NUREG/CR-1196 ORNL/NUREG/TM-371

OAK RIDCE NATIONAL LABORATORY

RAGTIME: A FORTRAN IV Implementation of a Time-Dependent Model for Radionuclides in Agricultural Systems

First Progress Report

J. C. Pleasant
L. M. McDowell-Boyer
G. G. Kiliough

Prepared for the
U.S. Nuclear Regulatory Commission Division of Safeguards, Fuel Cycle, and Environmental Research
Under Interagency Agreement DOE 40-550-75

Printed in the United States of America. Availabie from National Tectinical Information Servica
U.S. Department of Commerce

5285 Port Royal Road Springtield, Virginia 22161

Available from
GPD Sales Procram
Division of Technical Information and Docament Controi
U.S. Nuzlear Regulatory Commission

Washington, D,C. $205,5-$

This ceport was prepared as an ack auht of works disored by an agericy of the Unted States Government Nertheir the Unsted Ste es Joveromvint for any agency thereol, not any of their employees. chakes ans Narcanty empreas bimplieal ut assumes any legat liability si responsibility for the sccuracy tampalemetis, gr usetuiness of any intormation, apparitus, produck of process diselosod of
 to any specific commercial product. process or pemioeby is*ae name, tracoernark. manutacturer, of otherwise does hot necessatily constiate ar amply its endorsement, recommendation, of lavoring by the UrmodStabs Gpvemment of any agenoy therect The views and cyintons of authors exotessed herem ot mos necussin, iny state or rellect those of the United States Gipvernmiont or any \& verscy thereot
Contract No. W-7405-eng-26Health and Safety Research Division
RAGTIME: A FORTRAN IV IMPLEMENTATION OF A TIME-DEPENDENT MODEL FOR RADIONUCLIDES IN AGRICULTURAL SYSTEMS
FIRST PROGRESS REPORT
J. C. Pleasant*
L. M. McDowell-Boyer
G. G. Killough
*East Tennessee State University
NOTICEThis document contains information of a preliminary nature.It is subject to revision or correction and therefore doesnot represent a final report.
Manuscript Completed: December 1979
Date Published: May 1980
Prepared for the U.S. Nuclear Regulatory CommissionDivision of Safeguards, Fuel Cycle, and Environmental ResearchUnder Interagency Agreement DOE 40-550-75
NRC FIN No. B0188
Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830operateu by
UNION CARBIDE CORPORATION
for the
DEPARTMENT OF ENERGY

CONTENTS

Page
LIST ご TABLES v
HIGHLIGH S vii

1. INTF JDUCTION 1
2. DESCRIPTION OF THE MODEL 3
2.1 Radioactivity Transfer to Crops 3
2.2 Radioactivity Transfer to Beef and Milk 6
2.3 The System of Equations 7
3. PARAMETERS DESCRIBING TRANSFER TO CROPS 15
3.1 Time-dependent Aerosol Interception (S_{1} and S_{2}). 16
3.2 Time-dependent Root Uptake $\left(\tau_{p, t}\right)_{i}$ 18
3.3 Time-independent Parameters ($\tau_{e, s}, \tau_{s, p},{ }^{\tau_{p, h}}$) 19
4. PARAMETERS DESCRIBING TRANSFER TO BEEF AND MILK 21
4.1 Contamination of Pasture Grass 21
4.2 Contamination of Beef and Milk 23
5. SOLUTION OF THE SYSTEM OF DIFFERENTIAL EQUATIONS 29
5.1 Use of the GEAR Subroutine 29
5.2 Use of the Bateman Equations as a Check 33
6. THE RAGTIME CODE 37
6.1 Input 37
6.2 Logical Structure of the Code 39
6.3 Subroutine CHECK 47
ACKNOWLEDGEMENT 47
REFERENCES 49
APPENDIX A. ' sTING OF THE RAGTIME CODE 51
APPENDIX B. JAMPLE RUN OF THE RAGTIME CODE 93

LIST OF TABLES

Table Page
2.1 Description of symbols used in the RAGTIME model. 11
5.1 Definition of RAGTIME state variables in terms of GEAR package notation 30
5.2 Definition of RAGTIME derivatives in terms of GEAR package notation 31
6.1 Radionuclide-dependent input parameters for RAGTIME 39
6.2 Nuclide-independent input parameters for RAGTIME 40
6.3 Conversion factors used to convert compartmental concen- trations to total activity 44

HIGHLIGHTS

RAGTIME is a FORTRAN IV program that calculates radionuc,ide concentrations in food crops, beef, and milk which are contaminated as a resuit of deposition of radioactivity on an agricultural area. Contamination of these foods is assumed to occur as a result of the deposition of radioactivity onto the surface of above-ground food crops, pasture grass, the soil surface below crops, and the soil surface or root mat below pasture grass, with ingrowth of radioactive daughters being computed explicitly. The input source of radioactivity may be prescribed by the user as a step function for each nuclide in the chain. The model employs time-dependent irterception fractions for deposition of activity on food crops; the interception fractions for deposition on pasture grass or pasture soil are at present constants, but the facility for use of time-dependent values is provided. Seasonal aspects of the transfer of radionuclides between various compartments of the model include the provision for specifying the dates of emergence and harvest for various crop categories.

The system of differential equations describing the model is solved by use of a discrete-variable numerical integration (the GEAR package), and the accuracy of this solution is monitored by comparing the total radioactivity in the system as calculated by the numerical procedure with that calculated by use of an explicit solution of the Bateman equations.

This report discusses the development of the model which is presently on-going, and thus, does not represent the final version envisioned for implementation. Output for a sample run of the current version is provided in this report.

1. INTRODUCTION

A number of terrestrial food-chain transport models have been developed over the past several years for use in assessing ingestion dose to man from aerially deposited radionuclides. ${ }^{1}$ Included among these is a transport model described in the U. S. Nuclear Regulatory Commission's (USNRC) Regulatory Guide 1.109 , a model which NRC considers acceptable for assessing terrestrial transport of radionuclides released during normal operation of light-water-cooled nuclear power plants. ${ }^{2}$ Limitations of these models with respect to dynamic seasonal considerations as well as radioactive daughter ingrowth prompted model development work, the initial progress of which is reported here.

RAGTIME (Radionuclides in AGricultural systems: a TIME-dependent model) computes radionuclide concentrations in food crops, beef, and milk which are contaminated by radionuclide deposition. The model assumes a known rate of deposition of radioactivity (microcuries per square meter per day, $\mu \mathrm{Ci} \mathrm{m}^{-2}$ day ${ }^{-1}$) at a given environmental location and uses interception fractions S_{1}, S_{2}, S_{3}, and S_{4} to calculate radioactivity input rates to the model compartments representing aboveground food, the soil surface below the food crop, pasture grass, and pasture soil or root mat, respectively, at that location. RAGTIME is basically an adaptation of the previously developed TERMOD code ${ }^{3}$ to consider both seasonality of agricultural processes and the dynamics of daughter ingrowth of radionuclides during food-chain transport. Because the development of RAGTIME is still in progress, some parameters and concepts believed to be inadequate for the intended use of this code have been carried over from TERMOD until appropriate revisions can be made.

The system of linear ordinary differential equations describing the model accounts explicitly for ingrowth of radioactive daughters and provides for an input source of each member of a radionuclide chain. This system is solved by use of the GEAR package ${ }^{4}$ for solution of systems of ordinary differential equations. A subroutine, CHECK, of RAGTIME provides a check on the accuracy of this solution. At each output
time, CHECK mak's use of an explicit solution of the Bateman equations to calculate the total amount of radioactivity in the system; this value is compared with the total obtained by summing the amounts of radioactivity in all model compartments as computed by the GEAR subroutine.

In Sect. 2 of this report, we describe in broad outline the RAGTIME methodology and present the equations which describe the model. Sections 3 and 4 provide details concerning the interception fractions S_{1}, S_{2}, S_{3}, and S_{4} and the transfer coefficients of the system. Section 5 is devoted to a discussion of the use of the GEAR package in solving the system of differential equations of the model and to a description of the way the Bateman equations are used. Finally, a description of the RAGTIME computer code is provided in Sect. 6, giving details regarding input, logical structure, and calls to the GEAR subroutines as well as the procedure employed by subroutine CHECK to monitor the accuracy of the numerical solution.

As mentioned previously, there are a number of limitations of the present version of the RAGTIME model which remain to be addressed. Principal among planned relinements is the inclusion of the seasonal cycle in the dairy and beef pathways. Aside from an example run for the ${ }^{90} \mathrm{Sr}^{-90 y}$ chain, this report will not present a data base, the development of which is presently in progress. The present code uses an arriy of output times with a fixed size; whereas the integration interval may be of indefinite length, this fixed array limits the output density which is possible without recompilation. It nay be desirable to remove this dependence on a fixed array in a future version.

Among planned revisions is the conversion of the RAGTIME code to the International System of Units (SI), thus effecting a change in the expression for radioactivity from curie (Ci) to becquerel (Bq), where

$$
\begin{equation*}
1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{~Bq} \tag{1.1}
\end{equation*}
$$

The current version of the code uses Ci to represent activity, and the following documentation is consistent with this convention although the output may easily be converted to Bq using the relationship given above.

2. DESCRIPTION OF THE MODEL

The RAGTIME model is represented schematically in Fig. 2.1. The subscript i associated with the compartments E_{i}, S_{i}, P_{i}, etc. refers to the i th nuclide of a radionuclide decay chain. Certain of the transfer coefficients are nuclide-, or element-, dependent; this is also signified by the use of the subscript $i,\left[e . g .,\left(\tau_{p, t}\right)_{i}\right]$. The deposition source F_{i} represents the input source of radioactivity corresponding to the ith nuclide of a radionuclide chain. This source strength may vary with time and may be represented in the computer code as a step function for each nuclide in the chain. The fractions of input radioactivity which are intercepted by above-ground crops, soil surface below the food crop, pasture grass, and pasture soil are represented by S_{1}, S_{2}, S_{3}, and S_{4}, respectively. These fractions may be time-dependent with respect to growth dynamics of the crop land or pasture. In Sect. 3.1, we describe models for calculation of time-dependent interception fractions S_{1} and S_{2}. The present version of the code uses vaiues of S_{3} and S_{4} which are constant with respect to time; however, the same subroutine is used to return values for all interception fractions, so that a convenient method is available should the user desire to prescribe time-dependent values for S_{3} and S_{4}.

A general outline of the terrestrial pathways considered in RAGTIME follows, along with a brief description of parameters used in implementing the computer simulation. A more rigorous definition and the rationale behind the particular quantifications used for each parameter are given in Sects. 3 and 4 of this report.

2.1 Radioactivity Transfer to Crops

Radioactivity deposited on the surface of the above-ground food crop passes to the soil surface below the food crop with an environmental half-time of usually less than 30 days. ${ }^{5}$ We have used 14 days for this value $\left[\tau_{e, s}=\ln 2 /(14\right.$ days $)=0.0495$ day $\left.^{-1}\right] .^{3,6}$ For transfer

Fig. 2.1. Schematic representation of radioactivity transfer to food crops, milk, and beef as simulated by the RAGTIME computer code.
from the soil surface below the food crop to the subsurface soil pool, we have assumed a 1000 -day environmental half-time, giving $\tau_{s, p}=$ $\ln 2 /(1000$ days $)=6.93 \times 10^{-4}$ day $^{-1}$. Radioactivity in the subsurface soil pool is available for uptake by plant roots. The plant interior compartment T_{i} simulates radioactivity which is transferred to the edible parts of crops as a result of root uptake.

In Sect. 3.2 and Appendix B, we describe a model for calcultion of a nuclide-and time-dependent rate coefficient ($\tau_{p, t}$) representing this transfer of activity. We have assumed a loss rate of 4% per year from the subsurface soil compartment P_{i} to the soil compartment below the roots, H_{i}, giving $\tau_{p, h}=0.04 /(365$ days $)=1.096 \times 10^{-4}$ day $^{-1}$ (Refs. 3,7). The dotted lines from compartments E_{i} (surface of above-ground food crop) and T_{i} (plant interior) to (EH) ${ }_{i}$ (crop holdup compartment) represent harvest of crops.

The level of radioactivity in all compartments associated with crops at a given time is dependent on the histories of both the deposition source strength and on the growth of these crops. The effect of crop growth upon the activity level on crop surfaces (compartment E_{i}) is simulated through use of the time-dependent interception fraction S_{1}. The time-dependent transfer coefficient ($\tau_{p, t}$); serves this function with regard to the plant interior compartment T_{i}. Before the emergence of plants, the value of S_{1} is zero, as is that for $\left(\tau_{p, t}\right)_{i}$. At harvest time, the entire food crop is assumed to be stored in a holdup compartment $(E H)_{i}$, after which time the radioactivity concentration level in this food is assumed to be affected only by the radioactivity decay process. Thus, the activity level in the compartments representing crops in the field (compartments E_{i} and T_{i}) is zero except at times between the emergence and harvest of crops. Harvest of crops is simulated numerically by reinitialization of the state variables representing these compartments at harvest time, [i.e., the compartments E_{i} and T_{i} which represent activity associated with crops in the field are set to zero, and the compartment (EH) ${ }_{i}$ representing harvested crops is assigned a value (in microcuries per kilogram) to reflect its receipt of all radioactivity from E_{i} and T_{i}].

2.2 Radioactivity Transfer to Beef and Milk

As in the case of transfer from the surface of the above-ground food crop to the soil surface, we have assumed a 14 -day environmental, or retention, half-time for the loss of radioactivity from pasture grass to pasture soil $\left[\tau_{\mathrm{g}, \mathrm{r}}=\ln 2 /(14\right.$ days $)=0.0495$ day $\left.^{-1}\right] .^{3,6}$ To account for uptake of radioactivity by pasture grass from soil, we have assumed a transfer rate of 1% per year from R_{i} to $G_{i}\left[\tau_{r, g}=0.01 /(365\right.$ days $)=2.74 \times 10^{-5}$ day $\left.^{-1}\right] .3,7$ As in the determination of $\tau_{p, h}$, a transfer rate of 4% per year from the pasture soil compartment R_{j} to the soil below the roots $D_{i}\left[\tau_{r, d}=0.04 /(365\right.$ days $)=1.096 \times 10^{-4}$ day ${ }^{-1}$] was assumed. ${ }^{3,7}$ The rate coefficient for loss of activity from pasture grass resulting from grass consumption by a cow is denoted by ${ }^{\mathrm{t}} \mathrm{g},{ }^{\star}$. The derivation of a value for this coefficient is discussed in Sect. 4.1. The beef compartment B_{i} represents the concentration of activity in the muscle of a steer and C_{i} simulates the concentration of activity in milk in the udder of a cow. It is not assumed that the total loss from the pasture grass compartment, G_{i}, due to a cow's grass consumption is accounted for by gains to the beef and milk compartments B_{i} and C_{i}. Rather, the transfer coefficients $\left(\tau_{g, b}\right)_{i}$ and $\left(\tau_{g, c}\right)_{i}$ account for only portions of the total activity transferred to the cow through consumption of grass, those portions being the activity transferred to beef $\left(B_{i}\right)$ and milk $\left(C_{i}\right)$, respectively. The remainder of the loss from G_{i} due to a cow's consumption is considered only for the purpose of allowing a mass-balance check of total radioactivity in the system. This remainder, being the complement of $\left(\tau_{\mathrm{g}, \mathrm{b}}\right)_{\mathrm{i}}$ and $\left(\tau_{\mathrm{g}, \mathrm{c}}\right)_{\mathrm{i}}$ with respect to $\tau_{\mathrm{g},}$, , is indicated in Fig. 2.1 as a dashed line drawn to the compartment M_{i}^{\prime}. The compartment M_{i}^{\prime} is used only in connection with the performance of a mass-balance check. Details concerning the procedure used by the code to perform this check are given in Sects. 5.2 and 6.3.

The dotted lines from the beef and milk compartments B_{i} and C_{i} to the holdup compartments $(\mathrm{BH})_{i}$ and $(\mathrm{CH})_{i}$, respectively, represent the effect of storage on the radionuclide concentration in these foods. At
each output time, the computer prints, in addition to the activity concentrations of beef $\left(B_{i}\right)$ and milk $\left(C_{i}\right)$ at the given time, the concentration levels which these foods would reach if stored for a userspecified period of time (t_{b}^{h} for beef, t_{c}^{h} for milk). Thus, at a given output time $\mathrm{t},(\mathrm{BH})_{i}$ represents the activity concentration ($\mu \mathrm{Ci} \mathrm{kg}^{-1}$) of nuclide i in beef at time $t+t_{b}^{h}$ which was stored from time t to time $t+t_{b}^{h}$, assuming a concentration level B_{i} at time t. The definition of $(\mathrm{CH})_{i}\left(\mu \mathrm{Ci}\right.$ liter $\left.{ }^{-1}\right)$ is similar. Since the determination of the values of $(\mathrm{BH})_{i}$ and $(\mathrm{CH})_{i}$ from those for B_{i} and C_{i} involves only the application of the process of radioactive decay (using the Bateman equations), the system of differential Eqs. (2.1) through (2.11) representing the model depicted in Fig. 2.1 does not contain equations corresponding to these holdup compartments. In Sect. 6.2 we present details concerning calls to a subroutine, RESDNS, which uses an explicit solution of the Bateman equations to calculate values for $(B H)_{i}$ and $(\mathrm{CH})_{i}$.

2.3 The System of Equations

The following system of equations uescribes the transfer of deposited radioactivity to food crops, beef, and milk as depicted in Fig. 2.1. As pointed out in Sect. 2.2, the compartments $(\mathrm{BH})_{i}$ and $(\mathrm{CH})_{i}$ are not represented by differential equations since their values are calculated using orly the Bateman equations (see Sect. 6.2). Furthermore, the differential equation for the compartment M_{i}^{\prime}, which is used only in connection with a mass-balance check, is not included here but is discussed in Sect. 6.2. Definitions of the compartments used in the RAGTIME model follow the system of equations. Descriptions of all other quantities used in these equations along with the values used for certain of those which represent constants (at present) are given in Table 2.1. Values of nuclide-dependent and crop-specific parameters for a sample run of RAGTIME are given in Appendix B (Table B.1) along with a description of how these values are derived from empirical data.

