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TENSILE PROPERTIES OF IRRADIATED AND UNIRRADIATED

WELDS OF A533 STEEL PLATE AND A508 FORGINGS

J. A. Williams
ABSTRACT

The tensile properties of welds of base metals ASTM A533, Grade B,
Class 1 steel plate and ASTM A508, Class 1 forgings were evaluated
in irradiated (3 to 21 x 1018 n/cmz) and unirradiated conditions.
Yield strength and ultimate strength both increased with increasing
fluence, while small ductility losses were generally independent of
fluence. Yield strength was found to be more sensitive to irradi-
ation than ultimate strength for all welds. The strength and duc-
tility responses to irradiation varied between the weld materials.
These variations were attributed to differences in chemical constit=-
uents of the welds.
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FOREWORD

The Heavy Section Steel Technology (HSST) Program is a United States Nuclear
Regulatory Commission (NRC) sponsored effort coordinated by the Oak Ridge
National Laboratory (ORNL) with G. D. Whitman as the HSST Program Manager.

The HSST work performed at HEDL is being conducted under Department of
Energy Contract DE-AC14-76FF02170 through a technical service contract with
ORNL (Purchase Order 11Y-50917V). Westinghouse Hanford Company technical
representative is L. D. Blackburn.

This report is designated Heavy Section Steel Technology Program Technical
Repert No. 55. Prior reports in this series are:
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TENSILE PROPERTIES OF IRRADIATED AND UNIRRADIATED
WELDS OF AS533 STEEL PLATE AND A508 FORGINGS

I. SUMMARY

Tensile properties of one weld of ASTM A533, Grade B, Class 1 plate base

metal (Weld 61W) and two welds of A508 Class 1 forging base metal "Welds 62W
and 63W) irradiated to 3 to 21 x 1018 n/cm2 (E>1 MeV) at temperatures between
260°C and 371°C were evaluated. Strength properties of all three welds
increased with higher exposures producing higher strengths after irradiation.
Yield strength was found to be more sensitive to irradiation than ultimate
strength. The tensile ductility was reduced slightly to a level which was
independent of fluence. Welds 61W and 63W in general exhibited greater

losses in strength and ductility than did Weld 62W, possibly because of dif-
ferences in chemical composition.

II. INTRODUCTION

The Heavy Section Steel Technology (HSST) program is sponsored by the
Nuclear Regulatory Commission (NRC) with the objective of gaining better
insight into the mechanisms that could potentially cause reactor vessel
failure or improve the guality of reactor vessel steels. In order to assecs
material behavior, irradiations were conducted by the HSST program office at
ORNL to produce a variety of irradiated material conditions representative
of reactor environments. Irradiation experiments containing tensile, frac-
ture and impact specimens were conducted. The objective of the work report-
ed herein was to assess the irradiated tensile properties of three weld
materials irradiated in the HSST "Second 4T-CT Experiment."



[TT. EXPERIMENTAL

A. MATERIALS AND SPECIMENS

One weld of base metal ASTM A533, Grade B, Class 1 plate and two welds of
base metal ASTM AS08 Class 2 forging, “ereafter referred to as 61W, 62W and
63W, respectively, were irradiated in the ORNL Bulk Shielding Reactor (BSR).
All welds were made by the submer?ed-arc process. The complete irradiation
exper iment was conducted by ORNL( ) and tensile specimens, both irradiated
and unirradiated, were supplied by ORNL.

The chemical composition of Welds 61W, 62W and 63W are given in Table 1.

The analysis represents the range of compositions determined from Charpy
spec imens and from weld analysis supplied by vendors. The orientation of
all tensile specimens was weld transverse. Two types of miniature tensile
spec imens were used in this study and are shown in Figure 1. Specimen sizes
and designs were primarily dictated by the physical space available for

spec imen irradiation. The specimen gage diameter was 4.52 mn; both short
(29.24 mm) and long (31.75 mm) gage length spec imens were tested. Table 2
gives the distribution of specimens by irradiation temperature and neutron
fluence. The specimens in parentheses had irradiation temperatures in more
than one range for a significant period of the irradiation time. Thus, some
spec imens are saown in two matrix posi*ions or overlapping two positions.
The spec imen test temperatures are shown in brackets for each specimen. The
test temperatures were chosen to yield a range of data which can be treated
by a rate-temperature parameter.

