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ABSTRACT

This report presents a model that extends the traditional model of
electricity demand to account for intra-period load variation, the kind
of variation that is important for evaluating marginal-cost-reflecting
price structures. The time-of-day rate is one such price structure.

The traditional model of electricity demand explains inter-period demand
variation. It says nothing about load variation. The report explains
how a model that integrates with previous studies of electricity demand
might be formulated. It specifies two concrete models within this
framework and estimates them for a number of different utility companies.

The model's within-sample-period performance in predicting peak
loads is presented for one version of the model extension along with
estimations for other variations. In addition a number of plots of
actual load distributions, a summation of load variation information,
against the actual load distributions, are presented and used to evaluate

the performance of specific models.
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1. INTRODUCTION

Before proceeding to the topic of this report, it may forestall
confusion later if a few potentially misleading terms are clarified now.
Economists' relatively recent interest in electricity consumption,
historically a domain for engineers, has resulted in confusing uses of
the same terms. Economists traditionally use the term 'demand' to mean
one thing while engineers use it to mean another. To avoid potential
misunderstanding, 'demand' in this report shall be used in the econorist's
sense to refer to 'kilowatt hours (kWh) of consumption per unit of time.'
Another potentially confusing term 'load' shall refer to 'instantaneous
consumption measured in kiiowatts (kW).' And hourly units shall be
considered to be adequate to measure instantaneous consumption; hence,
we shall use the term 'hourly load' not 'hourly demand'; thus 'peak
load' will refer to 'maximum hourly load' and 'minimum load' to 'minimum
hourly load'; no other discrepancies between 'demand' and 'load' will
be sanctioned.

Since demand refers to consumption per unit of time, it will prove
useful later to attach a name to the time unit. The term 'accounting
period' will be used to refer to "the unit of time used to measure demand
in a given application.' Thus accounting periods of a month, a quarter
or a year might arise depending on what sort of model is being considered.
In this report the accounting period is a year because a model of
electricity demand per annum is being considered. Hence, in this report,
when the term 'peak load' is used, for example, it will refer to 'peak
load per annum.' In portions of the report, however, the term 'accounting
period' will be explicitly used. This is to emphasize that the state-
ments can apply to any model of electricity demand not simply a model
of annual electricity demand.

Having hopefully laid aside potential terminological difficulties,
the remainder of this section addresses the purpose of the report and
the motivation behind {it.

kvaluation of the necessity to build additional electric power gen-

eration capacity has been a recurring problem for the Nuclear Regulatory



Commission (NRC), which regulates nuclear power installations. From the

NRC's point of view, "need for power' assessments, as they are called,
must be independent of an applicant utility's assessment. 1In May 1976,
the NRC commissioned ORNL to develop a forecasting model of electricity
demand ro support their independent assessments. The resulting model
was first published in October 1978;' it provides forecasts of state-
level electricity demand (SLED) and average price.

However, the SLED model (as it will be called in this report) is a
compromise between the NRC's need to have a model with wide geographic
coverage and one that forecasts at the service-area level. The SLED
model also does not forecast peak load which i~ important for determining
capacity needs. Yet a model with all these capabilities that has been
vaiidated for all service areas in the continental U.S. (as was done for
states with SLED) is out of the question. To satisfy the NRC's needs, a
compromise solution was undertaken: extend the SLED model to forecast
demand, average price and peak load at the service-area level but
validate the model for only a few service areas geographically dispersed
to represent climatic differences in the U.S. The resulting model can
then be estimated on a case-by-case basis as required.

These extensi ns to SLED have been developed along two lines. One
extens ion focuses « \ disaggregating SLED predictions of demand and
average price to service-area predictions of the same quantities. It
constructs models of demand ratios (service-area to state) and average

price ratios.?

The other extension which is presented in this report
focuses on estimating peak load. But the model presented in this report
also estimates miaimum load and the corresponding load duration curve.

The process by which load duration curve, peak’ and minimum" load
estimates are produced is depicted in Fig. 1. The SLED model estimates
ustate-level demand and average price for each consuming sector (denoted,
respectively, by YR’ YC’ YI and PR’ PC’ PI). These estimates are then
disaggregated into service-area estimates of demand and average price
(denoted, respectively, by Ygo yc} Yq and Prs Peo pI) by the service-
area disaggregation model.”® An estimate of aggregate demand

(y = Yptve t yI) is then computed. Aggregate demand, y, is then fed
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Fig. 1. The LD model extends the SLED model to forecast peak
and minimum loads and the load duration curve.

into the load distribution model (LD) which estimates the service-area
load duration curve, peak and minimum loads conditioned on the aggregate
demand estimate.

The LD model is named for its relationship to the load duration
curve; the relationship between the two is described in the next section.
Before proceeding on, it may be useful to note that the LD model

can be used in conjunction with almost any model of electricity demand.
The essential requirement is that the conditional forecast of aggregate
demand (y) be expressed in the same time unit (i.e., accounting period)
as the LD model. For instance, an annual aggregate demand estimate (y)

would not be useable if the LD model were set up to take a monthly



aggregate demand estimate. The electricity demand and LD models must be

conformable in the sense that they both use the same accounting period.



2. BACKGROUND

This section deals with two topics: (1) load duration curves and
how they can be estimated and (2) the fundamental loss of important
information that always occurs in models of annual electricity demand.
A major point in the report is that a valuable portion of the lost
information can be recovered by estimating the load duration curve in
conjunction with aggregate electricity demand. Thus topics (1) and (2)
above are closely related to one another. This section provides an
overview of how (1) and (2) can be related in a model framework; but,

details are left to section four.

2.1 Load Duration Curves and Their Estimation

The load duration curve is an analytical tooli widely used in the
electric power industry. It provides a powerful summary of how load has
been distributed over an accounting period, usually a year. Figure 2
exhibits a typical annual load duration curve. The curve is designated
by g(r) where t is the proportion of elapsed time in the accounting
period (i.e., 0 € 1 € 1); and L [identical to g(v)] designates con-

tinuously measured electricity load which is always greater than or

ORNL-DWG 80-8206

Fig. 2. Typical load duration curve.
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equal to minimum load L,, and less than or equal to peak load L*.
Thus, for any proportion of the accounting period's total time, 14, the
load duration curve tells what level of load was equaled or exceeded.

It can be shown that the area under the load duration curve, g(1),
in Fig. 2 can be expressed as a function of aggregate demand, y, of Fig.
1. 1In fact, this link is required to estimate a load duration curve
from the SLED . as outlined in Fig. 1. To establish this relation-
shin, it is necessary to re-express the load duration curve as a cumula-
tive probability distribution, F(L). In the remainder of the report,
'F(L)' shall be referred to as the 'load distribution' which will be
abbrevia*ed as LD. Note then that as a distribution function F(L) must
satisfy the following condition:

0<F(L) €1 for O0<L<L*. (1)

Since L = g(1) is the expression for the load duration curve, F(L)
can be expressed in terms of the inverse function for g(r). This inverse

function is

lif0<L<L*

gml(L) = (2)
6(L) if L, <L <L*

where G(L) is the inverse of the load duration curve between minimum and
peak loads and is assumed to be twice differentiable. The distribution
function F(L) satisfying condition (1) may then be expressed in terms

of G(L)® as:

04f 0SL <L,
F(L) = 1 - g~1(L) = (3)
1-6(L) it L, <L <L,

It is easy to see that the portion of F(L) below L, being equal to zero
contributes nothing to F(L) and hence can be dropped.
The load distribution is illustrated in Fig. 3.
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defined simply as the first derivative of F(L), i.e., f(L) = %EF(L) - is

\
\
|
The probability density function f(L) corresponding to F(L) — |
exhibited in Fig. 4. This density is required for establishing the

relationship between aggregate demand, y, in Fig. 1 and the load dura-
tion curve g(tr) of Figs. 1 and 2. Their relgtionship is given by:

*

1 L
f g(t)dr = f LEf(L)dL = E(L) . (4)
0 i
ORNL-DWG 80-8207
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Fig. 4. Probability density of load.




-

The term to the right «’ rhe identity sign in (4) is derived by making
the transformation L = The term on the far right designates the
expectation (or averag. of L which _,;: Lf(L)dL defines.

When L is observed in finite units (hourly in this case), then
aggregate demand, y, is equal to average hourly load, E(L), times the

number of observations, N, of hourly load in the accounting period — i.e.,
y = NE(L) (5)

where E(+) designates the mathematical expectation or average of L. Thus
aggregate demand, y, is related to the corresponding load duration curve
through E(L), average hourly load. One could think of average hourly
load as a summary measure characterizing the load duration curve;

indeed, this would be true under a very restrictive assumption. A more
adequate representation of the load duration curve requires additional
summary measures however.

Equations (4) and (5) link, respectively, the load duration curve to
the load distribution and aggregate demand to average hourly load. We
can thus address the problem of estimating the load duration curve as
the problem of estimating the load distribution. The latter problem can
then be addressed by specifying a parametric family of probability
distributions to represent the load distribution. The problem then
becomes one of estimating the parameters of the family, a problem for
which a number of widely known methods are available. We choose from
among these methods one known as the "method of moments."

Estimating the load distribution (and hence the load duration curve)
involves estimating the parameters of the family of probability distri-
butions as well as the parameters designating peak load (L*) and minimum
load (L,). The problem of estimating the family's parameters by the
method of moments is greatly simplified if hourly loads are normalized
to separate L* and L, from the calculations:-of the other parameters. The

following definitions to normalize loads will serve this purpose:

zZ=(* - L)"1(L - L, (6a)



g, = U - L)y, - L) s (6b)

L designates continuous load measured between L, and L*; z designates
continuous normalized load measured hetwe=n zero and one; Yy designates
the ith hourly load and is considered to be an observation of L; and

zy designates the ith normalized hourly load and must therefore be
considered as an observation of Z.

We shall refer to the load distribution arising from the transforma-
tion (6a) as the normalized load distribution.

Estimation of the normalized load distribution (and hence the
normalized load duration curve) by the method of moments involves
equating theoretical moments of the normalized load distribu:ion with
their corresponding sample moments. The number of theoretical moments
equated to sample moments must equal the number of parameters in the
normalized load distribution. Although any type moments may be used, the
customary practice is to use either raw moments or central moments
(i.e., moments abo.. the mean). We use central moments.

Suppose that the normalized load distribution has n parameters to
be estimated. (Recall that the parameters L* and L, are eliminated from
these calculations.) Estimates of the n parameters may be calculated by

solving the following n equations (LF designates load factor):

N
M= Y @ - =2, ) (6c)
i=1
N
My =Nz = Doz = VK - L)ItAR - L] . (6d)
i=1

As long as N, the sample size of hourly loads, remains relatively
close to the 8760 hours in a year »r in whatever accounting period is
being used), the estimates of parameter values obtained by solving
(6c)-(6d) may be treated as population values rather than as statistics.

As the sample size N decreases, the need to account for the sampling
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distribution of the normalized load distribution parameter estimates
increases. This procedure is not a very s.itable one in small samples
mainly because method-of-moments estimators are not as efficient as
ones obtained by other methods; and, moreover, their efficiency tends
to decrease as higher moments (i.e., higher r) are used.

In this report system hourly loads are used to estimate normalized
load distribution parameters. Typically ninety-five percent or more of
each year's observations are included. Thus the small sample problem
is not a problem here; yet, it is still important to recognize its
potential presence.

So far we have established how a normalized load duration curve
can be estimated from hourly load data. Two additional estimation
problems still need to be considered: (1) how to estimate peak §
and minimum (L,) loads and (2) how to estimate year-to-year ckanges in
the normalized load distribution in terms of cxplanatory variables of
policy interest. Both problems, it turns out, are solved in the same
way: by specifying an appropriate numbter of econometric equations equal
to the number of parameters in the specified normalized load distribu-
tion plus one additional econometric model for estimating peak load.
This will yield n+l estimates of moments of normalized load and n+2
parameters; the last parameter is identified by using the annual esti-
mate of total energy (i.e., aggregate demand), y; recall that the load
distribution model assumes that an estimate of y is conditionally given
(see Fig. 1).

From these n+l econometric models uand the conditionally given
prediction of aggregate demand, a total of n+2 predicted values are
obtained for each year. Each predicted value is a prediction of one of
the moments discussed earlier. Thus, load distribution predictions are
calculated by substituting the predicted moments for the sample moments
in equations (6c)~(6d) and solving simultaneously. Load distribution
(and hence load duration curve) estimates are predicted for each year in
this way.

In section four the specification of the econometric models and a
parametric family of distributions to represent the load distribution

are discussed in more detail.
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2.2 Temporal Aggregation

We are concerned in this report with a model (i.e., the SLED model)
that predicts annual electricity demand based, of course, on historical
observations of electricity consumption. Such a model provides useful
information on the underlying determinants and pattern of electricity
consumption over time — that is, from year to year in this case. But
such a model is virtually useless if information about intra-year varia-
tion in electrical load is required. Evaluation of time-varying — e.g.,
seasonal and time-of-day — rates requires such information.

One might say that knowledge of intra-year variation is lost since
annual consumption is the sum of hourly loads in a given year. We refer
to this process of summing over time (i.e., summing hourly loads in this
case) as temporal aggregation. Thus temporal aggregation poses a funda-
mental problem if all that is available on the one hand is annual con-
sumption data and, on the other, one needs, for example, to evaluate the
policy implications of a time-varying rate.

The data typically available from published sources to estimate
annual electricity demand is of two forms: unit averages and point
samplings. A unit average is the aggregation of a variable that varies
continuously over time. Annual electricity consumption, for example, is
the unit average of electrical load per year. Point sampling refers to
variables that do not vary continuously over time; measurement of the
variable is made at a particular point in time. The housing stock is a
variable for which point samples might be taken. The annual housing
stock might refer to the stock of houses in place at the beginning of
the year, at the end or at some intermediate point.

