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the postulated cold leg rupture would become the governing design case. For
the postulated cold leg rupture, the results for all components would be
within acceptance limits except for the reactor vessel support, which would
exceed 1imits by only 1.5%, which is considered acceptable. Core flood line
supports near the nozzle are overioaded. but these supports are not necessary
for LOCA and the effects on piping stresses were inclui~d in the core flood
piping analysis. The reactor cavity walls exceeded limits but gross struc-
tural integrity was demonstrated.

For TMI-2, the detailed Phase II evaluations have not been completed; the
applied loadings and available stress results are tabulated throughout this

report to provide information until the detailed evaluations can be concluded.

For Crystal River 3, the stresses in the reactor vessel supports, embedments,
and control rod drive attachments exceeded acceptance limits for the postu-
lated hot leg rupture. However, as discussed in section 12, the existing
hot leg restraints can be modified to reduce the hot leg break opening area
so that the postulated cold leg rupture would become the governing design
case. For the postulaied cold leg rupture, the stresses for all components
would be within acceptance 1imits except for the reactor vessel support,
which would exceed Timits by only 1.5%, which is considered acceptable. In
the present configuration, without hot leg restraint modifications, core
flood Tine stresses are within acceptance limits. Line supports near the
nozzle are overloaded, but these supports are not necessary for LOCA and

the effects on piping stresses were included in the core flood piping anal-
ysis. A core coolable geometry was also demonstrated for Crystal River with
the present hot Teg restraint configuration and reactor vessel stability was
demonstrated.

For ANO-1, the results were within the acceptance limits except for the
reactor cavity walls, which exceeded 1imits by 10%. The walls experienced
localized yielding only, and this is considered aczeptable for structural
integrity for reinforced concrete. Core flood line supports near the nozzle
are overlioaded, but these supports are not necessary for LOCA and the effects
on piping stresses were included in the core flood piping analysis.

For Rancho Seco, the results were within the acceptance 1imi*s ercept fo
the reactor vessel support embedment. For the embedment, local stresses
were exceeded only at the hatchway for only one of the postulated cold leg
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4.1. Pipe Break Locations

In evaluating the effects of asymmetric loadings on components in the reactor

vessel subcompartment, hot and cold leg guillotine pipe breaks were considered
it the terminal ends of the reactor vessel nozzles, at the entrance to the
lower hot leg elbow, and at the cold leg elbow exit, as illustrated in Figure
4.1-] These break locations were selected on the basis of actual pipe stre
calculations performed in accordance with references 7 and 8. Locations for

breaks near the reactor vessel are identical for both nozzle-supported and

kirt-supported reactor vessels.



Figure 4.1-1. Pipe Break Locations for Reactor

Vessel Cavity Evaluation
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4.2. Determination of Break Opening Areas and Times

The break opening area (BOA) is the size of the opening through which primary
cooling water can escape through a broken-end pipe section. The largest pos-
sible BOA is referred to as a 2A break, which implies that the coolant water
escapes freely from the full area (A) of each end of the broken pipe without
interference from the other end. Break opening area is a function of pipe
backout, dt, and offset, dn (see Figure 4.2-2). Break opening time is the
time at which a break occurs. Together BOA and break opening times determine
the break opening schedule. Break opening schedules, i.e. BOA versus time,
may be detarmined by any of the following three methods. The most conserva-
tive method is to assume that a break develops within 10 ms (linearly) to a 2A
final BOA. This is the fastest postulated break opening time for a 2A guillo-
tine break.

A less conservative method involves what is called the "generic" break open-
ing schedule. The generic break opening time is determined by applying a
constant PA forcing function to the broken-end piping in an isolated model of
each piping section. Boundary conditions are modeled appropriately. No pip-
ing restraint effects are included for the generic analysis, so that the
broken-end pipe moves freely without interferences. The generic analysis
yields two sets of data; one for skirt-supported plants and one for the noz-
zle-supported plant. The time required for a 2A break to open would be longer
than the 10 ms mentioned in the first method. The time before a 2A break
would represent the fastest possible break opening time for a particular type
of plant if there were no piping restraints.

The most realistic method is to determine actual BOA time histories based on
plant-specific data, i.e., including all effects due to piping restraints.
Compariny the generic method to the plant-specific method would show that for
a specifi BOA the -generic method would always yield the faster opening time.

