g}^{i+1 / 2}}\right) \cdot\left|\overline{U_{m}^{i+1 / 2}}\right| \overline{N_{c}^{i+1 / 2}} / \overline{v_{m}^{i+1 / 2}}\right]
$$

$$
-h_{c, c o n} \cdot A_{c l}^{i+1 / 2} \cdot\left(\overline{T_{N a, c}^{i+1 / 2}}-\overline{T_{c l}^{i+1 / 2}}\right) \cdot \frac{\alpha^{i+1 / 2}}{H_{f g, N a}} \cdot \overline{U_{m, c}^{i+1 / 2}}-\overline{\rho_{f u, c}^{i+1 / 2}}
$$

$$
\times \frac{1}{m_{f p}}\left(\frac{1}{2} U_{m, c}^{i+1 / 2, n+1}+\frac{1}{2} U_{m, c}^{i+1 / 2, n}-\overline{U_{f u, c}^{i+1 / 2}}\right) \cdot\left|\overline{U_{m, c}^{i+1 / 2}}-\overline{U_{f u, c}^{i+1 / 2}}\right|
$$

$$
\times \overline{V_{c}^{i+1 / 2}}\left(\overline{\rho_{N a, c}^{i+1 / 2}}+\overline{\rho_{f u, c}^{i+1 / 2}}\right) \cdot r_{f p}^{2} \cdot \pi / 2 \cdot C_{D}\left(\operatorname{Re}_{f p}^{i+1 / 2}\right) \cdot\left(\overline{\varepsilon^{i+1 / 2}}\right)^{-2 \cdot l}
$$

$$
D_{c}^{i+1 / 2}=4 \cdot v_{c}^{i+1 / 2} \cdot \frac{1}{\Delta z} \cdot \frac{1}{\pi \cdot 2 r_{c l}^{i+1 / 2}}
$$

$$
\begin{aligned}
& \frac{1}{\Delta t} \cdot\left[V_{c}^{i+1 / 2, n+1} \cdot\left(\rho_{N a, c}^{i+1 / 2, n+1}+\rho_{f g, c}^{i+1 / 2, n+1}\right) \cdot U_{m, c}^{i+1 / 2, n+1}\right. \\
& \left.-v_{c}^{i+1 / 2, n} \cdot\left(\rho_{N a, c}^{i+1 / 2, n}+\rho_{f g, c}^{i+1 / 2, n}\right) \cdot U_{m, c}^{i+1 / 2, n}\right] \\
& +V_{c}^{\overline{i+1 / 2} \cdot\left(\rho_{N a, c}^{i+1 / 2}+\rho_{f g, c}^{i+1 / 2}\right)} \cdot U_{m, c}^{\overline{i+1 / 2}} \cdot \frac{1}{\Delta z} \cdot\left(U_{m, c}^{j+1 / 2, n+1}-U_{m, c}^{j-1 / 2, n+1}\right) \\
& \left.=-\overline{V_{m}^{i+1 / 2}} \cdot \frac{1}{\Delta z} \cdot\left(\overline{P_{c}^{i+1}}-\overline{P_{c}^{i}}\right)-\overline{v_{c}^{i+1 / 2} \cdot\left(\rho_{N a}^{i+1 / 2}+\rho_{f g}^{i+1 / 2}\right.}\right) \cdot g \\
& \left.-\overline{V_{c}^{i+1 / 2} \cdot\left(\rho_{N a, c}^{i+1 / 2}+\rho_{f g, c}^{i+1 / 2}\right.}\right) \cdot \frac{1}{2} \cdot\left(U_{m, c}^{i+1 / 2, n+1}+U_{m, c}^{i+1 / 2, n}\right) \cdot\left|\overline{U_{m, c}^{i+1 / 2}}\right|
\end{aligned}
$$

$$
\operatorname{Re}_{f p}^{i+1 / 2}=2 \cdot r_{f p} \cdot\left|\overline{U_{m, c}^{i+1 / 2}}-\overline{U_{f u, c}^{i+1 / 2}}\right| \cdot\left(\rho_{\mathrm{Na}, \mathrm{c}}^{i+1 / 2}+\overline{\rho_{f g, c}^{i+1 / 2}}\right) \cdot \frac{1}{\mu_{m}},
$$

waere the bars indicate time averages using the t^{n} values and the V_{c} and ρ at t^{n+1} from the previous solution of Eqs. (2.2.1) and (2.2.3); also,

$$
j=i \text { if } \overline{U_{m, c}^{i+1 / 2}}>0 \text { and } j=1+1 \text { if } \overline{U_{m, c}^{i+1 / 2}}<0
$$

Pairs of adjacent cell-centered quantities are averaged as in the pin cavity momentum equation to form cell-edge values: Eq. (2.2.13) is thus a linear equation in $U_{m}^{i+1 / 2}, n+1, U_{m, c}^{j+1 / 2, n+1}$, and $U_{m, c}^{j-1 / 2, n+1}$ (i.e., when the alternative values of j are considered, Eq. (2.2.13) is linear in $U_{m, c}^{i+3 / 2, n+1}, U_{m, c}^{i+1 / 2, n+1}$, and $U_{m, c}^{i-1 / 2, n+1}$). The velocity values are obtained implicitly by solving the resultant tridiagonal matrix as with the pin cavity momentum equation.

A variant of the particle-in-cell 12 (PIC) approach, called distributed particle-in-celli3 (DPIC) is used to treat fuel motion in the interaction zone in the coolant channel. In the PIC technique, the properties (temperature, mass, etc.) of a fuel particle group are associated with a point, i.e., the mass centroid of the group. When the centroid crosses a mesh cell boundary, the properties of the entire group become associated with the receiving cell in a single time step. The DPIC formulation associates the particle-group quantities with a characteristic length (rather than a point as in the PIC approach), whose center is the centroid of the particle group. In DPIC, as a particle group moves across a cell boundary, the properties of the group gradually become associatzd with the receiving cell and disassociated from the donor cell and are apportioned according to the reiative fractions of the characteristic length within each cell. The DPIC technique thus makes the motion of fuel from cell to cell occur smoothly over several time steps rather than one abrupt change that occurs in a single time step with the PIC technique.

The amount of fuel ejected into the coolant channel at the end of a time step is determined by the pressure equilibration technique (discussed below). The ejected fuel is assumed to fragment immediately into a number of particles of equal size. Groups of these particles are then tracked independently. The particle groups are assigned random locations in front of the cladding rupture. (The number of particles per group at ejection is a user option. Particle groups are combined in the channel when the number of groups exceeds a userspecified maximum. The combined particle group is located at the center of mass of the original particle groups and moves at the mass-averaged velocity.)

Each particle group begins with zero velocity if the fuel volume fraction in the channel cell into which the particle group is ejected is below a certain value (currently set at 0.3). If the volume fraction is above a certain value (currently set at 0.7), infinit:e drag is assumed between the newly ejected particle group and the existing particle groups in the ejection cell. Therefore the velocity, U, of the newly ejected particle group of mass M would be

$$
\begin{equation*}
U=\frac{\sum_{m}^{i} u_{o}^{i}}{\sum m_{i}^{i}+M} \tag{2.2.14}
\end{equation*}
$$

where the summation is over the particle groups (of mass m^{i} and velocity u_{0}^{i}) in the cell into which the new particle group is ejected. The momentum added is thus $U \cdot M$, and the total momentum of the pre-existing particle groups must be reduced by this amount. Therefore, the new velocities of the other particle groups are reduced from u_{0}^{i} to u^{i},

$$
\begin{equation*}
u^{i}=u_{o}^{i}-\frac{U \cdot M}{\sum_{i}^{i}} . \tag{2.2.15}
\end{equation*}
$$

If the volume fraction of fuel in the channel ejection cell is between the two threshold values stated above, assignment of the initial velocity is based on the assumption that velocity varies linearly between zero and the velocity which results from assuming infinite drag (as a function of fuel volume fraction).

The fuel particles are accelerated by both drag from the medium and the axial pressure gradient along the channel. The position and velocity of each group are then tracked separately. The cell average mass of any cell is the sum of the masses of the portions of particle groups in that cell. The average fuel-particle velocity at the cell-edge is the mass weighted average of the particle velocities on either side of the cell edge up to one-half cell length away from the cell edge.

The velocity equation for a particle group is

$$
\begin{align*}
& N \cdot m_{f p} \frac{\partial}{\partial t} U_{f p, c}(t)=-N \cdot\left(\frac{4}{3} \cdot \pi \cdot r_{f p}^{3}\right) \cdot \frac{\partial p_{c}(t, z)}{\partial z}+N \cdot\left(U_{m, c}(t, z)-U_{f p, c}(t)\right) \\
& \times\left|U_{m, c}(t, z)-U_{f p, c}(t)\right| \cdot\left(\rho_{N a, c}(t, z)+\rho_{f g, c}(t, z)\right) \cdot r_{f p}^{2} \cdot \frac{\pi}{2} \cdot C_{D}\left(R_{f p}\right) \cdot \varepsilon^{-2.1} \\
& -N \cdot m_{f p} \cdot g-N \cdot m_{f p} \frac{\pi}{4 D_{c}} \cdot U_{f p, c}(t) \cdot\left|U_{m, c}(t, z)\right| \\
& \times\left(\frac{\rho}{\rho_{\mathrm{Na}, \mathrm{c}}(t, z)+\rho_{f g, c}(t, z)}\right) \tag{2.2.16}
\end{align*}
$$

$\mathrm{N} \quad=$ number of fuel particles in the particle group
$U_{f p, c}=$ velocity of the particle group
$\psi \quad=$ constant set to a value of $1.56 \cdot 10^{-5}$
The factors $C_{D}\left(\operatorname{Re}_{f p}\right)$ and $\operatorname{Re}_{f p}$ were defined following Eq. (2.2.12) except $U_{f p, c}$ replaces $U_{f u, c}$. The first term on the right hand side represents the force on a particle surface (for all the particles in a group) in a pressure field with a linear gradient. ${ }^{14}, 15$ The second term is the drag on the particles from the medium. The last term is the wall friction experienced by the particle group based on a correlation for pressure drops for particles suspended in a pipe. ${ }^{16,17}$

The finite difference form of Eq. (2.2.16) is

$$
\begin{aligned}
& N^{m} \cdot m_{f p} \cdot \frac{1}{\Delta t} \cdot\left(U_{f p, c}^{m, n+1}-U_{f p, c}^{m, n}\right) \\
= & -N^{m} \cdot\left(\frac{4}{3} \cdot \pi r_{f p}^{3}\right) \cdot \frac{1}{\Delta z} \cdot\left(\overline{P_{c}^{k}}-\overline{p_{c}^{k-1}}\right) \\
& +N^{m} \cdot\left(\overline{U_{m, c}}-U_{f p, c}^{m, n}\right) \cdot \mid \overline{U_{m, c}}-\overline{U_{f p}^{m, n}}
\end{aligned}
$$

$$
\times\left(\overline{\rho_{N a, c}^{j}}+\overline{\rho_{f g, c}^{j}}\right) \cdot r_{f p}^{2} \cdot \frac{\pi}{2} \cdot C_{D}\left(R_{f p}^{j}\right) \cdot\binom{\overline{V_{m}^{j}}}{\overline{v_{c}^{j}}}^{-2 \cdot 1}
$$

$$
-N^{m} \cdot m_{f p} \cdot g-N^{m} \cdot m_{f p} \cdot \frac{\pi}{4 D_{c}^{j}} \cdot U_{f p}^{m, n} \cdot\left|\bar{U}_{m, c}\right|
$$

$$
\begin{equation*}
\times\left(\frac{\bar{\rho}_{\mathrm{fu}, \mathrm{c}}^{j}}{\frac{\rho_{\mathrm{Na}, \mathrm{c}}^{j}}{}+\frac{\rho_{\mathrm{fg}, \mathrm{c}}^{j}}{0.5}}\right)^{0} \cdot \psi, \tag{2.2.17}
\end{equation*}
$$

where the index m indicates particle group $m ; k$ is the cell such that the initial location of the centroid of the particle group is between the middle of cell k and the middle of cell $k-1 ; j$ is the cell (either k or $k-1$) in which the centroid of the particle group is located; and U is interpolated between cell edges at the particle location. The bars indicate time averages as before.

The temperature of each particle group is calculated by,

$$
\left.\begin{array}{l}
\frac{1}{\Delta t} N^{m} \cdot m_{f p} \cdot C_{p, f u}\left(T_{f p, c}^{m, n+1}-T_{f p, c}^{m, n}\right) \\
=-N^{m} \cdot 4 \cdot \pi \cdot r_{f p}^{2} \cdot F A C \cdot \frac{k_{f u}}{r_{f p}} \cdot \frac{\rho N_{N a}^{j}, c}{\rho_{N a}^{p}} \cdot\left(T_{f p, c}^{m, n}-\overline{T_{N a}^{j}}\right) \\
\quad+N_{p}^{m} \cdot m_{f p} \cdot W^{j} \cdot \Phi-N^{m} \cdot h_{c, f u} \cdot A_{c}^{j} \cdot\left(T_{f p, c}^{m, n}-\overline{T_{c l}^{j}}\right) \cdot m_{f p} /\left(\rho_{f u}^{j} \cdot V_{c}^{j}\right. \tag{2.2.18}
\end{array}\right)
$$

$T_{f, c}^{m}=$ temperature of fuel particle group m

The first term on the right hand side represents the heat loss to the sodium in the cell from the particle group, the second term is the fission heating of the particle group, and the third term is used to represent a fuel vapor condensation heat loss.

The number of particle groups is limited by a specified maximum. When this maximum is exceeded, the particle groups are combined according to their location withir subdivisions of cells. That is, all the particles whose centers are in a given subdivision of a coolant channel cell are combined.

In the coolant channel, the motion of single-phase liquid sodium slugs above and below the partially voided interaction zone (see Fig. 1) is treated as incompressible (with the exception of one set of conditions as explained below). The motion of the sodium slugs is determined by three effects; 1) the pressure difference from the last cell in the interaction zone at the slug interface and the pressure at the opposite end of the slug; 2) the frictional resistance; and 3) gravity. The pressure at the opposite end of the slug away from the interaction zone is either the plenum pressure (held constant) or the channel pressure at the two-phase cell forming the boundary of the single-phase liquid slug. No need has been seen for a compressible treatment of the liquid slugs except as it affects the interaction zone pressure in an unvoided channel case (see below). In such a case, where the void in front of the failure in the channel is caused by the compression of the sodium, EPIC computes an effective displacement of the liquid slugs because of the interaction zone pressure. This can alter the ejection cell pressure dramatically for a short time until a significant void has been produced in the channel.

This incompressible (and pseudo-compressible) treatment appears to predict the same results as a compressible one (for example, see the EPIC and revised PLUTO curves in (Fig. 2, Reference 1) where PLUTO uses a fully compressible treatment). Also, the incompressible treatment allows much larger time steps for the calculation, since the compressible treatment is limited by the Courant condition on sound speed.

The change in the momentum over the time step of the single-phase sodium liquid slugs above and below the interaction zone is given by the following expression.

$$
M U_{s}^{n+1}=M U_{S}^{n}-\Delta t \cdot\left[P_{c}^{j} A_{c}^{j}-P_{E N D} \cdot A_{E N D}+g \cdot M_{S}\right.
$$

$$
\begin{equation*}
\left.+a \cdot\left(\rho_{\mathrm{Na}, s} \cdot\left|\bar{U}_{s}\right| \cdot D_{\mathrm{c}, \mathrm{~s}} \cdot \frac{1}{\mu_{\mathrm{Na}}}\right)^{\mathrm{b}} \cdot \bar{U}_{\mathrm{s}} \cdot\left|\bar{U}_{\mathrm{s}}\right| \cdot M_{\mathrm{s}} \cdot \frac{1}{D_{\mathrm{c}, \mathrm{~s}}} \cdot \frac{1}{2}\right] \tag{2.2.19}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{MU}_{\mathrm{S}}=\text { momentum of the slug } \\
& \mathrm{A}_{\mathrm{C}}=\text { area of coolant channel } \\
& \mathrm{M}_{\mathrm{S}}=\text { mass of the slug } \\
& \mathrm{a}, \mathrm{~b}=\text { constants appropriate for slug flow } \\
& \rho_{\mathrm{Na}, \mathrm{~s}}=\text { density of liquid sodium in the slug } \\
& \bar{U}_{\mathrm{S}} \\
& =\text { average velocity of the slug } \\
& \mathrm{D}_{\mathrm{C}, \mathrm{~s}}=\text { hydraulic diameter over the length of the slug } \\
& \mu_{\mathrm{Na}}=\text { viscosity of liquid sodium } \\
& j
\end{aligned}
$$

The bars indicate time averages as before. The subscript END denotes the conditions at the end of the slug opposite the interaction zone whether this is within the coolant channel or at the plenum. The second term on the right hand side of the equation, the pressure gradient across the slug, is written for the lower slug; the sign of the term is reversed for the upper slug. The third term is from gravity and the last term is a drag term.

The slug interface position is tracked precisely from its initial position. Within the interface cell, the single-phase liquid part of the cell is separate and not homogenized with the two-phase part of the cell. The interaction zone portion of the interface cell contains two-phase sodium, fission gas and fuel which convect in or out of the adjacent cell in the interaction zone. This material has a separate density and pressure from the single-phase liquid
portion of the cell where the sodium is at full density and is at its original temperature. The interface moves with the velocity of the slug. The pseudocompressible treatment displaces the interface to take into account the interaction zone pressure compressing the slug (see below). The amount of this displacement, D, for one time step is
$D=\left(\overline{P_{c}^{j}}-{ }_{E N D}\right) \cdot \beta_{N a} \cdot \Delta t \cdot c_{N a}\left(1-t \cdot c_{N a} / L_{s}\right)$,
${ }^{B} \mathrm{Na}=$ compressiblity of liquid sodium
$c_{\mathrm{Na}}=$ speed of sound in liquid sodium
$t \quad=$ time after pin failure
$L_{s}=$ length of slug
$D=0$ if $t \cdot{ }^{*}{ }_{N}{ }^{a}>L_{S}$; and $\Delta t \cdot{ }^{*} C_{N a}$ is the distance that the compression wave travels in Δt. At every time step this displacement is added to the normal slug displacement due to its gross velocity until the first compression wave reaches the end of the slag (i.e., until $t^{*}{ }^{c}{ }_{N a}>L_{S}$) after which time the effect of the displacements on the interaction zone pressure is small. The $\left(P_{\mathrm{C}}^{j}-\mathrm{P}_{E N D}\right) \cdot \beta_{\mathrm{Na}}$ is the fraction of the length $\Delta t^{\cdot} \mathrm{C}_{\mathrm{Na}}$ that is actually compressed. The ${ }_{\mathrm{Na}}{ }^{\cdot\left(1-{ }^{-} \cdot \mathrm{c}_{\mathrm{Na}} / \mathrm{L}_{\mathrm{s}}\right) \text { term reduces the effect linearly to zero as the compression }}$ wave reaches the end of the slug so that no discontinuities result. The slug motions resulting from this approximate techaique compare well with those calculated using a fully compressible treatment.

In the event that pin failure occurs in an unvoided channel, initially all and later (up to a 0.5 to 1 ms in cases studied) much of the void produced in the coolant channel is caused by compression of the sodium by the interaction zone pressure. The small void fraction produced by compressing the sodium directly in front of the pin failure can be drastically ncreased by including the effect of compression after a pressure pulse has passed through it.

The approximation to this compressible effect in EPIC is made by compressing all the sodium in the portion of the liquid slug through which the pressure pulse would have passed in a compressible treatment using a pressure equal to the interaction zone pressure. The slug interface is then artifically displaced to generate a volume that would have been generated by the compression. This resresents the maximum contribution that this phenomenon can make and can double the void in some cases (and reduce the fission gas partial pressure to half) in the interaction zone in the initial portion of the transient. As the transient progresses, the effect will be less and less significant as more void is developed in front of the clad failure. Thus, no significant error is introduced by the approximation that the additional compression falls linearly to zero by the time the pressure pulse reaches the end of the slug.

The equation-of-state in the coolant channel is

$$
P_{c}(t, z)=P_{f u, s a t}\left(T_{f u, c}(t, z)\right)+P_{\mathrm{Na}, \mathrm{sat}}\left(T_{\mathrm{Na}, \mathrm{c}}(\mathrm{t}, \mathrm{z})\right)
$$

$$
\begin{equation*}
+\frac{R_{f g} \cdot T_{f g, c}(t, z) \cdot \rho_{f g, c}(t, z)}{V} \tag{2.2.21}
\end{equation*}
$$

where

$$
\begin{aligned}
& V=1-\frac{\rho_{f u, c}(t, z)}{\rho_{f u}^{p}}-\frac{\rho_{\mathrm{Na}, \mathrm{c}}(t, z)}{\rho_{\mathrm{Na}}^{p}} \cdot\left(1-\beta_{\mathrm{Na}} \cdot P_{c}(t, z)\right) . \\
& P_{\mathrm{Na}, \text { sat }}\left(T_{\mathrm{Na}, \mathrm{c}}(t, z)\right)=\begin{array}{l}
\text { saturation pressure corresponding to sodium } \\
\text { temperature } T_{\mathrm{Na}, \mathrm{c}}(t, z) .
\end{array}
\end{aligned}
$$

The partial pressure due to fuel vapor is always assumed to be the saturation pressure corresponding to the liquid fuel temperature and likewise with sodium. In non-ejection cells, the P_{C} channel pressure used to compute the sodium compression is taken from the last time step (or the last semi-implicit pass), because it does not vary rapidly with the time. V is the fraction of the total volume of the coolant channel cell not taken up by the liquid fuel and sodium (including the volume generated by compressing the liquid sodium).

