Safeguard Vulnerability Analysis Program (SVAP) User's Manual

W. J. Orvis

May 1980

Prepared for the U.S. Nuclear Regulatory Commission

NOTICE

This report was orepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied. or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information. apparatus product or process disciosed in this report. or represents that its use ty such thirc oarty would not infringe privately owned rights.
"vailable from
GPO Sales Program
Division of Technical Information and Document Control
U. S. Nuclear Regulatory Commission Washington, D. C. 20555
Printed copy price: $\$ 4,00$
and
Nationa? Technical Information Service Springfield, Virginia 22161

Safeguard Vulnerability Analysis Program (SVAP) User's Manual

Manuscript Compieted: Octoher 1979
Date Published: May 1980

Prepared by
W. J. Orvis

Lawrence Livermore Laboratory
7000 East Avenue
Livermore, CA 94550

Prepared for
SAFER
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
NRC FIN No. A-0115

ABSTRACT

Abstract

The operation and use of the Safeguards Vulnerability Analysis Program (SVAP) Input/Output programming written for a Tektronix 4050 series computer is described. The programming consists of the Facility Descyiption Program and its continuation, the Accounting System Program, plus several service routines. These programs generate the input files that will be used by the SVAP codes in a main frame computer, such as the CDC 7600 at Lawrence Livermore Laboratory.

Abstract iii
List of Illustrations ix
List of Tables 1x
Forevord xi
1.0 Introduction 1
2.0 Code Start-Up and Operation 2
2.1 System Initialization 2
2.2 Preparation of Data Disks and Tapes 3
3.0 Facility Description Program 4
3.1 Start-Up 4
3.2 Control of the Operating Program 4
3.3 Data Correction, Deletion, or Addition 6
3.4 Programming Information 7
4.0 Accounting System Program 13
4.1 Start-Up 13
4.2 Control of the Operating Program 13
4.3 Data Correction, Deletion, or Addition 13
4.4 Programming Information 13
5.0 Data Input Files 14
5.1 Text File 14
5.2 List Files 14
5.3 Matrix Files 14
5.4 Matrix Files with and/or Logic 15
5.5 Probability Matrix 15
5.6 Numerical Matrix 15
6.0 Data Preparation and Input 16
6.1 Plant Layout 17
6.2 Area-Portal List (File $=2$) 19
6.3 Adjacency Matrix (File $=3$) 19
6.4 Monitor-Lock List (File $=4$) 19
6.5 Area/Monitor-Lock Matrix (File $=5$) 20
6.6 Authorization List $($ File $=6)$ 20
6.7 Probability Value Matrix (File = 37) 20
6.8 Monitor-Lock/Authorization Matrix (File $=7$) 20
6.9 Monitor-Lock/Failure Probability Matrix (File = 8) 21
6.10 Transmission Line List (File $=9$) 21
6.11 Monitor-Lock/Transmission Line Matrix (File $=10$) 22
6. 12 Utilities List $($ File $=11)$ 22
6. 13 Monitor-Lock/Utilities Matrix (File $=12$) 22
6.14 Transmission Line/Authorization Matrix (File = 13) 23
6.15 Utilities/Authorization Matrix (File $=14$) 23
6.15 Area/Authorization Matrix (File $=15$) 23
6.17 Monitor-Lock/Response Matrix (File $=16$) 23
6.18 Response/Authorization Matrix (File $=12$) 24
6.19 Document List (File $=18$) 24
6.20 Monitor-Lock/Document Matrix \langle File $=19$) 24
6. 21 Document/Authorization Matrix (File $=20$) 24
6.22 SNM Source List (File $=21$) 24
6.23 SNM Source/Quantity Matrix (File $=22$) 25
6.24 Loss Detection Methods Lișt (File $=23$) 25
6.25 Detection Time Matrix (File $=34$) 25
6.26 SNM Source/Loss Decection Methods Matrix (File $=24$) 25
6.27 Records List (File $=25)$ 26
6.28 Loss Detection Methods/Records Matrix (File $=26$) 26
6.29 Records/Records Matrix (File $=27$) 26
6.30 Forms List (File $=28$) 26
6.31 Records/Forms Matrix (File $=29$) 26
6.32 Loss Detection Methods/Authorization Matrix \langle File $=30$) 27
6.33 Records/Authorization Matrix (File $=31$) 27
6.34 Forms/Authorization Matrix (File $=32$) 27
6.35 SNM Source/Exit Point Matrix (File $=33$) 27
6.36 Text File (File $=1$) 28
6.37 Time Codes $($ File $=35)$ 28
6.38 Probability Codes (File $=36$) 28
7.0 Utility Routines 29
7.1 Make a New Data Tape 29
7.2 Make a New Data Disk 29
7.3 Duplicate a Disk 29
7.4 Write a Data Tape from a Disk File 29
7.5 SVAP Procedure Outline 30
7.6 Facility Description Program User's Manual 30
7.7 Print SVAP Output Files 30
7.8 Disk Bootstrap Program 30
8.0 Glossary 31
References 34
Arpendix 35

LIST OF ILLUSTRATIONS

1. SVAP program's overlay 5
2. Example plant layout with areas and portals marked 18
3. Example facility with monitors and locks listed 19
4. Example facility with signal transmission lines marked 21
5. Example facility with the utilities components marked 22
LIST OF TABLES
6. The functions of the user definable keys (UDK) 5
7. Program variables 9
8. Program subroutines 11
9. Data files generated by the Facility Description Program and the Accounting System Program 16

This document is one in a set of four that serve to describe the Safeguards Vulnerability Analysis Program (SVAP) developed at Lawrence Livermore Laboratory (LLL).* A fifth report, to be published, runs through an application of SVAP on a real nuclear facility.

SVAP ddressos one class of safeguards threat: theft or diversion of special nuclear serial (SNM) by nonviolent insiders, acting individually or in collusion. This user's manual will assist the NRC analyst in implementing SVAP applications; it is the principal guide to computer use in SVAP.

The SVAP work was supported by the U.S. Nuclear Regulatory Commission under a Memorandum of Understanding with the United States Department of Eneryy. The NRC FIN number is A-0115.

[^0]
1.0 INTRODUCTION

The Safeguard Vulnerability Analysis Proqram (SVAP) was designed to analyze the physical security and material accounting systems in nuclear facilities. Of primary concern to the program is the location of diversion paths along which an individual or a small group of knowledgeable insiders could divert special nuclear material (SNM).

The SVAP scheme calls for sending a safeguards analyst to the facility in question to collect data. The analyst achieves this by consulting facility architectural drawings and other documents; he also inspects the facility. The collected data are entered into the SVAP data-gathering handbook, reordered in the second part of the handbook, and entered in a Tektronix 4050 series computer, either at the facility site or at NRC headquarters. The Tektronix computer prepares the data for processing in a main frame computer, such as a CDC 7600.

This careful preparation of data is necessary because the powerful SVAP codes in the main frame computer need specific and detailed sets of inputs. This operator's manual describes how the input data sets are generated. They consist of the Facility Description Program and its continuation, the Accounting System Program, plus several service routines. All of these input data sets operate on a Tektronix 4050 series computer and generate data tapes that can be transmitted to or fed to a main frame computer.

In the main frame computer the data delivered by the Tektronix is analyzed by the SVAP codes and a SVAP output tape is generated. This tape can be transmitted back to the Tektronix where the outputs can be printed and reviewed. The input and output programming has all been put on the Tektronix computer so that data entry and output can be done remotely. In this way, if the NRC so decides, questions and problems with the input data can be ironed out while still at the facility being evaluated. The reader should consult the SVAP Executive Summary ${ }^{1}$ and the SVAP Data-Gathering Handbook, Vol. I, ${ }^{2}$ for a fuil description of the SVAP operating procedure.

This manual is also located on the SVAP Program Disk as an interactive program. It is located in 48 disk files named eSVAPLIB/MANUAL1 through eSVAPLIB/MANUAL48. The program can be accessed from the disk menu (see Section 2) or directly by loading and running eSvaplib/MANUALL.

2.0 CODE START-UP AND OPERATION

2.1 SYSTEM INITIALIZATION

Before any programming can be run, the system must be initialized and the disk bootstrapped. To initialize the system, turn on the Tektronix computer components in the following order: disk drive 2 , disk drive 0,4050 series computer and any other components. Insert the SVAP program tape and press AUTO-LOAD. This will load and run the tape menu.

From the tape menu, select the Disk Bootstrap Program and run it. The program will check the system clock and, if it is not set, request the current date and time. The date and time must be input in the following format:

DD-MMM-YY HH:MM:SS
where

$$
\begin{aligned}
\mathrm{DD} & =\mathrm{DAY} \\
\mathrm{MMM} & =\mathrm{MONTH} \\
\mathrm{YY} & =\mathrm{YEAR} \\
\mathrm{HH} & =\text { HOUR } \\
\mathrm{MM} & =\text { MINUTE } \\
\mathrm{SS} & =\text { SECOND }
\end{aligned}
$$

For example:

03-JUL-79 14:32:00

After the clock has been set, the program mounts the SVAP program disk in disk drive 0. If, for some reason, the disk is semoved from the drive but the drive has not been turned off (i.e., the clock is still set) the disk may be remounted by inserting it into the drive and executing the command

CALL "MOUNT", 0, AS

Pressing RETURN at the end of the Bootstrap program loads and runs the disk menu. It can also be accessed with the following commands:

The system is now ready to run disk programs. You may execute the operator's manual which parallels this manual.

2.2 PREPARATION OF DATA DISKS AND TAPES

Before running the facility description program, a data disk and data tape must be made. The programs to do this are accessible from the disk menu and are named: @SVAFLIB/PREPDISK and eSVAPLIB/MAKETAPE.