This section discusses the techniques used in evaluating the break opening
areas and summarizes the )lant-specific results.

4.2.1. Break Opering Area Equation

For a doubl?-ended rupture that is not restrained, the two ends separate and
move apart in space. This results in fluid releases from both pipe ends and
is called a 2A break opening area.
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The displacements of the reactor coolant piping may be limited by pipe whip
restraints and adjacent concrete walls or structures. This limitation of
pipe displacement may result in a break opening "flow" area of less than 2A,
which is referred to as a limited displacement rupture. The displacement of
the broken pipe ends, and hence the BOA, is monitored as a function of time
in a nonlinear pipe whip analysis (section 5.2).

/f\>\\
o \
N\
Y \
s '
X \
7 \
““‘.‘ \
¥ x
~ Jﬁ% H
. ‘W ,"'.r P
. "“,:y,-,‘.'., /
A {
\ ,‘,"1'}‘:', ~——
\4&;,."‘s v
IMITTD FLOA AREA T

The basic theory used to calculate the break area from pipe end separation
and lateral movement is as follows:

The broken ends of the pipe segment under consideration are designated a and
b. The relative displacement of ends a and b determines the opening area
associated with a double-ended rupture. These relative displacements are
calculated by

"

AX = Uxb_a(t) Uxb(t) - Ux_(t),

a
ay = Uy ,(t) = Uyp(t) - Uy, (t),

<

AZ = Uzb-a(t) = Uza(t) - Uzl(t)

where Ux, Uy, and Uz are displacements in the global X, Y, and Z directions;
and Ax, Ay, and Az are relative displacements between two ends of the broken
pipes in the global direction.
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The opening area is calculated by

{f .
A= 2nrs - (réo, + rie ) + 1 (ré sin 26, + r2 sin 28 )
{1 113 00 2 1
)
1 ( + r a8
+ [ABS(dt)jxr i YO O).}
ifdn > t or A = ?~riw’ if dn t
where

ry = inner radius of pipe,

r, outer radius of pipe,
t r -
0 1’
. rus'?!(r} + dn? - rg)/?dn rils
) sin“![(r, sin 8.)/r
0 g i’ o]’
d AX $in a_ COS a_ + Ay €COS a_ - AZ sin a_ sin a_,
t y X ! y y X
dn 14 - '.i'Y :
d X< * Ay* + A2

ty and (, are the orientation angles of the undeformed pipe where quillotines
are postulated (see Figure 4.2-1). The geometric parameters are detailed in

Fiqure
4.2.2. Use of BOA Time Histories

The BOA time history, as discussed in 4.2.1, is used in calculating the mass-
energy release, which is used to calculate asymmetric cavity pressures (sec-
tion 4.3). Thke BOA time history is also the basis for calculation of blow-

down pressure differentials across the reactor vessel internals (sectiun 4.4).

4.c.3. Break Opening Area Data

Tables 4.2-1 and 4.2.2 and Fig. 35 4.2-3 through 4.2-17 summarize the BOAs and
opening times for each plant. These data were produced from analyses of the

pipe whip models described in Appendix B.




Table 4.2-1. Summary of Owners Group Plant Hot Leg Breaks —
Break Opening Area and Time

Peak flow
Peak BOA area ratio
Break Flow area  Time to Time to peak including Figure
Plant location  _ ratiol3) peak, s wunrestrained, s RV motion
Oconee RV nozzle 0.46A 0.027 0.0157 0.52 4.2-3
Elbow 0.45A 0.020 0.0157 (b) 4.2-4
TMI-1 RV nozzle 1.29A 0.045 0.0259 1.39A 4.2-5
Elbow 1.04A 0.033 0.0235 (b) 8.2-6
CR-3 RV nozzle 1 "9A 0.046 0.0241 1.17A 4.2-7
ETbow s .85k 0.033 0.0211 (b) 4.2-8
ANO-1 RV nozzle 0.31A 0.030 0.0127 0.38A 4.2-9
P Elbow 0.27A 0.018 0.0121 (b) 4.2-10
~nN
- Ranchn RV nozzle 0.68A 0.041 0.0193 0.74A 4.2-11
Seco Elbow 0.55A 0.026 0.0175 (b) §4.2-12
DB-1 RV nozzle 1.02A 0.063 0.0265 (c) 4.2-13
Elbow 1.03A 0.056 0.0265 (c) 4.2-14

(@)14 hot leg = 1017.87 in.2

(b)Reactor vessel displacement due to hot leg elbow breaks is negligible since
most of the deflection results from horizontal cavity loads, and the elbow
break is located outside the cavity. Therefore, the BOA is not effected by
elbow breaks.