2.3 The Pressure-Equilibration Ejection Mode1

There are two models in the code for pressure equilibration, and the user must select one of the models via input. The first model assumes that the dominant term affecting pressure equilibration is the change in fission gas partial pressure in the pin and channel; all temperatures are assumed to remain constant during ejection. The second model is more general and allows fuel temperature to change during ejection; this model is best suited for the situation where changes in fuel vapor partial pressure dominate the ejection, although it may be used for all situations (it is, however, less efficient than the first model). The fission-gas driven ejection model will be described first followed by the additional equation needed to describe the general model.

In the first model, fuel/fission gas ejection is driven primarily by fission gas. At the end of every time step, the pressure in each fuel pin cell is equilibrated with the pressure in the adjacent coolant channel cell (for all of the cells that delimit the clad rip). This calculation results in determination of the amounts of fuel and fission gas ejected from the pin cavity into the coolant channel during a time step. Orifice effects are assumed to not significantly inhibit fuel motion into the channel for the typical EPIC time step size. (If an orifice coefficient is used to compute the ejection velocity of the material with such large initial pressure gradients as are common in pin failure conditions, extremely small time steps are necessary, so that the computation is impractical.) In the pressure equilibration model, details of the pressure history are ignored. It is believed that the area under the pressure-time curve is more important than its precise shape (over a small segment of the transient), and that the area under the pressure-time curve is determined largely by the amount of fission
gas initially available. It is also felt that the fuel temperature and the precise mechanism of the dissipation of the fission gas thermal energy is not important. The equilibration procedure is performed at the end of each pass for a time step and determines the quantities $S_{f u, e j}$ and $\mathcal{S}_{f g}, e j$ needed to complete the solution of Eqs. 2.1.1, 2.1.3, 2.1.11 and 2.2.1. The equilibration calculation provides an explicit coupling between the pin and channel equations.

In the case of ejection driven primarily by fission gas partial pressure, an amount of fuel $\Delta V \cdot \rho_{f u}, p^{\cdot Y}$ and fission gas $\Delta V \cdot \rho_{f g, p}$ is ejected from the pin cavity into the channel. This amount is subtracted from the original amount of fuel and fission gas in the pin cell and added to the original amount in the channel. The function Y is the ratio of the volume of fuel to the volume of fission gas ejected and is specified by the user. It describes slip between fuel and fission gas during ejection. The expressions for the post-ejection pressures in the pin cell i and the channel volume in front of it, P_{p} [Eq. (2.1.13] and P_{C} [Eq. (2.2.21)] are set equal:

$$
\begin{aligned}
& P_{p}=P_{f u, s a t}\left(T_{f u, p}^{i, n+1}\right)+\frac{R_{f g} \cdot T_{f u, p}^{i, n+1} \cdot \rho_{f g, p}^{i, o} \cdot\left[V_{p}^{i, n+1}-\Delta V \cdot Y\right]}{i, o} \\
& V_{p}^{i, n+1}-\frac{\rho_{f u, p}}{\rho_{f u}^{p}} \cdot\left(V_{p}^{i, n+1}-\Delta V \cdot Y\right) \\
& =P_{f u, s a t}\left(T_{f u, c}^{n+1}\right)+P_{N a, s a t}\left(T_{\mathrm{Na}, \mathrm{c}}^{\mathrm{n}+1}\right) \\
& +\frac{R_{f g} \cdot T_{f g, c}^{n+1} \cdot\left(\rho_{f g, c}^{n+1} \cdot V_{c}^{n+1}+\rho_{f g, p}^{i, u} \cdot \Delta V \cdot Y\right)}{V}=P_{c}, \\
& V=v_{c}^{n+1}-\frac{1}{\rho_{f u}^{p}} \cdot\left(\rho_{f u, c}^{n+1} \cdot V_{c}^{n+1}+\rho_{f u, p}^{i, o} \cdot \Delta V \cdot Y\right) \\
& -\frac{1}{\rho_{\mathrm{Na}}^{p}} \cdot \rho_{\mathrm{Na}, \mathrm{c}}^{\mathrm{n}+1} \cdot V_{c}^{n+1}+\beta_{\mathrm{Na}} \cdot\left[p_{p} \cdot \frac{1}{\rho_{\mathrm{Na}}^{p}} \cdot \rho_{\mathrm{Na}, \mathrm{c}}^{\mathrm{n}+1} \cdot V_{c}^{n+1}\right. \\
& +\left(P_{p}-P_{E N D}^{U}\right) \cdot\left(1-t \cdot c_{N a} \cdot \frac{1}{L_{E N D}^{U}}\right) \cdot A_{E N D}^{U} \cdot c_{N a} \cdot \Delta t
\end{aligned}
$$

$$
\left.+\left(P_{p}-P_{E N D}^{L}\right) \cdot\left(1-t \cdot c_{N a} \cdot \frac{1}{L_{E N D}^{L}}\right) \cdot A_{E N D}^{L} \cdot c_{N a} \cdot \Delta t\right]
$$

```
\(\mathrm{P}_{\mathrm{F} N D}^{\mathrm{U}}=\begin{aligned} & \text { pressure at end of upper sodium liquid slug opposite interaction } \\ & \text { zone }\end{aligned}\)
\(\mathrm{L}_{\mathrm{END}}^{\mathrm{U}}=\) length of upper sodium liquid slug
\(\mathrm{A}_{\mathrm{END}}^{\mathrm{U}}=\) area of upper sodium liquid slug
\(\mathrm{P}_{\mathrm{LND}}^{\mathrm{L}}=\underset{\text { pressure }}{ }\) at end of lower sodium liquid slug opposite interaction
        zone
\(L_{\mathrm{END}}^{\mathrm{L}}=\) length of lower sodium liquid slug
\(A_{\mathrm{END}}^{\mathrm{L}}=\) area of lower sodium liquid slug
```

Here P_{p}, which is the left side of the equation, is substituted for the equilibrated pressure on the right side for the sake of the compression terms. The volume in the coolant channel which is equilibrated with the pin ejection cell i is not necessarily that of channel cell i alone. It may include up to one cell additional volume on either side of cell i, but it is added only if the cell above or below is not an ejection cell. The volume is delimited by the slug interfaces, and the volume expands as the slug interfaces move away from the failure. The purpose of this pseudo-Lagrangian expanded cell for equilibration purposes is to avoid the large pressure gradients that would otherwise occur across the boundaries of ejection cells in an initially unvoided channel before enough material (fuel and fission gas) has moved into the adjacent cell to raise its pressure. These extremely high pressure gradients would require very small time steps to preve t numerical problems. For a coolant channel voided in front of the ejection cell, the interfaces are far enough removed from the ejection cell so this treatment is not necessary. All values in Eq. (2.3.1) are at t^{n+1}, and the t^{n+1} values in the channel do not have a cell index because they are for the expanded cell under the above conditions. The temperatures it the channel volume are the mass weighted average of those of the cells within the volume V at t^{n+1}, and the $p^{\prime} s$ are averaged over v. The $p^{i, o}$ values are values at t^{n+1} prior to the ejection. The last two compression terms go to zero as described above at $t>\left(\mathrm{L}_{\mathrm{g}} / \mathrm{c}_{\mathrm{Na}}\right)$. These two terms must be included in an unvoided channel case, as discussed above, since, initially, they can drastically affect the ejection zone pressure for a short time. When the expression for P_{p} from the left side of Eq. (2.3.1) is substituted into the right side of Eq. (2.3.1) in the compression terms, Eq. (2.3.1) becomes a cubic equation in the unknown ΔV. The three roots of the equation are found using the closed-form analytical solution. The smallest positive root is used. If there is no real, positive root, then the ejection is zero. This can happen when the channel pressure has become greater than the pin pressure [e.g., from a fuel-coolant interaction (FCI)]. No injection of channel material into the pin $[$ a negative root of $\mathrm{Eq} \cdot(2.3 .1)]$ is allowed.

In adii:ion to the case of predominantly fission gas driven ejection, for which the m del above was developed, another model was created to deal with fresh fuel pins as well. The second model is totally general and can treat fuel ejection from pins with any amount of burnup (including zero burnup). In the case of zero burnup, the only non-condensible gas present would be fill gas. The ejection of molten fuel and gas is then driven by the pressure of the fuel vapor and any fill gas present. Since this generalized model takes more computer time, however, the more limited model described above should be used at the option of the user for the case of predominantly fission gas-driven ejection. Also, the user-specified function for fuel fission gas slip described above is not available in the general model.

In the generalized ejection model, the fuel temperature within the pin changes during the ejection as the material remaining in the pin expands to fill the available volume. The local fuel temperature within the channel changes due to the addition of the newly ejected fuel. The new total pressure in the pin after ejection consists of the linear superposition of fuel vapor pressure at the post-expansion fuel temperature plus the fission-gas pressure in the expanded fuel pin volume. The new pin pressure is then equalized with the channel pressure; the latter is a summation of the fuel vapor, fission-gas, and sodium vapor partial pressures at the post-ejection conditions.

The equations describing the additional features of the ejection are as follows. The fuel remaining in the pin is cooled by expansion (and vapor generation) into the volume freed by ejection of material during the time step:

$$
\begin{align*}
& \left\{\begin{array}{l}
\rho_{f u, p}^{i, o} \cdot V_{p}^{i, n+1}-\frac{1}{2} \cdot \Delta V
\end{array}\left[\rho_{f u, p}^{i, o}+\frac{P_{f u, s a t}^{\left(T_{f u, p}^{i, n+1}\right)}}{R_{f u} \cdot T_{f u, p}^{i, n+1}}\right]\right\} \cdot C_{P, f u} \cdot\left(T_{f u, p}^{i, n+1}-T_{f u, p}^{i, o}\right) \\
& =\frac{\Delta V \cdot P_{f u, s a t}^{\left(T_{f u}^{i, n+1}\right)}}{R_{f u} \cdot T_{f u, p}^{i, n+1}} \cdot H_{f g, f u} .
\end{align*}
$$

where most terms are defined as for Eq. (2.3.1). ΔV is the volume of material (fuel plus fission gas) ejected between time t^{n} and $t^{n+1}, R_{f y}$ is the gas constant for fuel, and $\mathrm{H}_{\mathrm{fg}} \mathrm{fu}$ is the latent heat of vaporization of fuel; the superscript o denotes valgefs at time n+1 but prior to ejection. The fuel vapor is treated as an ideal gas. This type of temperature calculation is also performed for the volume changes associated with melt-in and intra-pin convection of materlal from one mesh cell to another.

The newly ejected fuel enters the adjacent channel cell at a temperature

$$
\left(T_{f u, p}^{i, o}+T_{f u, p}^{i, n+1}\right) / 2
$$

and is mixed with the fuel in that cell to obtain the post-ejection fuel temperature in the channel:

$$
\left.\left.\begin{array}{l}
\rho_{f u, c}^{n+1} \cdot V_{c}^{n+1} \cdot E_{f u, s a t}\left(T_{f u, c}^{n+1}\right)=\rho_{f u, c}^{o} \cdot V_{c}^{n+1} \cdot E_{f u, s a t}\left(T_{f u, c}^{\circ}\right) \\
+\rho_{f u, p}^{i, o} \cdot \Delta V \cdot E_{f u, s a t}\left[\frac { 1 } { 2 } \cdot \left(T_{f u, p}^{i, o}+T_{f u, p}^{i}, n+1\right.\right.
\end{array}\right)\right] . \quad .
$$

The mass-weighted energy balance allows the correct energy to be associated with solidified fuel in the coolant channel. $E_{f u, s a t}(T)$ is the energy function.

Since the final pin and channel fuel temperatures appear implicitly (via $P_{f u, s a t) ~ i n ~ t h e ~ e q u a t i o n s, ~ a n ~ i t e r a t i v e ~ t e c h n i q u e ~ m u s t ~ b e ~ u s e d ~ t o ~ f i n d ~}^{\text {f }}$ the post-ejection conditions. For this purpose, the equations describing the ejection may be written using $\mathrm{T}_{\mathrm{fu}, \mathrm{p}}^{1, \mathrm{n}}$ as the primary unknown.

The number and location of ejection cells at pin failure where the EPIC model starts is specified in the input. There can be from one to as many cells as are necessary to encompass the extent of the molten fuel cavity. The failure cells need not be contiguous. The number and location of failure cells may remain constant during the whole transient if specified, or, at the option of the user, additional failure cells may be added during the transient. One way to add additional failure cells is for the user to program an arbitrary function into the code. There is a specific subroutine (RIPEXT) available for this purpose. There is another option presently available in the code for specifying the addition of failure cells. Ejection from any given axial pin cell can be triggered when a particular radial subcell (specified by the user) becomes fully molten.

3. PROGRAMMING CONSIDERATIONS

3.1 Description of Subroutines and Functions

The following is a brief general description of the purpose of each subroutine and function in the program.

CHAMOM

This routinc solves the momentum equation (implicitly) for from 1 to 3 two-phase regions in the coolant channel.

CHINIT

This routine initializes certain terms for use in CHAMOM and CHMAST. The terms are sodium vapor condensation, FCI and the energy division between boiling and heating the liquid phase for sodium.

CHMAST

This routine solves the continuity equations for fission gas and twophase sodium in the coolant channel. Also the temperatures of fission gas and sodium and the convection of the fissions gas interface are calculated here.

CPSLF
This function is for the specific heat of liquid sodium.

CPSVF

This function is for the specific heat of sodium vapor.

CUBRT

This routine solves a cubic equation which is necessary for the computation of fuel ejection.

DPFDT
This entry in the PFSAT routine provides the derivative of $P_{\text {sat }}$ for fuel with respect to temperature.

DPSDT
This entry in the PSSAT routine provides the derivative of $P_{\text {sat }}$ for sodium with respect to temperature.

EQUILN
This routine calculates the ejection of fuel and fission gas from all ejection nodes for all time steps after $t=0$, adjusting densities, temperatures
and pressures accordingly. Also the pin and channel pressure calculations for non-ejection nodes is done here.

EQUILP

This routine calculates the ejection of fuel and fission gas by means of the generalized ejection model.

EQUIL1
This routine calculates the ejection of fuel and fission gas from all ejection nodes at $t=0$.

ETOT

This function converts an energy per unit mass to a temperature for fuel.

FUPART

This routine calculates the convection, velocity and temperature of the fuel particle groups.

INPUT

This routine reads all data and initializes most variables and prints out their values in edited form.

MAIN

This program makes all the primary subroutine calls. There are some initializations, the time step is set, the current semi-implicit pass is determined and the results of the calculations on each semi-implicit pass are switched to the proper storage location, clad rip extension is calculated under one option and particle recombination is calculated.

MISC

This routine adjusts FCI zone boundaries as well as the velocities, pressures, temperatures and densities at the FCI zone boundaries. There is an adjustment to the temperature in the pin cavity due to fuel vaporization. There is a calculation to alleviate overcompaction in both pin and channel cells.

PFSAT

This function provides the saturation pressure of fuel as a function of temperature.

PHIT

This is a user-supplied function to provide normalized power as a function of time.

PIN

This routine solves the following equations in the fuel pin: continuity and momentum equations for fuel and fission gas, and energy for fuel. The momentum equation is solved implicitly. The temperature of each solid fuel cell is also calculated as a function of fis ion heating and the melt-in source term is computed.

PLOTER
This routine writes out data to be used by a separate program to generate plots.

PRINT

This routine prints results at spccified intervals. The reactivity calculation is don/, here.

PSSAT

This function provides the saturation pressure of sodium as a function of temperature.

RANDU

This provides a "random number" for use by EQUILN in placing fuel particle groups in front of the ejection cells. The subroutine is specifically designed for IBM computers and can't be used except on IBM.

RIPEXT

This is an arbitrary user-supplied function to specify the extension of the clad failure as a function of time.

SIMQ

This routine solves a system of linear equations. It is used in the implicit solution of the momentum equations in the pin and channel.

SLDENS

This function provides the density of liquid sodium as a function of temperature.

SLGVEL

This routine calculates the motion of the single-phase regions above and below the interaction zone.

This function converts temperature to energy per unit mass for fuel.

YFACF

This is an arbitrary user-supplied function which specifies the amount of slip between fuel and fission gas during convection in the pin cavity and during ejection.

3.2 Sequence of Execution

The MAIN program calls these subroutines in the following order:
INPUT (once to start problem)
EQUILl (once at time zero)
PLOTER (when specified according to time interval and by option)
PRINT (when specified according to time interval)
PIN
CHINIT
CHMAST
CHAMOM
SLGVEL
FUPART
RIPEXT (when specified according to option)
EQUILN
MISC
In addition, aside from function calls,
EQUIL1 calls YFACF, EQUILP, CUBRT
PIN calls YFACF, PHIT, SIMQ
CHAMOM calls SIMQ
EQUILN calls YFACF, EQUILP, CUBRT, RANDU
MISC calls YFACF.

3.3 Facility Requirements and Gereral Operational Information

EPIC requires 400 K bytes of storage on the IBM $370 / 195$ computer. There is one input file. There are three output files, two of which are optional. Besides the printer, there is an optional abreviated form of the output written on unit 10 and plotting information is written on an arbitrary unit number.

Certain subroutines must be supplied by the user. If the amount or form of the plotting information is not adequate as supplied by the version of PLOTER provided to the user, changes must be made to make this routine compatible with the plotting program used. PLOTER is only called if the plotting option is indicated, of course. YFACF as supplied to the user will specify a no slip condition between fuel and fission gas. The user must alter the routine to change this. The subroutine RIPEXT as supplied to the user has a particular arbitrary scheme for extending the cladding failure. Should the user wish RIPEXT to be called, he will undoubtedly want to change the scheme,
in which case the scheme provided will serve as a paradigm to show him what must be done. The PHTT routine must be specified by the user for the transient power function. The rountines PLOTEn and RIPEXT are not called unless the appropriate input option is set; however, YFACF and PHIT are always called by the code.

Certain features of EPIC are specific to the IBM 370/195 system. They may have to be changed when bringing the code up on an incompatible system. The input unit is rewound after it is read and the input records are listed as read. This may not be allowed on other computer systens. The user may just eliminate this section of coding and the only effect will be to lose the listing of the input but the edited form of the input will still appear. RANDU generates a sequence of so-called "random numbers" using features that are peculiar to the IBM hardware. This routine will probably have to be replaced by a user if another system is used. RANDU is only called from EQUILN and it does nothing more than to provide a different number between 0.0 and 1.0 every time it is called. It can be replaced very easily.

All the floating point variables in the program are in IBM double precision (i.e., REAL*8) and all integers are full precision (INTEGER*4) except the following: YFL and some temporary variables in PLOTER are REAL* 4 and LBUGPR is logical (*4).
42

4. INPUT AND OUTPUT DESCRIPTION

4.1 Input Description

The following is a description of the input to EPIC.

Card			
Group	No, of Cards		
in Croup		\quad Format	Variable Units
:---:			
Name	Description		

1	2	72Al	JOBID	-	Two cards of alphanumeric case identification.
2	1	1016	NPL	-	Bottom cell of molten fuel cavity in pin (699).
			NPU	-	Top cell of molten fuel cavity in pin (699).
			NPLC	-	Bottom cell of fuel mesh (<99).
			NPUC	-	Top cell of fuel mesh ($\leqslant 99$).
			NPRAD	-	Number of radial subcells at each axial cell in fuel mesh (<10).
			NCL	-	Bottom cell of channel mesh (<99).
			NCU	-	Top node of channel mesh (<99).
			MPPART	-	Number of fuel particles per particle group at ejection ($\sim 50-200$ suggested).
			MAXPRT	-	Maximum number of fuel particle groups allowed in channel before recombining particle groups ($\leqslant 1000$).
			NDIV	-	Number of divisions in each cell for the purpose of particle group recombination ($\sim 10-20$ suggested).
3	1	1016	INTPO	-	Number of time steps between print-outs.

[^1]| Card
 Group | No of Cards |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| in Group | |\quad Format | Variable |
| :---: |
| Name |

$\begin{aligned} & 7 \\ & \text { (contd) } \end{aligned}$	1		DELT2	s	Second time step (from TIMEO1 to TIMEO2, Δt is varied linearly from DELT1 to DELT2; between TIME02 and TIME03, $\Delta t=$ DELT2).
			DELT3	s	Third time step (from TIME03 to TIME04, Δt is varied linearly from DELT2 to DELT3; after TIMEO4, $\Delta t=$ DELT3).
			TIMEO1	s	See DELT1 and DELT2 above.
			TIME02	s	See DELT2 above.
			TIME03	s	See DELT2 and DELT3 above. (If TIMEO3 $=0$, it is set to 100.)
8	1	6 E 12.5	TIME04	s	See DELT3 above. (If TIMEO4=0, it is set to 100)
			TIMAX	s	Maximum problem time.
			Extime	s	Time after which differencing is explicit in time.
			PTIME1	s	Between PTIME1 and PTIME2, results are printed for all time steps and for each semi-implicit pass each step. (If PTIME1=0, it is set to 100.)
			PTIME2	s	See PTIME1 above.
			POINT	s	Time interval between prints.
9	1	6E12.5	PLINT	s	Time interval between data writes for fuel density plots.
			TMELT	K	Fuel melting temperature

Card Group	No. of Cards in Group	Format	$\begin{aligned} & \text { Variable } \\ & \text { Name } \end{aligned}$	Units	Description
12	1	6E12.5	DCHAN	cm	Hydraulic diameter of lower sodium liquid slug from end of coolant mesh to HLPLEN.
			DCHANU	cm	Hydraulic diameter of upper sodium liquid slug from end of coolant mesh to HUPLEN.
			RAF	-	Coefficient in RAF(Re)RBF for sodium liquid and pin cavity friction factor.
			RBF	-	```Exponent in RAF(Re) RBF for sodium liquid and pin cavity friction fac- tor.```
			RAM	-	Coefficient in RAM(Re) RBM for two-phase sodium friction factor.
			RBM	-	Exponent in RAM(Re) ${ }^{\text {RBM }}$ for two-phase sodium friction factor.
13	1	6 E 12.5	PLPLEN	dynes/cm2	Pressure at lower free surface
			PUPLEN	dynes/cm ${ }^{2}$	Pressure at upper free surface
			TLPLEN	K	Temperature at lower free surface
			TUPLEN	K	Temperature at upper free surface
			ACLEND	cm ${ }^{2}$	Area of coolant channe 1 between end of coolant mesh and HLPLEN.
			ACUEND	cm^{2}	Area of coolant channel between end of coolant mesh and HUPLEN.
14	1	6 E 12.5	HSFCL	ergs/gm	Heat of fussion of cladding.

