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ABSTRACT

This report presents a model that_ extends the traditional model of
-electricity demand to account for intra-period load variation,.the kind
of variation that is important for evaluating marginal-cost-reflecting
price structures. The time-of-day rate is one such price structure.
The traditional model of, electricity demand explains inter-period demand
variation. It says nothing about load variation. The report explains
how a model that integrates with previous studies of electricity demand
might be formulated. It specifies two concrete models within this
framework and estimates them for a number of different utility companies.

The model's within-sample-period performance in predicting peak
loads is presented for one version of the model extension along with
estimations for other variations. In addition a number of plots of

actual load distributions, a summation of load variation information,

against the actual load distributions, are presented and used to evaluate
the performance of specific models.
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1. INTRODUCTI'ON

Before proceeding to the' topic _of this report, it may forestall
confusion later if.a'few potentially misleading terms are clarified now.

Economists' relatively recent interest in electricity consumption,
historically a domain for engineers, has resulted in confusing uses of

the same terms. Economists traditionally use the term ' demand' to mean
- one. thing.while engineers use it.to mean another. To avoid potential
. misunderstanding, ' demand' in this report shall be used in the economist's i

sense to refer to ' kilowatt hours (kWh) of consumption per unit of time.'
Another.potentially confusing term ' load' shall refer to ' instantaneous
consumption measured in kilowatts (kW).' And hourly units shall be

- considered to be adequate to measure instantaneous consumption; hence,
P

we shall use the term ' hourly load' not ' hourly demand'; thus ' peak
load' will refer to ' maximum hourly load' and ' minimum load' to ' minimum

i

hourly load'; no other discrepancies between ' demand' and ' load' will
be sanctioned.

Since demand refers to consumption per unit of time, it will prove
useful later to attach a name to the time unit. The term ' accounting
period' will be used to refer to 'the unit of time used to measure demand

~

in a given application.' -Thus accounting periods of a month, a quarter
or a year might arise depending on what sort of model is being considered.
In this report the accounting period is a year because a model of
electricity demand per annum is being considered. Hence, in this report,
when the term ' peak load' is used, for example,-it will refer to ' peak:

' load per> annum.' 'In portions of-the report, however, the term ' accounting
period' will be explicitly used. .This is to emphasize that the state-
ments can apply to any model'of_ electricity demand not simply a model
of. annual electricity demand.

~Having hopefully. laid'aside potential terminological difficulties,
the _ remainder |of this section addresses the purpose of the report 'and
the motivation behind it.-

Evaluation of.the necessity to build additional electric power gen-
erationEcapacity has-been a recurring problem for the Nuclear Regulatory

--
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Commission (NRC), which regulates nuclear power installations. From the

NRC's point of view, "need for power" assessments, as they are called,
must be independent of an applicant utility's assessment. In May 1976,

the NRC commissioned ORNL to develop a forecasting model of electricity

demand to support their independent assessments. The resulting model
was first published in October 1978;l it provides forecasts of state-
level electricity demand (SLED) and average price.

Ilowever, the SLED model (as it will be called in this report) is a

compromise between the NRC's need to have a model with wide geographic

coverage and one that forecasts at the service-area level. The SLED

model also does not forecast peak load which in important for determining

capacity needs. Yet a model with all these capabilities that has been

validated for all service areas in the continental U.S. (as was done for
states with SLED) is out of the question. To satisfy the NRC's needs, a
compromise solution was undertaken: extend the SLED model to forecast

demand, average price and peak load at the service-area level but

validate the model for only a few service areas geographically dispersed
to represent climatic differences in the U.S. The resulting model can

then be estimated on a case-by-case basis as required.
These extensi ns to SLED have been developed along two lines. One

extenrion focuses ( a disaggregating SLED predictions of demand and

average price to service-area predictions of the same quantities. It

constructs models of demand ratios (service-area to state) and average
price ratios.2 The other extension which is presented in this report
focuses on estimating peak load. But the model presented in this report

also estimates miaimum load and the corresponding load duration curve.
3The process by which load duration curve, peak and minimum 4 load

estimates are produced is depicted in Fig. 1. The SLED model estimates

utate-level demand and average price for each consuming sector (denoted,
respectively, by Y '

R C' I "" R' C' I). ese esdmates are W n
disaggregated into service-area estimates of demand and average price
(denoted, respectively, by y ' Y ' Y and p , P , P ) by.the service-

R C I R C y

area disaggregation model.5 An estimate of aggregate demand

(y = yR+IC + I ) is then computed. Aggregate demand, y, is then fedI

1
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L' L. gir)

.: Fig. 1. The LD model extends the SLED model to forecast peak
and minimum loads and the load duration curve.

into the load distribution model (LD) which estimates the service-area
~

load duration curve, peak and minimum loads conditioned on the aggregate4

demand estimate.

.The LD model is named for its relationship to the load duration

curve; the relationship between the two is described in the next section.

Before proceeding on, it may be useful to note that the LD model

can be used in conjunction with almost any model of electricity demand.
The essential requirement is that the conditional forecast of aggregate

1 demand (y) be expressed in the same time unit (i.e. , accounting period)
as the.LD model. For instance, an annual aggregate demand estimate (y)

~

would not be useable if the LD model were set up to take a monthly
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aggregate demand estimate. The electricity demand and LD models must be

conformable in the sense that they both use the same accounting period.



2. BACKGROUND

This section deals with two. topics: (1) load duration curves and
how they can be estimated and (2) the fundamental loss of important
information that always occurs in models of annual electricity demand.
A major _ point in the report is that a valuable portion of the lost
information can be recovered by estimating the load duration curve in '

conjunction with aggregate electricity demand. Thus topics (1) and (2)
above are closely related to one another. This section provides an
overview of how (1) and (2) can be related in a model framework; but,

details are11 eft to section four.

2.1 Load Duration Curves and Their Estimation

The load duration curve is an analytical tool widely used in the

electric power industry. It provides a powerful summary of how load has
been distributed over an accounting period, usually a year. Figure 2

exhibits a typical annual load duration curve. The curve is designated
'

-by g(T) where T is the proportion of elapsed time in the accounting

period (i.e. , 0 < T < 1); and L [ identical to g(T)] designates con-

tinuously measured electricity load which is always greater than or

ORN L-DWG 80-82%
La g(r)

n

L*

L I
O - - - - - ,
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Fig. 2. Typical-load duration curve.
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equal to minimum load L,, and less than or equal to peak load L*.
Thus, for any. proportion of the accounting period's total time, To, the
load duration curve. tells what level of load was equaled or exceeded.

It can be shown that the area under the load duration curve, g(T),

in Fig. 2 can be expressed as a function of aggregate demand, y, of Fig.
1. In fact, this link is required to estimate a load duration curve

from the SLED L as outlined in Fig. 1. To establish this relation-

ship, it is necessary to re-express the load duration curve as a cumula-
tive probability distribution, F(L) . In the remainder of the report,

'F(L)' shall be referred to as the ' load distribution' which will be
abbreviated as LD. Note then that as a distribution function F(L) must
satisfy the following condition:

0 < F(L) < 1 for 0<L<L*. (1)

Since L 5 g(T) is the expression for the lond duration curve, F(L)

can be expressed in terms of the inverse function for g(T) . This inverse

function is

"1 if 0 < L < L,
g-1(L) = 4 (2)

<G(L) if L, < L < L*

where G(L) is the inverse of the load duration curve between minimum and
peak loads and is asstt.ned to be twice dif ferentiable. The distribution
function F(L) satisfying condition (1) may then be expressed in terms

of G(L)6 as:

'O if 0 < L < L,

F(L) = 1 - g-l (L) = < (3)

< 1 - G (L) i f L, < L < L* .

It is easy to see that the portion of F(L) below L, being equal to zero
contributes nothing to F(L) and hence can be dropped.

The load distribution is illustrated in Fig. 3.
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L. L*

Fig. 3. Load distribution.

The probability density function f(L) corresponding to F(L) -

- definedsimplyasthefirstderivativeofF(L),i.e.,f(L)=h(L)-is
exhibited in Fig. 4. This density is required for establishing the

relationship between aggregate demand, y, in Fig. 1 and the load dura-

- tion curve g(T) of Figs. . l' and 2. Their relationship is given by:

1 L*
g(T)dt E.. Lf(L)dL = E(L) . (4)

0 L,

ORNL-DWG 80-8207

f(L) 3

.
LO.- .. .

: Fig. 4. Probability density of load.
.
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The term to the right of the identity sign in (4) is derived by making
the transformation L E The term on the far right designates the

[ Lf(L)dL defines.expectation (or averag% of L which
*

When L is observed in finite units (hourly in this case), then

aggregate demand, y, is equal to average hourly load, E(L), times the
number of observations, N, of hourly load in the accounting period - i.e.,

y = NE(L) (5)

where E(*) designates the mathematical expectation or average of L. Thus

aggregate demand, y, is related to the corresponding load duration curve
through E(L), average hourly load. One could think of average hourly
load as a summary measure characterizing the load duration curve;
indeed, this would be true under a very restrictive assumption. A more
adequate representation of the load duration curve requires additional
summary measures however.

Equations (4) and (5) link, respectively, the load duration curve to
the load distribution and aggregate demand to average hourly load. We
can thus address the problem of estimating the load duration curve as
the problem of estimating the load distribution. The latter problem can
then be addressed by specifying a parametric family of probability
distributions to represent the load distribution. The problem then
becomes one of estimating the parameters of the family, a problem for
which a number of widely known methods are available. We choose from
among these methods one known as the " method of moments."

Estimating the load distribution (and hence the load duration curve)
involves estimating the parameters of the family of probability distri-
butions as well as the parameters designating peak load (L*) and minimum
load (L,). The problem of estimating the family's parameters by the
method of moments is greatly simplified if hourly loads are normalized
to separate L* and L, from the calculationsaof the other parameters. The

following definitions to normalize loads will serve this purpose:

Z = (L* - L )-l (L - Lp (6a)
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= (L* - L,)-1 (y - L,) ; (6b)z
ff

L designates continuous load measured between L, and L*; Z designates
continuous normalized load measured betwe.en zero and one; y designates

f

the ith hourly load and is considered to be an observation of L; and

z designates the ith normalized hourly load and must therefore bey
considered as an observation of Z.

'

We shall refer to the load distribution arising from the transforma-

tion (6a) as the normalized load distribution.
Estimation of the normalized load distribution (and hence the

normalized load duration curve) by the method of moments involves
equating theoretical moments of the normalized load distribution with

their corresponding sample moments. The number of theoretical moments

equated to sample moments must equal the number of parameters in the

normalized load distribution. Although any type moments may be used, the

customary practice is to use either raw moments or central moments

(i.e., moments abot. the mean). We use central moments.

Suppose that the normalized load distribution has n parameters to

be estimated. (Recall that the parameters L* and L, are eliminated from
these calculations.) Estimates of the n parameters may be calculated by

solving the following n equations (LF designates load factor):

N

Npr" (*i - z) (r = 2, ..., n) (6c)
i=1

N

= (N/(L* - L,)][L*(LF) - L,] . (6d)Nu = Nz = z

i=1

As long as N, the sample size of hourly loads, remains relatively

close to the 8760 hours in a year 3r in whatever accounting period is

being used), the estimates of parameter values obtained by solving

(6c)-(6d) may be treated as population values rather than as statistics.

As the sample size N decreases, the need to account for the sampling
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distribution of the ' normalized load distribution parameter estimates

;

,

This procedure is not a very suitable one in small samplesincreases.-

,

. mainly because method-of-moments estimators are not as efficient as
'

! ones'obtained by other methods;.and, moreover, their efficiency tends-
to decrease as higher moments (i.e. , higher r) are used.

j . In this' report system hourly-loads are used to estimate normalized
loadfdistribution parameters.- Typically ninety-five percent or more of

.

each year's-observations are-included. Thus the small sample problem
6.
'

is not'a problem here; yet,:it is still important to recognize its
~

potential presence.'

So far we'have established how a normalized load duration curve
can be' estimated from hourly load data. Two additional estimation

|- problems still need to be considered: (1) how to estimate peak (L*) a

and minimum (L,) loads'and (2) how to estimate year-to-year changes in
the normalized load distribution in terms of cxplanatory variables of

policy interest. Both problems, it turns out, are solved in the same

way: .by specifying an appropriate number of econometric equations equal
to the number of parameters in.the specified normalized load distribu- ;

. tion plus one additional econometric model for estimating peak load.
This will yieldin+1 estimates of moments of normalized load and n+2
_ parameters; the last parameter is identified by-using the annual esti-
mate of total: energy '(i.e., aggregate demand), y; recall that the load
distribution model assumes that an estimate of y is conditionally given

(see Fig.'1).

From these n+1 econometric.models and the conditionally given

prediction of aggregate demand, a total of n+2 predicted values are
obtained.for each year. .Each. predicted value is a prediction of one of
the moments discussed earlier. Thus, load distribution predictions are

i . "
<

! calculated by substituting the predicted moments.for the sample moments
_

in equations"(6c)-(6d) and solving simultaneously. Load distribution
.

,(and'hence load duration curve) estimates are predicted for each year in
this way.

|~ '

f Intsection four the-specification of the econometric models and a-
L

: parametric' family-of~ distributions.to represent the load distribution
~

-

-are discussed'in more detail.
i

t

s- .
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2.2 Temporal Aggr'egation -

-We' are; concerned in this report with a model (i.e. , the SLED model)
that predicts annual electricity demand based, of course, on historical

observations'of~ electricity consumption. Such a model provides useful
information on the underlying determinants and pattern of electricity

consumption :over time - that is, from year to year in this case. But

such a model is virtually useless if information about intra-year varia-

tion in electrical load is required. Evaluation of time-varying -- c.g. ,

seasonal and time-of-day - rates requires such information.

One might say that-knowledge of intra-year variation is lost since

annual consumption is the sum of hourly loads in a given year. We refer

to this process of summing over time (i.e., summing hourly loads in this

case) as temporal aggregation. Thus temporal aggregation poses a funda-

mental problem if all that is available on the one hand is annual con-

sumption data and, on the other, one needs, for example, to evaluate the

policy implications of a time-varying rate.

The data typically available from published sources to estimate

annual electricity demand is of two forms: unit averages and point

. samplings. A unit average is the aggregation of a variable that varies

continuously over time. Annual electricity consumption, for example, is

the unit average of electrical load per year. Point sampling refers to

variables that do not vary continuously over time; measurement of the

variable is made at a particular point in time. The housing stock is a

variable for which point samples might be taken. The_ annual housing

stock might refer to the stock of houses in place at the beginning of
-

the year,.at the end or at some intermediate point.

