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LOSS OF COOLANT ACCIDENTS RESULTING FROM PIPING
BREAKS WITHIN THE REACTOR COOLANT PRESSURE BOUNDAKY

Introduction

The Acceptance Criteria for LOCA analysis is gescribed in 10CFk5U.40 (1)

as follows:

1.

~no
.

The calculated fuel element peak claad temperature 15 bDelow tne
requirement of 2200°F.

The amount of fue) element cladding that reacts chemically with
water or steam does not exceed 1 percent of the total amount of
Zircalcy in the reactor.

The ¢lad temperature transient is terminatea at a time when the core
geometry is still amenable to cooling. The loralized claoaing oxi-
dation limits of 17 percent are not exceeded auring or after

quencnhing.

The core remains amenable to cooling during ang atter tne breax.

The core temperature is reduced anag decay neat is removed for an
extendged period of time, as required by tne long lived ragioactivity
remaining in the core.

These criteria were established to provide sicnificant margin in Emer-
gency Core Cooling System (ECCS) performance following a LOCA.

Mathematical Model

The requirements of an acceptable ECLS evaluation model are presenteag in
Appendix K of 10CFR50 [1].



Large Break LOCA Evaluation Mode

The analysis of a large break LOCA Transient is divided into three
phases: 1) blowdown, 2) refill, and 3) reflood. There are three dis-
tinct transients analyzed in each phase, namely the thermal-hydraulic
transient in the RCS, the pressure and temperature transient witnin the
Containment, and the pellet and clad temperature transient of the hot-
test fuel rod in the core. Based on these considerations, a system of
interrelated computer codes has been developed for the analysis of the

LOCA.

The description of the various aspects of the westinghouse LOCA analysis
methodology is given in Reference [2]. This document describes the
major pheromena modeled, the interfaces among the computer codes, and
the features of the codes which ensure compliance with the Acceptance
Criteria. The SATAN-VI, WREFLOOD, COCO, and LOCTA-IV codes which are
used in the LOCA analysis are described in detail in References L3]
through [6]; code modifications are specified in References [7) through
[11]. These codes are used to assess the core heat transfer geometry
and to determine if the core remains amenable to cooling throughout ang
subsequent to the blowdown, refill, and reflooc phases of tne LOCA. The
SATAN-V] computer code analyzes the thermal-hydraulic transient in the
RCS during blowdown, and the WREFLOOD computer code is used to calculate
this transient during the refill and reflood phases of the accident.

The COCO computer code is used to calculate the Containment pressure
transient throughout the LOCA analysis. Similarly, tne LOCTA-IV compu-
ter code is used to compute the thermal transient of the hottest fuel
rod during the entire ana.ysis.

SATAN-V] is used to calculate the RCS pressure, enthalpy, density, and
the mass and energy flow rates in the RCS, as well as steam generator
eneryy transfer between the primary and secondary systems as a function
of time during the blowdown phase of the LOCA. SATAN-V] also calculates
the accumulator water flow rates and internal pressure and the pipe
break mass and energy flow rates that are assumed to De ventea to tne
Containment during blowdown. At the end of the blowdown phase, these



data are transferred to the WREFLOOD code. The mass and energy release
rates during blowdown are utilized in the COCO code for use in the
determination of the Containment pressure response during this first
phase of the LOCA. Additional SATAN-V] output cata including the core
flow rates and erthalpy, the core pressure, and the core power decay
transient, are transferred to the LOCTA-IV code.

With initia) information from the SATAN-VI code, WREFLOOD uses a system
thermal-hydras1ic model to determine the core fiooaing rate (1.e., tne
rate at whicn coolant enters the bottam of the core), the coolant pres-
sure and temperature, and tne core water level during the refill ang
reflood phases of the LOCA. WREFLOOD also calculates the mass and
energy flow aagition to tne (ontainment through the breax. Since the
mass flow rate to the Containment depends upon the core flooding rate
and the local core pressure, which is a function of the Containment
backpressure, the WREFLOOD and COCO codes are interactively linked.
WREFLOOD is also linked to the LOCTA-1V cogde in that thermal-nydraulic
parameters from WREFLOOD are used by LOCTA-IV in its calculation of tne
f,e) temperature. LOCTA-IV is used throughout the analysis of tne LULA
transient to calculate the fuel clad temperature and metal-water reac-
tion of the hottest rod in the core.