Crop surface
$\frac{d E_{i}}{d t}=S_{1} F_{i}(t)-\left(\lambda_{i}^{R}+\tau_{e, s}\right) E_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} E_{j}$
Crop soil surface
$\frac{d S_{i}}{d t}=S_{2} F_{i}(t)+\tau_{e, s} E_{i}-\left(\lambda_{i}^{R}+\tau_{s, p}\right) S_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} S_{j}$

Crop soil pool
$\frac{d P_{i}}{d t}=A \tau_{s, p} S_{i}-\left[\lambda_{i}^{R}+\left(\tau_{p, t}\right)_{i}+\tau_{p, h}\right]_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} P_{j}$
Pasture grass
$\frac{d G_{i}}{d t}=S_{3} F_{i}(t)-\left(\lambda_{i}^{R}+\tau_{g, r}+\tau_{g, *}\right) G_{i}+\tau_{r, g} R_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} G_{j}$

Pasture soil
$\frac{D R_{i}}{d t}=S_{4} F_{i}(t)+\tau_{g, r} G_{i}-\left(\lambda_{i}^{R}+\tau_{r, g}+\tau_{r, d}\right) R_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} R_{j}$

Pasture soil sink
$\frac{d D_{i}}{d t}=\tau_{r, d^{R}}-\lambda_{i}^{R} D_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} D_{j}$

Milk
$\frac{d C_{i}}{d t}=\left(\tau_{g, C}\right)_{i} G_{i}-\left(\lambda_{i}^{R}+\tau_{m i l k}\right) C_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} C_{j}$

Beef

$$
\begin{equation*}
\frac{d B_{i}}{d t}=\left(\tau_{g, b}\right)_{i} G_{i}-\left[\lambda_{i}^{R}+\tau_{\text {beef }}+\left(\tau_{\text {exc }}\right)_{i}\right] B_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} B_{j} \tag{2.8}
\end{equation*}
$$

Interior of crops
$\frac{d T_{i}}{d t}=\left(\tau_{p, t}\right)_{i} P_{i}-\lambda_{i}^{R} T_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} T_{j}$

Crop soil aink
$\frac{d H_{i}}{d t}=\left(\tau_{p, h} / A\right) P_{i}-\lambda_{i}^{R} H_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} H_{j}$

Stored orpes
$\frac{d(E H)_{i}}{d t}=-\lambda_{i}^{R}(E H)_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j}(E H)_{j}$

The RAGTIME compartiments are described as follows:
E_{i} Radioactivity present on the surface of the aboveground food crop per square meter of surface on which the crop is grown ($\mu \mathrm{Ci} \mathrm{m} \mathrm{m}^{-2}$)
S_{i} Radioactivity present at the soil surface below food crops ($\mu \mathrm{Ci} \mathrm{m}{ }^{-2}$)
P_{i} Radioactivity present in the subsurface soil pool associated with one man's food supply ($\mu \mathrm{Ci}$)
$\mathrm{G}_{\mathrm{i}} \quad$ Radioactivity present in the pasture grass compartment ($\mu \mathrm{Ci} \mathrm{m}^{-2}$)
R_{i} Radioactivity present in the pasture soil from ground surface to the root depth of the grass ($\mu \mathrm{Ci} \mathrm{m}^{-2}$)
$\mathrm{D}_{\mathrm{i}} \quad$ Radioactivity present in the pasture soil below i..e root depth ($\mu \mathrm{Ci} \mathrm{m}{ }^{-2}$)
C_{i} Concentration of radioactivity in the milk ($\mu \mathrm{Ci}$ liter ${ }^{-1}$)
B_{i} Concentration of radioactivity in heef ($\mu \mathrm{Ci} \mathrm{kg}^{-1}$)
$T_{\text {i }}$ Radioactivity present in the interior of plantsproduced for human consumption ($\mu \mathrm{Ci}$)
H_{i} Radioactivity present in the crop soil below theroot depth ($\mu \mathrm{Ci} \mathrm{m}^{-2}$)
(EH) ${ }_{i}$ Concentration of radioactivity in food which isstored following harvest of crops ($\mu \mathrm{Ci} \mathrm{kg}{ }^{-1}$)
$(B H)_{i}$ Concentration of radioactivity in the beef holdup compartment ($\mu \mathrm{Ci} \mathrm{kg}{ }^{-1}$)
$(\mathrm{CH})_{i}$ Concentration of radioactivity in the milk holdup compartment ($\mu \mathrm{Ci}$ liter ${ }^{-1}$)

Table 2.1 Description of symbols used in the RAGTIME model

Symbo 1	FORTRAN Name	Description	Type ${ }^{\text {a }}$
A	A	Soil surface area $\left(\mathrm{m}^{2}\right)$ required to furnish food crops for one man	
A_{g}	ASUBG	Pasture area per cow (m^{2})	
$B_{i j}$	$B(1, J)$	Radioactive branching ratio from species j to species $i(j<i)$	b
${ }^{\text {iv }}$	BSUBIV(I)	Concentration of nuclide i per unit fresh weight in plant ($\mu \mathrm{Ci}$ kg^{-1}) divided by concentration of nuclide per unit dry weight in soil ($\mu \mathrm{Ci} \mathrm{kg}^{-1}$)	b
d	SMALLD	Depth of plow layer (cm)	
D_{g}	DSUBG	Dry weight areal grass density $\left(\mathrm{kg} \mathrm{~m}^{-2}\right)$	
$F_{i}(t)$	$F(1, T)$	Input rate ($\mu \mathrm{Ci} \mathrm{m}{ }^{-2}$ day $^{-1}$) for i th nuclide at time t (days)	b, c
$\left(F_{f}\right)_{i}$	FSUBF (I)	F. action of the daily intake of nuzlide i by a beef cow which appears per kg of flesh at time of slaughter (day kg^{-1})	b
$\left(F_{m}\right)_{i}$	FSUBM(1)	Fraction of the daily intake of nuclide i by a dairy cow which appears per liter of milk at equilibrium (day liter ${ }^{-1}$)	b
λ_{i}^{R}	LAMRR(1)	Radioactive decay rate for i th nuclide $\left(\right.$ day $^{-1}$)	b
M ${ }_{\text {b }}$	MSUBB	Mass of muscle on a steer at time of slaughter (kg)	
ρ	RHø	Density of the soil ($\mathrm{g} \mathrm{cm}^{-3}$)	
S_{1}	S1	Interception fraction for surface of above-ground food crop	c, d

Table 2.1 (cont inued)

Symbol	FORTRAN Name	Description	Type ${ }^{\text {a }}$
S_{2}	S2	Interception fraction for soil surface below food crop ($1-S_{1}$)	c, d
S_{3}	S3	Interception fraction for pasture grass (0.25)	
S_{4}	S4	Interception fraction for soil surface or root mat below pasture grass (0.75)	
${ }^{\text {b beef }}$	TAUBEF	Fraction of the beef herd slaughtered pe" day $\left(\right.$ day $^{-1}$)	
${ }^{\text {e }}$ e,s	TAUES	Transfer coefficient from E_{i} to S_{i} (day ${ }^{-1}$)	
$\left(\tau_{\text {exc }}\right)_{i}$	TAUEXC(I)	Excretion rate of stable isotope of the nuclide from the muscle of a steer (day ${ }^{-1}$)	b
${ }^{\mathrm{g}} \mathrm{g},{ }^{\text {* }}$		Rate coefficient representing loss of radioactivity from pasture grass due to cow's consumption of grass (day ${ }^{-1}$); defined to be $\mathrm{V}_{\mathrm{C}} /\left(\mathrm{A}_{\mathrm{g}} \mathrm{g}_{\mathrm{g}}\right)$	
$\left(\tau_{g, b}\right)_{i}$	TAUGB(I)	Transfer coefficient from G_{i} to B_{i} ($\mathrm{m}^{2} \mathrm{~kg}^{-1} \mathrm{day}^{-1}$)	b
$\left.{ }^{(} \mathrm{f}, \mathrm{c}\right)_{\mathrm{i}}$	TAUGC(I)	Transfer coefficient from G_{i} to C_{i} (m^{2} liter ${ }^{-1}$ day $^{-1}$)	b
${ }^{\tau} \mathrm{g}, \mathrm{r}$	TAUGR	Transfer coefficient from G_{i} to R_{i} (day ${ }^{-1}$)	
${ }^{\text {milk }}$	TAUMLK	Transfer rate of milk from the udder (day ${ }^{-1}$)	
${ }^{\text {p }}$ p,h	TAUPH	Transfer coefficient from P_{i} to H_{i} (day ${ }^{-1}$)	
$\left(\mathrm{t}_{\mathrm{p}, \mathrm{t}}\right)_{\mathrm{i}}$	TAUPT(I)	Transfer coefficient from P_{i} to T_{i} (day ${ }^{-1}$)	b, c, d

Table 2.1 (continued)

Symbol	FORTRAN Name	Description	Type ${ }^{\text {a }}$
${ }^{\tau} \mathrm{r}, \mathrm{d}$	TAURD	Transfer coefficient from R_{i} to D_{i} $\left(\right.$ day $\left.^{-1}\right)$	
${ }^{\top} \mathrm{r}, \mathrm{g}$	TAURG	$\begin{aligned} & \text { Transfer coefficient froe } R_{i} \text { to } G_{i} \\ & \left(\text { day }^{-1}\right) \end{aligned}$	
${ }_{\text {t }}^{\text {s, }}$ p	TAUSP	$\begin{aligned} & \text { Transfer coefficient from } S_{i} \text { to } P_{i} \\ & \left(\text { day }^{-1}\right) \end{aligned}$	
$t_{\text {b }}^{\text {h }}$	TIMBH	Holdup time for beef (days)	
$t_{c}^{\text {h }}$	TIMCH	Holdup time for milk (days)	
U	U	Milk capacity of the udder (liters)	
V_{C}	VSUBC	Dry weight consumption per day by a cow (kg day ${ }^{-1}$)	
${ }^{\text {a }}$ No type specified means parameter is nuclide- and time-independent ${ }^{b}$ Nuc lide-dependent. ${ }^{c}$ Time-dependent. ${ }^{d}$ Crop-specific parameters necessary to derive these quantities are cribed and quantified in Appendix B of this report.			

3. PARAMETERS DESCRIBING TRANSFER TO CROPS

Modes of contamination of edible portions of crop plants include the interception and retention of aerially depositing radionuclides by crops as well as root uptake following deposition onts crop soils. In addition, interception and retention by crops of radionuclides resuspended from soil may contribute to the contamination of foodstuffs, although this pathway is not represented in the model at present. The reiative importance of each of these modes of contamination will depend on many factors including the mobility of the radionuclide in soil, the availability of the clide for root uptake, the radiological half-life (-lives) involved, as well as the types of crops being considered.

In developing a model to describe these pathways of contamination, it is ncessary to consider seasonal cycles of crops (i.e., when the crops are and are not present during the year) as well as the time dependency of parameters describing contamination. Much of this time dependency is due to physiological and morphological changes in plants due to growth and maturation, and to changes which may be occurring in the chemical form of the radionuclide which is deposited either on plant or soil surfaces. Although time dependency due to chemical transformations has not been considered to date, the present model can potentially incorporate parameters of this type. At present, the time dependency of the interception pi ameters S_{1} and S_{2} (see Fig. 2.1) and of the root ptake parameter $\left(\tau_{p, t}\right)_{i}$ have been studied, and preliminary approaches to characterizing the dynamic nature of these parameters are discussed below.

A holdup compartment, $(E H)_{i}$, is utilized in this model in order to account for radioactive decay and daughter buildup that may occur hetween harvest of crops and consumption by man (Fig. 2.1). The length of this interval is left to the user's discretion.

3.1 Time-dependent Aerosol Interception (S_{1} and S_{2})

The intercoption of airborne radionuclides by edible portions of crop plant will depend on these major factors:

1. the surface area exposed to depositing particles,
2. the shape of the edible portion and its orientation to depositing particles, and
3. the particle density of the depositing material.

Because some of these parameters are specific for different plant species, edible crops have been divided into cate ories representing plant parts with similar morphological characteristics. The following categories have been recognized:

1. root crops and other ' crops with protected edible parts,
2. leafy vegetables,
3. exposed-grain crops,
4. cylindrical vegetables, and
5. spherical vegetables.

Ideally, empirical data regarding interception of airborne particles over the growth cycles of crops should be used to represent the time dependency of this mode of contamination. However, because data of this type are not readily available, certain simplifying assumptions were mad to account for the factors affecting interception. It is hoped thai the adequacy of these assumptions will be tested at a later date through validation studies and sensitivity analyses.

At present, we have attempted to model the dynamics of interception by assuming that interception is a direct function of the projected surface area of the edible portion, and that interception occurs at a 90° angle to the plane of the projected surface area. The time dependency of interception thus relies on the relationship of the projected surface area of the edible portion to the mass of that portion during plant growth. This relationship may be characterized either through the use of empirical data - for example, that obtained by the Stanford mazezuch Institute ${ }^{y}$ for several crops - or by assuming the
density of the vegetative matter remains constant during growth and using geometric procedures to derive projected areas as a function of plant growth.

The mathematical representation of the crop compartment E_{i}, which intercepts depositing radionuclides, was given in Sect. 2.3 [Eq. (2.1)] as

$$
\frac{d E_{i}}{d t}=S_{1} F_{i}(t)-\left(\lambda_{i}^{R}+t_{e, s}\right) E_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} E_{j} .
$$

The fraction S_{1} of depositing radionuclides intercepted by the edible portion may be defined in two ways, depending on whether this fraction represents an empirically derived or theoretical (geometric) relationship with time. An empirical approach is

$$
\begin{equation*}
S_{1}=\mathrm{s}_{L^{0}}^{\left(1-n_{L}\right)_{w},} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{S}_{\mathrm{L}}^{0} \text { and } \mathrm{n}_{\mathrm{L}} & =\text { empirical constants, } \\
\mathrm{m} & =\text { time-dependent mass of the plant part (} \mathrm{g} \text { dry- } \\
& \text { weight), } \\
\mathrm{w} & =\text { number of plant parts per square meter. }
\end{aligned}
$$

An example of a time-dependent curve for m is given in Appendix B. This representation of S_{1} is adapted from a document prepared by the Stanford Research Institute, ${ }^{9}$ which supplies values for the empirical constants S_{1} and n_{L} for certain plant species. The empirical constants were derived for considerations of specific surface area ($\mathrm{m}^{2} \mathrm{~g}^{-1}$) alone, for a given planting density w, and thus may be appropriate only for similar planting configurations. A geometric approach for estimating the relationship of S_{1} with time is provided by Miller, ${ }^{9}$ where the change in projected surface area with time may be calculated by assigning a geometric configuration that best approximates the plant part of interest.

The output for a sample run of RAGTIME, which considers grains in compartment E_{i} (surface of above-ground crops) and is listed in Appendix B, was obtained by using the empirical approach for estimating the time dependency of S_{1}. Empirical constants, used in Eq. (3.1), are also available for edible parts of a few other plant species, including beans, cabbage, peppers, and squash. ${ }^{9}$

The value of S_{2}, shown in Fig. 2.1, representing deposition of airborne radionuclides onto the soil surface below the food crop $\left(S_{i}\right)$, is calculated by assuming that

$$
\begin{equation*}
S_{2}=1-S_{1} . \tag{3.2}
\end{equation*}
$$

It is recognized that this approach may overestimate the soil deposition since inedible parts of food crops will intercept depositing radionuclides. Radionuclides intercepted by inedible portions may all eventually reach the soil when the field is plowed following harvest, less any radioactive decay during retention on plant surfaces.

3.2 Time-dependent Root Uptake ($\left.\tau_{\mathrm{p}, \mathrm{t}}\right)_{\mathrm{i}}$

Time dependence of root uptake is especially important when considering radioactive daughter ingrowth and soil depletion of a particular radionuclide. It is expected that root uptake will be a function of the increase in biomass of a plant or plant part over time as well as of the physiological stage in the life cycle of the plant. Both biomass increase and physiologic maturation may involve active and passive processes by which plant tissues incorporate elements. Many essential elements are both actively and passively acquired, while other elements may only be passively acquired. Because many radionuclides are radioactive isotopes or chemical analogs of essential elements, root uptake rates should be described in an element-, as well as time-, dependent sense.

Literature reviewed to date indicates a paucity of data regarding time-dependent root uptake of most elenents. What is available indicates that the shape of the uptake curve, however, is similar to that
of the growth curve for some elements and crop species sturied. ${ }^{10-16}$ Therefore, the approach adopted in RAGTIME is either to cnaracterize uptake rates by edible portions of crops on the basis of any empirical data available, or to assume that the uptake rate follows growth curve for the edible portion in the absence of empirical uptake data.

The uptake curve obtained via either of these two approaches is then adjusted such that the concentration in the edible portion for a chosen harvest time is related to the soil concentration at that time by the empirically derived concentration factor, $\mathrm{B}_{\text {iv }}$. The value for $B_{i v}$ is obtained from empirical studies which measure the final crop concentration with respect to a soil concentration believed to be approximately constant throughout the growth cycle. Thus for elements whose concentrations are significantly decreased in the root zone either by movement downard into the soil sink \cdots uptak: by crops, concentration factors derived from initial soil concentrations and final crop concentrations may not be appropriate.
3.3 Time-independent Parameters ($\tau_{e, s}, \tau_{s, p}$ and $\tau_{p, h}$)

Retention, both initial and long-term, of intercepted radionuclides will depend on ${ }^{8}$

1. the surface characteristics of the edible portion,
2. the particle size,
3. the wind velocity, and
4. the relative humidity and amount of rainfall.

The effect each of these will have on retention will vary from site to site, and thus, the value of $\tau_{e, s}$, the retention coefficient, may vary greatly. For the present, we have assumed an average, time-dependent value of $\tau_{e, s}$ of 0.0495 day $^{-1}$, consistent with that provided in TERMOD, ${ }^{3}$ until further research into this parameter can be undertaken.

The movement of radionuc ides deposited on surface soil to the root zone has been characterized in TERMOD as $\tau_{s, p}$. The definition and value of this parameter has been carried over to RAGTIME, pending future investigation into its appropriateness. It is possible that
this parameter might best be described in a time-dependent sense, with empirical data being derived from soil distribution coefficients, or K_{d} 's, available in the literature. Becruse these K_{d} 's are elementspecific, it may also be necessary to incorporate nuclide-specificity into the definition of $\tau_{s, p}$.

The downward movement of radionuclides out of the root zone into the soil sink is again characterized by a time- and nuclide-independent parameter, $\tau_{p, h}$, adopted from TERMOD. As with $\tau_{s, p}$, further research intc the appropriateness of the value and interpretation of this parameter is pending.

4. PARAMETERS DESCRIBING TRANSFER TO BEEF AND MILK

Contamination of beef and milk may occur as a result of the interception or root uptake of depositing radionuclides by forage crops, and the subsequent ingestion by beef or dairy cattle. The RAGTIME code, $t u$ date, considers that this contamination occurs only through grazing of exposed pasture grasses by cattle. Thus, the loss and/or buildup of radionuclides present in stored feeds and hay, upon which cattle may depend for a large portion of the year, are not considered at this time. Furthermore, inhalation of radioactivity by cattle is not yet treated explicitly.

4.1 Contamination of Pasture Grass

As with food crops (Sect. 3), pasture grass (G_{i}) may be contaminated through intercept on of depositing radionuclides, including resuspended particulates, $a_{1} f$ thiough root uptake of nuclides deposited on the soil or root mat $\left(R_{i}\right)$ below the pasture grass. At present, a pasture exposed to depositing radionuclides is assumed to maintain an approximately constant plant biomass throughout the year, and that the interception fraction for grasses, S_{3}, remains constant. The assumed value of S_{3}, equal to 0.25 , is equivalent to the value originally used in TERMOD, ${ }^{3}$ and falls in the range of empirical measurements reported by Chamberlain ${ }^{17}$ for initial retention (where sampling is done immediately after contamination) by grasslands. This parameter would be expected to vary with plant density and other environmental factors, and thus represents an average value here. The fraction, S_{3}, is applied directly to the aerosol source term, F_{i} (see Fig. 2.1), and thus the model does not explicitly account for interception of radio-nu-lides resuspended from the soil or root mat below the pasture grass.

The fraction S_{4}, in Fig. 2.1, represents the fraction of depositing activity not initially intercepted by grass leaves and thus the fraction deposited on the surface soil or root mat below the leaves. Therefore, this value is assigned a constant value of 0.75 , being defined as follows:

$$
\begin{equation*}
S_{4}=1-S_{3} . \tag{4.1}
\end{equation*}
$$

The value of the parameter ${ }^{{ }^{2}}{ }_{r, g}$, representing additional input into the pasture grass compartment from surface soil, is consistent with the TERMOD value ${ }^{3}$ adopted from a paper by Menze $1,{ }^{7}$ which indicates that an upper limit for uptake of radionuclides in the surface soil by a single crop is 1%. Considered on an annual basis, $\tau_{r, g}$ becomes 2.74 $\times 10^{-5}$ day $^{-1}$.

Three aspects of root uptake by pasture grasses have not been considered at present. First, the element dependency of this parameter, ${ }^{\tau} r, g$, has been neglected, yet may be quite important when root uptake is significant with respect to foliar contamination. Second, an additional mode or root absorption of radionuclides which does not involve the soil may be quite significant. This latter mode of uptake involves the radionuclide availability for uptake from the root mat, which is a "thatch" of dead and decomposing tissues around the plant-base region in which grasses may root. ${ }^{7}$ Finally, the time dependency of ${ }_{\tau_{r, g}}$ has not been investigated. All of these aspects will be addressed as work continues on RAGTIME.

Loss of radionuclides from the grass compartment, G_{i} (see Fig. 2.1), may occur through ingestion of grass by grazing cattle $\left(\tau_{g},{ }^{\star}\right)$, radioactive decay $\left(\lambda_{i}^{R}\right)$, and by weathering of surface-deposited radionuclides ($\tau_{g, r}$). The value of $\tau_{g, r}$ is assumed to be equivalent to thin weathering coefficient, $\mathrm{r}_{e, s}$, discussed in Sect. 3, and chus represents a 14 day half-time for retention of intercepted materials. This value is consistent with data reported by Chamberlain ${ }^{17}$ for grasslands, although it may vary with seasons and climatic factors. In particular, this weathering coefficient, when measured, will incorporate loss of surface material due to shedding of the protective leaf cuticle during plant growth, ${ }^{17}$ thus suggesting a seasonal and species dependency of ${ }_{\mathrm{r}}^{\mathrm{g}, \mathrm{r}} \mathrm{r}$. As with $\tau_{e, s}, \tau_{\mathrm{g}, \mathrm{r}}$ is assumed to be time independent until further research dictates that a different approach should be taken.