(C)The Davis-Besse 1 plant displacements and loads were calculated using plant-
specific results, i.e., cavity forces were calculated from the reported BOA
time histories, whereas the skirt supported plants were based on a spectrum
of generic BOAs and times. The contribution of reactor vessel displacement
to BOA for the skirt-supported plants was calculated to ensure tha*t the BOA
was within the analyzed curve. The Davis-Besse 1 BOA due to RV displacement
is negligible.
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fable 4.2-2. Summary of Owners Group Plant Cold Leg Breaks

___Break Opening Area and Time

b s miea Peak flow
Feak BUA :
——ate —— — area ratio
Break Flow area. Time to Time to peak including Figure
Plant location ) f@t}p\}f peak, s unrestrained, s kV motion __No.
Oconee RV nozzle 2.0 0.027 Same (b) 4.2-15
Elbow 2.0 0.027 Same (b) 4.2-15
TMI-1 RV nozzle 2.0 0.027 Same (b) 4.2-15
Elbow 2.0 0.027 Same (b) 4.2-15
CR-3 RV nozzle 2.0 0.027 Same (b) §.2-15
Elbow 2.0 0.027 Same (b) 4.2-15
ANO-1 RV nozzle 2.0 0.027 Same (b) 4.2-15
i Elbow .0 0.027 Same (b) 4.2-15
ol
o L Rancho RV nozzle 2.0 0.027 Same (b) 4.2-15
Seco Elbow 2.0 0.027 Same (b) 4.2-1

DB-1 RV nozzle 0.25
Elbow

oo

.100 0.0163 (c)
.049 0.036 (c)

F = =N
N A
]
—
(=)

—
Pe—
~J

(@)14 cold leg = 615.75 in.:
(b)Not applicable to 2A breaks.
(

C)See note (¢) on Table 4.2-1.
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Figure 4.7

Undeformed Pipe
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This 1s angle of projection of the pipe
in X-Z plane.

a, = Angle with respect to vertical axis
x !Yiz = GlODal axe\\
4.2-6

Measured in XZ plane, counter clockwise.



2-2. Pipe Break Area Due to Axial
Plus Radial Displacements

Fiqure 4,2-2.
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Figure 4.2-8, Hot Leg Break at Elbow,

Crystal River
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The only differences between these plants are found in the sizes of the neutron
shield plugs and the lower reactor cavities. Even the neutron shield plugs are
identical except for the amount of arc subtended by an individual plug. There-
fore, these translational venting devices were modeled in a fashion that is
conservative for both plants (minimum vent area). The lower reactor cavity

was chosen to be the smaller of the two designs for conservatism.

Below the nozzle belt centerline, the TMI-2 plant exhibits only two deviations
from the CR-3 and TMI-1 designs. First, TMI-2's lower reactor cavity is larger
than that of either CR-3 or TMI-1. Second, and more important, there is an in-
spection equipment track directly beneath the TMI-2 nozzle belt. Thus, the
Crystal River 3/TMI-1 model below the nozzle belt was incorporated in:» the
TMI-2 modei with modifications to accoun. for the inspection equipment track.
The remainder of the TMI-2 cavity model — from the nozzle be.t region upward

to the bottom of the shield tanks — was generated separately because this por-
tion of the cav.ty is unioue. The TMI-2 cavity contains an additional level
above the nozzle belt because of the placement of its rotational venting de-
vices.

The Oconee 1, 2, and 3 plants are identical in every aspect except for piping
penetration vent creas. Al! Oconee vent areas are relatively small, so using
the smallest vent areas to represent all three plants does not introduce un-
warranted conservatism. Therefore, the three Oconee plants are encompassed by
a single model.

Finally, Davis-Besc~ 1 (DB-1) is sufficiently different from the lowered-loop
plants that it requ "es a separate model. DB-1 differs from the lowered-loop
plants in the following areas:

Its reactor vessel is nozzle supported.
2. Neutron shield plugs at the top of the cavity are not used.
Its Tower reactor cavity is not separated from the main body of
the reactor cavity.
Additional differences in vent areas and heights above and below the nozzle
belt are shown in Table 4.3-1.