Card Group	No. of Cards in Group	Format	Variable Name	Units	Description
$\begin{aligned} & 14 \\ & (\text { contd }) \end{aligned}$) 1		CLDEN	$\mathrm{gm} / \mathrm{cm}^{3}$	Density of cladding.
			CPCL e	ergs/gm $\cdot \mathrm{K}$	Specific heat of cladding.
			CLMELT	K	Cladding melting temperature.
			HBOND erg	$\mathrm{gs} / \mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}$	Bond conductance between solid fuel and cladding at cladding inner surface.
			HBONDM erg	$\mathrm{g} / \mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}$	Bond conductance between molten fuel and cladding a cladding inner surfice.
15	1	6 E 12.5	RFG	ergs/g.K	Gas constant for fission gas
			VFC	-	Volume fraction of cool ant (used with card group 30 below; coolant flow area $=$ VFC/ $(1-$ VFC $) \times$ $\pi \times r^{2}$, where r is outer clad radtus)
16	I $\{($ NPUC-NPLC+1) $/ 6\}$	6 E 12.5	RFOUT (I)	cm	Read only if NPRAD>0. Outer radius of solid fuel for cells NPLC to NPUC.
17	$\begin{gathered} (\text { NPuC-NPLC+1) } \times \\ \{\{\text { NPKAD } / 6\} \end{gathered}$	6 E 12.5	$\operatorname{TFUPRZ}(\mathrm{J}, \mathrm{I})$) K	Read only if NPRAD>0. Temperature of each r-z cell. For each xial cell, NPLC to PUC, NPRAD numbers are read from I (NPRAD/6\} cards and skip to the next card for the next axial cell.
18	$\begin{gathered} (\text { NPUC-NPLC }+1) \\ \times I\{\text { NPRAD } / 6\} \end{gathered}$	6 E 12.5	$\operatorname{HFPRZ}(\mathrm{J}, \mathrm{I})$	-	Read only if NPRAD>0. Fraction of heat of fusion satisfied at each r-z cell. Read like card group 17.
19	$\begin{gathered} (\text { NPUC-NPLC }+1) \\ \times I\{\text { NPRAD } / 6\} \end{gathered}$	6 E 12.5	$\operatorname{GMPN}(\mathrm{J}, \mathrm{I})$	g	Read only if NPRAD>0. Mass of fuel in each r-z cell. Read like card group 17.

Card Group	No. of Cards in Group	Format	Variable Name	Units	Description
20	$\begin{aligned} & (\text { NPUC-NPLC }+1) \\ & \times I\{\text { NPRAD } / 6\} \end{aligned}$	6 E 12.5	$\operatorname{FGFUF}(\mathrm{J}, \mathrm{I})$	-	Read only if NPRAD>0 and IOPT4=-1. Ratio of fission gas mass to fuel mass in each r-z cell. Read like card group 17.
21	$\mathrm{I}(\mathrm{NPPU}-\mathrm{NPL}+1) / 6\}$	6\%12.5	TFUP2(1)	K	Read only if 10 PT2 $=0$. Temperature of each axial cell in the pin cavity, from NPL to NPU.
22	$\mathrm{I}\{(\mathrm{NPU}-\mathrm{NPL}+1) / 6\}$	6 E 12.5	AF2(I)	cm^{2}	Read only if IOPTl=0, cross-sectional area of each axial cell in the pin cavity. From NPL to NPU.
23	1	6E12.5	FGFUF(J, I)	-	Read only if IOPT $4=1$. Ratio of fission gas mass to fuel mass in all r-z cells, one value.
24	I $\{($ NPUC-NPLC +1$) / 6\}$	6E12.5	FGFUF(J, I)	-	Read only if $10 P T 4=0$. Ratio of fission gas mass to fuel mass in each axial cell (the same value is used in all radial sub-cells), NPLC to NPUC.
25	1	6 E 12.5	TEMP	-	Read only if IOPT3 $=1$. Value of void fraction in all pin cavity cells. Fuel smear density $=$ FDEN \times (1 -TEMP).
26	I $\{(\mathrm{NPU}-\mathrm{NPL}+1) / 6\}$	6E12.5	RVOID (I)	cm	Read only if IOPT3 $=0$. Radius of central void in each pin cavity cell which defines total void fraction in each cell in order to compute smear density, from NPL to NPU.
27	$\mathrm{I}\{(\mathrm{NCU}-\mathrm{NCL}+1) / 6\}$	6E12.5	RCL(I)	cm	Claddit.g outer radius, NCL to NCU .

Card Group	No. of Cards in Group	Format	Variable Name	Units	Description
28	$\mathrm{I}\{(\mathrm{NCU}-\mathrm{NCL}+1) / 6\}$	6E12.5	RCIN(I)	cm	Cladding inner radius, NCL to NCU.
29	$\mathrm{I}\{(\mathrm{NCU}-\mathrm{NCL}+1) / 6\}$	6E12.5	TCL2 (I)	K	Cladding temperature, NCL to NCU.
30	$\mathrm{I}\{(\mathrm{NCU}-\mathrm{NCL}+1) / 6\}$	6E12.5	AC2 (I)	cm^{2}	Coolant channel flow area, NCL to NCU. If a zero value for $A C 2$ is read at any axial cell I, the flow area will be calculated by the formula: $\mathrm{AC} 2(\mathrm{I})=\mathrm{VFC}$ $\times \pi \cdot R C L(I) \cdot R C L(I) /(1.0-V F C)$.
				-	If a negative value for AC2 is read at any axial cell I, the flow area will be calculated by the formula: $\operatorname{AC} 2(I)=$ $-\operatorname{AC2}(\mathrm{I}) \cdot \pi \cdot \mathrm{RCL}(\mathrm{I}) \cdot \mathrm{PCLL}(\mathrm{I}) /$ (1.0+AC2(I)).
31	$\mathrm{I}\{(\mathrm{NCU}-\mathrm{NCL}+1) / 6\}$	6 E 12.5	TNA2 (I)	K	```Sodium temperature, NCL to NCU```
32	$\mathrm{I}\{(\mathrm{NCU}-\mathrm{NCL}+1) / 6\}$	6 E 12.5	VPFRO(I)	-	Void fraction in coolant channel, NCL to NCU.
				$\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	(Liquid sodium densities may be input for any or all of these locations instead of void fractions by simply inserting the negative of the denisty in the appropriate cell location.)
33	$\mathrm{I}\{(\mathrm{NCU}-\mathrm{NCL}+1) / 6\}$	$6 E^{*}-.5$	PM2 (I)	dynes/cm ${ }^{3}$	Read only if IOPT $7=0$. Channel pressure, NCL to NCU.
34	$\mathrm{I}\{(\mathrm{NCU}-\mathrm{NCL}+2) / 6\}$	6E.12.5	UM2 (I)	cm / s	Velocity of each cell bottom from NCL to NCU+1.
35	$\mathrm{I}\{(\mathrm{NCU}-\mathrm{NCL}+1) / 6\}$	6 E 12.5	WPGM (I)	W/g	Watts per gram of fuel NCL to NCU.

4.2 Output Description

Initial Print-out

1) Listing of card input as read by the program.
2) Listing and explanation of fixed point data (e.g. indices describing the mesh structure) and options chosen for the case.
3) Listing and explanation of floating point data which describes geometry, material properties, etc.
4) Listing of various floating point arrays which store data by axial cell including reactivity worths, initial power and geometry data.
5) A description of the initial conditions in the $r-z$ fuel mesh including the the outer radius of each radial subcell in e:ery axial cell, the total cross-sectional area from the center of the fuel out to and including the radial subcell, and the temperature, melt fraction, mass and fission gas to fuel mass ratio for each subcell.

Time-dependent nuti.t unt

1) Time (sec) since problem initiation and currenc time step (sec).
2) Normalized power levei relative to tho Fuwer per unit mass as input (WPGM), the multiplicative factor applied to WPGM at the current time.
3) Locations (cmi) of the interaction zone boundaries (FCIL and FCIU) and the axial cells in which the boundaries lie. (Heights are relative to the bottom of the channel mesh which is zero cm.)
4) Indicies of the highest and lowest failure cells.
5) Total amount (gm) of fuel ejected into the coulant channel and the current number of particle groups into which this amount is subdivided.
6) The highest and lowest axial positions (cm) of the fuel particles in the coolant channel (XMAX and XMIN). (Heights are relative to the bottom of the channel mesh which is zero cm .)
7) Sodium reactivity change (Δk). The sodium reactivity change is zero at steady-state conditions so that the reactivity change due to the density difference could be non-zero at pin failure even with a full channel.
8) Fuel reactivity change (Δk). The fuel reactivity change is normalized to zero at pin failure.
9) Total reactivity change (Δk). Simply the sum of (7) and (8).
10) Pin fuel reactivity change ($\Delta \mathrm{k}$). This is the current totel worth of all pin fuel minus the worth at $t=0$.
11) Channel fuel reactivity change ($\Delta \mathrm{k}$). This is the current total worth of all channel fuel minus the worth at $t=0$, which is zero, since there is initially no fuel in the channel. (10) and (11) add up to (8).

Note: The user specifies the reactivity worth for each axial cell in the reactivity mesh. The worths may correspond to any number of pins at the user's option but this number must be included in the worth as input. Although reactivity changes are calculated and printed, these changes have no feedback to the rest of the calculation. The power continues to be given by the user-suppied function PHIT.

The following are given for each axial cell:
12) Position (cm) of cell bottom. This is relative to the bottor of the channel mesh which is zero.
13) Fuel temperature (K) in the pin molten fuel cavity. This is the temperature of the homogenized cell fuel in radial subcells composing the cavity.
14) Pressure (dynes $/ \mathrm{cm}^{2}$) in the pin molten fuel cavity. This includes both the fission gas and fuel vapor partial pressure.
15) Smar density $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$ of fuel in the pin molten fuel cavity. This is the mass of fuel in the cavity cell divided by the cavity cell (sum of radial subcells fully molten) volume.
16) Smear density $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$ of fission gas in the pin molten fuel cavity. This is the mass of fission gas in the cavity cell divided by the cavity cell volume.
17) Area $\left(\mathrm{cm}^{2}\right)$ of the pin molten fuel cavity cell. This is computed from the ter radius of the outermost fully molten radial subcell. This area may change during the calculationfrom melt-in.
18) Velocity ($\mathrm{cm} / \mathrm{sec}$) of both fuel and fission gas in the molten fuel cavity. The velocity printed out for the cell is at the bottom edge of the cell.
19) Cladding temperature (K). Since there is a one radial node treatment of the cladding, this is the average temperature.
20) Pin fuel reactivity change ($\Delta \mathrm{k}$). This is the current worth of the fuel (molten and solid) in an axial pin cell minus the worth at $t=0$. The sum of these cell worths gives (10).
21) Channel fuel reactivity change ($\Delta \mathrm{k}$). This is the current worth of the fuel in an axial channel cell. The initial worth is zero since there is no fuel in the channel at $t=0$. The sum of these cell worths gives (11).
22) Total reactivity change ($\Delta \mathrm{k}$). This is simply the sum of (20) and (21) for each cell.
23) Sodium temperature (K). This is the homogenized temperature of twophase sodium in a channel cell. The temperature of sodium printed out for interface cells in the channel is only for the two-phase sodium in the partial cell and does not include the liquid sodium from the end of the sodium slug in the cell.
24) Fission gas temperature (K). This is for the homogenized cell fission gas in the channel.
25) Fuel temperature (K). This is the mass-weighted average of the temperature of all the sections of particle groups lying within the channel cell.
26) Total pressure (dynes $/ \mathrm{cm}^{2}$). This is the sum of the fission gas, sodium vapor and fuel vapor partial pressures within a channel cell. The channel pressure in front of the ejection cells, however, may be influenced by the creation of an expanded cell in an initially unvoided channel (as explained in the text) since the sodium and fuel and fission gas partial pressures are averaged for the entire expanded cell. The interface cell pressure in the coolant channel is always interpolated between the cells on either side of it when the interface cell is not an ejection cell. The pressure in the single-phase sodium liquid slugs in the coolant channel is interpolated between the interaction zone and the ends of the slugs (which may be in the coolant channel or at the free surfaces).
27) Density $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$ of liquid sodium. This is the mass of sodium in the channel cell divided by the cell volume. The densities printed for the interface cells which are not ejection cells are the mass of liquid sodium in the part of the cell which is not part of the slug divided by the total cell volume (not the partial cell volume).
28) Density $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$ of fission gas. This is the mass of fission gas in the channel cell divided by the cell volume. The densities in interface cells are as for liquid sodium (27).
29) Density $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$ of fuel. This is the mass of all the sections of particle groups lying within the channel cell divided by the cell volume. The densities in interface cells are as for liquid sodium (27).
30) Density ($\mathrm{gm} / \mathrm{cm}^{3}$) of two-phase sodium plus fission gas. This is (27) plus (28) plus the density of sodium vapor in the channel cell. The sodium vapor density is comptied from the two-phase sodium temperature and is not book-kept.
31) Fuel velocity $(\mathrm{cm} / \mathrm{sec})$. This is the mass weighted average of the velocities of the sections of particle group which lie within the range of one-half cell below the bottom of the channel cell to onehalf cell above the channel cell.
32) Velocity $(\mathrm{cm} / \mathrm{sec})$ for the mixture of two-phase sodium and fission gas. The velocity printed out for the cell is at the bottom edge of the cell.

Note: 1) The two options which force an output edit after every pass (INTPO1 and PTIME1/PTIME2) also will give diagnostic output assoicated with ejection and over-compaction, 2) the code incorporates a 20% of Courant limitation (on local velocity not sound speed) and the time step size is decreased accordingl; when necessary. This applies to all pin and channel velocities, including the individual particle group velocities. Aiso, the results of a time step will be discarded and the calculation repeated using a smaller time step size if the channel cells become severely overcompacted or if the pin pressure changes by more than 25% in one time step.

5. SAMPLE PROBLEM

The case chosen for the sample problem is for a mid-power-rated fuel pin which is experiencing burst failure conditions during a loss-of-flow transient. This situation, as explained in the introduction, is an important accident scenario to consider because of its generic nature and because it demonstrates one common type of problem which EPIC is intended to simulate.

5.1 Description of Input for Sample Problem

Figure 2 shows the cell structure and problem specifications at $t=0$. A description and explanation of the input follows. Refer to the description of the input variables in section 4.1 and to the listing of the sample problem input cards in this section.

The first two cards of card group 1 give a verbal description of the problem.

Referring to Fig. 2 for card group 2 one sees that the bottom cell of the molten fuel cavity in the fuel pin, NPL, is 22 ; and the top cell, NPU, is 31. The molten fuel cavity will be described later in the HFPRZ array which stores the fraction of the heat of fusion satisfied for every r-z cell in the fuel, pin. The lowest axial cell which is fully molten (HFPRZ $=1.0$) in at least one radial subcell is 22 and the highest which satisfies this criterion is 31 . The lowest axial cell in the fuel mesh, NPLC, is 19 ; and the highest, NPUC, is 32 , which means that the molten fuel cavity could grow axially at most one cell upwards and three downwards with melt-in. Also there are 10 radial subcells specified in the $r-z$ fuel mesh in the pin (NPRAD $=10$). The 10 radial subcells in each axial cell are of equal volume. The lowest cell in the coolant channel mesh, NCL, is 1 . The highest cell, NCU, is 50 . This extends the mesh structure almost from the subassembly inlet to the outlet, with less than a cell length to the inlet and outlet at each end. MPPART is the number of fuel particles with radius RPART (later in input) which constitute a particle group upon ejection. That is, when the fuel ejection model determines that a certain mass of fuel is to be ejected into the coolant channel, this mass is divided up into amounts equal to MPPART times the mase of one particle of radius RPART, with any remainder forming a separate group. Thus the purpose of MPPART is to provide a reasonable number of particle groups into which the ejected fuel is divided. MPPART should vary with the size of the particle and the product of MPPART and the mass of a single fuel particle should probably be in the range of 0.05 to 0.10 grams (in this case the product is about 0.1 grams). MAXPRT is the maximum number of fuel particle groups allowed in the coolant channel before recombination. The limit on this is 1000 but a maximum of the order of 500 to 1000 would be very expensive in computer time. A limit lower than 100-200 would, on the other hand, mean a less detailed calculation of the fuel behavior in the channel. A compromice must be made by considering how much fuel will be in the channel and how long the interaction zone will be; the user must make this decision. The number 200 was chosen for the sample problem. NDIV is the number of axial subdivisions in each axial cell for the purpose of combining fuel particle groups in the coolant channel when the number of groups exceeds MAXPRT. When recombination occurs, the centroids of each of the particle groups which are located in each of NDIV axial subdivisions of each axial cell are combined into a single particle group. If NDIV times the

Fig. 2. Schematic Showing the Sample Problem Specifications.

1.	1.	1.	1.	1.	1.	00000600
0.8857	0.4744	0.	0.			00000610
1.	1.	1.	1.	1.	1.	00000620
0.9711	0.5490	0.0513	0.			00300630
1.	1.	1.	1.	1.	1.	00000640
0.9048	0.4988	0.0162	0.			00000650
1.	1.	1.	1.	1.	1.	00000650
0.7225	0.3473	0.	0.			00000670
1.	1.	1.	1.	1.	0.7295	00000680
0.4412	0.1351	0.	0.			00000590
1.	1.	1.	0.7294	0.5084	0.3038	00000700
0.1005	0.	0.	0.			00000710
1.	0.5110	0.3315	0.1822	0.0254	0.	00000720
0.	0.	0.	0.			00000730
0.0492	0.	0.	0.	0.	0.	00000740
0.	0.	0.	0.			00000750
1.328	1.331	1.335	1.339	1.343	1.348	00000760
1.354	1.352	1.378	0.470			00000770
1.300	1.305	1.312	1.318	1.323	1.328	00000780
1.334	1.344	1.350	0.614			C0000790
1.231	1.243	1.274	1.297	1.306	1.311	00000800
1.317	1.327	1.343	0.817			00000810
0.438	1.437	1.474	1.523	1.394	1.273	00000820
1.296	1.311	1.328	1.010			00000830
0.179	1.409	1.420	1.457	1.461	1.485	00000840
1.314	1.292	1.318	1.145			00000850
0.094	1.390	1.398	1.420	1.445	1.470	00000550
1.462	1.263	1.305	1.221			00000870
0.062	1.379	1.386	1.403	1.428	1.449	00000380
1.484	1.279	1.293	1.290			00000590
0.046	1.376	1.381	1.398	1.422	1.443	00000900
1.475	1.234	1.288	1.325			00000910
0.055	1.379	1.385	1.401	1.426	1.448	00000920
1.483	1.236	1.291	1.295			00000930
0.039	1.390	1.393	1.418	1.440	1.468	00000840
1.448	1.273	1.302	1.235			00000950
0.175	1.409	1.421	1.453	1.453	1.441	00000960
1.339	1.283	1.313	1.176			00006 970
0.466	1426	1.433	1.474	1.433	1.262	00000530
1.287	1.310	1.325	1.049			00000990
1.116	1.373	1.259	1.279	1.298	1.308	00001000
1.315	1.322	1.337	0.863			00001010
1.295	1.309	1.313	1.317	1.321	1.326	00001020
1.331	1.339	1.354	0.625			00001030
0.00228	0.00248	0.00248	0.00249	0.00249	0.00249	00001040
0.00249	0.00250	0.00250	0.00252			00001050
0.00143	0.00232	0.00255	0.00260	0.00261	0.00262	00001060
0.00263	0.00264	0.00266	0.00268			00001070
0.	0.	0.00219	0.00257	0.00259	0.00262	00001080
0.00264	0.00266	0.00271	0.00277			00001090
0.01439	0.	0.	0.00133	0.00252	0.00253	00001100
0.00253	0.00255	0.00265	0.00281			60001110
0.04369	0.	0.	0.	0.00154	0.00248	00001120
0.00246	0.00244	0.00252	0.00276			00001130
0.08903	0.	0.	0.	0.	0.	00001140
0.00241	0.00234	0.00240	0.00270			00001150
0.1408	0.	0.	0.	0.	0.	00001160
0.00204	0.00228	0.00231	0.00263			00001170
0.1926	0.	0.	0.	0.	0.	00001180
0.00179	0.00226	0.00226	0.00258			00001190

