Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Future Plant Designs Subcommittee
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Tuesday, September 17, 2019

Work Order No.: NRC-0569

Pages 1-168

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	FUTURE PLANT DESIGNS SUBCOMMITTEE
8	+ + + +
9	TUESDAY
10	SEPTEMBER 17, 2019
11	+ + + +
12	ROCKVILLE, MARYLAND
13	+ + + +
14	The Subcommittee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2D10, 11545 Rockville Pike, at 8:30 a.m., Dennis
17	Bley, Chair, presiding.
18	
19	COMMITTEE MEMBERS:
20	DENNIS BLEY, Chair
21	RONALD G. BALLINGER, Member
22	MICHAEL L. CORRADINI, Member
23	CHARLES H. BROWN, JR. Member
24	VESNA B. DIMITRIJEVIC, Member
25	WALTER L. KIRCHNER, Member
I	I

		2
1	DAVID PETTI, Member*	
2	HAROLD B. RAY, Member	
3	JOY L. REMPE, Member	
4	PETER RICCARDELLA, Member*	
5	MATTHEW W. SUNSERI, Member*	
6		
7	DESIGNATED FEDERAL OFFICIAL:	
8	WEIDONG WANG	
9		
10	*Present via telephone	
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
I		

	3
1	PROCEEDINGS
2	8:30 a.m.
3	CHAIR BLEY: Good morning. The meeting
4	will now come to order. This is a meeting of the
5	Advisory Committee on Reactor Safeguards Subcommittee
6	on Future Plant Designs. I'm Dennis Bley, Chairman of
7	the Future Plan Designs Subcommittee.
8	ACRS members in attendance are Ron
9	Ballinger, Charlie Brown, Walt Kirchner, Harold Ray,
10	Joy Rempe, and Mike Corradini. And on the phone we
11	have three members, Dave Petti, Pete Riccardella, and
12	Matt Sunseri. Weidong Wang of the ACRS Staff is the
13	designated federal official for this meeting.
14	The purpose of today's meeting is to
15	review the draft report NRC Non-Light Water Reactor
16	Vision and Strategy, Volume 2, Fuel Performance
17	Analysis for Non-LWRs. And a couple of months ago we
18	had a precursor meeting where we discussed Volumes 1
19	and 3.
20	The Subcommittee will gather information,
21	analyze relevant issues and facts, and formulate for
22	post positions and actions, as appropriate.
23	This matter, along with those other two
24	volumes in this report series, is scheduled to be
25	addressed at the October full Committee meeting. We
l	

(202) 234-4433

	4
1	expect to write a letter at that time.
2	The ACRS was established by statute and is
3	governed by the Federal Advisory Committee Act, FACA.
4	The Committee can only speak through its published
5	letter reports.
6	We hold meetings to gather information and
7	perform preparatory work that will support our
8	deliberations at a full Committee meeting.
9	The rules for participation in all ACRS
10	meetings, including today's, were announced in the
11	Federal Register on June 13, 2019.
12	The ACRS section of the US NRC public
13	website provides our charter, bylaws, agenda, letter
14	reports, and full transcripts of our meetings,
15	including the slides presented. The meeting notice
16	and agenda for this meeting were posted there.
17	As stated in the Federal Register notice
18	and in the public meeting notice posted to the
19	website, members of the public who desire to provide
20	written or oral input to the Subcommittee may do so,
21	and should contact the designated federal official
22	five days prior to the meeting.
23	Today's meeting is open to public
24	attendance and we've received no written statements or
25	requests to make an oral statement.
I	I

(202) 234-4433

	5
1	We also set aside ten minutes in the
2	agenda for the spontaneous comments from members of
3	the public attending or listening to our meetings.
4	Today's meeting is being held with a
5	telephone bridge line, allowing for participation of
6	the public over the phone.
7	A transcript of today's meeting is being
8	kept. Therefore, we request that meeting participants
9	on the bridge line identify themselves when they
10	speak, and to speak with sufficient clarity and volume
11	so they can be readily heard.
12	Participants in the meeting should use the
13	microphones located throughout the meeting room when
14	addressing the Subcommittee. And we have one more
15	member I didn't mention earlier. Vesna Dimitrijevic
16	is with us.
17	At this time I ask that all attendees in
18	the room please silence all cellphones and other
19	devices that make noises, to minimize disruptions.
20	And I remind speakers at the front table
21	to turn on the microphone. I've been chastened to
22	tell all of the people in this room to be very careful
23	turning the microphones on and off because we will
24	have problems if we don't. So, be careful.
25	And for those of you who are new to this,
	1

(202) 234-4433

	6
1	the button to turn on the green light and turn it off
2	is nearest you, where it says, push, on the
3	microphone.
4	We will now proceed with the meeting. I
5	call on Kim Webber, Deputy Director with the Division
6	of Systems Analysis, Office of Research, to make
7	introductory remarks. Sorry, I can't talk. Kim.
8	MS. WEBBER: Yes, good morning to all of
9	you. And yeah, my name's Kim Webber. I'm the Deputy
10	Director of the Division of Systems Analysis in our
11	Office of Research.
12	Today we're here to present to you our co-
13	development plans and strategies for Non-Light Water
14	Reactor Fuel Performance Analysis.
15	In addition, we're here to also answer
16	questions that you had for the May 1st and
17	September 4th Subcommittee meetings.
18	As part of the Office of Research biannual
19	ACRS review meeting held on September 4th, we
20	presented an overview of our division's activities.
21	And one the key messages that I was trying
22	to convey at that time, is that we're really in a
23	position where we have to be ready to enable the
24	regulatory offices to license advanced reactors.
25	And so, we believe that the introduction
	I

(202) 234-4433

and the Volume 1 through 3 go a long way to helping the staff get ready to help them develop their expertise to better understand the phenomenon that are likely to be experienced in advanced reactor designs, and so we think that these reports go a long way to help achieving those goals. Let's see if I can do the next slide. Back in May 1st, we actually presented to

8 9 information about three volumes, you or three 10 documents, I should say. One was the introduction, which is shown at the top of your slide on the left-11 And the introduction really laid out the 12 hand side. taking is, 13 approach that we're some of the 14 considerations that we had to make in order to produce the rest of the volumes. 15

And then Volume 1 is on the computer codes for Non-Light Water reactor design basis analysis, and Volume 3 is on severe accident, source term, and accident progression.