4.3-2



4.3.2. Reactor Cavity Modeling Philosophy

The CRAFT. computer code (Version 13.0) was used to determine the pressures in
the reactor vessel cavities. Application of the CRAFT2 code to the present
cavity pressurization studies has been demonstrated to the NRC.

In the model, elevation pressure drops were accounted for, and all flow paths
were checked for choke flow at each CRAFT2 calculational time using the Moody
choked flow correlation with a discharge coefficient of 0.6. Length/area ratio
(L/A) calculationc were based on geometric considerations. All area changes
were considered as step functions with the total L/A being equal to the sum of
the individual L/A components for a given flow path. All flow path areas were
chosen as the minimum flow aiceas along the paths. All form loss factors were
calculated based on formulas for abrupt contractions and expansions. As a
minimum, the form loss factor for a sudden contraction is

K=0.4(1 - o),
while for a sudden expansion it is
K = (l _ \.).‘

where o is the ratio of the small flow area to the large flow area. A1l form
loss factors for a given flow path were normalized to the path flow area by
multiplying by the square of the ratio of the path flow area to the smaller
area used to compute the form loss factor. The CRAFT2 generalized loss coef-
ficients, Kf(f fL/Dh) were based on a maximized value of L/Dh‘ L/Dh was maxi-
mized by computing the hydraulic diameter Dh at the point along any given flow
path that minimized its value. For flow paths containing 90° turns, the fric-
tional L/Dh was supplemented with an additional L/Dh of 30.

Except for the ANO-1, Davis-Besse 1, and Rancho Seco plants, there is some

type of venting device, governed by translational or rotational dynamics, at
the top of the reactor cavity annulus. As the pressure in *he annulus builds
up, these devices either blow out or rotate out of the way, providing pressure
relief to the containment. The equations of motion governing the translational
and rotational devices (respectively) are

2

d“x _ , o dx
m EET = pAS - fgmg D _dt
and
, 4% | . y - de
chg atez © APASR:\p fgngcg Ccos § DRCg at °
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wher ; i
-s m = mass of venting device,

sP = pressure drop across device,
. * surface area over which AP is applied,
q = gravity term multiplier,
g = gravitational acceleration,
D = coefficient of friction or drag,
= moment arm from hinge axis to center of gravity of device,

= moment arm from hinge axis to center of action of pressure
force (see Figure 4.3-1),

6 = angular position,
x = position,
t = time.

These equations are solved numerically in CRAFT2 (Version 13.0) for each blow-
out device. Associated with each blowout device is a table of vent area versus
position. As the vent area opens, CRAFTZ iterates between the momentum equa-
tion for fluid flow and the equation governing the motion of the blowout de-
vice in order to obtain a converged pressure distribution within the cavity

at each time point. At some position, the vent area achieves its full value,
and the solution of the equation of motion of the blowout device is terminated
thereafter. Owing to the absence of experimental data, the drag coefficient is
assumed to be zero. Therefore, to account for this and other unknown effects,
the gravity term multiplier is set equal to 2.0, thus doubling the resistance
to motion due to the device's own weight. The formulation of the equation of
motion in CRAFT2 for rotational venting devices conservatively assumes that o,
as defined in Figure 4.3-1, is zero.

Insulation 1s the final item for consideration in this section. The initial
volume ~¢ the insulation was conserved and as such was unavailable for occupa-
tion by any fluid within the reactor vessel cavity. Geometric flow path quan-
tities used in modeling the hydraulics of the cavity were determined based on
the assumption that the insulation was collapsed around the reactor vessel.
Since *he volume of the insulation was conserved, its effective thickness

was increased because of its collapse about a smaller diameter. The effective
increase in the insulation thickness results directly in a conservative deter-
mination of flow path lengths, areas, and hydraulic diameters. In locations
where obstructions on the concrete side of the cavity, such as detector thim-

bles, were encountered, geometric quantities were modified further to reflect
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a wrapping of t e obstruction with a uniform layer of insulation. This approach
combines the conservatisms associated with placing the insulation next to the
concrete and those associated with placing the insulation next to the reactor
vessel. No insulation was assumed to blow out in such a manner as to plug the
piping penetrations. It was assumed, however, that the close-fitting piping in-
sulation remains intact. Therefore, penetration vent areas were based on the
outer diameter of the piping insulation, not the piping itself. It was also
assumed that the insulation between the reactor vessel flange and the neutron
shield plug 1ifts and blocks the small flow path between the vessel and the
plugs which results in slightly higher pressures in the cavity volumes below.