Perhaps some insight can be gained into the temporal aggregation

problem if we first specify a continous time model of electricity load

then compare it to the annual model often estimated. A model of elec-

tricity load varies continuously in time and, hence, theoretically is

not subject to distortion arising from temporal aggregation. Let
.

aggregate (i.e., cross-sectionally aggregate) electricity load be expressed

as follows as a-functional in continuous time, 6:1

L
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.

y(6) = x(6)'b + u(6) O<6<T (7),

where 6 denotes continuous real time in an interval of length T; y(6)

is aggregate electricity load; x(6) = [x1(6), x2(6), x (6)]' is..., g
a vector of M explanatory variables measured in continuous time;

b = (b , b , .. . , b )' is a set of M parameters; and u(6) is a stochastict 2 g

residual.

The model of equation (7) has no temporal aggregation problem. It

conforms to our intuitive conception of how electricity is consumed.

It can be used to evaluate the policy implications of time-varying rates.

Yet, even with these appealing properties, the continous time model of

equation (7) can onl:- be used in very special circumstances. The data

required to estimate its parameters rarely, if ever, are available from

published sources. Such a model is useful primarily in experiments

where the required data is assembled. In the residential sector, for

example, one important explanatory variable reqtires the continuous

measurement of usage for the electric space heatlag system, a variable

which is rarely available. Even, if more realistic compromise variables,

like temperature near the household, are considered, they practically
never can be adequately matched to hourly usage not to mention that
the data collection effort required for such variables is a obviously

formidable one.

Because its burdensome data requirements a: rarely met, the con-

tinuous time model of electricity load ir usually replaced in much

applied work with the following model:

Y = X'B + U t = 1, 2, ..., S . (8a)

In this model electricity load is unit averaged, i.e.,

.

t+a

y(6)d6 , O<a<1 t = 1, . . . , S (8b)Y =
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- where t enumerates an accounting period of length T and "a" determines

where in| continuous time the measurements are made; we refer to unit averaged
electricity load as electricity consumption-it it is an observation . .d

electricity demand if it is-a theoretical concept used in a model of

electricity demand. In the electricity demand model of equation (8a),
~

Y 'is electricity demand; but the parameter vector B = (B , ..., B )1 g

is estimated with electricity consumption data. The vector of explanatory

variables is comprised of both unit-averaged values, i.e.,

pt+a
x(6)d6 , t = 1, ... S ; j = 1, ..., M (8c)X =

J +a-1t

and point-sampled values, ie.,

Jt"x(O), t=1, ..., S , j = 1, ..., MX
t

where 60 is the point in real time that X is measured (e.g. , at the -
t

beginnint, of the year) .

Obvi,usly, the model of equations (8) provides no information about
intra-period variation in aggregate electrical load. In this sense it

suffers from a loss of information due to temporal aggregation. As a

result it cannot address policy questions having to do with thy intra-
year variation in electricity-load. The most efficient pricing struc-

.
tures, however, are those that vary with the marginal cost of generating

electricity; and,_since the marginal cost of generation tends to vary

continuously, time-varying price structures that reflect marginal cost

variation are more efficient aid most act sely discussed as instruments

to stimulate conservation of electrical energy resources.

An extension of a model of annual electricity demand to deal with

intra-year load-variation adds, therefore, an important policy-considering ,

capability. We attempt in this report to move in this direction by

extending the SLED model to predict peak and minimum loads and the load
duration curve.

-
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-3. LITERATURE REVIEW

Exiscing studies that attempt to provide a means - for predicting

peak electricity load are sparse. The state of development of a demand

model with this capability is rudimentary at best. On one hand is a long-

standing industry practice that extrapolates peak load from load factor

and demand estimates and on the other is the practice of estimating

peak load directly by applying the peak-load pricing model. In addi-

tion there have been a number of efforts to estimate continuous-time
models of electricity load which are also capable of estimating peak

load. Related to this literature are the attempts by some to estimate

load duration curves but the link between this work and empirical

studies of electricity demand and peak load is not clear.

7A recent Charles River Associates (CRA) report reviews forecasting

procedures for peak load. Since . Sat report appeared, there have been

some additions to the existing literature but none that were not

covered in the taxonomy presented therein. A review of the literature in

the time-of-day pricing area appears in Aigner and Poirier.8 Related to
this literature but beyond the scope of the CRA report is a small body
of literature of methods for estimating load duration curves. Since

that work is pertinent ta the work presented in this report, it is

included in the following review.

The CRA report classifies peak load forecasting methods into three
generic groups which for convenience we re-name: load factor methods,

direct methods, and load curve methods. Two of these methods, the load

factor and direct methods, depend in some way on an estimate of aggregate
electricity demand; the conti'.uous-time model of electricity load does
not. The load factor method requires an estimate of aggregate demand
to calculate the peak load estimate; the direct method requires an
aggregate demand estimate if the load factor is to be estimated too.

The first of these classifications, the load factor method, indicates
that the load factor is being moneled, the second indicates that peak
load 10 being modeled directly or endogenously; and, the third indicates
that the load curve is being modeled.

14
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-3.'11 Load Factor Methods-

Load factor methods are popular in th,e electric utility industry.9
- Given an estimate of. aggregate demand and an estimate of the corresponding

load factor, peak load is estimated by substituting ine aggregate demand
estimate into the load factor equation (formed by equating the load
factor estimate to its definition) and solving for peak load.

The simplicity of.this method accounts for its popularity in the

utility industry; its weak link to well-accepted theory accounts for
its infrequent use.in the economics' literature. Actually, the load

- factor and aggregate demand presents the same information as peak load
and aggregate demand. And, if peak load, the load factor and aggregate
demand are all estimated by double logarithmic or semi-logarithmic
models with nornally distributed residuals, transforming from one to

the.other is very simple because of the closure property of the normal
distribution under subtraction.

L 2. Direct Methods-

The direct method expresses peak load as an endogenous variable

allowing it to be estimated directly. This method is very popular
~

amongst economists because it fits the paradigm of the peak-load pricing

- model.10 'There peak and off-peak periods have been treated as separate

commodities. There are, however, two important differences between the
'

the peak load pricing (PLP) model. In the PLP model,direct method and

peak is defined over some' period of usually several hours; in the direct
~

method, peak is an instantaneot.s value. And, in the PLP model, peak and
-off-peak demand are pricel separately. But in the direct method, this

- is not necessarily the case.

Moving,to specific studies, the early work comes from the forecast-
ing literature primarily in engineering. These-studies classify into

weather-related models'and behavioral and weather-related models. An
illustration of the first model. type is given in'Galiana.ll Because
' historical 1 data appear.to show.that a certain portion of electricity |

Ldemand is sensitive'tb weather changes, the weather-related model is

-

u



-

16

built 'around the maintained hypothesis that peak load is composed of
additive non-weather-sensitive and weather-sensitive components plus a
random component. Often in the early work, a non-weather component was
added as something of an afterthought and thus treated as constant.12
But, in such~ cases, the model is little more than a model of peak-hour

13 extended theweather changes between accounting periods. Gupta

crude weather-related/ behavioral model somewhat by allowing annual

non-weather-sensitive peak load to be " influenced by economic conditions,
energy conservation and annual kilowatthour sales." However, even

with this extension, his approach is not a very satisfactory one.
It fails, for example, to take account of the interaction between

the behavioral use of electricity-using equipment in responding to
weather changes. That aspect of electricity consumption alone suggests
that weather-sensitive and non-weather-sensitive demand are not addi-
tively separable, et. Hausman, McFadden, and Kinnucan.14

Spann and Beauvais,15 Murray, Spann, Pulley, and Beauvais,16
Betancourt and Habermann,17 and Uri18 provide examples of more sophis-
ticated attempts to estimate weather-related/ behavioral models. The

19Spann and Beauvais work is straightforward in applying the direct
method. Peak load is assumed to be a function of a set of explanatory
variables (some of them computed from other data) in a single-equation
model; in their model, peak load is not explicitly related to aggregate
denand. Murray et al.20 and Betancourt and Habermann 21 do relate

aggregate-demand and peak load to one another. In both of these studies

both aggregate demand and peak load are estimated by statistically
independent single-equation models. Neither attempted to tie the two
together through the stochastic residual despite the fact that peak
loads are contained in aggregate consumption. Murray et al.22 an

expansion of the Spann and Beauvais study,23 assumed stochastic inde-

pendence between the peak and aggregate demand models despite the fact
that Mitchell24~ criticized their earlier study 25 for not having the

price clasticities for peak load and aggregate demand interrelated.
Uri's work 26 is somewhat different from the studies cited above.

His models are based upon a mixture of stochastic time series and



c. . . _ - -
-.

17

econometric methods _of estimation. However, beyond the addition of a
~ stochasticoprocess to a direct method'model, which introduces new-

estimation.as well as other problems, this work seems to offer little

else that is new.

3.3 Load Curve Methods

.By far the bulk of the literature having to do with the estimation

of electricity load is in this classification. -The studies fall into

two subcategories: hourly load forecasting models and models designed
to analyze the data from time-of-day (TOD) rate experiments. The latter

models, while important in that they help to provide a substantive

empirical base for: developing a more complete theory of electricity

demand, are not very useful outside the environment in which they were

developed because most of the explanatory variables measured in the TOD
rate experiments are not available in nonexperimental time series

records.27'

For hourly load forceasting models, the data problems cited above

do not exist since these efforts have been directed toward the forecast

environment and use in many cases pure stochastic time. series models or a
mixture of the stochastic time series and econometric models. However,

28a lackLof explanatory variables in pure time series models and param-

29 make theseeter instability.in mixed econometric time series models

studies not very helpful for addressing policy questions related to peak

load, an important requirement for the purposes of this report.

In addition to the forecasting models mentioned above, other single-

equation regression models with special estimation techniques have been

30 and Platt31 to estimate load curves. Both effortsapplied by Einhorn

are, however, overly. ambitious for the data used; and, as a consequence,

are not too helpful for the present study.

3.4 Related Literature: Load Duration Curves

_

; Utility companies have historically used load duration curves

because they provide powerful.and convenient presentations of the

,
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: variation in electrical loads. As such they.are useful for the planning

; of future optimal capacity mix and for optimal load dispatch. Until very

recently,'however, estimates of load duration curves were only very
' crudely done. .For planning and dispatch models in fact a customary indus-
try practice was and-still is to assume a specific shape of load duration

curve _ to hold for all periods included in the optimization process.
For the work-presented in this paper, 1iad duration curves are

important because they represent the. variation in continuous-time load
that can occur each year, because they are widely used in the electric

-powerfindustry, and because they translate very easily into a load
distribution. Sant32 and Trimble33 describe the mathematical relation-
ship between load duration curves and load distributions.

The first effort to improve upon the crude method mentioned above
34was done by Loney in terms of a dynamic optimization model. That effort

turned out 'to be cumbersome and very costly to compute. Subsequently,
several improvements to Loney's approach were proffered in the literature
by Uri and Maybee,35 Maybee,36 and Maybee, Randolph, and Uri.37

Synthesized, these latter five articles proffer two types of approxi-
mations to a ~ given load duration curve and two methods of estimating

parameters for the load duration curve approximations. Maybec, Randolph,
.and Ur138 proposes an optimal step-function approximation to a given

39load duration ~ curve. Uri and Maybee proposes an econometric method of

forecasting the heights of this step-function over time in terms of
40economic and weather-related variables. Uri and Maybee proposes a

four-parameter . linear exponential (in continuous-time magnitude) smooth
' approximation to a given load duration curve with econometric estimation
1over time of the parameters of_the approximation; and Uri and Maybee41

proposes _a stochastic: time series method of approximating the parameters
of the linear exponential function.

For all the models for. approximating load duration curves a two-
~

stagc estimation procedure is applied. First an approximation of the

load ~ duration' curve is carried out then the parameters of the approxima-
tion are estimated. -Thus, these methods will require, at a minimum,
that the heights of'a given step-function approximation or the estimates

_
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of the parameters of the linear exponential approximation be computed
for every accounting period in a given sample. .

In addition, even though these methods provide reasonably good

approximations and forecasts for a load duration curve, they are only
very loosely linked to previous empirical work on electricity demand.
Consequently, in their present form, the usefulness of these methods is
quite limited.

3.5 Lessons from the Literat ne

Being deficient in cert in respects, the existing literature offers

lessons for constructing mouels of peak load and the load dictribution
when estimation must be carried out with primarily temporally aggregated
data. First, none of the previous models attempts to integrate peak and

minimum loads, the load duration curve and aggregate demand into a

unified model. Second, all of these models are incapable of treating a

rate structure that redistributes load any differently from one that

does not with the inevitable result that rates of the former kind cannot

be adequately evaluated. Third, the existing literature is comprised of

models of essentially two types: those that integrate well with pre-

vious work in electricity consumption but do not enlighten in the area

of load redistribution and those that do the latter but are not integrated

with previous work in electricity consumption. In addition with the

complexities of a unified model comes an increasing complexity in esti-

mation thus limiting what may be proposed as a unified model.

In the next section we present a unified model which adds only

system hourly load data to improve upon the deficiencies of previous

models. This model can evaluate the redistributive effects of a new

rate structure but its usefulness has limitations that most likely can

only be solved with more detailed disaggregate data. One example where
42this is true is described by Mitchell as "a pressing task for new

research..." because "...there is so far no forecasting model that is

able to analyze the effect uof peak lord rate structures that have time-

differential changes for both energy (kWh) and power (kW)." When
applied differentially to individuals such rates can only be properly

evaluated in a model estimated with individual data.

E



4. A MODEL OF PEAK AND MINIMUM LOADS AND THE
LD CONDITIONED ON ACCREGATE DEMAND

Thus'far we have implicitly assumed that load duration curves must
be inherently interesting simply because utility companies have found
them to be useful. The load duration curve - or equivalently the load
distribution - is, however, a description of the extent of variation in

electricity load in an accounting period as determined by customer
behavior. As such it is interesting in the sense that behavior and

hence the load distribution can be modified with appropriate incentives.

4.1 The Load Distribution Model

In the traditional view of electricity as a quantity demanded (say)
per year, prices can be classified as financial incentives that alter

demand or those that alter load (i.e., the load distribution). Alter-

nately, one might redefine demand in temporal units small enough to
obviate any need to distinguish betwee, ' demand' and ' load.' The latter

would seem to be the preferable approach because it maintains quantity
demanded as the fundamental quantity responding to the financial
incentive. As noted earlier, however, data la stations rarely permit
one to estimate demand in such small temporal units.