At that time, Volume 2 and Volume 4 --Volume 2 is on fuel performance -- that was a work-inprogress -- in addition to Volume 4, which, although it says radiation protection on this slide, is really licensing and citing dose assessment codes. And so, there's a fourth volume.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	8
1	So, today we're here to talk about
2	Volume 2. The fourth volume actually, at the
3	September 4th meeting, I think you all requested to
4	see Volume 4, which is the licensing and citing dose
5	assessment codes report. And so, we're in progress,
6	in terms of setting up a meeting on that report.
7	MEMBER CORRADINI: And so, can I I'm
8	sorry.
9	MS. WEBBER: That' okay. You were first.
10	MEMBER CORRADINI: Since all of these
11	advanced reactors in theory will be using higher
12	enrichment, what about transport? What about front
13	and back.
14	MS. WEBBER: Yeah. So, they're
15	actually and I'm channeling Richard, who always
16	reminds me there's going to be a Volume 5 that
17	covers front-and back-end code development activities.
18	We have not started on that yet, but there
19	will be one. And so, what we're looking for, as
20	Dennis mentioned, is after the fully Committee meeting
21	on October 3rd, we're looking for you to review the
22	introduction, Volume 1, Volume 2 and Volume 3, and get
23	a letter on that.
24	And then we'll come back with Volume 4
25	maybe in the spring. And then we will, at some later
ļ	I

(202) 234-4433

	9
1	date, come back with Volume 5, if you're interested in
2	that.
3	MEMBER CORRADINI: From the standpoint
4	maybe this is the wrong time to ask it but from the
5	standpoint of readiness, wouldn't the back-end and the
6	front-end
7	MS. WEBBER: Yes.
8	MEMBER CORRADINI: happen before the
9	reactors?
10	MS. WEBBER: Yes. Your point is very well
11	taken and it's something that we do think about and
12	we're going to start working on it. I think what we
13	wanted to do is try to get these volumes together
14	and actually, that fifth volume involves the same
15	people.
16	And so, we're trying to balance the
17	workload that we have too, but your point is well-
18	taken.
19	MEMBER REMPE: Let's talk about Volume 4,
20	which we won't have before the October meeting. You
21	said it's in progress.
22	MS. WEBBER: It is.
23	MEMBER REMPE: Can you give us a clue of
24	what you're thinking of. I assume MACCS is involved?
25	MS. WEBBER: No, no. So, MACCS is covered
ļ	I

```
(202) 234-4433
```

	10
1	in Volume 3. So
2	MEMBER REMPE: Okay, that's true. Yeah.
3	MS. WEBBER: Right. So
4	MEMBER REMPE: But for citing what are
5	you thinking of?
6	MS. WEBBER: So, it codes like RASCAL,
7	like RADTRAD. I can't think of the other codes. I'm
8	looking to
9	MEMBER REMPE: So, the reason that I'm
10	asking this question then, is that you were at the
11	research meeting where we talked about, think about
12	the future and combine maybe have a simplified
13	MACCS, instead of RADTRAN and RASCAL, to try and
14	reduce some costs in the long term. Too far out for
15	you to think about that?
16	MS. WEBBER: Well, I think that's
17	something that we have talked about and we will need
18	to have more discussions on. So, I think we met with
19	you on September 4th and that comment was raised.
20	I think we still need some work internally
21	to figure that one out, quite frankly.
22	MEMBER REMPE: Okay.
23	MS. WEBBER: And so, we'll take the
24	comment under consideration. And when we come back to
25	brief you on Volume 4, that will be something that we

(202) 234-4433

	11
1	can talking about perhaps then.
2	MEMBER REMPE: Okay, thank you.
3	CHAIR BLEY: Just a reminder to everyone
4	here and that is listening, the ACRS only speaks
5	through its letters, so comments you've heard
6	discussed from the research meeting and our previous
7	meetings, really aren't suggestions of the Committee.
8	They're comments by individual members.
9	MS. WEBBER: Okay. Okay, and then I give
10	most of my oops, I'm pressing the wrong button. I
11	want to give most of my time to the other presenters.
12	So actually, just to follow up our Subcommittee
13	Chairman's comment that need to combine the codes with
14	RASCAL and MACCS was actually in our biennial letter.
15	So, it was a little higher than our off-the-wall
16	comments.
17	Okay, so I just want to introduce James
18	Corson and Lucas Kyriazidis. They're going to be the
19	presenters for Volume 2 and they'll discuss important
20	scenarios and phenomenology for Non-Light Water
21	Reactor fuels, code selection considerations, and
22	information gaps for the major types of fuels,
23	including TRISO metallic fuels.
24	And then after that, Steve Bajorek is
25	going to respond to some of the questions that you
	I

(202) 234-4433

	12
1	raised at the May 1st meeting, and then also on the
2	September 4th meeting.
3	And so with that, I'd like to turn the
4	presentation over to James, unless you have any other
5	questions. Okay, and good. We know Ron's going to
6	take care of this.
7	DR. CORSON: All right. Good morning,
8	everyone, I'm James. With Lucas, I going to be
9	talking about our strategy for fuel performance for
10	Non-Light Water Reactors.
11	And before I begin, we also have Ken
12	Geelhood, Dr. Ken Geelhood, here from PNNL. Ken is
13	the lead developer for the FRAPCON, FRAPTRAN and FAST
14	codes. And he also has a lot of experience doing
15	technical reviews for licensing topical reports for
16	NRR. So, he'll be here to answer any more detailed
17	questions you might have. So, next slide.
18	Just a quick motivation of why we're here.
19	Kim already touched on all of this. There's a whole
20	lot of new reactor designs out there. We need to be
21	ready to license them. And in fact, Congress has
22	directed us to be ready to license them.
23	So, part of that in the Office of Research
24	is to work on the tools that can support licensing,
25	that can do confirmatory analysis. So, we're
ļ	I

(202) 234-4433

	13
1	specifically focused on fuel performance today. Next
2	slide.
3	You can see here, there's a lot of
4	different fuel designs out there, paired with
5	different coolants and geometries. So, there's quite
6	a number of different designs that have been proposed.
7	And this means that we need to be
8	judicious and narrow down what we're really focusing
9	on here, at least in the near term, based on industry
10	priorities. So, next slide.
11	This just is the same thing, but not it
12	shows that we're really prioritizing the TRISO fuel
13	and metallic fuel, because we expect those designs to
14	come in first.
15	So, if you've read the report, we do have
16	plans for the other fuel types. But we are not really
17	addressing them. They're not as high priority right
18	now. Of course, as we learn more from our regulatory
19	offices, that could change. But right now, this is
20	our plan.
21	MEMBER CORRADINI: The plan looks
22	reasonable. Explain what the lines through the other
23	one means.
24	DR. CORSON: I was just getting there.
25	MEMBER CORRADINI: Oh, okay.
ļ	I