The large break analysis was performed with the westinghouse evaluation
mode! which includes modifications delineated in References (7, 8, 10
and 12). Reactor Coolant pumps are assumed to continue to run auring
blowdown unless otherwise noted.



Results

Large Break Results

Based on the results of the LOCA sensitivity studies, (References L7)
and [12]) the limiting large break will be the double engec cola ley
guillotine (DECLG). This conclusion is confirmec for the millstone ¢
plant specifically by docketec analyses (Reference 14%). Tnerefore, only
the DECLG break need be consigeres in the large oreax ECLS pertormance
analysis. Calculations were performec for & range of Foogy Dreak ais-
charge coefficients., The results of these calculations are sunmarized
in Tables 1 and 2. C(ontainment parameters Jtilizegc in tne analyses are
provided in Table 3.

The maximum clad temperature calculated for a large brezk is 2111°F
which is less than the Acceptance Criteria limit of 2200°F of
10CFR50.46. Maximum local metal-water reaction is 5.5 percent which is
well below the embrittlement limit of 17 percent as required Dy
10CFR50.46. Total core metal-water reaction is less than 0.3 percent
for al) breaks, as compared with the 1 percent criterion of 10CFR50.46,
and the clad temperature transient is terminated at a time when the core
geometry is still amenable to cooling. As a result, the core tempera-
ture will continue to drop and the ability to remove decay heat genera-
ted in the fuel for an extended period of time will be maintained.

Figures 1 through 26 present the parameters of principal interest from
the large break ECCS analyses. For all cases analyzea transients of tne
following parameters are presented:

1. Hot spot clad temperature.

2. Coolant pressure in the reactor core.

3. water level in the core and downcCunher guring reflood.

4. C(ontainment pressJure transient



For the limiting break analyzed,
parameters are presented in the figures:

1.

the following agaitional transient

Core flow during blowdown (inlet and outlet).

Fue! rog heat transfer coefficients.

sot spot fluid temperature.

Mass released to Containment guring Dlowdown.

fnergy releasec to containment guring olowdown.

©1uio quality in the hot assemply auring blowgdown.

Mass velocity auring blowagown.

Safety injection tank water flow rate nto RLS during plowgown (per

tank),

o mpec safety injection water flow rate ou

core ref)

ooding rate.

ring retlooc.
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TABLE 1

LARGE BREAK
TIME SEQUENCE OF EVENTS

Cp=0.6 DECLG
Cp=0.8 DECLG Cp=0.6 DECLG Cp=0.4 DECLG RC Pumps Tripped
(Sec) (Sec) (Sec) (Sec)
START 0.0 0.0 0.0 0.0
S. 1. Signal* 0.6 0.69 0.85 0.68
S. 1. Tank Injection 13.3 15,7 21.6 16.4
End of Blowdown 20.19 21.65 29.07 22.43
Bo.tom of Core Recovery 33,2 34.6 43.0 36.4
S. 1. Tank Empty 64.2 66.8 7 3.2 67.5
End of Bypass 20.18 21.65 29.07 22.43

*from containment pressure sensor



TABLE 2

LARGE BREAK
Cp=0.6
Cp=0.8 DECLG Cp=0.6 DECLG Cp=0.4 DECLG RC Pumps Tripped

Results
Peak Clad Temp. °F 1985 2111 2000 1976
Peak Clad Location Ft. 7.0 7.9 7.0 7.0
Local 2r/H20 Rxn(max) ¥ 3.7 5.5 3.9 3.6
Local Zr/Hp0 Location Ft. 7.5 75 7.0 7.0
Total Zr/Hp0 Rxn % <0.3 <0.3 <0.3 <0.3
Hot Rod Burst Time, sec 36.9 31.6 53.2 41.2
Hot Rod Burst lLocation Ft. 5.70 5.70 6.25 5.70