The value of I_{g}, (day^{-1}) will depend on the rate of loss of radionuclides in pasture grass through consumption by grazing beef and dairy cattle. For this model, an average ingestion rate, V_{C}, of 10 kg day ${ }^{-1}$ dry matter was assumed, consistent with the value used in TERMOD. ${ }^{3}$ Using this ingestion rate and a dry-weight areal grass density, D_{g}, of $0.15 \mathrm{~kg} \mathrm{~m}^{-2}$ (Ref. 3), we define the value of t_{g}, * to be

$$
\begin{equation*}
\tau_{g, *}=\frac{V_{C}}{A_{g} D_{g}}=\frac{6.67 \times 10^{-1} \mathrm{day}^{-1}}{A_{g}} \tag{4.2}
\end{equation*}
$$

where

$$
\mathrm{A}_{\mathrm{g}}=\text { pasture area per } \operatorname{cow}\left(\mathrm{m}^{2}\right) \text {. }
$$

At present, it is assumed that $\tau_{\mathrm{g},{ }^{\star}}$ is constant throughout the year. Further work on incorporating seasonal aspects into the model will modify this approach.

The rate of loss of radionuclides from the surface soil $\left(R_{j}\right)$ beneath pasture grass is represented by the parameter $\tau_{r, d}$. As with the similarly defined parameter, ${ }_{\mathrm{t}}^{\mathrm{p}, \mathrm{h}}$, for crop soil (Sect. 3), an elementindependent rate of 1.096×10^{-4} day $^{-1}$ is used, as given in documentation of the TERMOD code. ${ }^{3}$ Again, further research may indicate a more appropriate value or representation of this prucess.

4.2 Contamination of Beef and Milk

Transfer of radionuclides from pasture grass to beef or milk is parameterized by $\left(\tau_{\mathrm{g}, \mathrm{l}}\right)_{i}$, in $\mathrm{m}^{2} \mathrm{~kg}^{-1}$ day ${ }^{-1}$, or $\left(\tau_{g, c}\right)_{i}$, in m^{2} liter-1 day ${ }^{-1}$, respectively (see Fig. 2.1). These parameters represent transfer rates and are assumed to be time independent pending further investigation into data available regarding their time dependency. Elementspecific values of $\left(\tau_{g, b}\right)_{i}$ and ($\left.\tau_{g, c}\right)_{i}$ were calculated from empirically derived transfer coefficients, ${ }^{18,19}\left(F_{f}\right)_{i}$ and $\left(F_{m}\right)_{i}$, which characterize the ratios between beef or milk concentrations of an element and the equilibrium concentration of that element in pasture grass or feed. By definition

$$
\begin{aligned}
\mathrm{F}_{\mathrm{f}}= & \text { the fraction of the daily intake of an element by a } \\
& \text { beef cow which appears per } \mathrm{kg} \text { of flesh at time of } \\
& \text { slaughter (day } \left.\mathrm{kg}^{-1}\right) \text {, and } \\
\mathrm{F}_{\mathrm{m}}= & \text { the fraction of the daily intake of an element by a } \\
& \text { dairy cow which appears per liter of milk at equilib- } \\
& \text { rium (day liter }-1) .
\end{aligned}
$$

Therefore, the empirical coefficients represent the theoretical coefficients only if pasture grass (or feed) is the only source of the element in question in the cow's diet. The parameter ($\left.\tau_{g, b}\right)_{i}$ was derived by assuming that the concentration in beef at time of slaughter approximates an equilibrium concentration, given an equilibrium concentration in pasture grass. Thus, if $\left(\mathrm{B}_{\mathrm{cow}}^{\mathrm{eq}}\right)_{i}$ is taken to represent the equilibbium concentration of an element, i, in the muscle of a sinqle cow ($\mu \mathrm{Ci} \mathrm{kg}^{-1}$), and $\mathrm{G}_{\mathrm{i}}^{\mathrm{eq}}$ is the equilibrium concentration in grass ($\mu \hat{\mathrm{C}}_{\mathrm{i}}$ m^{-2}), then from the equilibrium equation

$$
\begin{equation*}
\frac{d\left(B_{c o w}\right)_{i}}{d t}=\left(\tau_{g, b}\right)_{i} G_{i}^{e q}-\left(\tau_{e x c}\right)_{i}\left(B_{c o w}^{e q}\right)_{i}=0 \tag{4.3}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\frac{\left(B_{c o w}^{e q}\right)_{i}}{G_{i}^{e q}}=\frac{\left(\tau_{g, b}\right)_{i}}{\left(\tau_{e x c}^{e q}\right)_{i}} \tag{4.4}
\end{equation*}
$$

where

$$
\left(\tau_{\text {exc }}\right)_{i}=\text { loss rate of the elemen } n_{\sim}, i, \text { from the muscle of a steer }
$$ (day ${ }^{-1}$). Since

$$
\begin{equation*}
\left(\tau_{g, b}\right)=\frac{\left(B_{c o w}^{e g}\right)_{i}}{G_{i}^{e q}}\left(\tau_{e x c}\right)_{i} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(F_{f}\right)_{i}=\frac{\left(B_{c o w}^{e q}\right)_{i}}{\left(G_{i}^{e q} \times v_{c} / D_{g}\right)} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left.\mathrm{V}_{\mathrm{C}}=\begin{array}{l}
\text { dry-weight grass consumption per day by a cow (10 } \mathrm{kg} \\
\text { day }
\end{array}\right) \\
& \mathrm{D}_{\mathrm{g}}=\text { dry-weight arei; grass density }\left(0.15 \mathrm{~kg} \mathrm{~m}^{-2}\right)
\end{aligned}
$$

it follows that the expression for $\left(\tau_{g, b}\right)_{i}$ is related to $\left(F_{f}\right)_{i}$ by:

$$
\begin{equation*}
\left(\tau_{g, b}\right)_{i}=\frac{\left(F_{f}\right)_{i}\left(\tau_{e x c}\right)_{i} V_{c}}{D_{g}}, \tag{4.7}
\end{equation*}
$$

Assuming the animal's diets to consist solely of pasture grass, the loss rate of the element irom the muscle of a steer, $\left(\tau_{\text {exc }}\right)_{i}$, may be interpreted to represent both the element-specific metabolic turnover, as well as the element-independent dilution of the concentration due to increase in muscle mass during growth. This approach has beeri adopted from the TERMOD code ${ }^{3}$ for the present, but will probably be revised to reflect a dynamic, rather than steady-state, approach to modeling this pathway as model development progresses. In doing so, the dilution due to growth mav be handled explicitly rather than incorporated into a term such as $\left(\tau_{\text {exc }}\right)_{i}$.

Similarly for $\left(\tau_{g, c}\right)_{i}$, representing transfer of element, i, to milk (C_{i}),

$$
\begin{equation*}
\left(\tau_{g, c}\right)_{i}=\frac{\left(F_{m}\right)_{i}\left(\tau_{m i l k}\right) v_{c}}{D_{g}} \tag{4.8}
\end{equation*}
$$

where

$$
\begin{aligned}
\tau_{\text {milk }}= & \text { the element-independent loss rate from the udder } \\
& \left(2 \text { day }{ }^{-1}\right) .
\end{aligned}
$$

The value of $\mathrm{T}_{\text {milk }}$ in this case corresponds to the frequency of milking, assumed to be twice daily, and other losses are considered negligible. Equation (4.8) was derived in a manner similar to Eq. (4.7), from

$$
\begin{equation*}
\frac{d\left(C_{c o w}\right)_{i}}{d t}=\left(\tau_{g, c}\right)_{i} G_{i}^{e q}-\tau_{m i l k}\left(C_{c o w}^{\mathrm{eq}}\right)_{i}=0 \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(F_{m}\right)_{i}=\frac{\left(c_{c o w}^{e q}\right)_{i}}{\left(G_{i}^{e q} \times v_{c} / D_{g}\right)} \tag{4.10}
\end{equation*}
$$

Again, dynamics related to maturation and milking practices for a single cow have been neglected at this time, but will be considered as model development progresses.

The equation describing radionuclide concentrations in the beef compartment as whole [Eq. (2.8)], given in Sect. 2.3 of this report, as

$$
\frac{d B_{i}}{d t}=\left(\tau_{g, b}\right)_{i} G_{i}-\left[\lambda_{i}^{R}+\tau_{\text {beef }}+\left(\tau_{e x c}\right)_{i}\right] B_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} B_{j}
$$

differs from that for a single cow given in Eq. (4.3) due to the presence of an additional element-independent loss parameter, $\tau_{\text {beef. }}$. The interpretation of this aspect of the beef compartment has been adopted here from TERMOD, ${ }^{3}$ in that the compartmental equation considers losses from beef in the herd as a whole by including the term, $\tau_{\text {betf }}$, to account for slaughter of contaminated cattle. This interpretation then implies instantaneous replacement of the slaughtered portion with uncontaminated cattle and a subsequent reduction or loss of radioactivity from the compartment. The uncr.i.iaminated cattle then begin to accumulate radioactivity at a rate determined by ($\left.\tau_{g, b^{\prime}}\right)_{i}$. If, however, the
radionuclide concentration in the beef compartment is to be used as an indication of man's radiation exposure via ingestion of beef, the present methodology may underestimate concentrations in beef of cattle being slaughtered. That is, this latter portion of the herd will likely be the more mature segment which has been exposed to contaminated pasture for the greatest length of time, although the concentration calculated will be an average of all members of the herd. In lighi of this potential deficiency, work is ongoing to revise the homogeneous herd concept, where uncontaminated and contaminated beef are indiscriminately mixed to produce an average concentration in the beef which may be lower than that in cattle ready for slaughter.

The milk compartment may also be interpreted to represent concentrations in milk obtained from the dairy herd as a whole. In this case, however, instantaneous replacenent of milk removed from the udder by uncontaminated milk does not result in a reduction in concentration below that to which man might, be exposed, because each lactating cow, as well as the herd, is subject to this same removal process. That is, while slaughtering will not affect the radionuclide concentration in beef of any particular cow, milking will affect the concentration in mi ik of each individual lactating cow in the herd, and thus can be considered when considering tile herd as a whole.

For both milk and beef compartments, radionuclide loss and buildup of daughters due to radioactive decay during storage prior to human consumption is considered. Compariments $(\mathrm{CH})_{i}$ and $(\mathrm{BH})_{i}$, representing concentrations of each nuclide in milk and beef, respectively, following storage were devised to provide this information.

5. SOLUTION OF THE SYSTEM OF DIFFERENTIAL EQUATIONS

5.1 Use of the GEAR Subroutine

The system of differential Eqs. (2.1) through (2.11) is solved in the RAGTIME code by use of the GEAR package ${ }^{4}$ for solution of systems of ordinary differential equations. The subroutine CAL.C of RAGTIME makes a call to the subroutine GEAR of the GEAR package at each output time to determine the values of the state variables,

$$
E_{i}, S_{i}, P_{i}, G_{i}, R_{i}, D_{i}, C_{i}, B_{i}, T_{i}, H_{i} \text {, and }(E H)_{i} \text {, }
$$

where $i=1$ to n (the number of nuclides in the chain) at the given time. In the notation of the GEAR package, the system of differential Eqs. (2.1) through (2.11), with i varying from 1 to n, has the form

$$
\mathrm{dY} / \mathrm{dT}=\mathrm{F}(\mathrm{Y}, \mathrm{~T})
$$

where $Y=[Y(1), Y(2), \ldots, Y(N)]$ is the state vector at time T, with N representing the number of state variables. The present version of RAGTIML uses $N=12 \times n$ state variables $(n=$ the number of nuclides in the chain). The correspondence between RAGTIME state variable names and those used in the GEAR package is show. 1 in Table 5.1.

The user of the GEAR package furnishes a subroutine DIFFUN $(N, T, Y$, $Y D \emptyset T$) which computes the function YDØT $=F(Y, T)$, the right-hand side of the system of oruinarv differential equations, where N, T, and Y are as described above. The correspondence indicated above between RAGTIME state variable names and those used by the GEAR package implies a similar correspondence between the two notations for derivatives (Table 5.2).

The notation used in subroutine CALC of RAGTIME for a call to the GEAR subroutine for values of the state variables at the time TøUT is

CALL GEAR (DIFFUN, PEDERV, N, TO, HU, YO, TØUT, APS, MF, INDEX)

Table 5.1 Definition of RAGTIME state variables in terms of GEAR package notation

RAGTIME state variable	$G E A R$ package notation
E_{i}	$Y[12(i-1)+1]$
S_{i}	$Y[12(i-1)+2)$
P_{i}	$Y[12(i-1)+3)$
G_{i}	$Y[12(i-1)+4]$
R_{i}	$Y[12(i-1)+5]$
D_{i}	$Y[12(i-1)+6)$
C_{i}	$Y[12(i-1)+7]$
B_{i}	$Y[12(i-1)+8]$
$(E H)_{i}$	$Y[12(i-1)+9]$
T_{i}	$Y[12(i-1)+10]$
H_{i}	$Y[12(i-1)+11]$

Table 5.2 Definition of RAGTIME derivatives in terms of GEAR package notation

RAGTIME derivatives	GEAR package notation
$\mathrm{dE}_{\mathrm{i}} / \mathrm{dt}$	YDØT[12($i-1)+1]$
dS ${ }_{j} / \mathrm{dt}$	YDOT[12($i-1)+2]$
$\mathrm{dP}_{\mathrm{i}} / \mathrm{dt}$	YDOT[12(i-1) + 3]
$\mathrm{dG}_{\mathrm{i}} / \mathrm{dt}$	YOロT[12(i-1) + 4]
$\mathrm{dR}_{\mathrm{i}} / \mathrm{dt}$	YDØT[12(i-1) + 5]
$\mathrm{dD}_{\mathrm{i}} / \mathrm{dt}$	YDOT[12! 1) + 6]
$\mathrm{dC}_{\mathrm{i}} / \mathrm{dt}$	YOØT[12(i-1) + 7]
$\mathrm{dB}_{\mathrm{i}} / \mathrm{dt}$	YDOT[12 $;-1)+8]$
$\mathrm{d}(\mathrm{EH})_{i} / \mathrm{dt}$	YDØT[12(-1$)+9]$
$d T_{i} / \mathrm{dt}$	YDØT[12($i-1)+10]$
$\mathrm{dH}_{\mathrm{j}} / \mathrm{dt}$	YDøT[12! - 1) + 11]

where the parameters have the following meanings:
(1) DIFFUN is the name of the subroutine described above, which is declared external in subroutine CALC.
(2) PEDERV is also a subroutine which is declared external in CALC. Under certain options available to the user of the GEAR subroutine, this subroutine is used to define the N by N Jacobian matrix of partial derivatives. However, under the option used by RAGTIME, PEDERV is a dumny subroutine.
(3) N is the number of state variables (i.e., $\mathrm{N}=12 \times \mathrm{n}$ in our case).
(4) $T 0$ is the initial value of T, the time variable (used only on the first call).
(b) HO is the step size for T (used only on the first call).
(5) Yo is a vector of length $\mathrm{N}(=12 \times \mathrm{n})$ containing the initial values of Y. This vector is used for input only on the first call.
(7) TøUT is the value of T at which output is desired.
(8) EPS is the relative error bound (used only on the first call unless INDEX $=-1$).
(9) MF is a parameier used to indicate the basic method to be used for integration (Adams method or the stiff method of GEAR) and the method of iteration.
(10) INDEX is an integer used to indicate the type of call. Initially, INDEX is set to 1 . The value returned for INDEX is 0 unless the integration was halted for some reason. For meaniags of the vaices $-1,-2,-3$, or -4 , for an output value of INDEX, see a listing of the GEAR package.

5.2 Use of the Bateman Equations as a Check

Since RAGTIME uses a numerical method for solution of the system of differential Eqs. (2.2) through (2.11), it is desirable to have a p : ocedure for checking the accuracy of this solution. Fortunately, it is possible to calculate the total amount of radioactivity in the system at any given time using an explicit solution of the Bateman equations. This value can then be compared with the corresponding value calculated by summing the amounts of radioactivity in the various compartments of the model as calculated by use of the GEAR package. Close agreement of these two values is a necessary but not sufficient condition that the numerical solution of the model equations is accurate to the degree desired. In particular, one should keep in mind that a large relative error in a compartinent whose radioactivity contribution is small compared to other compartments would be masked by this summing procedure. Nevertheless, the comparison of total radioactivity as calculated in these two ways provides valuable assistance in evaluating the numerical method since, as most practitioners of numerical analysis would admit, the use of such methods is still largely an empirical science. In particular, this compari, on can provide guidance for the selection of appropriate options anc parameter values to be used in calls to the GEAR subroutine.

The Bateman equations describe the decay process of a radionuclide chain. Consider a chain of radionuclide species indexed $i=1, \ldots, n$ in a comparment into which the exogenous inflow rate of the ith species is given by $I_{i}(t)\left(\mu C i d^{-1}\right)$ and which is subject to first-order removal processes with removal constant, $\lambda_{i}^{B}\left(d^{-1}\right)$. Then the following system of differential equations describes the decay process in this compartment:

$$
\begin{equation*}
\frac{d A_{i}}{d t}=-\left(\lambda_{i}^{R}+\lambda_{i}^{B}\right) A_{i}+\lambda_{i}^{R} \sum_{j=1}^{i-1} B_{i j} A_{j}+I_{i}(t), \quad i=1, \ldots, n \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \begin{aligned}
A_{i}(t)= & \text { radioactivity }(\mu C i) \text { of the } i \text { th nuclide at time } t \\
& (\text { day }),
\end{aligned} \\
& \lambda_{i}^{R}=\text { decay constant }\left(\text { day }^{-1}\right) \text { for the } i \text { th nuclide, } \\
& \lambda_{i}^{B}=\text { removal constant }\left(\text { day }^{-1}\right) \text { for the ith nuclide, }
\end{aligned}
$$

$$
\begin{aligned}
& I_{i}(t)=\text { exogenous inflow rate for species } i\left(\mu C i d a y^{-1}\right) \text {. }
\end{aligned}
$$

For the purpose of checking the total amount of activity in the RAGTIME compartments against the value as predicted using the Bateman equations, we may regard the total exogenous inflow rate for species i into the system to be the product of the deposition source $F_{i}(t)\left(\mu C i \mathrm{~m}^{-2}\right.$ day ${ }^{-1}$) and the quantity

$$
\begin{equation*}
S_{1} A+S_{2} A+S_{3} A_{\mathrm{g}}+S_{4} \mathrm{~A}_{\mathrm{g}}=\left(S_{1}+S_{2}\right) \mathrm{A}+\left(S_{3}+S_{4}\right) A_{\mathrm{g}} \tag{5.2}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
A= & \text { soil surface area }\left(\mathrm{m}^{2}\right) \text { assumed for the above-surface } \\
& \text { food crop, }
\end{array}\right\} \begin{aligned}
\mathrm{A}_{\mathrm{g}}= & \text { soil surface area }\left(\mathrm{m}^{2}\right) \text { assumed for the pasture grass } \\
& \text { compartment. }
\end{aligned}
$$

Subroutine CHECK of RAGIIME makes a call to subroutine TRAFUN for the purpose of calculation of the total radioactivity in the system at various times. TRAFUN requires that the function representing the exogenous input rate be a step function of time, which dictates that $F_{i}(t)$ be a step function. Furthermore, TRAFUN requires that the exogenous input rate be prescribed as a doubly dimensioned array rather than as a FORTRAN funztion. We thus reserve for sect. 6.3 an explicit description of the call by CHECK to TRAFUN, in order to make use of our description in Sect. 6.1 of the doubly dimensioned inflow rate matrix

FF which is defined in subroutine INPUT and whose values are used to define both the deposition source function $F_{i}(t)$ [in FORTRAN, F(I,T)] and the doubly dimensioned exogenous input rate matrix P which is used as an input parameter to TRAFUN.