(202) 234-4433

	14
1	DR. CORSON: So yeah, the last thing, we
2	had crossed out fuel salts simply because as far as
3	fuel performance goes, we are not covering that,
4	because we are covering fuel that's in a solid form.
5	I mean, that's really what our fuel performance codes
6	are designed to do.
7	So, fuel salts are being considered, but
8	they're handled in Volumes 1 and Volume 3, which
9	you've already heard about. So, those codes are going
10	to handle the important phenomena for fuel salts. So,
11	that's why it's crossed out here.
12	It's not that NRC is not considering them,
13	it's that we, for fuel performance, are not
14	considering them.
15	MEMBER PETTI: So, I have a question. How
16	are you going to handle the fission product release in
17	the fuel salts in Volume
18	MEMBER REMPE: This is Dave Petti.
19	MEMBER PETTI: Yeah, sorry. Dave Petti.
20	DR. CORSON: So, it's covered in Volume 3.
21	And I think part of it is going to be MELCOR. I know
22	scale also, or sorry. Oak Ridge also has a
23	Thermochimica system which will be involved. Those
24	are both described in more detail in Volume 3.
25	MEMBER PETTI: Okay, thanks.
ļ	I

(202) 234-4433

	15
1	DR. CORSON: Next slide.
2	CHAIR BLEY: Just a matter of form in your
3	report. They aren't crossed off in the report.
4	DR. CORSON: No.
5	CHAIR BLEY: Is there I don't remember
6	a discussion. Was there a discussion that points us
7	to Volume 3?
8	DR. CORSON: Yes. So, if you go to like
9	Section 3.8 or so.
10	(Background interruption.)
11	DR. CORSON: So, I think if go to like
12	Section 3.8, there is a brief section on molten salts
13	that specifically says it's covered in Volumes 1
14	and 3. And I believe it's also covered in the
15	Executive Summary, but I'm not positive about that.
16	So yeah, you do have to read through a bit
17	I think, but it does say in Section 3.8 that this is
18	covered elsewhere.
19	CHAIR BLEY: Okay, thanks.
20	DR. CORSON: So, just a quick overview of
21	what we're going to be talking about for the rest of
22	our presentation. We will begin with talking about
23	how we do fuel performance confirmatory analysis.
24	So yeah, we'll talk about what we do for
25	Light Water Reactors, and how that might apply to
ļ	I

(202) 234-4433

	16
1	Non-Light Water Reactors going forward. After that,
2	we'll discuss the phenomenology that we need to be
3	able to model in our codes.
4	We'll talk about what criteria we use to
5	select which code we're going to use for Non-Light
6	Water Reactor confirmatory analysis. We'll talk about
7	its development status. Lucas will cover that. And
8	then I'll wrap things up by briefly discussing the
9	interface between fuel performance described in this
10	volume, and the other volumes that cover design-basis
11	and beyond-design-basis events.
12	So, for LWRs, again, just before I get
13	into this, I will often throughout this presentation
14	talk about Light Water Reactors first, because there
15	are a lot of similarities in the way we intend to do
16	things, and even in some of the phenomenology.
17	So, we understand there's different
18	properties, different coolants, and so on. But a lot
19	of the basic phenomena are similar. So, that's why
20	I'll constantly be talking about Light Water Reactors,
21	even though the subject of this presentation is Non-
22	Light Water Reactors.
23	So, for LWRs, when NRC is performing a
24	review we use NUREG-0800, the standard review plan for
25	Light Water Reactors.
l	I

(202) 234-4433

	17
1	Section 4.2 specifically deals with the
2	fuel design, and in there it calls out a number of the
3	general design criteria.
4	And so these general design criteria
5	guarantee that the fuel system is not damaged during
6	normal operations and anticipated operational
7	occurrences.
8	The fuel system is never damaged so
9	severely that you can't insert control rods when you
10	need to, to shut down the reactor, and that you don't
11	underestimate the number of fuel failures, and that
12	you always maintain coolability during accidents.
13	So, those are the criteria we use when
14	we're reviewing Light Water Reactor designs. Next
15	slide.
16	So, when staff are reviewing licensing
17	topical reports, we try to take more of a graded
18	approach, where we focus more on issues that are
19	really important.
20	So, things that are more complex or have
21	higher safety significance or uncertainties, that's
22	where we really want to focus our attention.
23	And one of the ways that we do that is by
24	performing confirmatory analysis. One portion of
25	confirmatory analysis is actually doing code

(202) 234-4433

	18
1	calculations independent code calculations. But
2	there really are a number of other tools that NRR and
3	NRO use to do these reviews, from simple back-of-the-
4	envelope-type calculations to experimental results,
5	and so on.
6	So, this is just one piece, but it's still
7	very important a lot of times in our reviews.
8	MEMBER CORRADINI: Is the intent, from a
9	validation standpoint, to take what you have from
10	experiments to make sure that there's always a
11	benchmark checking? I assume that's the case.
12	DR. CORSON: Yes. In general, we try to
13	rely very heavily on experimental results, both when
14	we're doing our reviews, and just for our code
15	development as well. I mean, you know, it would be
16	nice to be able to predict from first principles all
17	the phenomena, and I think we're moving in that
18	direction.
19	But right now, we still have to rely very
20	heavily on experiments for all that we do.
21	MEMBER CORRADINI: Okay, thank you.
22	DR. CORSON: So, next slide. How does all
23	this apply to Non-Light Water Reactors?
24	So, NRO has put together Reg Guide 1.232
25	that proposes advanced reactor design criteria that
I	I

(202) 234-4433

	19
1	adapt the general design criteria to Non-Light Water
2	Reactors. And there's a number of changes as well,
3	but it follows the same general structure.
4	So, advanced reactor design criteria 10,
5	26 and 35 are analogous to the fuel general design
6	criteria.
7	And so, this last bullet, advanced
8	reactors may use one of two concepts to guarantee that
9	their fuel's not going to fail during normal
10	operations and AOOs.
11	MEMBER CORRADINI: Can I stop you?
12	Because so why now I should remember this but I
13	don't. Why is 26 replacing 27? My impression was 26
14	is normal operation, 27 is beyond normal operation.
15	So, help me
16	DR. CORSON: You're exactly right. So, in
17	the general design criteria, you're right. Twenty-six
18	deals with normal operation AOOs, 27 deals with
19	accidents. And they're all for being able to shut the
20	reactor down.
21	Twenty-six in the ARDC combines the two
22	together. So, there's just 26 covers now, both normal
23	operations and accidents. It's all one thing. But
24	the language is basically the same between the two.
25	MEMBER CORRADINI: I forgot.
ļ	