Perhaps some insight can be gained into the temporal aggregation
problem if we first specify a continous time model of electricity load
then compare it to the annual model often estimated. A model of elec-
tricity load varies continuously in time and, hence, theoretically is
not cubject to distortion arising from temporal aggregation. Let
aggregate (i.e., cross-sectionally aggregate) electricity load be expressed

as follows as a functional in continuous time, &:
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y(8) = x(8)b +u(d) , 0S<S§<T (7

where & denotes continuous real time in an intcrval of length T; y(4)
is aggregate electricity load; x(8) = [x%,(8), x2(8), ..., xM(G)l‘ is
a vector of M explanatory variables measured in continuous time;
b= (by, by, «us, bM)’ is a set of M parameters; and u(8) is a stochastic
residual.

The model of equation (7) has no temporal aggregation problem. It
conforms to our intuitive conception of how electricity is consumed.
It can be used to evaluate the policy implications of time-varying rates.
Yet, even with these appealing properties, the continous time model of
equation (7) can onl- be used in very special circumstances. The data
required to estimate its parameters rarely, if ever, are available from
published sources. Such a model is useful primarily in experiments
where the required data is assembled. In the residential sector, for
example, one important explanatory variable recuires the continuous
measurement of usage for the electric space heati~g system, a variable
which is rarely available. Even, if more realistic compromise variables,
like temperature near the household, are considered, they practically
never can be adequately matched to hourly usage not to mention that
the data collection effort required for such variables is a obviously
formidable one.

Because its burdensome data requirements a* rarely met, the con-
tinuous time model of electricity load ir usually replaced in much

applied work with the following model:

Yt = X;B + Ut tm 1, 25 5009 8 s (8a)

In this model electricity load is unit averaged, i.e.,

t+a
Y -f y(8)ds , 0<ac<l £ 1, vivy B (8b)
t+a-1
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where t enumerates an accounting period of length T and "a" determines

where in continuous time the measurements are made; we refer to unit averaged
electricity load as electricity consumption i1 it is an observation d
electricity demand if it is a theoretical concept used in a model of
electricity demand. In the electricity demand model of equation (8a),

Yt is electricity demand; but the parameter vector B = (B;, ..., BM)

is estimated with electricity consumption data. The vector of explanatory

variables is comprised of both unit-averaged values, i.e.,

t+a
th = .I‘ x(8)ds , R iR PRI . - 5w Y wnily' B (8¢c)
t+a-1

and point-sampled values, ie.,

Xjp =x@o) 5 t=1, ey Sy f =1, ., M

where Got is the point in real time that th ‘s measured (e.g., at the
begioning, of the year).

Obviojusly, the model of equations (8) provides no information about
intra-period variation in aggregate electrical load. In this sense it
suffers from a loss of information due to temporal aggregation. As a
result it cannot address policy questions having to do with the intra-
year variation in electricity locad. The most efficient pricing struc-
tures, however, are those that vary with the marginal cost of generating
electricity; and, since the marginal cost of generation tends to vary
continuously, time-varying price structures that reflect marginal cost
variation are more efficient a'd most act.vely discussed as instrumen’s
to stimulate conservation of electrical enmergy resources.

An extension of a model of annual electricity demand to deal with
intra-year load variation adds, therefore, an important policy-considering
capability. We attempt in this report tc move in this direction by
extending the SLED model to predict peak and minimum loads and the load

duration curve.



3. LITERATURE REVIEW

Exiscing studies that attempt to provide a means for predicting
peak electricity load are sparse. The state of development of a demand
model with this capability is rudimentary at best. On ore hand is a long-
standing industry practice that extrapolates peak load from load factor
and demand estimates and on the other is the practice of estimating
peak load directly by applying the peak-load pricing model. In addi-
tion there have been a numbcr of efforts to estimate cont inuous-time
models of electricity load which are also capable of estimating peak
load. Related to this literature are the attempts by some to estimate
load duration curves but the link between this work and empirical
studies of electricity demand and peak load is not clear.

A recent Charles River Associates (CRA) report7 reviews forecasting
procedures for peak load. Since .“at report appeared, there have been
some additions to the existing liteorature but none that were not
covered in the taxonomy presented therein. A review of the literature in
the time-of-day pricing area appears in Aigner and Poirier.® Related to
this literature but beyond the scope of the CRA report is a small body
of literature of methods for estimating load duration curves. Since
that work is pertinent t» the work presented in this report, it is
included in the following review.

The CRA repcrt classifies peak load forecasting methods into three
generic groups which for convenience we re-name: load factor methods.
direct methods, and load curve methods. Two of these methods, the load
factor and direct methods, depend in some way on an estimate of aggregate
electricity demand; the conti' uous-time model of electricity load does
not. The load factor method requires an estimate of aggregate demand
to calculate the peak load estimate; the direct method requires an
aggregate demand estimate if the load factor is to be estimated too.

The first of these classifications, the load factor method, indicates
that the load factor is being moueled, the second indicates that peak
load iz being modeled directly or endogenously; and, the third indicates
vhat the load curve is being modeled.

14
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3.1 Load Factor Methods

Load factcr methods are popular in the electric utility industry.”’
Given an estimate of aggregate demand and an estimate of the corresponding
load factor, peak load is estimated by substituting .ne aggregate demand
estimate into the load factor equation (formed by equating the load
factor estimate to its definition) and solving for peak load.

The simplicity of this method accounts for its popularity in the
utility industry; its weak link to well-accepted theory accounts for
its infrequent use in the economics literature. Actually, the load
factor and aggregate demand presents the same information as peak load
and aggregate demand. And, if peak load, the load factor and aggregate
demand are all estimated by double logarithmic or semi-logarithmic
models with normaliy distributed residuals, transforming from one to
the other is very simple because of the closure property of the normal

distribution under subtraction.

3.2 Direct Methods

The direct method expresses peak load as an endogenous variable
allowing it to be estimated directly. This method is very popular
amongst economists because it fits the paradigm of the peak-load pricing
model.!? There peak and off-peak periods have been treated as separate
commodities. There are, however, two important differences between the
direct method an' the peak load pricing (PLP) model. In the PLP model,
peak is defined over some period of usually several hours; in the direct
method, peak is an instantaneous value. And, in the PLP model, peak and
off-peak demand are priced separately. But in the direct method, this
is not necessarily the case.

Moving to specific studies, the early work comes from the forecast-
ing literature primarily in engineering. These studies classify into
weather-related models and behavioral and weather-related models. An
illustration of the first model type is given in Galiana.'! Because

historical data appear to show that a certain portion of electricity

demand is sensitive to weather changes, the weather-related model is
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built around the maintained hypothesis that peak load is composed of
additive non-weather-sensitive and weather-sensitive components plus a
random component. Often in the early work, a non-weather component was
added as something of an afterthought and thus treated as constant.'?
But, in such cases, the model is little more than a model of peak-hour
weather changes between accounting periods. Gupta'? extended the

crude weather-related/behavioral model somewhat by allowing annual
non-weather-sensitive peak load to be "influenced by economic conditions,
energy conservation and annual kilowatthour sales." However, even
with this extension, his approach is not a very satisfactory one.

It fails, for example, to take account of the interaction between

the behavicral use of electricity-using equipment in responding to
weather changes. That aspect of electricity consumption alone suggests
that weather-senzitive and non-weather-sensitive demand are not addi-
tively separable, ct. Hausman, McFadden, and Kinnucan.!"

Spann and Be:-mvais,l5 Murray, Spann, Pulley, and Beauvais,18
Betancourt and Habermarm.]7 and Uril® provide examples of more sophis-
ticated attempts to estimate weather-related/behavioral models. The
Spann and Beauvais!® work is straightforward in applying the direct
method. Peak load is assumed to be a functicn of a set of explanatory
variables (some of them computed from other data) in a single-equation
model; in their model, peak load is not explicitly related to aggregate
demand. Murray et al.”? and Betancourt and Habermann?! do relate
aggregate demand and peak load to one another. In both of these studies
both aggregate demand and peak load are estimated by statistically
independent single-equation models. Neither attempted to tie the two
together through the stochastic residual despite the fact that peak
loads are contained in aggregate consumption. Murray et al.’? an
expansion of the Spann and Beauvais study,”’® assumed stochastic inde-
pend:nce between the peak and aggregate demand models despite the fact
that Mitchell?“ criticized their earlier study’® for not having the
price elasticities for peak load and aggregate demand interrelated.

Uri's work?® is somewhat different from the studies cited above.

His models are based upon a mixture of stochastic time series and
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econometric methods of estimation. However, beyond the addition of a
stochastic process to a ¢.rect method model, which introduces new
estimation as well as other problems, this work seems to offer little

else that is new.

3.3 Load Curve Methods

By far the bulk of the literature having to do with the estimation
of electricity load is in this classification. The studies fall into
two subcategories: hourly load forecasting models and models designed
to analyze the data from time-of-day (TOD) rate experiments. The latter
models, while important in that they help to provide a substantive
empirical base for developing a more complete theory of electricity
demand, are not very useful outside the enviromment in which they were
developed because most of the explanatory variables measured in the TOD
rate experiments are not available in nonexperimental time series
records.?”’

For hourly load forceasting models, the data problems cited above
do not exist since these c¢fforts have been directed toward the forecast
environment and nse in many cases pure stochastic time series models or a
mixture of the stochastic time series and econometric models. However,

a lack of explanatery variables in pure time series models’® and param-
eter instability in mixed econometric time series models’® make these
studies not very helpful for addressing policy questions related to peak
load, an important requirement for the purposes of this report.

in addition to the forecasting models mentioned above, other single-
equation regression models with special estimation techniques have bcen
applied bv Einhorn®? and Platt?®! to estimate load curves. Both efforts
are, however, overly ambitious for the data used; and, as a consequence,

are not too helpful for the present study.

3.4 Related Literature: Load Duration Curves

Utility companies have historically used load duration curves

because they provide powerful and convenient presentations of the
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variation in electrical loads. As such they are useful for the planning
of future optimal capacity mix and for optimal load dispatch. Until very
recently, however, estimates of load duration curves were only very
crudely done. For planning and dispatch models in fact a customary indus-
try practice was and still is to assume a specific shape of load duration
curve to hold for all periods included in the optimization process.

Fer the work presented in this paper, ! 'ad duration curves are
important because they represent the variation in continuous-time load
that can occur each year, because they are widely used in the electric
power industry, and because they translate very easily into a load
distribution. Sant?? and Trimble’? describe the mathematical relation-
ship between load duration curves and load distributions.

The first effort to improve upon the crude method mentioned above
was done by Loney®" in terms of a dynamic optimization model. That effort
turned out to be cumbersome and very costly to compute. Subsequently,
several improvements to Loney's approach were proffered in the literature
by Uri and Maybee,®® Maybee,’® and Maybee, Randolph, and Uri.?’

Synthesized, these latter five articles proffer two types of approxi-
mations to a given load duration curve and two methods of estimating
parameters for the load duration curve approximations. Maybee, Randolph,
and Uri'® proposes an optimal step-function aporoximation to a given
load duration curve. Uri and Maybee®® proposes an econometric method of
forecasting the heights of this step-function over time in terms of
economic and weather-related variables. Uri and Maybee“’ proposes a
four-parameter linear exponential (in continuous-time magnitude) smooth
approximation to a given load duration curve with econometric estimation
over time of the parameters of the approximation; and Uri and Maybee"!
nroposes a stochastic time series method of approximating the parameters
of the linear exponential function.

For all the models for approximating load duration curves a two-
stage estimation procedure is applied. First an approximation of the
load duration curve is carried out then the parameters of the approxima-
tion are estimated. Thus, these methods will require, at a minimum,

that the heights of a given step-function approximation or the estimates
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of the rarameters of the linear exponential approximation be computed
for every accounting period in a given sample.

In addition, even though these methods provide reasonably good
approximations and forecasts for a load duration curve, they are only
very loosely linked to previous empirical work on electricity demand.
Consequently, in their present form, the usefulness of these methods is

quite limited.

3.5 uessons from the Literat re

Being deficient in cert in respects, the existing literature offers
lessons for constructing mouels of peak load and the load distribution
when estimation must be carried out with primarily temporally aggregated
data. First, none of the previous models attempts to integrate peak and
minimum loads, the load duration curve and aggregate demand into a
unified model. Second, all of these models are incapable of treating a
rate structure that redistributes load any differently from one that
does not with the inevitable result that rates of the former kind cannot
be adequately evaluated. Third, the existing literature is comprised of
models of essentially two types: those that integrate well with pre-
vious work in electricity consumption but do not enlighten in the area
of load redistribution and those that do the latter but are not integrated
with previous work in electricity consumption. In addition with the
complexities of a unified model comes an increasing complexity in esti-
mation thus limiting what may be proposed as a unified model.

In the next section we present a unified model which adds only
system hourly load data to improve upon the deficiencies of previous
models. This model can evaluate the redistributive effects of a new
rate structure but its usefulness has limitations that most likely can
only be solved with more detailed disaggregate data. One example where
this is true is described by Mitchell*? as "a pressing task for new

research,.." because "

...there is so far no forecasting model that is
able to analyze the effect of peak losd rate structures that have time-
differential changes for both energy (kWh) and power (kW)." When
applied differentially to individuals such rates can only be properly

evaluated in a model estimated with individual data.



4. A MODEL OF PEAK AND MINIMUM LOADS AND THE
LD CONDITIONED ON AGGREGATE DEMAND

Thus far we have implicitly assumed that load duration curves must
be inherently interesting simply because utility companies have found
them to be useful. The load duration curve — or equivalently the load
distribution — is, however, a description of the extent of variation in
electricity load in an accounting period as determined by customer
behavior. As such it is interesting in the sense that behavior and
hence the load distribution can be modified with appropriate incentives.

4.1 The Load Distribution Model

In the traditional view of electricity as a quantity demanded (say)
per year, prices can be classified as financial incentives that alter
demand or those that alter load (i.e., the load distribution). Alter-
nately, one might redefine demand in temporal units small enough to
obviate any need to distinguish betwee» 'demand' and 'load.' The latter
would seem to be the preferable approach because it maintains quantity
demanded as the fundamental quantity responding to the financial
incentive. As noted earlier, however, data 1 . tations rarely permit
one to estimate demand in such small temporal units.

If demand must be estimated in (say) annual units leaving load
variation unaccounted for, an important dimension of consumption is
lost. Moreover, any capability to evaluate the impact of load shifting
incentives is also lost. The load distribution captures some of the
lost dimension. It measures, in addition, load variation in the same
time units that demand is measured.