4.3.3. Reac:or Cavity Sensitivity Study

Sensitivity studies were performed to determine a convergent reactor cavity
noding scheme for both lowered- and raised-loop plants. The studies include
time step, nodalization, impact of mass and energy release rates and break lo-
cation, and the effect of shield block blowout. The ANO-1 reactor cavity with
no venting through the area between the shield wall and the reactor vessel at
the top of ti» cavity and the mass and energy releases from the 2A hot leg
break were used in the majority of the lowered-loop studies. They are dis-
cussed in the following sections.

4.3.3.1. Time Step Sensitivity

A time step study was made using the 70-node ANO-1 model as shown in Figures
4.3-6 and 4.3-15. The development of this model is presented in section
4.3.3.2. The time steps were successively reduced until a convergent solution
was obtained. The peak lateral load, moment, and pressures in the break nodes
from time steps of 0.0001 and 0.00005 second are shown in Table 4,3-2.

The study shows that the results differ by less than 0.2%. Therefore, a time
step of 0.0001 second was selected for use in all production calculations.

4.3.3.2. Nodalization Sensitivity

The noding sensitivity study was performed for the annular volume between the
reactor vessel and the shield wall and for the break nodes surrounding the
ruptured pipe. Four ANO-1 models containing axial and circumferential vari-
ations within the annulus gap were studied. One node for each pipe penetra-
tion volume inside the shield wall and one node for the lower cavity below
the reactor vessel support skirt were used in all four models.
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In the 42-node model, the annulus was axially divided into four levels, one
level in the nozzle belt region and three levels below, as shown in Figure
4.3-2. The lower boundary of the nozzle belt region was lccated at the discon-
tinuity in the reactor vessel outside diameter. Each level contained eight cir-
cumferential nodes as shown in Figure 4.3-3. The blowdown mass and energy were
deposited in node 27. The 50-node model was constructed from the 42-node

model by dividing the nozzle belt region into two levels as shown in Figures
4.3-4 and 4.3-5. The circumferential noding and the three levels below the
nozzle belt remain unchanged from the 42-node model. The blowdown mass and
energy were equally divided between the two break nodes, 27 and 35.

The 70-node model retained the same axial spacings as the 50-node model, as
shown in Figure 4.3-6, while each level was increased from eight to twelve
circumferential nodes. This arrangement increased the number of break nodes
from two to four. The blowdown mass and energy were deposited in nodes 39, 40,
51, and 52. In the 82-node model, the three levels below the nozzle belt in
the 70-node model were rearranged into four levels as shown in Figures 4.3-7
and 4.3-8. The two levels in the nozzle belt region remain unchanged from

the 70-node model.

These four models provided enough variation in the number of nodes within the
cavity annulus to determine a convergent model for use in the production reac-
tor cavity pressurization analysis. The peak lateral load, moment, and uplift
were used as convergence criteria. As shown in Figure 4.3-9, the results from
the 70- and 82-node models converged to within 1%. The 42-node model predicted
the highest moment as a result of lateral force concentration in the nozzle
belt region. This was caused primarily by the axial noding scheme in the noz-
zle belt region. The 42-node model contained only one level in this region,
while the 50-node model comprised two levels. The downflow path from the node
containing the nozzle in the one-level model (42-node model) t the level below
the nozzle belt is modeled to include the losses due to area change across the
nozzle. This results in a downflow reduction and a pressure buildup in the
nozzle belt region. The downflow path in the two-level nozzle belt model (50-
node model) is modeled to originate from the bottom of the nozzle and does not
contain the losses across the nozzle. Thus, in the 50-node model more break ef-
fluent was diverted toward the lower levels and less force was concentrated in

the nozzle belt region. Using the 50- and 70-node models, the nodalization of
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It was noted in Table 4.3-1 that the heights above the nozzle belt centerline
for Davis Besse-1 and TMI-2 were approximately equal as well as significantly
different from the heights of the other plants. Therefore, based on the result
of the DB-1 nodalization study, an additional level — level 6 in Figures 4.3-33
and 4.3-39 — above the nozzle belt was incorporated into the 70-node skirt sup-
ported base model to represent TMI-2. The 70-node model was ret-ined as the
base model for all other ckirt-supported plants.