From the disk menu, access the program Make a New Data Disk and follow the directions given. If you are using a new disk, you must cover the write protect notch with a piece of tape. Special strips of tape are generally provided for this function. The write protect notch is located on the bottom edge of the disk, halfway between the center and right edge. Attach a stickon label along the upper edge of the disk and write any identification information on it. Write softly with a soft-tipped pen. Be sure to mark it as a SVAP Data Disk, to keep it separate from the SVAP Prograni Disk.

After the data disk has been completed, access the program Make a New Data Tape and follow the directions. If you are using a new tape, attach the stick-on labels and write any identification data on them. Be sure that the label on the upper edge (where it can be seen when the tape is in the tape drive) clearly identifies this es a data tape to keep it separate from a program tape.

Once the data tapes and data disks have been made, they can be reused for different data without having to be remade with the two programs above.

3.0 FACILITY DESCRIPTION PROGRAM

3.1 START-UP

The Facility Description Progran is used to input the physical security data. The program is accessible from the disk menu or with the command:

OLD "SVAPLIB/FACDESPRG4"

Load the program and follow the directions. In the beginning, you will be asked the following question:

1 - NEW DATA FILE
2 - OLD DATA DISK FILE
3 - OLD DATA TAFE FILE
TNPUT NUMBER: ?

Input a one (l) if this is a new set of data. This will tell the program to begin a new data set, and to ignore any old data on the disk.

If you have previously put data on this disk, and want to add more or make corrections, then input a two (2). The program will load the old data files and run the restart program.

If you have data files on a tape that you want to add to or correct, then input a three (3). The program will read the tape and write the tape files ontc the disk.

3.2 CONTROL OF THE OPERATING PROGRAM

Control of the operating program is through keyboard commands and the user definable keys (UDK). The user definable keys are located on the upper left corner of the keyboard and are numberad from 1 to 20. Only the upper keys are used with the Facility Description Program and the Accounting System Program (UDK $1-5,11,12$ and 13). The functions of the keys are listed in Table 1. Figure 1 is an example of the SVAP program's overlay. The lower keys (numbers 6 througin 10) are used with the interactive user manual and are described there. Do not gress a UDK when files are being read from or written

TABLE 1. The functions of the user definable keys (UDK).

UDK (1) - RESTART. Runs the restart file, to start data input at a location other than file 2 .

UDK (2) - STOP INPUT. Stops input after the last element of a list.
UDK (3) - CORRECT DATA. Runs the correction program for correcting, deleting or adding to a file.

UDK (4) - PRINT FILE. Prints a selected data file from the disk.

UDK (5) - TEXT FILE. Allows input to the text file. This can also be accessed from the restart program.

UDK (11) - RETURN TO MENU. (SHIFT 1); loads and runs the disk menu.

UDK (12) - CONTINUE A LINE. (SHIFT 2); used with matrix inputs longer than 1 line.
$\operatorname{UDK}(13)$ - REDO LhiT LINE. (SHIFT 3); used during matrix or list input to immediately redo a line after RETURN has been pressed.
to disk, as that may cause a loss of data. Occasionally, you will get FILE OPEN type errors after pressing a key. Iype CLOSE and you should be able to continue.

The program will automatically step through the files in the correct order. If you should use the RESTART key, be sure to restart where you previously left off inputting data. Printing the constant file (0) with UDK

FIG. 1. SVAP program's overlay.
(4) will indicate where there is data. The numbers printed are the number of entries in each file in numerical order starting with file 1 . A zero indicates no data in that file.
3.3 DATA CORRECTION, DELETION, OR ADDITION

3.3.1 Text File

There are two ways to make changes to the text file. Atter pressing the key TEXT FILE (UDK(5)) the old file will be printed along with the question

```
    1 - NEW TEXT
    2 - TEXT OK
    3 - ADD TEXT
        INPUT NUMBER: ?
```

At this point, you can either reinput the whole file (1), accept it as it is (2), or add more text to the end (3).

3.3.2 List Files

Pressing the key CORRECT DATA (UDK(3)) allows you to make correctior - to the list files. There are three types of corrections allowed to these files:

1 - Changing an entry
2 - Adaing entries
3 - Deleting an entry
Whe: changing an entry, you will be requested to give the old entry name and new ntry name. The program will then search the current file and ail subs cquent files for the old name and replace it with the new name.

Adding entries to a list file restarts the prograin at the file, prints out the existing file, and then waits for more entries. When you have added the new variables to the list, press STOP ENTRY. The program will write the new list file and then scan subsequent files for locations where data is lacking, due to the additions. Do not press any of the user definatle keys (except for UDK (12) and UDK (13) used during data entry) until the word DONE is displayed.

Deleting an entry works in a similar manner to changing an entry. You will be requested to input the ID code to be deleted. The program will then delete that entcy from the current file and from all subsequent files. If the entry is located in a subsequent file on the right-hand side of a Boolean equation then the program will prompt you to reinput that line. Do not press any of the user definable keys (except for UDK (12) and UDK (13) usec during data entry) until the word DONE is displayed.

A fourth way $\$ 0$ correct a list file is to use the RESTART key (UDK (1)) and reinput the list from the beginning. However, if this is done, all sybsequent files that use those list variables should be reinput even if they have been input previously. This is necessary to insure that the order and spelling of the entries is the same in all files that use those entries.

3.3.3. Matrix Files

Pressing the key CORRECT DATA (UDK(3)) allows you to make corrections to the matrix files. In this mode, you will only be able to change an entry set. Sets may only be added or deleted in the list files.

You may also correct these files by pressing the RESTART key (UDK (1)) and completely reinputting the file. This can be done at any time and will not affect any of the subsequent files.

3.3.4 Constant File

The constant file should never have to be corrected. It is automatically updated by the system. However, if processing should be stopped in some manner (pressing BREAK, encountering an error, etc.) before the file can be updated then it may have incorrect values. See Section 3.4.4 for the details of updating this file.

3.4 PROGRAMMING TNFORMATION

The following information is primarily directed toward individuals with some programming experience on Tektronix 4050 series computers. It is intended to be used when corrections or changes must be made to the program. Most users can skip over this to Section 4.0. Detailed information relating to the computer's operation can be found in the various user manuals that come with the system.

3.4.1 Types of Data Files

There are seven (7) kinds of disk data files used with tiese programs. They all exist on the data disk in files named eSVAPLIB/DATAO through @SVAPLIB/ DATA37. There is one other file on the disk named eSVAPLIB/SCRATCH, which is a data scratch file. The data files all have a similar format. Records one, two, and three contain the file name, file number, and a less than (<) symbol, respectively. Lines of data are separated with less than symbols (<) (except for the constant and text files), and a double less thal. $\mathrm{si}_{\mathrm{i}}=\mathrm{hnl}$ (<<) is placed in the last record of the file.

The first type of file is the constant file (file $=0$). It contains the number of lines of entries in each file, 1 isted in the numeric urder of the file numbers, starting with file 1.

The next type of file is a type 0 file. This is the text file (file l) which can contain any alphanumeric data.

Type one (1) data files are the list files. Beginning with record 4, they contain the alphanumeric ID codes input as the list variables. The ID codes are limited to 8 characters in length with no spaces. Separating each ID code is a less than symbol ($<$).

Type two (2) data files are the matrix files without and/or logic. Data from one list file (the row of a matrix) is equated to data from another list file (the columns of the matrix). Beginning with record 4, an ID code from the first list file is written, followed by the ID codes from the second list that were equated to it. Groups of this type are separated with less than symbols (<).

Type three (3) data files are matrix files with and/or logic. They are in the form of Boolean equations (i.e., ID codes separated with AND or OR) with parenthesis symbols (1)) allowed. The symbols * and + nay be used in place of $A N D$ and $O R$, respectively.

Type four (4) data files take the ID codes from one list file and equate it to an input nameric variable. The numeric variable is limited to the range 0 to 1 . Beginning with record 4, the ID code is written, then the numeric value, followed by a less than symbol (<).

Type five (5) data files are the same as type four, except that the values of the numeric variables are not restricted.

3.4.2 Program Variables

Table 2 contains a list of the program variables and their general functions.

TABLE 2. Program variables.

ASCII Arrays:

AS - Scratch and mat: $1 x$ print data.
B\$ - Matrix print data.
C\$ - File name.
E\$ (1000) - Variable name list for checking input variable names.
$\because \$(100)$ - Input target and row ID codes in the matrix input.
z\$ - Scratch and list input target.

Numeric Array:

```
M(05,5) File Type Data
M(I,1) = Location (file) of row ID codes
*(I,2) = Location (file) of column ID codes
M(I,3) = Data file number
M ( I , 4 ) = N u m b e r ~ o f ~ l i n e s ~ o f ~ d a t a
M(I,5) = Data file type
    1 - List file
    2 - Matrix file
    3 - Matrix with and/or
    4 - Probability matrix
    5 - Numeric matrix
```

Counters and Loops:

I
I1

J

M1
N1
N2

TABLE 2. (Continued.)

Numeric Variables and Flags:

F1 - Back-up flag	1 - Normal input F2 -
F3 - Reinput last	

3.4.3 Program and Subroutines

The Facility Description Program consists of a driver program (lines 1 to 1995) and several subroutines. Table 3 lists the subroutines and their functions. Beware when making changes, as the subroutines call each other.

TABLE 3. Program subrout ines.

Line numbers	Function
1 to 1995	Driver program.
2000 to 2450	Inputs list file data onto the scratch file.
2500 to 2670	Checks list ID codes.
2700 to 3060	Inputs and adds to the text file.
3100 to 3230	Write the current constant file to disk,
3240 to 3350	Read the current constant file from disk.
3400 to 3600	Write the contents of the scratch file to the current data file (file = F3).
3700 to 3900	Read the data in the column disk file (file $=M(F 3,2)$) into the array E\$.
4000 to 4465	Check the matrix input in array "IS for correct form. See if each ID code is is array E\$.
4470 to 4600	Replace AND, OR, and ALL with *, +, and OMEGA, respectively.
5000 to 5965	Input matrix file data onto the scratch file.
6000 to 6340	Restarts input at a selected point in the driver program.
6500 to 6700	Print the contents of a data file.
7000 to 7360	Read a data tape into a disk.
2000 to 96? ${ }^{\text {d }}$	Correct data:
	8140 to 8890 Change an input.
	8900 to 8960 Add to a list.
	8970 to 9670 Delete from a list.