One way to capture the load distribution in an annual model of
electricity demand is to specify additional econometric models as sug-
gested in the last section. Such models follow quite naturally if the
load factor and moments of normalized load enter the utility functions of
individual households or the decision-making agents in firms as arguments
along with aggregate electricity, E; that is they follow if agents are
viewed as maximizing a utility function

20
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u(B, LF, Hls H2, x)

subject to the budget constraint p E + p,LF + p3uy + ouuy + psx = M where
x designates all other goods and M total expenditure; the Py (2 » X, -iviy 5)
each designate che price of the variable to which they are attached in the
budget constraint. As expressions of a previously unaccounted for
dimension of demand, the moments of normalized load and the load factor
would logically be viewed as demand functions and as such would be
determined by the same exogenous variables as demand. Thus, price, income,
electricity-using equipment holdings, weather and socioeconomic variables
would determine the load distribution just as they determine demand.

The primary difference will be that moments of normalized load and the

load factor will differ from demand and one another in the degree to

which a given exogenous variable influences them. But, as we shall

argue in Sect. 5, aggregate electricity, loaa factor and moment of
normalized load demands are technologically c:-nstrained. The structure

of electricity prices and income, historically, have had little influence
on this technology in such a way that these demands would be affected by
them to any significant degree. Consequently, historical observations

of average price and income will not show much influence on load factor
and moment of normalized load demands.

To envision how adjustment works in the LD model, consider the
impact of a newly imposed time-of-day electricity rate for residences
that ultimately ieaves annual consumption at the same level at a lower
cost so that the primary effect of the rate is to redistribute load.
Usage adjustment is of course essentially fixed in the short run by
household holdings of electricity-using and electricity-use-control
appliances. The latter holdings are not likely to exist at the outset
and the former will cost more to operate.

As houscholds seek ways to reduce operating costs of electricity=-
using appliances perhaps in some areas by burning wood stoves during
peak periods, new appliances begin to appear on the market. These
appliances reduce the cost of operating =lectricity-using appliances by
better providing households with the capability to choose when they

consume ¢lectricity. Thus in the longer term heat and cold t¢.orage
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‘units with time-of-day controls and time-of-day controls for appliances
and lighting become part of household appliance holdings. Consumption
shifts to off-peak periods from peak periods.

Ultimately, as consumption shifts from peak to off-peak periods,
peak load decreases while average load r-.aains constant causing the load
factor to rise. In addition, assume ’nat minimum load remains relatively
stable causing the difference between peak and minimum load to decline.
As a result the first moment of normalized load rises too. But even as
load is now spread more evenly over the accounting period, the variance
of the load distribution may decrease if the decline in peak load
dominates; otherwise it will increase.

Thus the partial effect of a time-of-day rate comprised of peak and
offpeak rates would be (1) to increase the load factor and first moment
of normalized load and decrease the second moment of normalized load for
an increase in the peak price and/or lecrease in the off-peak price; and
(2) to cause just the opposite effect for opposite movement in these
prices.

Let us turn now to conef ':ration of specific models of the load
distribution.

The previous section outlined how a load duration curve could be
related to aggregate demand and how it could be estimated for each year
via the method of moments. Peak and minimum loads it was explained
could be estimated by expressing the moments of the load distribution as
econometric models with annually measured explanatory variables. This
section specifies a model that can estimate annual peak and minimum
loads and the load duration curve via this procedure.

First annual momente of normalized load and an econometric equation
for peak load"? (the load factor in this model) are specified and esti-
mated. Then the normalized load distribution parameters, peak and
minimum loads are estimated: take predicted values of the moments of
normali.ed load and the load factor and solve simultaneously for the
normalived load distributions parameters, peak and minimum loads condi-
tioned upon (i.e., given) an estimate of aggregate demand."““

In order to implement the model outlined here and in the previous

section, we must first specify a parametric family of prohability
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distributions to represent the load distributio , F(L), of equation (3).
In addition, we must choose a family that can be estimated using the
method outlined above. Specifically, tuis means we must choose a
distribution for which the central moments are easily calculated and
which is defined on a bounded domain so that peak aud minimum demand can
be expressed as parameters. The beta distribution“® satisfies these
requirements and in addition can assume a wide variety of shapes. We
shall refer to load distributions using the beta as version I of the
load distribution (LD) model. Another distribution which also satisfies
the above requirements is a mixture of two beta distributiors. We shall

refer to this version of the LD model as version II.

4,2 The LD Model: Version I

This subsection presents a complete specification of verison I of
the LD model. In addition in sectica four, estimates of peak load and
the load duration curve under alternative assumptions are also pre-
sented, for this version.

In version 1 of the LD model, we specify the following beta family
of probability distributions to represent the load distribution:

a -1 b, -1
t * t
(Lt-Lt)

)
* a+b -1’
B(atp bt) (Lt . L*t) t t

(L, =L,

- *
£, (L) Ly, €L, <L (9)

B(a,, b)) = I'(@a)r( )/r(a +b)

I'(y) = j; u’ le Yy P S g [

where a8 > 0, bt > 0. Note that a t-subscript has been added to emphasize
that the entiie load distribution including peak and minimum load changes
every year. We shall, however, omit the t-subscript elsewhere in the
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report in order to simplify the notation. Exceptions will be made where
its omission will be confusing.
The normalized version of version I of the LD model of equations

(9) is found by transforming according to eguation (6a):

g . gl

£(z) = B(a, b)

, 0<€2z2<1 (10)

a>0,b>0. It is the standardized beta family and does not include
L* and L,. The moments of normalized load ut(r-l,Z) for this version I

normelized LD are:
pp = a/(a + b) (11a)

s = ab/(a + b)?(a+ b+ 1) (11b)

Recall that values of u; and u; in the LD model are predicted each
year in terms of a set of exogenous variables. Let X; and X, represent,
respectivley, Kx1 and Lxl vectors of these exogenous variables and let
8, and B, represeat Kxl and Lxl vectors of parameters. We specify the

ec.nometric models for these normalized moments as linear models, i.e.,
»y = X‘Bl + €1 (128)

puz = X385 + €5 (12b)

€) and ¢, are normally distributed residuals with zero neans and constant
variance. Both £; and ¢, can be correlated perhaps by being treated as
simultaneous equations to account for their interrelationship.“®
The relations of equations (12) predict u; and v, (call these

predicted values y; and ﬁz) for each year. Substi*uting these predicted
values ji; and 1, into equations (11) and solving for a and b, predictions
of a and b are obtained for each year. This yields a prediction of the
normalized load distribution of equation (10) for each year. Estimates
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of peak and minimum loads are obtained by specifying an additional
econometric model"’ for the load factor — defined as the ratio of average
hourly load to peak load per annum — similar to thos for the moments of
normalized load in equations (12). An econometric model of peak load
might alternately be specified; however, the load factor model is more
compatible with estimation by moments.

Let X; be an Mx1l vector of exogenous variables that determine the
year-to-year variation in the load factor, LF; let £3 be an Mxl vector
of parameters and ¢y a normally distributed residual with meau zero

and constant variance, ie.,
LF = X383 + €3 . (13)
AN
Also let LF designate predicted values of LF.
Summarizing, the model of moments of normaliz¢ . load and the load

factor is

My = XiBy + €

uz = X382 + € (14)

LF = X583 + €3

where ¢ = (¢}, ¢, ¢3) has zero mean vector and in general covariance matrix

0% P120102 P139103

z- Gg P230203) »
3 J

ol

As noted earlier the normalized load distribution (or equivalently the
normalized load duration curve) is estimated by substituting the pre-

dicted values 1, and 1, into the following equations:
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a =y uitluyyQ=yy) = w2l
(15)

b= (1=pp)uz luy =1 ) = uyl

Estimation of peak and minimum loads from this model requires additional
explanation,

Note that u;, u;, and LF, each designating moment: of some sort,
are defined as:

ulIE(Z):E —
*

L-L, \ L-1, \])°
uz = Var(2) = | ——— | - {E{ ——— (16)
*
*

LF = E(L/L*)
where E(+) designates the expectation operator and equation (6a) has been
used. Both L, and L* are parameters in the load distribution hiice they
are treated as constants inside the expectation operator. Thus

equations (16) may be re-written as:

up o= (L = L)"YEQ®) - L]
wp = (L* = L)=2[E(L?) + L - 2L,E(L)] an

LF = E(L)/LY .

Solving now equations (17) for L, L*, and E(L?) we have

5 AP e P
L, = (LF-u)E(L)/(1~u))LF (18a)

& PN N,
L™ = E(L)/LF (18b)
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2 ke W o
E(L?) = (1-4;)~?LF~2E(L)? (18¢)

N i N N o 2
« [(A-LF)? = (LF-u;)? + 2(LF-5i;) (1= LF] .

where "hats" have been placed over each variable to indicate "predicted
values." Equations (18a) and (18b) provide the equations for calculating
predicted values of peak and minimum loads. Recall that E(L) is given

by equation (5) and the estimate of aggregate demand from the SLED and
service area disaggregation models. It is in this sense that the LD
model is ~onditioned on aggregate demand. All other variablss appearing
on the right hand side of equations (18) are provided from equations (14)
as predicted values. Although an estimate of E(L?) is provided by this
procedure, it will not be used in this report.

Load duration curve, peak and minimun. load estimates using version I
of the LD model are presented in the next section. Referring ahead
though to Fig. 8, it can be seen that the "shape" of the load distribu-
tion is not captured as completely as is possible. In the next subsec-
tion we present an extension of the version I of the LD model which we call
version II which can better account for the "shape" of the load duration
curve. This additional capability does not, however, come without
additional computational complexity.

The chicf advantage of version I is that it provides the required
estimates in a computationally simple framework. Obtiining estimates
from version 11, on the other hand, requires a numerical solution. And
a solution that falls within a priori bounds is not guaranteed unless
some complicating and somewhat arbitrary modifications are made to the
method-of-moments estimation procedure. Version I, on the other hand

always yields solutions that fall within the appropriate bounds.

4,3 The LD Model: Version 11

A natural extension of version I of the LD model to better account
for the "shape" of the load distribution is made by estimating addi-
tional moments of normalized load. In this section we specify a more

complex family of distributions to represent the load distribution. This
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family of distributions has more parameters than the ramily of equation
(9) and hence requires additional moments.

The family of distributions we specify is a mixture of two o1 the
beta densities of equations (9). By specifying a mixture of two beta
densities, we preserve the required properties of the family: (1)
simply calculated moments and (2) peak and minimum load parameters that
define the maximum and minimum values which instantaneous load can take.

The family comprised of mixing two beta families is:

@ - L)tk - bl
81+b1"1

g(L) = ¢
B(a,, bl)(L* - L*)

+ (1-¢) ——e , L, SLS<L (19)
Blaz, B2)(L* - 1 )M%0et :

where 0 < ¢ S 1, a, > 0 and bi >0 (i =1, 2) comprise the five param-
eters that will remain after transforming the load distribution (19) to
the normalized load distribution using equation (6a). Recall that t-
subscripts to signify that the load distribution is different for each
year have been suppressed on all parameters as well as L.

The moments of \ormalized load for the version II LD of equation
(19) are:

r

e z(;) “r-J('“”j b % P by (:%)
3=0

i ¢(a1)r_j(a1+b,);lj + (1-¢)(a;)r_j(a;+b7);lj (20b)

=1 = 1y sy D

(Y)k = y(y+1) ... (y+k-1) k a positive, finite integer. (20¢)
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Predicted values of the moments of normalized load and the load factor
are obtained as before from a set of econometric models of the following

form:

“r'xrBr+‘r TN MRl (21)

LF = Xr+18

o1 ¥ el

Substituting predicted values ﬁr for the My in equation (20a), one can
then solve numerically for ¢, a, and bi (i = 1, 2) in each year. The
procedure for solving for these parameters is a bit tedious; we thus
present it in the Appendix. Obtaining estimates of peak, L*, and
minimum, L., loads is done as outlined for the version I LD model.

Since numerical difficulties frequently arose with estimating the
load distribution in version Il of the LD model, we present in the
next section only a few selected results for it. The potential gain
in estimating the load duration curve is pictured graphically. And

moments of normalized lcad are estimated using several different esti-

mation techniques.




5. PEAK LOADS AND LOAD DISTRIBUTIONS FOR SEVERAL
ELECTRIC UTILITIES

This section presents estimates of peak loads and in selected cases
normalized load distributions with minimum loads as a part of them for
various electric utilities in the continental United States. Peak loads
are estimated for twenty geographically dispersed utilities; the impact
of minimum load on normalized load distribution estimates in conjunction
with normalized load distribution estimates are presented for selected
utilities in selected years.

Assuming rational consumers of electricity, we might expect the
real prices of electricity and substitute fuels to be important deter-
minants of the load factor and moments of normalized load. 1If so, it
would mean that these prices influence the way consumers distribute
their loads over the year. But there are cogent reasons to believe that
historical prices have had a minimal impact on load distributions.
First, being for the most part undifferentiated as to when consumption
occurs, historical electricity prices have offered little incentive to
affect the way consumers distribute their loads leaving that instead to
the influence of other factors. Second, consumption in the short run is
essentially fixed by the stock of electric equipment in place. The
impact on load distributions is then fixed by the technical character-
istics and operating patterns of this equipment. Operating costs for
the equipment, being a primary determinant of operating patterns, are
largely determined by electricity price and hence have little impact on
load distributions. Thus changes in the compcrsition of electric equip-
ment in place has historically defined pretty much the limits to the
shape of load distributions. T -d, real prices of substitute fuels can
influence the composition of «le..ric equipment in place if their levels
relative to electricity sufficiently lower operating costs so that
consvmers switch to other-fueled equipment or are sufficiently higher so
that consumers switch from other-fueled to electric equipment. However,
the historical differentials in the relative prices of other fuels has

not produced switching of this sort on any grand scale.
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This does not mean that electricity and substitute-fuel prices do
not affect load distributions. Indeed, if structured to do so, they
will and the impact can be substantial. But historical electricity
price levels have not been set according to the timing of consumption
and substitute fuel price levels have not induced switching to or from
electric equipment. Consequently, while there is good reason to expect
properly structured prices to affect load distributions in the future,
there is correspondingly little reason to expect historical prices to
have done so in the past.