If demand must be estimated in (say) annual units leaving load
variation unaccounted for, an important dimension of consumption is
lost. Moreover, any capability to evaluate the impact of load shifting
incentives is also lost. The load distribution captures some of the
lost dimension. It measures, in addition, load variation in the same

time units that demand is measured.
One way to capture the load distribution in an annual model of

electricity demand is to specify additional econometric models as sug-
gested in the last section. Such models follow quite naturally if the
load factor and moments of normalized load enter the utility functions of
individual households or the decision-making agents in firms as arguments
along with aggregate electricity, E; that is they follow if agents are
viewed as maximizing a utility function

20
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uC3, LF, pi, p2, X) .
_

~

subject to the budget constraint pie + p2LF + p341 + P4U2 + D5x = M where

x designates all other goods and M total expenditure; the of (i = 1, ..., 5)'

each designate che price of the. variable to which they are attached in 'the
-budget' constraint. As expressions of a previously unaccounted for
dimension of demand, the moments of normalized load and the load factor

~ would logically be viewed as demand functions and as such would be
determined by the:same exogenous variables as demand. Thus, price, income,

. electricity-using equipment holdings, weather and socioeconomic variables
would' determine .the load distribution just as they determine demand.|

The primary difference will be that moments of normalized load and the
! load factor will differ from demand and one another in the degree to

which a given exogenous variable influences them. But, as we shall

! argue-in Sect. 5, aggregate electricity, loaa factor and moment of

normalized load demands are technologically c:nstrained. The structure

of electricity prices and income, historically, have had little influence

.on this technology in such a way that these demands would be affected by

them to any significant degree. Consequently, historical observations

of average price and income will not.show much influence on load factor

.and moment of normalized load demands.

To envision how adjustment works in the LD model, consider the

impact of a newly imposed time-of-day electricity rate for residences

that ultimately-leaves annual consumption at the same level at a lower

cost so that the primary effect of the rate is to redistribute load.

Usage adjustment is of course essentially fixed in the short run by

household holdings of electricity-using and electricity-use-control

appliances. The latter holdings are not likely to exist at the outset

.and;the former will cost more to operate.

As.housaholds. seek ways to reduce operating costs of electricity-
~

using appliances perhaps in some areas by burning wood stoves during
peak periods,-new appliances begin to appear on the market. These

appliances reduce the cost of operating electricity-using appliances by

'better providing households with the capability to choose when they

consume' electricity. Thus'in=the longer term h' eat and cold ctorage-

= - _ J
_ _ . _b
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units with time-of-day controis and time-of-day controls for appliances
and lighting become part of household appliance holdings. Consumption
shifts to off-peak periods from peak periods.

Ultimately, as consumption shifts from peak to off-peak periods,
peak load decreases while average load remains constant causing the load
factor to rise. In addition, assume ' hat minimum load remains relatively
stable causing the difference between peak and minimum load to decline.
As a result the first moment of normalized load rises too. But even as

load is now spread more evenly over the accounting period, the variance
of the load distribution may decrease if the decline in peak load

dominates; otherwise it will increase.

Thus the partial effect of a time-of-day rate comprised of peak and
offpeak rates would be (1) to increase the load factor and first moment

of normalized load and decrease the second moment of normalized load for
an increase in the peak price and/or decrease in the off-peak price; and
(2) to cause just the opposite effect for opposite movement in these
prices.

Let us turn now to con 9412 ration of specific models of the load
distribution.

The previous section outlined how a load duration curve could be

related to aggregate demand and how it could be estimated for each year
via the method of moments. Peak and minimum loads it was explained
could be estimated by expressing the moments of the load distribution as
econometric models with annually measured explanatory variables. This

section specifies a model that can estimate annual peak and minimum
loads and the load duration curve via this procedure.

First annual moments of normalized load and an econometric equation
tfor peak load,3 (the load factor in this model) are specified and esti-

mated.- Then the normalized load distribution parameters, peak and
minimum loads are estimated: take predicted values of the moments of

normalized load and the load factor and solve simultaneously for the
normali-ed load distributions parameters, peak and minimum loads condi-
tioned upon (i.e., given) an estimate of aggregate demand.44

In order-to implement the model outlined here and in the previous
section, we must first specify a parametric family of probability
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distributions to represent the load distributio _, F(L), of equation (3) .
In addition, we must choose a family that can be estimated using the
method outlined above. Specifically, ti:is means we must choose a

distribution for which the central mo,ments are easily calculated and
which is defined on a bounded domain so that peak and minimum demand can'

be expressed as parameters. The beta distribution +5 satisfies theset

requirements and in addition can assume a wide variety of shapes. We
shall refer to load distributions using the beta as version I of the

load distribution (LD) model. Another distribution which also satisfies
the above requirements is a mixture of two beta distributions. We shall
refer to this version of the LD model as version II.

4.2 The LD Model: Version I

This subsection presents a complete specification of verison I of

the LD model. In addition in sectica four, estimates of peak load and

the load duration curve under alternative assumptions are also pre-

sented, for this version.

In version I of the LD model, we specify the following beta family

of probability distributions to represent the load distribution:

a -1 b -1

(L - L, ) (L*-L
t t

f "

B (a , b ) (L* - L* t) a +b -l ' *t tt t
t t

t t

B(a , b ) = f(a )T(b )/r(a +b)

y-l -"du , y>0.P(y) = u e

where a > 0, b > 0. Note that a t-subscript has been added to emphasizeg

that the entite load distribution including peak and minimum load changes

every year. We shall, however, omit the t-subscript elsewhere in the



'

24

report in order to simplify the notation. Exceptions will be made where

its omission will be confusing.

The normalized version of version I of the LD model of equations

(9) is found by transforming according to equation (6a):

a-1(1 - Z)b-1f(Z) = O<Z<1 (10),
B(a, b)

a > 0, b > 0. It is the standardized beta family and does not include

L* and L,. The momenta of normalized load pr(r=1,2) for this version I
normclized LD are:

,

pi = a/(a + b) (lla)

p2 = ab/(a + b)2 (a + b + 1) (11b)

Recall that values of pi and p2 in the LD model are predicted each
year in terms of a set of exogenous variables. Let Xi and X2 represent,
respectivley, Kx1 and Lxl vectors of these exogenous variables and let
Si and 82 represcat Kx1 and Lx1 vectors of parameters. We specify the
ecer.ometric models for these normalized moments as linear models, i.e. ,

pi = X'Si + c1 (12a)

p2=X82 2 + E2 ; (12b)

ci and c2 are normally distributed residuals with zero neans and constant

variance. Both ci and c2 can _be correlated perhaps by being treated as
simultaneous equations to account for their interrelationship.tes

The relations of equations -(12) predict pi and u2 (call these
predicted values 01 and 92) for each year. Substir.uting these predicted
values 01andh2 into equations (11) and solving for a and b, predictions
of a and b are obtained. for each year. This yields a prediction of the
normalized load distribution of equation (10) for each year. Estimates

.
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of peak and minimum loads are obtained by specifying an additional
econometric model'*7 for the load factor - defined as the ratio of average

hourly load to peak load per annum - similar to,thos- for the moments of
normalized load in equations (12). An econometric model of peak load
might alternately be specified; however, the load factor model is more

compatible with estimation by moments.

Let X3 be an Mxl vector of exogenous variables that determine the*

year-to-year variation in the load factor, LF; let 83 be an Mx1 vector

of parameters and c3 a normally distributed residual with meaa zero
and constant variance, ie.,

LF = XjS3 + c3 (13)

^
Also let LF designate predicted values of LF.

Summarizing, the model of moments of normalize a load and the load

factor is

U1 = X[61 + ci

p2=X62 + C2 (14)2

LF = XjB3 + C3

where c_ = (ci, c2, C3) has zero mean vector and in general covariance matrix

OfP120102 P13 1003

O!P2320 03" -

20
3 -

,

As noted earlier the normalized load distribution (or equivalently the

normalized load duration curve) is estimated by substituting the pre-

dicted values 01 and b2 into the following equations:
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la = pi py [pi(1-pi) - p23
(15)

b = (1-pi)p2IIUl(1-11) - U2}

Estimation of peak and minimum loads from this model requires additional
explanation. <

'

Note that pi, p2, and LF, each designating moments of some sort,
are defined as: '-

[L-L,.)
pi = E(Z) = E

(L*-L)
[ L - L, j2 "[L-L,)2 ,

(16)p2 = Var (Z) = E! i -<Ei i-

(L* - L, ) (L* - L )

' LF = E(L/L*)
,

where E(*) designates the expectation operator and equation (6a) has been

used. .Both L, and L* are parameters in the load distribution he;1ce they
are treated as constants inside the expectation operator. Thus

equations (16) may be re-written as:

|

f pi = (L* - L,)-l (E(L) - L,]

p2 " (L*-L*)-2[E(L)+L[-2L,E(L)] (17)2

| LF = E(L)/L*'.
i

|

| Solving now equations (17) for. L , L*, ' and E(L ) we have2
_

! ^ . . ^ ^.

| L, = (LF-pi)E(L)/(1-pi)LF (18a)
,

^~^
L* = ~ E (L)/LF (18b)

.g w r -
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^
E(L ) . (1_gl)-2 ^y-2E(L)2 (18c)2 t

^ ^ ^ ^
[(1-LF)2 - (LF-01)2 + 2(LF-61)(1-61)LF] .-

where " hats" have been placed over each variable to indicate " predicted
values." Equations (18a) and (18b) provide the equations for calculating

predicted values of peak and minimum loads. Recall that E(L) is given

by equation (5) and the estimate of aggregate demand from the SLED and

service area disaggregation models. It is in this sense that the LD

model is conditioned on aggregate demand. All other variables appearing

on the right hand side of equations (18) are provided from equations (14)
2as predicted values. Although an estimate of E(L ) is provided by this

procedure, it will not be used in this report.

Load duration curve, peak and minimum load estimates using version I

of the LD model are presented in the next section. Referring ahead

though to Fig. 8, it can be seen that the " shape" of the load distribu-

tion is not captured as completely as is possible. In the next subsec-

tion we present an extension of the version I of the LD model which we call

version II which can better account for the " shape" of the load duration
curve. This additional capability doea not, however, come without

additional computational complexity.

The chic! advantage of version I is that it provides the required

estimates in a computationally simple framework. Obtaining estimates
from version II, on the other hand, requires a numerical solution. And

a solution that falls within a priori bounds is not guaranteed unless

some complicating and somewhat arbitrary modifications are made to the
method-of-moments estimation procedure. Version I, on the other hand

always yields solutions that fall within the appropriate bounds.

4.3 The LD Model: Version II

A natural extension of version I of the LD model to better account

for the " shape" of the load distribution is made by estimating addi-
tional moments of normalized load. In this section we specify a more

complex family of distributions to represent the load distribution. This
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family of distributions has more parameters than the family of equation

(9) and hence requires additional moments.
The family of distributions we specify is a mixture of two ot the

beta densities of equations (9). By specifying a mixture of two beta

densities, we preserve the required properties of the family: (1)

simply calculated moments and (2) peak and minimum load parameters that

define the maximum and minimum values which instantaneous load can take.

The family comprised of mixing two beta families is:

(L - L,)al-1 _ g i-1b*

g(L) = &
B(ai , b ) (L* - L,)# 1 1

i

(L - L )a2-1(t* _ t)b -12

+ (1-4) L, < L < L* (19)_y ,
B(a2, b ) (L, - L*),22

where 0 < $ < 1, ag > 0 and bg > 0 (i = 1, 2) comprise the five param-
eters that will remain after transforming the load distribution (19) to

the normalized load distribution using equation (6a). Recall that t-

subscripts to signify that the load distribution is different for each

year have been suppressed on all parameters as well as L.

The moments of tormalized load for the version II LD of equation

(19) are:

r

pr" j "r-j (-a t ) r = 1, . . . , 5 (aa),

j=0

= $(at)r-j (al+b )}[j + (1-4)(a2)r-j (3 +b );h (20b)a i 2 2

r-j = 1, ..., 5

(Y)k = Y (Y+1) - (Y+k-1) k a positive, finite integer. (20c)

-
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-Predicted values of the moments of normalized 1oad and the load factor
~

are obtained as before .from a set of econometric models of the following
1

~

form:

p = X'B' + c r = 1, ..., 5 (21)
r rr r

LF = X +1 r+1 + "r+1 *0
r

,

]- Substituting predicted values p .for the u in equati n (20a), one can
r

The~then solve numerically for 4, a , and by (i = 1, 2) in each year.f

procedure for solving for these parameters is a bit Ledious; we thus
present it in the Appendix. Obtaining estimates of peak, L*, and*

minimum,'.L,, loads is done as outlined for the version I LD model.
,

Since: numerical difficulties frequently arose with estimating the

load distribution in version II of-the LD model, we present in the

next section only a few selected results for it. The potential gain

in estimating the load duration curve is pictured graphically. And

. moments of normalized load are estimated using several different esti-

mation techniques.
.

+-

|

:

1 I

i

|
|

.

i
*

!

l
'

4



. . .

!
'

I'
: ..

5. PEAK LOADS'AND LOAD DISTRIBUTIONS FOR SEVERAL
l ELECTRIC UTILITIES
l

This section presents estimates of peak loads and in selected cases

normalized load distributions with ninimum loads as a part of them for
t

| 'various electric utilities in the continental United States. Peak loads
are estimated for twenty geographically dispersed utilities; the impact

l' of minimum load on normalized load distribution estimates in conjunction

with normalized load distribution estimates are presented for selected
utilities in selected years.

Assuming rational consumers of electricity, we might expect the

real prices of electricity and substitute fuels to be important deter-

minants of the load factor and moments of normalized load. If so, it

would mean that these prices influence the way consumers distribute
their loads over the year. But there are cogent reasons to believe that

historical prices have had a minimal impact on load distributions.

First, being for the most part undifferentiated as to when consumption

occurs, historical electricity prices have offered little incentive to

affect the way consumers distribute their loads leaving that instead to

the influence of other factors. Second, consumption in the short run is

essentially fixed by the stock of electric equipment in place. The

. impact on load distributions is then fixed by the technical character-

istics and operating patterns of this equipment. Operating costs for

the equipment, being a primary determinant of operating patterns, are
largely determined by electricity price and hence have little impact on

load distributions. Thus changes in the compesition of electric equip-

ment in place has historically defined pretty much the limits to the

shape of load distributions. Tb"-a, real prices of substitute fuels can-

influence the composition of t'le. ric equipment in place if their levels

relative to.cicctricity sufficiently lower operating costs so that

consumers switch to other-fueled equipment or are sufficiently higher so
- that consumers switch f rom other-fueled to electric equipment. However,
the historical differentials in the relative prices of other fuels has

not produced switching of this sort on any grand scale.

30
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This does not.mean-that electricity and substitute-fuel prices do
not affect load distributions. Indeed, if' structured to do so, they

will and.the impact can be substantial. But historical electricity

price levels have not been set according to the timing of consumption
and substitute fuel' price levels have not induced switching to or from
electric equipment. Consequently, while there is good reason to expect
properly structured prices to affect load distributions in the future,

- there is correspondingly little reason to expect historical prices to
have done so in the past.