3.4.4 Constant File Errors

Occasiona?ly, errors will crop up where the number in the constant file does not match the number of elements in the list or matrix that it represents. This can be caused by stopping or altering the program's execution before the file has been updated after a change. For example, pressing the BREAK key or encountering an input error.

Use the following sequence to make changes to the values in the constant file.

Type:

```
USER: M(<file number>,4)
PROGRAM: <Number currently in the file> Old value.
USER: M(<file number>, 4) = <Correct number Put in the
                                    in the file>
                                    correct number.
                                    go back to the first step to make more
                                    changes, otherwise type:
USER: RUN 3100
```

Write the corrected file to disk.

3.4.5 Tape Read, Write Errors

The tape is written in a special format that makes it compatible with the SVAP codes in the main frame computer. There is no header, there are 128 byte records (rather than 256), and there is no checksum. The system is set up by the program with the following command:

PRINT @ $33,0: 1,1,1$

It is reset to normal operation with

PRINT @ $33,0: 0,0,0$

Reading a tape with the wrouy narameters set will generate a tape error.

4.0 ACCOUNTING SYSTEM PROGRAM

4.1 START-UP

The Accounting System Program is used to input the facility material control and accounting data. It operates in exactly the same manner as the Facility Description Program.

First, the Facility Description Program must be run and completed. Then, the Accounting System Program can be loaded and run from the disk menu. The Accounting System Program is located on a disk file named @SVAPLIB/FACACTSYS4. It can alternately be loaded with the command

OLD "@SVAPLIB/FACACTSYS4"

At the start of the program you will be asked the following question:

1 - OLD DATA DISK FILE
2 - OLD DATA TAPE FILE
INPUT NUMBER: ?

Input a one (1) if the data from the Pacility Description Program is on the data disk, or if you have previously put accounting data on this disk and want to add to or modify it. If your old data is in a data tape then input a (2) and the program will request the data tape and then load it onto a data disk.

4.2 CONTROL OF THE OPERATING PROGRAM

The control of the operating program is identical to that used with the Facility Description Program. See Section 3.2.
4.3 DATA CORRECTION, DELETION, OR ADDITION

See Section 3.3.

4.4 PROGRAMMING INFORMATION

See Section 3.4.

5.0 DATA INPUT FILES

5.1 TEXT FILE

Pressing user definable key number five (5) will access the text file. The contents of the file will be printed out and you will be asked to answer the following question:

1 - NEW TEXT
2 - TEXT OK
3 - ADD TEXT
INPUT NUMBER: ?

Inputting a one (1) will delete any existing text and allow you to begin inputting new text. A two (2) will close the file and keep it as is. Inputting a three (3) will allow you to add more text below the existing lines of text.

When requested, input the new text, ending each line with a return. The INPUT is free format, with all characters allowed except control characters. After the last return, press STOP INPUT (UDK(2)). This will end the data entry and close the file.

5.2 LIST FILES

List filos contain lists of ID codes. ID codes can be up 08 characters in length and there can be no internal blanks.

The program will print the name of the list file, give some simple directions and then request data. Input the ID codes one at a time, pressing RETURN after each ID code. After the last RETURN, press STOP INPUM: (UDK (2)) to end data entry, write the disk file, and close it.

5.3 MATRIX FILES

Matrix files relate data from one list file to data in another list file. After printing the headings and simple directions, the program will print the first ID code from one file followed with an equal sign ($=$). You are then requested to input the ID codes from another file that are to be
related to it. The ID codes are separated with spaces and a completed line is ended with a return. The code will check for errors, and then respond with the error to be corrected or with the next ID code. If the input requires more than one line per ID code, press CONTINUE A LINE (UDK (12)). You can continue a line as many times as is needed to complete an entry. Press RETURN to end the entry.

5.4 MATRIX FILES WITH AND/OR LOGIC

In some cases, there are particular relationships between variables that must be specified with and/or type logic. Data is input as a Boolean equation in the same manner as for matrix files, except that now the words AND or OR must separate each ID code. Also available are parentheses (()) to help simplify the input. Use them as if AND were multiply and OR were add.

5.5 PROBABILITY MATRIX

The probability matrix is used to associate numerical probabilities with ID codes. After printing the headings and instructions, the program will print an ID code and an equal sign $(=)$. You are requested to input the numerical probability and press RETURN. The number must be between zero (0) and one (1). The code will check it and then respond with the next ID code.

5.6 NUMERICAL MATRIX

The numerical matrix operates in exactly the same manner as the probability matrix, except that there is no restriction on the range of the numerical data. See Section 5.5.

6.0 DATA PREPARATION AND INPUT

Table 4 contains a list of all of the data files generated by the Facility Description Program and the Accounting System Program. Appendix A contains examples of each data input. The following is a description of each data type in the order that they will be requested by the programs.

TABLE 4. Data files generated by the Facility Description Program and the Accounting System Progra: .

File number	Order of entry	File name
0	$*$	Constant File
1	+	Text File
2	1	Area-Portal List
3	2	Adjacency Matrix
4	3	Monitor-Lock List
5	4	Area/Monitor-Lock Matrix
6	5	Authorization List
7	7	Monitor-Lock/Authoriz tion Matrix
8	8	Monitor-Lock/Failure Probability Matrix
9	9	Transmission Line List
10	10	Monitor-Lock/Transmission Line Matrix
11	11	Utilities List
12	12	Monitor-Lock/Utilities Matrix
7	13	Transmission Line/Authorization Matrix
15	14	Utility/Authorization Matrix
15	15	Area/Authorization Matrix
16	16	Monitor-Lock/Response Matrix
17	17	Response/Authorization Matrix
18	18	Document List
19	19	Monitor-Lock/Document Matrix
20	20	Document/Authorization Matrix
21	21	SNM Source List

TABLE 4. (Continued.)

File number	Order of entry	File name
22	22	SNM Source/Quantity Matrix
23	23	Loss Detection Methods List
24	25	SNM Source/Loss Detection Methods Matrix
25	26	Records List
26	27	Loss Detection Methods/Records Matrix
27	28	Records/Records Matrix
28	29	Forms List
29	30	Records/Forms Matrix
30	31	Loss Detection Method/Authorization Matrix
31	32	Records/Authorization Matrix
32	33	Forms/Authorization Matrix
33	34	SNM Source/Exit Point Matrix
34	24	Detection Time Matrix
35	$*$	Time Codes
36	$*$	Probability Codes
37	6	Probability Value Matrix

* Not input by the user.
+ Arbitrary. Can be input or added to at any time.

6.1 PLANT LAYOUT

As a first step, generate a plant layost. This is effectively a floor plan of the facility broken up into areas and portals (doors and gates). In general, separate areas are defined by barriers (walls and fences), monitor coverage areas, and monitored and/or locked doors. Each area and portal is given a unique descriptive name.

As an example, consider the facility in Fig. 2. It consists of a building with two rooms and a hallway. Both rooms have monitored and lockable doors. The room on the right contains a safe. The building is surrounded with a fence and a fence intrusion area. There are two gates in the fence, both of which are monitored and lockable. There is a guard station neat to the front gate.

The facility would be broken down into areas and portals in the following manner:

- Area-01 is all the area outside the fence.
- Area-02 is the area between the fence and the fence intrusion area.
- Area-03 is between the fence intrusion area and the building. Area-03 also contains the hallway in the building because there is free access through the outside door.
- Area-04 is inside the left room.
- Area-05 is inside the right room.
- Area-06 is inside the guard station.
- FIA is the fence intrusion area.
- Port-01 is the front gate.
- Port-02A and Port-02B. The door on the left room has panic hardware, so that no key is required to get out, but one is required to get in. This is handled by breaking it into two one-way doors; one going out with the free access (A) and one going in that is locked (B).
- Port-03. The door to the right room.
- Port-04. The back gate.
- Fence. The fence is considered a portal because, in most cases, a fence is a poor barrier.

Area-01

FIG. 2. Example plant layout with areas and portals marked.

6.2 AREA-PORTAL LIST (FTLE = 2)

The Area Portal List is a list file of all of the areas and portals on the plant layout.
6.3 ADJACENCY MATRIX (File $=3$)

The Adjacency Matrix connects areas and portals. You will be given an area and are requested to input the areas that yoy can go to. Beware of one-way doors (e.g., a turnstile); if you cannot go through them from the area given, then do not list them.

Note especially how portal two is handled. It is a door that is locked in one direction and has panic hardware in the other. To handle this, it is considered to be two one-way doors.
6.4 MOR ${ }^{2}$-LOCK LIST (FILE = 4)

As with the areas and portals, all of the monitors and locks are located on the drawing (Fig. 3). The program will then request a list of those ID codes just assigned.

FIG. 3. Example facility with monitors and locks listed.

```
MON-P = Portal monitor
MON-A = Area monitor
LOC-P = LOCK
```


6.5 AREA/MONITOR-LOCK MATRIX (FILE $=5$)

The Area/Monitor-Lock Matrix connects the areas and portals with the monitors and locks that cover them. For each area given, you are to input the monitors and 100 ks , separated with AND or OR.