As a result, holdings of electric equipment, their usage levels as
affected by weather and socioeconomic factors and changes in the com-
position of electric equipment holdings have been the historical deter-
minants of load distributions. Moreover, there still tends to be
differences in the impact of these determinants on the load distribution
in each of the three consuming sectors. Residential and commercial
loads tend to be weather sensitive while industrial loads tend to vary
more with the technical requirements of production. Industrial loads
therefore tend to be more stable. And when changes do occur, they tend
to be "once and for all" changes arising from plant relocations, changes
in production processes or commitments and the like. Residential and
commercial consumption, on the other hand, tends to be set in large part
by holdings of electric equipment. Part of those holdings, tending to
be fo: uses like refrigeration, home lighting, cooking, home food
freezing, clothes drying, and commercial lighting, are not very weathe
sensitive. But uses for space heating, air-conditioning, and water
heating tend to be very weather sensitive and to account for a substantial
share of both residential and commercial electricily consumption and load
variation.

Space heating and air-conditioning equipment holdings have been
calculated for the residentia. put not the commercial sector. However,
since residential consumption accounts for most of the consumption in
the twe sectors, electric equipment in this sector will influence load

distributions more. In this section we specify single equation models

for load factors and moments of normalized load with residential space
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heating and air-conditioning s.ocks, weather and a measure of jumps in
industrial sales as the exogp« i8 variables.

Four subse *ions compr: : the body of this section. The first
describes the data compiled. The second estimates peak loads and in
selected cases normali-~ oad distributions using state-level measure-
ments for exogenous variables under two sets of simplifying restrictions
of version I of the LD model as well as version I without simplifying
restrictions. And the third estimates peak and minimum loads and
normalized load distributions for two utilities using state- and service-
area-level measurements of exogenous variables and version 11 of the LD

model .

5.1 Data

The data used for estimation in this report consists of hourly
loads obtained directly from the utilities studied, state-level esti-
mates"® of annual electric space heating and central air-conditioning
saturations, state-level and service-area-leve! measurements of annual
heating and cooling degree days"” and annual measurements ot the propor-
tion of "all but industrial” to "total" electricity sales by utility for
each utility system studied.””’ F~_ each utility, hourly system loads
were recorded for as many years &« were available in machine readable
form. Inevitably, for each year of data some hourly loads were missing
but the proportion of missing values has been relatively small (i.e.,
less than three percent) for each year of data for each utilicy. The
years for which hourly loads ere compiled for a given utility is
indicated in Table 1 under the column headed "years observed."

Utilities were chosen for analysis based upon their geographic
location with the intent that most geographic reg.ons of the U.S. would
be covered. Since the purpose of this work was not *o construct a model
for an "average" atility in the nation, no attempt was made to design a
sample with some sort of geographic strata. Rather, th. purpose in
selecting geographically dispersed utilities was to check for geographic
peculiarities that might invalidate the model in some way.
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Table 1. Single-Equation Estimates: Combined Model of (oad Factors*
(standard errors in parentheses)

Largest Smallest

max imum ma X |
Dependent 2 Years absolute absolute
Utility variable Ccho LNAC COD x LNAC HDD LNHEL HDD x LNAC dw R observed difference difference
American Electric N/A 1670-74
Power
Carolina Power and LF A9 -100.3 L0957 L1590  -205.9 . 0586 1.225 .9988 1962-75 . 1623 L0521
Light (.2566) (152.6) {.0885) (.1228) (1%3.1) (.0421) 1962 1966
Central Hudson LF L1326 -1.457 .0372 1075 -130.359 L0221 2.326 .9998 1960-74 L1016 .0496
(.1930) (44.97) (.047) {.0220) (49.74) . 006 1963 1964
Central Illinois LF -.4712 230.6 L0670 .0752 -49.62 -.0282 1.196 .9996 1965-72 .2958 0545
Public Service (.5245) (220.2) £.1140) (.0961) (238.4) (.0212) 1967 1973 A
Commonwea lth Edison LF -12.99 2629.0 2.418 .2454 -2293.0 -. 1209 2.714  .9965 1968-74 . 2662 L0715 -
of Chicago (19.35) (25790.0) (3.629) (1.189) (2373.0) (.3550) 1971 1a73
Florida Power LF .2243 -32.82 . 0465 .0789 -161.9 .0408 3.349 .9985 1961-74 L1609 .0593
(.0936) (324.8) (.0751) (.2396) (281.0) (.1890) 1962 197
lowa Public Service LF .0808 -25.23 .0524 L0454 -113.7 .0098 1.874 .9995 1962-74 1412 .0596
(.1949) (95.71) (.0669) (.0244) (71.83) (.0071) 1965 1970
Jacksonville Electric N/A 1969-74
Authority
Jersey Central Power LF ~1.503 -295.5 -. 7030 L4608 240.6 1169 1.878 .,9998 19%67-74 L0932 L0555
and Light (2.302) (195.0) (1.022) (.4795) (243.1) (.1448) 1967 1974
Metropolitan Edison LF 3.2587 212.1 2746 L3163 -770.7 L0740 1.805 .9999 1967-74 .1289 L0632

(1.676) (160.5) (.1419) (.2106) (517.4) (.0634) 1967 1974




Table 1. (cont.)
Largest Smallest
na X | mum ma X ) sk
Dependent Years absolute absolute
Utility variable coo LNAC CDD x LNAC HOD LNHEL HOD x LNAC dw Rz observed difference difference
New Jersey Public LF -.0190 -37.19 -.0223 .0837 -65.09 .0140 2.684 .9999 1963-74 .1294 L0724
Service Electric (.1502) (74.10) (.0%63) (.0216) (48.20) (.0091) 1963 1972
and Gas
Niagara Mohawk LF .B443 157.6 .2519 L0873 -296.) .0202 3.145 .9999 1962-74 L1143 L0627
(.2213) (89.85) (.0630) (.0228) (77.66) (.0062) 1963 1967
Nortneast Utilities LF 2.464 -278.4 .6566 -.0651 205.9 -.0320 2.499 .9999 1966-74 .0838 . 0555
(.9411) (125.1) (.2605) (.07:2 (172.2) {.0271) 1968 1971
Pennsylvania Electric LF 2.574 223.97 .2180 .3697 -874.3 .0998 1.653 .9999 1967-74 .0939 . 0481
(1.045) (100.4) (.0888) (.1318) (323.7) (.0397) 1967 1974
Pennsylvania Power LF .6443 -89.71 .0612 -.0425 58.62 -.0046 1.790 .9999 1965-74 .0862 L9479
and Light (1.636) 1965 1969
Power Authority of the LF 2.320 2719.2 .6389 -.0235 -433.0 -. 0009 2.450 .9982 1962-74 1126 .2924
State of New York (1.073) (435.5) (.3054) (.1104) (376.4) (.0300) 1964 1963
San Diego Gas and LF 2457 -192.9 L1184 . 2069 -62.68 .0890 2.477 .9992 1961-74 .1614 . 0669
Electric (.4657) (120.5) {.1586) (.1220) (134.4) (.0460) 1972 1961
Southern California LF . 0641 38.55 .0367 L1996 -352.0 .0996 2.099 .,9998 1964-74 .0978 . 0566
Edison (.5219) (121.9) (.1947) (.1276) (129.3) (.0498) 1973 1966
Wisconsin Electric LF L1634 124.0 . 0060 .0687 -207.9 L0149 2.241 .9999 1961-74 .125) .0593
Power Company (.1932) (40.13) (.0560) (.0121) (28.89) (.0034) 1972 1965
Wisconsin Michigan LF . 1320 11.54 1817 L0494 1620 L0126 Z2.260 .9999 19%1-74 1109 L0850
Power Company .2351 (48.83) (.0680) (.0159) (35.\6) (.0041) 1970 1963

e
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5.2 The LD Model: Vers on I

The emphasis of previous work has been on peak loads and to a lesser
degree on the load duration curve. Minimum loads have received very
little attention. To some extent this is justified because peak load
gives a clear signal of how much capacity is required and the load
duration curve tells how to Jistribute capacity among the broad cate-
gories of equipment. Minimum load does not even indicate how much base
load generation capacity is needed because the optimal allocation among
equipment types dictates that base load equipment serve more than
minimum load. Minimum load, however, as we shall see, is very important
in positioning the load distribution and we might expect that it would be
highly correlated with the optimal allocation to base load equipment.
Nevertheless, we shall follow the lead of previous work and emphasize
peak load leaving our discussion of minimum load to showing its impact
in positioning the load distribution (or equivalently the load duration
curve) .

As noted earlier in the opening commentary of this sectjon, we
specify in this subsection models of load factors and moments of
normalized load as functions of state-level aggregates. This eases the
burden of compiling data from a laige number of utilities but might at
first blush seem to bias the individual effects of the exogenous
variables. Actually, this is not the case; however, a state-level
aggregate of an exogenous variable may not be as good a predictor of
service~area moments as would be a service-area aggregate of the same
variable. For example, consider the influence of temperature measured
in degree days on the load factor of a northern California utility.
Because the warmer climate of southern California so influences, the
number of heating degree days fo: the state will be larger than for the
utility's service area. And likewise the number of cooling degree days
for the state will be less than for the service area. But this in
itself does not make service-area rather than state degree days better
predictors of the utility's load factor. What matters is which is more
closely correlated with the utility's load factor. Intuitively, one

might expect service-area degree days to be more closely correlated.
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Also it is just as intuitively reasonable to expect service-area degree
days to be closely correlated with state degree days making, therefore,
state degree days nearly as good a predictor as service-area degree
days. Consequently, for state-level exogenous variables closely
correlated with corresponding service-area aggregates, useful information
about the importance of the service-area aggregates as determinants of
the load factor or other moments can be gleaned from models estimating
these moments as functions of the state-level aggregates.

Let us consider now the impact on the estimated load distribution
of imposing some -estrictions that simplify version 1. The restrictions

we consider will have no effect on the calculation of peak load estimates.

5.2.1 Version I with two simplifying restrictions

Referring again to the matter of emphasizing peak load and the load
distribution in version 1, we may do this quite easily by removing
minimum load. This is done by setting I, equal to zero in the equations
of (9)-(14). Peak load calculation as we just noted is unaffected by
this restriction but this is not true for the positioning of the load
distribution. The other simplifying restriction fixes the parameter "b"
in equation (9) at a constant value which makes estimation the determina-
tion of the estimators' sampling properties easier. We consider first
then the joint impact of these two restrictions and consider later the
impact of setting L, at zero.

Table 1 lists ordinary least squares estimates of a load factor model
using state-level aggregates of the exogenous variables. The exogenous
variables are: cooling degree days for the state (CDD), heating degree
days for tie state (HDD), the natural logarithm of the state's proportion
of centrally air-conditioned homes (LNAC), and the natural logarithm of
the state's proportion of electrically heated homes (LNHEL). These
latter two variables are natural logarithms of what are known as the
saturation levels of centrally air-conditioned and electrically heated
homes for the state. Because all heating and cooling exogenous variables
are combined in this model, we refer to it as the combined model of load

factors. Table 1 also presents the Durbin Watson test statistic (dW), the
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years for which data was available and for each of these spans of years
the largest and smallest maximum absolute difference between the actual
(empirical) and estimated load distributions. These latter two statistics
measure how well this particular version of version I of the LD model
estimates the load distribution; they are the test statistics for the
Kolnogorov-Smirnov test of goodness of fit; the largest and smallest

of these indicate how well and how poorly the load distributions were
estimated over the span of years indicated. These test. statistics
indicate that all of the estimated load distributions calculated under
the simplification for version I of fixing one parameter are not
significantly different from the empirical (actual) load distribution
at the one-percent level. Despite the apparently good fit we will see
shortly that the one-parameter version of the LD model is likely to
encounter difficulties outside the range of the sample.

Clearly the coefficients of determination (R?) indicate that
weather and space conditioning measurements account very well for the
year-to-year variation in load factors. The Durbin Watson tests do not
indicate the presence of serial correlation. A problem though with
this particular model is the presence of linear relationships amongst
some of the exogenous variables. This is suggested by the poor perfor-
mance of individual coefficient standard errors — shown in parentheses -
in conjunction with a high R’ value. As it turns out heating degree
days are highly correlated over time with cooling degree days for every
region causing a multicollinearity problem. The problem is similar for
central air-conditioning and heating measurements. Consequently, in
later load factor and moments of normalized load models we keep cooling
measurements separate from heating measurements.

Notwithstanding that the models in Table 1 have collinear exogenous
variables, it is still useful to examine how well this load factor
model predicts peak load in the sample period. This is true hecause, on
the one hand, how well a model "fits" the data is unaffected by multi-
collinearity in the exogenous variables and, on the other the state-level
exogenous variables are highly c.rrelated with their service-area

counterparts. Accordingly, Tabies 2, 3, and 4 present information that
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Ratio of actual to estimated peak load for

Table 2.
selected utility systems?
% Jersé;
Towa Central Metropolitan Niagara
Year Public Service Power & Light Edison Mohawk
1960 N/AP N/A” N/A N/AD
1961 N/AP N/A? N/A? N/AP
1962 0.98 N/A N/A? 1.00
1963 0.98 N/A” N/AP 1.01
1964 1.00 N/AD N/A" 1.06
1965 1.04 N/AP N/AP 1.00
1966 1.03 N/A N/A? 1.00
1967 0.96 0.99 1.00 0.98
1968 1.03 1.01 1.01 1.01
1969 1.01 1.01 1.01 0.98
1970 0.99 0.98 0.99 1.01
1971 0.98 1.00 0.99 0.99
1972 0.93 1.02 1.01 1.02
1973 0.99 1.01 1.01 1.00
1974 1.02 0.98 1.00 0.99
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Table 2. (cont.)