4.3.3.3. Mass and Energy Release Rates and Break Location

In general, the external loads on the reactor vessel and the cavity pressure
were proportional to the break area, as can be seen from the results of the
spectrum analysis shown in section 8.1. The impact of break opening time on
the external load on the reactor vessel was investigated using the 70-node
skirt-supported model and mass and energy releases from the 2A hot leg break.
The results showed that the peak lateral load for an opening time of 0.033
second was approximately 17% higher than that for a 0-second opening time.

The gradual increase in discharge rate due to the 0.033-second opening time
pressurized the cavity at a slower rate and delayed the time to reach the max-
imum pressure gradient across the reactor vessel. As a result of the delayed

peak AP, approximately 37% more mass and energy were discharged into the cavity.

The time required to reach a peak lateral load increased from 0.023 second for
a U-second opening time to 0.044 second for a 0.033-second opening time. It
was concluded that the use of physically realistic opening times, particularly
for large break areas, must be considered in a reactor cavity pressurization
aralysis. Note that the reactor cavity pressurization studies contained here-
in were based on realistic break opening times.

The effect of break location relative to the out-of-core detector thimbles,
the access well at the bottom of the cavities, and the decay heat line pene-
tration into the hot leg vent was investigated. While the impact of these
items on the peak load was determined to be negligible, the study indicated
that the mass and energy should be deposited in the receiver, which offers
the minimum potential for pressure relief. Therefore, mass and energy were
deposited into those receivers furthest removed from the access wells or in
the hot leg receiver, whose penetration contained the decay heat line.

4.3-8



4.3.3.4. Blowout Jevices

A study on the effect of shield block blowout on the peak lateral load was
conducted for the TMI-1/CR-3 and the Oconee group cavities. The results for
the 2A hot leq break showed that the peak lateral load occurred before the
first block was completely blown out of the cavity to permit venting. Thus,
the additional vent area provided by the blowout model does not relieve the
peak lateral load. However, the translational blowout devices reduced the
final cavity pressure and the uplift force by about 50% at 0.5 second (the
run end-time). The impact of the shield tank device placed on the top of the
TMI-2 cavity was also investigated. The shield tank design provides venting
earlier than that of the translational shield block since it is a rotational
device that is capable of relieving pressure immediately upon i1ts initial
movement. The results for the 2A hot leg break showed a 5% reduction in the
peak lateral load and a reduction of more than 50% in the cavity pressure.

4.3.4. Reactor Cavity Model Inputs

4.3.4.1. Geometric Inputs

Examples of control volume and flow path inputs to the CRAFT2 code for the
ANO-1 and DB-1 cavity groups are tabulated below.

Reactor cavity Control

___group __volumes Flow paths
ANO-1 Table 4.3-4 Table 4.3-5
DB-1 Table 4.3-6 Table 4.3-7

A1l flow paths were checked for choking using the Moody correlation with a
multiplier of 0.6. Reverse form losses set to zero are considered identical
to their ¢ rresponding forward form losses. The friction and turning losses
were combii 2d and input in the form of the ratio of path length to hydraulic
diameter, \L/Dh). This value multiplied by the friction factor (f) calcu-
lated internally by CRAFT2 represents the K-factor for friction and turning
losses.

The corresponding models for the six reactor cavity groups mentioned above are
presented in Figures 4.3-15 through 4.3-53. As evidenced from these Figures
and discussed in section 4.3.1, all six cavities were based on a similar
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noding scheme, which was individually customized to incorporate the unique

features of the reactor vessel cavity for each plant group.

Mass and energy inputs to the six models were taken from the data presented
in section 4.3.4.2. A single consistent spectrum of hot and cold leg mass
and enerqy data were used to perform the reactor cavity pressurization anal-
ysis for the skirt-supported plants. The Davis-Besse 1 cavity pressurization
analysis was performed for the actual hot and cold leg break areas. As such,
the mass and energy used in DB-1 model were reflective of the plants actual
break areas.

A1l mass and energy data were deposited into receiver nodes furthest removed
from pressure-relieving portions of the cavities. All receiver volumes were
considered at either the reactor vessel inlet or outlet nozzles.