6.6 AUTHORIZATION LIST (FILE $=6$)

The Authorization List contains the ID codes for the plant personnel. Break them down according to job function and security authorization. Include enough of each type to cover any security situation (e.g., two-man rule for opening a sealed door). For example, if there are two kinds of engineers in a facility--those allozed in the whole facility, and those not allowed in Area-05-- and the two-man rule is followed in Area-05, then the list could contain: ENG-11, ENG-21, and ENG-22, where all the ENG-20s are those allowed in Area-05 and the ENG-10s are those not allowed in Area-05.

6.7 PROBABILITY VALUE MATRIX (FILE $=37$)

In this matrix, the value of the four probability ID codes (PROB1 to PROB4) are given numerical values. These can be used with any and/or type matrix to define a situation where the probability of occurrence is less than 1. For example, if people who to inventory are chosen randomly from a group of ten, then set PROB1 to 0.1 and put AND PROBl after the randomly chosen person's name in the matrix. Unused ID codes can be set to anything.
6.8 MONITOR-LOCK/AUTHORIZATION MATRIX (FILE = 7)

The Monitor-Lock/Authorization Matrix connects the monitors and locks with the plant personnel who have access to them. The input uses the and/or scheme to describe the various situations where access to a monitor or lock has been obtained. People required in a particular situation are separated with ANDs, different situations are geparated with ORs. Use AND PROB1 through AND PROB4 if a particular sicuation has a probability of less than 1 of happening.

6.9 MONITOR-LOCK/FAILURE PROBABILITY MATRIX (FILE = 8)

The Monitor-Lock/Failure Probability Matrix connects the monitor ID codes with the probability of random failure for that particular monitor. The probabilities must be between 1.0 and 0.000001 , inclusive. An E-type format may be used (e.g., $.001=1 \mathrm{E}-3$).
6.10 TRANSMISSION LINE LIST (FILE $=9$)

The Transmission Line List contains the ID codes of all of the transmission elements (cable runs, junction boxes, etc.) that carry signals from the monitors to the guard station (see Fig. 4). Only those junction boxes at splits in a cable run need be listed. All others can be considered part of a single cabie run. Split cable runs and junction boxes with the same accessibility (e.g., all connected runs on the r of of one room) can be considered as single cable runs.

FIG. 4. Example facility with signal Lransmission lines marked. The transmission lines go from the monitors to the guard station.

6.11 MONITOR-LOCK/TRANSMISSION LINE MATRIX (FILE $=10$)

This matrix inputs the transmission line components that connect a monitor (or lock, in the event that it has some electrical sense lines) to the guard station. Use ANDs between continuous line components and ORs between alternate lise components. No entry indicates no connections (e.g., most locks).

6.12 UTILITIES LIST (FILE $=11$)

This list inputs the utility components and power sources that supply the monitors and locks (see Fig. 5). The rules are the same as for the Transmission Line List.

6.13 MONITOR-LOCK/UTILITIES MATRIX (FILE $=12$)

This matrix connects the monitors and locks with the power sources, using the utility components defined in the utilities list. Irput is similar to that used with the transmission line components. Use AND between continuous line components and OR between alternate groups of line components. No entry indicates that no power is required (e.g., locks).

FIG. 5. Example facility with the utilities components marked. The utilities supply power, air, water, etc. to the monitors

The Transmission Line/Authorization Matrix connects the transmission line components with the personnel who have authorized access to those components. The input uses the and/or scheme to describe the various access situations obtainable. People required in a particular situation are separated with AND, and different situations are separated with OR. Use AND PROBI through A:. D PROB4 if a particular situation has a probability less than 1 of happening.

6.15 UTILITIES/AUTHORIZATION MATRIX (FILE $=14$)

The Utilities/Authorization Matrix connects the utilities components with the personnel who have authorized access to them. The input uses the and/or scheme to describe the various access situations obtainable. People required in a particular situation are separated with AND, and different situations are separated with OR. Use AND PROB1 through AND PROB4 if a particular situation has a probability of less than 1 of happening.

6.16 AREA/AUTHORIZATION MATRIX (FILE $=15)$

The Area/Authorization Matrix connects the areas and portals with the personnel who have authorized access to them. The input uses the and/or scheme to describe the various access situations obtainable. People required in a particular situatior, are separated with AND, and different situations are separated with OR. ALL implies everyone in the Authorization List is separated with the word OR. No input implies that no one is allowed in the arta. The program will change the word ALL to the word OMEGA in the output files. Use AND PROB1 through AND PROB4 if a particular situation has a probability of less than 1 of happening.

6.17 MONI OR-LOCK/RESPONSE MATRIX (FILE $=16$)

The Monitor-Lock/Response Matrix connects the monitor alarm points with the response locations of security personnel. For each monitor and lock, input the location of the area or portal that will be covered by security personnel. Use the and/or scheme to input the data. No input implies that no response is made to that alarin.

The Response/Ruthorization Matrix connects the monitor alarm points with the personnel who respond to them. The location of the response was input in the Monitor-Lock/Response Matrix. We will now input who is actually doing the responding. In most cases this will only consist of the security personnel. The and/or scheme is available for complex situations. No input implies that no one responds.

6.19 DOCUMENT LIST (FILE $=18$)

The Document List consists of a list of those documents that allow a person to pass through monitored areas and portals, and to carry SNM through monitored areas and portals without settino off an alarm.

6. 20 MONITOR-LOCK/DOCUMENT MATRIX (FILE $=19$)

The Monitor-Lock/Document Matrix connects the monitor alarm points with the ducuments that allow a person to pass through them without setting off an alarm. For each monitor and lock, input the documents that allow you to pass. And/or logic is available if needed. No input implies that no document will change a person's status at an alarm point.

6. 21 DOCUMENT/AUTHORIZATION MATRIX (FILE $=20$)

The Document/Authorization Matrix specifies who is authorized to have a document in his possession. For each document, input the personnel allowed to possess it. And/or logic is available if necessary. No input implies that no one may possess it. ALL implies that everyone in the Authorization List may possess it. AND PROBl through AND PROB4 are available for situations where the probability is less than 1 of happening.

6. 22 SNM SOURCE LIST (FILE $=21$)

The SNM Source List is a list of those areas in the facility (from the Area-Portal List) that contain SNM in a form that could be removed. Essentially, it is a list of poss ble targets in the facility.

6. 23 SNM SOURCE/QUANTITY MATRIX (FILE $=22$)

In this matrix, the effective amount of SNM in each source area is input. Effective mass of SNM is the number of kilograms of uranium-233 plus the number of kilograms of plutonium, plus (for enrichments greater than or equal to 18) the number of kilograms of uranium times the square of the enrichment (specified as a fraction), plus (for enrichments less than 18) the number of kilograms of uranium times 0.0001 .

Effective mass of $\mathrm{SNM}=$
${ }^{233} \mathrm{U}+\mathrm{Pu}+\mathrm{U} \cdot \mathrm{X}^{2}(\mathrm{X} \geq 0.01)+\mathrm{U} 0.0001(\mathrm{X}<0.01)$
$\mathrm{x}=$ uranium enrichment fraction.

6. 24 LOSS DETECTION METHODS LIST (FILE $=23$)

The Loss Detection Methods List consists of the accounting and administrative methods that are used to determine that material has not been lost. Some examples are: inventory differences, missing items, incorrect serial numbers, and broken or incorrect seals. Input the ID codes for all of the methods ueed.

6.25 DETECTION TIME MATRIX (FILE $=34$)

In this matrix, the value of the four time ID codes are set. These codes are used in the SNM Source/Loss Detection Methods Matrix to input the amount of time required for detection with each loss detection method. For each ID code input the number of days to he assigned to it.

6.26 SNM SOURCE/LOSS DETECTION METHODS MATRIX (FILE $=24$)

This matrix connects the SNM source locations with the loss detection methods that operate there and the time frame for detection. Given the source location, input the loss detection method followed by AND and one of the time codes. Separate other methods with OR. The time codes are listed at the top of the page and were defined previously. The time sodes indicate the time raquired to detect a loss with the given method For example, if serial numbers are checked once a week then the input would Be INC-SER AND TIMEl, where TIMEl was set to 7 days in the Detection Time Matrix.
6.27 RECORDS LIST (FILE $=25$)

The Records List consists of the ID codes of the records made from the data from the Forms List (see Section 6.30). The records contain the data necessary to determine the amount, type, location, and possible loss of SNM.

6.28 LOSS DETECTION METHODS/RECORDS MATRIX (FILE $=26$)

This matrix connects the loss detection methods with the records from the Form List. The records contain the data necessary to determine the amount, type, location, and possible loss of SNM. For each loss detection method, input the required records. And/or logic is available.
6.29 RECORDS/RECORDS MATRIX (FILE $=27$)

Records that cross check records are input with this matrix. For each record given, input the other records whose information is used as a cross check against them. No input indicates that there is no cross checking. ALL indicates all of the record: n the Records List separated with ORs. And/or $\log i c$ is available. Use $O R$ to separate sets of records and use AND to separate members of a set.
6.30 FORMS LIST (FILE $=28$)

The Forms List consists of the ID codes of the forms that supply the data for the different accounting records in the Records List. Examples are: forms for moving, assay, and disposal of SNM; forms filled out when checking seals, serial numbers, etc.

6.31 RECORDS/FORMS MATRIX (FILE $=29$)

The Records/Forms Matrix connects the records with the forms that supply the data to be recorded. For each record given, input the required forms. ALL indicates all of the forms in the Forms List separated with ANDs. And/or logic is available. Use OR to separate sets of forms and use AND to separate members of a set.

The Loss Detection Methods/Authorization Matrix connects the loss detection methods wi h the personnel who could circumvent the alarm generated by the method; i.e., who can make changes in or withhold the data, or who could override the alarm. ALL indicates all of the personnel in the Authorization List separated with ORs. And/or logic is available. Use OR to separate groups of individuals and AND to separate the members of a group. Use AND PROBl through AND PROB4 for situations whose probability is less than 1 of happening.

