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lABSTRACT -

The growth of Rayleigh-Taylor instabilities is studied in relation to i

liquid entrainment at the interface between accelerating fluids of unequal

density. The upper fluid is pure liquid, and the lower fluid is a mixture of
*

vapor and a heavy entrained droplet or particulate phase. Entrainment through

this mechanism would occur when the liquid spikes grow into the lower fluid
.

and, eventually, separate into droplets. This work estimates the effect of

the presence of heavy droplets or particulates in the immediate vicinity of

the interface on the early (linear) stages of instability growth.

The growth of the Taylor instability is computed using a porous medium

model of the multi-phase lower fluid, which assumee that the entrained phase

J characterized by infinite inertia. The vapor simply flows around the en-

trained phase. The model is described and calculation results are presented

for the rate of instability grow?.h during HCDA bubble expansion. Results are

compared with the classical Taylor theory which neglects the presence of the

entrained phase, and with a homogeneous model of the multi phase bubble.

The models suggest that there are physical processes which limit the

potential for sodium entrainment by growth of Taylor instabilities. In the

case of the porous medium model the limiting factor is the drag imposed by the

entrained phase. In the case of the homogeneous flow model the factor is the

loss of the driving force (upper-to-lower fluid density difference) for growth

of the instability. The results suggest the need for development of a theory-

of Taylor instabilities which applies to multi-phase expanding bubbles and
.

which accounts for the finite inertial characteristics of the entrained

particulate or droplet phase.

-1-
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NOMENCLATURE

a acceleration

g gravitational acceleration

k permeability

n growt' constant-

mi defined by Eq. (30)
.

p pressure

po pressure at undisturbed interface

t time

u velocity component in x-direction

v velocity component in y-direction

V interfacial velocity

x coordinate perpendicular to undisturbed interface

y coordinate parallel to undisturbed interface

B defined by Eq. (40)

K disturbance wave number

K critical wave numberCRIT

K
CUTOFF cutoff wave number

p viscosity

V kinematic viscosity

& radius of curvature,

p density
.

a surface tension i
1

$ potential function

$ stream function
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Subscripts

1 upper fluid

2 lower fluid

s interface
*

1,s upper fluid at interface
.

2,s lower fluid at interface

.
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I. INTRODUCTION

,

Safety analyses of sodium-cooled fast breeder reactors include studies of

hypothetical core disruptive accidents (HCDA's). A locs-of-flow accident with

*
failure to scram would lead to coolant boiling and exttision from the reactor

core. Fuel disruption and melting would ensue. One possible accident se-
3 .

quence would, at this point, lead to a rapid deposition of energy in the fuel *

and concomitant vaporization of a portion of the fuel and structural steel. A

vapor bubble would develop in the core region, containing substantial amounts

of liquid and solid UO2 and steel; liquid sodium could also be present.

Figure 1 schematically represents the expanding HCDA bubble within r'e reactor

vessel.

The bubble expands through the upper, undamaged, core region into the sod-

ium pool and in the process entrains some of the liquid coolant. It has been

argued [1] that the amount of work of which the expanding bubble is capable

depends strongly on the quantity of entrained coolant. " Optimal" entrained

amounts can double the: work potential. More importantly, however, larger

amounts of coolant entrainment can act as energy sinks and reduce the work

done very substantially and with it the danger of structural damage to the re-

actor vessel.

Several mechanisms of entrainment have been suggested [2,3]. One of them

is the Rayleigh-Taylor instability of the coolant-bubble interface due to thei .

acceleration of the interface into the coolant. The instability leads to a,

.

growth of " spikes" of liquid into the bubble and penetration of vapor columns

into the coolant. Another possible mechanism is jet-like entrainment by the

gas jet or bubble penetrating into the coolant pool. At the walls of the

1

-1-
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Figure 1. Schematic of HCDA Bubble in Reactor Vessel.

(BNL Neg. No. 3-1296-80)

.