As a result, holdings of electric equipment, their usage levels as
affected by weather and socioeconomic factors and changes in the com-
position of electric equipment holdings have been the historical deter-
minants of load distributions. Moreover, there still tends to be

differences in the impact of these determinants on the load distribution
in each of the three consuming sectors. Residential and commercial
loads tend to be weather sensitive while industrial loads tend to vary

more with the technical requirements of production. Industrial loads

therefore tend to be more stable. And when changes do occur, they tend

to be."once and for all" changes arising from plant relocations, changes
in production processes or commitments and the like. Residential and
commercial consumption, on the other hand, tends to be set in large part

- by holdings of electric equipment.~ Part of those holdings, tending to
be for uses like refrigeration, home lighting, cooking, home food

freezing, clothes drying, and commercial-lighting, are not very weather
sensitive. But uses for space heating, air-conditioning, and water-
heating tend to be very weather sensitive and to account for a substantial
share of both residential an'd commercial electricity consumption and load

variation.

Space heating and air-conditioning equipment holdings have been
calculated for the residentia. but not the commercial sector. However,

' since residential consumption accounts for most of the consumption in
~the'two sectors, electric 1 equipment in this sector will influence. load
distributions more. In this section we specify single equation models

for load' factors andsmoments of normalized load with residential space

~

,

- v

_



32

heating and air-conditioning stocks, weather and a measure of jumps in
industrial sales as the exogt 2s variables.

Four subser* ions compr2. I the body of this section. The first

describes the data compiled. The second estimates peak loads and in
selected cases normali-r load distributions using state-level measure-
ments for exogenous variables under two sets of simplifying restrictions
of version I of the LD model as well as version I without simplifying
restrictions. And the third astimates peak and minimum loads and
normalized load distributions for two utilities using state- and service-
area-level measurements of exogenous variables and version II of the LD
model.

5.1 Data

The data used for estimation in this report consists of hourly
loads obtained directly from the utilities studied, state-level esti-

48mates of annual electric space heating and central air-conditioning
saturations, state-level and service-area-level measurements of annual

49heating and cooling degree days and annual measurements of the propor-
tion of "all but industrial" to " total" electricity sales by utility for
each utility system studied.50 F~_ each utility, hourly system loads

were recorded for as many years a< were availabic in machine readable
form. Inevitably, for each year of data some hourly loads were missing
but the proportion of missing values has been relatively small (i.e.,
less than three percent) for each year of data for each utility. The
years for which hourly loads t'ere compiled for a given utility is
indicated in Table 1 under the column headed " years observed."

Utilities were chosen for analysis based upon their geographic
location with the intent that most geographic regions of the U.S. would
be covered. Since the purpose of this work was not *.o construct a model

for an " average" utility in the nation, no attempt was made to design a
sample with some sort of geographic strata. Rather, tha purpose in
selecting geographically dispersed utilities was to check for geographic
peculiarities that might invalidate the model in some way.

;
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Table 1. Single-Equation Estimates: Combined Model of Load Factors *
(standard errors in parentheses)

Lar9est. Smallest
maximum maximum

Years . absolute absolute.Dependent- 2
Utility variable. .CD0 LNAC CDD x LNAC HDD LNHEL HDD x LNAC dw .R observed difference difference

American Electric N/A 1970-74
-Power

. Carolina Power and LF .1119 -100.3 .0957 .1590 -205.9 .0586 1.225 .9988 1962-75 .1623 .0521
' Light (.2566) (152.6) (.0885) (.1228)* (153.1) (.0421) 1%2 1966-

: Central Hudson' LF .1326 -1.457 .0372 .1075 -130.359 .0221 2.326 .9998 1 % 0-74 .1016 0496
(.1930) (44.97) (.047) (.0220) (49.74) .006 1963 1964

' Central Illinois ~ LF .4712 230.6 .0670 .0752 -49.62 .0282 1.196 .9996 1965-72 .2958 .0545
Public Service (.5245) (220.2) (.1140) (.0961) (238.4) (.0212) 1967 1973

"
Consionwealth Edison LF' -12.99 2629.0 2.418 .2454 -2293.0 .1409 2.714 .9965

..of Chicago (19.35) (2570.0) (3.629) (1.189) (2373.0) (.3550)
~ 1968-74 .2662 .0715

1971 ta73

Florida Power LF .2243 -32.82 .0465 .0789 -161.9 .0408 3.349 .9985 1961-74 .1609 .0593
(.0936) (324.8) (.0751) (.2396) (281.0) (.1890) 1962 1971

Iowa' Public Service LF .0808 -25.23 .0524 .0454 -113.7 .0098 1.874 .9995 ~1962-74 .1412 .0596
(.1949) (95.71) (.0669) (.0244) (71.83) (.0071) 1965 1970

~ Jacksonville Electric N/A 1969-74
Authority

. Jersey Central Power LF -1.503 -295.5 .7030 4608 240.6 .1169 1.878 .9998 1967-74 .0932 .0555
and Light (2.302) (195.0) (1.022) (.4795) (243.1) (.1448) 1967 1974

Hetropolitan Edison LF 3.257 212.1 .2746 .3163 -770.7 .0740 1.805 .9999 1967-74 .1289 .0632.
(1.676) (160.5) (.1419) (.2106) (517.4) (.0634) 1967 1974

.
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Table 1. (cont.)

Largest Smallest
maximum maximum

Years absolute absolute
Utility.

Dependent' 2.

variable CDD LNAC CDD x LNAC HDD LNHEL HDD x LNAC dw R observed difference difference

'New' Jersey:Public LF .0190 -37,19 .0223 .0837 -65.09 .0140 2.684 .9999 1963-74 .1294 .0724
Service Electric .(.1502) (74.10) (.0563) (.0216) (48.20) (.0091) .1963 1972

and Gas

Niagara Mohawk LF .8443 157.6 .2519 .0873 -296.1 .0202 3.145. 9999 1962-74 .1143 .0627

(.2213) (89.85) (.0630) (.0228) (77.66) (.0062) 1%3 1967

Nortneast Utilities LF 2.464 -278.4 .6566 .0651 205.9 .0320 2.499 .9999 1 % 6-74 .0838 .0555
'(.9411) (125.1) (.2605) (.070.5 (172.2) (.0271) 1968 1971

Pennsylvania Electric LF 2.574 223.97 .2180 .3697 -879.3 .0998 1.653 .9999 1 % 7-74 .0939 .0481 w
#

(1.043) (100.4) (.0888)- (.1318) (323.7) (.0397) 1967 1974

Pennsylvania Power LF .6443 -89.71 .0612 .0425 58.62 .0046 1.790 .9999 1965-74 .0862 .0479
and Light (1.836) 1965 1969

Power Authority of the LF 2.320 279.2 .6389 .0235 -433.0 .0009 2.450 .9982 1 % 2-74 .1126 .2924
State of New York (1.073) (435.5) (.3054) (.1104) (376.4) (.0300) 1964 1%3

San Diego Gas and LF .2457 -192.9 .1184 .2069 -62.68 .0890 2.477 .9992 1961-74 .1614 .0669
Electric (.4657) (120.5) (.1586) ( 1220) (134.4) (.0460) 1972 1961

Southern California LF .0841 38.55 0367 .1996 -352.0 .0996 2.099 .9998 1964-74 .0978 .0566
Edison (.5219) (121.9) (.1947) (.1276) (129.3) (.0498) 1973 1966

Wisconsin Electric LF .1634 124.0 .0060 .0687 -207.9 .0149 2.241 .9999 1 % 1-74 .1251 .0593
Power Company (.1932) (40.13) (.0560) (.0131) (28.89) (.0034) 1972 1965

Wisconsin Nichigan LF .7320 11.54 .1817 .0494 -162 0 .0126 2.260 .9999 1961-74 .1109 .0550
Power Company .2351 (48.83) (.0680) (.0159) (35h. 6) (.0041) 1970 1963

- - ,
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5.2 The LD Model: Vers;.on I

The emphasis of previous work has been on peak loads and to a lesser
degree on the load duration curve. Minimum loads have received very
little attention. To some extent this is justified because peak load

gives a clear signal of how much capacity is required and the load
duration curve tells how to distribute capacity among the broad cate-
gories of equipment. Minimum load does not even indicate how much base
load generation capacity is needed because the optimal allocation among
equipment types dictates that base load equipment serve more than
minimum load. Minimum load, however, as we shall see, is very important

in positioning the load distribution and we might expect that it would be
highly correlated with the optimal allocation to base load equipment.
Nevertheless, we shall follow the lead of previous work and emphasize
peak load leaving our discussion of minimum load to showing its impact
in positioning the load distribution (or equivalently the load duration

curve).
As noted earlier in the opening commentary of this section, we

specify in this subsection models of load factors and moments of
normalized load as functions of state-level aggregates. This cases the

burden of compiling data from a large number of utilities but might at

first blush seem to bias the individual effects of the exogenous

variables. Actually, this is not the case; however, a state-level
,

aggregate of an exogenous variable may not be as good a predictor of
service-area moments as would be a service-area aggregate of the same

variable. For example, consider the influence of temperature measured
in degree days on the load factor of a northern California utility.

Because the warmer climate of southern California so influences, the

number of heating degree days for the state will be larger than for the

utility's service area. And likewise the number of cooling degree days

for the state will be less than for the service area. But this in

itself does not make service-area rather than state degree days better
~

predictors of the utility's load factor. What matters is which is more

closely correlated with the utility's load factor. Intuitively, one

might expect service-area degree days to be more closely correlated.
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Also. it is just as intuitively reasonable to expect service-area degree

days to be closely correlated with state degree days making, therefore,

- state degree days-nearly as good a predictor as service-area degree

days. Consequently, for state-level exogenous variables closely

,
_ correlated with corresponding service-area aggregates, useful information

~

about the importance of the service-area aggregates as determinants of
the load factor or other momento can be gleaned from models estimating
these~ moments as functions of the state-level aggregates.

L Let us consider now the impact on the estimated load distribution

of imposing-some restrictions that simplify version 1. The restrictions

we consider will have no effect on the calculation of peak load estimates.'-

5.2.1 Version I with two simplifying restrictions

Referring again to the matter of emphasizing peak load and the load
! distribution in version 1, we may do this quite easily by removing

minimum load. This is done by setting L, equal to zero in the equations
of (9)-(14). Peak load calculation as we just noted is unaffected by

:

| this . restriction but this is not true for the positioning of the load :

| distribution. The other simplifying restriction fixes the parameter "b"

|
in equation (9) at a constant value which makes estimation the determina-

| tion of the estimators' sampling properties easier. We consider first

I then the joint impact of these two restrictions and consider later the

impact of set' ting L, at zero. j
i

.

Table -l _ lists ordinary least squares estimates of a load factor model '

j using state-level aggregates of the exogenous variables. The exogenous
variables are: cooling degree days for the state (CDD), heating degree
days for the state (HDD), the natural logarithm of the state's proportion

i

j of centrally ' air-conditioned -homes (LNAC), and the natural' logarithm of
.

| the state's proportion of electrically heated homes (LNHEL). These
|

.latter two-variables are' natural-logarithms of what are known as the
saturation levels of centrally air-conditioned and electrically heated
homes for the' state. Because all heating and cooiing exogenous variables

~

are ' combined in this model, we refer, to-it as the combined model of-load

i ' factors. Table ~1 also presents the Durbin Watson test statistic (dW), the
l
f

r

'<

i

L.
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years for which data was available and for each of these spans of years
the largest and smallest maximum absolute difference between the actual
(empirical) and estimated load distributions. These latter two statistics
measure how well this particular version of version I of the LD model
estimates the load distribution; they are the test statistics for the

Kolnogorov-Smirnov test of goodness of fit; the largest and smallest
of these indicate how well and how poorly the load distributions were
estimated over the span of years indicated. These test statistics

indicate that all of the estimated load distributions calculated under
the simplification for version 1 of fixing one parameter are not

significantly differant from the empirical (actual) load distribution
at the one-percent level. Despite the apparently good fit we will see
shortly that the one-parameter version of the LD model is likely to
encounter difficulties outside the range of the sample.

2Clearly the coef ficients of determination (R ) indicate that
weather and space conditioning measurements account very well for the

year-to-year variation in load factors. The Durbin Watson tests do not
indicate the presence of serial correlation. A problem though with

this particular model is the presence of linear relationships amongst

some of the exogenous variables. This is suggested by the poor perfor-
mance of individual coefficient standard errors - shown in parentheses --

2in conjunction with a high R value. As it turns out heating degree

days are highly correlated over time with cooling degree days for every
region causing a multicollinearity problem. The problem is similar for

central air-conditioning and heating measurements. Consequently, in
later load factor and moments of normalized load models we keep cooling

measurements separate from heating measurements.

Notwithstanding that the models in Table 1 have collinear exogenous
variables, it is still useful to examine how well this load factor

model predicts peak load in the sample period. This is true because, on
the one hand, how well a model " fits" the data is unaffected by multi-
collinearity in the exogenous variables and, on the other the state-level
exogenous variables are highly currelated with their service-area
counte rparts. Accordingly, Tables 2, 3, and 4 present information that
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Table 2. Ratio of actual to estimated peak load for
selected utility systemsa

Jersey
Icwa Central Metropolitan Niagara

Year Public Service Power & Light Edison Mohawk

b b b b1960 N/A N/A N/A fl/A

b b b b1961 N/A N/A N/A N/A

b b1962 0.98 N/A N/A l.00
b b1963 0.98 N/A N/A 1.01

b b1964 1.00 N/A N/A 1.06

b b1965 1.04 N/A N/A 1.00

b b1966 1.03 N/A N/A 1.00

1967 0.96 0.99 1.00 0.98>

1968 1.03 1.01 1.01 1.01

1969 1.01 1.01 1.01 0.98

1970 0.99 0.98 0.99 1.01 i

1971 0.98 1.00 0.99 0.99

1972 0.93 1.02 1.01 1.02

1973 0.99 1.01 1.01 1.00

1974 1.02 0.98 1.00 0.99
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Table 2. (cont.)

Public Service
Northeast Pennsylvania Pennsylvania Electric & Gas of

Year Utilities Electric Power & Light PASNY New Jersey

b b b b b
1960 N/A fl/A N/A N/A N/A

b b b b b
1961 N/A fi/A N/A N/A N/A

b b b b
1962 N/A ft/A ti/A 0.99 N/A

b b b
1963 N/A N/A ft/A 1.03 1.00

b b b
1964 N/A il/A N/A 0.99 1.00

b b
1965 N/A N/A 1.00 0.95 0.99

b
1966 1.00 N/A 1.00 1.02 1.00

1967 1.01 1.00 0.99 0.98 0.99

1968 0.99 1.00 1.01 1.12 1.02

1969 1.00 0.99 0.99 0.96 N/A"

1970 0.99 1.00 0.98 0.96 0.98

1971 1.01 1.01 1.01 0.95 1.01

1972 0.99 1.00 1.02 1.05 1.01

1973 0.99 1.00 1.01 1.03 1.00

1974 1.01 1.00 0.99 0.98 0.99

_
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Table 2. (cont.)