B. TESTING AND DATA ANALYSIS

he test setup including the test furnace, specimen grips and extensometer
system is shown in Figure 2. The same test apparatus and setup were used
for both u..rradiated and irradiated tensile tests, all of which were con-
ducted in an air envircnment.



TABLE 1
CHEMICAL COMPOSITIONS OF WELDS 61W, 62W AND 63W

% Element .
Material ~C Mn P i S r Ni Mo Cu ]
Weld 61W  0.10* 1.52 0.021 0.015 0.58 0.17 0.64 0.38 0.3  0.005
0.07 1.43 0.018 0.014 0.54 0.16 0.62 0.3 0.24
Weld 62W  0.088 1.57 0.020 0.008 0.60 0.17 0.550 0.390 0.243 0.011
0.082 1.41 0.013 0.007 0.57 0.067 0.495 0.367 0.16 0.010
Weld 63W  0.109 1.67 0.0175 0.012 0.675 0.118 0.707 0.440 0.326 0.0125
0.088 1.618 0.0163 0.010 0.618 0.073 0.603 0.415 0.272 0.010

*Rang: of compositions, high/low
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FIGURE 1. Tensile Specimen Configurations for Both irradiated and Unirradiated Materials.



TABLE 2

IRRADIATION FLUENCE AND TEMPERATURE DISTRIBUTION FOR TENSILE SPECIMEN
FROM SECOND 4T IRRADIATION

Flyence Irradiation Temperature (0C)
cimen (n/cmé x 1018) 732-260 %0-293 793-116 316-343 J43-371
Capsule A, 4 51WS [RT]
Weld 61W 61w [282]
7-10 61W-7 [RT]* 61W-8 [rRT]
61-9 [RT]
12 61W-3 [RT]
61w-4 [149]
15 6lW-1 [RT
inz 120
Capsule B, 5 (62W-13) [149}
Weld 62W (62w-19) [288
8-11 (62W-2)** [RT] (62W-2) (62W-1) [RT]
62W-3  [RT)
14-15 62W-10 [RT]
62W-11 [288]
62W-8 [[RT]
62W-9 149]
Capsule C, 4 63W-5 [RT)
Weld 63w 63W-9 [288]
7-10 63W-14 [RT]
63W-15 [RT]  (63W-15)
(63W-13) [RT] (63W-13)
13 63W-3 [RT]
63W-4 El49]
63W-1 RT]
63W-2 [288]

*Brackets ' ]indicate test temperatures (oC). FRT]= Room Temperature.
**Parentheses ( ) indicate specimens with multiple irradiation temperatures.
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The tests were conducted at room temperature, at 149°C and at 288°C for all
unirradiated weldments; short and long specimens were tested at each temper-
ature. Tr-radiated specimens, as the number available permitted, were tested
at the same temperatures as the unirradiated specimens. However, where only
one specimen was available for a given fluence and irradiation temperature
condition, the specimen was tested at room temperature. Specimens were
tested on a 44.5-kN capacity Instron tect machine. Specimen strain rates
calculated from extensometer data were in the range of 10°% to 1073 -1,

An extensometer with a 12.7-mm effective gage length was attached direct”,
to the gage section of the specimens; the extensometer was designed to mea-
sure strain through at least the point of maximum load (ultimate strength).
The same effective gage length was used on both long and short specimens.
Dual LVDTs of the extensometer were algebraically summed to eliminate effec .
of bending during the initial portion of the test. A verification of the
extensometer in actual test application was conducted by high-resolution
recording of the elastic load-deflection curve; linearity of the recorded
curve was better than 1%, and no hysteresis was observed on unloading. The
elastic modulus was observed to 2.04 x 105 Mpa, which is within the known
range for this class of material. Calibrated accuracy of the extensometer
was better than 0.1% of range and within 0.1% linearity.

The extensometer system was developed as part of the test setup to facili-
tate direct computerization of test results. Thus, a computer-controlled
digital data acquisition system recorded load and extension measurement sig-
nals directly; the crosshead motion and ihe load were also recorded on the
test machine recorder. Upon completion of the test, specimen measvrements
of uniform final gace diameter, neck diameter and final total length were
made. These were then placed in the computer data bank where they were ana-
lyzed by computer program, producing tables and plots of properties. The
initial raw data and processed data were stored on a tape cartr..ge.