6.1 Input

The subroutine INPUT reads values for user-supplied data required by RAGTIME. The first value read is that for NUMNUC, the number of nuclides in the chain. Next read are the names of the nuclides [NAMNUC(1), $1=1$ to NUMNUC] and the initial ground deposition source (microcuries per square meter) for each nuclide [FO(I), $I=1$ to NUMNUC]. Following these steps values are read for MP and for the arrays

$$
\operatorname{TIMEP}(K P), K P=1 \text { to } M P
$$

and

$$
\mathrm{FF}(1, K P), I=1 \text { to } \operatorname{NUMNUC}, \mathrm{KP}=1 \text { to } \mathrm{MP}
$$

where

$$
\begin{aligned}
\operatorname{FF}(I, K P)= & \text { inflow rate of species } \left.1 \text { (microcuries } m^{-2} d a y-1\right) \\
& \text { for the time interval } \operatorname{TIMEP}(K P) \text { to } \operatorname{TIMEP}(K P+1) \\
& \text { if } K P<M P, \\
\operatorname{FF}(I, M P)= & \text { inflow rate at times subsequent to } \operatorname{TIMEP}(M P) .
\end{aligned}
$$

The matrix FF defines the exogenous input of radioactivity into the system. This matrix is used to define values of the fallout source function $F_{i}(t)$ [in FORTRAN, FUNCTIØN $\left.F(I, T)\right]$. Also FF is used in subroutine CHECK to define the exogenous input rate matrix P as discussed in Sects. 5.2 and 6.3. Next read are the number (NUMBRA) of and values for the radioactive branching ratios. The FORTRAN notation $B(I, J)$ is used to denote the radioactive branching ratio from species J to species $I(J<I)$. If NUMBRA $=0$, no branching ratios are read. If NUMBRA ≥ 1, then one card is read for each nonzero branching ratio, the READ statement and its associated FØRMAT being

[^0]where PARNUC is the name of the "parent" and DAUNUC the name of the "daughter." For example, the card

B1210	Pø210	
\vdots		
col. 1	col. 14	cols. 27-40

is used to input the branching ratio 1.0 from ${ }^{210} \mathrm{Bi}$ to ${ }^{210} \mathrm{po}_{\mathrm{O}}$. The input subroutine assigns the value BRATI \emptyset to the element $B(I, J)$ of the matrix of branching ratios in such a manner that $B(I, J)$ represents the branching ratio from the nuclide $\operatorname{NAMNUC}(J)$ to $\operatorname{NAMNUC}(I)$.

Following input of the branching ratios, information regarding desired output times is read. The entire integration interval is specified as consisting of a number (NINTVL) of subintervals, with INCR(I) denoting the interval between successive output times for the subinterval indexed by I. The right endpoint of the subinterval indexed by I is denoted by ENDTIM(I). The READ statement and its associated FØRMAT statement for input of these quantities is

$$
\operatorname{READ}(\mathrm{RDR}, 90) \operatorname{INCR}(\mathrm{I}), \operatorname{ENDTIM}(\mathrm{I})
$$

90 $\operatorname{FgRMAT}(E 13.6,16)$

In subroutine CALCIN, the arrays INCR and ENDTIM are used to define values for the entire array of output times $\operatorname{TIM}(I), I=1$ to NTIM.

Values for the radionuclide-dependent parameters listed in Table 6.1 are read next. For definitions of these parameters, see Table 2.1. One card is read for each of these parameters, the cards being read in the order indicated in Table 6.1 for each value of I, with I varying from 1 to NUMNUC. The format for each card is (10X, E13.7).

We now consider the input of nuclide-independent parameters. The main program of RAGTIME handles any number of radionuclide chains. The first executable statement of MAIN is

```
READ (RDR , 10) NCHAIN
```

$10 \operatorname{FgRMAT}(10 X, 12)$

Table 6.1 Radionuclide-dependent input parameters for RAGTIME

Parameter symbol	FORTRAN name
λ_{i}^{R}	LAMRR(I)
$\left(F_{m}\right)_{i}$	FSUBM (I)
$\left(F_{f}\right)_{i}$	FSUBF (I)
$B{ }_{i v}$	BSUBIV(I)
$\left(\tau_{\text {exc }}\right)_{i}$	TAUEXC (I)

where NCHAIN is the number of chains to be considered. Following this read statement, the main program makes calls to the subroutine INPUT, ØUTDAT, CALCIN, HARVST, CALC, and CHECK in this order for each chain under consideration. In order to avoid the necessity of inputting the nuclide-independent parameters for each chain, a flag, IFLAG, is set in MAIN and passed as a parameter in the call to INPUT [CALL INPUT(IFLAG)] to enable a branch io be made around the input of these parameters for calls subsequent to the first one. Values are read for the nuclideindependent parameters listed in Table 6.2. For definitions of these parameters, see Table 2.1. One card is read for each of these parameters, the format being (10X,E13.7).

The final segment of code in INPUT reads values for certain GEAR subroutine parameters (see Sect. 5.1).

6.2 Logical Structure of the Code

After calling subroutine INPUT for input of data related to a given chain, the main program calls ØUTDAT for a printout of these data. Next a call is made to subroutine CALCIN, which calculates the values of certain coefficients used in the system of differential Eqs. (2.1) through (2.11). These coefficients, the numbers of the equations in which they occur, and their FORTRAN designations are as follows:

Table 6.2 Nuclide-independent input parameters for RAGTIME

Parameter symbol	FORTRAN name
A	A
Ag_{g}	ASUBG
d	SMALLD
D_{g}	DSUBG
M_{b}	MSUBB
ρ	RHO
${ }^{\text {t beef }}$	TAUBEF
$\mathrm{t}_{\text {mi }}$ lk	TAUMLK
${ }^{\text {e }}$ e,s	TAUES
${ }^{t}{ }_{\mathrm{g}, \mathrm{r}}$	TAUGR
${ }^{1} p, h$	TAUPH
${ }^{1}{ }_{r, d}$	TAURD
${ }^{\tau} \mathrm{r}, \mathrm{g}$	TAURG
$t_{s, p}$	TAUSP
U	U
v_{c}	VSUBC
$t_{b}^{\text {h }}$	TIMBH
$\mathrm{t}_{\mathrm{c}}^{\mathrm{h}}$	TIMCH

Coefficient	Occurs in equation	FORTRAN
$\lambda_{i}^{R}+{ }^{T} e, 5$	2.1	LAMA (1)
$\lambda_{i}^{R}+t_{s, p}$	2.2	LAMS (I)
$\lambda_{i}^{R}+\tau_{g, r}+\lambda_{g, *}$	2.4	L.AMG̈(I)
$\lambda_{i}^{R}+{ }^{T} r_{r, g}+\tau_{r, d}$	2.5	LAMR(1)
$\lambda_{i}^{R}+t_{\text {milk }}$	2.7	LAMC(1)

Subroutine CALCIN also defines values of the array of output times $\operatorname{TIM}(1), I=1$ to NTIM as discussed in Sect. 6.1. Following the call to CALCIN, the main program calls subroutine HARVST in which emergence and harvest times for crop plants are specified. The FORTRAN name for the number of harvests considered is NHARV. Subroutine HARVST assigns values to NHARV and to the arrays EMERGE(I), I $=1$ to NHARV, and HARTIM(I) , I = 1 to NHARV, where

$$
\begin{aligned}
& \operatorname{EMERGE}(I)=\text { date }(\text { days }) \text { for } I \text { th emergence time for plants, } \\
& \operatorname{HARTIM}(I)=\text { date (days) for } I \text { th harvest time for plants. }
\end{aligned}
$$

After calling HARVST, MC ' calls subroutine CALC which serves the following functions [(1)-(4)]:
(1) Initializes and prints definitions of compartments $E_{i}, S_{i}, P_{i}, G_{i}, R_{i}, C_{i}, B_{i}, T_{i},(E H)_{i},(B H)_{i}$, and $(C H)_{i}$.
(2) Assigns values to GEAR subroutine parameters INDEX, TO, H0, and N (Sect. 5.1).
(3) Assigns values to the arrays $T R$ (INUC), $T B$ (INUC), and PRØRAT (INUC), INUC $=1$ to NUMNUC, where

$$
\begin{aligned}
& T R(I N U C)= \begin{array}{l}
\text { radioactive half-life (days) of } \\
\\
\text { nuclide INUC, }
\end{array} \\
& T B(I N U C)= \text { biological half-time (days) of } \\
& \text { nuclide INUC (a large value is } \\
& \text { assigned to approximate a biolog- } \\
& \text { ical removal factor of zero), } \\
& \text { ical } \text { (constant) production rate for } \\
& \text { PRØRAT(INUC) }= \text { nuciide INUC. }
\end{aligned}
$$

These arrays are used as input parameters to the subroutine RESDNS, which is called by CALC for calculation (using an explicit solution of the Bateman equations) of the radioactivity level in the holdup compartments (BH) i and $(\mathrm{CH})_{i}$ as discussed in Sect. 2.2. The array PRØRAT is used to specify the production rate in compartment (BH) ${ }_{i}$ and is therefore assigned zero values since no exogenous input is assumed for this compartment.
(4) Following steps (1) through (3), subroutine CALC executes a loop,

$$
\mathrm{D} \emptyset \mathrm{I}=1 \text {, NTIM }
$$

in which the values of the state variables defined by Eqs. (2.1) through (2.11) as well as the holdup compartments $(\mathrm{BH})_{i}$ and $(\mathrm{CH})_{i}$ are computed and printed. At each time TØUT $=$ TIM(I), a call is made to the GEAR subroutine,
CALL(DIFFUN, PEDERV, N, TO, HO, YO, TØUT, EPS, MF, INDEX)
for calculation of values of the state variables E_{i}, S_{i}, $P_{i}, G_{i}, R_{i}, D_{i}, C_{i}, B_{i}, T_{i}, H_{i}$ and $(E H)_{i}$, where $i=1$ to the number (NUMNUC) of nuclides in the chain. These values are returned in the array YO, with the same
correspondence between RAGTIME state variable names and GEAR package names as indicated in Sect. 5.1; for example, the value of E_{i} is given by $y 0[12(i-1)+1]$.

At each output time, CALC calculates and saves in the array TØTUCI the total activity in the system corresponding to each nuclide. We define

$$
\begin{aligned}
\operatorname{T\emptyset TUCI}(I, I N U C)= & \text { total activity (microcuries) in the system } \\
& \text { corresponding to nuclide INUC at time } \\
& \operatorname{TIM}(1) .
\end{aligned}
$$

If we assume A square meters of land devoted to crop production and A_{g} square meters of pasture grass, the appropriate multiplicative factors for converting the values in the various compartments to microcuries are given in Table 6.3. The values of these conversion factors are obvious for all except compartments C_{i}, B_{i}, and (EH) $)_{i}$. For the milk compartment C_{i}, we assume one cow for each A_{g} square meters of past grass, with an udder capacity of U liters per cow. Similarly, the conversion factor for the beef compartment follows from our assumption of M_{b} kilograms of muscle per steer, with one steer per A_{g} square meters of pasture grass. The conversion factor $M_{f}^{0} / 1000$ for the crop holdup compartment (LH$)_{i}$ is based on the definition

$$
M_{f}^{0}=\text { total mass (grams) of crop per } A m^{2} \text { at harvest time. }
$$

The compartment M_{i} is used only in connection with a mass-balance check. This compartment serves to account for the loss to the system of activity from the beef and milk compartments B_{i} and C_{i} as well as the complement of the activity represented by transfer coefficients $\left(\tau_{g, b}\right)_{i}$ and $\left(\tau_{g, c}\right)_{i}$ with respect to $\tau_{g}, *$. The differential equation for M_{i}^{\prime} is

Table 6.3 Conversion factors used to convert compartmental concentrations to total activity

Compartment	Units	FORTRAN name	Conversion factor
E_{i}	$\mu \mathrm{Ci} \mathrm{m}{ }^{-2}$	$Y 0[12(i-1)+1]$	A
S_{i}	$\mu \mathrm{Ci} \mathrm{m}{ }^{-2}$	$\mathrm{YO}[12(\mathrm{i}-1)+2]$	A
P_{i}	$\mu \mathrm{Ci}$	$\mathrm{YO}[12(\mathrm{i}-1)+3]$	1
G_{i}	$\mu \mathrm{Ci} \mathrm{m}{ }^{-2}$	$Y 0[12(i-1)+4]$	A_{g} (ASUBG)
R_{i}	$\mu \mathrm{Ci} \mathrm{m}^{-2}$	$Y O[12(i-1)+5]$	A_{g} (ASUBG)
D_{i}	$\mu \mathrm{Ci} \mathrm{m}{ }^{-2}$	$Y O[12(i-1)+6]$	A_{g} (ASUBG)
C_{i}	$\mu \mathrm{Ci}$ liter ${ }^{-1}$	$Y 0[12(i-1)+7]$	U
B_{i}	$\mu \mathrm{Ci} \mathrm{kg}{ }^{-1}$	$Y \mathrm{O}[12(\mathrm{i}-1)+8]$	M_{b} (MSUBB)
(EH) ${ }_{\mathrm{i}}$	$\mu \mathrm{Ci} \mathrm{kg}{ }^{-1}$	$Y 0[12(i-1)+9]$	$M_{f}^{0} / 1,000$
T_{i}	$\mu \mathrm{Ci}$	YO[12(i-1) + 10]	1
H_{i}	$\mu \mathrm{Ci} \mathrm{m} \mathrm{m}^{-2}$	YO[12(i-1) + 11]	A
M_{i}	$\mu \mathrm{Ci}$	$Y 0[12(i-1)+12]$	1

where

$$
\begin{align*}
\frac{d M_{i}^{\prime}}{d t} & =\tau_{\text {beef }} M_{b} B_{i}+\tau_{m i l k} U C_{i}-\lambda_{i}^{R_{M}}+\left[V_{c} / D_{g}-\left(\tau_{g, b}\right)_{i} M_{b}\right. \\
& \left.-\left(\tau_{g, c}\right)_{i} U\right]_{i} \tag{6.1}
\end{align*}
$$

$$
\begin{aligned}
M_{b} & =\text { mass of muscle on a steer at time of slaughter }(\mathrm{kg}), \\
U & =\text { milk capacity of the wer (liters). }
\end{aligned}
$$

The other parameters were defined and diccussed in Sects. 2, 3, and 4 if this report. The first two terms on the right-hand side of this quation represent gains to M_{i}^{\prime} resulting irom losses to cumpartments B_{i} and C_{i} through slaughter of cattle and milking of cows, respectively. The third term accounts for radioactive decay in M_{i}^{\prime}. The last term represents the loss to compartments G_{i} which is not accounted for by the terms $\left(\tau_{g, b}\right)_{i} \hat{u}_{i}$ and $\left(\tau_{g, c}\right)_{i} G_{i}$ in Eqs. (2.7) and (2.8), respective$1 y$.

With MFO as the FORTRAN name for M_{f}^{0}, the FORTRAN statement defining TøTUCI $(I, 1)$ is therefore

$$
\begin{align*}
\text { TøTUCI }(I, 1) & =Y O(1)^{\star} A+Y O(2)^{\star} A+Y O(3)+Y O(4)^{\star} A S U B G \\
1 & +Y O(5)^{\star} A S U B G+Y O(6)^{\star} A S U B G+Y O(7)^{\star} U+Y O(8)^{\star} M S U B B \\
2 & +Y O(9)^{\star}(M F 0 / 1000 .)+Y O(10)+Y O(11)^{\star} A+Y O(13) \tag{6.2}
\end{align*}
$$

the generalization for $T \emptyset T U C I(I, I N U C)$ being obvious.
After defining values of the array TØTUCI(I,INUC) for a given I and for INUC $=1$ to NUMNUC, calls are made to subroutine RESDNS for the calculation of values of the beef and milk holdup compartments (BH) ${ }_{i}$ and $(\mathrm{CH})_{i}$. The statements executing these calls are

CALL RESDNS(TIMBH,NUMNUC, TR, TB, B, PRØRAT, QOBEF ,QBEF, QWIGL, IDIM)
CALL RESDNS(TIMCH,NUMNUC, TR, TB, B, PRØRAT, QOMLK, QMLK, QWIGL, IDIM)
where TIMBH, TIMCH, NUMNUC, TR, TB, B (matrix of branching ratios) and FRØRAT are as defined pruviously. On input, the arrays QOBEF and QOMLK contain the values in the beef and milk compartments B_{i} and C_{i}, respectively, at the current time TIM(I). The concentration levels ($\mu \mathrm{Ci} \mathrm{kg}^{-1}$) which beef and milk would reach if stored for the period of time (days) specified by TIMBH and TIMCH are returned in the arrays QBEF and QMLK, respectively. The array QWIGL contains residence values ($\mu \mathrm{Ci}$-days) on output and is not used by RAGTIME. The parameter IDIM specifies the maximum dimensions for the matrix of branching ratios as defined in RESDNS (REAL BRANCH(IDIM,IDIM)). Following these calls to RESDNS, values of the various compariments, including the holdup compartments for beef and milk, are printed for the current time.

The final section of code within the I-loc determines whether or not the current time, TIM(I), is a harvest tin., and if so, reinitializes the state variables E_{i}, T_{i}, and $(E H)_{i}$ to simulate harvest. First the following call is made to subroutine QUERY:

CALL QUERY(TIM(I),IANS)

This subroutine searches the array of harvest times, HARTIM, and returns IANS $=1$ if $\operatorname{TIM}(I)$ is a harvest time, IANS $=0$ if not. If TIM(I) is a harvest time, the crop holdup compartment (EH) ${ }_{i}$ is reinitialized to the value

$$
\begin{equation*}
\frac{\text { total activity }(\mu \mathrm{Ci}) \text { in compartments } E_{i} \text { and } T_{i}}{\text { total mass }(\mathrm{kg}) \text { of crop at harvest time }}=\frac{A E_{i}+T_{i}}{M_{f}^{0} \times 0.001} \tag{6.3}
\end{equation*}
$$

after which the compartments E_{i} and T_{i} are set to zero. After completion of the I-loop, control returns to the main program.

As pointed out in Sect. 5.1, the system of differential Eqs. (2.1) through (2.11) is defined in subroutine DIFFUN. The GEAR package makes calls to DIFFUN for values of YDØT at various times as described in Sect. 5.1. The deposition source function $F_{i}(t)$ of Eqs. (2.1), (2.2),
(2.4), and (2.5) is defined by means of the FORTRAN function F(I,T). This function is defined in terms of the inflow rate matrix
$\operatorname{FF}(I, K P), I=1$ to NUMNUC, $K P=1$ to $M P$
as described in Sect. 6.1.
The final subroutine called by MAIN is subroutine CHECK. Details concerning this subroutine are discussed in the following section.

6.3 Subrout ine CHECK

The last subroutine called by MAIN is subroutine CHECK. This subroutine calculates and prints values of

TøTUCI(ITIM, INUC) =	total activity $(\mu C i)$ due to nuclide INUC
	at time TIM(ITIM) as calculated in sub-
	routine CALC by calls to the GEAR sub-
	routine (discussed in sect. 6.2)
ACT(INUC, ITIM) =	total activity (μ Ci) due to nuclide INUC
	at time TIM(ITIM) as calculated by sub-
	routine TRAFUN, using the Bateman equa-
	tions,

and the percentage error
(TøTUCI(ITIM, INUC)) - ACT(INUC,ITIM)*100./ACT(INUC, ITIM)
for times TIM(ITIM), ITIM = 1 to NTIM. The call to TRAFUN is as follows:

CALL TRAFUN(NUMNUC, TR, TB , B, MP , TIMEP, P, NTIM, RTIM, AWIGL, ACT, IDIM)

The meanings of NUMNUC, $T R$ (radioactive half-lives), TB (biological half-times), B (matrix of branching ratios), MP (Sect. 6.1), TIMEP (Sect. 6.1), NTIM (number of output times), and IDIM are as defined
previously. The array RTIM is a real array whose values are the same as those for the double precision array TIM of output times. The matrix

$$
P(I N U C, K P), I N U C=1 \text { to } N U M N U C, K P=1 \text { to } M P
$$

defines the total exogenous input rate of each nuclide to the system for each of the time intervals TIMEP(KP), KP $=1$ to MP. From the definition of the inflow rate matrix FF (Sect. 6.1) and our assumption of A square meters of crop production land and A_{g} square meters of pasture land, it follows that the correct expression for P(INUC,KP) is

$$
P(I N U C, K P)=F F(I N U C, K P)^{\star}\left((S 1+S 2)^{\star} A+(S 3+S 4)^{\star} A S U B G\right)
$$

Subroutine TRAFUN returns in the array ACT the total activity levels as computed using the Bateman equations. After the call to TRAFUN, the values of the arrays $T \emptyset T U C I$ and $A C T$ as well as the percentage errors are printed.

ACKNOWLEDGEMENT

The authors wish to acknowledge the valuable assistance of Ms. Angela J. Moorman and Mr. Rudolph Kuehn, who were at the time of their involvement with this project, students of computer science and mathematics at East Tennessee State University.