-2-



passage between the core and the pool, and later on the walls of this coolant

plenum and possibly any above-core structure, thin liquid films may be lef t

behind and the gas flow parallel to the resulting interface may give rise to a

Kelvin-Helmholtz instability. This last mechanism may also become involved if

the gas develops a swirling flow within the expanding bubble. A less clearly
.

defined mechanism involving sudden condensation in the proximity of the inter-

.' face has also been proposed [4]. Experimental evidence [3] suggests that

several, if not all, of these mechanisms may be involved in various stages of

the expansion of the gas bubble and that possibly some even strongcr

mechanisms of a transient nature may be responsible for the unusually strong
.

mixing during the early stages of the expansion.
'

The work presented in this report is concerned with the Rayleigh-Taylor

instability mechanism.' The objective of the work is to astimate the effect of

the presence of droplets or solid particles of heavy condensed fuel or steel

in the immediate vicinity of the interface on the instability growth mechan-

ism.

Entrainment through the Rayleigh-Taylor mechanism occurs when the liquid

spikes grow into the gas and can no longer be considered as "small" dis-

turbances of the interface. The growth rates of the spikes and, therefore,

the entrainment rate, cannot be expected to be governed by "small-disturbance"

type linear theory, but rather by a non-linear theory appropriate to the later

stages of development of the Rayleigh-Taylor instability. Unfortunately, an-
.

alytical attempts at developing a nonlinear theory of the instability [5-7]

have met with only limited success even under the most simple of circum-,

stances, although considerable insight has been provided by numerical studies

[8-9]. Under these circumstances, it is reasonable to initially seek the

-3-
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effect of the presence of droplets or solid particles in the gas phase on the

initial, linear period of interfacial growth of disturbances. This is the ap-

proach adopted here. The results of the analysis provide the range of con-

dicions (based upon model assumptions) for which linear growth is possible.

These conditions also govern the circumstances for which liquid entrainment
.

may occur by growth of Rayleigh-Taylor instabilities. The non-linear analysis

governing the rate of entrainment is left to future research..

The analysis requires that some assumption be made regarding the relative
,

magnitude of the drag force , between the vapor and the droplets (or particles)

and the inertia forces. In one extreme, the drag forces may be assumed so

large that the particles follow the continuous gas phase motion without slip.

In this case, one could treat the mixture as a homogeneous one with an ap-

propriate mean density. If this mixture density reached the density of the
t

homogeneous liquid on the other side of the interface, the Rayleigh-Taylor j
|.

instability would disappear (12]. In the other extreme, the droplets and

particles could be considered so heavy that they remain stationary, forming a j

" porous" matrix through which the gas moves. The latter is the model adopted

here in the hope that it will provide a bounding estimate of the effect of the
I

!
particles. The analysis of the intermediate situations, with finite inertia

and slip of the condensed phase will be presented in a companion report [10].

.

.

|
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II. ANALYSIS

2.1 Classical Raleigh-Taylor Analysis of Ilomogeneous Fluid Systems

In the classical analysis of the Rayleigh-Taylor instability [11,12] the

'

interface between two initially stagnant incompressible fluids is accelerated

from the less dense to the more dense fluid. The interface, shown sys-
.

tematically in Fig. 2(a) is assumed to be subjected to an infinitisimal dis-

turbance and the resulting flow is required to satisfy conditions of con-

tinuity of normal velocity component at the interface, and vanishing of the

velocity far away, in both directions, from the interface. Continuity of

pressure at the interface yields a dispersion relation for the disturbance,

relating the growth rate of the disturbance amplitude to the wave number of

the disturbance. Under the assumptions of no viscosity or surface tension,

disturbance potentials of the form

Aent + Ky cos (1)$ = gx

satisfy the equations of motion and conditions at infinity. The well-known

analysis yields the result that the interface is unstable to disturbances of

all wavelengths and that the growth rate is given by

P -0
i 2* n = aK (2),

.

uAs_long as p1 > p2, n is real for a > 0 and all K. In the presence of

surface tension, the pressure at the disturbed interface becomes dis-

|

-5-
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continuous, the discontinuity being proportional to the curvature of the

interface. This leads to the result that [11,13]

1/2
~ -p -p 3

1 2 K a (3)n = aK ,

.
1+P2p P1+P2

.