(202) 234-4433

	20
1	DR. CORSON: Yeah, it's I know. We got
2	that same question and I probably should have
3	clarified that point.
4	MEMBER KIRCHNER: And it's more
5	comprehensive than the 26, 27 for the LWRs.
6	DR. CORSON: It's not identical.
7	MEMBER CORRADINI: It's not identical.
8	DR. CORSON: But the intent is similar.
9	Very similar.
10	MEMBER CORRADINI: Well, I had a feeling
11	he was going to say this. So, that's why I wanted to
12	be clear, because I thought it was similar, as you
13	said, but he's saying that it's I'll use the term
14	more restrictive.
15	MEMBER KIRCHNER: More complete.
16	DR. CORSON: More complete. So, from your
17	perspective, the staff help me. So, he'll check us.
18	MEMBER CORRADINI: I think NRO could
19	probably Boyce could probably handle this a lot
20	better than I can. Delegating responsibility.
21	MR. TRAVIS: Yeah, okay. So, this is
22	Boyce Travis from NRO. So, when the ARDC were
23	developed, this was happening around the same time as
24	the paper that was published on GDC 26 for NuScale.
25	PARTICIPANT: Twenty-seven.
ļ	I

(202) 234-4433

	21
1	MR. TRAVIS: Twenty-seven. Excuse me, 27.
2	So, the thinking behind that SECY paper was
3	incorporated into the ARDC 26. And 26 is meant to
4	cover the full spectrum of basically reactivity
5	control for the full spectrum of fuel designs,
6	operation, and conditions for the plant.
7	And the goal is then and this is
8	enumerated on in the Reg Guide 1.232 is to avoid
9	the sort of considerations that resulted in different
10	safety significance or safety-related components being
11	applied for 26 versus 27.
12	Twenty-six in the ARDC requires that you
13	have two independent means of reactivity control, and
14	it requires that and it's four different
15	requirements that cover
16	MEMBER CORRADINI: This is ARDC.
17	MR. TRAVIS: ARDC 26 has four the full
18	spectrum, from normal operations, AOOs, and postulated
19	accidents.
20	MEMBER CORRADINI: That kind of help
21	MEMBER KIRCHNER: It addresses the problem
22	that we saw with the exemption request for GDC 27. It
23	precludes essentially a return to criticality.
24	MR. TRAVIS: Yeah, exactly. That's
25	exactly right. It's specifically called out in the
	1

(202) 234-4433

22 1 Rationale and Reg Guide 1.232, that an extended return to criticality is precluded by ARDC 26. 2 3 MEMBER CORRADINI: Okay. And under 4 current, it's unclear. 5 MR. TRAVIS: That is correct. 6 MEMBER BROWN: What do you mean by 7 extended? 8 MR. TRAVIS: So, I --9 MEMBER BROWN: Is that three months? Is it one week? Is it one day? 10 MR. TRAVIS: No, no, no. So, I guess I'm 11 referring to something like a steam generator, like an 12 over pooling event that results in a short power spike 13 14 following the trip. 15 MEMBER BROWN: We're talking about minutes 16 or so? 17 MR. TRAVIS: Yeah, yeah. Something on the order of seconds to minutes after the event. 18 And 19 then -- you have to end in a shutdown state basically, using ARDC 26. 20 MEMBER BROWN: But within minutes, as 21 22 opposed to weeks. Right. Yeah, during the 23 MR. TRAVIS: 24 course of the transient would be on the order of 25 minutes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	23
1	MEMBER BROWN: Okay. Thank you.
2	MR. TRAVIS: Mm-hmm.
3	CHAIR BLEY: James, I'm still stuck. Two
4	slides back when you were talking with Mike, and I
5	certainly think anchoring to experiments which
6	weren't on the slide you need to do. But
7	experiments occur under very particular conditions.
8	And the real world happens under a variety, so how do
9	you use the experiments? Two need-to experiments can
10	be really dangerous.
11	How do you use the experiments and
12	consider the uncertainty in the way you're modeling
13	things, and how does that get factored into the codes?
14	DR. CORSON: I mean, that's a really good
15	question. So, so you say, what you do in a small
16	scale, nice controlled experiment, may not exactly
17	represent reality.
18	CHAIR BLEY: Never.
19	DR. CORSON: So, we do like to use a lot
20	of sensitivity studies, where we so we do some
21	uncertainty studies as well based on what we think the
22	uncertain parameter distributions are, and we do our
23	uncertainty studies there.
24	But we also do some sensitivity studies to
25	look at maybe how close are you really to some of

(202) 234-4433

	24
1	these limits? Or how much if things are just a
2	little bit different from what we expect, or maybe a
3	bit different from what we expect, what would happen?
4	So, we certainly have to be careful for
5	that. But we really have to rely a lot on our own
6	engineering judgment as well, and our own experience.
7	So, fortunately for I will say for some
8	of these advanced designs, there have been operating
9	reactors, or at least test reactors, in the past. So,
10	we do have some indication at least of how things
11	behave. So, we're not completely flying in the dark.
12	But it's certainly a very difficult problem that we
13	have to deal with.
14	MEMBER CORRADINI: Are you politely saying
15	that you look for cliffs, and as long as you're far
16	away from a cliff, a strange or very non-linear
17	behavior, you feel comfortable?
18	DR. CORSON: Yes.
19	MEMBER CORRADINI: Okay.
20	MEMBER REMPE: And along those lines, I
21	know like when we had the Volume 1 and 3 discussion,
22	I was curious about the term design basis, because
23	back in the old days when we started out, people
24	didn't have a lot of experimental data, so they made
25	conservative assumptions, or they did something like
	I

(202) 234-4433

(202) 234-4433

	25
1	SAFDLs. They put limits on it. But I think your
2	proposal is to look at best-estimate based on
3	experimental right? data and put uncertainties
4	with your fuel modeling, is your approach here?
5	You're not going to try like in the old
6	days, people put like factor 20 percent on the decay
7	heat curve, and they had like design basis codes. And
8	then we'd have best-estimate for other things. And
9	you're going with best-estimate, but your intent is to
10	have some uncertainties?
11	DR. CORSON: I mean, we're so I will
12	say we'll try to be as best-estimate as we can. But
13	at the same time, these are new designs. And our best
14	estimate may still have very large uncertainties
15	associated with them.
16	So, while yes, we may try to do like a
17	best-estimate-type thing, the uncertainty bounds are
18	going to be much larger than what you might expect for
19	best-estimate plus uncertainty for LOGA, perhaps for
20	example. Because we just don't have as much
21	experience and as many experiments at this point.
22	CHAIR BLEY: As you begin to put this
23	material together not just for you folks, and I
24	liked your answers so far on uncertainty but we need
25	to see later how it all works out but potential
Į	I