Public Service

Northeast Pennsylvania Pennsylvania Electric & Gas of
Year Utilities Electric Power & Light  PASNY New Jersey
1960 N/AP n/AP N/AY N/AP N/AD
1961 N/AD N/AP N/AP N/AD N/AP
1962 N/A” N/A® N/A? 0.99 N/AP
1963 N/ N/A” N/A? 1.03 1.00
1964 N/A? n/a> N/AY 0.99 1.00
1965 N/A” N/AP 1.00 0.95 0.99
1966 1.00 N/AP 1.00 1.02 1.00
1967 1.00 1.00 0.99 0.98 0.99
1968 0.99 1.00 1.01 1.12 1.02
1069 1.00 0.99 0.99 0.96 N/A®
1970 0.99 1.00 0.98 0.9 0.98
1971 1.01 1.01 1.01 0.95 1.01
1972 0.95 1.00 1.02 1.05 1.01
1973 0.99 1.00 1.01 1.03 1.00
1974 1.01 1.00 0.99 0.98 0.99
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Table 2. (cont.)

San Diego Wisconsin
Gas & So. California Electric Wisconsin
Year Electric Co. Edison Power Co. Michigan
1960 N/A N/A® N/A N/AD
1961 0.99 N/AP N/AD N/AD
1962 1.00 N/AD 1.00 1.0
1963 1.00 N/AP 0.99 1.00
1964 1.03 0.98 1.01 0.98
1965 0.97 1.02 1.06 1.00
1966 1.04 1.00 1.02 1.0
1967 1.00 1.02 0.99 1.01
1968 0.96 1.02 0.99 1.00
1969 1.03 0.98 0.99 1.00
1970 1.01 0.98 1.01 0.98
1971 0.98 1.01 0.99 1.0
1972 0.95 1.00 1.00 0.99
1973 1.03 0.99 1.00 1.01
1974 1.02 1.02 1.0 1.00

“Estimates of peak load computed using estimated load factors and
actual aggregate demand calculated from system load data.

bData not available for this year.

cIneonplete data for this year.
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Table 3. Actual and predicted peak loads“

Carolina Gas &
Electric Power

Central I1linois

Public Service

Commonwealth Edison
of Chicago

Year Peak Peak Peak Peak Peak Peak
1960  N/A° N/AD N/AD N/AE n/Ab N/AP
1961 N/AP N/A” N/AD N/A” N/AP N/AP
1962 1787  1623.66 N/AP N/A? N/AP N/A?
1963 1638  1651.49 N/AP N/AP N/AD N/AY
1964 1749 1784.28 N/A” N/A N/A N/A”
1965 1931  2062.94 7 788.77 N/AP N/AE
1966 2184 2212.00 894  891.38 N/A? N/AP
1967 2270 2247.61 868  870.'8 N/A” N/AP
1968 2834  2817.37 1061 1028.5) 8950  8954.71
1969 3055 3109.90 1126 1098.67 9265  9408.61
1970 3484  3525.90 1210 1189.82 10027  9003.45
1971 3625 3749.18 1252 1287.76 5180  8915.89
1972 4119 4003.57 1394 1431.56 11750  12211.99
1973 4711  4596.84 1503 1505.17 12462 12322.35
1974 4771 4666.75 1500  1488.32 12270 11898.38
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Table 3. (cont.)

Central Hudson kh'_Q}R};;B;—‘-*—_w__.‘——-d;;;"*"-*ﬁ

Gas & Electric Co. Power Co; Public Servjce

Year Peak Peak Peak Peak Peak Peak
1960 241 244.44 N/A” V7 S 77 N/A”
1961 261 260.33 805  809.13  N/A” N/AD
1962 277 280.12 960 890.37 225 229.49
1963 296 287 .56 897 963.69 252 256.58
1964 323 324.67 1034 1006.06 266 265.62
1965 362 354.39 1003 1047.98 203 280.50
1966 393 403.21 1242 1219.22 317 308.59
1967 407 414.32 1254 1262.50 313 325.01
1968 454 442.99 1551 1549.10 376 366.39
1969 49] 484.58 1710 1679.24 392 387.33
1970 521 519.79 1990 1953.39 422 423.83
1971 549 551.67 2152 2232.68 437 446.88
1972 587 585.82 2501 2459.79 486 491 .03
1973 632 632.48 2862 2991.69 5 554.99
1974 584 592.08 2970 2844 .01 595 584.20
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Table 3. (cont.)

Jersey Central Metropolitan Niagara

Power & Light Edison Mohawk
Year Peak  Peak Peak Peak Peak Peak
1960  N/A” NAE /AP NAE AP N/AD
1961 N/A” V7 ] 7 ] N/ AP
1962 N/AD nAE AP N/AY 3201 3207.83
1963 N/A” NRE AP NAP 3316 3273.08
1964  N/A NAD  N/AD NAP 3498 3512.95
1965  N/AP NAY b NAE 3701 3700.02
1966  N/AP nAE /A NAP 3987 3992.91
1967 1227 1234.91 912 915.11 3971  4031.88

1968 1455 1446.50 1021 1013.49 4335 4292.27
1969 1604 1592.97 1139 1131.63 4442 4512.93
1970 1716 1748.92 1188 1199.84 4614 4555.75
1971 1880 1881.29 1271 1286.23 4551 4598.84
1972 2122 2070.91 1361 1352.37 4827 4740.80
1973 2456 2436.77 1474 1466.04 4896 4881.36
1974 2396 2440.54 1378 1378.73 4787 4821.76
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Table 3. (cent.)

Northeast Pénnsy]vania

Utilities PASNY Electric Co.
Year Peak P;ak Peak Péak Peak P;ak
1960  N/AP NP AP V7 7] 4 N/A”
1961 N/AP NAD AP NRD NP N/AP
1962 N/AP N/AD 601  605.39  N/A” N/AP
1963  N/AP N/A? 609  588.62  N/A N/A?
1964 N/AP N/A? 602  506.20  N/A” N/AP
1965  N/A? N/aP 618  646.90  N/A N/AL
1966 2367  2376.68 736 722.13 NJAP N/A?
1967 2414  2432.34 801  821.52 1201  1199.59
1968 2740  2706.17 858  765.21 1312 1312.77
1969 2918 2920.8) 880  913.03 1462  1472.33
1970 3172 3154.02 870  905.23 1535  1533.80
1971 3223 3263.93 858  900.63 1645  1628.63
1972 3520  3468.10 990  942.13 1711 1709.24
1973 3645  3620.56 962  931.48 1790  1792.70

1974 3496 3546.16 1031 1053.86 1766 1772.78
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Table 3. (cont.)

Public Service

Pennsylvania Electric & Gas of San Diego

Power & Light New Jersey Gas & Electric Co.
Year  Peak Peak  Peak Peak Peak Peak
1960  N/A” NAE AP N/A N/A N/A
1961 N/AP 7 S V7 N/AD 727 719.25
1962 N/A L 1 N/AP 785  752.65
1963 N/AY N/A 3370  3357.99 805 802.40
1964 N/AD N/A 3665  3663.40 835 857.13
1965 1853  1851.7) 3953  3996.95 925 893.82
1966 2085  2079.97 4100  4090.96 950 984.96
1967 2202 2213.96 4308  4336.09 1091  1087.55
1968 2493  2471.90 4828  4749.80 1163  1115.86
1969 2702  2724.15 N/A® N/A® 1218 1258.18
1970 2897  2954.32 5398  5492.67 1343 1355.26
1971 3157 3116.95 5925  5857.46 1470  1435.98
1972 3483  3420.87 6201  6119.05 1579 1497.64
1973 3598  3576.75 6816  6810.36 1518 1563.33

1974 3662 3715.84 6316 6397.26 1498 1530.26
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Table 3. (cont.)

Wisconsin

So. California Electric Wisconsin

Edison Power Co. Michigan
Year  Peak  Peak Peak  Peak _ Peak _ Peak
1960 N/A” N /AP nAE AP N/A
1961 N/AD NAE A nal A N/AP
1962 N/A” nAP 1218 1218.47 224 221.17
1963 N/AP NAY 1365 1347.70 259 257.87
1964 5335 5427.47 1413 1421.10 267 272.67
1965 5863  5742.93 1484  1491.00 279  279.37
1966 6173 6196.71 1603  1639.46 309  305.74
1967 7001  6889.07 1655  1646.04 303  300.56
1968 7425  7298.86 1901  1887.22 320  321.58
1969 7804  7965.27 1984  1968.25 329  330.55
1970 8274  8444.97 2100  2120.44 337 343,22
1971 9350  9297.70 2268  2231.65 358  353.85
1972 9815  9846.13 2423  2420.10 381  384.42

1973 10253 10349.58 2633 2623.01 426 421.23
1974 9997 9839.94 2573 2600.42 421 420.83

aEstinates of peak load computed using estimated load factors and
actual aggregate demand calculated from system lcad data.

bData not available for this year.

clncouplete data for this year.



Table 4. Percentage Difference Between Actual and Predicted Peak Loads”

LF = LF = LF =
Utility f (cooling variables) Year f (heating variables) Year f (heating and cooling) Year
American Electric best .09 1970 .102 1971 N/A
Power worst 1.89 1972 1.56 1972
Carolina Power and best .128 1967 762 1973 .570 1968
Light worst 8.54 1965 15.8 1962 9.14 1962
Central Hudson best .033 1960 A21 1970 .0764 1973
worst 5.35 1973 2.97 1966 2.851 1963
Central Illinois best .957 1970 1.32 1974 .320 1967
Public Service worst 7.43 1967 6.89 1967 3.06 1968
Commonwealth Edison best .097 1974 .290 1973 N/A
of Chicago worst 3.545 1969 2.330 1969
Florida Power best .058 1970 1.43 1966 .051 1961
worst 9.98 1965 18.5 1963 7.43 1963
Towa Public Service best .014 1964 .210 1972 .433 1970
worst 5.1 1965 7.46 1967 4.27 1965
Jacksonville Electric best .459 1969 .142 1971 N/A
Authority worst 3.19 197 2.44 1970
Jersey Central Power best .413 1967 .598 1974 .069 1971
and Light worst 4.08 1970 3.6/ 1967 1.92 1970
Metropolitan Edison best .097 1971 .on 1973 .017 1974
worst 2.51 1969 2.70 1969 1.20 1971
New Jersey Public best . 326 1968 127 1964 .044 1964
Service Electric worst 5.81 1974 2.61 1972 1.75 1970

and Gas

Ly



Table 4. (cont.)
LF = LF = LF =

Utility f (cooling variables) Year f (heating variables) Year f (heating and cooling) Year
Niagara Mohawk best .324 1971 .086 1962 .026 1965
worst 3.53 1962 9.23 1966 1.79 1972

Northeast Utilities best .34 1970 012 1972 .409 1966
worst 2.42 1967 3.65 1967 1.47 1972

Pennsylvania Electric best .270 1972 139 1970 .059 1968
worst 1.79 197 2.18 1971 .995 1971

Pennsylvania Power best .085% .973 .028 1966 .070 1965
and Light worst 2.46 1972 2.20 1967 1.98 1970
Power Authority of the best .059 1969 .073 1962 .335 1963
State of New York woist 13.7 1968 14.5 1968 10.8 1968
San Diego Gas and best x| 1962 281 1569 .316 1967
Electric worst 1.7 1973 6.94 1962 5.15 1872
Southern California best 1.54 1975 125 1966 L ay 1972
Ecison worst 4.43 18970 2.93 1969 2.07 1969
Wisconsin Electric best 157 1972 .284 1964 .038 1962
Power Company worst 7.41 1963 4.84 1967 2.27 1966
Wisconsin Michigan best .285 1973 L350 1966 .03% 1974
Power Company worst 4.55 1963 4.97 1973 2.12 1964

“Heating variables and cooling variables results taken from material precsented in Table

<
Je

8Y



[ W, ——

49

is useful for evaluating how well the combined load factor model predicts
peak load given actual aggregate demand.

Table 2 presents ratios of actual peak to estimated peak (calculated
from the models of Table 1) for a representative selection of the twenty
utility systems studied. 1In this selection, the worst presiction was
for the Power Authority of the State of New York (PASNY) in 1968 where
peak load was underestimated by 12 percent. Generally though the predic-
tions are reasonably good. Ninety percent fall within three percent of
the actual value. Table 3 presents for comparison these actual and
estimated peaks (also from Table 1) for all but two of the twenty
utilities — American Electric Power (AEP) and Jacksonville Electric
Authority (JEA}. The system load data from AEP covered too few years to
do much with it and the JEA data had discrepancies which we were unable
to reconcile. The effect of separating heating variables (heating
degree days and the stock of electric central heat homes) and cooling
variables (cooling degree days and the stock of centrally air-condit ‘oned
homes) is depicted in Table 4 in terms of the percentage difference
between actual and predicted peak loads. Although multicollinearity
tends to confound the effects of individual exogenous variables, the
percentage difference between actual and estimated peaks is in the rela-
tively small combined load factor model. For the models whi re cooling
or heating variables alone were used, the cases estimated — some had an
insufficient number of observations for estimation of the combined
model — had larger such diffeiences than did the combined model.

Figures 5 and 6 present plots of the one-parameter estimate of the
load distribution superimposed on the empirical (actual) load distribu-
tion. The plots are for Central Hudson Gas and Electric Corporation of
New York for 1963 and Southern California Edison for 1974. Although
ea“a of these estimated load distributions is a good "fit" by the
Kalnogorov-Smirnov nonparametric test, careful inspection of the plots
suggests two potential problems: first, since mirimum load is set at
zero, the estimated load distribution will alwavs misrepresent the actual
load di-tribution at this extremity. In a sense, we are counting on one
parameter to capture both the "shape" of the load distribution and the
location of minimum load. Of course, this simplified version of the
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Fig. 5. Estimated and actual load distributions: version I:

Lx = 0, one parameter.
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Southern California Edison

Year 1974 -7

Actual

Estimated

0.1
Fig. 6.

-
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-

Estimated and actual load distributions:

Lx = 0, one parameter.
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version I:
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LD model cannot produce an estimate of m imum load. Second, there
appears to be a tendency for the estimated load distribution to lie
below the actual one. Plots for other years for these utilities
exhibit this tendency in opposite: the estimated load distribution
tends to lie above the actual one. This phenomenon is a consequence

of fixing one parameter in each utility's load distributions for all
years. In computing "b" of equation (10), we computed the method of
moments estimator of b using equations (15) for each year then averaged
them over all years. Thus, by analogy, just a= an average tends to b
either larger or smaller than any actual value used to compute it,

so the one-parameter load distribution estimate tends to lie above or
below the actual one. This tendency will present a problem outside

the range of the sample for which the single value of "b" was estimated
because the tendency of the estimated load distribution to lie above

or below the actual one will be accentuated. Consequently, since
future load distributions are expected to change considerably, the one-
parameter method will not likely give even an adequate estimate of the

load distribution outside this range.