.

and the fact that n becomes imaginary for all K > KMAX, where*

-

K 1 2 (4).

0

In other words for K > KMAX, exponential growth is replaced by oscillatory

behavior. As a corollary n has a maximum for

a (p -p)
K 1 2 (5)ggg7 __

,

30

which corresponds to the most unstable disturbance mode. If viscosity is

taken into consideration [11,13], the velocity components normal and parallel

to the interface must be continuous; continuity of the shear stress at the

interface is also required. Solutions of the equations of motion, satisfying

these conditions are constructed by appropriate linear combinations of a

potential 4 and a stream function $ of the form

A e" I$ cos Kx=

A e" "I sin Kx$ =

.

This leads to a complex dispersion relation of higher order in n. The everall

result is that viscosity reduces the growth rates, and that the reduction is

-7-
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more pronounced for higher wave numbers.

The classical theory can be applied to two phase lighter fluids (denoted

by subscript '2') by assuming that two-phase mixtures act as homogeneous

fluids with effective density 0 . The theoretical result given by Eq. (2)2

then predicts, as discussed in the Introduction, that as the mixture density
.

P2 approaches A , the growth rate of disturbances vanishes.y

.

2.2 Instability Growth in a Porous Matrix

Saffman and Taylor [14] considered the penetration of a less viscous fluid

into a more viscous one in a porous medium under the action of gravity. Both

fluids are assumed to be moving within the porous medium, as shown in Fig.

*2(b). Here the velocity of each fluid is assumed to obey Darcy's law

= - grad (p + pgy) 9)V

The interface between the fluids, in the Saffman-Taylor model has a velocity V

and it is stable or unstable with respect to small disturbances according to

whether

N
2 1 y + (p -P 8

2 1 (8) !
_

( 2 b) <0 '

respectively. Both the fluids are moving within the porous body but the

permeability may be different with respect to each fluid. |
i

'.

)2.3 Instability Growth in Two-Phase Systems: Porous Matrix Model of Lower i

~

Fluid Containing Heavy Entrained Phase
I

2.3.1. Neglecting Surface Tension and Viscosity of Upper Fluid.
|
I

In our analysis, we extend the Saffman and Taylor model in applying it to i

l

-8-
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model the behavior of two-phase lower fluids (component 2). The system is re-

presenred schematically in Fig. 2(c). The upper fluid (component 1) is as-

sumed to be incompressible and inviscid. Surface tension is neglected. (The

effects of viscosity and surface tension are considered below.)

The lower fluid is assumed to be a two phase medium containing a discrete
.

heavy phase in droplet or particulate form, embedded in a continuous light

phase. It is assumed that the discrete phase is infinitely heavy, such that.

li remains stationary as the light fluid flows around it. With this infinite

inertial approximation, the continuous fluid-particle (or droplet) slip ratio

is infinite. The effect of the particles is to exert a drag force on the

flowing continuous fluid. It is further assumed that this drag force can be

'pproximated by using a model which represents the stationary particulate ora

droplet phase as a proous matrix and considers the continuous phase as flowing

thr.ough it.

The lower fluid is moving within the porous body in accordance with

Darcy's law. The undisturbed interface between the fluids coincides with the

upper boundary of the porous body and is accelerated towards the heavier

fluid, as shown in Fig. 2(c). The linearized equations of motion for the up-

per fluid are

Bu av
t y

0+ -

3x By

3p
1 1 1 (9)" ~

k 3x3t.

av 3p1y 1
~

" ~ k By ~ #Bt

and their solution is assumed in the form

-9-



B$ B&
t 1

"1 Bx 1 By (10)" ~ # " ~

~U + "
$y A e cos Kx (11)=

B&
t

P1 P P ay+p (* " -

o i 1 at

The form of $1 guarantees vanishing of the velocity far above the interface..

The integration constant po represents the average pressure of the un-

disturbed interface.