0.1567		0.	0.	0.	0.	00001200
0.00191	0.00224	0.00225	0.00258			00001210
0.09472			0.	0.	0.	00001220
0.00218	0.00225	0.00228	0.00259			00001230
0.04491	0.	0.	0.	0.	0.00230	00001240
0.00231	0.00229	0.00234	0.00260			00001250
0.01367	0.	0.	0.00070	0.00227	0.00232	00001260
0.00233	0.00234	0.00242	0.00263			00001270
0.001967	0.	0.00131	0.00226	0.00231	0.00235	00001280
0.00238	0.00240	0.00246	0.00259			00001290
0.00072	0.00223	0.00227	0.00230	0.00233	0.00234	00001300
0.00236	0.00237	0.00240	0.00245			00001310
0.2921	0.2921	0.2921	0.2921	0.2921	0.2921	00001320
0.2921	0.2921	0.2921	0.2921	0.2921	0.2921	00001330
C. 2921	0.2921	0.2921	0.2921	0.2921	0.2921	00001340
0.2921	0.2921	0.2921	0.2921	0.2921	0.2921	00001350
0.2921	0.2921	0.292 ?	0.2921	0.2921	0.2921	00001360
0.2921	0.2921	0.2921	0.2921	0.2921	0.2921	00001370
0.2921	0.2921	0.2921	0.2921	0.2921	0.2921	00001380
0.2921	0.2921	0.2921	0.2921	0.2921	0.2921	00001390
0.2921	0.2921					00001400
0.254	0.254	0.254	0.254	0.254	0.254	00001410
0.254	0.254	0.254	0.254	0.254	0.254	00001420
0.254	0.254	0.254	0.254	0.254	0.254	00001430
0.254	0.254	0.254	0.254	0.254	0.254	00001440
0.254	0.254	0.254	0.254	0.254	0.254	00001450
0.254	0.254	0.254	0.254	0.254	0.254	00001460
0.254	0.254	0.254	0.254	0.254	0.254	00001470
0.254	0.254	0.254	0.254	0.254	0.254	00001480
0.254	0.254					00001490
643.	643.	643.	643.	643.	643.	00001500
643.	643.	643.	643.	643.	643.	00001510
662.	662.	687.	687.	715.	763.	00001520
957.	1045.	1125.	1205.	1274.	1338.	00001530
1359.	1430.	1457.	1456.	1456.	1449.	00001540
1431.	1403.	1313.	1297.	1297.	1282.	00001550
1282.	1253.	1253.	1253.	1227.	1082.	00001560
1082.	1080.	1080.	1030.	1079.	1079.	00001570
1079.	1078.					00001580
0.0	0.0	0.0	0.0	0.0	0.0	00001590
0.0	0.0	0.0	0.0	0.0	0.0	00001600
0.0	0.0	. 0	0.0	0.0	0.0	00001610
0.0	0.0	0.0	0.0	1.0	0.0	00001620
0.0	0.0	0.0	0.0	0.0	0.0	00001530
0.0	0.0	0.0	0.0	0.0	0.0	00001640
0.0	0.0	0.0	0.0	0.0	0.0	00001650
0.0	0.0	0.0	0.0	0.0	0.0	00001660
0.0	0.0					00001670
643.	643.	643.	644.	644.	644.	00001680
644.	647.	647.	647.	647.	659.	00001690
659.	675.	675.	721.	775.	857.	00001700
973.	1052.	1125.	1195.	1257.	1312.	00001710
1356.	1389.	1407.	1432.	1430.	1424.	00001720
1410.	1377.	1315.	1297.	1287.	1278.	00001730
1268.	1296.	1249.	1240.	1254.	1256.	00001740
1230.	1230.	1230.	1216.	1216.	1216.	00001750
1209.	1209.					00001760
0.	0.	0.	0.	0.	0.	00001770
0.	0.	0.	0.	0.	0.	00001780
0.	0.	0.	0.	0.	0.	00001790

0.	0.	0.	0.	0.	0.	00001800
0.	0.	-. 624	-. 1094	-. 1064	-. 1098	00001810
-. 1129	-. 1171	-. 1234	-. 1245	-. 1245	-. 1243	00001820
-. 1235	-. 1919	-. 1293	-. 1268	-. 4313	0.	00001830
0.	0.	0.	0.	0.	0.	00001840
0.	0.					00001850
-498.	-498.	-498.	-498.	-498.	-498.	00001860
-498.	-498.	-498.	-493.	-498.	-499.	00001870
-500.	-501.	-502.	-506.	-513.	-523.	00001880
-539.	-555.	-563.	-581.	-594.	-606.	00001890
-616.	-624.	-624.	-310.	0.	0.	00001900
0.			0.	0.	0.	00001910
0.	1291.	1291.	0.	338.	731.	00001920
782.	778.	778.	776.	775.	775.	00001930
774.	773.	773.				00001840
0.	0.	0.	0.	0.	0.	00001950
0.		0.	0.		2025.	00001960
2025.	2025.	2506.	3995.	5052.	18484.	00001970
5 C 285.	58715.	66532.	73847.	7869%.	81833.	00001880
83337.	83034.	80993.	77266.	71960.	65265.	00001990
57471.	42281.	7589.	2628.	2072.	1471.	00002000
1427.	0.	0.	0.	0.	0.	00002010
0.	0.	0.	0.	0.	0.	00002020
0.	0.					00002030

number of cells in the interaction zone is greater than 1000, NDIV is automatically halved until the product is less than 1000 . NDIV must therefore be appropriate for the number of cells anticipated in the interaction zone and for MAXPRT. In this case the number chosen was 10 .

The third card group begins with instructions for printing the output. INTPO is set to give print-outs at every 10 time steps. INTPO1 is set so the option is ignored. IPR10 is 0 for no output on unit 10. IPLOT and IPCYCL are each 0 since no plot data is desired. IOPT1 is -1 , indicating that the geometry of the pin molten fuel cavity is calculated from the fully molten cells indicated in the data. A search is made over the r-z mesh in the fuel pin and, at each axial cell, the number of radial subcells which have fully satisfied the heat of fusion is determined. This number of subcells divided by NPRAD is multiplied by the cross-sectional area of each axial cell to give the molten fuel area. A prototypical fast-reactor radial power profile which peaks in the center of the pin is assumed; there is no provision for other power shapes which may exist in certain experiments, e.g., those with thermal spectra. The other option for IOPT1 is simply to read in the molten fuel cavity areas for each axial cell. IOPT2 is set to -1 since the temperatures in each axial cell in the molten fuel cavity are computed from a mass-weighted average over the fully molten radial subcells and all the temperatures in the $r-z$ mesh are provided. The other option for IOPT2 is simply to read in the cavity cell temperatures. IOPT3 is set to -1 since the mass of fuel in every $r-z$ cell is specified. The smear density of each axial cell in the molten fuel cavity is formed by summing the masses in each radial cell and dividing by the volume of the cavity cell. Another option for IOPT3 is to specify the radius of a central void space for each axial cell in the cavity. This specifies the total void in the axial cavity cell, and the rest of the volume in the cavity cell is assumed to be filled by fuel at the density specified in the input. This amount of fuel is then spread over the whole cell volume to provide the smear density for the cavity cell. The last option for IOPT3 is to read in one void fraction for all molten fuel cavity cells. The smear density for all cavity cells is then simply 1 minus the void fraction times the full density specified later. IOPT4 is set to -1 since the mass ratios of fission gas to fuel are specified for all r-z cells as well as the fuel mass. The fission gas mass is merely summed over the fully molten radial subcells for each axial cell. Another option for IOPT4 is to read in fission gas to fuel mass ratios which are constant radially in the cavity for each axial cavity cell. These are merely multiplied by the smear densities calculated for the fuel to obtain the fission gas smear densities for each axial cell. The last option for IOPT4 is to read in only one value for th= fizuion gas to fuel mass ratio and use this as in :tiz preceeding op:ion but for allad cells. IOPT5 is set to 1 since irradiated fuel is mode ed and fuel vapor pressure is expected to play a less important role in fuel ejection. IOPT5 would have been set to 0 for fresh fuel or if fuel vapor pressure was expected :o become important in the course of the calculation. For example, a fuel pin could fail and expel fuel mainly on fission gas pressure and aue to a power increase or simply to a dissipation of fission gas pressure, fuel vapor pressure could become relatively more important after the initial part of the calculation.

In card group 4, IOPT6 is set to 8 because the clud failure is intended to extend during the transient to axial cells which have at least 8 radial subcells fully molten (corresponding to a fuel melt fraction greater than 80% since NPRAD is 10 and since the remaining radial cells will be partially molten when

8 are fully molten). Another option for IOPT6 is to set it to -1 if a subroutine called RIPEXT is provided for determining the extension of the clad failure as a function of time. If IOPT6 is set to 0 , no extension is allowed. IOPT7 is set to 1 since saturation pressure conditions (according to coolant channel temperatures) are assumed in the coolant channel cells prior to pin failure. The other option is to set IOPT7 to 0, and set all the coolant channel cell pressures in the input. IOPT8 is set to 0 since no reactivity worths are read in. If IOPT8 and LOPT9 were non-zero, worths would be read in for fuel and sodium and a reactivity calculation would be done. The interpretation of the reactivities is up to the user. The worths may correspond to a single pin, a subassembly, several subassemblies, etc. The cells for which the worths are input are entirely arbitrary and can be any set of cells in the mesh.

Card group 5 specifies the extent of the initial failure. IIFAIL specifies the number of failure cells. IFAIL is the array containing the failure cell numbers in increasing order. Note that the failure cells need not be contiguous and any cell may be a failure cell so long as the cell is part of the molten fuel cavity in the pin.

DELZ, the Eulerian cell height, begins card group 6. DELZ was chosen for this case so that an integral number of cells will exactly span the length of the molten fuel cavity in the fuel pin. Also DELZ should not be too long because the detail of the calculation would be lost or too short because the calculation run time will become excessive unless the latter is not important. ZPART is the DPIC particle length expressed as a fraction of DELZ. ZPART may be any number from 0 to 0.9 (the value zero reduces it to a simple particle-incell technique). It has been found in practice, however, that a value of about 0.5 gives the best results in most cases. HLPLEN is the height of the lower free surface which would typically be the subassembly inlet, where the 0.0 location is always set at the bottom of the channel mesh. Since the coolant channel mesh was chosen to reach almost from the subassembly inlet to the outlet, the location of the inlet from the bottom of the mesh is less than a ce 11 length and HLPLEN is -6.55 cm . Likewise, the position of the upper free surface (which is typically the subassembly outlet), HUPLEN, is at 366.85 cm , only about 5 cm above the top of the coolant channel mesh at 361.98 cm . The location of the lower slug interface, FCIL2, is at 194.74 in cell 27 as can be seen from Fig. 2. The location of the upper slug interface, FCIU2, is at 293.06 in cell 40. The meaning of these interfaces is that above the upper interface and below the lower interface is single phase liquid at least until a two-phase region might intervene between the interface and the end of the channel. In this case there are no intervening two-phase regions and there is single-phase sodium from the upper interface to the subassembly outlet and from the subassembly inlet to the lower interface. In between the interfaces is a region of two-phase sodium which is treated with homogeneous flow. The liquid sodium in this region may originate from small slugs of liquid sodium, from sodium film (which is not treated at present in EPIC) or from liquid droplets suspended in the coolant channel; but whatever the original configuration of the liquid sodium may be in the two-phase region before the EPIC input is prepared, it is treated with homogeneous flow in EPIC and all the liquid sodium in a cell is homogenized and treated in the same way.

Card group 7 specifies the time step contro) DELT1 (in this case 0.0001 s) is the time step from $t=0$ to $t=T$ IMEO1 (in this case 0.02 s). DELT2 (in this case 0.0002 s) is the time step between TIME02 and TIME03 (0.04 s and 1.0 s in
this case). Detween TIMEO1 and TIME02, the time step is varied linearly from DELT1 to DELT2. DELT3 (in this case 0.0002 s) is the time step after TIME04 (next card group) and between TIME03 and TIME04, the time step is varied linearly from DELT2 to DELT3 (which are both the same in this case). These time step specifications are upper limits on the time step. The time step is set to these values by default but the time step calculated will be reduced according to the Courant condition (20% of local material velocities) and according to the necessity to repeat time steps (for example, when overcompacted cells force this).

In card group 8, after TIME04, the maximum problem time is specified (0.05 s in this case). EXTIME (0.02 s here) is the time into the transient after which the semi-implicit differencing in time is dispensed with and replaced with a strictly explicit scheme (which is equivalent to completing only the first step of the two-step semi-implicit method). PTIME1 and PTIME2 are used if detailed printout (every time step and twice every time step if the differencing in time is semi-implicit) is desired for a particular part of the calculation. POINT is an alternative method of specifying the frequency of print-outs so that not only a number of time steps can be specified between print-outs but a time interval can be specified (this option as well as the previous detailed print-out option were not used in this calculation and the times were set outside the time limits of the problem).

PLINT begins card group 9. This specifies a time interval such that at multiples of this interval (as well as at $t=0$) fuel density plot data for pin and channel will be included in the plot data written out. These data are to provide input for a plotting program to be run later (in this calculation the option isn't used). TMELT begins the specification of fuel material properties. No variation in temperature is allowed between the liquidus and the solidus. A function (specified in Appendix B) determines the physical density used for molten fuel which is held -onstant throughout the calculation. Input for the function is a temperature which the user selects as a reasonable average value over the transient. This constant density is not only used in the fuel pin cavity but for all channel fuel as well, even when the channel fuel freezes. The heats of vapurization and fusion as well as a gas constant for fuel vapor (used when calculating fuel vapor densities) are also specified on card group 9.

Card group 10 tegio with the specific heat and thermal conductivity for iiquid fuel (the latter is used in the FCI heat transfer). The fuel viscosity is used in the momentum equation in the pin cavity. The fuel vapor condensation coefficient is used in the coolant channel and must be understood as a lumped parameter. The value of this parameter can be varied over a very wide range given the uncertainty in characterizing the phenomenon. There is an automatic cutoff on fuel vapor condensation when the channel fuel temperature is below $3800^{\circ} \mathrm{K}$, approximately the atmospheric boilfag point of fuel. Since fuel vapor condensation was not expected to play a large a role in this calculation, the coefficient was set to zero. RPART is the constant fragmented fuel particle radius used for the fuel-coolant heat transfer as well as the drag for: alation for the fuel particles throughout the calculation. It should be considered as a lumped parameter. FFCI is an arbitrary multiplier on the fuel-coolant heat transfer so that the fuel-coolant heat transfer term can be varied abitrarily without varying anything else (for example, if RPART were varif! instead both the heat transfer and drag would be affected). This term can model such

phenomena as convective and surface (i.e., contact and vapor blanketing) effects on heat transfer.

The first thing specified on card group 11 is the heat transfer coefficient between cladding and liquid sodium. This is multified by the liquid volume fraction in the cell where it is used. The compressibility of liquid sodium and the speed of sound in liquid sodium, specified next, are constants throughout the calculation. The sodium vapor condensaton coefficient should be viewed as a lumped parameter like the fuel vapor condensation coefficient. The value used is derived from experimental data but may have significant uncertainty. The viscosity of sodium liquid is used in the drag formulation for the liquid slugs in the channel as well as for the effective viscosity of the two-phase sodium and fission gas mixture in the channel. On the average a number corresponding to relatively high void fraction two-phase sodium is most appropriate here.

The values of the hydraulic diameters of the lower and upper sodium slugs from the ends of the coolant mesh to the lower and upper free surfaces in the channel begin card group 12. RAF and RBF are the coefficient and exponent, respectively, of the Reynold's number appropriate for the single-phase sodium liquid slugs and the fuel/fission gas froth in the fuel pin cavity. RAM and RBM are for the homogeneous flow treatment of the two-phase sodium and fission gas mixture in the coolant channel.

Card group 13 begins with the pressures of the lower and upper free surfaces (typically the subassembly inlet and outlet) which serve as boundary values for the momentum equations in the coolant channel. These pressures are held constant throughout the calculation and therefore some average value may be appropriate. For instance, the inlet pressure may change over the transient and the effective orifice resisteace ($\Delta \mathrm{P}$) to lower slug expulsion may change with the variation in lower slug velocity. The temperatures of the liquid sodium at the ends of the coolant channel mesh are specified next. Next the area ACLEND of the coolant channel between the lower end of the coolant mesh and the lower free surface (HLPLEN) and the area ACUEND of the coolant channel between the upper end of the coolant mesh and the upper free surface (HUPLEN) are specified.

Card group 14 concerns the cladding, whose heat of fusion, density, specific heat and melting temperature are specified. Next the gap conductance is specified between the fuel outer surface and the cladding inner surface. First a conductance is specified when the jtermost radial subcell in the fuel is solid and secondly, the conductance is specified for the case when the molten fuel cavity has reached the cladding.

Card group 15 requires two pieces of data: the gas constant used in the ideal gas treatment of fission gas pressure and the volume fraction of coolant which is used below in card group 30 to calculate coolant flow areas.

Card gruap 16 specifies the fuel outer radius. RFOUT, in this case is the sane for all axial cells. RFOUT determines the total fuel cross sectional area. The cross section is then divided into concentric annuli of equal area to form NPRAD equal volume radial subcells. Note how the values are read in. There are 14 axial fuel cells from NPLC (19) to NPUC (32) and since there are 6 values per card maximum, 3 cards are needed with 2 values on the last card.

Card group 17 specifies the temperature of all the r-z cells when NPRAD >0. In each axial cell which contains any fully molten radial subcells, the temperature of the axial cell in the molten fuel cavity is the mass-weighted average of the temperatures specified in the TFUPRZ array for the fully molten radial subcells (only if IOPT2 $=-1$ as it is in this case). If $10 P T 2=0$, the TFUPRZ values in the molten fuel cavity cells are not used and the radially homogenized molten fuel cavity cell temperatures are read in directly to the TFUP2 array below. Note how the TFUPRZ values are read in. Beginning, with node NPLC (19), NPRAD (10) values are read on as many cards (6 per card) as necessary (in this case 2 cards per axial cell with 6 on the first card and 4 on the second). After each group of NPRAD temperatures are read for an axial cell, the values for the next axial cell begin on the next card. Therefore the total number of cards in this case needed to read in the TFUPREZ array is $14 \times 2=28$ cards (using the formula, (NPUC-NPLC+1) $\times 1\{$ NPRAD $/ 6\},(32-19+1) \times I\{10 / 6\}=14 \times 2=28$).

Card group 18 specifies the heat of fusion array, HFPRZ, for the r-z mesh. These values are read like the TFUPRZ array and only if NPRAD >0. This array specifies the extent of the molten fuel cavity which is defined as the sum of all $\mathrm{r}-\mathrm{z}$ cells having fully satisfied the heat of fusion ($\mathrm{HFPRZ}=1.0$). Thus, in this case, axial cell 22 has 2 fully molten radial subcells, 23 has 4 , to the last molten fuel cavity cell, 31, which has only 1 fully molten radial subce11. From inspection of the HFPRZ array, it can be seen that many additional subcells have the potential of melting into the molten fuel cavity, thus extending the cavity radially as well as axially.

Cari group 19 specifies the GMPN array which gives the mass of fuel in every r-z cell when NPRAD >0. This group is read like the previous 2 grcups. If $10 P T 3=-1$, (as in this case), the fuel smear densities of the axial cells in the molten fuel cavity are determined by summing the uasses in the fully molten radial subcells.

Card group 20 is read only if NPRAD >0 and if $10 P T 4=-1$, as they are in this case. It is read like the previous 3 groups. FGFUF is the ratio of fission gas mass to fuel mass in every $r-z$ cell in the fuel mesh. This is used to specify not only the amount of fission gas in the molten fuel cavity, but also the amount in each solid fuel cell which instantly becomes available for pressurization when the solid fuel subcell melts into the cavity. The mass of fission gas in each r-z cell is the product of FGFUF and GMPN for each cell. In this case, it was not known at the time of pin failure how the fission gas in the molten fuel cavity was distributed radially, but only that a certain amount of fission gas was located in a certain axial cell in the cavity. In each axial cell in the cavity therefore, all the fission gas was put in the first radial subcell and the remaining radial subcells in the cavity have FGFUF $=0$. Thus FGFUF can be used in this fashion to specify the amount of fission gas in the cavity as well as by a radial subcell by radial subcell specification.

Card group 21 is nut used in this case because 10 PT2 $=-1$. If $I O P T 2=0$, the TFUP2 array specifying the radially homogenized temperatures in each axial cell in the molten fuel cavity are read directly.

Card group 22 is not read in this case since IOPT1 $=-1$ and the crosssectional area of each axial cell in the molten fuel cavity is computed from
the nu. r of radial subcells in the cavity and RFOUT as explained above. Card group 22 would be read if IOPT1 was 0 , in which case the calculation of crosssectional areas as with the IOPTI $=-1$ option would not te done and the crosssectional areas of each axial cell in the cavity would be read in directly. It would be up to the user, however, to make certain that these cross-sectional areas were compatable with the $r-z$ mesh as computed from RFOUT in the case where NPRAD >0.

Card group 23 is also not read since 10 PT4 $=-1$. When IOPT4 $=1$, one value of the ratio of fission gas mass to fuel mass is read and used for all $\mathrm{r}-\mathrm{z}$ cells.

Likewise, card group 24 is not read, but when IOPT4 $=0$, the mass ratio is read such that each axial cell has its own mass ratio which is the same in each radial subcell at that axial level.

Card group 25 is not read since $10 P T 3=-1$ and in the given case, the fuel smear densicy is calculated from the geonetry of the $r-z$ mesh and the sums of GMPN for each axial cell. If IOPT3 $=1$, then a single void fraction is read here such that the fuel smear density in all axial molten fuel cavity cells is simply the theoretical density of the fuel times one minus this void fraction.

Card group 26 is also not read since $10 P T 3=-1$. If IOPT3 $=0$, then a radius of a region assumed to be void is read in for each axial cell in the molten fuel cavity. The rest of the axial cell in the cavity is assumed to be full density fuel and the smear density is comp nted accordingly.

Card group 27 specifies the outer cladding radius, RCL, for each axial cell in the coolant channel. These are used to calculate the coolant flow area (see card group 30). RCL is also used to compute the area of the clad wall available for condensation.