5.2.2 Version I with only one restriction: minimum load set at zero

The effect of imposing the restriction L, = 0 can be seen by
relaxing the assumption that one of the load distributiosn parameters is
fixed. Table 5 presents estimates of the first two moments of normalized
load imposing L, = 0 and assuming that the stochastic residuals of
equations (14) are uncorrelated. Note that the load factor and first
moment of norwalized load are identical under this restriction [see
equations (16)]; the second moment of normalized load will be the load
factor variance. Table 5 presents the model estimates of the load
factor and load factor variance with the same exogenous variables as
were used in Table 1 except that heating and cooling variables are now
separated. The same statistical measures as presented in Table 1 are
presented here too.

Note that the coefficients of determination (R?) again indicate
that these models "fit" the data well. 1In only one case, F SNY, is the



Table 5. Single-Equation Estimates: Load Factor and Variance
(standard errors in parentheses)
Years of
Utility variable coD DD x LNAC LNAC HOD LNHEL x HOD LNHEL dw ? data
American Electric LF -.8642 -.0914 -58.06 2.484 .999% 1970-74
Power (.5089) (.0459) (4.104)
LF .0694 -341.7 -.0420 1.51 L9999
(.0090) (46.01) (.007m)
Var -.1313 -.0123 -1.289 2.493 .9973
(.0440) (.0040) (.3550)
Var - . 0005 -4.398 -.0002 2.755 .9981
(.0007) (3.512) (.0005)
Carolina Power LF .4513 -284.4 .2068 1.065 .9984 1962-74
and Light (.0196) (30.83) (.0228)
LF . 1882 -281.3 .0860 1.994 L9967
(.0090) (75.09) (.0219)
Var .0093 -11.69 .0061
(.0015) (2.294) (.0017) 1.198 .9933
Var . 0052 -6.939 L0016
(.0006) (4.950) (.0015) 1.275 . 9889
Central Hudson LF 1.077 -150.1 L2607 2.449 .9991 1960-74
(.0528) (11.41) (.0252)
LF L1198 -123.7 L0237 2.536 L9997
(.0027) (14.72) (.0023)
Var .0027 -5.434 L0014 .71 L9992
(.0015) (.3312) (.0007)
Var .0007 -3.809 .0001 1.782 .9992
(.0002) (.8134) (.0001)
Central [1linois LF .8524 141.7 -.2034 2.815 . 9986 1965-74
Public Service (.0975) (14.88) (.0235)
LF L1109 146.7 -.0286 2.818 . 9989
(.0064) (40.63) (.0072)
Var .0314 4.245 .0078 2.329 . 9940
(.0054) (.8276) (.0013)
Var L0037 2.988 . 0008 2.634 L9953
(.0004) (2.313) (.0004)

€S



Table 5. (cont.)
Dependent 2 Years of
Utility variable D0 COD x LNAC LNAC HDD LNHEL x HDD LNHCL dw R data
Commonwealth Edison LF L1284 78.44 -.1049 2.597 .9930 1968-74
of Chicago (.4886) (47.84) (.17n)
LF L1116 197.1 -.0365 2.084 .99:1
{.0413) (12¢.1) (.0265)
Var . 0468 1.113 -. 0086 2.178 . 9808
{.0264) (2.587) (.0063)
Jar . 0056 7.155 -.0018 1.743 L9772
(.0023) (7.172) (.0015)
Florida Power LF . 1862 -369.9 L1179 2.102 .9972 1961-74
(.0074) (158.6) (.0485)
LF 91 -417.4 .6469 2.108 L9954
(.0576) (45.29) (.0706)
Var .0072 2.028 -. 0002 2.804 .9%94)
(.0004) (8.410) (.0026)
var .0360 -17.54 .0287 1.969 .989€
(.0032) (2.497) (.0039)
lowa Public LF L5446 -201.8 . 2086 2.314 .9990 1962-74
Service (.0224) (15.47) (.0185)
LF L0621 -105.6 .0120 2.301 .9992
(.0043) (27.55) (.0041)
Var .0ns -9.979 . 0063 1.936 . 9980
(.0014) (.9562) (.0011)
Var .0002 -4.627 -. 0000 2.352 .9976
{.0003) (2.083) (.0003)
Jacksonville Electric LF . 1440 .0498 -223.2 3.374 L9997 1969-74
Authority (.0179) (.1160) (345.6)
LF .6426 -575.4 L6551 2.182 L9997
(.0888) (40.88) (.0483)
Var .0032 -.0088 18.20 3.053 .9981
(.0020) (.0132) (39.23)
Var .0168 ~27.44 L0204 2.709 . 9988
v (.0085) (3.92)) (.0046)




Table 5. (cont.)
Dependent 2 Years of
Utility variable oo CDD x LNAC LNAC HDD LNHEL x HDD LNHEL w R data
Jersey Central Power LF L4604 -267.9 .2306 1.780 .9996 1967-74
and Light (.0658) (21.80) (.0814)
LF .0822 -72.85 .0069 2.362 .9995
(.0236) (58.29) (.0068)
Var -. 0041 -8.003 -.000%
(.0056) (1.866) (.0035)
Var -.00M -1.815 -.0010
(.0020) (5.035) (.0006)
Metropolitan Edicon LF .B8752 -59.34 .0788° 2.926 L9999 1967-74
(.1859) (2.622) (.0172)
LF L1033 -231.9 .0366 2.464 .9998
{.0082) (46.74) (.0064)
Var -.118 -2.735 -.0087 2.632 L9977
[.0244) (.3435) (.0023)
Var .0003 2.006 -.0014 1.856 . 9969
(.0012) (6.586) (.0009)
HNew Jersey Fublic LF .5392 -199.8 .1936 1.616 .9992 1963-74
Service Electric (.0441) (24.39) (.0392)
and Gas LF .0843 -88.28 0115 1.973 .9998
(.0027) (19.08) (.0033)
Var .0032 -5.656 -. 0009 1.285 .9983
(.0024) (1,348) {1.0022)
Var L0012 L8921 -, 0008 2,122 L9977
(.0004) (2.565) (.0004)
Niagara Mohawk LF 1.303 -198.5 A 1.318% . 999 1962-74
{.0730) (12.50) (.0360)
LF L1214 -164.5 .0289 1.650 L9995
(.0056) (26.48) (.0037)
Var L0256 -6.042 . 0088
(.0050) (.8627) (.0025)
Var .0024 -3.510 .0004 1.424 L9960
(.0004) (2.030) (.0003)
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Table 5. (cont.)
Years of
Utility variable COD x LNAC LNAC HDD LNHEL x HDD LNHEL dw date
Northeast Utilities LF 1 -172.4 L4314 3.224 1966-74
{ (8.952) (.0319)
LF L1007 .0388 1.993
(.0032) (.0090)
Var -6.861 . 0081 2. 360
(.9305) {.0033)
Var L0035 -. 0000 2.765
(.0002) (.0006)
Pennsylvania Electric LF -59.31 L1427 3.130 1967-74
(2.241) (.0147)
LF L1227 L0433 1.852
(.0072) (.0056)
Var -1.984 -.0061 2.172
{.2941) (.0019)
Var .0004 -. 0001 2.077
(.0007) (.0006)
Pennsylvania Power LF ~56.14 .0823 1.749 1965-74
and Light (2.266) (.0098)
LF .1020 .0377 2.106
(.0040) (.0052)
Var -1.839 -.0020 1.994
(.2560) (.0011)
Var L0023 L0003 1.916
(.0004) (.0005)
Power Authority of LF .3072 -220.2 2.0585 1962-74
the State of New York (.1122) (38.98)
LF . 1062 -241.2 2.072
(.0178) (83.94)
Var -.0091 2.611 2.264
(.0224) (7.785)
var 0018 1.811 2.407

-

.0033)

(15.37)

9s



Table 5. (cont.)
Dependent 2 Years of
Utility variable Ccobo CLD x LNAC LNAC HDD LNHEL x HOD LNHEL dw R data
San Diego Gas and LF 1.007 -206.3 L3757 .168 L9971 1961-74
Electric {.0751) (31.07) (.0600)
LF .2680 -20.0 . 1002 . 155 .9982
(.0141) (53.64) .0203
Var .0136 -8.572 .0061 .432 L9967
(.0021) (1.273) (.0025)
Var .0030 -7.812 .00n .822 .9973
(.0007) (2.572) (.0010)
Southern California LF . 7864 -214.5 L2575 .976 . 9992 1964-74
Edison (.0780) (23.52) (.0528)
LF .2069 -321.2 . 1062 L1526 L9997
(.0082) (26.57) .0099
Var L0104 -5.628 .0018 .638 . 9984
(.0032) (.9524) (.0021)
Var .0036 -9.658 .0023 .33 L9991
(.0004) (1.426) (.0005)
Wisconsin Electrif LF .9948 -163.7 L2733 927 .9990 1962-74
Power Company (.0725) (11.61) (.0320)
LF L0703 -153.2 .0184 .574 . 9995
(.0032) (27.08) (.0039)
Var ~. 0005 -7.972 -.001 333 .9963
(.0073) (1.164) (.0032)
Var .0008 -9.216 . 0005 .231 .9982
(.0003) (2.713) (.0004)
Wisconsin Michigan LF 1.318 3673 -191.5 . 885 L9995 1962-74
Power Company (.0591) (.0260) (9.459)
LF .0899 -171.3 L0224 .718 . 9996
(.0035) (30.13) {.0043)
Var . 0200 .0042 -4.783 353 .9942
(.0058) (.0026) (.9325)
Var L0017 -6.048 . 0006 .284 . 9940
(.0004) (2.147) (.000%5)

*Al1 values stated x 1073 except dw and R%

LS
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unexplained variance not less than three percent and this is explained
by the fact that PASNY, lacking much of a residential sector, has
historically sold electricity by contractual arrangements with munici-
palities, particularly New York City's municipal subway, arrangements
which tend to cause jumps in the load distribution. Also, although the
sample sizes are too Small to give an accurate picture in many cases,
the Durbin-Watson tests do not indicate that serial correlation is
present to any significant degree.

Plots of estimated — superimposed on actual — load distributions in
Figs. 7-11 does, however, reveal some consequences of restricting
minimum load to be zero. Of course, the lower end of the load distribu-
tion will not be well represented with this model. Figures 7 and 8
exhibit cases where the version I with L, = 0 produces a reasonably good
estimate of the load distribution. But Figs. 9, 10, and 11 give examples
of how poor an estimate one can get using this restriction. Figure 9 —
where the estimated load distribution lies just below the actual one —
gives a hint of what can happen. Figures 10 and 11 are more blatant.
Even though the Kolmogorov-Smirnov test indicates a good fit, clearly
there is room for improvement. What happens is that forcing the esti-
mated load distribution through the origin restricts how "steep" the
load distribution can be. Consequently, one gets an estimated load
distribution in certain cases that lies almost entirely below the

actual one.

5.2.3 Version I without the restrictions

From what has been shown above it would appear that simplification
of version I along the lines discussed leads to undesirable results.
How then does version 1 fare without the restrictions? Figure 12 exhibits
a plot of estimated and actual load distributions where the estimated
load distribution is forced through both peak and minimum loads. Clearly
this estimate of the load distribution is superior to those obtained
under the restriction(s). Of course the "shape" of the actual load dis-
tribution is not captured exactly but the estimate does not exhibit the

tendency to lie entirely above or below the actual load distribution
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and, when estimated, the endpoints — peak and minimum loads — will be
better represented.

If the "shape" of the load distribution is important enough to
seek a more accurate estimate, this can be done by estimating additional
moments. Doing so allows the "bends" in the actual load distribution
to be better reflected in the estimate. The next section takes up this
matter of estimating additional moments; in addition, estimates
presented in that section have been calculated using service-area
aggregates as exogenous variables — that is, to the extent that such

aggregates are available from published sources.

5.3 The LD Model: Version II

Before discussing the estimates made under version I1, we will
look at the potential gain in estimating the load distribution. Referring
again to Fig. 12, not- that the estimated load distribution is straighter
than the actual load distribution which curves back and forth across it.
At normalized load (Z) values of approximately 0.32, 0.68, and 0.75,
the actual load distribution exhibits "bends" where a change of direc-
tion occurs which the estimated one does not. 1In principle, by esti-
mating higher moments of normalized load, the estimated load distribution
can be made to better reflect these "bends." Figure 13 exhibits an
estimated load distribution where this has been done. Figure 14 pre-
sents the actual probability density and estimated probability
density associated, respectively, with the actual and estimated load
distributions of Figure 13. For these plots, actual values of peak and
minimum loads were used and the normalized load distribution parameters
were estimated directly from hourly loads by the method of moments
procedure described in the previous section (i.e., actual rather than
predicted values of sample moments of normalized load were used).
Clearly the estimated load distribution of Fig. 13 better represents the

"shape" of the actual load distribution than any of those presented

earlier. It would thus seem that a better load distribution estimate
might be got from version II.
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Looking at version II performance for two utilities where service
area data was readily available, Tables 6-10 present estimates of the
required six moments of version II using three alternative estimation
methods.

More specifically, estimates of these six moments were obtained
using three distinct methods for the Central Hudson and San Diego Gas
and Electric Utilities: ordinary least squares, generalized least
squares and instrumental variable estimation. Additionally, each moment
was also estimated with the inclusion of a seventh explanatory variable
not previously used, the ratio of industrial sales to total sales (IND).
IND is thought to be a significant determinant of annual demand variation
by accounting for uneven growth in the industrial sector (i.e., jumps
in the load distribution arising because, for example, a new industrial
user of electricity moves into the service area or a new manufacturing
process requiring substantially more or less electricity is introduced).