IV. RESULTS AND DISCUSSION

The tensile properties of Welds 61W, 62W and 63W are summarized for both
irradiated materials and unirradiated materials in Tables 3 and 4, respec-
tively. Preirradiation strength and ductility values are very similar for
all three welds, with Weld 62W showing only slightly lower strength proper-
ties at the highest test temperature.

A. IRRADIATION EFFECT ON YIELD AND ULTIMATE STRENGTH

Irradiation to a fluence of 4 to 15 x 1018 n/em® (E>1 Mev) at 260°C to 293°C
produced a pronounced effect on strength properties of all three welds, as
illustrated in Figures 3, 4 and 5. Postirradiation yield strength exceeded
preirradiation ultimate strength for all weld materials investigated. The
yield strength was more sensitive to irradiation than was the ultimate
strength, with yield strength properties at 26"C increased by an average of
30% while ultimate strength increased by about 19% after irradiation.
Results in Figure 6 demonstrate that most of the strength increase was
already achieved at the lowest fluence levels examined, but that some fur-
ther strength increase occurs with increasing fluence. A1l three welds
exhibit a similar irradiation sensitivity as measured by the general level
of irradiation strengthening, but strength increments are about 20% larger
for Welds 61W and 63W than for Weld 62W (Figure 6). The data also suggest
that higher irradiation temperatures may produce slightly less strengthening
in Weld 61W.

B. IRRADIATION EFFECT ON TENSILE DUCTILITY

The change in ductiltiy properties measured at 26°C is, with the possible
exception of reduction of area for Weld 62W, independent of neutron exposure,
as illustrated in Figure 7. Table 5 compares the ratios of irradiated mate-
rial ductility to unirradiated material ductility determined using average
ductility values for all exposures at each test temperature. Both Figure 7
and Table 5 illustrate that irradiation-induced losses in ductility are small
(i.e.<17% on a relative basis).



TABLE 3

TENSILE PRROPERTIES OF UNIRRADIATED WELDS OF ~STM A533, GRADE B8,
CLASS 1 STEEL PLATE (WELD TRANSVERSE)

n Test Yield Ultimate Uniform Reduction Total
pec imen Temp Strength Strength Strain in Area Elongation
No. (oc) (MPa; QMPa; (%) (%) (%)
61W10 26 484 601 10.4 ST 16.5
61Wl2* 26 476 597 10.4 66.0 20.3
61W11 149 445 546 8.3 66 .2 17.2
61W13* 149 443 549 8.3 64.7 18.2
61Wl4* 228 420 534 7.1 64.5 15.5
61W15 288 416 539 7.0 63.2 16.4
62wW4 26 477 594 10.1 67.0 18.1
62W12* 26 469 588 9.7 65.0 19.5
62W5 149 430 536 9.2 68.0 15.0
62W1l4* 149 426 531 9.5 69.3 16.7
62W6 288 382 514 8.0 65.5 14.2
62W15* 288 388 513 8.0 61.5 15.2
63Wl6 26 482 600 10.5 67.9 19.4
63W6* 26 482 601 10.0 66.8 21.5
63Wl7 149 440 544 8.6 65.7 18.4
63W7* 149 423 546 8.6 68.7 17.6
63W18 288 414 530 8.1 63.3 17.0
63W8* 288 405 530 72 63.6 16.2

*Short specimens, all other are long specimen: {see Figure 1).
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TABLE 4

TENSILE PROPERTIES OF IRRADIATED WELDS OF ASTM A533, GRADE B,
CLASS 1 STEEL PLATE (WELD TRANSVERSE)