The lower fluid obeys Darcy's law

B$
(13}u " ~ " ~

2 ax

(14)+ P"v " ~ " ~
2 3 2 B

"2
0 #7 (P P +" -

2 o k' 2 2

7 "
Ae cos Kx (16)= -

2

At the interf ace y = ys = 0, vt = v2 " V and sinces

Dy, By, By, By,
+ " " #"

Dt 8t 8x Bt s

then

A# e"* cos Kxy, =
(17)

.

Substituting Eq. (17) into (12) and (15) and equating pressures at the,
.

interface one obtains the following dispersion relation:

,

- 10 -
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0 P
2 2 2 1n , 3 , ag = 0 '

(18)

and

*
U U 2 P

2 2 12+ + aKn = -
22p k -

4p k 1y
(19).

.

The result given by Eq. (19) indicates that the effect of the heavy en-

trained phase is to decrease the rate of growth of Taylor instabilities for

all disturbance wave numbers with increasing values of the parameter p2/2pk
.

the growth rate is progressively reduced in comparison with that predicted by

the simple Taylor theory but remains finite for all wave numbers. It is ap-

parent that in the limit of very large porosity we retrieve essentially the

classical Taylor result as long as as p2 << P , which is the case of1

interest.

2.3.2. Effect of Surface Tension.

If the surface tension is considered, then for a two-dimensional interface

the condition of continuity of pressure at the interface must be replaced by

2

" # (20)P ,s 2P ,s
-

1 2
.

With the aid of Eqs. (11), (12), and (15-17), one obtains the modified dis-
.

persion relation

1

- 11 -



~0 3
2 1 oKn + n + , , 0 (21)

1 1 1

and

2

M IM2 ) # -0 3*

2 1 2 oK+ + *#- (22)n = - |

N )|2@1 p 0( 1 1 1
.

For the growth rate to vanish

3
P -# ##

1 2 CUTOFF.

K ~ " (23)p CUTOFF py

and, therefore,

(p -0)*1 2
# "

CUT 0FF o (24)

so that the cut-off wave number is the same as that predicted for the simple

Taylor model. For wave numbers below the maximum, surface tension aids the

porous body resistance in reducing disturbance growth rates. The effect in-

creases strongly with increasing wave number.

The most dangerous wave number is also the same as for the simple Taylor

model as may be readily shown by differentiating Eq. (21).,

2.3.3 Effect of Surface Tension and Visc.osity of the Upper Fluid.

- 12 -
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When the upper fluid has a finite viscosity, then the equations of motion

(9) become

Bu av
t y

0+ =

ax By

0

! 3 "1 3 "I \ (25)Bu BP
l 1 1 + +at T 3x "1

*
2 2

1 ( 3x By /-

{3V 3V \av BP
i 1 y 1 i" + +at T By "1

" ~ ~

(
32

By /
2

1 x

These equations can be satisfiel by the introduction of a potential $1 and

' stream function $ such that1

34
u = -

g
- 3@l B& 3$

1
y 3 1 3 +g (26)v = -

2 2 1
0 V 7 )V$ = "

1 1 1 at

3$ 1P ay + p (Py " P -

o 1 1 at

If we put

~7+"$ Ae cos Kx=
1

(29)
B e "17 + "U

'

$ = cos Kx

.

the second of Eqs. (27) requires that

- 13 -
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m = K + (30)y

The normal stress, which v.,w replaces the pressure in the continuity require-

ment at the interface, is given by

*

av
12p (31)p -

1 1 By
.

and the shear stress, which should also be continuous at the interface is

given by

.

f Bu av )y y,

N +
f (32)1 ( By 3x

We treat the lower fluid (vapor particle mixture) as before and assume that it

obeys Darcy's law. Eqs. (13) and (14). We put

C e *7 + "' cos Kx (33)$ =

In comparison with the inviscid case, we can introduce two new conditions at

the interface, namely the continuity of the u-component of the velocity and of

the shear stress. Since we have introduced only one new constant, one of these

conditions appear superfluous. If we regard the gas as having very low
.