5.33 RECORDS/AUTHORIZATION MATRIX (FILE $=31$)

This matrix connects the records from the Records List with the personnel authorized to make entries or changes in them. ALL indicates all of the personnel in the Authorization List separated with ORs. And/or logic is available. Use OR to separate the members of a group. Use AND PROBl through AND PROB4 for situations where the probability is less than 1 of happening.

6.34 FORMS/AUTHORIZATION MATRIX (FILE $=32$)

This matrix connects the forms from the Forms List with the personnel authorized to make entries or changes in them. ALL indicates all of the personnel in the Authorization List separated with ORs. And/or logic is available. Use OR to separate groups of individuals and AND to separate the members of a group. Use AND PROB1 through AND PROB4 for situations whose probability is less than 1 of happening.

6.35 SNM SOURCE/EXIT POINT MATRIX (FILE $=33$)

This matrix determines where the stopping point of the analysis will be. For each SNM source zone, input the area name where a colluder wants to end up. In most cases this will be the same area for all of the source locations, And/or logic is available if necessary. Use OR to separate groups of areas and AND to separate the members of a group.
6.36 'IEXT FILE (FILE $=1$)

The Text file is a free format input file for all types of extra information. Examples are identificaiion information and assumptions made. The Text file can be accessed with user definable key five (UDK(5)). First, the contents of the existing text file will be printed. Then, you will be asked if it is OK, or do you want to rewrite it, or do you just want to add to it. Answer the question and then follow the instructions. (See Section 5.1.)
6.37 TIME CODES (FILE $=35$)

This file contains the four time ID codes, TIMEl to TIME4, used with the Detection Time Matrix. They are not input by the user.
6.38 PROBABILITY CODES (FILE $=36$)

The four probability ID codes PROBl to PROB4 used in the probability value matrix are contained in this file. They are not input by the user.

7.0 UTILITY ROUTINES

There are several utility routines designed to be used with the Facility Description Program and the Accounting System Program. These routines take care of the preparation and use of data tapes and disks.

7.1 MAKE A NEW DATA TAPE

This program was described previously. Its function is to format data tapes for use with the Facility Description Program. See Sections 2.2 and 3.4.5 for more information.

7.2 MAKE A NEW DATA DISK

This program has also been described previously. Its function is to format the data disk, create the data files, and fill the data files with blanks so that they can be accessed randomly. See Section 2.2 for more information.

7.3 DUPLICATE A DISK

This is a general disk duplication routine. Use it to create multiple copies of data and program disks where necessary. It is usually good practice to keep two copies of the program disk on hand so that if on is accidentally destroyed or is worn out a backup is available.

To operate the program, load it from the disk menu and follow the directions. Make sure that you have the correct disk in the correct disk drive so that you do not destroy data.

7.4 WRITR A DATA TAPE FROM A DISK FILE

Once you have completed inputting data with the Facility Description Program and the Accounting System Program, you can write a data tape. The progcam takes the data currently residing on the 37 disk files and makes it into a single long tape file. The data is checked as it is being written and all capital letters are changed to lower case. Also, all brackets in the Boolean equations are multiplied out.

To run the program, access it from the disk menu and follow the directions. Be sure that you have a data tape in the tape slot on the 4051 and not a program tape. This program is in the disk file named @SVAPLIB/WRITETAPE2

This is a short overview of the SVAP procedure. Access it from the disk menu. It is in nine disk files named esVAPLIB/OUTLINE1 to @SVAPLIB/OUTLINE9.

7. 6 FACILITY DESCRIPTION PROGRAM USER'S MANUAL

This is an online version of the manual that you are reading. It is accessed from the disk menu and is contained in the files @SVAPLIB/MANUAL1 through 3SVAPLIB/MANUAL48.

7.7 PRINT SVAP OUTPUT FILES

Once the SVAP output tape has been generated, it can be printed with the program PRINT SVAP OUTPUT. The program is accessible from the disk menu. It is in the disk file named eSVAPLIB/PRINTOUT.

Load the program and follow the directions to print out the output files. There are three forms of the output available. The first is a complete listing of the output data with the explanations and plots. The second is a printout of the data and plots only. The third prints out the plots.

You have a choice of three plot output media. One plots on a Tektronix 4662 plotter. The second plots on the Tektronix 4050 series computer tube face and then sends a copy command to the hard copy device. The third plots on the tube face but does not make a copy.

There is a choice of six printout media. The first prints data on the Tektronix 4662 plotter. This is not recommended, as it is slow and a little rough on the plotter. The second and third use the tube face and the hard copy device in the same manner as is done with the plot media above. The last three choices send the data to one of the two ROM slots or the serial interface on the back of the machine. Some internal changes may be necessary when using the serial interface.

7.8 DISK BOOTSTRAP PROGRAM

This is in a tape file and is accessed from the tape menu. Its purpose is to set the clock in the disk drive and to mount the program disk. This was described previously in Section 2.1.

8.0 GLOSSARY

ALL	A matrix ID code. Meaning everyone or everything in a list. Whether they are assumed to be separated with ANDs or ORs depends on the matrix being input. ALL is changed to the Boolean variable OMEGA after input.
Area	A part of the plant floor plan, usually a room, part of a room, hallway, or yard area. An area is bounded by walls, fences, monitored or locked doors, or the coverage areas of monitors.
Authorizers	This is a list of plant personnel, broken down by job classification and security authorization. Enough authorizers must be listed to cover all security rules (e.g., two-man rule) and alert situations (e.g., how many guards are sent out when an alarm is tripped).
Parentheses	Can be used along with the ANDs and ORs in the matrix input.
Documents List	Those forms and signed notes that allow a person to pass through a monitored portal, or to carry material (e.g., SNM) through a monitored portal without initiating a security response.
Effective Mass of SNM	The number of kilograms of uranium-233, plus the number of kilograms of plutonium, plus (for enrichments greater than or equal to ${ }^{18}$) the number of kilograms of uranium times the square of the enrichment (specified as a fraction), plus (for enrichment less than 1%) the number of kilograms of uranium times 0.0001 .
	$\begin{aligned} \text { Effective mass of SNM }= & 233 U+P u+U \cdot X^{2}(X \geq 0.01) \\ & +U 0.0001(X<0.01) \end{aligned}$ $x=$ uranium enrichment fraction.

Records List

TIME1 to TIME4

Transmission Lines

Utilities
situations that lave a probability less than 1 . For example, if a person is chosen at random from a group of 10 individuals to do inventory, then set 1?ROB1 to 0.1 , and AND PRUB1 would be inserted after his name in the Forms/Authorization Matrix.

Those records maintained by the forms in the Forms List that contain the data necessary to determine the amount, type, location, and possible loss of material (SNM). These serve as inputs to the accounting system loss detection methods.

Special Nuclear Material. The element plutonium, the isotope uranium-233, or the element uranium enriched in the isotopes uranium-233 or uranium-235.

Strategic Special Nuclear Material. The element plutonium, the isotope uranium-233, or the element uranium enriched to 20% or more with the isotope ur anium-235.

Time ID codes set by the user for use in the SNM Source/Loss Detection Methods Matrix. They are used with the word AND to indicate the time interval over which the loss detection methods operate. For example, if inventories are done every month, then let TIME1 equal 30 days and place AND TIMEl after inventory in the matrix.

The cable runs and junction boxes that carry the signals from the monitors to the central guard station.

The cable runs, junction boxes, power sources (public power, generators, and batteries), air supplies, etc., required for a monitor's operation.

REFERENCES

1. F. M. Gilman, M. H. Dittmore, W. J. Orvis, P. S. Wahler, Sareguard Vulnerability Analysis Program (SVAP) Executive Summary, Lawrence Livermore Laboratory, Livermore, Calif., UCRL-52724 (December 1979); NUREG/CR-1169, ES.*
2. P. S. Wahler, Safeguard Vulnerability Analysis Program (SVAP)

Data-Gathering Handbook, Vol. I, Lawrence Livermore Laboratory, Livermore, Calif., UCRL-52731, Vol. I (January 1980); NUREG/CR-1169, Vol I.*
3. P. S. Wahler, Safequard Vulnerability Analysis Program (SVAP)

Data-Gathering Handbook, Vol. II, Lawrence Livermore Laboratory, Livermore, Calif., UCRL-52731, Vol. II (January 1980); NUREG/CR-1169, Vo1 II.*

FWB/nll

[^1]
APPENDIX

This appendix contains a complete set of inputs for the example facility. It includes making data tapes and disks and writing the final data tape. All of the pages are listed in the exact order in which they were input. The example facility is described in Section 6 .

```
1-MENU
2-DISK EOUTSTRAP PROGRAM
3-GENERATE FACILITY DESCRIPTION TAPES
4-MARK NEW DATA TAPES
S-SIGF PROGCEDJRE DUTLLINE
6-TEKTROHIN 49G% DISK UERIFICATION PROGRAM
P-FRCILITY OESCRIPTIOA PRUGFAM (DISK TYPE)
z-make h data tmpe from a disk file
g-ACCONHTING SISTEM PROGRAM (OISK TYPE)
1g-NAKE a !IEW DGTA DISK
11-LUFLICATE A OLEK
```

INPUT NUMEER 2

INSERT SUAP DISK INTO DRIUE Q ANO PRESS RETURH:

INFUT IHTE RHI TLME (OD-HMM-VG HH:MH:SS):
21-8EF-79 3:92:9日

OLSK BTOTSTKMF COMFLETE. PRESS PETURN FOR SUAP MENU:

FILES AUAILABLE:

1-SUAP OISK MENU
2-SUAF PROCEDURE OUTLINE
3-FACILITY DESCRIPTIOH FROLRAM (TYFE IU, WITH HEMDINGS)
4-FACILITY DESCRIFTIOH PROGRAM (TYPE IU, WITHOUT HEGOIHGS)
S-ACCOUNTING SYSTEM FROGRAM (TYPE IU)
E-MAKE A NEW DATA TAFE
T-DUPLICATE A DISK
8-WRITE A DGTA TAPE FRUNH A DISK FILE
9-FACILITY DESCRIPTION PROGRAM USER MANUAL
10-MHKE G HEW DATA DISK
11-PRIHT SUAF OUTFUT FILES

INPUT NUMEER: 6

MAKE A GATH TAPE FOR USE WITH THE TYPE III OF TYPE IV FACILITy: DESCRIPTION PROGRAMS.