Card group 28 specifies the cladding inner radius, RCIN, for each axial ce11. RCIN is only used to calculate the cladding volume and the surface area available for heat transfer between fuel and cladding.

Card group 29 specifies the initial cladding temperature for each axial cell in the channel.

Card group 30 specifies the coolant flow areas, AC2, for cells NCL to NCL. When the value of $\mathrm{AC2}$ is positive, then it is the flow area which is specified. When the value of AC 2 is 0.0 (as it is for all the cells in this case), then the coolant flow area for that cell is VFC• $\pi \cdot$ RCL \cdot RCL $/(1.0$-VFC). When the value of $A C 2$ is negative for a cell, then the flow area is $-A C 2 \cdot \pi \cdot R C L$ ${ }^{\times} \mathrm{RCL} /(1.0+\mathrm{AC} 2)$ for that cell. RCL is the value for the cell being calculated, of course.

Card group 31 specifies the sodium temperature in every axial cell. In cells with no void fraction, it is the liquid sodium temperature. In cells with two-phase sodium, since saturation conditions are always assumed, the temperature specified is for the liquid and vapor.

Card group 32 specifies the void fraction in each coolant channel cell so that the liquid smear density is the theoretical density of liquid sodium at
the temperature specified for a cell times one minus the void fraction specified. The vapor density is calculated from the void fraction at any given time during the calculation; an Ideal gas formulation for the vapor presscre and saturation pressure conditions are assmed. As an alten.ative to specifying the void fraction for each axial cell, the density itself may be specified by putting in the negative of the density. This may be done in any or all axial cells. In the given case, thaz latter option is used in the cells with two-phase sodium. In the single-phase cells, the zero values are interpreted as void fractions since they are non-negative. It must be noted that in interface cells, the smear density of sodium is computed by dividing the mass of sodium in the two-phase portion of the cell only by the total volume of the cell, not by the partial cell volume.

Card group 33 is not read since IOPT7 $=1$. This option sets the pressure in each coolant channel cell equal to the saturation pressure corresponding to the sodium temperature read in. If IOPT $7=0$, the pressure of each axial coolant channel cell will be read in.

Card group 34 specifies the cell-edge velocities for the coolant channel cells. The value specified at cell I is for the bottom of cell I and therefore ($\mathrm{NCU}-\mathrm{NCL}+2$) values must be given, since the last value specified will be for the top of cell NCU.

Card group 35 specifies the axial power shape for the fuel in terms of watts per gram of fuel at each axial cell for the whole coolant channel. This is simply the steady-state value (with fuel in the original configuration) times whatever normalization factor is desired. Note that the power function built into the code provides a factor by which WPGM is multiplied at any given point during the transient. This factor should be taken into account in the initial specification of WPGM. In the case given here, a normalization factor of 439 has been applied to the steady state values of watts per gram since this is the value of normalized power at pin failure.

Card groups 36, 37 and 38 are not specified since no reactivity calculation is requested $(10 P T 8=0)$. The data specification is self-explanatory but it should be noted that the worths are to be interpreted by the user in terms of how many pins the worths represent.

The function YFACF was programmed to model the no-slip condition between fission gas and fuel (YFAC $=1.0$ and YFACl $=1.0$). The function PHIT was programmed to give the following power function, (a normalized power level of 439 times nominal power at $t=0$ was assumed); a linear increase to 775 times nominal at 0.0016 sec ; a linear decrease to 1.0 at 0.005 sec ; and a further linear decrease to 0.1 at 0.05 sec , the maximum problem time.

5.2 Description of Output of Sample Problem

There is first a simple listing of all card input. Next the input is displayed in edited form with a verbal description for each item. The first page of this edit gives the fixed point input including ali options. The second page displays the flating point data, excluding arrays, including geometry data and material properties. Nert, power, reactivity worths, etc.,

```
NUMBER OF LOHEST CELL IN FJEL MESH 19
NUMBER OF LOWEST JELL IN PIN CAVITY }2
AMH3ER OF HIGHEST CELL IN PIN CAVITY 31
NUMBER OF HIGLIEST CELL IN FUEL MESH 32
NUMBER OF RADIAL CELLS IN FUEL PIN }1
NUMEER OF LOHEST CELL IN COOLANT CHANNEL 1
NUMBER OF HIGHEST CELL IN COOLANT CHANNEL 50
MAXIMUM NUMBER OF PARTICLE GROUPS 200
NUMBER OF FUEL PARTICLES PER PARTICLE GROUP }10
NUNBER OF CELL DIVISIONS FOR PARTICLE RECOMBINATION }1
NUMBER OF TIME STF'S BETWEEN FRINT OUTS 10
IF THIS NUMBER IS ZERO, PRINT THICE EVERY TINE STEP 1
IF THIS NUMBER IS NOMZERO, UNIT NUMBER FOR FLOTTING O
NUMBER OF TIME STEPS BETWEEN PLOTTING DATA WRITEOUTS 0
IF THIS NUMBER IS NONZERO, HRITE RESULTS ON UNIT 10 0
IF THIS NUMBER IS 0, READ IN AREAS OF PIN CELLS
IF -1,AREAS ARE CALCULATED FROM R-Z MESH AS INPUT -1
IF THIS NUMBER IS O, READ IN PIN CELL TEMPERATURES
IF -1, TEMPERATURES ARE CALCULATEU FROH R-2 MESH -1
IF -1, FUEL SMEAR DENSITY IN PIN CALCULATED FROM GMPN
IF O, READ RADIUS OF CENTRAL VOID IN PIN CELLS
IF 1, USE ONE VOID FRACTION IN ALL PIN CELLS -1
IF -१, FISSION GAS DENSITY CALCULATED FROM R-Z MESH
IF O, READ FISS. GAS MASS RATIO FOR ALL PIN CELLS
IF 1, READ ONE NUHGER FOR ALL CELLS -1
IF 0, FIJEL EJECTION ORIVEN MAINLY BY FUEL VAPOR
IF 1, FUEL EJECTION DRIVEN MAINLY BY FISSION GAS 1
IF 0, READ IN ALL CHANNEL PRESSURES
IF 1, CALCULATE CHANNEL PRESSURES FROM PSAT(TNA) ;
IF 0, NO CLAO RIP EXTENSION DURING TRANSIENT
IF -1, USE FROGRAMMED SCHEME IN CODE
IF NONZERO, NUMBER OF RADIAL CELL WHICH MUST BE FULLY
    MOLTEN TO FAIL CLAD AT ANY AXIAL CELL &
IF ZERO, NO REACTIVITY WORTHS ARE REAO IN
IF POSITIVE, NUMBER OF LOWER CELL FOR REACTIVITY MESH O
IF NONZERO, UPPER CELL FOR REACTIVITY MESH O
```

```
EULERIAN CELL WIDTH (CM) 7.23953D 00
COOLANT VOLUME FRACTION (CONSTANT) 4.27100D-01
HEIGHT OF UPPER FREE SURFACE (CM) 3.658500 02
HEIGHT OF LONER FREE SURFACE (CM) -6.54700D 20
HEIGHT OF FCI ZONE - SLUG TOP INTERFACE (CM) 2.930600 02
HEIGHT OF FCI ZONE-SLUS BOTTOM INTERFACE(CM) 1.947400 02
INITIAL TIME STEP (SEC) 1.000000-04
SECOND TIME STEP (SEC) 2.000000-04
THIRD TTME STEP (SEC) 2.000000-04
FIRST TIME STEP LIMIT (SEC) 2.000000-02
SECOND TIME STEP LIMIT (SEC) 4.000000-02
THIRD TIME STEP LIMIT (SEC) 1.000000 00
FOURTH TIME STEP LIMIT (SEC) 1.000000 00
MAXIMUM FROBLEM TIME (SEC) 5.000000-02
TIME TO SWITCH TO EXPLICIT DIFFERENCING (SEC) 2.000000-02
TIME TO INITIATE FULL PRINTOUTS (SEC) 1.000000 00
TIME TO END FULL PRINTOUTS (SEC) 1.000000 00
TI:1E INTERVAL FOR PRINTOUTS, IF NONZERO (SEC) 1.000000 00
TIME INTERVAL FOR FUEL DENSITY PLOTS (SEC) 1.000000 00
FUEL PARTICLE RADIUS (CM) 3.000000-02
MOLTEN FUEL DENSITY COMPUTED AT TEMPERATURE (K) 3.536800 03
MOLTEN FUEL DENSITY (EMS/CC) 8.499970 00
HEAT OF FUSION FOR FUEL (EFGS/GM) 2.750000 09
FUEL THERMAL CONDUCTIVITY (ERGS/CM-SEC-K) 3.500000 05
FUEL SPECIFIC HEAT (ERES/GM-K) 5.032000 O6
FUEL MELTING TEMPERATURE (K) 3.070000 03
HEAT OF VAPORIZATION FOR FUEL (ERGS/GM) 2.00000D 10
GAS CONSTANT FOR FUEL VAPOR (ERGS/GM-K) 3.079000 05
ABSOLUTE FUEL VISCOSITY (GMS/SEC-CM) 4.00000D-02
SODIUM COHPPESSIBILITY (CH**2/DYNE) 5.000000-11
SPEED OF SOUND IN SODIUM LIQUID (CM/SEC) 2.500000 05
ABSOLUTE VISCOSITY OF LIQUID SODIUM (GM/SEC-CM) 2.000000-03
COEFFICIENT OF REYNOLOS NUMBER IN SODIUM LIQUID AND PIN CAVITY 1.875000-01
EXPONE:TT OF REYHOLDS NUHBER IN SODIUM LIQUID AND IN PIN CAVITY -2.00000D-01
COSFFICIENT OF REYHOLDS HMSER FOR 2-PHASE SODIUM 3.160000-01
EXPONENT OF REYNOLDS NUMBER FOR 2-PHASE SODILIA -2.500000-01
MULTIPLICATIVE FACTOR ON FCI HEAT TRANSFER 1.000000 00
SODIUM VAPOR COHIDENSATION COEFFICIENT (ERGS/K-SEC-CH**2)
SODIUM LIQUIO HEAT TRANSFER COEFFICIENT (ERGS/K-SEC-CH**2) 7.000000 07
```


GAS CONSTANT FOR FISSION GAS (ERGS/GM-K) 6.59000005 LENGTH OF DPIC PARTICLE GROUP (CM) 3.61977 D CO ABSOLUTE VISCOSITY FCR 2-PHASE SODIUM/FISSION GAS (GM/SEC-CM) 2.000000-04 FUEL VAPOR CONDENSATION COEFFICIENT(ERGS/K-SEC-CM**2) 0.0

人0050505050505050555505050505050505050505000505050505
 4呈z

 L WORTH

COOL ANT WORTH
DK／KG＊10＊＊5

$\frac{\underset{z}{x}}{\frac{a}{2}}$
00

$\frac{-1}{3}$

स゙

01
01
03
0
0 $\left.\begin{array}{lllllll}1 & 2.104420-01 & 2.273040-01 & 2.429980-01 & 2.577380-01 & 2.716800-01 \\ 1.2501\end{array}\right)$ 2.42200003
0.0

高 $2.63000-03$ 10-00891L'2 10-08§LLS' 2 10-0866

 250000-03 2.280000-03 2.590000-03

[^2]429980-01 $2.577380-012.716800-01$
 \% 8 答 2 LO-0b0รL2'z $10-0 c^{2} b 501 \cdot 2$

OUTER RADIUS 8.59128D-02 1.214990-01 1.488050-01 1.718260-01 1.92107D-01 2.104420-01 2.273040-01 2.429980-01 2.577380-01 2.716800-01 TOTAL ARFA $2.318810-024.637620-026.955430-029.275240-021.159410-011.391290-011.623170-011.855050-012.086930-012.318810-01$ TEMPERATURE $3.92900003 \quad 3.907000 \quad 033.84600003 \quad 3.690000033 .468000 \quad 033.27700003 \quad 3.070000 \quad 03 \quad 3.070000 \quad 03 \quad 3.070000 \quad 032.665000 \quad 03$ MELT FRACT. $1.000000001 .000000001 .000000001 .000000001 .000000001 .000000 \quad 00 \quad 9.711000-015.490000-015.130000-020.0$
 $\begin{array}{llllllllllllll}\text { F.G.MASS RAT } 1.926000-01 & 0.0 & 0.0 & 0.0 & 0.0 & 1.790000-03 & 2.260000-03 & 2.260005-03 & 2.580000-03\end{array}$

AXIAL CELL 25 OUTERMOST RADIAL CELL THAT IS FULLY MOLTEN 6 FUEL OUTER RADIUS (CH) 2.71680D-01
OUTER RADIUS 8.59128D-02 1.21499D-01 1.488050-01 1.71826D-01 1.921070-01 2.104420-01 2.273040-01 2.429980-01 2.57738D-012.716800-01 TOTAL AREA $2.318810-024.637620-026.956430-02$ 9.27524D-02 1.15941D-01 1.391290-01 1.623170-01 1.855050-01 2.08593D-01 2.318810-01 TEMPERATURE $3.89100003 \quad 3.873000 \quad 033.79800003 \quad 3.639000033 .415000 \quad 033.22500003 \quad 3.070000 \quad 03 \quad 3.070000 \quad 03 \quad 3.061000 \quad 032.626000 \quad 03$ MELT FRACT.
MASS $1.000000001 .000000001 .000000001 .000000001 .000000001 .000000 \quad 008.857000-014.744000-010.0$

AXIAL CELL 24 OUTERMOST RADIAL CELL THAT IS FULLY MOLTEN 6 FUEL OUTER RADIUS (CM) 2.716800-01
OUTER RAUIUS 8.591280-02 1.214990-01 1.488050-01 1.718260-01 1.921070-01 2.104420-01 2.273040-01 2.429980-01 2.577380-01 2.716800-01 TOTAL AREA $2.31881 D-024.63762 D-026.95643 D-029.27524 D-021.15941 D-01 \quad 1.39129 D-011.623170-011.855050-012.085930-012.318810-01$
 MELT FRACT. $1.000000001 .000000001 .000000001 .000000001 .000000091 .000000 \quad 006.715000-012.995000-010.0$ MASS $9.400000-021.390000001 .398000001 .420000001 .445000 \quad 00 \quad 1.470000001 .462000 \quad 00 \quad 1.26300000 \quad 1.305000 \quad 00 \quad 1.221000 \quad 00$ $\begin{array}{llllllll}\text { F.G.MASS RAT 8.90300D-02 } & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.410000-03 & 2.340000-03\end{array}$

AXIAL CELL 23 OUTERMOST RADIAL CELL THAT IS FULLY MOLTEN 4 FUEL OUTER RADIUS (CM) 2.71680D-01
OUTER RADIUS 8.591280-02 1.214990-01 1.488050-01 1.718260-01 1.921070-01 2.104420-012.273040-012.429980-012.577380-012.716800-01 TOTAL AREA $2.31881 D-024.637620-026.95643 D-02 \quad 9.275240-02 \quad 1.159410-01 \quad 1.391290-011.623170-011.855050-012.086930-012.318810-01$ $\begin{array}{lllllllllllllllllllllllllllll}\text { TEMPERATURE } & 3.587000 & 03 & 3.597000 & 03 & 3.490000 & 03 & 3.187000 & 03 & 3.070000 & 03 & 3.070000 & 03 & 3.070000 & 03 & 3.070000 & 03 & 2.896000 & 03 & 2.459000 & 03\end{array}$ MELT FRACT. $1.000000001 .000000001 .000000001 .00000000 \quad 9.707000-01.6 .508000-013.744000-015.440000-020.0$ MASS $1.790000-011409000001.420000001 .457000001 .461000001 .485000001 .314000001 .29200000 \quad 1.318000 \quad 001.146000 \quad 00$
F.G.MASS RAT 4.369000-02 0.0
0.0
0.0
$1.540000-032.480000-032.460000-032.440000-032.520000-032.760000-03$
AXIAL CELL 22 OUTERMOST RADIAL CELL THAi IS FULLY MOLTEN 2 FUEL OUTER RADIUS (CM) $2.71680 D-01$
OUTER RADIUS 8.59128U-02 1.21499D-01 1.48805D-01 1.718260-011.92107D-01 2.104420-01 2.273040-01 2.429980-01 2.577380-012.716800-01 TOTAL AREA $2.318810-024.637620-026.95643 D-029.275240-021.159410-011.391290-011.623170-011.855050-012.086930-012.318810-01$ TEMPERATURE $3.39100003 \quad 3.33300003 \quad 3.070000033 .070000033 .070000 \quad 03 \quad 3.07000003 .3 .070000 \quad 032.967000 \quad 032.754000 \quad 032.276000 \quad 03$

 F.G.MASS RAT $1.43900 \mathrm{D}-020.0 \quad 0.0$
$1.330000-032.520000-032.530000-032.530000-032.550000-032.650000-032.810000-03$
AXIAL CELL 21 OUTERMOST RADIAL CELL THAT IS FULLY MOLTEM 0 FUEL OUTER RAOIUS (CM) 2.716800-01
OUTER RADIUS $8.591280-021.214990-01 \quad 1.488050-01 \quad 1.718260-011.921070-012.104420-012.273040-012.429980-012.577380-012.716800-01$ TOTAL AREA $2.31881 \mathrm{D}-024.637620-026.95543 \mathrm{D}-029.275240-021.15941 \mathrm{D}-011.391290-011.62317 \mathrm{D}-011.855050-012.086930-012.31881 \mathrm{D}-01$ TEMPERATURE $3.4000003 \quad 3.070000033 .070000033 .070000 \quad 033.018000 \quad 032.953000 \quad 032.874000 \quad 032.762000 \quad 032.557000 \quad 032.074000 \quad 03$
 MASS $1.231000001 .243000001 .274000001 .297000001 .306000001 .311000001 .31700000 \quad 1.32700000 \quad 1.343000 \quad 008.170000-01$ F.G.MASS RAT $0.0 \quad 0.0$
2. 190000-03 2.570000-03 2.590000-03 2.620000-03 2.640000-03 2.660000-03 2.710000-03 2.770000-03
AXIAL CELL 20 OUTERMOST RADIAL CELL THAT IS FULLY MOLTEN 0 FUEL OUTER RADIUS (CM) 2.71680D-01

OUTER RADIUS	$8.591280-02$	1.214990-01	1.488050-01	1.718260-01	1.921070	2. 104420-01	2.273040-01	2.429980-0	2.5773800	$2.716800-01$
TOTAL AREA	$2.318810-02$	4.637620-02	$6.956430-02$	9.27524D-02	1.159410-01	1.39129D-01	1.623170-01	1.855050-01	2.086930-01	$2.31881 \mathrm{D}-01$
TEMPERATURE	3.02300003	2.96700003	2.90900003	2.85500003	2.79900003	2.73600003	2.65700003	2.54100003	2.31800003	1.84300003
MELT FRACT.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MASS	1.30000000	1.305000 00	1.31200000	1.31800000	1.323000 00	1.32800000	1.33400000	1.34400000	1.350000 00	6.140000-01
F.G.MALS RAT	1.430000-03	$2.320000-03$	$2.550000-03$	2.600000-03	2.610000-03	2.620000-03	2.630000-03	2.640000-03	2.660000-03	2.68000D-03
	AXIAL CELL	19 OUTERMOST	RADIAL CELL	THAT IS FULL	LY MOLTEN	0 FUEL OUTER	R RADIUS (CM)) 2.7168	-01	
OUTER RADIUS	8.591280-02	1.214990-01	$1.48805 \mathrm{D}-01$	1.718260-01	1.921070-01	2. 104420-01	2.27304D-01	2.429980-01	2.577380-01	$2.716800-01$
TOTAL AREA	$2.318810-02$	4.637620-02	$6.956430-02$	$9.27524 \mathrm{D}-02$	1.159410-01	$1.391290-01$	$1.623170-01$	1.855050-01	2.056930-01	$2.318810-01$
TEMPERATURE	2.75100003	2.67600003	2.64800003	2.60000003	2.54800003	2.48800003	2.41000003	2.29100003	2.05300003	1.66300003
MELT FRACT.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MASS	1.32800000	1.33100000	1.33500000	1.339000 00	1.34300000	1.34300000	1.35400000	1.36200000	1.37800000	4.700000-01
MASS RAT	-03	000	80000-03	2.490000-03	$2.490000-03$	2.490000-03	$2.490000-03$	$2.50000 \mathrm{D}-03$	2.500000-03	$2.52000 \mathrm{D}-03$

39 NVH 3
500 00 000 $00^{\circ 00}$ $000000000000000006-0000000000000000000000000000$ $00^{\circ} 0000000000000,3000000000000000000000000000000$
 TEMPRT 앙 39NVHJ
$\lambda 117073 \wedge$
$S \forall 91+73 \cap 1$

NOK N－

4000000000000000000

NOMMMMMMN 000000000000000000 只

응응ㅇㅇㅇㅇㅇㅇㅇ

FUEL CAVITY
TEMPRTURE PRESSURE
TFUP

MMMMMMMMMM

 Zコェ 흔

000 000

000 000
000
000
$N M O$
000
000
$M M M$
000

000心0

000 000
$0<0$ 000

000 000 $\underset{\sim}{\infty} 0$
解范
जNo rio $\mathrm{mN}-$

000 000
000 000

 당요용888ㅇㅇㅇㅇ 으응

 स

TAL

 ○心よ目 응 సinn FUEL
EMPRTURE
TFU
 Mm 응

ज $\frac{w}{c}$

$\stackrel{4}{6}$
 000000000 은
00000000000000000000000 Nी $00000000000000 \quad-1.20000000$