San Diego llisconsin
Gas & So. California Electric Wisconsin

Year Electric Co. Edison Power Co. Michigan

b b b b
1960 N/A N/A N/A N/A

1961 0.99 N/Ah N/Ab N/Ab

1962 1.01 N/Ab 1,00 1,01

b1963 1.00 N/A 0.99 1.00

1964 1.03 0.98 1.01 0.98

1965 0.97 1.02 1.06 1.00

1966 1.J4 1.00 1.02 1.01

1967 1.00 1.02 0.99 1.01

1968 0.96 1.02 0.99 1.00

1969 1.03 0.98 0.99 1.00

1970 1.01 0.98 1.01 0.98

1971 0.98 1.01 0.99 1.01

1972 0.95 1.00 1.00 0.99

1973 1.03 0.99 1.00 1.01

1974 1.02 1.02 1.01 1.00

_

" Estimates of peak load computed using estimated load factors and
actual aggregate demand calculated from system load data.

Data not available for this year.

#
1ncomplete data for this year.
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Table 3. Actual and predicted peak loadsa

Carolina Gas & Central Illinois Commonwealth Edison
Electric Power Public Service of Chicago

,
,

Year Peak Peak Peak Peak Peak Peak

b b b b b b
1960' N/A N/A N/A N/A N/A N/A

b b b b D b
1961 N/A N/A N/A ti/A N/A N/A

b b b b
1962 1787 1623.66 N/A t1/A t1/A N/A

b b b b
1963 1638 1651.49 N/A N/A N/A N/A

b b b b
1964 1749 1784.28 N/A N/A N/A t1/A

b b
1965- 1931 2062.94 771 788.?7 N/A N/A

b b
1966 21.84 2212.00 894 891.38 N/A N/A

b b
-1967 2270 2247.61 868 870..'8 N/A N/A

1968 2834 2817.87 1061 1028.50 8950 8954.71

1969 3055 3109.90 1126 1098.67 9265 9408.61

970 3484- 3525.90 1210 1189.82 10027 9003.451

~

1971 3625- 3749.18 1252 1287.76 6180 8915.89

1972 4119 4003.57 1394 1431.56 11750 12211.99

1973 4711 4596.84 1503 1505.17 12462 12322.35
.

1974 4771 4666.75 1500 1488.32 12270 11898.38-

..
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. Table 3. (cont.) ;

. Central Hudson Florida lowa
Gas & Electric Co. Power Co. Public Service

Year Peak Peak Peak Peak Peak Peak

b b b b
1960 241 244.44 N/A N/A N/A N/A

b b
1961 261 260.33 805 809.13 N/A N/A

1962 277 280.12 960 890.37 225 229.49

1963 296 287.56 897 963.69 252 256.58

'1964 323 324.67 1034 1006.06 266 265.62

1965 362 354.39 1003 1047.98 ?93 280.50 :

1966 393 403.21 1242 1219.22 317 308.59

! 1967- 407 414.32 1254 1262.50 313 325.01

1968 '454. 442.99 1551 1549.10 376 366.39

| .1969 491 484.58 1710 1679.24 392 387.33

1970 521 519.79 1990 1953.39 422 423.83

| 1971 549 551.67 2152 2232.68 437 446.88

1972 587 585.82 2501 2459.79 486 491.oj

| 1973 632 632.48 2862 2991.69 5 554.99

1974- 584 592.08 2970 2844.01 595 584.20

|
!

_

-

:

i

f.
'

-

a_
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Table 3. (cont.)-

Jersey. Central Metropolitan Niagara
-

'

Power & Light Edison Mohawk
AA A _

Year- Peak Peak Peak Peak Peak Peak

b b D h b b
1960 N/A N/A N/A N/A N/A N/A

.

b b b b b b
1961 N/A N/A N/A N/A N/A N/A1

b b b b
^

,
1962 N/A : N/A N/A N/A 3201 3207.83

b b b
1963 N/A N/A N/A N/A 3316 3273.08

b D b b
1964 N/A N/A N/A N/A 3498 3512.95

b b b b
1965 N/A N/A II/A N/A 3701 3700.02

b b b b
1966 N/A N/A N/A N/A 3987 3992.91

1967~ 1227 1234.91 912 915.11 3971 4031.88*

4 1968 1455 1446.50- 1021 1013.49 4335 4292.27

1969 1604- 1592.97 1139 1131.63 4442 4512.93

1970 1716' 1748.92 1188 1199.84 4614 4555.75

1971 1880 1881.29 1271 1286.23 4551 4598.84

'1972- 2122 2070.91 1361 1352.37 4827 4740.80-

1973 2456 2436.77. 1474 1466.04 4896 4881.36

1974 2396 2440.54 1378 1378.93 4787 4821.76

:

~ r

'Q

s '

,t. k
'

i

, , - - - - ,
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Table 3. (cont.)

Northeast' Pennsylvania
-Utilities PASNY Electric Co.

^

- Year' Peak Peak Peak Peak Peak Peak

b h b b b b1960 N/A N/A - N/A N/A N/A N/A

b b b b b b1961 N/A N/A -N/A . N/A N/A N/A

b b b b1962 N/A N/A 601 605.39 N/A N/A

b- b b b1963 h/A N/A 609 588.62 N/A N/A

b b b b1964 N/A _N/A 602 506.20 N/A N/A

b b b b1965 N/A N/A 618 646.90 N/A N/A

b b1966 2367 2376.68 734 722.73 N/A N/A

1967 2414 2432.34 801 821,62 1201 1199.59

1968 2740 2706.17 858 765.21 1312 1312.77

- 1969 2918 - 2920.81 880 913.03 1462 1472.33

1970- 3172 3154.02 870 905.23 1535 1533.80

1971~ 3223 3263.93- 858 900.63 - 1645 1628.63

1972 3520 ' 3468.10 990 942.13 1711 1709.24

1973 -3645: 3620.56 962 931.48 1790- 1792.70

- 1974 3496 3546.16 1031 1053.86 1766 1772.78

,

%

3

w -
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Table 3. (cont.)

Public Service
Pennsylvania Electric & Gas of San Diego
Power & Light New Jersey Gas & Electric Co.

^

Year Peak Peak Peak- Peak Peak Peak

b b b b b b
1960 N/A N/A N/A N/A N/A N/A

b b b b
1961- N/A N/A N/A N/A 727 719.25

b b b b
-1962 N/A N/A N/A N/A 745 752.65

b b
1963 N/A N/A 3370 3357.99 805 802.40

b b
1964 N/A N/A 3665 3663.40 835 857.13

1965 1853. 1851.71 3953 3996.95 925 893.82

1966 2085 2079.97 4100 4090.96 950 984.96

1967 2202 2213.96 4308 4336.09 1091 1087.55

1968 2493 2471.90 4828 4749.80 1163 1115.86

1969 2702 2724.15 N/A" N/A" 1218 1258.18

1970 2897 2954.32 .5398 5492.67 1343 1355.26

1971 '3157 3116.95- 5925 5857.46 1470 1435.98

1972 3483 .3420.87 6201 6119.05 1579 1497.64

1973 .3598 3576.75 6816 6810.36 1518 1563.33
;

-1974 3662 3715.84 6316 6397.26 1498 1530.26 j
'

i

1

'

m



46

Table 3. (cont.)-

Wisconsin
50. California Electric Wisconsin

Edison Power Co. Michigan
A A A

' Year Peak Peak Peak Peak Peak Peak

b b b I b b1960 N/A N/A N/A N/A' N/A N/A

b' b b b I I1961- N/A N/A N/A N/A N/A' N/A'
b I1962 'N/A N/A' 1218 1218.47 224 221.17

b b
1963 N/A N/A 1365' 1347.70 259 257.87

1964 5335 5427.47 1413 1421.10 267 272.67

1965 5863 5742.93 1484 1491.00 279 279.37

1966 6173 6196.71 1603 1639.46 309 305.74

1967 7001 6889.07 1655 1646.04 303 300.56

1968 7425 7298.86 1901 1887.22 320 321.58

1969 7804 7965.27 1984 1968.25 329 330.55

1970 8274 8444.97 2100 2120.44 337 343.22

1971 9350 9297.70 2268 2231.65 358 353.85

1972 9815 -9846.13 2423- 2420.10 381 384.42

1973 10253 10349.58 2633 2623.01 426 421.23

1974 9997 9839.94 2573 2600.42 421- 420.83

#Estimates of peak load computed using estimated load factors and
actual aggregate demand calculated from system load data.

h
Data' not available for this year.-

#
Incomplete data for this year.
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Table 4. Percentage Difference.Between Actual and Predicted Peak Loads"

LF =' LF = LF =
Utility.. f (cooling variables)' Year f(heatingvariables)- Year f (heating and cooling) Year

American Electric best .096 1970 .102 1971 N/A
Power worst 1,89 1972 1.56 1972

Carolina Power and best .128 1967 .762 1973- .570 1968-
Light worst 8.54 1965 15.8 1962 9.14 1962

Central Hudson ~ best .033 1960 .121 1970 .0764 1973
worst 5.35 1973 -2.97 1966 - 2.851 1963

Central Illinois best .957 1970 1.32 1974 .320 1967

Public Service worst 7.43 1967- 6.89 1967- 3.06 1968

Commonwealth Edison best .097 1974 .290 1973 N/A

of Chica9o worst 3.545 1969 2.330 1969

Florida Power best .058 1970 1.43 1966 .051 1961

worst 9.98 1965 18.5 1963 7.43 1963

lowa Pubile Service * best .014 1964 .210 1972 .433 1970
worst 5.71 1965 7.46 1967 4.27 1965

Jacksonville Electric best .459 1969 .142 1971 N/A
' Authority worst 3.19 1971 2.44 1970

Jersey Central Power best .413 1967 .598 1974 .069 1971

'and Light worst 4.08 1970 3.6/ 1967 1.92 1970

Metropolitan Edison best .097 1971 .011 1973 .017 1974
worst 2.51 1969 2.70 1969 1.20 1971

New Jersey Public best .326 1968 .127 1964 .044 1964

' Service Electric worst 5.81 1974 2.61 1972 1.75 1970
and Gas

___ - _ - - - _ _ _ _ _ - - - - - - - . _ _ _ _ _ _ ,_ ._ - -_
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Table 4. (cont.)

LF = LF = ^LF =" Utility f (cooling variables) Year f (heating variables) Year f (heating and cooling) Year

Nia9 ara Mohawk best .324 1971 .086 1962 .026 1965
worst 3.53 1962 9.23 1966 1.79 1972

Northeast Utilities best .314' 1970 .012 1972 409 1966
worst 2.42 1967 3.65 1967 1.47 1972

Pennsylvania Electric- best .270 1972 .139 1970 .059 1968
worst 1.79 1971 2.18 1971 .995- 1971

Pennsylvania Power' best .085 .973 .028 1966 .070 1965and Light worst 2.46 1972 2.20- 1967 1.98 1970 oo
,,

Power Authority of the best .059 1969 .073 1962 .335 1963. State of New York worst 13.7 1968 14.5 1968- 10.8 1968

. San Diego Gas and best .723 1962 .281 1969 . 31 6 1967Electric worst 11.7 1973 6.94 1962 5.15 1972

- Southern California best 1.54 1975 .125 1966 .3?7 1972
Edison worst 4.43 1970 2.93 1969 2.07 1969

Wisconsin Electric best .157 1972 .284 1964 .0 18 1962
Power Company . worst 7.41. 1963 4.84 1967 2.27 1966

- Wisconsin Michigan- best .285 1973 .350 1966 .039 1974
Power Company worst 4.55 1963 4.97 1973 2.12 1964

# eating variables and cooling variables results taken from material presented in Table 5.H
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is useful for. evaluating how well the combined load factor model predicts

peak load given actual aggregate , demand.
Table 2 presents ratios of actual peak to estimated peak (calculated

from the models of Tabic 1) for a representative selection of the twenty

utility systems studied. In this selection, the worst pre;iction was

for the Power Authority of the State of New York (PASNY) in 1968 where
peak load was underestimated by 12 percent. Generally though the predic-
tions are reasonably good. Ninety percent fall within three percent of

the actual value. Table 3 presents for comparison these actual and

estimated peaks (also from Table 1) for all but two of the twenty

utilities -- American Electric Power (AEP) and Jacksonville Electric
Authority (JEA) . The system load data from AEP covered too few years to
do much with it and the JEA data had discrepancies which we were unable

to reconcile. The effect of separating heating variables (heating

degree days and the stock of electric central heat homes) and cooling

variables (cooling degree days and the stock of centrally air-condit 'oned
homes) is depicted in Table 4 in terms of the percentage difference
between actual and predicted peak loads. Although multicollinearity

toads to confound the effects of individual exogenous variables, the

percentage difference between actual and estimated peaks is in the rela-

tively small combined load factor model. For the models whore cooling

or heating variables alone were used, the cases estimated - some had an

inauf'icient number of observations for estimation of the combined
model - had larger such diffetences than did the combined model.

Figures 5 and 6 present plots of the one-parameter estimate of the
load distribution superimposed on the empirical (actual) load distribu-

tion. The plots are for Central Hudson Gas and Electric Corporation of

New York for 1963 and Southern California Edison for 1974. Although

ea-a of these estimated load distributions is a good " fit" by the

Kalnogorov-Smirnov nonparametric test, careful inspection of the plots
suggests two potential problems: first, since minimum load is set at

zero, the estimated load distribution will alwaya misrepresent the actual

load dietribution at this extremity. In a sense, we are counting on one

parameter to capture both the " shape" of the load distribution and the
location of minimum load. Of . course, this simplified version of the
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LD model cannot produce an estimate of m"timum load. Second, there

appears to be a tendency for the estimated load distribution to lie

below the actual one. Plots for other years for these utilities

exhibit this tendency in opposite: the estimated load distribution

tends to lie above the actual one. This phenomenon is a consequence

of fixing one parameter in each utility's load distributions for all

years. In computing "b" of equation (10), we computed the method of
moments estimator of b using equations (15) for each year then averaged
them over all years. Thus, by analogy, just as an average tends to be
either larger or smaller than any actual value used to compute it,

so the one-parameter load distribution estimate tends to lie above or
~

below the actual one. This tendency will present a problem outside
the range of the sample for which the single value of "b" was estimated
because the tendency of the estimated load distribution to lie above

or below the actual one will be accentuated. Consequently, since
future load distributions are expected to change considerably, the one-
parameter method will not likely give even an adequate estimate of the
load distribution outside this range.

5.2.2 Version I with only one restriction: minimum load set at zero

The effect of imposing the restriction L, = 0 can be seen by
relaxing the assumption that one of the load distributian parameters is
fixed. Table 5 presents estimates of the first two moments of normalized I

)
load imposing L, = 0 and assuming that the stochastic residuals of |

Iequations (14) are uncorrelated. Note that the load factor and first i

moment of norualized load are identical under this restriction [see
equations (16)]; the second moment of normalized load will be the load

factor variance. Table 5 presents the model estimates of the load

factor and load factor variance with the same exogenous variables as
were used in Table 1 except that heating and cooling variables are now
separated. The same statistical measures as presented in Table 1 are
presented here too.