REFERENCES

1. F. O. Hoffman, C. W. Miller, D. L. Shaeffer, C. T. Garten, Jr., R. W. Shor, and J. T. Ensminger, A Compilation of Documented Computer Codes Applicable to Environmental Assessment of Radioactivity ReZeases, ORNL/TM-5830, Oak Ridge National Laboratory, Oak Ridge, Tennessee (April 1977).
2. U. S. Nuclear Regulatory Commission, Caloulation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Svaluating Compliance with 10 CFR Part 50, Appendix I, Regulatory Guide 1.109, Revision 1, USNRC, Washington, D. C. (October 1977).
3. R. S. Booth and S. V. Kaye, A Preliminary Systems Analysis Model of Radioactivity Transfer to Man from Deposition in a Terrestrial Environment, ORNL/TM-3135, Oak Ridge National Laboratory, Oak Ridge, Tennessee (October 1971).
4. A. C. Hindmarsh, GEAR: Ordinary Differential Equation System Solver, UCID-30001, Revision 3, Lawrence Livermore Laboratory, Livermore, California (December 1974).
5. J. P. Witherspoon and F. G. Taylor, Jr., "Interception and Retention of a Simulated Fa?lout by Agricultural Plants," Health Phys. 19, 493-499 (1970).
6. J. D. Zimbrick and P. G. Voillequé, ed., 1967 CERT Progress Report, Controlled Environmental Radioiodine Tests at the National Reactor Testina Station, Progress Report Number Four, ID0-12065, Idaho Falls, Idaho (December 1968).
7. R. G. Menzel, "Factors Influencing the Biological Availability of Radionuclides for Plants," Fed. Am. Soc. Exptl. Biol. Proc. 22, 1398-1401 (1963).
8. C. F. Miller and Hong Lee, Operation Ceniza-Arena: The Retention of Fallout Particles from Volcan Irazu (Costa Rica) by Plants and PeopZe, Part One, SRI-MU-4890, Stanford Research Institute, Menlo Park, California (January 1966).
9. C. F. Miller, Operation Ceniza-Arena: Retention of Pallout Particles from Volean Irazu (Costa Rica) by Plants and People, Part Three, SRI-MU-4890, Stanford Research Institute, Menlo Park, California (December 1967).
10. C. R. Belcher and J. L. Ragland, "Phosphorus Absorption by SodPlanted Corn (Zea mays L.) from Surface-Applied Phosphorus," Agronomy J. 64, 754-756 (1972).

REFERENCES (cont'd)

11. J. L. Brewster, K. K. S. Bhat, and P. H. Nye, "The Possibility of Predicting Solute Uptake and Plant Growth Response from Independently Measured Soil and Plant Characteristics," Plant and Soil 42, 197-225 (1975).
12. G. L. Pacques, R. L. Vanderlip, and D. A. Whitney, "Growth and Nutrient Accumulation and Distribution in Grain Sorghum. I. Dry Matter Production and Ca and Mg Uptake and Distribution," Agronomy e'. 67, 607-616 (1975).
13. L. H. P. Jones and K. A. Handreck, "Studies of Silica in the Oat Plant," Plant and Soil 23, 79-96 (1977).
14. J. E. Miller, J. J. Hassett, and D. E. Koeppe, "Interastions of Lead and Cadmium on Metal Uptake and Growth of Corn Plants," J. Environ. Qual. 6, 18-20 (1977).
15. M. B. Page, J. L. Smalley, and 0. Talibudeen, "The Growth and Nutrient Uptake of Winter Wheat," Plant and Soiz 49, 149-160 (1977).
16. C. L. Parks, A. W. White and F. C. Boswell, "Effect of a Plastic Barrier. Under the Nitrate Band on Nitrogen Uptake by Plants," Agronomy d. 62, 437-439 (1970).
17. A. C. Chamberlain, "Interception and Retention of Radioactive Aerosols by Vegetation," Atmos. Erviron. 4, 57-78 (1970).
18. R. E. Moore, C. F. Baes III, L. M. McDowell-Boyer, A. P. Watson, F. 0. Hoffman, J. C. Pleasant, and C. W. Miller, AIRDOS-EPA: A Computerized Methodolugy for Estimating Environmental Concentratione and Dose to Man from Airborme Releases of Radionuclides, ORNL-5532, Oak Ridge National Laboratory, Oak Ridge, Tennessee (June 1979).
19. Y. C. Ng, C. S. Colsher, D. J. Quinn, and S. E. Thompson, Transfer Coefficients for the Prediction of the Dose to Man via the Forage-Cow-Milk Pathway from Radionuclides Released to the Biosphere, UCRL-51939, Lawrence Livermore Laboratory, Livermore, California (July 1977).

APPENDIX A
LISTING OF RAGTIME SOURCE CODE AND

JOB CONTROL LANGUAGE

```
LEVEL 21.3 ( JUN 74) GS/OO) FORTRAN H
    CTMPILER OPTIONS - NAME= MAIN,OPT=O2,LINECNTT=60,S*ZE=0OOOK,
                        SOURCE,ERCOIC,NOLIST,NODECK,LOAD,MAP,NDEDIT,TD,NOXREF
ISN 0002 
    SUBROUTINE INOUT INPUTS ALL THE DATA
```



```
ISN 00144
ISN 0015
ISN 0016
C
ISN 0017
ISN 0018
ISN 0019
ISN 0020
ISN 0021
ISN 0022
ISN 0025
ISN 0024
C
COMMON /HOLTIM, TIMBH, TIMCH
CTMMON /TNFLOW/ MP, TIMEP(30), FF{15,30)
COMMON /BRANCH/ E(15,15)
COMMON /DEP/ LAMRR(15),FSUPM(15), TAUEXC(15), FSURF(15),BSUPIV(15)
COMNON /INDEP/ A, ASUBG,OSUBG,MSUBR, TAUBEF,TAUMLK,''AUES,TAUGR,
*
    SUBROUTINE INOUT (IFLAG)
    DOUBLE PRECISION NAMNUC, PARNUC,OAUNUC,TIM, EPS
    INTEGER ENDTIN,PTR, QOR
    REAL MSUBB,INCR,LANRR
    COMMON /NAMES/ NAMNUC(15)
    COMMON /NUMBRSI NUMNUC
    COMMON /TIME/ TIM(365),INCR(30), ENDTIM(30),NINTVL,NTIM
    COMMON /SOURCE/ FO(15)
    COMMON IGPARAM/ EPS,MF
    COMMON /IOOEV / PTR,RDR
    C
    NU&NUC - THE NUMBER OF NUCLIDES IN THE CHAIN BEING STUDIED
    READ (RDR,10) NUMNUC
    10 FORMAT (IS)
C***
C*** NAMNUC - ARRAY OF THE NAMES DF THE NUCLIDES IN THE CHATN.
C*** FO - INITIAL GROUNO DEPOSITION SOURCE FOR NUCLIDEIII
C**e WHERE I VAPIFS FOOM I TO THE NUMBER CF NUCLIDES
C*** (MICROCURIES PER SQUARE METSQI
C***
    OO 30 T = 1,NUMNUS
        READ (ROR,20) NAMNUC(1), FO(I)
            20 FORMAT (A3,E13,6)
    3O CONTINUE
C
C*** INFLOW RATES FJR VARIOUS SPECIES
C***
C*** READ VALUES FOR THE ADRAYS
C***
C***
C***
    C*** T{MEP(KP),KP=1 TO IP, AND
C*** FF(I,KPI,I=1 TO NUMNUC, KP=1 TS MP, WHERE
C***
C***
C***
C***
C***
C***
    FF(I,KO)= INFLOW RATE OF SPECIFS I (UCI/M**2-DAY) FROM
                        TIMEP(KD) TO TTMEP(KP+1) IF KP .LT. MD
```



```
                                TIMED(MP).
C*** READ VALUES FOR THE ADRAYS
            REAO (RDR,2OO) MP
    200 FORMAT(15)
```

I SN	0025		$00^{201} \mathrm{t}=1$, NumNuC
ISN	0026		0) $201 \quad K P=1,4 P$
ISv	0027	201	READ (RCP, 202) TIMEP (KP), FF (I, KP)
15N	0n28	202	FRQM A $\left(513.6,2 x,{ }^{\text {c }}\right.$ (13.6$)$
		6	
		c	
		r	MATRTX CONTAINING ARANTHING RATIOS INITIALIZFD TA LERT
		C	***幺******\%****
		C	
		c	
		C***	
		C***	3 - MATRIX CONTAIMIVG THE R\&ANCHIMG QATICS.
		C***	
15 N	0029		$0040 \mathrm{I}=1$, NuMNUC
15 N	0030		D) $40 \mathrm{~J}=1$ NHMNUS
15 N	0031		$9(1,5)=0$
ISN	903?	40	$\mathrm{COY}^{-1 \text { INUE }}$
		r	
		C	
		c	BRANCHING RATITS FILLFO IN MATQIX
		c	*********************************
		c	
		c	
		C***	
		「**	PARNUC - OARENT NUCLIDE
		C***	GAUPUC - DAUGHTER NUCLIOE
		C***	QRATIO - BPAIICHING QATIO
		C***	PARNDD - INDEX INTO YATRIX B
		C***	QFPRESENTS PAZENT NUCLIDE
		C***	OAIJNOD - INDEX INTO YATRIX B
		C***	QFPRESENTS OAUGHTER WJCLIDE
		$C * * *$	NU/ABRA - VUMBFO OF NONZFRO BRANCHING RATIOS
ISN	0033		QEAO (RCR, 10) NUMBRA
ISN	0034		IF INIJMBRA.EQ.OI SO TI 160
1 CN	00, 6		DT $701=1$ NUMBRA
15 N	00:7		READ (RDR, 50) PARVUC, DAUNUC, 3RATI'
15 N	0038	50	FIRNAT $(48,5 x, 48,5 x, E 13.6)$
		\bigcirc	
		C	
		C	LOOP TO SE* ADPRINPRIATE INDICES INTO MATRIX a
		\bigcirc	
		c	
		C	
15 N	0039		DO $60 \mathrm{~J}=1$. MHINNUC
15 N	0040		IFIPARNUC, EQ. NAMNUC (J)) \triangle ARNOD $=\mathrm{J}$
15 N	0042		
15 N	0044	60	CONTINUE
$15 N$	0045		B(DAUNIT, PARNOD $=$ GRATIO
I SN	0046	70	CONT INUE
15 N	0047	80	CONT INUE
		C***	
		C***	NINTVL - NUMBER OF INTERVALS SPECIFYING OUTPUT TIHES
		C***	INCR(I) - STEPSIZE FOR INTERVAL I
		C***	ENDTIMII - RIGHT ENOPOINT OF IVTERVAL I (DAY)
		C***	NGTE THAT ENOTIM(1) SHOULD BE AN INTEGOAL MULTIPLE OF INCR(1)
		C***	AND FOR I GREATER THAV I, ENDTIM(1) - ENDTIM(I-1) SIHOULD BE AN
		C***	TNTEGRAL MULTIPLE OF TMCRII).

	0048	C***	QEAD (2CR, 10) NTNTVL
I SN	00+9		no $100 \quad 1=1$, NIMTVL
- CN	0050		REAO (ROR, 90) INCPII), ENDTIM(I)
15 N	0051	90	FOR*AT \{ELう.0.1E?
1 CN	005?	100	CONTINUE
15.4	0053	110	CMNTINUE
		r	
		$\begin{aligned} & C \\ & r \neq * * * \end{aligned}$	
		C***	***
		C***	RADIONUCLITE DEPENDENT PARAMETERS ***
		C***	
		$C * * * * *$	
		C***	
		「***	
		$\begin{aligned} & C * * * \\ & C * * * \end{aligned}$	GSUBIV - CONCENTRETIOV OF NUCLIDE PER UNIT FRESH WETGHT IN PLANT
		C***	(MICRNCURIES DER KILOGRAMI DIVIDED BY CONCENTRATIDN OE
		C***	NUC:IDE PER UNIT GRY WEIGHT IV SOIL IMICRNCURIES PER
		C***	KILOGRAM)
	-	$\begin{aligned} & C * * * \\ & c * * w \end{aligned}$	FSURF - THE FRACTION OF THE ANIMAL'S OAILY INTAKE OF NUCLIDE(I) WHICH APPFARS IN EACH KILDGRAM OF FLESH (OAYS PER KILDGRAU)
		$\begin{aligned} & C * * \\ & C * * * \end{aligned}$	FSURM - FRACTION OF THE DAILY INTAKE OF NUCLIDE I BY A COW WHICH APDEARS DER LITER OF MILK AT EQUTLIBPIUM
		C***	(TAYS PER LITER).
		C***	LAMRR - RADICACTIVE DECAY RATE OF THE NUCLIDE UNDE? STUOY
		C** ${ }_{\text {c }}$	(PER DAY)
		$\begin{aligned} & C * * * \\ & C * * * \end{aligned}$	TAUEXC - EXCRETION RATE DF A STABLE ISOTOPE OF THE NUCLIOE FROM THE MUSCLE OF A STEER (PER DAY)
		C**	
		C	
		c	
		C	
15N	0054		DO $130 \mathrm{I}=1$, NUMNUC
ISN	9055		REAC (ROR, 120) LAYRR(I)
ICN	0056		READ (ROR, 120$)$ FSURM(1)
ISN	3057		READ (ROR, 120) ESUPF(I)
15*	0058		READ (ROR, 120) RSUBIV I
ISN	0059		REAC (ROR, 120) TAUEXC(1)
15 N	0060	120	FORNAT (10X, E13.7)
15N	0061	130	CONTINUE
		C	
		C	
I SN	$006 ?$		IF (IFLAY ,FQ. 1) GO T0 140
15 N	0064		$I F L A G=1$
		C	
		C	
		C****	
		C***	***
		C***	RADIONUCLIDE INDEPEVOENT PARAMETERS
		C***	
		C***	
		C***	
		C***	A - SOIL SURFACE AREA REQUIRED TO FURNISH FODO CRODS FORR ONE MAN ISOUARE METERSI
		C***	$\triangle S U B G$ - PASTURE AREA PER COW (SQUARE METERS)

ISN 0089
ISN 0090

ISN 0065
ISN 0066
ISN 0067 15 N 0068 ISN 0069 I SN 0070 ISN 0071 ISN 007 ? ISN 0073 ISN 0074
ISN 0075
ISN 0076
ISN 0077
ISN 0078
ISN 0079
ISN 0080
ISN 0091
IS 0082
I 5 N 0083
ISN 0084
ISN 0085
ISN 0086
ISN 0087

ISN 0088

ISN 0090

```
C*** SMALLO - DEPTH OF THE PLOW LAYED (CENTIMETERS).
C*** QHO - DENSITY OF THE SOIL (GPAMS PER CUBIC CENTIMETERI.
C*** USUBB - MASS OF MUSCLF ON A STEEP AT THE TIME OF SLAUGHTCF
C*** (KILOGPAMS PER STEER)
C*** TAUBEF - FRACTION OF THE BEEF HEPD SLAUGHTERED (DER DAY)
C*** TAIMLK - TRANSFER RATF OF MTLK FQOM THE UDDER (OER DAY)
C*** TA IES - TRANSFER COEFFICIENT FRCM E TOS (PER DAY)
C*** TAL,R - TRANSFER COEFFICIENT FROM G TO R (PER DAY)
C### TAU H - TRANSFER COEFFICIENT FROM P TO H (PER DAY)
C*** TAU,D - TRANSFER COEFFICIENT FROM R TO D (PER DAY)
C*** TAJRG - TQANSFER COEFFICIENT FROM R TO C (PER DAY)
C*** TAUSP - TRONSFER COEFFICTENT FOOA S TO P (PER DAY)
C*** U - MILK CAPACITY OF THE UDOER (LITEFS)
C*** VSURC - DRY WEIGHT GRASS CONSUMPTION PER DAY BY A COW
(*** (KILOGRAMS PER DAY)
    C*** TIMBH - HOLDUP TIME (DAYS) FOR BEEF
C*** TTMCH - HOLDUP TTME (OAYS) FOR MILK
c***
c
C
READ (RDR,001) A
    READ (RDR,001) ASUBG
    READ (RCR,001) SMALLD
    QEAD (RCR,OO1) RHN
    READ (ROR,OO1) DSURG
    READ (ROR,OO1) MSUBR
    READ (RCQ,001) TAUBEF
    READ (RCR,OO1) TAUMLK
    READ (RCR,001) TAUES
        READ (RDR,OO1) TAUGR
        READ (RDR,OO1) TAUGR
        QEAD (RCD,OO1) TAURD
        READ (ROR,001) TAURG
        RFAD (RDR,OO1) TAUSP
        READ (ROR,001) U
        READ (ROR,001) VSUBC
        QEAD (RDQ,OO1) TIMBH
        READ (ROR,001) TIMCH
c
001 FOR 1AT (1OX,F13.7;
c
C
```



```
C*** GEAP SURROUTINE PARAMETERS ***
C***
    GEAR SURROUTINE PARAMETERS 苂**
C*************************************************************
C
    002 FOQMAT }{10X,013.6
C
        READ (RDR,003) MF
        003 FORMAT (10X,I 2)
C
    140 CONT INUE
            RETURN
```



```
                                    ***
            ENO
```

```
LEVEL 2L.8 JJN 74 OS/360 FORTRAN H
    COMPILER OPTTONS - NAME= MATN,OPT=OZ,LINECNT=60,5IZE=OOOOK,
                            SOUQCE, EBCOIC,NOLIST,NOOECK,LOAD, HAP,NOEDIT, IO, NOXFEF
ISN 0002 
        SUBRCUTINE OUTDAT
    C
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
:SN 0010
15:0011
15N 7012
ISN 0013
ISN 0014
C
ISN 0017 WRITE (PTR,40)
ISN 0018
ISN 0019
ISN 0020
ISN 0021
ISN 0022
ISN 0023
ISN 0024
```



```
ISN 0081
ISN 0082
ISN 0083
ISN 0084
ISN 0085
ISN 0086
ISN 0087
ISN 9088
ISN 0089
ISN 0090
ISN 0091
15N 0092
ISN 0093
ISN 0094
ISN 0095
ISN 0097
ISN 0099
ISN 0100
ISN 0101
ISN 0102
ISN 0103
ISN 0:04
ISY 0105
ISN 0:06
ISN 0107
ISN 0108
ISN 0109
```

```
    # , ',5,6x,'(1)AY)',11XX,'(DAY)' //1
    C
```

 DO 280 1 = 1,NTNTVL
    ```
        DO 280 1 = 1,NTNTVL
                WRITE (PTQ,270) INCR(I), EVDTIM(1)
                WRITE (PTQ,270) INCR(I), EVDTIM(1)
        270
        270
        28O GONT INHE
        28O GONT INHE
C
C
C*** INFLITW KATES FOR VARIOUS SPECIES
C*** INFLITW KATES FOR VARIOUS SPECIES
C
```

C

```


```

 WRITE (PTR,400)
    ```
    WRITE (PTR,400)
    FORMAT ('I',20X,'INFLOW PAIES FOR VARIOUS SPECIES')
    FORMAT ('I',20X,'INFLOW PAIES FOR VARIOUS SPECIES')
C
C
    WRITE (PTR,401)
    WRITE (PTR,401)
    401 FGRMAT ('O',26X, 'INITIAL TIME', 22X,'RATE')
    401 FGRMAT ('O',26X, 'INITIAL TIME', 22X,'RATE')
C
C
    WRITE (PTR,402)
    WRITE (PTR,402)
    FORMAT (' ',8X,'NUCLIDE',14X,'(DAYS)',20X,'(UCI/SO,M/DAY)')
    FORMAT (' ',8X,'NUCLIDE',14X,'(DAYS)',20X,'(UCI/SO,M/DAY)')
    C
    C
        DO 406 I=1, NUMNUC
        DO 406 I=1, NUMNUC
        WRITE (PTQ,407)
        WRITE (PTQ,407)
        4OT FORMAT(' ')
        4OT FORMAT(' ')
            D) 406 KP=1, MP
            D) 406 KP=1, MP
            IF (KP. .EQ. 1) WRITE (PTR,404) NAMNUC(1),TIMEP(KPP),FF(I,KP)
            IF (KP. .EQ. 1) WRITE (PTR,404) NAMNUC(1),TIMEP(KPP),FF(I,KP)
            IF (KP .GT. 1) WRITE (PTR,405) TIMEP(KP),FF(I,KP)
            IF (KP .GT. 1) WRITE (PTR,405) TIMEP(KP),FF(I,KP)
        406 CONTINUE
        406 CONTINUE
    404 FORMAT {' ', 8x,A8,9X,F10.3,18X,E10.3)
    404 FORMAT {' ', 8x,A8,9X,F10.3,18X,E10.3)
    405 FORMAT (' ',25X,E10.3,18X,E10.3)
    405 FORMAT (' ',25X,E10.3,18X,E10.3)
C
C
C GEAR SURROUTINE PARAMETFRS
C GEAR SURROUTINE PARAMETFRS
C. ***************************
C. ***************************
C
C
    WPITE (PTR,410)
    WPITE (PTR,410)
    FORMAT ('1',54X,'GEAR SUBROUTINE PARAMETERS')
    FORMAT ('1',54X,'GEAR SUBROUTINE PARAMETERS')
    C
    C
    420 FORMAT ('0',55x,'EPS = ,D13.6)
    420 FORMAT ('0',55x,'EPS = ,D13.6)
    C
    C
    WRITE (PTR,421) MF
    WRITE (PTR,421) MF
    C
    C
        421 FOQMAT ('0',T57,'MF = ',12)
        421 FOQMAT ('0',T57,'MF = ',12)
    RETURN
    RETURN
    END
```