ION POSITIO BOTTOM

SAMPLE PROBLEM FOR LOF－TOP CONDITIONS
INITIALLY 2 FAILURE CELLS，PARTIALLY
NOO
－01
PIN FUEL CHAN FUEL TOTL FUEL
REACTIVTY REACTIVTY REACTIVTY
39 NVHJ
A1AI $13 \forall 38$
$000 \mathrm{OOODOQODO0000000000000000000000000000000000}$ 000
\qquad $000000=2000000000000000000000000000000000000000$ 000 U
$\frac{0}{4}$
$\frac{4}{5}$ 000 000

人1，

dj90y
AIISN30
S甘9＇SI
MMMMMMMMMMMNN
000000000000000000 夺夺

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

－ TIME $=5.39870-03$ DELT $=1.0000 \mathrm{D}-04$ ROUPS
0
*** REACTIVITIES ***
믐ロロロロロロロロ

MMMMMMMMMMMMM

PIN FUEL CHAN FUEL TOTL FUEL
REACTIVTY REACTIVTY REACTIVTYREACTIVTY
CHANGE 000 00
\qquad 000

\qquad 000 00
 000000000000000000 上
$0_{0} 50-5-\frac{1}{0} \frac{1}{0}-\frac{1}{0} \frac{1}{0}-0$

NOO
-

I *** REACTIVITIES ***
MMMM2MMMMNMMM

용ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

3	1.4480	01	0.0	0.0	0.0	0.0	0.0	0.0	6.4320	02	0.0
2.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0				
27.2400	00.0	0.0	0.0	0.0	0.0	0.0	0.0	6.410	02	0.0	0.0
10.0	0.0	0.0	0.0								

*** CHANNEL QUANTITIES ***

	POSITION	SODIUM	FIS.GAS	FUEL	TOTAL	LIQ. NA	FIS.GAS	FUEL	NA +FISGAS	FUEL		NA +FISGAS
	OF CELL	TEMPRTURE	TEMPRTURE	TEMPRTURE	PRESSURE	DENSITY	DENSITY	DENSITY	DENSITY	VELOCI		VELOCITY
J	BOTTOM	TNA	TFG	TFU	PM	ROSLC	ROFGC	ROFPC	ROM	UP		
50	3.547002	1.1570 03	0.0	0.0	1.738006	7.186D-01	0.0	0.0	7.186D-01	0.0		8.212002
49	3.475002	1.1590 03	0.0	0.0	1.791006	7. 1830-01	0.0	0.0	7.183D-01	0.0		8.218002
48	3.403002	1.1610 03	0.0	0.0	1.844006	760-01	0.0	0.0	7.1760-01	0.0		8.224002
47	3.330002	1.1630 03	0.0	0.0	1.897006	20-01	0.0	0.0	7.1720-01	0.0		8.231002
46	3.258002	1.1670 03	0.0	0.0	1.950006	1.64D-01	0.0	0.0	$7.164 \mathrm{D}-01$	0.0		8.243002
45	3.1850 02	1.171003	0.0	0.0	2.003006	7.1510-01	0.0	0.0	7.1510-01	0.0		8.254002
44	3.113002	1.1750 03	0.0	0.0	2.056006	7.145D-01	0	0.0	7.1450-01	0.0		8.254002
43	3.041002	1.1830 03	0.0	0.0	2.1100 O6	7.1510-01	0	0.0	7.152D-01	0.0		8.209002
42	2.968002	1.224003	0.0	0.0	2.1520 06	$3.113 \mathrm{D}-01$	0.0	0.0	3. 1140-01	0.0		1.212 D 03
41	2.896002	1.245003	0.0	0.0	2.1560 06	$3.631 \mathrm{D}-01$	0.0	0.0	$3.633 \mathrm{D}-01$	0.0		1.836003
40	2.823002	1.257003	0.0	0.0	2.365006	1.6500-01	0.0	0.0	1.654D-01	0.0		1.957003
39	2.751002	1.269003	0.0	0.0	2.585006	1.4610-01	0.0	0.0	1.4670-01	0.0		2.2130 03
38	2.679002	1.309003	0.0	0.0	3.449006	1.6920-01	0.0	0.0	1.6930-01	0.0		2.327003
37	2.606002	1.371003	0.0	0.0	5.220006	3.1010-01	0.0	0.0	3.1070-01	2.5460	03	1.486003
36	2.534002	1.498003	2.145.103	3.591003	1.135007	$5.673 D-01$	0.0	3.283000	5.6730-01	3.8300	03	1.486003
35	2.461002	1.587003	2.1780 03	3.824003	3.398007	2.1680-01	$6.0370-03$	1.040000	2.2480-01	7.2140	03	7.270003
34	2.389002	1.625003	$1.8660 \quad 03$	3.841003	2.724007	1.058D-01	$3.7480-03$	1.7490-01	1.1300-01	7.3240	03	9.243003
33	2.317002	1.692003	2.493003	3.897 D 03	3.639007	9.6570-02	$3.553 \mathrm{D}-03$	$7.7210-01$	1.0430-01	7.0400	03	1.030004
32	2.244002	1.774003	3.085003	3.967003	4.649007	7.2640-02	$2.3650-03$	1550000	8.0350-02	5.8610	03	8.547003
31	2. 172002	1.823003	3.039003	4.1490 03	5.509007	7.8650-02	2.2220-03	1.265000	$8.7400-5$	4.8990	03	7.391003
30	2.097002	1.868003	3.273003	4.180003	6.435007	8.2500-02	2.0930-03	1.914000	9.1330-02	3.8780	03	5.323003
29	2.027002	1.899003	3.220003	4.0820 03	6.837007	8.6160-02	$2.0010-03$	2.006000	9.5400-02	2.9380	03	$4.2500 \quad 03$
28	1.955002	1.922003	3.181003	4.090003	7.1490 07	7.958D-02	1.6930-03	1.697000	8.967D-02	1.2130	03	2.909003
27	1.882002	1.941003	3.432003	4. 171003	7.845007	8.4320-02	$1.7310-03$	2.641000	$9.3330-02$	8.1120	02	$1.758 \mathrm{D} \quad 02$
26	1.810002	1.904003	2.391003	4.1890 03	7.701007	2.4090-01	$3.7930-03$	9.9640-01	2.5010-01	-9.7200 0		-9.7160 01
25	1.737002	1.720003	3.652003	4.199003	4.742007	$2.6130-02$	4.0160-03	1.296000	$3.5180-02$	1.6950		-1.695003
24	1.665002	1.817003	3.154003	4.249003	6.631007	$1.2950-01$	4.0300-03	2.317000	1.3800-01	-1.9870		-2.884003
23	1.593002	1.793003	2.881003	3.925003	6.052007	1.5040-01	4.6580-03	2.270000	1.5890-01	2.836 D		-5.123003
22	1.520002	1.718003	2.335003	3.761003	4.700007	$1.3010-01$	$7.243 D-03$	$7.9090-01$	$1.4170-01$	-4.6970		-7.766003
21	1.448002	1.670003	2.342003	3.723003	$2.5430 \quad 07$	$2.549 \mathrm{D}-01$	0.0	1.707000	2.56SD-01	5.5810		-5.580003
20	1.3760 02	1.616003	1.953003	3.520003	1.975007	$3.363 \mathrm{D}-01$	0.0	$9.7810-01$	3.378D-01	4.5240	03-	-3.7810 03
19	1.303D 02	1.603 D 03	2.1570 03	3.440003	1.847007	4.8510-01	0.0	2.813000	$4.8510-01-$	4.2470	03-	-3.781003
18	1.231002	1.582 D 03	0.0	0.0	1.826007	1.2810-01	0.0	0.0	1.2840-01	0.0		-3.709003
17	1.1580 02	1.027003	0.0	0.0	1.746007	7.8890-01	0.0	0.0	7.8890-01	0.0		-3.566003
16	1.086002	9.558002	0.0	0.0	1.662007	8.0590-01	0.0	0.0	8.0590-01	0.0		-3.510003
15	1.014002	8.827002	0.0	0.0	1.578007	8.1460-01	0.0	0.0	8.1460-01	0.0		-3.480003
14	9.4110 01	8.159002	0.0	0.0	1.495007	8.198D-01	0.0	0.0	8.1980-01	0.0		-3.4620 03
13	8.687D 01	7.622002	0 -	0.0	1.411007	8.2300-01	0.0	0.0	8.2300-01	0.0		-3.451003
12	7.963001	7.212002	0.0	0.0	1.327007	8.2490-01	0.0	0.0	8.2490-01	0.0		$-3.4450 \quad 03$
11	7.240001	6.926002	0.0	0.0	1.243007	8.2610-01	0.0	0.0	$8.2610-01$	0.0		-3.4410 03
10	6.516001	6.738002	0.0	0.0	1.159007	8.2680-01	0.0	0.0	8.2680-01	0.0		-3.4390 03
9	5.792001	6.619002	0.0	0.0	1.075007	8.2720-01	0.0	0.0	8.2720-01	0.0		-3.437003
8	5.068001	6.545002	0.0	0.0	9.914006	8.2740-01	0.0	0.0	8.2740-01	0.0		-3.436003
7	4.3440 01	6.501002	0.0	0.0	9.676006	8.2760-01	0.0	0.0	8.2760-01	0.0		-3.436003
6	3.620001	$6.475 D$	0.0	0.0	8.237006	8.278D-01	0.0	0.0	8.2780-01	0.0		-3.435003
5	2.896001	6.459002	0.0	0.0	7.399006	8.2790-01	0.0	0.0	9.2790-01	0.0		-3.4350 03
4	2.1720 01	6.450 D 02	0.0	0.0	6.560006	8.2790-01	0.0	0.0	8.2790-01	0.0		-3.435003
3	1.448D 01	6.444002	0.0	0.0	5.722D 06	8.2800-01	0.0	0.0	$8.2800-01$	0.0		-3.1340 03
2	7.240000	6.439002	0.0	0.0	4.8830 06	8.2800-01	0.0	0.0	8.2800-01	0.0		-3.4340 03
	0.0	6.436 D 02	0.0	0.0	4.045006	8.2800-01	0.0	0.0	8.2800-01	0.0		-3.4340 03

SAMPLE PROBLEM FOR LOF－TOP CONDITIONS
INITIALLY 2 FAILURE CELLS，PARTIALLY V
INITIALLY 2 FAILURE CELLS，PARTIALLY VOIDED CHANNEL，NORM．POWER AT 439

0 0 FUEL＝ NEL 22 IS HIGHEST FAILURE CELL
LOHEST FAILURE CELL
PIN FUEL $=0.0$ ＊＊＊R
FIS．GAS CAVITY FUEL＋FGAS CLAD PIN FUEL CHAN FUEL TOTL FUEL w
$\frac{1}{4}$
$\frac{1}{4}$

 000
 000

NORMALIZED POWER $=1.16250-03$
FCIL $=4.0874001$ FCLU $=3.1953002$
XMIN $=4.49170$ O1 XMAX $=3.0906002$
TOTAL TOTAL FUEL $=0.0 \quad$ TOTAL $=0.0$
\qquad

888888888888
 00000000000000000 Nूm NNNT NN NA0000000000000000

POSITION FUEL CAVITY
OF CELL
BOTTOMPRTURE PRESSURE
。

 000000000000000000NNmminiNNNNNNOO00000000000000

 00000000000

3	1.4480	01	0.0	0.0	0.0	0.0	0.0	0.0	6.6220	02	0.0
2.0	0.0	0.0	0.0	0.0	0.0	6.5730	02	0.0	0.0	0.0	
1	7.2400	00.0	0.0	0.0	0.0	0.0	0.0	0.0	6.5340	02	0.0
1	0.0	0.0	0.0	0.0							

*** CHANNEL QUANTITIES ***

	POSITION	SODIUM	FIS.GAS	FUEL	TOTAL	LIQ. NA	FIS.GAS	FUEL	NA +FISGAS			$\text { NA }+ \text { FISGAS }$
	OF CELL	TEMPRTURE	TEMPRTURE	TEMPRTURE	PRESSURE	DENSITY	DENSITY	DENSITY	DE:SSITY	VELOCI		
	BOTTOM	TNA	TFG	TFU	PM			ROFPC	ROMC	UP		UM
50	3.547002	1.136003	0.0	0.0	2.016006	7. 1820-01	0.0	0.0	7. 1820-0	0.0		17003
49	3.475002	1.138003	0.0	0.0	2.306006	7.1800-01	0.0	0.0	7.1800-01	0.0		1.318003
48	3.403002	1.1410 03	0.0	0.0	2.595006	7.176D-01	0.0	0.0	7.1760-01	0.0		1.318003
47	3.330002	1.1430 03	0.9	0.0	2.885006	7.173D-01	0.0	0.0	7.173D-01	0.0		1.318 D 03
46	3.258002	1.146D 03	0.0	0.0	3.175006	7.184D-01	0.0	0.0	7.184D-01	0.0		1.305003
45	$3.1850 \quad 02$	1.301003	0.0	0.0	3.462006	8.8420-02	0.0	0.0	$8.843 \mathrm{D}-02$	0.0		1.268003
44	3.113002	1.314003	0.0	0.0	3.570006	6.927D-01	0.0	0.	$6 .{ }^{\text {a }}$-01	0		2
43	3.041002	1.567003	1.999003	3.071003	1.547 D 07	$6.464 D-01$	0.0	3.577	r.40-01	1.8 COD		9.963002
42	2.9680 02	1.788003	2.040003	$3.1680 \quad 03$	3.921007	4.555D-01	0.0	1.39	5600-01	8.793 D	02	8.732002
41	2.896002	1.766 D 03	2.525003	3.593003	3.876007	$1.9610-01$	1.6660-03	2.03	29D-01	1.567 D		5003
40	2.823002	1.726D 03	2.139503	3.777003	3.814007	$1.374 \mathrm{D}-01$	3.129D-03	4.56	1D	1400		16001
39	2.751002	1.6640 0?	2.673003	3.934003	4.445007	$1.666 \mathrm{D}-01$	5.404D-03	1.84	.745u-01	5.7110	6	-6.526D 02
38	2.679002	1.593D 03	2.463003	3.833 D 03	4.038007	$1.8310-01$	7.1720-03	1.510	.922D-01	1.682D	03	1.689003
37	2.606002	1.607003	3.015003	3.827003	3.535007	1.0030-01	4.3600-03	2.3550	740-01	1.8320	3	3
36	2.534002	1.589003	2.871003	3.756003	3.286007	1.0100-01	4.781D-03	1.9240	.0800-0	2.4560	03	D 03
35	2.46100 ?	$\therefore 561003$	2.923003	3.690003	3.015007	8.8310-02	4.6090-03	2.097000	9.4920-02	3.6070	3	02
34	2.3890 :	1.512003	2.917003	3.843003	1.955007	5.0090-02	2.7000-03	9.8140-01	5.488D-02	6.758D	3	1.755002
33	2.3170 02	1.534003	2.286003	3.797003	1.601007	1.808D-02	1.108D-03	$1.158 \mathrm{D}-01$	2.193D-02	4.4560	3	2.616004
32	2.2440 02	1.731003	$3.7910 \quad 03$	3.934003	$3.2550 \quad 07$	1.323D-03	6.4690-05	3.3840-01	$7.4290-0$	2.2740	3	7.1510
31	2.1720 02	1.703003	3.963 D 03	4.041003	3.210007	3.1850-03	1.824D-04	1.239000	8.4070-0	5.300 D	02	100 03
30	2.099002	1.717003	3.734003	3.931003	3.348 D 07	$9.738 \mathrm{D}-03$	5.4800-04	1,4510 00	$1.5330-02$	1.0400	03-	-1.5960
29	2.027002	1.713003	2.502003	$3.8740 \quad 03$	$3.2890 \quad 07$	$2.2440-02$	1.1490-03	t.8080-01	$2.932 \mathrm{D}-02$	6.0030	02	0
28	1.955002	1.722003	3.816003	4.068003	3.527 D 07	1.289D-02	5.076D 54	86000	$1.847 \mathrm{D}-02$	3.3540	2	3
27	1.882002	1.717003	2.031003	4.043003	3.711007	$8.892 \mathrm{D}-02$	2.6190-03	$1.9650-01$	$9.668 \mathrm{D}-02$	4.9830	02	5.005002
26	1.810002	1.713003	2.364003	4.031003	3.455007	3.9150-02	1.3820-03	$2.136 \mathrm{D}-01$	4.	4.1270	01	4.552001
25	1.737002	1.700003	1.700003	0.0	2.9720 07	$9.7350-03$	5.719D-04	0.0	$1.6010-0$. 1910	02	3.319003
24	1.6650 ก2	1.685003	4.1300 03	4.1530 03	3.081007	8.0500-04	4.318D-05	1.329000	$5.452 \mathrm{D}-$	8570	03	9.3820
23	1.593002	1.665003	3.801003	4.008D 03	$2.7510 \quad 07$	$2.886 \mathrm{D}-03$	2.8660-04	4.254D-01				8803
22	1.520002	1.621003	3.766003	3.828003	2.459007	3.644D-03	1.064D-03	1.769000	8.0210-	2.0520	03-8	-8.8830 03
21	1.448002	1.570003	3.634 D 03	3.698003	1.905007	3. 1600-03	8.792D-04	1.310000	6.898 D	. 5110	03-	-1.0710 04
20	1.376002	1.536003	3.626 D 03	3.689003	1.551007	2.404D-03	5.9430-04	1.145000	$5.468 \mathrm{D}-0$	4.5110	03-	-1.5270
19	1.303002	1.492003	3.507003	3.600003	1.1950 07	1.5730-03	$3.8150-04$	4.7040-01	4.1570-0	. 9650	03-2	-2.6670
18	1.231002	1.211003	3.306003	3.577003	4.4800 06	4.2530-03	$1.042 \mathrm{D}-03$	3.7420-01	5.6940-03	. 2230		-1.1610 04
17	1.1580 02	1.035003	2.671003	3.573 D 03	6.844 D 06	$1.2710-02$	3.292D-03	2.9910-01	1.608D-0	7.6100	03-8	-8.4780 03
16	1.086D 02	9.707002	1.638 D 03	3.566 D 03	6.698D 06	$1.933 \mathrm{D}-02$	5.4970-03	7.7050-02	2.4870-02	6.9790	03-	-1.973D 03
15	1.014002	9.264002	2.409003	3.563003	5.530006	9.0800-03	3.054D-03	1.2300-01	1.2200-02	6.8850	03-6	-6.8890
14	9.411001	9.046002	2.522003	3.561 D 03	1.013007	1.5250-02	5.5150-03	2.7520-01	$2.0780-02$. 6270	03-5	$-5.014^{\prime \prime} 03$
13	8.687001	9.157002	2.513003	3.577003	8.5820 06	1.676D-02	4.638D-03	$2.3410-01$	2. 1410	.8260	03-6	-6.8230 03
12	7.963001	1.051003	$1.9620 \quad 03$	3.582 D 03	6.5220 06	4.7540-02	$3.9490-03$	$3.603 \mathrm{D}-01$	5.1580-02	0.0		-3.7490 03
11	7.240001	1.297003	2.512003	3.850003	1.654D 07	1.7280-01	4.0020-03	1.667000	$1.7720-01$	7.2140	03-	-7.210D 03
10	6.516001	1.357003	$2.3520 \quad 03$	4.05503	8.005006	2.1410-01	2. 1570-04	1.779000	2. 143D-0	4.065 D	03-2	-2.8810 03
	5.792001	1.625003	2.135003	3.37503	2.034007	3.028D-01	0.0	1.439000	3.0430-01	4.4790	03-	-4.546003
8	5.068001	1.674003	2.315003	3.193003	2.507007	3.431D-01	0.0	3.827000	3.4310-01-	4.9790	03-5	-5.014003
7	4.344001	1.626003	2.227003	3.071003	2.025007	3.7200-01	0.0	3.721 D 00	3.7800-0	4.85	03-5	-5.0140 03
6	3.620001	1.596003	0.0	0.0	1.970007	1.3120-01	0.0	0.0	1.318D-01	0.0		-4.995003
5	2.896001	7.586002	0.0	0.0	1.721007	8.2220-01	0.0	0.0	$8.2220-01$	0.0		-4.9300 03
4	2.172001	7.467002	0.0	0.0	1.456007	8.266D-01	0.0	0.0	8.2660-01	0.0		-4.9150
3	1.448001	7.321 D 02	0.0	0.0	1.190007	8.276D-01	0.0	0.0	8.276D-01	0.0		-4.9110
2	7.240000	7.166002	0.0	0.0	9.249006	8.278D-01	0.0	0.0	8.2780-0	0.0		-4.9100
1	0.0	7.017002	0.0	0.0	6.595006	8.2790-01	0.0	0.0	8.2790-01	0.0		-4.9100

SAMPLE PROBLEM FOR LOF－TOP CONDITIONS
lant 7101 land NVHO land NId
CHANGE
.0 000
山
$\frac{0}{2}$
$\frac{2}{3}$
0
 R．1AI $12 \forall \exists d$
land NId

 CLAD

 $000000000000000000-114 T H T N N T N O 0000000000000000$ S능ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

\qquad
a
MMMMMM SMMMMMM

\qquad

$\frac{a}{3}$
$\frac{1}{o}$

용ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
夺禺品品品号号品品品

品

 MMMmmmmmmmmmm

POSITION
OF CELL

*** CHANNEL QUANTITIES ***

POSITION	SODIUM FIS.GAS	FUEL	TOTAL	LIQ. NA	FIS.GAS	
OF CELL	TEMPRTURE TEMPRTURE TEMPRTURE PRESSURE	DENSITY	DENSITY			
J BOTYOM	TNA	TFG	TFU	PM	ROSLC	ROFGC