2Note that the coefficients of determination (R ) again indicate

that these models " fit" the data well. In only one case, E.SNY, is the*
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Table 5. Single-Equation Estimates- Load Factor and Variance *
(standard errors in parentheses)

Dependent- Years of-
2Utility variable CDD CDD x LNAC LNAC HD0 LNHEL x HDD LNHEL dw- R data ~

American Electric LF .8642 .0914 -58.06 2.484 .9999' 1970-74
Power. (.5089) (.0459) (4.104)

LF . 0694 -341.7 . 0420 1.511 .9999
(.0090) (46.01) (.0071)

Var .1313 .0123- -1.289 2.493 .9973
(.0440) (.0040) (.3550)

Var .0005 -4.398 .0002 2.755 .9981
(.0007) (3.512) (.0005)

Carolina Power LF .4513 -284.4 .2068 1.065 .9984 1962-74~
and Light. (.01%) (30.83) (.0228)

LF .1882 -281.3 .0860 1.994 .9967
(.0090) (75.09) (.0219)

Var .0093 -11.69 .0061 u
(.0015) (2.294) (.0017) 1.198 .9933 W

Var 0052 -6.939 .0016
(.0006) (4.950) (.0015) 1.275 '9889.

Central Hudson LF 1.077 -150.1 .2607 2.449 .9991 1960-74
(.0528) (11.41) (.0252)

LF .1198 -123.7 0237 2.536 .9997
(.0027) (14.72) (.0023)

var .0027 -5.4 34 .0014 1.711 .9992
(.0015) (.3312) (.0007)

Var .0007 -3.809 .0001 1.78; .9992
(.0002) (.8134) (.0001)

Central Illinois LF .8524 141.7 .2034 2.815 .9986 1965-74
.Public Service (.0975) (14.88) (.0235)

LF .1109 146.7 .0286 2.818 .9989
(.0064) (40.63) (.0072)

Var .0314 4.245 .0078 2.329 .9940
(.0054) (.8276) (.0013)

Var .0037 2.988 .0008 2.634 .9953
(.0004) (2.313) (.0004)
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Table 5. (cont. ) ~: ,

I'''S OI'-Dependent 2
Utility variable CD0 CD0 x LNAC' .LNAC HD0 LNHEL x HD0 LNHEL dw - R data

Commonwealth Edison LF .7284- :78.44 .1049 2.597 .9930 1968-74
-of Chicago (.4886) (47.84) '(.1171)

LF .1116 197.1 .0365 2.084 .99'14
(.0413) (129.1) (.0265)

Var .0468 1.113 .0086 2.178 .9808

!ar
'

(2.587) (.0063)(.0264)
.0056 7.155 .0018 1.743 .9772

(.0023) (7.172) '(.0015)*

Florida Power LF - .1862 -369.9 .1179 2.102 .9972 1961-74
(.0074) .(158.6) (.0485)

LF- .9111 -417.4 .6469 2.108 . .9954
(.0576) (45.29) (.0706)

Var .0072 2.028 .0002 2.8 04 .9941
(.0004) (8.410) (.0026) w

Var .o360 .-17.54 .0287 .1.969 .9896 . * >

(.0032) (2.497) (.0039)

Iowa Public LF .5446 -201.8 .2086 2.314 .9990 1962-74
Service (.0224) (15.47) ' (.0185)'

LF .0621 -105.6 .0120 2.301 .9992
(.0043) (27.55) (.0041)

Var .0118 -9.979 .0063 1.936 .9980
(.0014) (.9562) (.0011)

. Var .0002 -4.627 .0000 2.352 .9976
(.0003) (2.083) (.0003)

Jacksonville Electric LF .1440 .0498 -223.2' 3.374 .9997 1969-74
Authority '(.0179) (.1160) (345.6)

LF
'

.6426 -575.4 .6551 2.182 .9997
(.0888) (40.88) (.0483)

Var .0032 .0088 18.20 3.053 .9981
(.0020) (.0132) (39.23)

Var .0168 -27.44 .0204 2.709 .9988
(.0085) (3.921) (.0046)

'
-

1

3 ..

_ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ . _ _ _
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Table 5. (cont.)

Years ofDependent 2
-Utility variable- CD0 000 x LMAC- -LNAC HD0 LNHEL x HDD LNHEL - dw R. data.

- .

.4604- -267.9 .2306 1.780 .9996 1967-74' Jersey Central Power LF
. (.0658) .(21.80) (.0414)and Light

LF .0822 -72.85 .0069 2.362 .9995
(.0236) (58.29) (.0068)

Var .0041 -8.003 0005
(.0056) (1.866) .(.0035)

' .0010Var .0011 -1.815 -

(.0020) (5.035) (.0006)

Metropolitan Edison LF .8752 .. - 59. 34 .0788* 2.926 .9999 1967-74
(.1859) (7.622) (.0172)

- LF .1033 -2 31.9 .0366 2.464 .9998,

(.0082) (46.74) (.0064)
Var- .1118 -2.735 0087 2.632 .9977

(.0244) (.3435) (.0023) u
Var .0003 2.006 .0014 1.856 .9%9 *'

(.0012) (6.586) (.0009)

New Jersey Fublic .. L F .5392 -199.8 .1936 1.616 .9992 1963-74
Service Electric (.0441) (24.39) (.0392)
and Gas LF .0843 -88.28 .0115 1.973 .9998

(.0027) (19.08) (.0033)
Var .0032 -5.656 .0009 1.285 .9983

(.0024) (1.348) (.0022)
- Var .0012 .8921' .0008 2.122 .9977

(.0004) (2.565) (.0004)

Niagara Mohawk LF 1.303 -198.5 .3771 1.319 .9996 1962-74
(.0730) (12.50) (.0360)

LF .1214 -164.5 .0289 1.650 .9995
(.0056) (26.48) (.0037)

Var .0256 -6.042 .0088
(.0050) (.8627) ( 0025)

Var .0024 -3.51 0 .0004 1.424 .9%0
(.0004) (2.030) (.0003)
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Table 5. (cont.)

Years of.Dependent
2

Utility variable CD0 - C00 x LNAC LNAC H00 'LNHEL x HDD LNHEL ' dw R datt

Northeast Utilities ' LF . ,1.575- -172.4 .4314 3.224 .9998 1966-74
(.0861) (8.952) (.0319)

_

(.0032) (58.82) (.0090)
Var .0241 . -6.861 .0081 2.360 .9988

. (.0090) (.9305) (.0033) .
.

_ _

(.0002) (3.690) (.0006)

Pinnsylvania Electric LF' 1.586 . -59.31 .1427 3.130 .9999 1967-74-
(.1589) -(2.241) (.0147). , ,

LF .1227 -234.2 .0433 - 1.852 .9999'
(.0072) (40.76) (.0056)

Var .0724 -1.984 .0061 2.172 .9980
(.0209) (.2941) -(.0019)- ..$-

Var .0004 -4.891 0001 2.077 .9987
(.0007) (4.008) (.0006). |

Pznnsylvania Power LF .9205 -56.11 .0823 1.749 .9999 1965-74
and Light ~ (.1033) (2.266) (.0098)

..

LF .1020 -231.1 .0377 2.106 .9998
(.0040) (34.36) (.0052)

Var .0234 -1.839 .0020 1.994 .9984
(.0117) (.2560) (.0011)

Var .0023 -3.838 .0003 1.916 .9983
(.0004) (3.530) (.0005)4

Power Authority of LF l.117 .3072 -220.2 2.055 .9972 1962-74
the State of New York (.2275) (.1122) (38.98)

LF
'

.1062 .0335 -241.2 2.072 .9966-
(.0178) (.0118) (83.94)'

Var .0065 .0091 2.611 2.264 .4530
(.0454) (.0224) (7.785)2

Var .0018 .0002 1.811 2.407 .4360
(.0033) (.0022) (15.37)

$

-

i
'

:

_ _ _ _ _ _ _ _ _ _
- 3 - .
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Table 5. (cont.)

I'''S 'I 'Dependent- 2
Utility variable CDD CDD x LNAC LNAC HDD .LNHEL x HDD LNHEL. dw R data

San Olego Gas and LF 1.007 -206.3 .3757 1.168 .9971- 1 % 1-74

Electric (.0751) (31.07) (.0600)
LF .2680 -20.0 .1002 1.155 .9982-

.
. (.0141) (53.64) .0203

. Var .0136 -8,572 .0061 1.432 .9967-
(.0031) (1.273) (.0025)

Var .0030 -7.812 .0011 1.822 .9973
(.0007) (2.572) (.0010)

. Southern Callfornia 'LF .7864 -214.5 . 2575 1.976 .9992 1964-74
Edison (.0780) (23.52) (.0528)

LF .2069 -321.2 .1062 .1526 .9997
(.0082) (26.57) .0099

Var .0104 -5.628 .0018 1.638 .9984
(.0032) (.9524). .(.0021)

Var .0036 -9.658 .0023 2.313 .9991 u'
(.0004) (1.426) (.0005) N

WisconsinElectrip LF .9948 -163.7 .2733 1.927 .9990- 1962-74
Power Company (.0725) (11.61) (.0320)

LF .0703 -153.2 .0184 1.574 .9995
-(.0032) (27.08) (.0039)-

Var .0005 -7.972 .0011 1.133 .9%3
(.0073) (1.164) (.0032)

var .0008 -9.216 .0005 2.231 .9982
(.0003) (2.713) (.0004)

Wisconsin Michigan LF 1.318 .3673 -191.5 1.885 .9995 1962-74
Power Company (.0591) (.0260) (9.459)

LF .0899 -171.3 .0224 1.718 .9996
(.0035) (30.13) (.0043)

var .0200 .0042 -4.783 1.153 .9942
(.0058) (.0026) (.9325)

. Va r .0017 -6.048 .0006 1.284 .9940
(.0004) (3.147) (.0005)

2*All values stated x 10-3 except dw and R ,
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i unexplained variance:not less than three percent and this is explained

! by the fact that P SNY, lacking much of'a residential sector, has
'

~

' historically sold' electricity by contractual arrangements with munici-

palities, particularly New York City's municipal subway, arrangements

! _ which tend to cause jumps in the load. distribution. Also, although the

,

sample sizes'are too ; mall;to give~an accurate picture in many cases,

the Durbin-Watson tests do not indicate that serial correlation is

present' to any significant degree.

!- Plots'of; estimated - superimposed on actual - load distributions in

Figs. 7-11 does, however, reveal some consequences of restricting

. minimum load to be zero. Of course, the lower end of the load distribu-

j. tion will not be well represented with this model. Figures 7 and 8
,

exhibit. cases where the version I with L, = 0 produces a reasonably good
estimate of the load distribution. But Figs. 9, 10.-and 11 give examples ,

of how poor an estimate one can get using this restriction. Figure 9 -

| where the estimated load distribution lies just below the actual one -

gives a hint of what can happen. Figures 10 and 11 are more blatant.
Even though the Kolmogorov-Smirnov test indicates a good fit, clearly
there is room for improvement. What happens is that forcing the esti-

mated load distribution through the origin restricts how " steep" the

load distribution can be. Consequently, one gets an estimated load

distribution in certain cases that lies almost entirely below the

! actual one.

|

5.2.3.-. Version I-without the restrictions ]

From what has been shown above it would appear that simplification

of| version I along the lines discussed leads to undesirable results.
How then does. version I fare without the restrictions? Figure 12 exhibits

- a plot of ' estimated- and actual load distributions where the estimated
. load distribution is forced.through both peak and minimum loads. Clearly

this estimate of the load distribution is superior to those obtained-
-

!under the restriction (s). Of course the " shape" of the actual load dis-

- tribution is not captured exactly but the estimate does not exhibit the

tendency to lie entirely above or below the actual load distribution--

i
L

,

- .

P g+ -" 9e M- '' m6-'"-Jwve of 7 T wp+--M =' 'M7
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' and, when estimated. . the endpoints - peak and minimum loads - will be
s

. better represented.

If the," shape" of the load distribution is important enough to
seek a more accurate estimate, this can be-done by estimating additional

Emoments. ;Doing so allows'the " bends" in the actual load distribution-
to be better reflected in the estimate. The next section takes up this

_ matter of estimating additional moments; in addition, estimates
~

presented jLn~that section have been calculated using service-area
aggregates as exogenous variables - that is, to the extent that such
-aggregates ~are available from published sources.

5.3 The LD Model: Version II

Before discussing the estimates made under version II, we will

look at the potential gain in estimating the load distribution. Referring

-again to Fig. 12,_ note that the estimated load distribution is straighter

than the actual-load distribution which curves back and forth across it.

At normalized load (Z) values of approximately 0.32, 0.68, and 0.75,

the actual load distribution exhibits " bends" where a change of direc-

tion occurs which the estimated one does.not. In principle, by esti-

mating higher moments of normalized load, the estimated load distribution

can be made to' better reflect these " bends." Figure 13 exhibits an
estimated load distribution where this has been done. Figure 14 pre-

_
--sents the actual probability density and estimated probability

density associated, respectively, with the actual and estinated load

distributions of Figure 13. For these plots, actual values of peak and

-minimum loads were used and the normalized load distribution parameters

were estimated directly from hourly loads by the method of moments

procedure . described in the. previous section (i.e. , actual rather ' than
predicted values of sample moments of normalized load were used).

Clearly the estimated load distribution of Fig. 13 better represents the
.

'" shape" of_the actual load distribution than any of those presented
earlier. It would thus seem that a better load distribution estimate

might be got from version II.

-

+

1

-'
_ m
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Looking'at version'II performance for two utilities where service

area data was readily available, Tables 6-10 present estimates of the

required. six moments of version II~ using three alternative estimation

mettiods.

More specifically, estimates of these six moments were obtained
using three distinct methods for the Central Hudson and San Diego Gas

and Electric Utilities: ordinary least squares, generalized least

squares and instrumental variable estimation. Additionally, each moment-

was also' estimated with the inclusion of a seventh explanatory variable
not previously used, the ratio of industrial sales to total sales (IND) .

IND is thought to be a significant determinant of annual demand variation

by accounting for. uneven growth in the industrial sector (i.e., jumps

in the load distribution arising because, for example, a new industrial

user.of electricity moves into the service area or a new manufacturing

process requiring substantially more or less electricity is introduced) .

The ordinary least squares (OLS) estimates are presented in Tables
5 and 6. Each moment of normalized load (MU 1, . . . , MU 5) and the load

factor (MU 6) is first regressed on the heating and cooling variables
(cooling degree days (CDU) and heating degree days (HDU) now pertain to
the service area) separately in Table 6 followed by estimates of the same

2models with IND included. Results are better, in terms of R , in the

four variable model, of course, but only slightly and predominantly in
MU l through MU 5. IND did not prove to be significant at the 10%

level for any of the estimated models for Central Hudson. For San Diego,

it was significant everywhere for MU 1-MU 5 only. Obviously, the impor-

tance of. IND will vary with demand characteristics of individual utilities,

but it should be observed that either the heating or cooling variables
alone explains usually well over 90% of the variation in the first five

moments of' normalized load.