If $O U$ GRE USING A NEV DATA TAPE, PREPARE THE STICK -ON LAEELS WITH THE FACILITY NAME, ANALYST HHD DATE, BE SURE TO MARK TS A GATH TAPE ALONG THE EDGE SO THAT IT WILL HOT EA HINES UP WITH THE FPGGRHA TAPE OR OTHER DATA TAPES.

CAution. ml old pita un this tape hill be lost

INSERT A DATA TAPE RHO PRESS RETURN:

```
DONE
PRESS PETUPIN TO RETUFN TO THE HENIJ
```


********** SUAP DISK MENU **********

files nomallable:

```
1-SUAP DISK MEHIJ
2-SUNP GRUCEDURE OUTLIHE
3-FACILITY DESCRIPTIOH FROGRAIG (T'IPE IU, WITH HEADINGS)
4-FGOILITY DESCRIPTIDN PRULRAM (T:PE IU, WITHOUT HEADINGS)
5-ALCOUNTING SYSTEM PROGRAM (TYPE I#)
E-GGKE a HEL DHTG TAFE
7-DUPLICHTE A DISK
8-WFITE A OATA TAPE FROM A DISK FILE
G-FACILITY DESCRIPTION PRUGRGM ISER MGNUAL
1g-MAKE A NEW DATP OISK
11-PRINT SUAP OUTPUT FILES
```

```
IMPUT NUHEER: 18
```

IF THIS IS H NEW DISK, GOUER THE WRITE PROTECT NOTCH WITH A FIECE OF IHE THFE SUPPLIED FOR THAT PURPUSE. THE NOTCH !S LOCATEG ON THE EOTTUM EDLE OF THE DISK, HALFWÂM BETLEEH THE CEHTER MHD THE RIGH EDGE, ATTACH A STICK-ONH LGEEL TO THE UFPEE EDGE DF THE DIUK HHD WRITE ANY DISK IDENTIFIGHTION DATH OH IT. WRITE SOFTLY WITH A SUFT TIPPED FEiA.

IHSERT A OISH IH ORIUE 1 AHD PRESS RETURN,
ALL [みTH OH THIS OTSK WILL SE DESTROIED;
HAS THE D!S! IH ORIUE $\frac{n}{\boldsymbol{n}} 1$ EEEH FORMATTED (Y OR N: : if
IHPU? THE FDPMATTING UHTM:
THE OLUME 10. IS A I TO IG CHARMCTER MLFHAHUMERIC HAME ASSIGAED TO TUE DISK. THE FIRST CHARMCTER MUST EE MLPHAEETIC. WOLGBE ID = SUMFUHTA

THE OWHERS RHIIE CAti CONTAIH UP TO 24 ALPHANUMEFIL CHAEMCTERS FHD SFMIES.
OWHEFS MGIE $=$ LAWRENCE LIMERMORE LHE
THE HNSTEF PASSNOK = PHSS

GUBWE ES GR to
FOFMG REOUESTE.
OF TO [ESTFIG OHTA DH LEUICE ITYES
 ODNE
FRESS PETMAH TO FO BMCR TO THE OISF NENU:

```
FILES RUAILABLE:
    1-SUAF [ISK MENU
    Z-SUAP PRULEIJURE DUTLIHE
    3-FACILITY DESORIPTION FROGRAM (TYPE IU, WITH HEADINGS)
    4-FACILITY DESSRIPTION PROGRAM (TYPE IU, WITHOUT HEADIHGS)
    5-ACCOUNTING SYSTEM FROGRAIM (TYPE IU)
    6-MAKE A NEW DATA TMPE
    7-DUPLIC.ATE H DISK
    8-WRITE A [MTA TAPE FROM A DISK FILE
    g-FAEILITY CESCRIPTIUN PROGRAM USER MANUAL
10-11AKE M HEL DATA DISK
11-PRIHT SyHF FUTPUT FILES
```

IMPUT NUMEEF: 3

SUAF HHS BEEN DEUELUPEL HT THE LAWRENCE LIUERMORE LAEURATURY ¿LLL: TO ASSESS AHY SAFEGUAPDS SYSTEM AGAIHST DIUERSIOH E G HNY COMEINHTIUN OF HON-UIOLENT INSIDERS. THIS WOKK HAS EEFH DOHE WHDEK CONTRACT TO THE U, S. HILLEAR REGULHTORY COMMISSION SNRC). THE PROGRAM YOU HFE AEOIST Ti EVECUTE GEHERATES THE IHPUT TO THE PQHERFUL SUAF CODES. THESE CODES ASSESS THE SAFEGUHRDS GYETEMS MOHITORS, GUAFDS, OUCUAEHTS, ETE, ? AND FHYSIEGL SECURIT' COHTAHLENCY PLANS.

THE FU! LOWING SUFFGRTYHG DOCUMEHTS DESCRIEING THE SUHF PROREEDURES HRE HUHILABLE:

```
1. SUHF SJERUIEW
2. SUGF JSEF MMH|JAL
2. SIAP CODE DEGGRIFTIONS
4. SUAP ESGMPIES
    FRESS RETyGN TO CONTINEE
```

ま****

IHSERT A DHTH OISK IH QRIUE 1 AHO PRESS RETURN:

```
1-NEN DATA FILE
2-DLD DMTA DISK FILE
3-OLD DHTA THPE FILE
ItFUT NUMEER: 1
```

```
FILE=2
    area-mortal l1st
INFUT LIST UARIGELES SEFGRATED WITH RETURNS
UARIMBLES MAY NOT CONTAIN SPACES
PRESS STOP INFUT AFTER THE LAST RETIJRN
1. AREN-G1
2. GFEM-DE
3. NREM-83
4. TREEH-64
5. mFRM-05
E. ARE.M-0E
F. FIH
8. FOET-昗
9. 2ORT-पू2
10. FORT-G2E
11. PORT-0]
12. FOPT-E4
13. FENCE
14.
13 :0. CODES LISTEL.
```

```
FILE=3
    FOR EACH GREA OR
LIST THE GREOS OR FORTALS THAT YOU CAN GO TO
SEFGRGTED WITH SPACES.
PRESS RETURH TO GET THE NEXT AREA OR PORTAL
PRESS UOK 1%) TO CONTINUE A LINE
AREA OF POR IAL = GREGS OR PORTALS THAT YOU LAH TOO TO
AREH-01 = FORT-01 PORT-04 FENCE
AKEH-6% = FEHOE FIA PORT-04
AREA-GS = FIA FORT-02A FORT-01 GFEN-D6 FORT-D1
HKEO-04 = FOKT-62E
AFEH-05 = FGRT-DS
MFEA-0E = AFEM-03
FIH = AREH-02 AREA-03
PORT-名 = HPEA-E1 AREH-013
PORT-ESH = MFEH-04
FORT-02E = ARER-53
PORT-03 = MREY-05 AREA-03
PORT-544 = AREN-01 AREN-013
FENCE = GREG-E1 GREA-G2
```

```
FILE=4 monitor-lock list
IHPUT LIST UARIAELES SEFARATED WITH RETURNS
UARIABLES MAY NOT CONTAIN SPACES
PRESS STOF IHPUT AFTER THE LHST RETURN
1. MOH-H04
2. MON-H5S
3. MON-FIH
4. 4OH-FB1
5. MOtr-F02
6. MC+4-F03
#MON-F04
8. LOC-FD1
3. LOC-PQ<E
19. LOC-P03
11. LOC-PG4
12.
1: ID. COOES LISTED.
```

```
FILE=S
                                    area/monitor-lock natri=
    FOR EHCH MREA OR FORTAL
IHIFUT THE MONITORS AND LOCN'S THAT COUER THEM
SEPARATING THEN WITH aIN HHE ON ,OR, * AND + '.
*M!HD FROE: THRUUGH AND PRUE4` HRE AUAILMBLE
PRESS RETURN TO GET THE NENT AREA OR PORTHL
PFESS UOK,12, TO CONTINUE A LINE
AREG OR PORTHL = MONITORS GHD LOCKS THAT COUER THEM
AREF-G! =
HREA-部=
AREH-63 =
AREm-E4 = MON-M04
AKEN-GE = ANH-NDS
GREA-bS =
FIA = MOH-FIH
POFT-01 = MOH-FG1 NHD LOC-F01
PORT-G2M = MUHI-FO2
PORT-0EE = MOH-PES AHD LOC-FUZE
FOET-03 = 110H-F003 GND LOC-F03
PORT-D4 = MON-FG4 RND LOL-FO4
FENOE =
```

```
FILE=6
                                authorization list
IHPLT ALL HUTHOFIZED PLANT PERSONNEL
IHFUT LIST UARIAELES SEFARATED WITH RFTUPNS
UARIHPLES MAY HOT CONTAIN SPALES
PFESS STOF IHFUT RFTER THE LAST RETURN
1. ENTI-11
2. ENG-21
3. EHC-22
4. GINFD-ज1
G. HCCT-B゙:
E. MCCT-42
?. FLG-MGF
8. MAINT-DI
9. FNR-EMF
10. Sisitaf
11.
```

```
19 IO. CODES LISTED.
```

```
19 IO. CODES LISTED.
```