4.3.4.2. Mass and fnergy Inputs

Individual subcompartment mass and energy spectra were generated for the skirt-
and nozzle-supported plants using the CRAFT2 computer code (version 13.0).
These analyses were not directly coupied to the subcompartment pressurization
work (1.e., no cavity backpressure effect was fed back into the mass and energv

work).

The analyses were performed in accordance with "Standard Review Plan 6.2.1.2,"
BAW-10132P-A, and BSAR-205. The basic large-break CRAFTZ models were taken
from BAW-10103 and BAW-10105 for the skirt- and nozzle-supported plants, re-
spectively. According to the methodologies in these reports, the large-break
models were modified in the following manner:

1. A single node core.

2. No core crossflow paths.

3. Delayed departure from nucleate boiling (DNB) in the core.
4. High liauid level in the pressurizer.

No ECC bypass model.

6. The heat transfer coefficients in the steam generators are the
same for primary-to-secondary heat transfer as for secondary-to-
primary.

o

7. No momentum losses in any flow path.
Instantaneous opening of the vent valves.
9. 102% power.
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Table 4.3-2. Time Step Sensitivity Study,
Skirt-Supported Plants

Force at
Time 0.022 5, Moment, Break node pressure at
step, s 10° ibf  10° in-1bf _  0.022 s, psia =
39 _40 51 52
0.0001 6.63 1399.51 396.48 396.48 425.07 425.07
0.00005 6.64 1401.19 396.61 396.€1 425.20 425.20
Table 4.3-3. Noding Sensitivity Study,
 Nozzle-Supported Plants
Model, Lateral force, Moment, Uplift force,
nodes 10" 1bf  10° in.-1bf _10° Tbf
61 10.90 321.0 5.17
72 11.09 302.4 6.73
84 11.28 288.1 7.16
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Figure 4.3-1. Rotational Venting
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ANO-1 Reactor Cavity, Developed View of

Figure 4.3-3.
42-Node Model
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Figure 4.3-5. ANO-1 Reactor Cavity, Developed View of 50-Node Model
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Figure 4,3-7. ANO-]1 Reactor Cavity, Elevation View of
82-Node Model
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Figure 4.3-8. ANO-1 Reactor Cavity, Developed View of 82-Node Mode
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Figure 4.3-11. Davis-Besse 1 Reactor Cavity, Developed View of

72-Node Model
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Figure 4,3-13.
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Figure 4.3-15. ANO-1 Reactor Cavity, Elevation View of
/0-Node Model
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Figure 4.3-17.

ANO-1 Reactor Cavity, Plan View of Level 2
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Figure 4.3-18. ANO-1 Reactor Cavity, Plan View of Level 3
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Figure 4.3-19. ANO-1 Reactor Cavity, Plan View of Level 4
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Figure 4.3-21. Rancho Seco Reactor Cavity, Elevation View
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Figure 4.3-23. Rancho Seco Reactor Cavity, Plar View
of Level 2
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Figure 4.3-25. Rancho Seco Reactor Cavity, Plan View
of Level 4
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Figure 4.3-27. CR-3/TMI-1 Reactor Cavity, Elevation View
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Figure 4.3-29.
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Figure 4.3-31. CR-3/TMI-1 Reactor Cavity, Plan View
of Level 4
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Figure 4,3-33.

T" (-2 Reactor Cavity, Elevation View
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Figure 4.3-34. TMI-2 Reactor Cavity, Plan View
of Level 1
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Figure 4.3-35.

TMI-2 Reactor Cavity, Plan View
of Level 2
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Figure 4.3-37. TMI-2 Reactor Cavity, Plan View
of Level 4
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Figure 4.3-39. TMI-2 Reactor Cavity, Plan View
of Level 6
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Figure 4.3-41. Oconee Reactor Cavity, Plan View
of Level 1
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Figure 4.3-43. Oconee Reactor Cavity, Plan View

of Level 3
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Figure 4.3-45. Oconee Reactor Lavity, Plan View

of Level 5
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Figure 4.3-47., Davis-Besse 1 Reactor Cavity Noding
Plan, Level 1B
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Figure 4.3-49, Davis-Besse 1 Reactor Cavity Noding
Plan, Level 2
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Figure 4,.3-50. Davis-Besse 1 Reactor Cavity Noding
Plan, Level 3
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Figure 4.3-51.