The major reason for not using the heating variables (HDU, LNHEL,
'LNHELHDU) in the same equations with the cooling variebles (CDU, LNAC,

LNACCDU) is, as noted previously, because of multicollinearity. This
very proble- owever, presents an opportunity to use instrumental

variable estimation (IVE). IVE equires a matrix-of variables, Z, highly
correlated with-the independent variables of the regression equation,

,-
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Table 6. Ordinary least squares estimates of moment functions"

Dependent
b 2

Utility Variable LNAC LNACCDU CDU LNHEL LNHELHDU HDU R

Central Hudson MU 1 -154.8 .2474 .7353 .98918
(50.98) (.1396) (.2789)

MU 1 -66.07 .0095 .0699 .98988
(108.5) (.0173) (.0172)

MU 2 -93.46 .1366 .3627 .97275
(45.23) (.1238) (.2475)

MU 2 -20.54 .0014 .0334 .97400
(97.24) (.0155) (.0154)

MU 3 -60.42 .0809 .1955 .9570a
(35.24) (.0965) (.1928)

MU 3 -4.663 .0011 .0177 .95892 OS

(75.82) (.0121) (.0120)
MU 4 -41.00 .0512 .0036 .94200

(27.08) (.0741) (.1482)
MU 4 1.197 .0018 .0101 .94455

(58.26) (.0093) (.0092)
MU 5 -28.84 .0342 .0706 .92738

(20.96) (.0574) (.1147)
MU 5 3.058 .0018 .0062 .93055

(45.11) (.0072) ( 3071)
MU 6 -184.3 .3581 1.242 .99930

(17.82) (.0488) (.0975)
MU 6 -127.8 .0250 .1223 .99976

(23.10) (.0037) (.0037)

__ ..



,. - .. . . . . . . . . .

"
,

~ Table 6. ,.(cont.)

~

Dependent: b b- 'R2o' Variable :LNAC LNACCDU' CDu LNHEL LLNHELHDU 'HDUUtility'

San Diego.- MU 1- .-144.4 '2685 .7358 .98572-.

Gas and" (32.88) (.0658) .(.1078)
. Electric Co. MU 1- -194.9 .1644- .3655 . .98878'

~

(42.02)- (.0291) (.0461)'
,

- MU 2 -79.51 .1661 .4341 .96776
,(25.49) (.0510) (.0836

MU.2 -108.2 .0996 .2132- .97285
(33.72) -(.0234) (.0370)

.MU 3 -48.63 .1085 .2733 .94871

.(18.54) (.0371) (.0608)
MU 3 -64.67 .0633 .1337 '95562.

(24.87) (.0172) .(.0273): g.
MU 4 -31.78 .0740 .1806 .92870-

(13.52) (.0270) (.0444)
MU 4 -40.67 .0419 .088's .93727

(18.29) (.0127) (.0201)

MU 5 -21.82 .0521 .1237 .90910.
(9.955) (.0199) (.0327)

MU 5 -26.55 .0286 .0604 .91892
(13.55) (.0094) -(.0149)

.MU'6 -205.0 .3355 .9009 .99673

(21.54) (.0431) (.0706)

MU 6 -204.1 .1725 .4699 .99763
(26.45) (.0183) (.0290)

-
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Table 6. (cont.)

Dependent
b 2Utility Variable LfiAC !.f4ACCDU CDU If4D Lt1HEL LtiHELHDU HDU 1710 R

Central Hudson MU 1 -571.7 1.057 3.150 1841.5 .99460
(151.9) (.3038) (.8764) (649.2)

MU 1 -175.8 .0296 .1530 -706.2 .99159
(135.5) (.0229) (.0672) (552.8)

MU 2 '.64.2 .8561 2.509 -1637.3 .98647
(134.5) (.2690) (.7759) (574.7)

MU 2 -123.7 .0203 .1116 -663.9 .97884
(120.2) (.0204) (.0596) (490.4)

MU 3 -353.1 .6489 1.83v -1292.5 .97926
(103.3) (.2067) (.5962) (441.6)

MU 3 -88.58 .0142 .0813 -540.2 .96726
(92.80) (.0157) (.0460) (378.5) y

MU 4 -268.6 .4930 1.432 -1005.4 .97273
(78.14) (.1567) (.4521) (334.9)

MU 4 -65.60 .0104 .0608 -430.0 .95662
(70.65) (.0120) (.0350) (288.1)

MU 5 -206.6 .3791 1.100 -784.9 .96650
(60.06) (.1202) (.3466) (256.8)

MU 5 -50.07 .0080 .0465 -342.0 .94651
(54.27) (.0092) (.0269) (221.4)

MU 6 -277.7 .5394 1.783 -412.6 .99945
(67.01) (.1341) (.3867) (286.4)

MU 6 -154.8 .0299 .1428 -173.8 .99981
(27.85) (.0047) (.0138) (113.6)
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Table 6. (cont.)

Dependent
b b 2

Utility- Variable LNAC LNACCDU CDU IND LNHEL LNHELHDU HDU IND R

San Diego MU 1 -110.6 .2379 .6467 158.1 .98589
Gas and (103.1) (.1116) (.2802) (455.2)
Electric Co.

MU 1 -240.8 .1871 .4280 -202.4 .98908
(97.81) (.0528) (.1286) (386.9)

MU 2 -48.09 .1377 3512 147.1 .96831
(79.72) (.0863) (.2166) (352.0)

MU 2 -126.8 .1088 .2386 82.10 .97303
(79.29) (.0428) (.1043) (313.6)

MU 3 -22.50 .0848 .2043 122.3 .94986

(57.84) (.0626) (.1572) (255.4)
MU 3 -69.65 .0657 .1405 -22.00 .95566

(58.64) (.0~17) (.0771) (231.9) y
MU 4 -10.96 .0551 .1257 97.47 .93061

(42.09) (.0455) (.1144) (185.8)
MU 4 -39.83 .0415 .0871 3.700 .93727

(43.14) (.0233) (.0567) (170.7)
MU 5 -5.495 .0373 .0806 76.40 .91186

(30.93) (.0335) (.0840) (136.5)
MU 5 -23.31 .0270 .0560 14.32 .91902

(31.96) (.0173) (.0420) (126.4)
MU 6 -100.5 .2409 .6251 489.1 .99760

(58.23) (.0630) (.1582) (257.1)
MU 6 -123.4 .1325 .3599 356.3 .99812

(55.52) (.0300) (.0730) (219.6)

-3"All coefficients x 10
bService area heating and cooling degree days
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Table 7. Instrumental variable estimates of moment functions "

Dependent
b 2

Utility Variable' LNAC LNACCDU CDU IN[f LNHEL LNHELHDU HDU IND R

dSan Diego MU i -65.96 .1517 .6590 44.94 .97995
Gas and (171.0) (.2115) (.4099) (61.38)
Electric Co. gg je -138.8 .i319 .4313 -141.0 .98450

(146.4) (.0801) (.1719) (507.3)
1MU 2 -3.332 .0615 .3247 108.1 .95509

(128.6) (.0703) (.1510) (445.5)
MU 2e -46.31 .0644 .2425 -41.10 .9617?

(121.9) (.1507) (.2922) (437.5)
dMU 3 13.62 .0270 .1747 114.7 .92980

(95.19) (.1177) (.2282) (341.7) y
"

MU 3 -11.21 .0330 .1449 .6474 .93678
(03.00) (.0481) (.1033) (304.8)

dMU 4 16.74 .0125 .1000 101.8 .90431
(66.97) .0366 ( 0568) (232.0)

MU 4e 2.714 .0174 ._. 2 15.89 .91020
(66.60) (.0824) (.1597) (239.1)

dMU 5 15.48 .0060 .0597 85.09 .88016
(50.16) (.0620 (.1202) (180.1)

MU 5* 7.964 .0091 .0597 20.30 .88240
(48.41) (.0265) (.0568) (167.7)

dMU 6 -77.67 .2246 .6128 548.5
(81.45) (.0455) (.0956) (282.2)

8
MU 6 -100.2 .1151 .4230 182.5 .99676

(94.00) (.1162) (.2253) (337.4)

____



Table 7. (cont.)

Dependent b e 2
Utility Variable LNAC LNACCDU CDU IND LNHEL LNHELHDU HDU IND R

Central Hudson MU 1 -507.9 9225.6 2.856 -1676.6 .99423
(349.5) (7137.) (1.247.) (1296.)

MU l 78.98 .000009 .1914 -924.9 .98324#

(279.5) (.0452) (.0934) (759.5)

MU 2 -399.1 .7200 2.199 -1456.1 .98543
(145.7) (.0236) (.0487) (396.1)

#
MU 2 109.7 .0155 .1438 -840.8 .95769

(349.5) (.7137) (1.888) (1295.5
MU 3 -303.0 543.9 1.651 -1152.8 .97767

(157.5) (321.7) (.8512) (584.0)
#

MU 3 95.74 .0141 .0157 -671.3 .93270
(194.3) (.0314) (.0650)- (528.1) w

MU 4 -230.8 .4136 1.251 -900.5 .94580
2683.2 (.0004) (.0009) (7292.6)

#
Mu 4 77.11 .0115 .0791 -527.4 .91065

(208.4) (.4255) (.1126) (772.5)
MU 5 -177.1 .3173 .9593 .703.8 .96373

(91.86) (.1876) (.4963) (340.5)
#

MU 5 60.80 .000009 .0605 -415.8 .88675

MU 6 -381.9 .7488 2.375 -833.2 .99925
(81.26) (.0131) (.0272) (220.9),

MU 6 -143.7 .0283 .1454 -189.8 .99977
(63.16) (.1290) (.3413) (234.1)

All coefficients x 10-3#
d

b Instrument variables are LNHEL, LNHELHDU and HDU
Service area heating and cooling degree days e Instrumental variables are LNAC, LNACCDU and CDU

# oefficients for IND are not estimated by theC

instrumental variables technitaue.



Table 8. Instrumental variable estinates of moment functions #

Dependent
b 5 2Utility Variable LNAC LNACCDU CDU LNHEL LNHELHDU HDU R

#San Diego MU 1 -75.53 .1610 .6760 .97977
Gas and (83.39) (.1483) (.1660)
Electric Co. gg )d -110.8 .1193 .3898 .98462

(33.27) (.1989) (.1983)
#

MU 2 -26.36 .0838 .3897 .95452
(29.51) (.1764) (.1760)

d
MU 2 -38.16 . 0607 .2303 .96212

(58.99) (.1049) (.1174)
#MU 3 -10.82 .0507 .2437 .92991

(46.70) .8310 (.9300) y
d #

MU 3 -11.34 .0331 .1451 .93685
(20.06) (.1199) (.1196)

#
MU 4 -4.949 .0335 .1612 .90195

(15.46) (.0924) (.0922)
MU 4 .4342 .0188 .0960 .91070

(32.53) (.5790) (.6480)
#

MU 5 -2.647 .0236 .1108 .86256
(24.72) (.4400) (.4920)

d
MU S 3.945 .0109 .0658 .88111

(11.10) (.6640) (.6620)
#

MU 6 -194.5 .3377 .9424 .99637
(221.2) (.1322) (.1319)

(49.6~) (.8840) (.9890)

.



Table 8. (cont.)

Dependent b b 2
Utility Variable LNAC LNACCDU CDU LNHEL LNHELHDU HDU R

#
Central Hudson - MU 1 -182.9 .3089 .8035 .98878

(123.1) (.2691) (.4055)

(273.6) (.0430) (.0220)
#

MU 2 -116.9 .1870 .4170 .97187
(241.7) (.0380) (.0190)

d
MU 2 61.09 .0111 .0381 .97014

(108.9) (.2660) (.4010)
#

MU 3 -79.51 .1220 .2396 .95551
(85.07) (.2080) (.3130)

d
MU 3 56.92 .0105 .0213 .95588

(187.8) (.030) (.0150) U
#

MU 4 -56.21 .0839 .1487 .93981
(145.1) (.0230) (.0110)

MU 4 46.61 .000009 .0128 .94077
(64.92) (.1500) (.2390)

#
MU 5 -40.71 .0597 .0978

(50.70) (.1240) (.1870)

(111.2) (.018) (.0880)
MU 6" -220.4 .4439 1.355 .99898

(113.5) (.1790) (.0900)
i

MU 6 -154.7 .0293 .1216 .99972
(26.73) (.065) (.098)

-3"All coefficients x 10 a Instrument variables are LNHEL, LNHELHDU and HDU
dbService area heating and cooling degree days Instrumental variables are LNAC, LNACCDU and CDU

_ _ - _ _ _ __ --- _ _ - _ _
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Table 9. Joint generalized least square estinates of nonent functions:
apairwise correlation

(asymptotic standard errors in parentheses)

Dependent b' b 2
Utility Variable LNAC LNACCDU CDU LNHEL LNHELHDU HDU R

San Diego MU 1 -124.5 .2121 .6486
Gas and (18.43) (.0439) (.0918)
Electric Co.

MU 2 -85.91 .0775 .1919 .97959
(y*PI$ 4) (18.76) (.0161) (.0325)3

MU 2 -86.65 .0750 .1841
(17.96 (.0157) (.0320)

MU 3 -37.19 .0723 .2132 .96386
(9.961) (.0241) (.0509)

MU 3 -35.68 .0745 .2240 *

(9.336) (.0231) (.0497)
MU 4 -29.40 .0301 .0758 .93103

(9.111) (.0082) (.0170)
MU 4 -30.53 .0296 .0725

(9.227) (.0082) (.0170)
MU 5 -14.67 .0320 .0931 .90909

(5.074) (.0125) (.0268)
MU 5 -15.93 .0431 .1188

(8.672) (.0180) (.0316)
MU 6 -194.4 .1656 .4679 .99772

(23.01) (.0167) (.0284)
MU 6 -201.1 .1688 .4618

(25.44) (.0179) (.0288)
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d

Table 9. (cont.)