FILE=37 probability value motrix
FÜ EACH PROEAEILITY ID. CODE
LIST THE FROBABILITY TO BE ASSOCIATED WITH IT PRESS RETURH TO GET THE NEYT FROBGEILIT: 1O. CODE FRESS UOK 12) TO CONTINUE A LINE

```
PROBAEILITY ID. CODE = PROEABILIT'Y TO EE ASSOCIATED WITH IT
```

probl $=5.1$
presis $2=8.5$
arob3 $=5.5$
arob $4=0.5$

```
FILE=? Motiltor-lock authorization matrix
    FOR EACH MOHITOR OR LOCK
INFUT THE PERSONNEL WITH AUTHURIZED ACCESS
SEFHRGTIHG THEN WITH AND HHD Or SR, * AND * + '
`AND PROE1' THFOUGH `AND PROR4` ARE AUAILFBLE
PRESS RETURN TO GET THE NE&T MONITOR OR LOCK
FRESS UDK&12; TO EONTINUE A LINE
MONITOR OR LOCK = PERSOHNEL WITH GIJTHORIZED ACCESS
MON-HE4 = GUHFD-B1 GND MAINT-G:
MON-AB゙5 = GUNRD-G1 HND MNINT-G1 OR ENG-2I AHD MAINT-GI
MOH-FIH = MMINT-U\
MOL-P01 = MAINT-01
MUN-FEE = GUARD-D1 GNO MAINT-91
MOH-PG3 = G!HRD-DI HND NAINT-DI OR ENG-21 ANO MAINT-EII
MON-FQ4 = M4INT-0!
LOC-FHI= AOINT-GI
LOC-PDZE = NAINT-GL AND GUNRO-D1
```



```
LOC-PG4 = MHIHT-E!!
```

FILE=8
FOR EACH MONITOR OR LOCK
LIST THE PROEABILITY OF FHILURE
RRESS RETURN TO GET THE NEKT MOHHITOR OR LOCK
PRESS WOK (12) TO CONTINUE G LINE

```
MONITOR OR LOCK = FROEAEILITY OF FGILUFE
Mg&-\hat{AEt = G. i}
1014-H05 = 5. 1
MOH-FIH=0.033
MOH-FOL = 3.055
MBH-F62 = 0.05E
1101+-P93 = 3.035
MOH-PG4=6. 295
LOC-FEL=1E+G
LOC-FO2B=1E-E
LOL-PQ3= 1E-E
LOC-PQ4 = 1E-G
```

```
FILE=9
                                    tranismassion lime list
IHPUT LIST UARIABLES SEPGRATED WITH RETURNS
UARIAELES MAY NOT CONTAIN SPACES
PRESS 'STOF IHFUT" GFTER THE LAST RETURH
```

1. $\mathrm{CH}-\mathrm{CH}_{1}$
2. $\mathrm{CH}-02$
3. $\mathrm{CA}-83$
4. CH-04
5. $\mathrm{CH}-25$
6. CH-06
7. $\mathrm{CH}-9$?
8. C $\mathrm{H}-\mathrm{0} 9$
9. CA- C .
10. $\mathrm{CH}_{\mathrm{C}} \mathrm{I} 1 \mathrm{l}$
11. CA-11
12. j8-81
13. JE- ל82
14. JE-93
15.

14 io. CUDES LISTED.

FILE=19 monitor-lock transmission lime matrix
FOR EACH MONITOR OR LOCK
IHPUT THE TRAHSNISSION LINES TO THE GUARD STATION
SEPAFATING THEM WITH and GHD or © OR, * GND * FFHO PFOE 1 THF IUGH AHO FROB4 ARE AUAILABLE
FRESS RETUPH TO GET THE NEKT MONITOR UR LOCK
FRESS LIFK, !2, TO COHTINUE A LINE

```
MUNHITOR OR LOCL = TRAHSMISSIOH LINES TO THE GUARRD STATIGH
MOH-AB4 = CH-03 AHD JB-02 AND CH-G2 AND JB-91 AND CA-G1
```



```
M0i-PGL = 50-98
```



```
LOC-Pb! =
LOC-FA25 =
LOC-FD% =
L0C-F04=
```

```
FIL.E=11
                ut1lities lizt
IHPUT LIST UARIAELES SEFARGTED WITH RETURHS
vaRIGELES MAY HOT CONTAIH SFACES
FRESS 'STOF INFITT AFTER THE LAST RETURN
1. CH-21
2. CH-23
3. CH-23
4. Ca-24
5. CH-25
6. ति- E
7. Ca-27
8. CH-26
G. M-20
O-H-29
16. 
11. CA-31
12. IA-32
13. je-2.!
14. IE-23
15. jE-23
16. FME-FUF
17. EATTEFMI
1E. EMTTER:2
19.
IS IO. COLES LISTED.
```


$1+$

 ค品


```
FILE=15 area/authorization mat*i*
    FOR EHLH WFEH UR PURTAL
INPUT THE PEFSONINEL HITH AIJTHORIIED ACEESS
SEFGRMTING THEN WITH and HND Or OR,OR, **' FHD * + `
    GND FFOR:1 THRUUİ,H AND PROE4 GRE GUAILABLE
FRESS RETURH TO GET THE NEXT AREA OR PORTGL
FPESS UCK(12) TO COHTINHUE H LINE
AREH OF POFTRL = FEPSOHNEL HITH GUTHOFIZED HCIESS
AREH-11 = HLI.
HREA-S2 = GUGRO-61 DR GUHRD-01 AHD MAINT-OL
```



```
CUHTIHJE: OR EHE=2? OF GUGRG-g1 OR PLH-MGR OR MAINT-G! LR ACCT-0!
COHTINUE: OF MCIT-E2
MREG-94 = ENG-11 OR EHG-21 OF ENT, こ2 OR MAINT-D1 AND GUNFD-O1 OR
COMTINUE: FLH-MGR OR mCCT&QI OF MCET-G2
```



```
CONTIMUE: OF HICTOB! HIND H!OT-H2
AREA-GS = GUARE-G! HHD UISITUR OK FWR-EMP OR ENGG-11 OR ENG-2I
COHTIHSE: OR EHG-2? DF GHMRD-G: OF FLH-MGF OR NHINT-G1 OR RCCT-G1
COHTIHME: ON GCET-62
FIM=
PORT-G1 = GUMF[-61 HHOR SISITOR OR FWR-EMP \ OR ENG-1: OR EHE-21
```



```
SOHTIHUE: \zetaF MCOT-HZ
FOPT-G2F = EHG-1: OF ENG-21 OR ENG-2Z OR MAINT-G1 AHD G\HRE-GI
QUNT:HUE: SR FLH-HTSR OF HCLT-91
PGPT-E2E = EHG-1:OF EHG-21 OR EHC-2Z OF NHINT-9I HHD GUARD-BI
CDTIF:UNE: OF FLA-MGF OF MCST-ज1
```



```
COTIT!NपE: OR TCOT-01 NIUO MCCT-D2
FOPT-84=GUARC-01 HHL NISITOR OF FWR-ENP OF EHG-11 OR EHG-21
COHT:HJE: OF EHG~22 UN GUNFL-SI OF PLA-HGR OR MAINT-OI OR ACLT-01
CD,TIHHE: OF GCCT--G%
FE!&S =
```



```
FILE=AZ
```

```
FILE=18 documert ! izt
INFIT LIST UARTMBLE: SEFARATEO WITH RETURNS
UARIGELES MAY NOT COHTATH SEI SES
FRESS 'STOP INP!IT AFTEF THE LHST RETUR:A
1. F-7.7e
1 TO. CODES LISGD.
```


DOLE
GU TO THE ROLOUHTING SYSTEM FROGRGA

```
FILES AUHILABLE:
    1-SUAP [ISK MEN!!
2-ENAF PROLEDURE OUTLINE
3-FACILITY DESCPIPTION PROGRAIA (TYPE IU, WITH HEADINGS?
4-FACILITY OESCRIPTION FFOGRHM ITYPE IU, WITHOUT HEADINGS)
5-ACCOUNTING SYSTEM PROGRHIM (T:PPE IU)
6-MGFE H NEW [HTA TAPE
7-OUPI.ICHTE A DISK
8-WRITE A OATH TPFE FROH A DISH FILE
G-FAC!LITY ['ESCRIFTIOH PRUGRAIM IJSER MANUAL
1G-PINKE A NELN IATA OISK
1:-PRIHT SUAF OUTPUIT FILES
```

INPUT NGMEER: 5
********** ACCOUHTIHK SYSTEM PRJGRAM ********** INSERT A GMTH DISK IN DRIUE I ANO PRESS RETURN:

$$
\begin{aligned}
& \text { 1-DLC DATA DIEK FILE } \\
& \text { 2-OLD DATA TAPE FILE } \\
& \text { IHFUT NUMEER: } 1
\end{aligned}
$$

```
********** RESTART FROGRMM ********** 21-SHM SOURCE LIST
22-SHM SOURCE OUMNTITY MATR1:
23-LOSS DETECTION HETHODS LIST
34-DETECTIOH TIME MATRI'&
24-S!A!! SOUFCE/LOSS DETECTION METHODS MATRIX
25-RECORDS LIST
26-LOSS CETECTION METHODS RECOFDS MATRI%
27-RECORDS-RECURLS HMTFIS
28.FIJRMS LIST
2S-RECOROS FORMS HATFIX
30-LOSS DETEOYIOH METHOLS AUTHOKI ZHTIOH MATRIK
Z1-RECORDS MUTHORIZATIOH MHTRI%
32-FORMS mUTHMFIZHTION MMTRI:
33-SND SOUFCE ESCHPEC FOINT NATRIN
INFUT THE WMEFF OF THE PESTAFT FOINT: 21
```