 END
    ```
```

LEVEL 21.8 (JUN 74)
OS/360 FORTRAN H
CIMPILER OPTIONS - N44E= MAIN,OPT =02,LINECNT = 60,SIZE=000OK,
SOURCE,FBCDIC,NOLIST,NOOSCK,LOAO, MAP,NDEDIT,ID, FOXREF
ISN 0002
SUBROUTINE CALCIN
C
C CALCULATES THE VALUES OF GERTAIN PARAMETERS WHICH ARE USEO IN
C DEFINING THF COEFFIGIENTS OF THE SYSTEM OF DIFFERENTIAL EQUATIONS.
C
C
C
ISV 0003
ISV 0003
ISN 0005
15N 0006
15N 0007
ISN 0008
1SN 0009
C
C
C
ISN 0010
ISN 0011
15N 0012
ISN 001%
ISN 0014
ISN 0OIS
ISN 0016
ISN 0017
C
C MFO = TOTAL MASS (GRAMS) OF CROP AT HARVEST TIME - USED IN SUBROUTINES
C CALC AND TIMDED (RASED CN A SQUARE METERS OF LANO, 250 PLANTS PER
C SQUARE METER, I GRAM PER P(ANT).
C
*
OIUPLE PQECISION TIG
INTEGER ENDTIM
QEAL MSUBB,LAMRR,INCR, LAMR, LAMC, LAMB,LAMA,LAMS,LAMG,MFO
MFO = A * 250.0
C
C
DO 1 I=1,NUMNUC
TAUGC(I)={TAUMLK*FSUBM(I)*VSUBE) / DSUBG
TAUGB(1)= (VSUQC*FSUBF(1)*TAUEXC(I))/ DSUBG
C
C DEFINE LAMOAS
LAMR(II= LAMRP(I) + TAURG + TAURD
LAMC(I)= LAMRR(I) + TAU4LK
LAMB(I) = LAMRR(I) + TAUBEF + TAUEXC(I)
LAMA(II= LAMRR(I) + TAUES
LAMS(I)= LAMRR{I) + TAUSP
LAMG(I)= LAMRR(I) +TAUGR +VSUBC/(ASUBG*OSUBG)
I CONTINUE
C
ISN 0024
ISN 0025
c

| $1 S N$ | 0002 |
| :--- | :--- |
| | |
| | |
| ISV | 0003 |
| ISN | 0004 |
| ISN | 0005 |
| ISN | 0006 |
| ISN | 0007 |
| ISN | 0008 |
| ISN | 0009 |

 C
    ```
```

 COMMON ITI4E, TIM(365), INCR(30), ENDTIMI 30),NINTVL,NTIM
    ```
        COMMON ITI4E, TIM(365), INCR(30), ENDTIMI 30),NINTVL,NTIM
        COMMON /CRIPS/ MFC
        COMMON /CRIPS/ MFC
        COMMON/LMDA/LAMR(15),LAMC(15),LAMG(15),LAMAT151,
        COMMON/LMDA/LAMR(15),LAMC(15),LAMG(15),LAMAT151,
        C LAMS(15),LAMG(15)
        C LAMS(15),LAMG(15)
        COMMIN /THOEPI A,ASUBG,OSUBG,MSUBB,TAUBEF,TAUMLK,TAUES,TAUGR,
        COMMIN /THOEPI A,ASUBG,OSUBG,MSUBB,TAUBEF,TAUMLK,TAUES,TAUGR,
                                    TAUPH,TAISRD, TAIIRG, TAUSP,U,VSUBC, SMALLD,RHO
                                    TAUPH,TAISRD, TAIIRG, TAUSP,U,VSUBC, SMALLD,RHO
        COMMON /NUMRRSI NUMNGE
        COMMON /NUMRRSI NUMNGE
        COMMON IPAQAM/ TAUGC {15),TAUGQ(15)
        COMMON IPAQAM/ TAUGC {15),TAUGQ(15)
        COMMION IOEP/ LAURR(I5),FSUBM(15), TAUEXC(15),FSUBF(15),BSURIV(15)
```

 COMMION IOEP/ LAURR(I5),FSUBM(15), TAUEXC(15),FSUBF(15),BSURIV(15)
    ```
```

 OEFINE TIME ARRAY FROM THE FOLLOWING INPUT INFGRMATION.
 C NINTVL = NUMBER OF SUQINTERVALS.
 C ENDTIMIII = THE RIGHT ENOPOINT OF SUBINTERVAL I.
 C INCRIT) = THE TIME INCREMENT FOR SUBINTERVAL I.
 NPREY = 0
 NTIM= 0
    ```
```

ISN 0026
I CN 0027
ISN 002S
I SN 0030
ISN OOF?
ISN OJ33
ISN 00344
ISN 0O35
ISN OO3%
ISN 0037
15N 00;8
ISN 0039
ISN 9040
00 2 ! =1,NINTVL
| | | = !-1
IF(I.EQ.1) START=0.0
IFII.NE.I) START= ENOTIM(IMI)
NUYSUR = (ENI)TIMIII-STANT) / IMCP(I)
NTIM = NTIM + NUMSUE
C
DO 3 J=1,NUMSUR
II = NPQEV + J
TIM(IT)= STADT + J*IVCR(I)
C
NOREV = NUMSUB + NPPEV
GOVT INUE
i
RETURN
<v!

```
c
```

LEVEL 21.9 I fUN T4) 05/360 FORTRAN H
COMPILER COTITNS - NAME = MA:N,OPT=02,LINECHT=60,5TZE=000OK,
SNUOCF, RBCDIG,NOLISI,NOOECK,LOAD,MAP,NOEDIT,ID,NOXREF
15N 0002
SUBR NUT IHE CALC
C
EXTERNAL PEDEOV,DIEFUN
I<r: 0003
15*19004
T CN 0005
ISN 0006
ISN 000?
ISN OONR
ISN 0009
1 5N 0010
ISN 0011
ISN 0012
1SN 001%
ISN 2014
15N 0015
15N 0016
ISN 0017
SN 2018
ISN 0019
ISN 0020
ISN 0021
ISN 0022
ICN OO23
15N-00244
ISN 0025
I 5N 0026
ISN 0027
ISN 0028
ISN 0029
ISN 0030
ISN 0031

```



```

c TR(TMUC)=PAO. HALF-LIFE (DAY) OF MUCLIDF INUC.
C TR(INJC)=B!%. HALF-LIFE (TAY) OF NUCLIDE NNUC. USE LARGE VALUE TO
C APPROYTMATE A BIO. DEMOVAL FACTOR OF ZERO.
LOG2=DLCG12.000)
O) 300 [NUC=1,NUMNUC
TR(INUC:=LJG2/OPLFILAMRR(INUC))
TB(1NUC)=1.0550
C PRRRATIINUCI=CONSTANT PROOUCTION RATE FOR NUCLIDE INUC.
PRODAT(INUC: = 0.0
300 CONT INGE
c
OO 4 I=1,NTIM
IF (K .NE. KDUNT) GO Tn 160
C PRINT HEADING
WRITE (PTR,1) (NAMNUC{J),J=1,NUMNUC,
I FORMAT ('ICONTENTS OF CTMPARTMENTS AT VARIOUS T!MES','/,
* ' nuclides in the chalN... ', 14AS'
WRITE (PTR,Z)
? FDRMAT('OTIME',T1T,'E',T28,'S',T39,'0',T50,'G',T61,'R',T72,'C',
C T83,'日',T94,'T',T105,'EH',T116,'3H',T125,'(CH')
WRITE {P+0,3)
3 FOQMAT(' (DAYS)',T13,':UCT/SQ.11',T24,'TUCI/SO.41',T37,'(UCI'',
C T46,'(UCT/S0.MI',T57,'(UCI/SQ.M)',T68,'(UGCI/L)',T30,'(UCI/KGG:'
C.T91,'(UCT1', T103,'(UCT/KG)',T114,'(UCT/KGG1,T123,'(UG!/L)')
C IF T=1, PRINT VALUFS OF COMPARTMENITS AT TIME ZERO.
IF (I.NE.1) GO TO 200
T14F = 0.000
C FIRST NUCLIDE IN CHATN
WRITE (DTP,11) TIMF,YO(1),YO(2),YO(3),YO(4),YO(5),YO(7),
* YO(8),YO(10),YO(9),2REF(1),Q4LK\1)
IF (NUMNUC.EQ.1) GO TO 2OO
C REMAINTNG, NUCLIDES IN CHAIN
D) 2O1 [NUC =2,NUMNUC
VPRE = 12*(INUC-1)
NRITE (PTR,12) YO(NPREV+1),YO(NPREV+21,YO(NPREV+3),
C YO(NPREV +4),YO(NDREV +5), YO(NPREV+7), YO(NDREV+8),
* YO(NDREV+10),YO(NPREV+9),QBEF(INUC),QULK(IHUC)
2O1 cant INUE
200 K=0
C IF I=1, ADO I TO K TO ACCDUNT FOR PRINTING COMPARTMENT VALUES
C AT TIME ZERO.
IF (1.EG.1) K=K+1
160 CONTINUE
TOUT = TIM(1)
TOWT = TOUT
CALL GEAR(DIFFUN,PENERV,N,TO,HO,YO,TOUT,EPS,ME,INDEXI
\F (INDEX.EQ. J) GO TO %
WRITE (PTR,T TOWT,INDEX
7 EJRMA'COOINT G. WAS NOT COMPLETEO TO TOWT=',E1O.3,', INDEX= ',1 31
GO TO 8
C
The fOLlOWING STATFMENTS ARE USED TO CALCULATE THE TOTAL AMJUNT OF
aANIOACTIVITY (MICROCURIES) IN THE SYSTEM FOR EACH NUCLIDE IN THE
CHAIN.
TOTUCI(I, JNUC) = RADIOACTIVITY FOR NUCLIDE HITH INDEX JNUC

```
```

```
C THESE VALUES ARF COMPARED TO VALUES GALCULATED USING THE BATEMAN
```

```
C THESE VALUES ARF COMPARED TO VALUES GALCULATED USING THE BATEMAN
C FQUATIONS IN SUGROUTIME CHECK.
C FQUATIONS IN SUGROUTIME CHECK.
6 \text { CONT INUE}
6 \text { CONT INUE}
    INDEX=?
    INDEX=?
    0) 20 JNIUC=1, NUMNUC.
    0) 20 JNIUC=1, NUMNUC.
        NPREV = 12* (JNUC - 1)
        NPREV = 12* (JNUC - 1)
        TOTUCI(I,JNUC) = YO(NPREV+I)*A + YO(NPREV +2)*A + YO(NPREV+3) *
        TOTUCI(I,JNUC) = YO(NPREV+I)*A + YO(NPREV +2)*A + YO(NPREV+3) *
                        YO(NPREV 4)*ASURG + YO(NPREV + S)*ASUSG + YO(NPREV+6)*ASUBG
                        YO(NPREV 4)*ASURG + YO(NPREV + S)*ASUSG + YO(NPREV+6)*ASUBG
                        * % YO(NPREV+4)*ASURG + YO(NPREV+S)*ASUSG + YO(NPREV+6)**
                        * % YO(NPREV+4)*ASURG + YO(NPREV+S)*ASUSG + YO(NPREV+6)**
    * YO(NPQFV+1O)*!. + YO(NPREV+11)*A + YO(NPREV +9)*(MFO*.001)
    * YO(NPQFV+1O)*!. + YO(NPREV+11)*A + YO(NPREV +9)*(MFO*.001)
C
```

C

```
```

C

```
C
C
C
C OQINT VALUES OF CIMPARTMENTS AT TIME TIM(I)
C OQINT VALUES OF CIMPARTMENTS AT TIME TIM(I)
c
c
2 0 ~ C O N T ~ I N U E ~
2 0 ~ C O N T ~ I N U E ~
c. OEFIVE TIME-DEPENDENT PARAMETEFS FOR CALLS TO RESDNS.
c. OEFIVE TIME-DEPENDENT PARAMETEFS FOR CALLS TO RESDNS.
r
r
C QOBEF(INUC)=INITIAL BURDEN OF NUCLIOE INUC IN BEEF COMPARTMENT.
C QOBEF(INUC)=INITIAL BURDEN OF NUCLIOE INUC IN BEEF COMPARTMENT.
COOMLKIINUCI=INITIAL BURDEN OF NUCLIDE INUC IN MILK COMPARTMENT.
COOMLKIINUCI=INITIAL BURDEN OF NUCLIDE INUC IN MILK COMPARTMENT.
            OO 301 [NUC = 1, NUMNUC
            OO 301 [NUC = 1, NUMNUC
            NOREV=(INUC - 1)* 12
            NOREV=(INUC - 1)* 12
            马O9EF( (TNUC) =YO(NPREV +3)
            马O9EF( (TNUC) =YO(NPREV +3)
            OOMLK(INJC) = YO(NPREV+7)
            OOMLK(INJC) = YO(NPREV+7)
    30I CONTINUE
    30I CONTINUE
            CALL. DESONS {TIMBH,NUMNUC,TR,TB,B, PRORAT,QOSFF,QBEF,OWIGL, IOIM\
            CALL. DESONS {TIMBH,NUMNUC,TR,TB,B, PRORAT,QOSFF,QBEF,OWIGL, IOIM\
            CALL RESDNS ITIMCH,NUMNUC,TR,TG, E, PRORAT,QOMLK,UMLK,QWIGL,IDIM)
            CALL RESDNS ITIMCH,NUMNUC,TR,TG, E, PRORAT,QOMLK,UMLK,QWIGL,IDIM)
            WRITE (TTR,11) TOUT, YO(1),YO(21,YO(3),YO(4, YO(5),YJ(7),
            WRITE (TTR,11) TOUT, YO(1),YO(21,YO(3),YO(4, YO(5),YJ(7),
            * YO(8),YO(10),YO(9),QBEF(1),QMLK(1)
            * YO(8),YO(10),YO(9),QBEF(1),QMLK(1)
        11 FORMAT('0',12 (010.3,' ')')
        11 FORMAT('0',12 (010.3,' ')')
            IF (NUMNUC.EQ. 1)GO TO 170
            IF (NUMNUC.EQ. 1)GO TO 170
C
C
C ORINT VALUES OF E,S,P,G,R,C,B,T,EH,BH, AVD CH FOR REMAINING NUCLIDES.
C ORINT VALUES OF E,S,P,G,R,C,B,T,EH,BH, AVD CH FOR REMAINING NUCLIDES.
C
C
            DO 9 INUC =2,NUMNUC
            DO 9 INUC =2,NUMNUC
            NPREV=12*(INUC-1)
            NPREV=12*(INUC-1)
            WMITE (PTR, 12) YOINPREV+1),YO(NPREV+2),YO(NPREV+3),
            WMITE (PTR, 12) YOINPREV+1),YO(NPREV+2),YO(NPREV+3),
            C.YO(NPREV+4),YO(NPREV +5),YO(NPREV+7), YO(NPREV+8),
            C.YO(NPREV+4),YO(NPREV +5),YO(NPREV+7), YO(NPREV+8),
            * YO(NPREV +10),YO(NPREV*G),QBEF(INUC),QMLK(INUC)
            * YO(NPREV +10),YO(NPREV*G),QBEF(INUC),QMLK(INUC)
            9 CONTINUE
            9 CONTINUE
            12 FORMAT!' ', T13, 11 1010.3,' '11
            12 FORMAT!' ', T13, 11 1010.3,' '11
C
C
    170 CONT INUE
    170 CONT INUE
C IS TIM(T) A HARVEST TIME? QUERY RETURNS I IF YES, O IF NO.
C IS TIM(T) A HARVEST TIME? QUERY RETURNS I IF YES, O IF NO.
            CALL QUERYITIM(II,IANS)
            CALL QUERYITIM(II,IANS)
            IF (IANS.FQ.O) GO TO 171
            IF (IANS.FQ.O) GO TO 171
C AT HARVEST TIME, REINITIALIZE STATE VARIABLES.
C AT HARVEST TIME, REINITIALIZE STATE VARIABLES.
        TO = TIN(I)
        TO = TIN(I)
        HO = 1.OD-5
        HO = 1.OD-5
        I NDEX = 1
        I NDEX = 1
        OO 250 INUC=1,NUMNUC
        OO 250 INUC=1,NUMNUC
        NPREV = {INUC-11*12
        NPREV = {INUC-11*12
C
C
C FQR THE PURPOSE OF MASS BALANCE CHECK, TRANSFER TOTAL ACTIVITY
C FQR THE PURPOSE OF MASS BALANCE CHECK, TRANSFER TOTAL ACTIVITY
C FROM CROP HCIDUP COMPARTME (EH) TJ COMPARTMENT MPRIME.
```

C FROM CROP HCIDUP COMPARTME (EH) TJ COMPARTMENT MPRIME.

```
150115
1540116
15 N 0117
1549118
15 N 9119
15N 0120
\(15 \mathrm{~N} \quad 1121\)
ISN 9122
15 N 0123
15 N 0124
15 N 0125
ISN 0127
15 N 0128
ISN 0129
ISN 0130
[SN \(\mathrm{S}^{-} 3131\)
15 N 0132
ISN 0133
15 N 0134
ISN 0136
ISN 0137
ISN 0138
ISN 0139
ISN 0140
ISv 0110
15 M 0111
15N 0112
15 N 0113
15 N 0114
```

ISN 0141
C
C DIVIDE TDTAL ACTIVITY \&\CI) TRANSFERRED TO CROP HOLDUP GOMPARTMENT
C EH FROY E AND T BY TOTAL MASS (KG) DF CROP AT HAPVEST.
YO(NPREV+9) = (A*YO{NPREV +1) + YO(NPREV+1O)) / (MFO * .001)
YO(NPQEV+1)=0.000
YO(NPGEV+10)=0.000
250 CONT TNUE
1 7 1 K = K + 1
4 CONTINUE
C
C
C UPON COMPLETION TF I LOID, RFTIJRN.
GO TO 10
C IF GEAR SUGROUTINE RETURNS INDEX OTHER THAN O, STOP.
S STOP
C
10 RETURN
ENO

```
```

LEVEL 21.8 I JUN 74 1 OS/360 FORTRAN H
COMPILER OPTIONS - NAME = MAIN,GPT=02,LINECNT=6O,SIZE=0OOOK,
SOURCE,EBCDIC,NOLIST,NODECK,LIAD,MAP,NOFDIT, ID,NOXREF
ISN 0002 FUNCTION F(I,T)
C. F(I,T) = SCURCE STRENGTH (UCI/SQ.M/DAY) FOR NUCLIDE I AT TIME T (DAYS).
C
C F IS DEFINED IN TERMS OF THE INFLOW RATE MATRIX,
c FF II,KP), 1=1,NUMNUC, KP=1, पP
C
WHICH IS DEFINED IN SUBROUTINF INPUT.
COMMON /INFLOW/ MP, TIMEP(30),FF(15,30)
COMMON /NAMES/ NAMNUC(15)
DOHBLE PRECISION NAMNUT
F=0.0
IF (T.GE. TTMEP(MP) ,OR. MP.FQ.i) GO TO 3
MPM1 = NP-1
OO 1 KF=1,MPM1
IF IT.GE.TIMEP(KP) , AND. T . LT. TIMEP(KP+1)) GO TO 5
1 CONTINUE
WRITE{3,2) NAMNUC(!), T
2 FORMAT''OF (I,T) NOT DEFINED FOR NUCLIDE ', A8,' TIME ',E1O.3,
* (0arsit)
STOP
5 F=FF(I,XP)
GO TO 4
3 F=FF(1,NP)
RETURN
END

```

LEVFL 21.8 I JUN 741
\(0 S 1363\) FORTKAN H
COMPILER DPTIOVS - NAME = \(4 A I N, O D T=02, L I I E C N T=60, S I Z E=000 O K\),
SOURCE, EBCOIC, NOL IST, NDOECK, LOAD, MAP, NOFDIT, ID,NOXREF
15N 0002
SUBRDUTINE DIFFUNTN,T,Y,YDOTI
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(\begin{array}{ll}15 N & 0003 \\ 15 N & 0004\end{array}\)
ISN 0005
ISN 0006
ISN 9007
ISN 0008
ISN 0009
15M 9010
\(C\)
\(C\)
\(C\)
OIMENSICN TAUPT (15)
ISN 0004
ISN 0005
ISN 0006
ISN 9007
ISN 0008
ISN 9009
ISN 9010

ISN 0011
15 N 0012
15 N 0013

ISN 0014
ISN 0015
\(15 N 0016\)
\(15 N 0017\)
ISN 0018
ISN 0019
DOUBLE PRECISTON T, Y(N), YOOT(N:)
REAL LAABH, LAMCH, MSUZA, LAMRR, II, LAMF, LAMC, LAMB, LAMA, LAMS,
* LAMG,IIPRIM,LAMOI
\(C\)
C TIME (T) IS SOMET:MES REQUIRED YO BE IN SINGLE PNECISION (X). \(x=T\)
CALL SVAL \((X, S 1,52,53,54)\)
CALL TINDEO \((X\), TAUPT
c
\(001 \quad I=1\), NU4NUC
\(C\) NPREV \(=\) NO. OF PREVIOUS FQUATTONS
NPREV \(=(11-1 \mid * 12\)
C CALCULATE CONTRIBUTION FROM PREDECESSORS IN THE CHAIN.
ISN 0020
SUMI \(=0.0\)

```

ISN 0061
ISN 0062
15400053
ISN 0064
ISN 0065
15N 0066
ISN 006?
TOTBM=TAUGEF*MSUBB
TOTCM=T AUMLK*US
IIPRIM = TOTBM * Y(NPPEV +8) + YOTCM * Y(NPREV+7)
YDOT(NPREV+12)= IIPRIM -LAMRR(I)*Y(NPREV+12) *
C (VSUBCIOSUBG - TAUGQ(I)*MSURB - TAUGC(I)*U) * Y(NPREV*4)
C + SUMI2
C
1 CONT INUE
c
c
OE TURN
EMD

```
```

IFVFL 21.8: JION 74 1
05/36) FORTRAN H
COMPILER OPTIONS - NAME = MATN,ODT=02,LINECNY=60,51ZE=000OK,
SOURCE,FRCOIC,NOL IST,NODECK,L OAD, MAP, NDEDIT, 10,NOXPEI
15N 0002
C
ISN 0003 nOURLE PRECISIONT, Y(NO.13), PN
ISN 0004 RETURN
ISN 0005 END

```

15N 0018
15v 9019
15v 0020
15* 0021
ISN 002?
ISN 0923
15N 0024
ISN 0025
ISN OO26
15N 0027
!5N 0028
15% 0029
ISN 003n
ISN 0031
ISv 0032
ISN 073%
ISN 00344
15N 0035
```

```
```

C =ARAMCHING RATIC FROM SPECIES J TO SPECIES I, I LFSS THAY I.