(202) 234-4433

	26
1	applicants really need to be reminded of this because
2	it's real tempting to start with a few simple
3	experiments and say I know everything there is. And
4	you have to be careful about that.
5	DR. CORSON: Yeah. We do try to stress
6	that in our vendor interactions. Certainly, NRO is
7	much more in tune with the vendors than we are, but we
8	also have interactions. We meet with DOE, so we
9	certainly do try to stress that point as much as
10	possible.
11	MEMBER REMPE: So, when you provide input
12	or output that goes to the design basis codes or
13	the beyond the MELCOR codes, your plan is to give
14	them the same output results with uncertainties or
15	whatever? I mean, you're not planning to have a
16	conservative result you feed to the design basis codes
17	and best-estimate that you feed to MELCOR? You know
18	what I'm trying to get to?
19	DR. CORSON: Yeah. No, I mean, we would
20	give like the same sort of information to both.
21	MEMBER REMPE: Okay. Mm-hmm.
22	DR. CORSON: So, we are going to so
23	we're going to talk about this at the end. But since
24	you bring it up, I think for design basis, I think the
25	fuel performance aspect may be more tightly I guess
	I

(202) 234-4433

27 1 I could say coupled -- but it will certainly be much more involved than with beyond-design basis aspects. 2 3 So, beyond-design basis, what MELCOR is 4 really looking for would be fuel failure rates. So, 5 for Light Water Reactors, it has some simplified models that can handle that and we don't really use 6 7 FRAPCON right now to support MELCOR. 8 But going forward in the future, we could 9 provide some fuel failure rates for TRISO fuel, for example. Things that MELCOR doesn't know needs to get 10 from somewhere, whether it's fuel performance code, or 11 an experiment, or what have you, that's one role that 12 a fuel performance could have in beyond-design basis. 13 14 For design basis, I think we'll do 15 something similar to what we do now for like a MELLLA+ analysis, where yeah, we provide our input to -- she's 16 17 itching to jump in here. Well, finish what you're MEMBER REMPE: 18 19 saying. So, where we provide 20 DR. CORSON: Yeah. input to like a neutronics code, or a thermohydraulic 21 code, and we might have some feedback. 22 Or, going forward, we could also have a more coupled analysis. 23 24 So, as it is right now for Light Water Reactors, we do have some of these feedbacks, but it's 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	in a much more manual manner. That may be one
2	approach for Non-Light Water Reactors, or we're also
3	working to couple some of our codes together to take
4	some of that manual difficulty out of the picture.
5	MEMBER CORRADINI: But before well, I
6	have a feeling Dr. Petti may say the same thing I'm
7	about to say. I'll be quiet.
8	MEMBER PETTI: Can I ask the question the
9	opposite way? Why would you decide to do a more
10	coupled and a more detailed calculation, when some of
11	these systems have inherent safety attributes that
12	perhaps a simpler hand calculation can get you the
13	level of detail that you need to confirm what the
14	vendor is saying, particularly if you're two orders of
15	magnitude away from the dose consequence code, for
16	instance.
17	It seems like it may be too much of a
18	sledgehammer approach when you just need an elegant
19	hammer instead.
20	DR. CORSON: So, I would agree with that
21	statement. What I would say is that, while we
22	certainly expect much larger margins and all that, we
23	don't necessarily know at this point exactly what
24	vendors are going to propose. So, we have to be
25	ready.
Į	I

(202) 234-4433

	29
1	That way we don't get stuck in a situation
2	where vendors come in with maybe tighter margins than
3	we were expecting and we need a more detailed
4	analysis. So, this doesn't necessarily mean we will
5	do this fully coupled analysis. But it makes sense to
6	prepare for it at this point.
7	MEMBER PETTI: Well, I mean, it just seems
8	to me that you should have a toolbox. The toolbox
9	includes everything from something simple that you can
10	learn a lot about the physics side without running
11	detailed codes, up to the detail code, if and when you
12	need it.
13	You can probably build understanding and
14	engineering judgment pretty quickly with simpler
15	analytical solutions. For instance, the analytical
16	solutions for some of these fuel systems, you just got
17	to go back a little and find them, because they were
18	developed before we had big computers.
19	They capture 90 percent of what you need,
20	and you can come up to speed pretty quickly without
21	having the detailed code in front of you.
22	DR. CORSON: Yeah. Again, I fully agree.
23	And we'll actually touch on those points a little

24 later.

25

MEMBER KIRCHNER: May I ask more of a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	philosophical question? So, is the expectation it
2	fits in with Dave Petti's comment and Mike's that
3	the applicants will come in with an NQA-1 for design
4	basis, an AOO event?
5	In other words, a topical report on the
6	code that's been reviewed and approved by the agency?
7	DR. CORSON: I mean, that's my
8	understanding. If I'm wrong, NRO can contradict me.
9	MEMBER KIRCHNER: And then, to fit in with
10	the comments, then is there thoughts about something
11	like an Appendix K, which is a very conservative
12	approach to the ECCS LOCA issues for an LWR?
13	Is there a thought that you would use that
14	kind of approach, which then fits in with Dave's
15	comments about using bounding analysis, more
16	simplistic tools, to establish some kind of regulatory
17	certainty, or confidence that you've got considerable
18	margin for what in many cases will be an experimental,
19	or first-of-a-kind prototype design?
20	DR. CORSON: So, I would defer to NRO for
21	that.
22	MEMBER KIRCHNER: Ah. Good.
23	DR. CORSON: I mean, it's kind of a
24	policy so, it's difficult, because it's kind of
25	a
ļ	I