Depender,t
b

Utility Variable LNAC LNACCDU CDU LNHEL LNHELHDU HD R

Central Hudson MU 1 -124.3 .1639 .5981
(sample (14.67) (.0732) (.2164)
size = 12) MU 2 -68.28 .0086 .0296 .98507

(25.29) (.0047) (.0137)
MU 2 -67,41 .0091 .0326

(24.42) (.0046) (.0136)
MU 3 -40.17 .0329 .1313 .96833

(.9856) (.0500) (.1485)MU 3 -40.82 .0308 .1206
(8.965) (.0481) (.1445)

MU 4 -26.59 .0026 .0089 .95011
(13.01) (.0025) (.0079) y

"
MU 4 -27.02 .0029 .0101

(13.59) (.0026) (.0080)
MU S -17.40 .0080 .0381 .87374

5.524 .0290 (.0869)
MU 5 -29.89 .0365 .0731

(20.88) (.0572) (.1145)
MU 6 -128.4 .0251 .1224 .99878

(23.0) (.0037) (.0037)
MU 6 -131.1 .0255 .1223

(22.91) (.0037) (.0037)

"All coefficients x 10-
b Service area heating and cooling degree clys

|
-

_ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - .
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Table 10. Joint generalized least square estimates of moment functions:
pairwise correlationa

. (asymptotic standard errors in parentheses)

Dependent
b A 2Utility Variable LNAC LNACCDU CDU IND LNHEL LNHELHDU HDU- IND R

San Diego . MU 1 -380.8 .6695 2.095 -1114.
Gas and (118.8) (.2347) (.7085) (543.3)
Electric Co.

MU 2 -97.90 .0149 .0788 -400.6
I]I' (94.40) (.0164) (.0534) (440.7) .97959,74)

MU 2 -99.82 .0154 .0813 -419.0
(93.16) (.0162) (.0530) (437.3)

MU 3 -223.4 .3863 1.177 -801.1
(79.77) (.1574) (.4762) (365.7) .96386

MU 3 -224.0 .3866 1.184 -809.9 y
(80.00) (.1579) (.4775) (366.6)

MU 4 -54.02 .0080 .0441 -296.4
(54.89) (.0095) (.0312) (257.4) .93103

MU 4 -52.84 .0078 .0439 -293.0
(55.07) (.0095) (.0312) (257.9)

MU 5 -131.6 .2271 .6897 -503.9
(46.67) (.0921) (.2784) (213.7) .86600

MU 5 -215.2 .3973 1.146 -814.4
(57.46) (.1147) (3.338) (248.9)

MU 6 -159 s .0307 .1432 -178.5
26.66 .0045 .0136 111.9 .94737

MU 6 -154.8 .0299 .1428 -173.8
(27.85) (.0047) (.0138) (113.6)

. __ .



Table 10. (cont.)

Dependent b b 2
Utility Variable LNAC LNACCDU CDU IND LNHEL LNHELHDU HOU IND R

Central Hudson MU 1 -49.84 .1496 .4571 360.7
(Sample (79.38) (.0803) (.2244) (373.6)
SI2' " II Itu 2 -47.63 .0610 .1476 165.8

(62.89) (.0341) (.0860) (257.7) .99074

MU 2 -81.04 .0746 .1836 23.24
(60.00) (.0326) (.0825) (246.5)

MU 3 -7.741 .0486 .1431 138.8
(42.42) (.0426) (.1202) (200.7) .97738

MU 3 3.441 .0416 .1226 190.2
(40.97) (.0410) (.1163) (194.4)

MU 4 -9.151 .0212 .0524 86.37
(31.55) (.0172) (.0435) (129.9) .96825

UMU 4 -21.55 .0262 .0640 37.63
(31.57) (.0172) (.0435) (129.9)

(21.91) (.0219) (.0622) (104.0) .95455

MU 5 21.35 .0078 .0156 175.6
(28.63 (.0301) (.0792) (130.0)

(52.13) (.0281) (.0696) (209.5) .99561

MU 6 -119.4 .1284 .3505 369.1
(54.96) (.0297) (.0725) (218.1)

-3"All coefficients x 10

Service area heating and cooling degree days

.
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X, to estimate the coefficients, Sr (r = 1, . . . , 6) of equations (21)
in the following manner:

B = (Z'X )~lZ'"r (r = 1, ..., 5)
r r

86 = (ZgX )-l sLF6 Z

where Z is an appropriately dimensioned matrix of heating (cooling)
variables and X is a conformable matrix of cooling (heating) variables.
The advantage in using this technique is in obtaining consistent esti-
mators which do not result under OLS when the necessary conditions are
met.

IVE results are presented in Tables 7 and 8, where Table 8 is the
estimation with the IND variable added. Each moment is regressed on
both the heating and cooling model with the alternate one as the instru-
mental variable matrix. The results are not remarkably different from OLS

2although R is noticeably reduced in the case of the instrumental
variable estimation. IND does not appear significant for either utility.
IVE is primarily used when there are errors in measuring both the

'

dependent and independent variables and it is also necessary that these
; _ errors be independent of one another, of the true values of the variables

and of the disturbance term. If the data do not fit these requirements
4

then it isn't clear that the' estimators will be superior to those obtained
by OLS.

Errors do exist in the hourly load information from the utilities

and in the appliance stock data. The stock of houses, used in both
LNHEL and LNAC, is calculated from the number of electricity customers,
and the number of electrically heated and centrally air conditioned
households is also. estimated. It is not certain, then, that the error

; terms are uncorrelated across variables or that the disturbance terms,

are independent.' IA fact, considering that MU 1-MU 6 represent moments
of the same probability distribution, it is highly likely that the
disturbance terms are mutually correlated.

a;
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In a situation where a series of equations have mutually correlated
disturbance. terms, it is possible to treat the series as seemingly
unrelated regression equations. The only link between these equations is
an assumed constant covariance over all observations. This type of
link, if it exists, would mean that the application of OLS to each

- equation would produce coefficients that are unbiased and consistent,.

but not efficient. By combining equations, it is possible to use the
information concerning their correlation that is lost when each equation
is regressed separately.

One way of determining which equations to combine is to check the
six moments in each utility for the degree of correlation. For both

Central Hudson and San Diego, the first five moments were all highly
positively correlated with one another, but each was correlated to a

much lesser extent with MU 6. For simplicity, then, and for ease of com-

parison with the other methods, consecutive overlapping pairs (i.e. , MU 1
and MU 2, MU 2 and MU 3, etc.) were combined and estimated by the joint-
generalized least squares (GLS) method. These ree >ts are presented in
Tabic 9 and 10, again, with the latter being the case where IND is included.

In comparing the results in Tables 5 and 9, it is evident that the

variance of the regression coef ficients is generally smaller for the
GLS estimates. The more efficient estimators evidences that the dis-
turbance terms in the moment functions are indeed correlated regardless
of whether the heating or cooling terms are used. Using the GLS

estimates combines two moment of normalized load models and thus also
,

allows information from all six variables to be used simultaneously,
although the value of doing so fur predictive purposes has yet to be
investigated. The R2 terms in the OLS single equation regressions are
higher for both the heating and cooling equations than the corresponding
joint equations in estimating each moment for both utilities. The dif-

- ferences in the R2 for both methods for MU 6 were, however, slight.
The addition of the IND variable in Table 10 produced no significant

2- improvements. In some cases, R even declined with the inclusion of the

additional variable due to the method of calculating a joint correlation
coefficient.

.

A

p- m a
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By all of the estimation methods tried, moments of normalized

load estimates under version II seem to fit the data very well and to
otherwise produce reasonable statistical results. Ilowever, as it turns

out, small relative differences between moment estimates can lead to

unacceptable results when attempting to numerically solve for the
normalized load distribution parameters. Such differences always arise,
of course, because the regression of a moment of normalized load on a
set of exogenous variables (such as was done in Tables 6-10) will always
produce moment estimates that differ from the actual moments, a differ-

,

l

ence that is acknowledged and accounted for in the specification of a

stochastic residual.

What happens when one or mo.1 of these differences is larger than
can be tolerated is either no numerical solution for the normalized load
distribution parameters is possible or, if a solution exists, it pro-

duces negative parameter estimates. The load distribution specification
of equation (19) is undefined for negative parameters. If proper esti-

mates of the load distribution parameters cannot be obtained, the
estimation procedure breaks down and must be mou fled. For this reason

we favor version I since no such problem arises and note that, in a more

complete specification of econometric models for the moments of

normalized load that takes account of inter-moment correlation, this
sort of problem may not arise. Ilowever, this seems a high price to
pay since it complicates the estimation procedure still further.

To deal with one final matter, we have not presented any discussion
in this report of the signs of coefficients in the moment equations.
This was intentional. The purpose of the report was to present the

results of our data explorations and to suggest that the information

contained in the load duration curve might be captured by estimating
moments. A complete integration of this line of analysis with consumer

theory has yet to be done. We leave that to future work.

i
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6. CONCLUSION

We have presented in this report a model that extends the traditional
model of electricity demand to account for intra-period load variation,
the kind of variation that is important for evaluating prices which

reflect the marginal cost of producing electricity. All that is required

to use this model in addition to that for estimating a traditional model

of electricity demand is a compilation of hourly loads (preferably by
class of customer) and some additional time in estimation. Apart from

hourly loads, the model uses only temporally aggregated data.
The background from which load duration curves merge witt aconomic

studies of electricity demand was presented. One procedure by which
load duration curves might be integrated with aggregate electricity
demand and which leads to an estimate of the load duration curve was
also discussed. Inherent in this discussion is that the model extension
presented accounts for some of the information lost in temporal
aggregation. The appropriate literature is also reviewed. Two load

duration curve models are specified and estimated for as many as twenty

utilities. The results indicate that one of the two model extensions

considered, version I, is, in terms of its ability to provide the

requisite information at a reasonable cost, recommended over the other.
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APPENDIX

In this appendix we'present the method used to calculate normalized
load distribution parameter estimates for version II. We estimate first

the mean and variance of each of the univariate beta densities la equa-

tion (19) using the method of moments as typically applied to the normal

distribution.51 The estimates of the a and bg (i = 1, 2) are thenf

obtained by using the equations (15).
The first step in finding method-of-moments estimators requires

that a negative root be found by numerically solving the following nonic
equation:

cgt9+ct8 + c717+ct6+ct5 + ci t'+ + c 3t3 + c212 + cit +co=0 (A1)e e s

where C9 = 24, Cs =,0, C7 = 84Kg, C6 = 36p3 , C5 = 90Kg2 + 72K U32
5

C4 = 444Kgp32 _ igK 2, C3 = 288p3'+ - 108p3 gE5 + 27Kr,3,5 K

K )M3 ,Ci = -96p3'+Ka., Co = -24p36, and whereC2 = -(63Kg2 + 72p3 5

K . (j = 4, 5) are the fourth and fif th sample cumulants

2Kg = p t,_- 3p2

K5 " US - 10p3D2 -

If equation .(A1) does not have a ' negative root, then the method of
moments fails for the version 11 LD model. It may still, however, fail

. even if. one. exists for it is possible for equation (A1) to have a nega-

'tive root and find that one or more of the a and bg (i = 1, 2) aref

negative. The beta density of equation (9) is not defined for negative

values of any of these four parameters hence neither is the mixture

density of equation (19).
Let the_mean'and variance of each of the beta densities comprising

the mixture.' density.of equation (19) be designated, respectively,' pit
and p21 .Thus, we have
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pit = a /(a +b ) (i = 1,2)
f g g

p21 = a b /(a +b )2 (a +b +1) .fg g g f g

Now, define the differences of the ug (j = 1, 2) f rom p i , the first

moment of normalized load

di = pii -pt

d2 * U12 - #1 -

If I is a negative root of (A1) and S is defined by

-803j3+3d{2+6h3yi+2025 K 3

*

I(213+3Egl+403)2

where " hats" over the K's and p's indicate " predicted values" then the
following are estimates of di and d :2

$ = [S - (S -41)1/2]/22
3

$ * IS + (3 -41)1/2]/2 .2
2

l
This then yields

h t = S + h1 (i = 1, 2)i g

where61 is the predicted value for the first moment of normalized lord.
Then the p12's are estimated by

0 2 " IS (2S-h3/l)/3] + h2 - $ 2 (i = 1, 2).1 1 1
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And we get estimates of a and by (i = 1, 2) from the following equations:f

A = bilbi2~IIbil(1-bit)-bi2] (i = 1, 2)
f

b " (1-bil)bi2-Ilbil(1-bil)-bi23*t

The mixture parameter & is estimated by

5 - 0 /(E1 -3 ) -2 2 1

.
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FOOTNOTES AND CITATIONS

1. See Chern et al. (1978).

2. See Tepel et al.-(1980).

3. Recall that peak (L*) and minimum (L,) loads refer to the maximum
and minimum instantaneous load in a given service area per year;
recall also that maximum and minimum hourly loads per year are
considered in this report to be adequate observations of peak and
minimum loads.

4. See. footnote 3.

5. See footnote 2.

6. Recall that F(L) is the load distribution wnich is a more
convenient way of expressing the load duration curve.

7. Charles River Associates, Inc. (1978).

8. Aigner and Poirier (1979); see also Boyd (1976), Electric Power
Research Institute (forthcoming), and Lawrence (1977).

9. See New York Power Pool (1979).

10. For an early discussion of the peak load pricing model, see

Steiner (1957).
t

11. Galiana (1976).

12. See Charles River Associates, Inc. (1978) for a discussion of
;

i these models.

13. .Gupta.(1976).

14. Hausman, McFadden, and Kinnucan (1978).

' 15. Spann and Bea2vais (1977).

16. ' Murray, Spann, and Pulley (1978).

17.--Betancourt and Habermann (1978).

18. .Uri (1976, 1977).

- 19.- See footnote 15.

20. See footnote 16.

. 21. :See-footnote 17.

,
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22. See footnote 16.~

23. See footnote 15.

24. Mitchell (1977).

25. See footnote 15.

26. Uri (1976, 1977).

27. This holds unless regulatory agencies begin to require regular and
frequent surveys of utility company customers to provide this
information in a published time series record.

28. Pure time series models do not contain explanatory variables. As
a consequenca, they are useful as a forecasting tool but not as a
tool of policy analysis; see Parzen and Pagano (1977) for an example
of a pure time series model.

29. One attempt to introduce policy variables into the time taries model
was made by Uri (1977). However, this procedure has come under
suspicion because the structural parameters so estimated tend to
be unstable; see Uri (1977).

30. Einhorn (1978).

31. Platt (1978).

32. Sant (1979).

33. Trimble (1978).

34. Loney (1971).

35. Uri and Maybee (1977/8, 1978a, 197db).

36. ~Maybec (1978).

37. Maybee, Randolph, and Uri (1979).

38. See footnot'e 37.

39. -Uri and Maybee (1978b).

40. Uri and Maybee (1977/8).

41. _ Uri and Maybee (1978a) .

42. Mitchell (1977).
~

43. Either peak load or the load factor maybe modeled in the general
scheme presented in'the second section. Because it is more com-
patible with method-of-moments estimation, we use the load factor.
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44. Recall that an annual aggregate demand for electricity estimate is
required for the estimation method described in this report.

45. See Rao (1973) p. 150.

46. The correlations could arise from a simultaneous equations specifica-

tion of the model of equations (12)-(13).

47. See footnote 43.

48. See Verleger and Iascone (1977).

49. See National Oceanic and Atmospheric Administration (1960-1974).

50. See Federal Economic Regulatory Commission (1960-1974).

51. See Quandt and Ramsey (1978), p. 731.
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