Irradiation
Specimen Fl e Irrad.* Test Yield Ultimate Uniform Reduction Total
n/cme x 1018 Temp Temp Strenqth Streagth Strain in Arsa tlongation
No. (E>1 MeV) (°c) {oc) MPa) (MPa %) %) (%)
61W8 8 327/360 28 580 678 9.3 59.0 15.7
61W7 10 277 28 594 699 9.3 56.9 17.0
61W9 7 327 28 583 700 9.6 57.4 16.9
HLW5* 4 304 28 605 703 8.6 56.8 17.4
BlW3** 12 288 28 632 724 8.9 58.9 17.6
6lWl** 15 288 28 631 724 8.9 59.7 17.5
6lwars 12 277 149 575 672 .3 59.7 15.5
6lW2** 15 277 288 544 660 8.4 50.1 17.8
61WE** 4 293 288 499 625 6.5 61.4 14.1
62W10** 14 291 26 602 697 10.0 60.8 18.9
62WB** 15 282 26 621 705 2.4 58.6 13.1
62W3 8 303 26 576 678 9.5 67.8 18.4
62W2 8 256/306 26 592 A93 10.4 63.5 18.1
62W1 11 313 26 575 678 10.3 61.8 18.2
62W1 3% 5 267 149 539 627 8.3 57.8 16.3
62WI** 15 277 149 572 661 8.1 61.4 15.0
62W11** 15 274 288 520 632 8.3 53.2 15.7
62W1 9™+ 5 269 288 476 605 7.7 58.2 15.5
63Wl5 8 290/341 28 581 681 10.3 58.5 17.5
63INS** 4 288 28 609 701 9.4 61.9 7.4
H3W1** 13 285 27 628 718 9.6 55.9 15.9
63W13 9 2867330 28 603 695 9.4 $3.1 17.7
H3W3** 13 285 28 625 712 9.0 59.5 17.6
63W14 7 315/29% 28 598 594 10.0 63.0 17.1
B3W4** 13 278 144 587 683 8.0 56.7 15.7
63IN2** 13 278 288 536 636 6.8 57.5 15.6
63IWg** 4 286 288 526 629 5.8 56 .4 16.6

* Represents average temperatures during irradiation. Refer to Table Il for temperature range.
Two values are given where temperature ranges were significant ly differeat due to capsule rofation during
irradiation.

** Short specimen; all others are long spec imens (Figure 1).
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TABLE 5

RATIO OF IRRADIATED MATERIAL DUCTILITY
TO UNIRRADIATED MATERIAL DUCTILITY

Irradiated Property/Unirradiated Property

Weld Reduction Uniform Total Test
Material of Area (Neck) Strain Elongation Temp (°C)
61W 0.88 0.88 0.92 26
62W 0.95 1.00 0.98 26
63W 0.87 0.93 0.83 26
61W 0.87 1.06 1.00 288
62W 0.89 1.00 1.06 288
63W 0.90 0.83 0.97 288

Losses in reduction of area tend to be larger than changes in the other two
ductility properties for Welds 61W and 62W. However, for Weld 63W, the
largest property losses are for uniform strain or total elongation, depend-
ing on test temperature. Overall the sensitivity of ductility properties to
irradiation was less for Weld 62W than for Welds 61W and A3W. Since the
composition ranges for Ni, Cu, C and S are higher for Welds 61W and 63W than
for Weld 62W, these constituents may contribute to increased sensitivity of
tensile ductility to irradiation.

C. TEMPERATURE-STRAIN RATE CORRELATION OF YIELD AND ULTIMATE STRENGTH

(2,3) that the materiais similar to those

[t has been demonstrated previously
of this study correlate well with a rate-temperature parameter, o , to relate
yield and ultimate strength response to test temperatures and test strain

rates. In Figures 8, 9 and 10 the theta parameter as described by

T In (1087¢)

<O
H

where: T= Kelvin

£= Strain rate

16



is used to correlate yield and ultimate strengths of Welds 61W, 62W and 63W,
respectively.

The yield and ultimate correlations are observed to be of sufficient quality
to estimate properties at other test temperatures and strain rates of inter-
est. Similar correlations were attempted for ductility properties; however,
the limited number of specimens and the relatively large degree of scatter
prec luded development of significant correlations.

L]
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V. CONCLUSIONS

1) Irradiation of fluence levels in the range 4 to 15 «x 1018 n/cm2 (E>1 MeV)
produced significant strengthening in all three weld materials, with yield
strength increases being greater than ultimate strength increases. Losses in
ductility were relatively small.

2) Weld 62W exhibited less strength increase and less reduction in ductil-
ity than did Welds 61W and 63W. These differences may be associated with
chemical composition variations.

3) Yield and ultimate strength properties were correlated with a rate-

temperature parameter which can be used to estimate strength properties at
other test strain rate or temperature conditions of interest.
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