FUEL	NA + FISGAS	FUEL	NA +FISGAS
DENSITY	DENSITY	VELOCITY	VELOCITY
ROFPC	ROMC	UP	UM

$503.54700215820032 .09100328570039 .02400617300-010.0$ $49 \quad 3.4750021 .4900031 .8100632 .8570031 .042007 \quad 3.4050-010.0$ $83.403002146900318940033 .0700039 .3550064 .4970-010.0$ $48 \quad 3.4030021 .4690031 .8940033 .0700039 .3550064 .4970-010.0$ 1.3490 $003.4120-010.0$
\qquad $1-3.967002$

 $44 \begin{array}{lllllllllllllllllllllll}3.1130 & 02 & 1.5540 & 03 & 2.2540 & 03 & 3.474 D & 03 & 1.7510 & 07 & 1.1480-01 & 1.3570-03 & 8.5460-01 & 1.184 D-01 & 1.5380 & 03 & 1.0790 & 03\end{array}$

 $322.2440021 .7260032 .373003 \quad 3.7890034 .102007$ 9.4830-02 4.4390-036.1580-01 1.0420-01 1.1730 03-6.5790 01 $\begin{array}{llllllllllllllllllllllllll}31 & 2.1720 & 02 & 1.7350 & 03 & 3.2350 & 03 & 4.0480 & 03 & 3.9930 & 07 & 4.2100-02 & 1.8010-03 & 1.1000 & 00 & 4.9220-028.9910 & 02 & 9.0310 & 02\end{array}$

 $1.9550021 .7010032 .4650034 .020003 \quad 3.1480071 .4280-024.5740-049.9390-02 \quad 2.0350-02 \quad 5.2700 \quad 02 \quad 5.2720 \quad 02$

 $201.3760021 .649003 \quad 3.555003 \quad 3.8470032 .3910071 .1670-031.6520-051.0510-015.8310-03-2.3500 \quad 03-6 . \quad 71003$ $191.3030021 .6390 \quad 03 \quad 3.649003 \quad 3.8480032 .294007 \times 3.1420-041.3120-064.0980-02 \quad 4.8200-03-5.5470 \quad 03-2.083004$
 $\begin{array}{lllllllllllllllllllllll}17 & 1.1580 & 02 & 1.3590 & 03 & 3.6030 & 03 & 3.8220 & 03 & 6.1590 & 06 & 3.8980-04 & 1.0150-06 & 4.9190-02 & 1.5240-03-8.5570 & 03-5.0000 & 04\end{array}$

 14 9.411D $019.304[022.623003$ 3.798D 03 1.273D 06 4.8450-03 6.0080-06 7.037D-02 4.8750-03-1.0880 04-1.8730 04
 02.130 127.9630019 .0770022 .396003 3.7920 03 1.3950 06 6.8220-03 1.1420-04 8.5390-02 t 9540-03-1.2510 04-1.1170 04 $\begin{array}{lllllllllllllllllllll}11 & 7.2400 & 01 & 9.0790 & 02 & 2.4970 & 03 & 3.774 D & 03 & 2.9830 & 06 & 2.5430-02 & 1.0440-03 & 3.471 D-01 & 2.6490-02-1.3100 & 04-5.3890 & 03 \\ 10 & 6.51 \in D & 01 & 8.9790 & 02 & 9.2310 & 02 & 3.7580 & 03 & 1.8030 & 06 & 1.7410-02 & 1.2120-03 & 2.4220-03 & 1.8650 & -02 & 0.0 & -2.3350 & 03\end{array}$ $95.7920018 .9130023 .424003 \quad 3.7940034 .1810061 .0160-02 \quad 1.1860-03 \quad 7.3460-011.1360-02-7.3620 \quad 03-3.2950 \quad 03$ 35.0680018 .8750023 .5930 C3 $3.8140035 .0460067 .578 D-031.378 D-039.964 D-018.9680-03-8.2770 \quad 03-4.352003$ $74.3440018 .8010023 .3490033 .7670036 .2970061 .0120-022.1500-036.5810-011.228 D-02-7.4210 \quad 03-6.660003$ $63.6200018 .7240023 .285003 \quad 3.6970 \quad 035.4860061 .0040-021.9950-03 \quad 5.6010-011.2050-02-6.2480 \quad 03-3.102003$ $\begin{array}{lllllllllllllllllllllllllll}5 & 2.8960 & 01 & 8.7980 & 02 & 3.5950 & 03 & 3.8360 & 03 & 7.3510 & 0 & 1.286 D-02 & 1.972 D-03 & 1.6620 & 00 & 1.484 D-02-5.5690 & 03-5.5710 & 03\end{array}$

 $27.2400008 .5860021 .42500^{2} \quad 3.5680 \quad 03$ 5.5480 06 7.6320-02 4.761D-03 2.273D-01 8. 109D-02-5.6680 03-5.684D 03 10.0

are displayed. Next, data for the whole r-z fuel mesh is displayed when NPRAD >0. This data includes, for each axial cell, the fuel oute: radius, the outemon t radial subcell that is fully molten, the outer radi is of each radial cell, the otal cl ss-sectional area out to and including each radial subcell, the temperature fraction of heat of fusion satisfied, mass and fission gas to fuel mass ratio for each radial subcell.

Some selections from the output for the transient are provided. The printout at $t=0$ shows conditions as input but after the first ejection of fuel and fission gas into the coolant channel. Notice that the lower sodium slug interface has moved from 194.7 in cell 27 to 181.4 in cell 26 because fuel was ejected into the channel at 181.4 cm and the slug interface was automatically redefined to be at that location. About 0.9 gm of fuel was ejected at $\mathrm{t}=0$ and this was divided into 10 particle groups. The cavity pressure reflects the final equilibrated values after ejection in ejection cells 26 and 27 . The same is true of the fission gas and fuel smear densities in the pin. The smear density of fission gas and fuel in the coolant channel reflects the ejection as well. The channel pressure in the lower slug is entirely changed as a result of the ejection. The pressure in cells 26 and 27 is the equilibrated pressure after ejection but the pressures in the single-phase lower slug are merely linear interpolations between the inlet pressure and the interface cell pressure (in this case 1.15×10^{8} dynes $/ \mathrm{cm}^{2}$ in cell 26). This interpolation and linear pressure drop in the slugs is assumed throughou the calculation.

The next printout is from approximately 5 msec . The upper slug interface hae not moved much since it has been essentially insulated from the high pin failure pressures by the long voided portion of the channel. The lower slug interface has moved downward partially as a result of the extension of the clad rip downwards (it has also extended upwards) as the molten fuel cavity expanded (the option of extending the clad rip to celis with 8 radial subcells fully molten was specified and this extended the failure upwards to cell 30 and downwards to cell 22) considerably with the high power level. It is noted from the printout of the cavity area that the cavity has expanded radially significantly and axially it was extended 2 cells on the bottom anc 1 on the top. In the coolant channel, it is seen that considerable fuel and fission gas has been ejected (36 gm fuel) and there is a significant FCI (peak sodium temperature 1789 K).

The printout at about 10 msec shows somewhat similar conditions in the pin cavity os at 5 msec . There has been considerable motion of material in the coolant channel, however and the FCI has increased (1941K peak sodium temperature. By about 30 msec into the transient, the pin pressure has been considerably reduced, and there has been extensive material motion in the coolant channel. The fuel moving upwards in the coolant channel has almost caught up with the upper slug interface ($\mathrm{XMAX}=309.1$, $\mathrm{FCIU}=319.5$). The printout at 49 msec shows a further progression of essentially the same trends.
88

APPENDIX A

ENERGY DIVISION ALGORITHM FOR SODIUM:
ENERGY REQUIRED FOR BOILING VERSUS
HEATING THE LIQUIE PHASE

As sumptions

1. The vapor phase can be treated like an ideal gas.
2. The two-phase mixture follows the saturation line [for which we have an expression: $\left.P_{\text {sat }}=P_{\text {sat }}(T)\right]$.
3. Changes in volume fractions can be ignored as an effect.
4. Condensation on cladding does not affect the energy apportionment between the two phases.

Since the ideal gas law gives $P V=M R T$, and $M_{V a p}$, the mass of the vapor, is changing due to boiling and due to $\Delta \mathrm{T}$,

$$
\begin{equation*}
\frac{M_{\text {vap }}^{2}}{M_{\text {vap }}^{1}}=\frac{T^{1}}{T^{2}} \frac{F^{2}}{P^{1}}=\frac{T^{1}}{P^{1}} \frac{P_{\text {sat }}\left(T^{2}\right)}{P_{\text {sat }}\left(T^{1}\right)} \tag{A.1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\frac{M_{\text {vap }}^{2}}{M_{\text {vap }}^{1}}=\left(\frac{T^{1}}{T^{1}+\Delta T}\right) \cdot\left[\frac{P_{\text {sat }}\left(T^{1}+\Delta T\right)}{P_{\text {sat }}\left(T^{1}\right)}\right] \tag{A.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{M_{\text {vap }}^{2}}{M_{\text {vap }}^{1}}=\frac{1}{1+\frac{\Delta T}{T^{1}}} \times \frac{P_{\text {sat }}\left[T^{1}+\Delta T\right]}{P_{\text {sat }}\left(T^{1}\right)} ; \tag{A.3}
\end{equation*}
$$

now,

$$
\begin{equation*}
\frac{M_{\text {vap }}^{2}}{M_{\text {vap }}^{1}}=\frac{M_{\text {vap }}^{1}+\Delta M_{\text {vap }}}{M_{\text {vap }}^{1}} \tag{A.4}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{s a t}\left(T^{1}+\Delta T\right)=P_{s a t}\left(T^{1}\right)+\Delta T \frac{d P_{s a t}\left(T^{1}\right)}{d T}, \tag{A.5}
\end{equation*}
$$

so that

$$
\begin{align*}
& \frac{M_{\text {vap }}^{2}}{M_{\text {vap }}^{1}}=\frac{M_{\text {vap }}^{1}+\Delta M_{\text {vap }}}{M_{\text {vap }}^{1}} z\left(\frac{1}{1+\frac{\Delta T}{T^{1}}}\right) \cdot\left[\frac{P_{\text {sat }}\left(T^{l}\right)+\Delta T \frac{d P_{\text {sat }}\left(T^{l}\right)}{d T}}{P_{\text {sat }}\left(T^{1}\right)}\right] \tag{A.6}\\
& \frac{M_{\text {vap }}^{1}+\Delta M_{\text {vap }}}{M_{\text {vap }}^{1}} \approx\left(1-\frac{\Delta T}{T^{1}}\right) \cdot\left[1+\Delta T \cdot \frac{\frac{d P_{\text {sat }}\left(T^{l}\right)}{d T}}{P_{\text {sat }}\left(T^{1}\right)}\right] \tag{A.7}
\end{align*}
$$

so that

$$
\begin{align*}
& \frac{M_{\text {vap }}^{1}+\Delta M_{\text {vap }}^{M}}{M_{\text {vap }}^{1}}=1+\Delta T\left[\frac{d P_{\text {sat }}\left(T^{1}\right)}{d T} \cdot \frac{1}{P_{\text {sat }}\left(T^{1}\right)}-\frac{1}{T^{1}}\right] \text {, } \tag{A.8}\\
& \Delta M_{\text {vap }} \approx M_{\text {vap }}^{1} \Delta T\left[\frac{d P_{\text {sat }}\left(T^{1}\right)}{d T} \cdot \frac{}{P_{\text {sat }}\left(T^{1}\right)}-\frac{1}{T^{1}}\right] . \tag{A.9}
\end{align*}
$$

Now, from the Clausjus-Clapyron equation,

$$
\begin{equation*}
\rho_{\text {vap }} \cdot H_{f g}=T \frac{d P_{\text {sat }}}{d T} \tag{A.10}
\end{equation*}
$$

and we realize that energy that goes into generating $\Delta M_{\text {vap }}$ is

$$
\begin{equation*}
\Delta E_{\text {vap }}=H_{f g} \Delta M_{\text {vap }} \text { and } M_{\text {vap }}^{1}=\rho_{\text {vap }}^{1} \cdot v_{\text {vap }}^{1} \tag{A.11}
\end{equation*}
$$

so,

$$
\begin{align*}
\Delta E_{\text {vap }} & =H_{f g} \cdot \rho_{\text {vap }}^{1} \cdot V_{\text {vap }}^{1} \cdot \Delta T \\
& \times\left[\frac{\mathrm{dP}_{\text {sat }}\left(\mathrm{T}^{1}\right)}{\mathrm{T}} \cdot \frac{1}{\mathrm{P}_{\text {sat }}\left(\mathrm{T}^{1}\right)}-\frac{1}{\mathrm{~T}^{1}}\right] \tag{A.12}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{H}_{\mathrm{fg}} \mathrm{\rho}_{\text {vap }}^{1}=\mathrm{T}^{1} \cdot \frac{\mathrm{dP}_{\text {sat }}{ }^{\left(\mathrm{T}^{1}\right)}}{\mathrm{dT}} \tag{A.13}
\end{equation*}
$$

so

$$
\Delta E_{\text {vap }}=T^{1} \cdot \frac{d P_{\text {sat }}\left(T^{1}\right)}{d T} \cdot V_{\text {vap }}^{1} \times\left[\frac{d P_{\text {sat }}\left(T^{1}\right)}{d T} \cdot \frac{1}{P_{\text {sat }}\left(T^{1}\right)}-\frac{1}{T^{1}}\right] \cdot \Delta T \cdot \text { (A.14) }
$$

Now we realize that to heat up the liquid (ignoring $\Delta M_{v a p}$) that

$$
\begin{equation*}
\Delta E_{1 i q}=\rho_{1 i q} \cdot V_{1 i q} \cdot C_{P, l i q} \cdot \Delta T, \tag{A.15}
\end{equation*}
$$

and since we follow the saturation curve, $\Delta T=\Delta T_{\text {vap }}=\Delta T_{1 i q}$, so

$$
\begin{equation*}
\frac{\Delta E_{v a p}}{\Delta E_{l i q}}=\frac{T^{1} \cdot \frac{d_{s a t}\left(T^{1}\right)}{d T} \cdot V_{v a p}^{1} \cdot\left[\frac{\mathrm{dP}_{s a t}\left(T^{1}\right)}{d T} \cdot \frac{1}{P_{s a t}\left(T^{1}\right)}-\frac{1}{T^{1}}\right]}{\left.{ }^{P_{l i q} V_{l i q}{ }^{C}}\right]} \tag{A.16}
\end{equation*}
$$

This expression is accurate up to $\sim 90 \%$ of the critical temperature.

APPENDIX B

MATERIAL PROPERTIES USED IN THE PROGRAM

Fue1
The following material properties are treated as constants throughout the calculation and are specified in the input:

```
Melting temperature
Heat of vaporization
Heat of fusion
Specific heat of liquid fuel
Thermal conductivity for liquid fuel
Gas constant for fuel vapor
Absolute fuel viscosity
```

The theore ical density of liquid fuel is treated as a constant in the program but the user specifies a temperature as input with which the constant fuel density is calculated from the following function: ${ }^{19}$

$$
\begin{equation*}
\rho=\frac{11.08}{1+9.3 \cdot 10^{-5} \cdot(\mathrm{~T}-273)} \tag{B.1}
\end{equation*}
$$

where ρ is in $\mathrm{g} / \mathrm{cm}^{3}$ and T is in K.

The specific heat of solid fuel is given by the following: ${ }^{19}$

$$
C_{p}=\left(12.54+0.017 \cdot T-0.117 \cdot 10^{-4} \cdot \mathrm{~T}^{2}+0.307 \cdot 10^{-8} \cdot \mathrm{~T}^{3}\right) \cdot \frac{4.184 .10^{7}}{270.25}(\mathrm{~B} .2)
$$

where C_{p} is in ergs/g. K and T is in K.
The vapor pressure of fuel is given by: 20

$$
\begin{equation*}
P_{\text {sat }}=\exp \left[69.979-\frac{76800}{T}-4.34 \ln (T)\right] \tag{B.3}
\end{equation*}
$$

where P is in dynes $/ \mathrm{cm}^{2}$ and T in K.

Sodium

The following material properties are treated as constants throughout the calculation and are specified in the input:

Compressibility of liquid sodium
Speed of sound in liquid sodium
Absolute viscosity of liquid sodium
Absolute viscosity of two-phase sodium
The theoretical density of liquid sodium is given by the following function: ${ }^{6}$

$$
\begin{equation*}
\rho_{1 i q}=0.1818+0.756428 \cdot(1.0-T \cdot 0.0003659)^{0.586885} \tag{B.4}
\end{equation*}
$$

where ρ is in $\mathrm{g} / \mathrm{cm}^{3}$ and T in K
The theoretical density of sodium vapor is given by the following funtion: ${ }^{19}$

$$
\begin{equation*}
\rho_{\text {vap }}=\left(\frac{H_{f g}}{T \cdot \frac{\mathrm{dP}_{\text {sat }}}{d T}}+\frac{1}{\rho_{1 i q}}\right)^{-1} \tag{B.5}
\end{equation*}
$$

where $H_{f g}$ and $P_{\text {sat }}$ are given below and T is in K.
The specific at of liquid sodium is given by the following: 19
$C_{P}=0.85563 \cdot 10^{7}+0.3808 \cdot 10^{7} /(1.0-T / 2733)^{0.5738}$
where C_{p} is in ergs $/ g \cdot K$ and T is in K.
The specific heat of sodium vapor is given by the following: 19

$$
\begin{equation*}
C_{p}=0.85563 \cdot 10^{7}-0.3808 \cdot 10^{7} /(1.0-T / 2733)^{0.5738} \tag{B.7}
\end{equation*}
$$

where C_{p} is in ergs/g. K and T is in K.
The vapor pressure of sodium is given by ${ }^{21}$
$T<1144 \mathrm{~K}$

$$
\begin{equation*}
P_{\text {sat }}=\exp \left[28.4597-\frac{12818.5}{T}-0.5 \ln (T)\right] \tag{B.8}
\end{equation*}
$$

$1144 \mathrm{~K}<\mathrm{T}<1644 \mathrm{~K}$

$$
\begin{equation*}
P_{\text {sat }}=\exp \left[29.2125-\frac{12767.8}{T}-0.61344 \ln (T)\right] \tag{B.9}
\end{equation*}
$$

$T>1644 \mathrm{~K}$

$$
\begin{equation*}
P_{\text {sat }}=\exp \left[17.4249-\frac{10461.8}{T}+0.789 \ln (T)\right] \tag{B.10}
\end{equation*}
$$

where $P_{\text {sat }}$ is in dyne/cm ${ }^{2}$ and T in K.
The heat of vaporization for sodium is given by 21

$$
\begin{equation*}
\mathrm{H}_{\mathrm{fg}}=4.99141 \cdot\left(1.0-\mathrm{T}_{\mathrm{Na}} / 2733\right)^{0.4262} \tag{B.11}
\end{equation*}
$$

where fg is in ergs/gm and T is in K.

Cladding
The following material properties are treated a: constants throughout the calculation and are specified in the input.

Theoretical density
Melting temperature
Specific heat
Heat of fusion

Fission Gas

The user must specify a gas constant for the ideal gas formulation of fission gas pressure.

IMAGE EVALUATIC`! TEST TARGET (MT-3)

MICROCOPY RESOLUTION TEST CHART

IMAGE EVALUATIION TEST TARGET (MT-3)

MICROCOPY RESOLUTION TEST CHART

$$
96
$$

APPENDIX C

DICTIONARY OF VARIABLES IN COMMON STORAGE IN EPIC

Note that for all smear densities in the coolant channel in the slug interface cells, the smear density is the mass of the material in the partial ccll on the interaction zone side of the partial cell divided by the total cell volume, not by the partial cell volume. All velocities are values at the bottom edge of their respective cells, i.e., U^{i} is the velocity of the bottom edge of cell i. With respect to all variables whose values are heights, the bottom of the channel mesh is zero.

The following variables e. have three time values. The variable names ending in 1 are for the beginning of time step values. The variable names ending in 2 are for the beginning of time step values on the first (explicit) pass and on the second pass are for the end of time step values which were calculated during the first (explicit) pass and which are used to form the semi-implicit average values on the second pass. The variable names ending in 3 are for the current end of step value being calculated on each step. Therefore, at the end of the first pass, the 3 values become the 2 values for the second pass. When the differencing in time is strictly explicit, this scheme becomes irrelevant, but the 1,2 and 3 values function as they do on the first (explicit) pass when the differencing is semi-implicit in time.

Name	Dim.	Unit	Description
AC1	(100)	cm^{2}	Crois-sectional area of coolant
AC2	(100)	cm^{2}	channel by axial cell.
AC3	(100)	cm^{2}	
AF]	(100)	cm^{2}	Cross-sectional area of molten
AF2	(100)	cm^{2}	fuel cavity in the fuel pin by
AF3	(100)	cm^{2}	axial cell.
AM1	(100)	cm^{2}	Total cross-sectional area of
AM2	(100)	cm^{2}	coolant channel minus equiva-
AM3	(100)	cm^{2}	lent cross-sectional area of fuel, i.e., $A_{m}=A_{c}-V_{f u} /$ Δz where $V_{f u}$ is the volume of all fuel in the cell, Δ_{z} the cell height.
FCIL1	-	cm	Interaction zone/lower sodium
FCIL2	-	cm	slug interface location.
FCIL 3	-	cm	
FCIU1	-	cm	Interaction zone/upper sodium
FCIU2	-	cm	slug interface location.
FCIU3	-	cm	
ROFGC1	(100)	$\mathrm{g} / \mathrm{cm}^{3}$	Smear density of fission gas
ROFGC ?	(100)	$\mathrm{g} / \mathrm{cm}^{3}$	in coolant channel by axial
R0FGC3	(100)	$\mathrm{g} / \mathrm{cm}^{3}$	cell.