(202) 234-4433

	31
1	MEMBER KIRCHNER: Well, you're being
2	pretty honest. I think what my colleagues are asking
3	you what I think we're all kind of getting at is,
4	start as simple as possible, bound the calculation.
5	If that doesn't get you there, then and so I'm kind
6	of asking should you wait for the vendors to do this,
7	or is it more cost-effective for you to start doing
8	this now on the two fuel types that you're
9	identifying, and just broaden it on two candidate
10	designs for those fuel types, so that you actually get
11	a feeling when you need to be detailed, versus
12	assuming you have to be detailed.
13	DR. CORSON: Yeah. I think we so,
14	internally, we do plan to do that sort of stuff. I
15	can't speak to what would be required of an applicant,
16	but I will say internally, we don't need the same
17	level of detail as an applicant would in general.
18	We can do some of these simpler
19	calculations. I mean, we really so eventually, we
20	want to move towards as best estimate as we can, but
21	certainly initially, as you said, we can start with
22	simpler calculations, to give us a feel for some of
23	these things.
24	And we do have some initial assessment
25	plans to do those types of calculations.
Į	I

(202) 234-4433

	32
1	DR. BAJOREK: Mike, I think we are
2	thinking along those lines. This is Steve Bajorek
3	from Office of Research.
4	You know, you one of the ways we would
5	utilize something like this is a fuel performance code
6	might go and tell us what thermal conductivity
7	degradation is. And if we want to minimize or
8	maximize resistance to heat flow, that's the type of
9	information we would put in a design basis-type tool
10	to bound it in a certain direction.
11	And if that's good enough, we don't have
12	to go any further. The difficulty we have right now
13	is that many of the applicants say there's lots and
14	lots of margin.
15	We think that's right. Okay? That
16	probably is. But the staff doesn't know that yet.
17	And we're going to have to do some of those
18	calculations, which may involve some of these types of
19	details, in order to give us some of that direction.
20	So, we'll initially start off as simple as
21	we can, build in those details as we need to follow
22	those up.
23	MEMBER PETTI: I think it would have been
24	helpful to have some of this discussion in the
25	relevant chapters of the report. There's a lot of
	I

(202) 234-4433

	33
1	ways to attack this. Because it comes across as more,
2	we got to get these codes ready. We got to get these
3	codes ready. We got to put all this physics in.
4	And you lose a lot of this nuance that
5	we've had in this discussion here.
6	MEMBER CORRADINI: I guess I'd go a little
7	further, which is probably not in the volumes, but
8	some sort of preliminary introduction that says,
9	here's our attack philosophy for these things. We're
10	going to start simple.
11	Now, my bias is even further. I would
12	start and I'd reverse the problem. What is the NRC
13	why do we even need NRC in all this? The answer is,
14	source term.
15	I would essentially say, what do I need to
16	do to estimate the source term? How much certainty do
17	I need in source term before I want to say it's
18	enough? And I can do a relatively straightforward
19	calculation, totally not totally, but I'd say
20	pretty close to totally based on experimental data
21	that I can point to.
22	And then, Dennis' concern would be, is
23	that data appropriately prototypical. Right? But
24	that's I'd be looking for that outside of your
25	three volumes. I'd be looking at some sort of
ļ	

(202) 234-4433

	34
1	introduction I'd attack it on how you're going
2	to deal with all of this. Because you're never sure
3	what's going to happen.
4	MS. WEBBER: And so there is the
5	introduction, which we presented on May 1st. And we
6	have talked about including some of this thought in
7	that introduction.
8	CHAIR BLEY: I think that's important. I
9	was about to say before Mike that the things we're
10	talking about aren't just about Volume 2. They're
11	probably everywhere.
12	MEMBER KIRCHNER: I think it would be good
13	in the introduction to cover this. And also, working
14	with NRO. Outline, in a general sense, what the
15	expectations are of the applicants, because they're
16	going to be looking at these documents as well.
17	I go back to my analogies. They're an
18	Appendix K kind of approach that you would use with a
19	novel new design to bound things, and then expect the
20	applicant comes in with a code that's been validated
21	within the experimental data range that they're going
22	to try and operate within, including their design
23	basis event.
24	DR. CORSON: Okay, so I'll touch on this
25	the second half of this slide, that advance reactors
	I

(202) 234-4433

	35
1	may use either SAFDLs or SARRDLs. So, SAFDLs,
2	Specified Acceptable Fuel Design Limits, deal with
3	criteria to prevent fuel failure, which are used for
4	LWRs and may be used for advance reactors.
5	And the Specified Acceptable System Radio
6	Nuclide Release Design Limits, they limit how many
7	radio nuclides you can release. And this is proposed
8	for TRISO fuel.
9	So generally, how we do things again,
10	this is generally how we do it for LWRs, but it mostly
11	applies to non-LWRs. We're going to go over on the
12	next few slides kind of the two ways that we do fuel
13	performance confirmatory analysis.
14	So, even though, again, there's
15	differences between LWRs and non-LWRs. The same
16	approach, in general, should work. So, next slide.
17	So, the first way we it is single-element
18	analysis. So, this would be like hottest rod-type
19	calculations. And in this case, we'd use a standalone
20	fuel performance code FAST, which is just the
21	successor to the FRAPCON code.
22	We have some input from other codes for
23	things like radio power profile, or axial power
24	profile, inlet conditions, but for the most part we
25	just run our fuel performance code and determine
	1

(202) 234-4433

ĺ	36
1	whether or not the limits are met. So, there's no
2	reason why that would necessarily change for non-LWRs.
3	So, next slide.
4	So, the other thing we do would be a full
5	core analysis. And this is where the fuel performance
6	code would fit into a design basis accident design
7	basis event-type analysis.
8	So, this is kind of how we use it for
9	MELLLA+, for example, for Light Water Reactors, where
10	we have some information that we're passing, in this
11	case, manually back and forth between core simulator,
12	like PARCS, and thermal hydraulics like TRACE, and
13	doing our fuel performance calculations.
14	So, as I was saying, we could take that
15	same approach where we're manually maybe passing some
16	simple information back and forth, or we're prepared
17	to also do a more coupled analysis. And we'll
18	determine what's necessary once we receive some
19	applications, as we discussed. So, next slide.
20	Now, I'm going to switch gears and talk a
21	little bit about the fuel phenomenology that we need
22	to consider. Once again, I'm starting with LWRs
23	because here we have the list of LWR fuel rod
24	failures. A lot of these also apply to some of the
25	non-LWR designs.
	I