```
```

C =ARAMCHING RATIC FROM SPECIES J TO SPECIES I, I LFSS THAY I.

```
LOG2 = DLOG12.000)
```

LOG2 = DLOG12.000)
On 1 I NUC=1, NIMNNUC
On 1 I NUC=1, NIMNNUC
TRIINUC: = LNGZ / OBLEILAMRRITNUCI)
TRIINUC: = LNGZ / OBLEILAMRRITNUCI)
TB(INUC) = 1.0E50
TB(INUC) = 1.0E50
D) 6 KD =1,MD
D) 6 KD =1,MD
CALL SVALITIMEP{KP),51,52,53,54)
CALL SVALITIMEP{KP),51,52,53,54)
SD(INUC,KD)=FF(INUC,KD) * (151+52)*A + (53+54)*ASUPG)
SD(INUC,KD)=FF(INUC,KD) * (151+52)*A + (53+54)*ASUPG)
1 CONTINUE
1 CONTINUE
C
C
CRTIM IS A REAL ARRAY WHOSF VALUES ARE THE SANE AS THOSE FOR TIM.
CRTIM IS A REAL ARRAY WHOSF VALUES ARE THE SANE AS THOSE FOR TIM.
nO 7 ITIM=1,NTIN
nO 7 ITIM=1,NTIN
7 RTMMITIM) = TIN(ITIM)
7 RTMMITIM) = TIN(ITIM)
C THE CALL TO TEAFUN,
C THE CALL TO TEAFUN,
C CALL TRAFUNIN,TR,TB, सRANCH,YP,TIMEP, P,MA,TIMEA,AWIGL,ACTI
C CALL TRAFUNIN,TR,TB, सRANCH,YP,TIMEP, P,MA,TIMEA,AWIGL,ACTI
C EFCOMES
C EFCOMES
CALL TRAFUNGNUMNUC,TP,TB, R,NP,TIMEP,P,NT1M, RTIM, AWIGL,ACT, 1O[M)
CALL TRAFUNGNUMNUC,TP,TB, R,NP,TIMEP,P,NT1M, RTIM, AWIGL,ACT, 1O[M)
C GEGIN ITIM LOJP TO CALCULATE PERCENTAGE ERORKS.
C GEGIN ITIM LOJP TO CALCULATE PERCENTAGE ERORKS.
OO 2 ITIM = 1,NTIM
OO 2 ITIM = 1,NTIM
ng 4 INUK=1,NUMNUC
ng 4 INUK=1,NUMNUC
4 RCIER{INUCY = STOTUCIITTI4,INUC3 - NCTIINUC,ITIMI)=100.1
4 RCIER{INUCY = STOTUCIITTI4,INUC3 - NCTIINUC,ITIMI)=100.1
C ACT(INUC,ITIM)
C ACT(INUC,ITIM)
2 WOITE (PTR,3) TIMIITIM),(TOTUCICISIM,INUC), ACTIINUC,ITIM),
2 WOITE (PTR,3) TIMIITIM),(TOTUCICISIM,INUC), ACTIINUC,ITIM),
C RELER GINUCI, INUC=1,NUMNUS:
C RELER GINUCI, INUC=1,NUMNUS:
3 FOEMAT I' , 9x,013,6,18x,F13,6,25x, \&13.6,20x,F12.3 / ' ',
3 FOEMAT I' , 9x,013,6,18x,F13,6,25x, \&13.6,20x,F12.3 / ' ',
* 14(40x,E13.6,26x,F13.6,20x,F12.3 / ' '1)
* 14(40x,E13.6,26x,F13.6,20x,F12.3 / ' '1)
QETURN
QETURN
END

```
            END
```



```
ISN 3032 40 CONTINUE
    C GETURM FOR POSSIBLY ANOTHER PASS.
    c. END IF SEPARATIIN ROUTINE.
        45 CONTINUE
        C
    C COMPUTE COEFFICIENTS D(1). C(I,J).
        O(1)=P(1)/LMII)
        IF (N.EO.1) GO TO <0
        on 55 I=2,N
            O(1)=0.0
            11=1-1
            00 50 J=1, [1]
            D(t)=D(1)+begac(CH(1,J)*D( ()
        50 CONTINUE
            D(I)=LMO(1)*O(1)/LM(1) + P{1)/LM(1)
        55 CONTINUE
    60 C(1,1)=00(1)-011)
            IF (N.EO. 1) GO TO 90
            O) &5 T=2,N
            11=1-1
            00 75 J=1,11
                    C(1,H)=0.0
                    OO }70\textrm{k}=1,!
                    C(!,j)=C(1,, ) + BRANCH(1,k)*C(K,j)
                    continuF
            C(I,J)=C(I,J)*(LMR(1)/(LM(1)-LM(J)))
        75 CONTINUE
            C(1,1)=00(t)-D(t)
            OO 80 J=1,11
                    C(1,1)=C(1,1)-C(1,J)
        8O CONTINUE
        8 5 \text { CONT I NUE}
    C END OF CALCULATION OF O(1), C(1, 1).
        go conit inue
    C COMPGTE O&I', 2wIGLII!, I=1,N
        00 110 I=1,N
            TEMPQ=0.0
            TE MPOW=0.0
            EXLI=EXPFUN(-LMIT)*OBLE(T))
            EXILI=EXPFI(LMSI),DBLE(T))
            11=1-1
            00 100 J=1,11
                    TEMPQ=TFMPQ+C(I,J)*(EXPFUN(-LM(J)*ORLE(T))-EXLI)
                    TEMPQW=TEMPQW+C(I,J)*(EXPFIILM(J),ORLE(T))-EXILI)
    100 CONTINUE
            Q(I)=TEMPQ*D(I)*LM(I)*EXILI*QO(I)*EXLI
            OWIGL\I)=TEMPQW+D(I)*(DBLETT)-EXILI)+QO(I)*EXIL!
    110 CONTINUE
    120 RETURN
        END
```

```
LEVEL 21.8 ( JUN 74 ) O5/350 FORTRAN: H
    CIMPILER OPTIONS - NAME= YAIN,OPT=02,LINECNT=60,SILE=0OOOK,
                                STURCE, EPCOIC,NनLIST,NTOECK,LIAD, 4AP, NOEDIT, 1D, %OXQEF
    DOURLE PRECISION FUNCTION EXPFUN(T)
    OOUBLE PRECISION T
    CXOFUN=C.OOO
    IFIT.LT. -180.0001 GO TO 10
        FXPFUN=)EXP(T)
    10 RETURN
    END
```

```
```

LEVEL 21.8 (JUN 74) DS/33) FORTRAL: H

```
```

LEVEL 21.8 (JUN 74) DS/33) FORTRAL: H
CCMPILER OOTTONS - NAME= 4ATN,OO%=02,LINECH*=60,51ZE=0000K,
CCMPILER OOTTONS - NAME= 4ATN,OO%=02,LINECH*=60,51ZE=0000K,
SNIJRCE,FBCDIC,NOLIST,NOOECK, LOAD,MAP,NOFDIT, ID,NIXREF
SNIJRCE,FBCDIC,NOLIST,NOOECK, LOAD,MAP,NOFDIT, ID,NIXREF
15N 000?
15N 000?
ISN 0003
ISN 0003
ISN 0004
ISN 0004
I SN 990%
I SN 990%
ISN 9007
ISN 9007
ISv 0008
ISv 0008
15N 0009
15N 0009
ISN 0010
ISN 0010
ISN 001:
ISN 001:
ISN 0012

```
ISN 0012
```

```
    DOUFLE DRECISION FUNCTION EXPFI(LM,T)
```

 DOUFLE DRECISION FUNCTION EXPFI(LM,T)
 DOUBLE PPECISION LM,T,LMT, S. PFUV
 DOUBLE PPECISION LM,T,LMT, S. PFUV
 LMT=LM*T
 LMT=LM*T
 IFILMT,L* * 0.0300) GO TO 10
 IFILMT,L* * 0.0300) GO TO 10
 GO TO 20
 GO TO 20
 10 XPFI=T*(f(f)(LLMT/7.000-1.0D0)*LMT/6.000+1.000)
 10 XPFI=T*(f(f)(LLMT/7.000-1.0D0)*LMT/6.000+1.000)
 *(MT/5.000-1.ODO)*L4T/4.000+1.0DOI*LMT/3.000-1.0001
 *(MT/5.000-1.ODO)*L4T/4.000+1.0DOI*LMT/3.000-1.0001
 * *LMT/2.000+1.000)
 * *LMT/2.000+1.000)
 G0 शO 30
 G0 शO 30
 20 EXPF 1= (1.000-EXPFUN(-1.MT) I/L.M
 20 EXPF 1= (1.000-EXPFUN(-1.MT) I/L.M
 30 RETURN
 30 RETURN
 ENO
    ```
    ENO
```



```
15N 0030
15 N 0031
15 N 0032
ISN 0033
ISN 0034
ISN 0035
ISN 0036
ISN 00;7
ISN 003 B
```

```
    CALL RESTOIN,TK,TH,BRANCH,ATEMP,PTEMD,TI,TR,
```

 CALL RESTOIN,TK,TH,BRANCH,ATEMP,PTEMD,TI,TR,
 AMTEMP,TINEA(KA), IDIM)
 AMTEMP,TINEA(KA), IDIM)
 00 15 T=1,N
 00 15 T=1,N
 AWIGL(I,KA)=AWIGL(I, KA)+AWTEMP(I)
 AWIGL(I,KA)=AWIGL(I, KA)+AWTEMP(I)
 ACT(I,KA) = ATEMP(I) + ACTI!,KA)
 ACT(I,KA) = ATEMP(I) + ACTI!,KA)
 15 CONTIVUE
15 CONTIVUE
20 CONTINUE
20 CONTINUE
25 CONTINUE
25 CONTINUE
RETURN
RETURN
EN!

```
    EN!
```

```
LFVEL 21.8 I JUN 74 , OS/36) FOQTOAN H
    CCMPILFR ODTTCNS - NAME= 4ATN,ONT=O2,LINECNT=6O,STZE=0DOOK,
                                SOUPCE, EBCDIC,NOLIST,NODECK,LOAD,MAP,NDEOIT, ID,NOXFFF
ISN 0002
ISN 0003
ISN 0004
ISN 0OO5
ISN 0006
I SH 0007
ISN 0008
ISN 00O9
    SURROUTINE IEROMIN,M,AI
    DIMENSTCN A(N,M)
    OO 10 1 = 1,N
        00 10 J=1,M
        A( ( , J) =0.0
    1O CONT INUE
        QETURN
        END
```

```
LEVFL 21.8 I JUN 74 1 OS/26% FORTRAT, H
    COMPI:CR QPTIOAS - NAME= MATN, OPT=OZ,IIMECNT=60,5TZE=0000K,
                                    SOHECE, ERCOIC,NDLIST,NOOECK,LOAD, MAP,NOEDIT,ID,NOXREF
IS& 30)2 SUAROUTINE ZEFOV(N,V)
ISN 0093
1540004
IS4 0005
I<4 0006
15440007
    OIAENSION VINI
    On 10 I=1,N
    10V(i)=0.0
    RETURN
    EN)
```



```
LEVFL 21.8 (JUN 74 1 OS/360 FORTRAN H
    COMPILER OPTIONS - NAME = MAINFOPT=O2,LIIIECNT=60,SIZE=000OK,
                            SOUQCE,ERCOIC,NOLIST,NODECK,LOAD,NAP,NOEOIT,1D,NOXREF
    ISN 0002 SURROUTTNE SVALIT,S1,52,53,54)
    C
    C RETURNS VALUES OF INTERCEPTION FRACTIONS S1,S2,S3,S4 AT YIME T (DAYS).
    C
        COMMON /HRVST / HARTIM130),NHARV
        COMMOIV /EMERG/ EMERGE{30)
        DOUBLE PRFCISION HARTIM
        QEAL M,MFOSI
        MFOS 1 = 1.0
        SLO=0.00075
        ATAU=1.24E-4
        S1=0.0
        00 1 I= 1,NHARV
        IFIT,GE,EYERGF(I),AND, T,LT.HARTIMIIII GO TO 2
        I CONTINUE
    C IF T DOES NOT LIE BETWEEN EMERGE{I) AND HARTIMII) FOR ANY I=1 TO
    C NHARV, THEN SI=0.
        GO TO 3
        2 TO=EMERGE (I)
        M=4FOS1*(1.O-EXP(-ATAU*(T**2-TO**2):1)
        SI= SLO*(M**0.545)*250.0
        3 CONTINUE
        IFISI.LE, 1.0) GO TO 4
    C SI SHOULD NCT EXCEEO 1.
        WRITE(3,5) S1
        5 FORMAT('OSI VALUE (',F10.3,') TDO LARGE')
        STOP
    4 S2=1.0 -S1
        S3=0.25
        $4=0.75
        RETURN
        END
```

```
LEVEL 21.8 I JUN 74, OS/2E) FORTRAN H
    COMPILER ODTIONS - NAME = MATN,ODT=OZ,LTNECNT=60,STZE=000OK,
                            SOURCE,FBCOIC,NOLIST,NOCECK,LIOAD,MAP,NOFDIT,IO,NOXREF
ISN 0002
    C
    C DEFINES HARVESI TIMES (DAYS)
    HARTIMIII, I=1 TO NHAL
C AND COMMUNICATES THESE VALUES TO SIJRROUTIVE CALC VIA
C COMMOV BLOCK/HRVST/.
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
I SN 00OR
ISN 0009
ISN 0010
    DIUBLE DRETISION HARTTM
    COMMON /EMEDG/ FMFRGF(30)
    COMMON /HRVST/ HARTTH(30), NHARV
    NHAQV = 1
    CMERGEI1% = 70.
    HARTIM(1) = 175.000
    QETURN
    ENO
```

```
LEVFL 21.8 ( 51N 74)
OS/36) FORTRAN H
```



```
LEVEL 21.8 (HUN 74 1 OS/360 FORTRAR H
    CCMPILER CPTTONS - NAME= MATN,OPT=02,LTNECNT=60,512E=0000K,
                            SOURCE, ERCDIC,NOLIST,NODECK,LOAD,MAP,NOEDIT, IO,NOXREF
15N 0.102
    SUBROUTINE QUERYIT, IANS)
    c
        C IS CALLFD BY SUBROUTINE CALC TO DETERMINE WHETHER OR MOT TTME T (DAYS) IS
        C A HARVEST TIME. THE VALUE OF IANS IS SET TO
        C
        C I IF T IS A HARVEST TIME,
        C O IF NOT.
        C
        C OUERY SEARCHES THE ARRAY HARTIM, WHICH IS DEFINED BY SURROUTINE HAOVST,
        C IN GRDER TO OETERMINE WHETHER OF NOT T IS A HARVEST TIME, I.E. WHETHER
        C OR NOT T= HARTIM(J) FOR SOME }J=1\mathrm{ TO NHARV.
            CTMMON /HRVST/ HARTIMI3O), NHARV
            DOURLE DRECISION HAR F;M, %
            IANS = O
            DO 1 J=1,NHARV
            IF (T.EG.HARTIM(J)) IANS=1
            IFIIANS.EQ.1) GO to 2
    1 CONTINUE
    2 RETURN
        END
```

```
LEVEL ?I.B ( JUN T4) OS/260 FORTRAN H
    CTMPTLER OPTTINS - NAVE= NATN,OPT=02,LTVECNT=50,SIZE=000OK,
                        SOURCE,ERCDIC,NILIST,NOOECK,LOAO,MAD,NDEDIT, ID_NDXREF
    C
    C RAGTIME
```



```
    C PROGRAM AUTHORS : J.C.PLEASANT, L. Y.MCOOWELL-BCYER, AND G.G.KILLQUGH
                HEALTH AND SAFETY RESEARCH DIVISION
                    OAK RIDGE NATIONAL LAGOQATORY
                                OAK PIDGE, TENNESSEE 37830
```



```
    C PTR IS USEC TO REPRESENT THE UNIY NUMBER ASSOCTATEO WITH THE LINE
    PRINTER, RCR IS USED TO REPRESENT THE UNIT NUMBER ASSOCIATED WITH
    THE CARD READEO.
ISN 0002?
I SN 0003
15N 0004
ISN 0005
15N 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014
15N 0015
ISN 0016
ISN 0017
ISN 0018
            CTOMMON /TOOFV & PTR,ROR
            INTEGER DTR,ROR
            RDR = 5
            PTR = 6
C
    IFLAG=0
C IFLAG IS A DARAMETER PASSED IN SUGROUTINE INPIIT WHICH OIRECTS
C THE FLOW OF THE OROGRAM. IF IFLAG IS SET TO ZERO, THE ENTIRE
C SURRGUTINE IS EXECUTED ANO IFLAG IS SET EQUAL TO OHE. THIS
C ENABLES A BRAUCH TO AE MADE AROUND THE PORTION OF COOE THAT INPUTS
C. THE NUCLIDE INOEPENDENT DARAMETERS ON SUCCESSIVE CALLS FOR THE
C VARIOUS CHAINS BFING STUDIEO.
C
READ (RDR,10) NCHAIN
    10 FORMAT (10X,12)
    C
    DO 20 I = 1.NCHAIN
        CALL INPUT (IFLAGI
        CALL OUTOAT
        CALL CALCIN
        CALL HARVST
        CALL CALC
        CALL CHECK
        2O CONT INUE
    C
        STOP
    END
```


Job Control Language (JCL) fc" RAGIIME

Job control language varies from one computer installation to another. For execution of RAGIIME on the IBM 360/91 at Oak Ridge National Laboratory, the following JCL arrangement has been used:

```
//jobname JøB (charge no.), 'X-10 7509 PLEASANT'
\(/ / *\) CLASS \(\bar{C} P U 9 \overline{1}=44 \mathrm{~S}, \mathrm{I} \emptyset=2.8\), REGI \(\emptyset \mathrm{N}=270 \mathrm{~K}\)
/*ROUTE XEQ CPU91
```



```
//F̄Ri. \(\bar{S} Y S I N \_D D_{-}^{*}\)
source decks (RAGTIME MAIN and subroutines)
\(\left\{\begin{array}{l}/ \star \\ / / L K E D . G E A R \text { DD } D S N=T . G G K 05716 . G E A R, D I S P=S H R, \text { UNI } T=S P D A, \\ / / D C B=(R E C F M=F B, L R E C L=80, B L K S I Z E=800) \\ / / L K E D . S Y S I N D D * \\ \text { INCLUDE_GEAR }- \\ / \star\end{array}\right.\)
\(/ /\) GØ. FT03F001_DD_SYSØUT \(=A, D C B=(\) RECFM \(=V B A, L R E C L=137, B L K S I L E=1000)\)
//GØ.FT01F001_DD_*
data deck
/*
//
```

The underline (_) is used to indicate a space. The $\mathcal{J C L}$ shown above makes use of compiled code for GEAR stored in the system as a catalogued data set and made available to the Linkage Editor through the JCL statements comprehended by the brace. If the subroutines of the GEAR package are to be compiled along with RAGTIME, they should be included with the source decks and the JCL statements in the brace deleted. The additional compilation time would require that the limits on the CLASS card be revised. We note also that other sets of input data (e.g., radionuclide chains with more than two species or multiple problems within one job) will require longer running times. Moreover, the running times will vary greatly with the model of IBM system and other local factors.