/viscosity U 2 g << 1 and the high resistance to its flow through the por-
i

,
ous body to be due to the effect of the very large surface-to-volume ratio, it

j

1

-seems reasonable to neglect the shear stress in the gas at the interfac and

at the same time to allow a disenntinuity in the u-component of the velocity.

- 14 - i
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Thus, the new condition to be imposed is

I Bu av
t y

U + "
1 ( By 3x ) y=y, (34)

j The condition vi,, = v 2,s yields

A+B -C=
(35)e

and

# nt

fCe"E cos Kx (36)y, 1 A+B 1e cos Kx= = -

' rom Eq. (34)F

2AK + B K + B m = 0y

or

"2AK + B 2K + 0=

1 (37)

Finally, continuity of normal stress, with surface tension accounted for

yields

.

p n + 2p K n A + 24 K mn B +1 y 1
( /.

p . (38).

'

a l p -p K 0n -oK C- =
1 2

,

- 15 -
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- The three homogeneous Eqs. (36), (37), and (38) yield a nontrivial solution if

the determinant of the coefficient vanishes. This condition results in the
required dispersion relation:

2
f 21 2 3

0 0~l P n+2p # + 4M K m = 0 (39)1 1 l 10
1

( )

.
where

:

(8 = a p -p #y 2 -

#" ~U~

The resulting equation is of fourth order in n.
,

;

.

O

%

O
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III. APPLICATION OF TWO-PRASE BUBBLE (LOWER FLUID)

INSTABILITY THEORY TO HCDA PHENOMENA

~

In the prototypic system of interest in HCDA analysis, a multi-component,

multi phase bubble expands and accelerates a pool of liquid sodium. This sys-
.

tem is represented schematically in Fig. 1. The bubble would consist of (i) a

vapor phase containing UO , steel and sodium vapor, (ii) an entrained liquid2.

phase composed of the same constituents and, perhaps, (iii) some solid con-

stituents.

Entrainment of liquid sodium from the sodium pool into the bubble may oc-

cur as a result of growth of Taylor instabilities at the bubble pool inter-

' face. The linear theory is used to compute the early stages of instability

growth. Calculations are presented below, based apon

(i) the classical Taylor theory, ignoring the presence of the heavy

entrained phase,

(ii) the porous medium model of the multi phase, multi-component bub-

ble developed in this report,

(iii) the homogeneous model of the multi phase bubble.

Instability growth calculations were performed using the models which

incorporate the effect of interfacial surface tension, but neglect the effect

of viscosity of the upper fluid. Equation (3) is the classical Taylor result

for the magnitude of instability growth constant including surface tension,
.

but neglecting the presence of the heavy entrained phase. Equation (22) is

the result using the porous medium model, presented in this report, to de-
'

l

scribe the multi-phase characteristics of the HCDA bubble. The property |

values listed in Table l'were used in the calculations.

I
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Table 1

PROPERTY VALUES,

e

3Density Upper Liquid (Sodium), p1 = 823.3 kg/m

:|

3Density Vapor in Bubble (UO ) P2 = 1.1 kg/m2

.

Surface Tension (Sodium), c = 0.1529 N/m
1

Viscosity Vapor in Bubble (UO )> U 2 = 8.4 x 10-52 N /m2

3Density Entrained Heavy Phase in Bubble (UO )> PE = 8700 kg/m2

1

4 e

e
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To assess the magnitude of the permeability of the porous medium we shall

use the result of Brinkman's theory [15] which relates the permeability to the

mean particle radius and the void fraction

. . -

I- 4
3 + -3 -3 (41)k =

18 1-a 1-G
. -

.

Table 2 presents the permeabilities for a void fraction of 0.9 and radii of 1,

10 and 100 pm, respectively. These numbers are used in the calculations.

Figure 3 presents the growth constant results for both the Taylor and por-

2 4 m/s ,2ous medium models, for accelerations of 10, 10 , 103 and 10

Note that both theories predict a cutoff wave number, beyond which dis-

turbances do not grow. This is due to the surface tension effect. A strong

influence of permeability is observed, especially for small accelerations.