(202) 234-4433

	37
1	Of course, you have to be concerned with
2	things like overheating, pellet-clad or kernel-layer
3	interactions, these types of things.
4	So, that's why I put this up. You know,
5	your fuel performance code, which handles these things
6	in LWR, you can use a lot of the same infrastructure
7	to do it for non-LWRs, of course with different
8	properties, correlations, and so on. Next slide.
9	So, I talked about some of the failure
10	modes. This just talks about the phenomena you need
11	to consider. Basic things like heat conduction or
12	fission gas release, stress strain, and so on.
13	Once again, these are generally applicable
14	to LWRs and to most non-LWR designs. So, a little
15	later on I'll go through TRISO and metallic,
16	specifically to talk about some of the differences.
17	But in general, these are the things we
18	need to consider. And for all these phenomena, we
19	need to consider temperature, burn-up, the radiation
20	effects on material properties, and also the initial
21	manufacturing defects, which can be very important for
22	certain fuel designs. So, next slide.
23	The way we determine which phenomena are
24	really important, is generally we use the PIRT
25	process. So, we've, way back in 2004, there was a
ļ	1

(202) 234-4433

	38
1	PIRT on TRISO fuel, which Dr. Petti was a part
2	of yeah, long time ago but still applicable
3	today and that's the best information we have on
4	TRISO.
5	There aren't any specific liquid metal or
6	sort of FAST reactor metallic fuel, PIRTs, but Argonne
7	does have a series of reports on metallic fuel, which
8	is quite useful.
9	So, there are PIRTs. I should clarify.
10	There are PIRTs on SFRs, but they don't necessarily
11	focus on fuel performance. They cover different
12	aspects. Design-based access and so on.
13	MEMBER CORRADINI: So, I have two
14	questions. One is, maybe Dr. Petti can correct me.
15	But some of your references go back to this time. Are
16	there not newer documents to refer to on TRISO?
17	That's question one.
18	Question two is, on FAST reactors, I was
19	under the impression that Argonne, with Sandia, did a
20	series of five reports accumulative to one major
21	report on metal fueled gas reactor, in terms of gaps.
22	They didn't call it a PIRT, they called it a gap
23	analysis. And I'm assuming you're well aware of
24	okay.
25	DR. CORSON: Yeah. Yeah, the gap

(202) 234-4433

	39
1	analysis, at least in May report, doesn't specifically
2	touch on fuel performance. I mean, aspects, of
3	course, are important to design-based accidents and so
4	on.
5	But it's not specifically a fuels PIRT
6	like the TRISO PIRT was. As far as newer, to your
7	first question, the best document I would say, which
8	I don't reference on slides but is referenced in the
9	report, is the project plan for the advanced gas
10	reactor program.
11	It talks about some of the missing
12	information. And then it talks about how the AGR
13	program is going to deal with that. So, that might be
14	a more up-to-date maybe not as comprehensive, but
15	more up-to-date document, if you want to look at it.
16	MEMBER CORRADINI: Okay.
17	MEMBER REMPE: So, I'm not an expert on
18	fuels, but I am aware that X-energy is trying to do
19	some sort of manufacturing capability for all the gas
20	reactors relying on TRISO fuel. And they realize that
21	they're coming in and they're different than what the
22	labs have done.
23	And they'll have to get a radiation data
24	to show their capability is as good as what's been
25	done in the DOE-funded HER program.
ļ	I

(202) 234-4433

	40
1	With sodium fuel, I think the situation's
2	a bit different. In your report, you talk about how
3	that there's been this FAST reactor working group
4	report, as well as a report done by perhaps it was
5	Argonne or someone in the DOE thing.
6	But they talk about the metal fuel. And
7	you talk about in your report that there's data out
8	there. But one of those reports talks about how the
9	metal fuel has evolved over the years. And we've not
10	had any metal fuel made and run in EBR-II in a lot of
11	years now.
12	And I didn't see that clear indicator in
13	your report that yeah, there's a lot of historical
14	data, but whoever comes in with a new fuel capability
15	better have some data to show that it's still valid.
16	I mean, I don't know if you've had time to
17	get into the details and see if all this data, even
18	though the later fuel from EBR-II perform the same as
19	the earlier of the fuel, or the defects might change
20	with the manufacturer.
21	And I guess I'm interesting in, do we know
22	as much about metal fuel fabrication nowadays? I've
23	heard over the years some saying, oh, we had two
24	vendors make it. But jeepers, Aerojet hasn't been
25	making fuel also for a lot of years.
ļ	I

(202) 234-4433

	41
1	And so I think there's more uncertainty
2	with metal fuel. What's your take on it?
3	DR. CORSON: I mean, there's certainly
4	some uncertainty with restarting the manufacturing
5	process. But I think Argonne hasn't looked at this
6	and they feel pretty good that what we've done in the
7	past is
8	MEMBER REMPE: Well, I know Argonne, and
9	I know Gene feel very good about it. But I am
10	concerned. And I think, again, even the Argonne folks
11	at the MFC were not the technicians who made it years
12	ago for EBR-II. And is there not some concern by
13	anybody?
14	MEMBER PETTI: Yes, I think let me just
15	add that this was a subject of big discussions at INL
16	before I retired. And there are more than one
17	fabrication route now for metallic fuel.
18	The approach that was used for EBR-1, the
19	historic approach, is casting. And some of the newer
20	vendors think that's not an economical process to
21	scale for industry, with you guys not making a lot of
22	it.
23	And so, if you change the fabrication
24	route, the sessions, well, you have to re-irradiate,
25	right? Because we know that how you make it can
	I

(202) 234-4433

	42
1	impact how it performs. So, I think some of the
2	vendors that have looked at it more seriously
3	understand that.
4	I don't know that it's a belief held
5	across all the concept developers in sodium systems,
6	but some of them understand that.
7	DR. BAJOREK: This is Steve Bajorek.
8	We've recently started some work with Department of
9	Energy to start looking at the experimental gaps that
10	are in existence in a number of these different areas.
11	With respect to metallic fuel, when we met
12	with them, they think that most of the phenomena are
13	covered with EBR-II. However, because of the new
14	manufacturing, swelling of these metallic fuels,
15	that's something that has very high uncertainties.
16	It's probably going to need more work.
17	The concern there is as you start to go a
18	little bit higher burn-up, you're going to start
19	having much more swelling in these metallic fuels and
20	the database may not have sufficient coverage.
21	MEMBER REMPE: Again, X-energy folks at a
22	meeting clearly said, even though Oak Ridge has been
23	making this fuel, we know we've got to radiate it and
24	we've got a plan to show we are as good as what the
25	folks within a couple of years ago, even though we
	1