Calculation Assumptions
NSSS Power, Mwt 1027 of 2700
Peak Core Linear Power, kw/ft 15.6
S.1. Tank Actuation Pressure, psia 215

S.1. Tank Water Volume, f13 per tank 1107




TABLE 3

Millstone Unit 2
Containment Physical Par.meters

Net Free Volume 1.938 x lub tt3
Containment Initial Conditions:
Humidity 99 "
Containment Temperature 6u_F
Enclosure Builaing Temperature oU F
Ground Temperature 4u F
Initial Pressure 14.7 psia
Initial Time for:
Spray Flow b seconas
Fans (3) U.U seconds
Additional Fan 14.U seconds
Containment Spray water: 2
Temperature 50 F
Flow Rate (Total, 2 pumps) 3300 gpm

Fan Cooling Capacity (Per Fan)

Vapor Temperature (°F) Capacity (BTu/Sec)
60 0.0
145 336U.U
165 52060.0
300 26800.0
350 32400,0

Containment Heat Apsorbing Surfaces

1. Surface Areas and Th cknesses
a. Shell and gome - 71,870 FtZ
(i) Paint - 0.003 In. (one side exposec 0 containment
atmosphere)
(2) Carbon steel - 0.25 In.
(3) Concrete - 3.0 Ft. (one side exposea to enclosure ouilaing
atmosphzre)

b. Unlinea Concrete - 62,800 Ft2
(1) Concrete - 2.0 Ft. (one sige exposed to containment
atmospnere, one side insulatea)

c. Galvanized Steel - 120,000 FtZ
(1) Zinc ~ 0.0036 In. (one sige exposed to containment
atmospnere)
(2) Carbon steel - 0.20 In. (one sige insulatea)



2.

d.

e.

TABLE 3 {(Cont'a.)

Millstone Unit ¢
Containment Physical Parameters

painted Thin Steel - 56,850 FtZ

(1) Paint - 0.003 In, (one side exposed to containment
atmosphere)

(2) Carbon steel - 0.2 In. (one sige insulated)

painted Steel - 32,600 FtZ _
(1) Paint - 0.003 In, (one side exposed to containment

atmopshere)
(2) Carbon steel - 0.26 In. (one sige insulatea)

Painted Steel - 22,425 FtZ
(1) Paint - 0.003 In. (one side exposed to containment

atmosphere)
(2) Carbon steel - 0.86 In. (one sige insulated)

Painted Thick Steel - 4,230 FtZ

(1) Paint - 0.003 In. (one side expcsed to containment
atmosphere)

(2) Carbon steel - 2.94 In. (one sige insulatea)

Containment Penetration Area - 3,000 FtZ

(1) Paint - 0.003 In. (one side exposed to containment
atmosphere)

(2) Carbon steel - 0.75 In.

(3) Concrete - 3.75 Ft. (one sige exposed 1o enclosure builaing
atmosphere )

Stainless Steel Line Concrete - 8,34y Ftl

(1) Stainless steel - 0.25 In. (one side exposed to containnent
atmosphere)

(2) Concrete - 2.0 Ft. (one sice insulateaq)

Base Slab - 11,130 Ft2
(1) Concrete - 8.0 Ft. (one side exposed to containment sump,
one side exposed to ground)

Neutron Shield - 1400 Ft2
(1) Stainless steel - 0.024 Ft. (botn sides exposed to
containment atmosphere)

Thermal Properties

a.
b.
C.
d.
2.

Conductivit Reat Capacity
Material (8TU/hr-ft-"F) (BTU/FE3-"F)
Concrete 2.0 3o
Carbon Steel 35.9 53
Stainless Stecl 10.0 he
Paint 1.5 3¢
Zinc 70.0 45
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