Name	Dim.	Unit	Description
ROFPC1	(100)	$\mathrm{g} / \mathrm{cm}^{3}$	Smear density of fuel in cool- ROFPC2
ROFPC3	(100)	$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{~g} / \mathrm{cm}^{3}$

Name	Dim.	Unit	Description
UF1	(100)	cm / s	Velocity of fuel in the mol-
UF2	(100)	cm / s	ten fuel cavity in the fuel
UF3	(100)	cm / s	pin by axial cell.
UG1	(100)	cm / s	Velocity of fission gas in the
UG2	(100)	cm / s	molten fuel cavity in the fuel
UG3	(100)	cm / s	pin by axial cell. (At the present time, this is the same as that of the fuel, UF, because no mechanistic calculation of fuel/fission gas slip is done.)
UM1	(100)	cm / s	Velocity of two-phase sodium
UM2	(100)	cm / s	and fission gas mixture in
UM3	(100)	cm / s	coolant channel by axial cell.
UP1	(100)	cm / s	Average velocity of particle
UP2	(100)	cm / s	groups centered one-half cell
UP3	(100)	cm / s	above to one-half cell below node edge by axial cell.

The following variables have only two time values. For these variables, there is no need to store the current calculated end of step value separately, so the newly calculated end of step value is placed immediately in the 2 value, replacing the beginning of time step value on the first pass and replacing the old end of time step value on the second pass.

Name	Dim.	Unit	Description
APER1	(100)	cm^{2}	The area of cladding available
APE $: 2$	(100)	cm^{2}	for condensation of sodium or
			fuel vapor. Set to $2 \pi \mathrm{r}_{\mathrm{c}} \cdot{ }^{\cdot} \mathrm{F} / \Delta^{z}$,
			where $r_{c l}$ is the cladding outer
			radius, and F is Δz for all axial cells except the inter-
			face cells where it is the
			length of the portion of the cell in the interaction zone.
FGIL1	-	cm	Lower interface position of
FGIL2	-	cm	fission gas within interaction
			zone.
HFPRZ1	$(10,100)$	-	Fraction of heat of fusion
HFPRZ2	$(10,100)$	-	satisfied for each r-z cell
			in the fuel pin, the first
			index being for radial sub-
			cell.
MELTR1	(100)	-	The outermost fully molten
MELTR2	(100)	-	radial subcell by axial cell.

Name	Dim.	Unit	Description
NFCIL1	-	-	Cell number of lover slug/
NFCIL2	-	-	interaction zone interface.
NFCIU1	-	-	Cell number of upper slug/
NFCIU2	-	-	interaction zone interface.
NMP1	-	-	Number of fuel particle
NMP2	-	-	groups in the coolant channel.
PF1	(100)	dynes/cm ${ }^{2}$	Total pressure in the molten
PF2	(100)		fuel cavity in the fuel pin by axial cell.
PM1	(100)	dynes/ cm^{2}	Total pressure in the coolant channel by axial cell.
PM2	(100)		
PPOS1	(1000)	cmcm	The position of the center of each fuel particle group.
PPOS2			
PTMP1	(1000)	K	The temperature of each fuel particle group.
PTMP2	(1000)	K	
PVEL1	(1000)	cm / s	The velocily of each fuel par-
PVEL2	(1000)	cm / s	ticle group.
SVLSI1	-		Volume of single-phase portion
SVLSI2		$\mathrm{cm}_{3} \mathrm{~cm}^{2}$	of interaction zone/lower slug
			interface cell except when the
			interface cell is an ejection cell, in which case this is zero.
SVUS I1	-	$\begin{gathered} \mathrm{cm}_{3}^{3} \\ \mathrm{~cm}^{3} \end{gathered}$	Volume of single-phase portion of interaction zone/upper slug interface cell except when the interface cell is an ejection cell, in which case this is zero.
SVUSI2			
TFPRZ1	$(10,100)$	K	Temperature of each r-z cell
TFPRZ2	$(10,100)$	K	in the fuel pin, the first index being for radial subcell. (Only the solid fuel cells are
TLSI1	-	K	Temperature of single-phase por-
TLSI2	-	K	tion of interaction zone/lower slug interface cell.
TMPPL1	-	$\mathrm{g} / \mathrm{cm}^{3}$	Adjusted smear density of
TMPPL2	-	$\mathrm{g} / \mathrm{cm}^{3}$	liquid sodium in lower inter-
			face cell to provide correct
			local density in interaction zone portion. TMPPL $=\rho_{\mathrm{Na}} /$

Name	Dim.	Unit
TMPPU1		
TMPPU2		

Name	Dim.	Unit	Description
DELA	(100)	cm^{2}	Effective area (volume/ Δz) of material ejected by axial cell.
DELT	-	s	Time step size.
DELT1	-	8	First time step specified. See input description.
DELT2	-	s	Second time step specified. See input description.
DELT3	-	S	Third time step specified. See input description.
DELZ	-	cm	Eulerian cell height.
EXT IME	-	S	Time after which calculation is explicit in time.
FCI	(100)	ergs/s.cm	Fuel-coolant heat transfer per unit height over a time step.
FDEN	-	$\mathrm{g} / \mathrm{cm}^{3}$	Theoretical density of liquid fuel.
FFCI	-	-	Multiplier applied to heat transfer coefficient between fuel and sodium.
FGFUF	$(10,100)$	-	Ratio of mass of fission gas to mass of fuel in each $\mathrm{r}-\mathrm{z}$ cell in fuel pin.
FRACHF	-	-	Not presently used.
FUCOND	-	ergs $/ \mathrm{cm} \cdot \mathrm{K} \cdot \mathrm{s}$	Thermal conductivity of liquid fuel.
GMPN	$(10,100)$	g	Mass of fuel in each $r-z$ cell in the fuel pin.
HBOND	-	ergs/K.s ${ }^{\circ} \mathrm{cm}^{2}$	Gap conductance between solid fuel and cladding at cladding inner surface.
HBONDM	-	ergs $/ \mathrm{K} \cdot \mathrm{s} \cdot \mathrm{cm}^{2}$	Gap conductance between molten fuel and cladding at cladding inner surface.
HCFV	-	ergs/K*s* cm^{2}	Condensation heat transfer coefficient for fuel vapor.

Name	Dim.	Unit	Description
HCSL	-	$\mathrm{ergs} / \mathrm{K} \cdot \mathrm{s} \cdot \mathrm{cm}^{2}$	Heat transfer coefficient between cladding and liquid sodium.
HCSV	-	ergs $/ \mathrm{K} \cdot \mathrm{s} \cdot \mathrm{cm}^{2}$	Condensation heat transfer coefficient for sodium vapor.
HFGFU	-	ergs/g	Heat of vaporization for fuel.
HLPEN	-	cm	Height of lower plenum free surface.
HSFCL	-	ergs/g	Heat of fusion for cladding.
HSFFU	-	ergs/g	Heat of fusion for fuel.
HUPLEN	-	cm	Height of upper free surface.
ICT	-	-	Counter for turning on printout according to number of time steps between printouts.
ICYCLE	-	-	Counter for turning on plotting data writeout according to number of time steps between writeouts.
IFAIL	(100)	-	Set to one for ejection cells, otherwise zero by axial cell.
IFMAX	-	-	Highest ejection cell.
IFMIN	-	-	Lowest ejection cell.
IIL	-	-	Index of last cell with full density sodium in lower slug at end opposite interaction zone.
IILSLG	-	-	Index of first cell with less than full density sodium on the end of the lower sodium slug opposite to the interaction zone or zero if the slug extends to the bottom of the channel.
IIU	-	-	Index of last cell with full density sodium in upper slug at end opposite interaction zone.

Name	Dim.	Unit	Description
IIUSLG	-	-	Index of first cell with less than full density sodium on the end of the upper sodium slug opposite to the interaction zone or zero if the slug extends to the top of the channel.
ILIM	-	-	Set to the dimension of the arrays for the pin and channel mesh, presently 100.
ILIMP	-	-	Set to the dimension of the fuel particle group arrays, presently 1000 .
INTPO	-	-	Interval between printouts. See input.
INTPO1	-	-	Switch to turn on double printouts every time step. See input.
IOPT5	-	-	Option for fuel ejection. See input.
IOPT6	-	-	Option for clad rip extension. See input.
IPASS	-	-	Counter for indicating which of two semi-implicit passes is being done.
IPCYCL	-	-	Number of time steps between writeouts of plot data.
IPLOT	-	-	If non-zero, unit number for plot data set.
IPR10	-	-	If non-zero, option for writing short form of output on unit 10 .
IRST	-	-	Set non-zero in EQUILN when time step is to be repeated because of overcompaction or because of drastic increase in pin pressure.
IRST1	-	-	Set non-zero if time step is in the process of being repeated.

Name	Dim.	Unit	Description
IY	-	-	Seed for "random number" generator subroutine initially and on each call.
JOBID	$(72,2)$	-	Alphanumeric case identification.
MAYPRT	-	-	Maximum number of fuel particle groups allowed.
MPPART	-	-	Number of fuel particle per particle group at ejection.
NCL	-	-	Lowest cell in channel mesh.
NCU	-	-	Highest cell in channel mesh.
NCU1	-	-	$\mathrm{NCU}+1$.
NDIV	-	-	Number of cell subdivisions for particle recombination.
NFL1	-	-	Number of arrays in COMMON/FLOAT2/divided by 3 .
NFL2	-	-	Number of arrays in COMMON/FLOAT2/divided by 2 assuming TFPRZ and HFPRZ each count as 10 .
NFL3	-	-	Number of time dependent arrays in COMMON/FLOAT3/ divided by 2 .
NFL4	-	-	Number of undimensioned variables is COMMON/FLOAT1/ divided by 3 .
NFL5	-	-	Number of undimensioned variables in COMMON/FLOAT2/ divided by 2 .
NPL	-	-	Lowest pin cavity cell.
NPLC	-	-	Lowest cell in fuel mesh.
NPL1	-	-	NPL +1.
NPRAD	-	-	Number of radial cells in fuel mesh.

Name
NPU
NPUC
ON
PHI

Name	Dim.	Unit	Description
RCL	(100)	cm	Outer cladding radius by axial cell.
RCIN	(100)	cm	Inner Cladding radius by axial cell.
RFG	-	ergs $/ \mathrm{cm} \cdot \mathrm{K}$	Gas constant for fission gas.
RFOUT		cm	Outer radius of solic fuel by axial cell.
RFPCN	(100)	K	Channel fuel reactivity componeit by axial cell.
RFPN	(100)	K	Total fuel reactivity by axial cell.
RFPPN	(100)	K	Pin fuel reactivity component by axial cell.
RFPO	-	K	Total fuel reactivity at $\mathrm{t}=0$.
RFPON	(100)	K	Total fuel reactivity by axial cell a $t=0$.
RFU	-	ergs/cm*K	Gas constant for fuel vapor.
RNAO	-	K	Total sodium void reactivity at $\mathrm{t}=0$.
RPART	-	cm	Radius of fuel partic'es in channel.
RVOID	(100)	cm	Radius of central void in each pin cavity cell.
SCOMP	-	$\mathrm{cm}^{2} /$ dyne	Sodium liquid compressibility.
SMELT	(100)	g / s	Rate of fuel melt-in for a time step by axial cell.
SVCON	(100)	g / s	Rate of sodium vapor condensation for a time step by axial cell.
TCL	(100)	K	Cladding temperature by axial cell. This includes the tem-perature-equivalent of the heat of fusion satisfied when the energy content has raised the temperature above the solidus.

Name	Dim.	Unit	Description
TIMAX	-	s	Maximum problem time.
TIME	-	s	Current time.
TIME01	-	s	First time step limit. See input.
TIME02	-	s	Second time step limit. See input.
TIME03	-	s	Third time step limit. See input.
TIME04	-	s	Fourth time step limit. See input.
TLPLEN	-	K	Temperature at upper free surface.
TMELT	-	K	Fuel melting temperature.
TNASS	(100)	K	Steady state sodium temperature for reactivity calculation by axial cell.
TO	-	-	Set to 2.0 DO.
TUPLEN	-	K	Temperature at upper free surface.
VAPS	(100)	-	Ratio of $\Delta \mathrm{E}_{\text {vap }} / \Delta \mathrm{E}_{1 i q}$. See Appendix A.
VFC	-	-	Volume fraction of coolant.
VISCF	-	$\mathrm{g} / \mathrm{s} \cdot \mathrm{cm}$	Absolute fuel viscosity.
VISCM	-	$\mathrm{g} / \mathrm{s}^{*} \mathrm{~cm}$	Absolute viscosity of two phase sodium and fission gas mixture.
VISCSL	-	$\mathrm{g} / \mathrm{s}^{*} \mathrm{~cm}$	Absolute viscosity of sodium liquid.
VPFRO	(100)	-	Void fraction in coolant channel by axial cell.
WCOOL	(100)	$\frac{d k}{g \mathrm{Na}} \times 10^{5}$	Coolant reactivity worth by axial cell.

Name	Dim.	Unit	Description
WFUEL	(100)	$a^{-\times 10^{5}}$	ruel reactivity worth by axial cell.
WPGM	(100)	W/g	Watts per gram of fuel by axial cell.
XMAX	-	cm	Highest fuel particle position in coolant channel.
XMAXO	-	cm	Highest fuel particle position in coolant channel at $t=2 f^{*}$.
XMIN	-	cm	Lowest fuel particle position in coolant channel.
XMINO	-	cm	Lowest fuel particle position in coolant channel at $t=$ zero.
YFL	-	-	"Random Number" from 0.0 to 1.0 resulting from RANDU call.
ZO	-	-	Set to 0.0 DO
ZPART	-	cm	Length of DPIC particle group.

APPENDIX D

LIST OF SYMBOLS USED IN TEXT

Quantities

English Letters

a coefficient of Reynold's number in a Re^{b} formulation
A area
b exponent of Reynold's number in a Re^{b} formulation
c speed of sound
C_{D} drag function
C_{p} specific heat
D displacement
$D_{C} \quad$ hydraulic diameter
E energy
F fraction of heat of fusion satisfied
FAC multiplicative factor on FCI heat transfer term
g gravitational acceleration
h_{c} heat transfer coefficient
H_{fg} heat of yaporizan.
H_{Sf} heat of fusion
k chermal conductivity
L. length of slug
m mass
M rass
MU momentum
P pressure
Q heat
R gas constant
English Letters (Contd)
Re Reynold's number
S mass source or sink
t time
T temperature
U velocity
V volumeW axial power distributionX ratio of fission gas mass to fuel mass in fuel pinY factor determining amount of fission gas-fuel slip
z space
Greek Letters
$\alpha \quad$ void fraction
B compressibility
$\mu \quad$ viscosity
ρ density
© normalized power level
$\psi \quad$ constant factor in particle momentum equation
Subscripts
b bond
c channel
c1

clad
con condensation
ej ejection
END end of slug
ex excess or remainder
fg fission gas

```
Subscripts (Contd)
fp fuel particle
fr froth
fu fuel
in inner
liq liquid
m mixture
max maximum
melt melt-in
Na sodium
p pin cavity
ps pin fuel surface
s slug
sat saturation
tot total
vap vapor
Superscripts
i,j,k axial cell index
1 radial cell index
L lower slug
m particle group
n time step
o end of time step but before ejection
p physical
U upper slug
```


ACKNOWLEDGEMENTS

Acknowledgement must be made of the large amount of time and effort provided in the preparation of this document for publication by Dr. B. Burson of NRC/RSR.

Acknowledgement is also due to Dr. H. H. Hummel who provided needed i..sight and guidance in the production of this model, to Dr. H. U. Wider for many helpful conversations and to Dr. J. J. Sienicki for running a series of parametric cases which aided in the development of the code.

Special thanks is due to Ms. T. Maytan for her diligence and patience in typing this document.

REFERENCES

1. P. A. Pizzica and P. B. Abramson, A Numerical Model of Reacto: Fuel and Coolant Motions Following Pin Failure, Nucl. Sci. Eng., 64, p. 465-479 (1977).
2. P. A. Pizzica and P. B. Abramson, EPIC, A Computer Program for Fuel-Coolant Interactions, Proc. Int. Mtg. Fast Reactor Safety and Related Physics, Chicago, October 1976, CONF-761001, U.S. Energy Research and Development Administration (1977).
3. H. H. Hummel, P. A. Pizzica and Kalimullah, Studies of Unprotected Loss-of-Flow Accidents for the Clinch River Breeder Reactor, ANL-76-51 (April 1976).
4. H. H. Humme1, Kalimullah and P. A. Pizzica, Physics and Pump Coastdown Calculations for a Model of a 4000 MWe Oxide-Fueled LMFBR, ANL-76-77 (June 1976).
5. P. A. Pizzica and H. H. Hummel, The Importance of Axial Propagation of Fuel Failure in LOF-TOP Scenarios for a Commercial-Sized LMFBR, Trans. Am. Nucl. Soc., 33, p. 541 (Noverher 1979).
6. D. R. Ferguson et al., The Status and Experimental Basis of the SAS4A Accident Analysis Code System, Proc. ANS/ENS International Mtg. Fast Reactor Safety Tech., Seattle, Washington, August 1979.
7. P. B. Abramson, A Numerical Hydrodymamice Treatment of Fuel/Steel Pools with Density Variations from Nearly Pure Vapor to Incompressible Liquid, Trans. Am. Nucl. Soc., 23, 192 (June 1976).
8. P. J. Roache, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque (1972).
9. D. H. Cho, R. O. Ivins and R. W. Wright, Pressure Generation Under LMFBR Accident Conditions, Proc. Conf. New Developments in Reactor Mathematics and Applications, Idaho Falls, March 1971, CONF-710302, U.S. Atomic Energy Commission (1971).
10. H. U. Wider, An Improved Anal? sis of Fuel Motion During an Overpower Excursion, PhD Thesis, Northwestern University, p. 45, (June 1974).
11. Graham B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill Book Company, New York (1969).
12. M. E. Evans and F. H. Harlow, The Particle in Cell Method for Hydrodynamice Caloulatione, LA-2139, Los Alamos Scientific Laboratory (1957).
13. P. B. Abramson and J. J. Sienicki, The Value of Distributed Particle in Cell Technique6, Trans. Am. Nuc1. Soc., 28, p. 277 (1978).
14. H. U. Wider et al., An Improved Analysie of Fuel Motion During an Overpower Excursion, Proc. Conf. Fast Reactor Safety, Beverly Hills, California, April 2-4, 1974, CONF-740401, p. 1541, U.S. Atomic Energy Commission (1974).
15. S. L. Soo, Fluid Dynamics of Multiphase Systeme, Blaisdell Publishing Company (1967).
16. Reactor Development Program and Progress Report, inL-RDP-41, Argonne National Laboratory (1975).
17. H. E. Rose and H. E. Barnacle, Flow of Suspensions of Non-Cohesive Spherical Particles in Pipes, Parts 1 and 2, The Engineer (June 1957).
18. H. U. Wider, op. cit. (Reference 10), pp. 47-48.
19. L. Liebowitz et al., Properties for LMFBR Safety Analysis, ANL-CEN-RSD-76-1.
20. D. C. Menzies, The Equation of State of Uranium Dioxide at High Temperatures and Pressures, TRG Report 1119(D), UKAEA (1966).
21. A. Padilla, Jr., High-Temperature Thermodynamic Properties of Sodium, ANL-8095, Argorne National Laboratory (April 1974).

Distribution for NUREG/CR-1504 (ANL-80-47)

Internal:

W. E. Massey P. A. Pizzica (16)
J. A. Kyger
D. Rose
C. E. Till
A. J. Goldmaา
... Avery
P. B. Abramson
C. E. Dickerman
J. F. Marchaterre
D. Ferguson
J. J. Sienicki
W. J. sturm
L. Baker
D. Webeı
P. I.. Garner
H. Wider
H. Henryson
H. H. Humme 1

Kalimullah
M. F. Kennedy
D. H. Lennox
W. T. Sha
L. G. LeSage
J. B. Wozniak

ANL Contract File
ANL Libraries (3)
TIS Files (3)

External:

USNRC, Washington, for distribution per R7 (360)
DOE-TIC, Oak Ridge (2)
Manager, Chicago Operations and Regional Office, DOE
Chief, Office of Patent Counsel, DOE-CORO
President, Argonne Universities Association, Argonne, 111.
Applied Physics Division Review Committee:
P. W. Dickson, Jr., Westinghouse Electric Corp., 3300 Appel Rd., Bethel Park, Pa. 15102
R. L. Hellens, Combustion Engineering, Inc., Windsor, Conn. 06095
K. D. Lathrop, Log Alamos Scientific Lab., P. O. Box 1663, Los Alamos, N.M. 87545
W. B. Loewenstein, Electric Power Research Inst., P. O. Box 10412, Palo Alto, Calif. 94303
R. F. Redmond, College of Engineering, The Ohio State University, 2070 Neil Ave., Columbus, 0. 43210
k. Sher, Dept. Mechanical Engincering, Stanford U., Stanford, Calif. 94305
D. B. Wehmeyer, The Detroit Edison Co., 2000 Second Ave., Detroic, Mich. 48226
C. Erdman, U. Virginia, Charlottesville, Va. 22904
K. O. Ott, Purdue U., West Lafayette, Ind. 47906
R. Lancet, Atomics International, P. O. Box 309, Canoga Park, Calif. 91304

[^0]: Prepared for the Division of Reactor Safety Research Office of Nuclear Regulatory Research
 U. S. Nuclear Regulatory Commission

 Washington, D. C. 20555
 Under Interagency Agreement DOE-40-550-75

[^1]: *The notation $I\{X\}$ means round up to the next integer. For example, $I\{6 / 10\}=1$, I $\{9 / 6\}=2$, etc.

[^2]: 2.716800-01