The smaller the permeability, the greater is the influence of the entrained

heavy phase on the instability growth. The drag between the particles (or

droplets) and the accelerating vapor provides a stabilizing effect on the

interface. For large permeability, the porous medium model results approaches

that of the Taylor model. This is especially true for the larger accelera-

tions, where the influence of the permeability is not as strong as for the

smaller accelerations.

.

Both the Taylor and porous medium theories predict that at some critical

wave number, KCRIT, the growth constant is a maximum. This is apparent from,

Fig. 3, and also from Table 3. These constants represent the growth rate of

the fastest growing instability for a given set of conditions (permeability

- 19 -
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Table 2

'

POROUS MEDIUM PERMEABILITIES

2E r (pm) k (m )
.

0.9 1 0.93 x 10-12

0.9 10 0.93 x 10-10

0.9 100 0.93 x 10-8

.

ap

- 20 -
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Table 3.

'

CUTOFF AND. CRITICAL WAVE NUMBERS:

'

PROTOTYPE SYSTEM

Acceleration Cutoff Wave Number Critical Taylor Critical Wave Number
2(m/s ) (,-1) Growth Rate (s-1) (m-1)

TAYLOR g
' a MAX CRIT CRIT

.

10 231.9 29.8 133.9

102 733.3 167.8 423.4

103 2319.0 943.5 1339.0

104 7333.0 5305.6 4234.0

.

e

- 21 -
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and acceleration). The magnitude of KCRIT is, for a given acceleration,

independent of the permeability. The growth constants corresponding to the

critical wave numbers are presented in Fig. 4 as a function of permeability.

They are presented in dimensionless form, using the Taylor result as the scale

factor.
.

The results display the strong stabilizing effect of the permeability on

the disturbance growth rate, especially for small and intermediate accelera-.

tions. For bubble void fractions of approximately 0.9, if the heavy entrained

2phase particic ;;aius is 100 Um (corresponding to k ~ 10-8 m ), then the

stabilizing influence of the porous medium drag disappears. The presence of

particles does not influence the interfacial disturbance growth rate. On the

'other hand, if the particle size is 1 Em, the growth constant is affected by

at least one order of magnitude for all accellerations up to 104 2m/s ,

This effectively means that the disturbance growth rate would become

vanishingly small.

The third model to be considered is that of a homogeneous /no-slip model of

the multi phase bubble mixture. A specific case is considered where the en-
1

trained phase has the density listed in Table 1. The bubble mixture density |

1s, then, approximately

|
P P (l'U) PE

" "2 MIXTURE

~

where H is the mixture void fraction. The Taylor theory result, given by Eq.

(3), predicts that when the upper fluid density Pt equals the lower fluid
,

density P , then the disturbance vanishes. This would imply that if H 1 0.91,2

then Taylor instabilities would not be capable of growing. This result is not

I
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predicted by the porous medium model, in which the entrained phase density is

not a parameter.

The homogeneous and porous medium (infinite particle / droplet inertia) mod-

els of multi phase bubble dynamics represent two limits of particle-vapor

interaction under acceleration. Both models predict that some multi-phase,

flow parameter does indeed limit instability growth and, hence, entrainment.
' The specific parameter, however, is model-dependent. In one case it is mix-

ture void fraction, in the other case it is medium permeability. This dis-

parity in results points to the need for development of a unified theory of

Taylor instabilities applied to multi phase expanding bubbles, which accounts

in a more precise fashion for particle / vapor slip dynamics.

.

O

4
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IV. SUMMARY AND CONCLUSIONS

4.1 Instability Model Development and Results

The growth of Rayleigh-Taylor instabilities is studied in relation to

liquid entrainment at the interface between accelerating fluids of unequal

.

density.- The upper fluid is pure liquid, and the lower fluid is a mixture of

vapor and a heavy entrained droplet or particulate phase. Entrainment through

this mechanism would occur when the liquid spikes grow into the lower fluid

and, eventually, separate into droplets. This work estimates the effect of

the presence of heavy droplets or particulates in the immediate vicinity of

the interface on the early (linear) stages of instability growth.