The ordinary least squares (OLS) estimates are presented in Tables
5 and 6. Each moment of normalized load (MU 1,..., MU 5) and the load
factor (MU 6) is first regressed on the heating and cooling variables
(cooling degree days (CDU) and heating degree days (HDU) now periain to
the service area) separately in Table 6 followed by estimates of the same
models with IND included. Resultz are better, in terms of R2, in the
four variable model, of course, but only slightly and predominantly in
MU 1 through MU 5. IND did not prove to be significant at the 10%
level for any of the estimated models for Central Hudson. For San Diego,
it was significant everywhere for MU 1-MU 5 only. Obviously, the impor-
tance of IND will vary with demand characteristics of individual utilities,
but it should be observed that either the heating or cooling variables
alone explains usually well over 90% of the variation in the first five
moments of normalized load.

The major reason for not using the heating variables (HDU, LNHEL,
LNHELHDU) in the same equations with the cooling variebles (CDU, LNAC,
LNACCDU) is, as noted previously, because of multicollinearity. This
very proble ‘owever, presents an opportunity to use instrumental
variable estimation (IVE). 1IVE vequires a matrix of variables, Z, highly

correlated with the independent variables of the regression equation,




Table 6.

Ordinary least squares estimates of moment functions'

Dependent

Utility Variable LNAC LNACCOU CDUb LNHEL LNHELHDU HoU” Rz
Central Hudson MU 1 -154.8 .2474 .7353 .98918
(50.98) (.1396) .2789)
MU 1 -66.07 .0095 .0699 .98988
(108.5) (.0173) .M72)
MU 2 -93.46 .1366 .3627 .97275
(45.23) (.1238) .2475)
MU 2 -20.54 .0014 .0334 .97400
(97.24) (.0155) .0154)
MU 3 -60.42 .0809 . 1955 .95704
(35.24) (.0965) .1928)
MU 3 -4.663 -.001 0177 .95892
(75.82) (.0121) .0120)
MU 4 -41.00 .0512 .0036 .94200
(27.08) (.0741) .1482)
MU 4 1.197 -.0018 .0101 .94455
(58.26) (.0093) .0092)
MU 5 -28.84 .0342 .0706 .92738
(20.96) (.0574) .1147)
MU S 3.058 -.0018 .0062 .93055
(45.11) (.0072) 2071)
MU 6 -184.3 .3581 .242 .99930
(17.82) (.0488) .0975)
MU 6 -127.8 .0250 .1223 .99976
(23.10) (.0037) .0037)



Table 6. (cont.)

Dependent L 4 2
Utility Variable LNAC LNACCDU cou’ LNHEL LNHELHDU Hou® R
San Diego MU -184.3 .2685 .7358 .98572
Gas and (32.88) (.0658)  (.1078)
Electric Co. MU -194.9 .1644 .3655 2078
(42.02) (.0291) (.0461)
My 2 -79.51 1661 .4341 .96776
(25.49) (.0510)  (.0836
My 2 .0996 2132 .97285
0234)  (.0370)
.94871
.0633 1337 .95562
0172)  (.0273)
.92870
.0419 088" .93727
0127)  (.0201)
.90910
.0286 .0604 .91892
0094)  (.0149)
.99673
1725 .4699 .99763

.0183) (.0290)
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Table 6. (cont.)
Dependent 3, 3 ?
Utility Variable LNAC ' NACCDU cou” IND LNHEL LNHELHDU HDU"™ IND R
Central Hudson MU 1 -571.7 1.057 3.150 1841.5 .994¢0
(151.9) (.3038) (.8764) (649.2)
MU 1 -175.8 .0296 .1530 -706.2 .69159
(135.5) (.0229) .0672) (552.8)
My 2 w0d.2 .8561 2.509 -1637.3 .98647
(134.5) (.2690) (.7759) (574.7)
MU 2 -123.7 .0203 L1116 -663.9 .97884
(120.2) (.0204) .0596) (490.4)
MU 3 -353.1 .6489 1.890 -1292.5 .8792¢
(103.3) (.2767) (.5962) (441.6)
MU 3 -88.58 ,0142 .0813 -540.2 .96726
(92.80) (.0157) .0460) (378.5)
MU & -268.6 .45930 1.432 -1005.4 .97273
(78.%%) (.1567) (.4521) (334.9)
MU 4 -65.60 .0104 0608 -430.0 .95662
(70.65) (.0120) .0350) (288.1)
MU S -206.6 .3791 1.100 -784.9% .96650
(60.06) (.1202) (.3466) (256.8)
MU 5 50.07 .0080 .0465 -342.0 .94651
(54.27) (.0092) .0269) (221.4)
MU 6 -277.7 .5394 1.783 -412.6 .99845
(67.01) (.1341) (.3867) (286.4)
MU 6 ~-154.8 .0299 .1428 -173.8 .96488,
(27.85) (.0047) .0138) (113.6)
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Table 6. (cont.)
Dependent . * 2
Utility Variable LNAC  LNACCOU  cDU’ IND LNMEL  LNHELHDU  HDU® IND R
San Diego MU 1 -110.6  .2379 .6467 158.1 .98589
Gas and (103.1) (.1116) (.2802) (455.2)
Electric Co. MU 1 -240.8 1871 .4280  -202.4 .98908
(97.81)  (.0528) (.1286)  (386.9)
My 2 -48.09 .1377 3812 147.1 .96831
(79.72) (.0863) (.2166) (352.0)
My 2 -126.8 1088 .2386 82.10 .97303
(79.29)  (.0428) (.1043)  (313.6)
MU 3 -22.50 .0848 .2043 122.3 ,94986
(57.84) (.0626) (.1572) (255.4)
MU 3 -69.65 0657  .1405 -22.00 .95566
(58.64)  (.0°17) (.0771)  (231.9)
MU 4 -10.96  .0551 1257 97.47 .93061
(42.09) (.0455) (.1144) (185.8)
MU 4 -39.83 0415 .0871 3.700 .93727
(83.14)  (.0233) (.0567)  (170.7)
MU 5 -5.495 .0373 .0806 76.40 91186
(30.93) (.0335) (.0840) (136.5)
MU 5 -23.31 0270 .0°60 14.32  .91902
(31.96)  (.0173) (.0820)  (126.8)
MU 6 -100.5  .2409 6251 489.1 .99760
(58.23) (.0630) (.1582) (257.1)
MU 6 -123.4 1325 .3599 356.3  .99812
(55.52)  (.0300) (.0730)  (219.6)

811 coefficients x 10°

3

‘Service area heating and cooling degree days

1L



Table 7. Instrumental variable estimates of moment functions ©

Dependent b 5 2
Utility Variable  LNAC  LNACCDU  CDU IN®  LNHEL  LNHELKDU  HDU IND R
San Diego my 14 -65.96  .1517  .6500  44.94 97995
Gas and (171.0)  (.2115) (.4099) (61.38)
rkiaiud b caIIOE X | -138.8 .39 4313 -141.0  .98450
(146.4)  (.0801) (.1719)  (507.3)
m2? -3.33 0615 .3247  108.1 95509
(128.6)  (.0703) (.1510) (445.5)
My 2¢ -46.31 0644 .2425  -41.10  .96177
(121.9)  (.1507) (.2922) (437.5)
My 37 13.62  .0270  .1747  114.7 .92980
8 (95.19) (.1177) (.2282) (341.7)
MU 3 -11.21  .0330  .1449 6474  .93678
(33.00) (.0481) (.1033) (304.8)
my a7 16.74  .0125  .1000  101.8 90431
(66.97)  .0366 ( 0568) (232.0)
MU 4° 2.714 0178 .__2 15.89  .91020
(66.60) (.0824) (.1597)  (239.1)
my 54 15.48  .0060  .0597  B85.09 .88016
(50.16) (.0620 (.1202) (180.1)
MU 5 7.964  .0091  .0597 20.30  .88240
(48.41) (.0265) (.0568) (167.7)
moe?  -77.67 2246 .6128  548.5
(81.45)  (.0455) (.0956) (282.2)
MU 6° -100.2 1181 4230 182.5  .99676
(94.00) (.1162) (.2253) (337.4)
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Table 7. (cont.)

Dependent b - >
Utility Variable LNAC LNACCDU cou” INg° LNHEL  LNHELHDU HDU IND R
4
Central Hudson MU I -507.9 9225.6 2.856  -1676.6 .99423
(349.5) (7137.) (1.247.) (129.)
MU 1° 78.98  -.000009 .1914  -924.9  .98324
(279.5) (.0852) (.0934) (759.5)
w 27 -399.1  .7200 2.199  -1456.1 .98543
(185.7) (.0236) (.0487) (396.1)
my z° 109.7 -.0155 1438 -840.8  .95769
(349.5) (.7137) (1.888) (1295.5
w3? 3030 5439 1.651  -1152.8 97767
(157.5) (321.7)  (.8512) (584.0)
My 3° 95.74  -.0141 0157 -671.3  .93270
(194.3) (.0314)  (.0550) (528.1)
wy 47 -230.8  .4136 1.251 -900.5 .94580
2683.2 (.0004) (.0009) (7292.6)
My 4° 77.11 -.0115 0791 -527.4  .91065
: (208.4) (.4255)  (.1126) (772.5)
MU 5" 1771 .73 9593  .703.8 .96373
(91.86) (.1876) (.4963) (340.5)
My 5° 60.80  -.000009 0605 -415.8  .88675
: (115.3) (.0187)  (.0386) (313.5)
MU 6 -381.9  .7488 2.375 -833.2 .99925
(81.26) (.0131) (.0272) (220.9)
MU 6 -143.7 .0283 1454  -189.8  .99977
(63.16)  (.1290)  (.3413) (234.1)
a1 coefficients x 1073 d

Instrument variables are LNHEL, LNHELHDU and HDU

b 5 )
Service area heating and cooling degree days
9 9 ey Y “Instrumental variables are LNAC, LNACCDU and CDU

“Coefficients for IND are not estimated by the
instrumental variables technigue.
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Table 8. Instrumental variable estimates ot moment functions™

Dependent b 2
Utility Variable LNAC  LNACCDU cor? LNHEL  LNHELHDU HOU R
San Diego MU 1° -75.53 1610 .6760 .97977
Gas and (83.39) (.1483) (.1660)
Elestrvc (5. My 19 -110.8 1193 3898 .98462
(33.27)  (.1989) (.1983)
My 2° -26.36  .0838 .3897 .95452
(29.51) (.1764) (.1760)
3
MU 2“ -38.16 .0607 .2303  .96212
(58.99) (.1049) (.1174)
My 37 -10.82  .0507 .2437 .92991
{(46.70) .8310  (.9300)
~
MU 3 -11.34 .033] .1451 . 93685
(20.06)  (.1199) (.1196)
MU 4° -4.949  .0335 1612 .90195
(15.46) (.0924) (.0922)
my 4% -.4342 .0188 0960 91070
(32.53) (.5790) (.6430)
My 5° -2.647  .0236 .1108 86256
(24.72) (.4400) (.4920)
My 57 3.945 .0109 .0658 .88111
(11.10) (.6640) (.6620)
MU 67 -194.5 .33717 .9424 .99637
) (221.2) (.1322) (.1319)
MU 6 -136.4 1315 L4773 .99617
(49.67) (.8840) (.9890)

S S i i iR i b
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Table 8. (cont.)
Dependent 5 5 2
Utility Variable LNAC  LNACCDU cou” LNHEL  LNMELHOU HDU R
Central Hudson My 1° -182.9 .3089 .8035 .98878
) (123.1)  (.2691) (.4055)
MU 1 25.49  -.0045 .0751 .98907
(273.6)  (.0830)  (.0220)
My 2° -116.9 .1870 .4170 .97187
i (241.7) (.0380) (.0190)
MU 2 61.09 -.01M .0381 .97014
(108.9)  (.2660)  (.4010)
Mu 37 -79.51 1220 .2396 .9555]
(85.07) (.2080) (.3130)
mu 37 56.92  -.0105 02135 .95588
(187.8)  (.030) (.0150)
mu 4° -56.21 .0839 .1487 .93981
’ (145.1)  (.0230) (.0110)
MU & 46.61 -.000009 .0128 .94077
(64.92) (.1500)  (.2390)
MU 5~ -40.71 .0597 .0978
: (50.70) (.1240) (.1870)
MU 5 36.75  -.000007  .0082 .92619
(1M1.2)  (.018) (.0880)
MU 6 -220.4 8839  1.355 .99898
g (113.5)  (.1790) (.0900)
MU 6 -154.7 .0293 1216 .99972
(26.73) (.065) (.098)

%11 coefficients x 107
Eservice area heating and cooling degree days

2 Instrument variables are LNHEL, LNHELHDU and HDU
d Instrumental variables are LNAC, LNACCDU and CDU
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Table 9. Joint generalized least square estimates of moment functions:

pairwise correlation?
(asymptotic stancard errors in parentheses)

Dependent b b 2
utility Variable LNAC  LNACCDU  CDU UNHEL  LNHELHDU  HDU R
San Diego MU 1285 2121 6486
Gas and (18.43)  (.0438) (.0918)
Electric Co.
My 2 -85.9] 0775  .1919  .97959
(:ggf‘f ' (18.76)  (.0161) (.0325)
M 2 -86.65  .0750  .184]
(17.96  (.0157) (.0320)
M 3 -37.19 0723 .2132  .96386
(9.961) (.0241) (.0509)
MU 3 -35.68  .0745  .2240
(9.336) (.0231) (.0497)
wU 4 -29.40 0301 0758 .93103
(e.111)  (.0082) (.0170)
MU 4 -30.53  .0296  .0725
(9.227) (.0082) (.0170)
MU 5 -14.67 0320 .0931 .90909
(5.074) (.0125) (.0268)
MU 5 -15.93 .04 1188
(8.672) (.0180) (.0316)
MU 6 -194.4 1656  .4679  .99772
(23.01)  (.0167) (.0284)
MU 6 -201.1 1688 L4618
(25.48)  (.0179) (.0288)

9L
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Table 9. (cont.)