Davis-Besse 1 Reactor Cavity Noding
Plan, Level 4
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Figure 4.3-52. Davis-Besse 1 Reactor Cavity Noding
Plan, Level 5
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Figure 4.3-53. Davis-Besse 1 Reactor Cavity Noding
Plan, Level 6
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Figure 4.3-55,

Integrated Leak Energy Flow for Guillotine

Break at Reactor Vessel Inlet Skirt-
Supported Plants
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Figure 4.3-57.

Integrated Leak Energy Flow for Guillotine

Break at Reactor Vessel Outlet Skirt-
Supported Plants
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Figure 4.3-59. Integrated Leak Energy Flow for Guillotine
Break at Reactor Vessel inlet Nozzle-
Supported Plant
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Figure 4.3-61.
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Figure 4,3-63.

M&E Node/Flow Path Diagram
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Figure 4.3-65.

&
(::>l033005———-

FROM NODE 29 ——o

FROM NODE 12

FROM NODE 10

FROM NODE 20

®ICIOI®

FROM NODE 20

M&E Node/Flow Path Diagram

@

Nozzle-Supported Plants

&

®

T0 NODE 21

2

O

20

b——

4.3-90

®

T0O NODE !









* 4
4 "
e
14
Y I
$y $
4
‘O‘
' $ 2 i+
1 Wit
" 4
{ anal
4
4 6
ed 1y
s t
4
ne s
1 4 \
1 L '_‘
.
1eq ¢

wit!
na
wd
£ ¢
1
§4
¢ o
ear
0O
t he
o
s

]
s v/ 3 $
v1l
Y
iC
\"1
of ¢
+*om
Le
{
s 1A
fFun
(R4S

< NO¢
i (
tior
ADD& 1
1ISeq
1ol
ng
re
{
2 ( +
5 \
3 t
react
"t {
| | 0)
re
Y 8 L
2 {

his r
dvnam
were (
s thu
tion «

MFETHODOI OX
Or the ¢
.-":l!’ A 18
were obt:
first ) .
'~'I 101 u el
the aiorit
" .
nte [ 4 I
{ §
rd DUTrCe
‘»" .‘. > 1
1 V! \ i
¢ A
he asvmmety
“ NI | )
Ut
the roact
1
Vi o) 3 1 £ ¢
¥ traint
¢} §
" 1
(o] r
btained fry
r inad react
! y data Da
; io v 1 e
— T :
VITHTIE L 4 { ay
+ s 4
E the vert
responst | Y

P, .
) l‘ "\‘ 4 V'A e} 1€
1y 1 3 1
linear ¢ ast finite ele
§ . 1/
n | 1
L [} qd anad f  §
i 1 with vert
v } +y " 4 ~ i
» Ul uctured JUt ’
B
a 1S wa the nonlineay
3 Nne remaining , 1Y f
14 | Th 4 ] 1 4
X e ha Te) K
' |
: Y B ’
a na r e ’.(1.' 1eney
1
iken 11 jeve | 1N lant
i th - O §
Od¢ 2 e resp ¢ |
iy ) 1 An 4
4 4 $ s
§ W } )

VSes 11 the forn § rea
'0‘ ,v»»i' Dre ¢ > 1r'¢
epresent t he 1 ¢ 117 t
+hi g + v T} |

! oy
pressure were evaluated

1ir { by reference 1

{ n section 1 of Appen
. Y .

11 uplift load representi




5.1. Reactor Vessel Isolated Model
Linear Analysis

Initially, it is assumed that the loads to which the reactor vessel (RV) is
subjected will not produce component yielcing. Therefore, model construction
and subsequent analyses are geared to linear analytical techniques. No con-
sideration is given to nonlinear material properties or such geometric non-
linearities as gaps. The validity of this assumption is verified by comparing
the linearly derived dynamic stresses to yield stresses when the analysis is
complete.

Because of the complexity of the RV loading conditions and the number of attach-
ments to the vessel, a detailed isolated model of this component is constructed.
This mode! is a complete representation of the reactor vessel and its appurte-
nances (e.g., CROMs and SSS). It also includes the hot legs extending to the
steam generators and the cold legs extending to the pumps for loops A and B.
Boundary condiiions are imposed at the ends of the pipes where they connect to
the components. These boundary conditions consist of stiffness matrices that
represent the characteristics of the structures to which the pipes are attached.
They are obtained from th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>