FILE=2i Enti suurce ! 1 さt INFUT LIST UARIMRLES SEFHRATED WITH PETURHS UARIAELES MAY INOT COHTAIH SPMCES FRESS STIF IHPUT AFTEF THE LAST PETURH

$$
\begin{aligned}
& \text { 1. } \\
& \text { 2. } \\
& \text { HEEM- } \\
& \text { HREM }
\end{aligned}
$$

FILE $=22 \quad \mathrm{snm}$ sourceumitity matrix
FOR EACH SHM GOURCE I OCA?IOH
LIST THE EFFECTIUE AlQOLHT OF SHM FRESEHT YG)
PRESS FETUFH TO GET THE NEXT SHM SOURIE LOCHTION
PRESS LIDK (12) TO COHTIHUE H LINE
SNM SOLREE LGCHTIDH = EFFESTIJE AMOリNT DF SHM PRESENT (KG)
AREH-N4 $=5.5$
AREG-1SE $=3 . \hat{1}$

```
FILE=23
    loss detection methods list
ZNFUT LIST UARIAELES SEPGRATED WITH RETURNS
UARIABLES MAY NOT CONTAIN SPACES
PRESS 'STOP INP:` AFTER THE LAST RETURN
1. INU-DIF
2. MIS-IMM
3. IHC-SER
4. 5FOKSEML
5. WFNGSEML
\varepsilon.
5 ID. CODES LISTEQ
```

```
FILE=34 detection time matrix
    FOR ERCH TIME ID, CODE
LIST THE NUMBER OF DAYS
PRESS RETURN TU GET THE NEKT TIME ID. CODE
PRESS UDKC12; TO COHTINUE. a LINE
```

```
TIME 1O. COLE = HJMPER OF WH:S
```

TIME 1O. COLE = HJMPER OF WH:S
\& 隹EL= =.5
\& 隹EL= =.5
41mez = 30,0
41mez = 30,0
t1me3=134.0
t1me3=134.0
time4=3ES.9

```
time4=3ES.9
```

－11ए＋T14

 ットロート

[^2]


```
FILE=25 recordz l1st
INFUT LIST UARIAELES SEFMRATED WITH RETIJRNS
UARIGBLES MAY HOT CUHTAIN SFHCEG
PRESS STOF INFUT AFTER THE LAST FITURH
1. ITEMREC
2. ASSHIREG
3. SENLREC
4.
\[
3 \text { 10. COOES LISTED }
\]
```

```
FILE=26 loEs detection methodsrrecords matrix
    FOR EACH LOSS DETECTION METHDO
INPUT THE REOUIRED RECQROS
SEPARATING THEH WITH and AIND or , OR, & GND * *
CHNO FROEI THROUGH AHO PFOB4 ARE GUAILABLE
PRESS FETUFN TO GET THE HENT LOSS DETECTION AETHOD
PRESS UOK:I2, TI CONTIINUE A LItNE
LOSS OETECTION METHOL = REOUIPEL RELORDS
IVU-DIF = ITENEEC HIN ASGAIREC
HIS-ITM = ITENFES
INC-SEP = ITEMRES
BROKSENL = SEMLRE
WRHGSEAL = SEALREU
```

```
FILE=27 records records natri)
    FOR EACH FECORD
INPUT THE RECORDS THAT GRE USED TO CFOSS CHECK IT
```



```
    AND FROE1 THRUUGH HNE, PROE4 ARE MUAILAELE
FRESS RETUFN TO GET THE NENT RECOFD
PREGS UNY: I2, TO COHTIHNE A LINE
RECORS = RESOFOS THAT GRE USED TO CROSS CHECK IT
ITEMFEC = MSSHIFES HHO SEGLREL
ASSAVREO = TTEMFEC
SEMCEG = ITEMFET
```

FILE $=28$ for Ms list
INFUT LIST UARIAELES SEPARATED WITH RETUPHS UARIARLES MA: NOT CONTAIH SFACES
PRESS STOF INPUT AFTER THE LAST RETURH

1. MOUEFORN
2. ASAIFORI
3. SEALFURM
4. INHNTORY
5.

$$
4 \text { IV. COLES LISTEO }
$$

```
FILE=29 rgcordE;formEmatr1.
    FOR EACH RECURE
INFUT THE FURMS YHAT SUPPLY IHPUT TU IT
```



```
MHD PROE: THRDUGH AHD FROB4 HFE M GILAELE
PRESS RET:IPN TO UEI THE HENT RECORD
PFESS UL'(12) TO GBMTINUE H LINE
RECERD = FOSMS THNT SUPFLY IHPUT TO IT
ITEMKEC = MOHEFTRH ANO INHNTOR:
ASSMFEL = HSHMFON:
SEGLFES = SEMLFORIN HINO IHNHTOPY
```


[^3]```
FILE=31 records/quthorizatiori matri*
 FOR EACH RECOFD
INPUT THE FERSOHAEL AUTHORIZED TO MAKE ENTRIES OR CHANGES
SEFARATING THEM WITH, and AHLD or OR, * AHD
*GND FROE: THROUGH HIND PROE4 AFE AJAILAELE
PFESS RETURIA TO GET TIAE NEKT RECORE
FRESS UDY:12; T0 COHTIHUE A LIHE
KESOFD = FERSGNNEL HUTHURIZED TO NAKE EHTRIES OR CHANGES
ITEMREC = FLA-MCN OF HCCT-G1 OR HCCT-G2
ASSATREC = PLA-MGR DR NCLT-01 OF ACCT-92
SEMLFES = FLA-MGF OR GUHRD-G!!
```

```
FILE=32 forms,uuthorization matrix
 FUR EACH FORM
IHFUT THE PEFSONNEL HUTHOFIZED TO MHFE EHTRIEG OR CHANGES
SEFHRMTIHG THEN WITH ITIA AND ON, OR, * GHL
 HND PROR: THFUHISH AHO PROES GRE HJAILHELE
FRESS RETURIG TO GET THE UE汭 FORH
PRESS UCN,I2, TO CQHTIINUE & LIHE
FORM = PERSOTINE: HUTHORIZES TO MHFE ENTPIES OR CHAHGES
NOUEFGGH: = E\G-2 A AHL ENG-22 OR PLM-MGF
ASHYFSST = EHG-21 4NG EMG-2S OR FLH-HGF
SEALFOFH=SULFD-51 OR FLG-MLR
```



FILE=33 smim sourcerexit point natrix
FOR EACH SHM SOURCE LICATIOH
List the ar̃eas for a COLLUDER TU ESCAFE TO SEPARATED HITH SFACES.
PRESS RETURN TO GET THE HEKT SHA SOURCE LOCATIOH PRESS LDK (12) T9 CONTINUE A LINE

```
SNH SOURCE LOCATIOH = MREAS FOR A COLLUDER TO ESCAPE TO
AREG-N゙S = HFEM-M1
HREH-N5}=MREH-B
```


## 1 FILES haje ho data

FILE $=1$

## DOHE

```
FILE=1
```

```
DO TOU WISH:
```

DO TOU WISH:
1-NEIN TEXT
1-NEIN TEXT
2-TEKT OK
2-TEKT OK
3-GDC TEXT
3-GDC TEXT
INPUT NGMEEF: I

```
INPUT NGMEEF: I
```

    text file
    IHFUT TENT. PRESS STOF INPUT HFTER THE LHST LINE SECURITY URANIUA CORF.

```
GHGLYST W. I. GRUIS
```

DETA: SEFT. 1, 1979

ALL DATA TIFES HAUE EEEN CONSIOERED
$\hat{C H}=$ CAELE RUN. FUHS 1 TO 11 ARE SIGIAL GAELES. RUNS 21 TO 32 GRE FONEF
 FUE-FWE = FUELIC UTILITY PONER
FIM = FEHCE INTRUETON AREA
PWR-EMF = Hi EMFLOVE OF THE FUELIC UTILIT;

## OONE

## FILES mijailable:

```
 1-SURF DISK MENU
 Z-SUMF PROCEDURE UUTLIHE
 3-FGCILIT': DESCRIPTION PROGRAN (TYPE IU, WITH HEADINGS)
 4-FACILIT: SESCRIPTION PROGRAM (TUPE IU, WITHOUT HEADINGS)
 5-HCCOUNTIHIS SYGTEH PROIRRGIM (TYPE IU)
 E-MIKEE A NEW DIRTA TGPE
 7-DUFLTCHTE A LISK
 8-WRITE A OnTA TAPE FROM A DISK FILE
 G-FACILITY DESQRIPTION PRUGRAM USER MAHUAL
10-19AKE A USEIV DATA DISK
11-PRINT SUGP GUTPUT FILES
```

IMPUT HUMEER: B
 IHSERT A OATA DISK IN ORIUE 1 AHD PRESS RETURN: INSERT A CHTA THFE AND PRESS RETURIA:

DOHE

```
PRESE RETURA TO GO EMCK TO THE DLSK MENU:
```



NUCLEAR RSOJLATORY COMMISSION WASHINGTON, D. C. 20555


[^0]:    *The reader is referred to the Executive Summary, ${ }^{1}$ an overview of SVAP, and the SVAP Data-Gathei:ng Handbook, Volume $I^{2}$ and Volume II. ${ }^{3}$

[^1]:    Available for purchase from the NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, and the National Technical Information Service, Springfield, Virginia 22161.

[^2]:    $\int_{\square}$ 己次

[^3]:    THE HLHFN
    EIRCUMUEHT
    分 $\frac{1}{2} \frac{0}{2}$ 15
    1 ハN
    PrMi
    
    1
    －
    $\frac{\pi}{2} \frac{\Sigma}{1} \underset{y}{2}$
    ๗
    

    ज以Nで
     エ以以
    
    1－
    
    运 Z 11 I －I
    $-\frac{1}{2} \cdot \hat{a}-\frac{1}{2}$
    a
    H 1
    ${ }_{5} 11$ is $1+1$以运 C．NF Hjulat
     ッッジいぎス
    