The growth of the Taylor instability is computed using a porous medium,-

model of the multi-phase lower fluid, which assumes that the entrained phase

is characterized by infinite inertia. The vapor simply' flows around the entr-

ained phase. The model is described and calculation results are presented for

the rate of instability growth during HCDA bubble expansion. Results are com-

pared with the classical Taylor theory which neglects the presence of the

entrained phase, and with a homogeneous model of the multi phase bubble.

The major results of the present analysis of instability growth at the

HCDA bubble interface are:

0 The effect of stationary particlec on the linear growth of

disturbances depends very strongly on the particle size,

ranging from strong damping with small particles to negligible
*

1

for particles of the order of 100 pm. If the effect is con-
.

firmed through the analysis of particles with finite inertia,

the question of particle size distribution may become quite

- 27 -
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important. Further, it is important to note that with particles

of the order of 10 pm, substantial reduction in the entrain-

ment rate may be expected, except at very high wave numbers and

accelerations.

3 Application of a homogeneous model of multi phase HCDA bubble
,

characteristics to Taylor instability growth leads to the re-

sult that if the bubble void fraction is less than 0.9, the-

.

disturbance growth rate would vanish.

4.2 Implications with Respect to Sodium Entrainment

The basic issue to which this work is addressed is that of the potential

'for entrainment of liquid sodium into an expanding HCDA bubble. Whether the

entrained sodium acts to amplify the work potential of the bubble, or whether

it acts as a heat sink, depends upon the rate and quantity of sodium en-

trained. The work presented in this paper is directed specifically to evalua-

tion of the potential for entrainment by the mechanism of growth of Rayleigh-

Taylor instabilities.

The porous medium instability growth model described here suggests

G If the HCDA bubble is characterized by a void fraction of

approximately 0.9, and if the heavy entrained phase drop-

let or particle radius is approximately lu m or less, then the

potential for entrainment by Taylor instabilities is small

4 2*
for accelerations up to 10 m/s . Since the potential for

entrainment is small, then sodium entrainment by Taylor in-
~

stability growth would have little influence on the work poten-

tial of the HCDA bubble.

9 If the heavy particle radius is approximately 100 pm or greater,

- 28 -
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then the presence of the heavy phase has no influence on the

| development of Taylor instabilities, an'd entrainment by the

growth of these instabilities is possible. The rate of early

(linear) growth of the disturbances may be computed using the

|, Taylor theory, 'eglecting the presence of the heavy phase. The

!
rate of entrainment cannot be predicted using the linear theory.

'

The influence of sodium entrainment, by growth of Taylor

instabilities, on the work potential of the HCDA bubble cannot

be predicted using the methods described here.

Application of the classical Taylor theory to the multi phase HCDA bubble

expansion, using a homogeneous (no-slip) mixture model for the multi phase
.

dynamics suggests
i

9 prediction of an instability cutoff at a void fraction of ap-
)
|

proximately 0.9. The implication would be, if the model is

applicable, that entrainment by Taylor instabilities would
|

not be possible for bubble void fractions less than 0.9. The

porous medium model predicts no such cutof f. For conditions of
I

void fraction less than 0.9 sodium entrainment by growth of

Taylor instsbilities would have no influence on the work

l
potential of HCDA bubbles. '

,

Both of the models discussed above suggest that there are physical proces-
i

ses which limit the potential for sodium entrainment by growth of Taylor
.

instabilities. In the case of the porous medium model the limiting factor is

the drag imposed by the entrainec pnase. In the case of the homogeneous flow-

model the factor is the loss of the driving force (upper-to-lower fluid de-

nsity difference) for growth of the instability.
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The results presented here suggest the need for development of a unified

theory of Taylor instabilities which applies to multi phase expanding bubbles

and which accounts for the finite inertial characteristics of the entrained

particulate or droplet phase. A confirmatory experimental effort should also

be considered.
.
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