APPENDIX B
SAMPLE RUN OF THE RAGTIME CODE

APPENDIX B

Output from a sample run of the currently implemented version of RAGTIME is provided in this appendix. Values for all state variables are listed, and concentrations in grains, milk, and beef are plotted versus time in Fig. B.1, B.2, and B.3. A number of parametric values had to be specified and options chosen to complete this run (see Table B.1). Table B. 2 exhibits a listing of the data cards used for the sample run.

Following is a brief description of values and options specified for the sample run conducted, which considers a chronic deposition term $\left(F_{i}\right)$ of $1 \mu \mathrm{Ci}{ }^{90} \mathrm{Sr}$ per m^{2} per day, beginning io days prior to emergence of the grain. Compartment E_{i}, representing direct contamination of the surface of above-ground food crops through interception of depositing radionuclides, was considered to consist only of grain crops. In doing so, the time-dependent intercepting efficiency of the edible portion of the crop, the grain, was modeled using empirical values describing projected surface area as a function of plant mass, rather than using the geometric approach (see Sect. 3 discussion). Both empirical values and plant growth curves were obtained mainly from work documented by Miller ${ }^{1}$ of the Stanford Research Institute. An equation describing the mass m of the grain per plant (grams/plant) was adopted from Miller; at any time $\mathrm{t} \geq \mathrm{t}_{0}$,

$$
\begin{equation*}
m=m_{f}^{0}\left[1-e^{-a_{\tau}\left(t^{2}-t_{0}^{2}\right)}\right], \tag{B.1}
\end{equation*}
$$

where $m_{f}^{0}=$ final mass of grain at harvest (grams/plant); $t_{0}=$ time of emergence of grain (days), and ${ }_{\mathrm{a}}{ }_{\tau}=$ growth coefficient (day ${ }^{-2}$). All of these input parameters represent averages for a number of grain varieties. For the sample run of RAGTIME, the following values were used:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{f}}^{0}=1 \text { gram } / \text { plant } \\
& \mathrm{t}_{0}=70 \text { days } \\
& \mathrm{a}_{\mathrm{\tau}}=1.24 \times 10^{-4} \text { day }^{-2}
\end{aligned}
$$

Fig. B.1. Predicted concentrations of ${ }^{90} \mathrm{Sr}$ ard 90 Y in grain $v s$ ime ($1 \mu \mathrm{Ci} \mathrm{m} \mathrm{m}^{-2} \mathrm{day}^{-1}$ deposition of ${ }^{90} \mathrm{Sr}$).

 deposition of ${ }^{90} \mathrm{Sr}$).

Fig. B. 3. Predicted concentrations of ${ }^{90} \mathrm{Sr}$ and 90 Y in beef vs time $\left(1 \mu \mathrm{Ci} \mathrm{m}^{-2}\right.$ day ${ }^{-1}$ deposition of ${ }^{90} \mathrm{Sr}$).

Table B.1. Values of parameters and other quantities used in sample run of RAGIIME for the ${ }^{90} \mathrm{Sr}$, ${ }^{90} \mathrm{y}$ decay chain ${ }^{2}$

Parameter	FORTRAN name	$\begin{aligned} & \text { Specific } \\ & \text { for } \end{aligned}$	value used	Reference or section of report containing discussion
A	A		1,000 m ${ }^{2}$	4
A_{g}	ASUBG		$10,000 \mathrm{~m}^{2}$	4
a_{τ}	ATAU	grains	1.24×10^{-4} day $^{-2}$	App. B
B_{21}	$\mathrm{B}(2,1)$		1 (= radioactive branching radio from ${ }^{90} \mathrm{Sr}$ to ${ }^{90} \mathrm{Y}$)	Sect. 6.1
${ }^{\text {i }}$ v	BSUBIV(I)		$\begin{aligned} & 0.290 \text { for }{ }^{90} \mathrm{Sr} \text {, } \\ & 0.00430 \text { for }{ }^{90} \mathrm{y} \end{aligned}$	2, 3
d	SMALLD		20 cm	4
D_{g}	DSUBG		$0.15 \mathrm{~kg} \mathrm{~m}^{-2}$	4
$F_{i}(t)$	F $(1, T)$		$\mathrm{F}_{1}(\mathrm{t})=1 \mu \mathrm{Ci} \mathrm{m}$ $\mathrm{F}_{2}(\mathrm{t})=0 \mathrm{Ci} \mathrm{may}^{-1}$ $\mathrm{Ci}^{-2} \mathrm{day}^{-1}$	App. B
$\left(F_{f}\right)_{i}$	FSUBF (I)		3.0×10^{-4} for ${ }^{90} \mathrm{~S} r$ 5.8×10^{-3} for ${ }^{90} \mathrm{Y}$	2
$\left(F_{m}\right)_{i}$	FSUBM (I)		$\begin{aligned} & 2.4 \times 10^{-3} \text { for } 90 \mathrm{~S} r \\ & 2.0 \times 10^{-5} \text { for } 90 y \end{aligned}$	2

App. B
3.0×10^{-4} for ${ }^{90} \mathrm{Sr}$
2.4×10^{-3} for ${ }^{90} \mathrm{~s} r$
2

Table B. 1 (continued)

Parameter	FORTRAN name	$\begin{aligned} & \text { Specific } \\ & \text { for } \end{aligned}$	Value used	Reference or section of report containing discussion
λ_{i}^{R}	$\operatorname{LAMRR}(1)$		$\begin{aligned} & \lambda_{1}=6.66 \times 10^{-5} \mathrm{day}^{-1} \\ & \lambda_{2}=0.26 \mathrm{day}^{-1} \end{aligned}$	6
m	M	grains	$\begin{aligned} & \mathrm{m}_{\mathrm{f}}^{0}\left[1-\mathrm{e}^{\left.-\mathrm{a}_{\mathrm{t}}\left(\mathrm{t}^{2}-\mathrm{t}_{0}^{2}\right)\right],} \mathrm{t} \geq \mathrm{t}_{0},\right. \\ & \text { where } \mathrm{t} \text { represents time (days) } \end{aligned}$	1
M_{b}	MSUBB		200 kg	4
M_{f}	MFOSI	grains	$1 \mathrm{~g} / \mathrm{plant}$	App. B
M_{f}	MFO	grains	$250,000 \mathrm{~g}$	App. B
n_{L}	NSUBL	grains	0.455	1
ρ	RHø	soil	$1.4 \mathrm{~g} / \mathrm{cm}^{-3}$	4
S_{1}	S1	grains	$0.00075 \mathrm{~m}^{0.545} \mathrm{w}$	1
S_{2}	S2	grains	$1-S_{1}$	Sect. 3.1
S_{3}	\$3	pasture	0.25	Sect. 4.1
S_{4}	54	pasture	0.75	Sect. 4.1
S_{L}	SL	grains	$0.00075 \mathrm{~m}^{-0.455}$	1
s_{1}^{0}	SLO	grains	0,00075	1

Table B. 1 (continued)

| FORTRAN |
| :--- | :--- | :--- |
| name |\quad| Specific |
| :---: |
| for |\quad| TAUBEF |
| :---: |

Table E. 1 (continued)

Parameter	FCRTRAN name	Specific for	Value used	Reference or section of report containing discussion
$\mathrm{t}_{\mathrm{c}}^{\mathrm{h}}$	TIMCH		2 days	App. B
t_{0}	TO	grains	70 days	App. B
U	U		5.5 liters	4
$\dot{U}(\mathrm{t})$	UDØT	grains	$\begin{aligned} & \text { 2a } a_{T} e^{-a_{\tau}\left(t^{2}-t_{0}^{2}\right)}, t \geq t_{0}, \\ & \text { where } t \text { represents time (days) } \end{aligned}$	1
v_{c}	VSUBC		$10 \mathrm{~kg} \mathrm{day}{ }^{-1}$	4
w	W	grains	く50 plants m^{-2}	App. B

${ }^{a}$ The subscript i used with parameter names refers to the i th nuclide ($i=1$ for ${ }^{90} \mathrm{Sr}$, $i=2$ for ${ }^{90} \mathrm{Y}$).

Table B.2. Format of input parameters for RRGTIME

The specified values were derived from a minimum of data, for the grain of one variety of wheat, and thus may not be the best values to use for other simulations.

We have made use of Eq. (B.1) in deriving time-dependent values for the interception fraction S_{1} and a normalized version of this equation in the derivation of values for the transfer coefficient ($\left.\mathrm{t}_{\mathrm{p}, \mathrm{t}}\right)_{\mathrm{i}}$. The fraction S_{1} may be viewed as the ratio of the projected surface area $\left(\mathrm{m}^{2}\right)$ of the grain to the area $\left(\mathrm{m}^{2}\right)$ of the land on which the crop is grown. Thus, S_{1} is related to the specific area,

$$
S_{L}=\frac{\text { projected surface area of grain }\left(\mathrm{m}^{2}\right)}{\text { mass of grain (grams) }}
$$

by the equation

$$
\begin{equation*}
S_{1}=S_{L} m w \tag{B.2}
\end{equation*}
$$

where $m=$ mass of grain per piant (grams), and $w=$ number of plants per square meter of land. The specific area, S_{L}, may be fitted to an equation of the form

$$
\begin{equation*}
S_{L}=s_{L}^{0} m^{-n_{L}} \tag{B.3}
\end{equation*}
$$

in which S_{L}^{0} and n_{L} are empirical constants and m is the time-dependent mass of the grain per plant as given in Eq. (B.1). This model is adopted from ref. 1 (p. 177). Using the values $S_{L}^{0}=0.00075$ and $n_{L}=$ 0.455 from this document, the value of S_{1} is calculated from Eqs. (B.2) and (B.3) to be

$$
S_{1}=0.00075 \mathrm{~m}^{0.545} \mathrm{w}
$$

For the root uptake compartment T_{i}, again only grains were considered in the sample run. The rate (microcuries day ${ }^{-1}$) at which radioactivity is absorbed by plant roots is represented in Eq. (2.9) by
the term $\left(\tau_{p, t}\right){ }_{i} P_{i}$, where P_{i} represents the radioactivity ($\mu C i$) present in the subsurface soil 1001 associated with one man's food supply. As in our discussion of Eq. (B.1), it follows that the total mass (grams), as time $t \geq t_{0}$, of grain in compartment T_{i} is given by $M_{f}^{0} U(t)$, where

$$
\begin{equation*}
u(t)=1-e^{-a_{\tau}\left(t^{2}-t_{0}^{2}\right)} \tag{B.4}
\end{equation*}
$$

and $M_{f}^{0}=$ total mass (grams) of crop at harvest ime grown on land associated with one man's food supply. The rate of root absorption of radioactivity, ($\tau_{p, t}{ }^{\prime} \cdot P_{i}$ (microcuries day ${ }^{-1}$) is assumed to be the product of the rate of inc,ease of grain mass $M_{f}^{0} U(t)\left(\right.$ grams day $\left.{ }^{-1}\right)$ and the radioactivity concentration in grain (microcuries gram^{-1}), the latter quantity being approximated by

$$
\frac{\mathrm{Biv}_{\mathrm{iv}}{ }_{\mathrm{i}}}{\text { mass (grams) of soil }} \begin{align*}
& \text { in compartment } \mathrm{P}_{\mathrm{i}} \tag{B.5}
\end{align*}=\frac{\mathrm{B}_{\mathrm{iv}} \mathrm{P}_{\mathrm{i}}}{10,000 \times \text { Adp }}
$$

where $B_{i v}=$ concentration of nuclide i per unit fresh weight in plant ($\mu \mathrm{Ci} \mathrm{kg}^{-1}$) divided by concentration of nuclide per unit dry weight in soil $\left(\mu \mathrm{Ci} \mathrm{kg}{ }^{-1}\right) ; A=$ soil area used for crop production, chosen as 10^{3} m^{2} here; $\mathrm{d}=$ plow depth, assumed to be 20 cm ; and $\rho=$ soil density, assumed to be $1.4 \mathrm{~g} \mathrm{~cm}^{-3}$ (dry weight). This derivation then leads to the equation

$$
\begin{equation*}
\left(\tau_{p, t}\right)_{i}=\frac{M_{f}^{0} \dot{U}(t) B_{i v}}{10,000 \times A d \rho}, \tag{B.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{u}(t)=2 a_{\tau} t \cdot e^{-a_{\tau}\left(t^{2}-t_{0}^{2}\right)} \tag{B.7}
\end{equation*}
$$

Factors describing growth rate [i.e., $\dot{U}(t)$ and a_{T}] were again derived from empirical data available for grains ${ }^{1}$ and are consistent with those used in estimating interception of airborne radionuclides by grains. Values of $\mathrm{B}_{\text {iv }}$ (see $T^{\text {Lio B. B.1) were derived from empirically obtained }}$ data for the elements Sr and $\mathrm{Y},{ }^{2,3}$

For compartments B_{i} and C_{i}, respectively representing beef and milk concentrations of ${ }^{90} \mathrm{Sr}$ and 90 y , all parameters were defined and assigned values in sect. 4 of this document, with the exception of $\left(\tau_{\text {exc }}\right)_{i},\left(F_{f}\right)_{i},\left(F_{m}\right)_{i}, t_{b}^{h}$, and t_{c}^{h}. A constant value of 0.002 day $^{-1}$, adopted from TERMOD, ${ }^{4}$ has temporarily been assigned to ($\left.\tau_{\text {exc }}\right)_{i}$. This value for (${ }_{\text {exc }}$) ${ }_{i}$ represents the fractional weight gain per day for a mature steer, and thus implies that dilution of the elemental concentration is due only to growth. In this sense, it represents the lower limit for $\left(\tau_{\text {exc }}\right)_{i}$, and thus may underestimate loss from the beef compartment because metabolic turnover, which may be element-specific, is neglected. Values for F_{f} and F_{m} (Table B.1) were taken fom a review of literature concerning uptake of these elements by cattle and subsequent transfer to meat and milk, respectively.

The holdup times for compartments B_{i} and C_{i} were specified using values either given in, or derived from, the U. S. Nuclear Regulatory Commission's (USNRC) Regulatory Guide 1.109 (October, 1977). ${ }^{5}$ The assumed time between slaughter and consumption of beef $\left(t_{b}^{h}\right)$ was 20 days, and between milking and milk consumption ($\mathrm{t}_{\mathrm{c}}^{\mathrm{h}}$) was 2 days, the latter representing one-half of the total time given for transfer from feed, thrcugh milk, to man. For compartments E_{i} and T_{i}, holdup times were not specified, but rather the concentrations after harvest are printed at each output time so that the value of this parameter is left to the user's discretion.

REFERENCES - APPENDIX B

1. C. F. Miller, Operation Ceniza-Arena: Fetention of Fallout Farti--les from Volcan Irazu (Costa Rica) by Plants and People, Part Three, SRI-MU-4890, Stanford Research Institute, Menlo Park, California (December 1967).
2. R. E. Moore, C. F. Baes III, L. M. McDowell-Boyer, A. P. Watson, F. O. Hoffman, J. C. Pleasant, and C. W. Miller, AIRDOS-EPA: A Computerized Methodology for Estimating Environmental Concentrations and Dose to Man from Airborme Releases of Radionuclides, ORNL-5532, Oak Ridge National Laboratory, Oak Ridge, Tennessee (June 1979).
3. E. M. Romney, J. W. Neal, H. Nishita, J. H. Olafson, and K. H. Larson, "Plant Uptake of Sr90, Y91, Ru106, CS137, and Ce144 from Soils," Soit Sci. 83, 369-376 (1957).
4. R. S. Booth and S. V. Kaye, A Preliminnry Systems Analysis Model of Radioactivity Transfer to Man from Deposition in a Terrestrial Environment, ORNL/TM-3135, Oak Ridge National Laboratory, Oak Ridge, Tennessee (October 1971).
5. U. S. Nuclear Regulatory Commission, Caloulation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Regulatory Guide 1.109, Revision 1, USNRC, Washington, D. C. (October 1977).
6. D. C. Kocher, Nuclear Decay Data for Radionuclides Occurming in Routine Releases from Nuclear Fuei Cycle Facilities, ORNL/NUREG/ TM-102, Oak Ridge National Laboratory, Oak Ridge, Tennessee (August 1977).
7. J. D. Zimbrick and P. G. Voillequé, ed., 1967 CERT Progress Report, Controlled Environmental Radioiodine Tests at the National Reactor Teating Staticn, Progress Report Number Four, ID0-12065, Idaho Falls, Idaho (December 1968).
8. R. G. Menzel, "Factors Influencing the Biological Availability of Radionuclides for Plants," Fed. Am. Soc. Exptl. Biol. Proc. 22, 1398-1401 (1963).

NUREG/CR-1196
ORNL/NUREG/TM-371
Distribution Category RH

INTERNAL DISTRIBUTION

$$
\begin{array}{rll}
\text { 1. C. } & \text { F. Baes III } \\
\text { 2. } & \text { B. A. Berven } \\
\text { 3. } & \text { J. Carney } \\
\text { 4. } & \text { R. } & \text {.. Chester } \\
\text { 5. } & \text { S. } & \text { J. Cotter } \\
\text { 6. } & \text { D. } & \text { E. Dunning } \\
\text { 7. } & \text { K. } & \text { F. Eckerman } \\
\text { 8. } & \text { E. } & \text { L. Etnier } \\
\text { 9. } & \text { D. } & \text { E. Fields } \\
\text { 10. } & \text { R. } & \text { H. Gardner } \\
\text { 11. } & \text { C. } & \text { T. Garten, Jr. } \\
\text { 12. } & \text { F. } & \text { F. Haywood } \\
\text { 13. } & \text { G. } & \text { S. Hill } \\
\text { 14. } & \text { F. } & \text {. Hoffman } \\
\text { 15. } & \text { S. } & \text { V. Kaye } \\
16-19 . & \text { G. } & \text { G. Killough } \\
\text { 20. } & \text { D. } & \text { C. Kocher } \\
\text { 21. } & \text { C. } & \text { A. Little } \\
\text { 22-25. } & \text { L. } & \text { M. McDowell-Boyer }
\end{array}
$$

26. H. R. Meyer
27. C. W. Miller
28. T. Myrick
29. F. R. O'Donnell
30. R. V. O'Neill
31. D. C. Parzyck

32 P. S. Rohwer
33. G. Schwarz
34. R. W. Shor
35. J. E. Till
36. C. C. Travis
37. A. P. Watson
38. J. P. Witherspoon

39-40. Central Research Library
41. ORNL Y-12 Technical Library

42-43. Laboratory Records Department
44. Laboratory Records, ORNL-RC
45. RSIC Library
46. ORNL Patent Office

EXTERNAL DISTRIBUTION

47. D Kaui, Science Applications, Inc., 1 Woodfield Place Building, 1701 East Woodfield Road, Suite 819, Schaumburg, IL 60195.
48. Y. C. Ng, Lawrence Livermore Laboratory, University of Calitornia, Livermore, CA 94550.
49. J. C. Pleasant, Department of Mathematics, East Tennessee State University, Johnson City, TN 37601.
50. F. W. Whicker, Department of Radiology and Radiation Biology, Colorado State University, Fort Collins, CO 80523.
51-52. Technical Information Center, ORO, Oak Ridge, TN 37830.
51. Office of Assistant Manager, Energy Research and Development, DOE-ORO, Oak Ridge, TN 37830.
54-233. Given distribution according to NRC Category RH.

[^0]: READ (RDR,50) PARNUC, DAUNUC, BRATI \varnothing
 $50 \operatorname{FgRMAT}(A 8,5 X, A 3,5 X, E 13.6)$