Dependernt b b 2
Utility Variable LNAC  LNACCOU Cou LNHEL  LNHELHDU  HDU R
Central Hudson MU ] -124.3 .1639 .5981
(sample (14.67) (.0732) {.2164)
size = 12) My 2 -68.28 0086 .0296 98507
(25:29)  (.0047) (.0137)
My 2 67.41 .0091 .0326
(24.42) (.0046)  (.0136)
My 3 -40.17 0329 .1313  .96833
MU 3 -40.82  .0308 1206 (-9856)  (.0500)  (.1485)
(3.965) (.0481)  (.1445)
MU 4 -26.59 0026  .0089  .95011
(13.01)  (.0025) (.0079) *
MU 4 -27.02 .0029 .0101 =
(13.59)  (.0026)  (.0080)
MU 5 -17.40 0080  .0381  .87374
5.524 0290 (.0869)
My 5 -29.89 0365 L0731
(20.88)  (.0572)  (.1145)
MU 6 -128.4 0251 1224 .99878
(23.0) (.0037) (.0037)
MU 6 -131.1 .0255 1223
(22.91)  (.0037)  (.0037)
3

ZA11 coefficients x 10~

bService area heating and cooling degree . 1ys




Table 10. Joint generalized least square estimates of moment functions:
pairwise correlation?
(asymptotic standard errors in parentheses)

Dependent »

Utility Variable LNAC LNACCDU Cbu IND LNHEL LNHELHDU MDY

San Diego MU 1 -380.8 6695  2.095  -1114.
Gas and (118.8) (.2347)  (.7085) (543.3)
Electric Co. . .0788 -400.6

(sample
size = 14) : .0534) (440.7) .97959

.0

-00) {.

S R
.07) (.

ol .
.46) (.

.8 .0299
.85) (.0047)
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Table 10. (cont.)
Dependent b b 2
Utility Variable LNAC  LNACCOU  CODU IND LNHEL  LNHELHDU HOU IND R
fentral Hudson MU 1 -49.84 1496 L4571 360.7
(Sample (79.38) (.0803) {.2234) (272.8)
size = 12)
M 2 -47.63 L0610 1476 165.8
(62.89) .0341) (.0860) (257.7) .99074
MU 2 -81.04 .0746 .1836 2.24
(60.00) (.0326) (.0825) (246.5)
MU 3 -7.741 .0486 .143)  138.8
(42.42) .0426) (.1202) (200.7) .97738
MU 3 3.44) .0416 .1226 190.2
(40.97) (.0410) (.1163) (193.3)
MU 4 -9.151 .0212 .0524 86.37
(31.55) .0172) (.0435) (129.9) .96825
MU 4 -21.55 .0262 .0640 37.63
(31.57) (.0172) (.0435) (129.9)
MU 5 1.570 .0187 .0527 77.92
(21.91) .0219) (.0622) (104.0) .95455
MU 5 21.35 .0078 .0156 175.6
(28.63  (.0301) (.0792) (130.0)
MU 6 -88.85 1137 .3254  465.0
(52.13) .0281) (.0696) (209.5) .99561
MU 6 -119.4 .1284 .3505 369.1
(54.96) (.0297) (.0725) (218.1)

2a11 coefficients x 107

3

bService area heating and cooling degree days

6L
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X, to estimate the coefficiints, Br (r=1, ..., 6) of equations (21)

in the following manner:

= - =lge =
Br (err) Zrur el s 9
Be = (Z¢Xg)~lziLF

where Z is an appropriately dimensioned matcix of heating (cooling)
variables and X is a conformable matrix of cooling (heating) variables.
The advantage in using this technique is in obtaining consistent esti-
mators which do not result under OLS when the necessary conditions are
met.

IVE results are presented in Tables 7 and 8, where Table 8 is the
estimation with the IND variable added. Each moment is regressed on
both the heating and cooling model with the alternate one as the instru-
mental variable matrix. The results are not remarkably different from OLS
although R? is noticeably reduced in the case of the instrumental
variable estimation. IND does not appear significant for either utility.
IVE is primarily used when there are errors in measuring both the
dependent and independent variables and it is also necessary that these
errors be independent of one another, of the true values of the variables
and of the disturbance term. If the data do not fit these requirements
then it isn't clear that the estimators will be superior to those obtained
by 0I.S.

Errors do exist in the hourly load information from the utilities
and in the appliance stock data. The stock of houses, used in both
LNHEL and LNAC, is calculated from the number of electricity customers,
and the number of electrically heated and centrally air conditioned
households is also estimated. It is not certain, then, that the error
terms are uncorrelated across variables or that the disturbance terms
are independent. In fact, considering that MU 1-MU 6 represent moments
of the same probability distribution, it is highly likely that the
disturbance terms are mutually correlated.
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In a situation where a series of equations have mutually correlated
disturbance terms, it is possible to treat the series as seemingly
unrelated regression equations. The only link between these equations is
an assumed constant covariance over all observations. This type of
link, 1f it exists, would mean that the application of OLS to each
equation would produce coefficients that are unbiased and consistent,
but not efficient. By combining equations, it is possible to use the
information concerning their correlation that is lost when each equation
is regressed separately.

One way of determining which equations to combine is to check the
six momeuts in each utility for the degree of correlation. For both
Central Hudson and San Diego, the first five moments were all highly
positively correlated with one another, but each was correlated to a
much lesser extent with MU 6. For simplicity, then, and for ease of com-
parison with the other methods, consecutive overlapping pairs (i.e., MU 1
and MU 2, MU 2 and MU 3, etc.) were combined and est.mated by the joint-
generalized least squares (GLS) method. These res . :s are presented in
Table 9 and 10, again, with the latter being the case where IND is included.

In comparing the results in Tables 5 and 9, it is evident that the
variance of the regression coefficients is generally smaller for the
GLS estimates. The more efficient estimators evidences that the dis-
turbance terms in the moment functions are indeed correlated regardless
of whether the heating er cooling terms are used. Using the GLS
estimates combines two moment of normalized load models and thus also
allows information from all six variables to be used simultaneously,
although the value of doing so fur predictive purposes has yet to be
investigated. The R? terms in the OLS single equation regressions are
higher for both the heating and cooling equations than the corresponaing
joint equations in estimating each moment for both utilities. The dif-
ferences in the R’ for both methods for MU 6 were, however, slight.

The addition of the IND variable in Table 10 produced no significant
improvements. In some cases, R? even declined with the inclusion of the
additional variable due to the method of calculating a joint correlation
coefficient.
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By all of the estimation methods tried, moments of normalized

load estimates under version II seem to fit the data very well and to
otherwise produce reasonable statistical results. However, as it turns
out, small relative differences between moment estimates can lead to
unacceptable results when attempting to numerically solve for the
normalized load distribution parameters. Such differences always arise,
of course, because the regression of a moment of normalized load on a
set of exogenous variables (such as was done in Tables 6-10) will always
produce moment estimates that differ from the actual moments, a differ-
ence that is acknowledged and accounted for in the specification of a
stochastic residual.

What happens when one or mo.: of these differences is larger than
can be tolerated is either no numerical solution for the normalized load
distribution parameters is possible or, if a solution exists, it pro-
duces negative parameter estimates. The load distribution specification
of equation (19) is undefined for negative parameters. If proper esti-
mates of the load distribution parameters cannot be obtained, the
estimation procedure breaks down and must be mo. fied. For this reason
we favor version I since no such problem arises and note that, in a more
complete specification of econometric models for the moments of
normalized load that takes account of inter-moment correlation, this
sort of problem may not arise. However, this seems a high price to
pay since it complicates the estimation procedure still further.

To deal with one final matter, we have not presented any discussion
in this report of the signs of coefficients in the moment equations.
This was intentional. The purpose of the report was to present the
results of our data explorations and to suggest that the information
contained in the load duration curve might be captured by estimating
moments. A complete integration ~f this line of analysis with consumer

theory has yet to be done. We leave that to future work.



6. CONCLUSION

We have presented in this report a model that extends the traditional
model of electricity demand to account for intra-period load variation,
the kind of variation that is important for evaluating prices which
reflect the marginal cost of producing electricity. All that is required
to use this model in addition to that for estimating a traditional model
of electricity demand is a compilation of hourly loads (preferably by
class of customer) and some additional time in estimation. Apart from
hourly loads, the model uses only temporally aggregated data.

The background from which load duration curves merge witt aconomic
studies of electricity demand was presented. One procedure by which
load duration curves might be integrated with aggregate electricity
demand and which leads to an estimate of the load duration curve was
also discussed. Inherent in this discussion is that the model extension
presented accounts for some of the information lost in temporal
aggregation. The appropriate literature is also reviewed. Two load
duration curve models are specified and estimated for as many as twenty
utilities. The results indicate that one of the two model extensions
considered, version I, is, in terms of its ability to provide the

requisite information at a reasonable cost, recommended over the other.

83



APPENDIX

In this appendix we present the method used to calculate normalized
load distribution parameter estimates for version II. We estimate first
the mean and variance of each of the univariate beta densities ia equa-
tion (19) using the method of moments as typically applied to the normal

distribution.®! The estimates of the a, and b, (i = 1, 2) are then

i i
obtained by using the equations (15).
The first step in finding method-of-moments estimators requires
that a negat‘ve root be found by numerically solving the following nonic

equation:

Cql? + Cg2® + Cy07 + Cg2® + Cs2”® + Cut™ + C32% + €22 + 1L + Cp =0 (A1)

where Cq = 24, Cg = 0, Cy; = 84Ky, Cg = 36u3?, Cg = 90K,? + 72Ksus,
Cy = 444K4u32 - 18Ks?, Cy = 288us“ - 108u3K,Kg + 27K, 3,

C, = =(63K,? + 72u3Ks)us?, C; = -96u3"K,, Cp = -24u1°, and where
Kj (j = 4, 5) are the fourth and fifth sample cumulants

Ky = uy = 3up?

Kg = us = 10u3u;

If equation (Al) does not have a negative root, then the method of
moments fails for the version II LD model. It may still, however, fail
even if one exists for it is possible for equation (Al) to have a nega-
tive root and find that one or more of the a and bi (i =1, 2) are
negative. The beta density of equation (9) is not defined for negative
values of any of these four parameters hence neither is the mixture
density of equation (19).

Let the mean and variance of each of the beta densities comprising
the mixture density of equation (19) be designated, respectively, ;4

and u3i{. Thus, we have
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Mg = 11/(l1+b1) (1=1,2)

2
bag = ab,/(a+b )% (a b 41) .

Now, define the differences of the uU (j =1, 2) from p;, the first

moment of normalized load
di = uiy = i)
d; = ujz = ¥y
If i is a negative root of (Al) and S is defined by

-8u3l? + IKgi? + 63K 2 + 25,2
S =

L(28% + 3Ky E + 4us?)

where "hats" over the K's and u's indicate "predicted values" then the

following are estimates of d; and d;:
dy = (8 - (s2-40)1/2))2
d, = [8 + (82-4i)1/2)/2 .

This then yields

b =d vl =1, 2

where ﬁl is the predicted value for the first moment of normalized lozi.

Then the uj;'s are estimated by

Wiz = (4, (25-us/D)/3) +0; - 4.7 (i =1, 2).
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And we get estimates of a and b1 (1 =1, 2) from the following equations:

;1 - 611;12'11511(1-611) - 2] A=1,2)
51 = (=g iz~ g A=0g1) - 0g2) .

The mixture parameter ¢ is estimated by

; = az/(&z-al) “
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FOOTNOTES AND CITATIONS

1. See Chern et al. (1978).

2. See Tepel et al. (1980).

3. Recall that peak (L*) and minimum (L,) loads refer to the maximum
and minimum instantaneous load in a given service area per year;
recall also that maximum and minimum hourly loads per year are
considered in this report to be adequate observations of peak and
minimum loads.

4. See footnote 3.

5. See footnote 2.

6. Recall that F(L) is the load distribution wnich is a more
convenient way of expressing the load duration curve.

7. Charles River Associates, Inc. (1978).

8. Aigner and Poirier (1979); see also Boyd (1976), Electric Power
Research Institute (forthcoming), and Lawrence (1977).

9. See New York Power Pool (1979).

10. For an early discussion of the peak load pricing model, see
Steiner (1957).

11. Galiana (1976).

12. See Charles River Associates, Inc. (1978) for a discussion of
these models.

13. Gupta (1976).

14. Hausman, McFadden, and Kinnucar (1978).
15. Spann and Bezvais (1977).

16. Murray, Spann, and Pulley (1978).

17. Betancourt and Habermann (1978).

18. Uri (1976, 1977).

19. See footnote 15.

20. See footnote 16.

21. See footnote 17.
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22.
23.
24.
25.
26.

27.

28.

29.

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

90
See footnote 16.
See footnote 15.
Mitchell (1977).
See footnote 15.
Uri (1976, 1977).
This holds unless regulatory agencies begin to require regular and
frequent surveys of utility company customers to provide this
information in a published time series record.
Pure time series models do not contain explanatory variables. As
a consequence, they are useful as a forecasting tool but not as a
tool of policy analysis; see Parzen and Pagano (1977) for an example
of a pure time series model.
One attempt to introduce policy variables into the time t2ries model
was made by Uri (1977). However, this procedure has come under
suspicion because the structural parameters so estimated tend to
be unstable; see Uri (1977).
Einhorn (1978).
Platt (1978).
Sant (1979).
Trimble (1978).
Loney {(1971).
Uri and Maybee (1977/8, 1978a, 197db).
Maybee (1978).
Maybee, Randolph, and Uri (1979).
See footnote 37.
Uri and Maybee (1978b).
Uri and Maybee (1977/8).
Uri and Maybee (1978a).
Mitchell (1977).
Either peak load or the load factor maybe modeled in the general

scheme presented in the second section. Because it is more com-
patible with method-of-moments estimation, we use the load factor.
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44,

45.

46.

47.
48.
49.
50.

51.
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Recall that an annual aggregate demand for electricity estimate is
required for the estimation method described in this report.

See Rao (1973) p. 150.

The correlations could arise from a simultaneous equations speciiica-
tion of the model of equations (12)-(13).

See footnote 43.

See Verleger and lascone (1977).

See National Oceanic and Atmospheric Administration (1960-1974).
See Federal Economic Regulatory Commission (1960-1974).

See Quandt and Ramsey (1978), p. 731.
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