(202) 234-4433

	43
1	have folks from Oak Ridge coming and help us, that we
2	could still do the same thing.
3	Now, I know, maybe it's harder to make
4	TRISO fuel than metal fuel, but the folks from
5	Argonne, they've got procedures from the old days.
6	And I really would like to see the regulators say,
7	well, I would like to see some radiation data to show
8	that you had the same type of fuel that they made a
9	decade ago, or whenever it was they last made it.
10	And that's what I would like to convey
11	here today, that I think you need to check it and make
12	sure they can still do it.
13	CHAIR BLEY: Amy?
14	MS. CUBBAGE: Do I just
15	CHAIR BLEY: Introduce yourself.
16	MS. CUBBAGE: Hi. This is Amy Cubbage,
17	NRO. I'd just like to make kind of a broad statement
18	about the meeting here and the scope that we're
19	focusing on our independent confirmatory capabilities
20	and what data needs we see to support that. And
21	separately from that, NROs engaging with potential
22	applicants on what they would need to do.
23	So, our requirements they're not even
24	requirements, they're things that we're doing because
25	we want capability are separate from what
Į	I

(202) 234-4433

	44
1	applicants would need to do to demonstrate their fuel.
2	And at this time, the linear term
3	applicant using metallic fuel would be the Oklo
4	vendor, and we're dealing with them separately,
5	outside the scope of these discussions.
6	MEMBER REMPE: I get that. But what I
7	guess is that, one, even when you refer to the FAST
8	reactor working group report as a source of data and
9	the other places, there's been a change in the metal
10	fuel over the years.
11	MS. CUBBAGE: Right.
12	MEMBER REMPE: And so, I'd like to see, as
13	you
14	MS. CUBBAGE: So, to the extent that the
15	staff wants to rely on that data to validate its
16	codes, that's a factor we should consider. But I was
17	concerned that you were raising with regard to the
18	applicants. We'd like to keep those discussions
19	somewhat separate.
20	MEMBER REMPE: I get that. But I'd like
21	to see if there's been a difference. And then I'd
22	like to note that no matter what the applicant is,
23	that even their fuel may be different than what you've
24	had historically, is the point I'm trying to raise
25	today.
I	I

(202) 234-4433

No, I understand. 1 MS. CUBBAGE: And I 2 guess from a regulatory office perspective, we don't have a near-term applicant, other than Oklo, using the 3 4 fuel. So, PRISM will be authorized by Department of 5 Energy if it goes forward for the VTR reactor. They're still working on that. And so, we'll engage 6 7 with those applicants as they come. 8 DR. CORSON: Okay, so now I'm going to go

a little bit into some of the phenomenology for TRISO
and metallic fuel. So, tri-isotropic fuel has been
proposed for not just high-temperature gas reactors,
but also for these fluoride cooled, high-temperature
reactors, which have a molten salt coolant but still
fixed fuel, or at least solid fuel, I should say.

15 So, the kernel and the codings provide barriers to fission product release. 16 I'll show a 17 picture of that on the next slide. And TRISO fuel has domestically operated number of 18 а years and 19 internationally.

Of course, the German AVR and THTR are the big examples internationally. And then, in the US we had Fort St. Vrain. So, we do have some operating experience with TRISO. Next slide.

24 So, this just shows what a TRISO particle 25 looks like. So, you have a kernel which contains your

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	uranium fuel, uranium dioxide, your uranium
2	oxycarbide, whatever it is.
3	And then you have a porous buffer layer
4	and a silicon carbide layer sandwiched between two
5	pyrolytic carbon layers. And on the next slide I'll
6	talk about what those different layers do.
7	These little particles are on the order of
8	1,000 microns, give or take a bit. And they're packed
9	in a graphite matrix. Here, I'm showing a pebble
10	design. These are some typical dimensions back when
11	we were looking at pebble bed reactor for NGNP.
12	And there's quite a few of these particles
13	per fuel compact, 1,000 to 10,000 or so. So, next
14	slide.
15	So, the way this works, the kernel
16	provides some fission product retention. It's just
17	like the pellet in U-02. It doesn't keep everything
18	in but retains quite a bit of the fission products.
19	The current plans are to use uranium
20	oxycarbide. In the past, the reactors have used
21	uranium dioxide, but the current irradiations that are
22	being done for the AGR program used uranium
23	oxycarbide.
24	The porous buffer layer accommodates the
25	kernel expansion, fission gas release, and fission
I	I

(202) 234-4433

47 1 recoil energy, so it protects the structural layer, 2 essentially. 3 The pyrolytic carbon provide fission gas 4 retention, and also some structural support for the 5 silicon carbide layer, which is the main structural It's essentially the pressure vessel for 6 support. 7 this kernel design. So, next slide. 8 This just goes through some of the 9 phenomena that are important to safety. These are 10 just the things that we need to be aware of when we're doing our fuel reviews. 11 So, you have to worry about fission 12 product migration through these layers, or attack of 13 14 the silicon carbide layer. So, historically, there 15 have been large silver releases from these particles, and there's also some evidence that palladium can 16 attack and fail the silicon carbide layer. So, these 17 are just things we need to be aware of. 18 19 Another big thing historically that was an issue for TRISO, is oxygen and carbon monoxide release 20 from the fuel kernel. It led to a phenomena of kernel 21 migration, where the kernel would actually move and 22 fail the structural layers. 23 But the uranium oxycarbide kernel should 24 minimize, or pretty much eliminate, this failure mode. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	So, that's one of the main reasons that we've gone to
2	that uranium oxycarbide.
3	And then, of course, we need to deal with
4	the usual suspects, like pressure buildup and
5	mechanical stresses, strains, and so on.
6	MEMBER CORRADINI: So, since I don't know
7	anything about this, I guess I can ask this question.
8	I didn't understand the first bullet. Does that mean
9	that it always attacks, or there's a level of burn-up
10	above which you have to worry about this? The way you
11	write it
12	DR. CORSON: Yeah, there's so, for
13	silver it just a high diffusivity through the layers.
14	So, that's just something you have to deal with. For
15	palladium, it's like a certain amount you need.
16	The exact amount and so on is being
17	investigated. I mean, that's one of the things that
18	the AGR program is looking at. But yeah, it's just
19	something that has been identified as a concern. How
20	much of a concern hasn't been quantified yet. But
21	yeah, AGR is working on it.
22	MEMBER KIRCHNER: James, can I get you
23	back one slide previous?
24	DR. CORSON: Sure.
25	MEMBER KIRCHNER: I'll just quibble a
I	1

(202) 234-4433

	49
1	little bit with your third bullet.
2	DR. CORSON: Okay.
3	MEMBER KIRCHNER: The pyrolytic carbon
4	really protects the silicon carbide. That's really
5	what it's there for.
6	DR. CORSON: Mm-hmm.
7	MEMBER KIRCHNER: But inner and outer.
8	DR. CORSON: Yeah.
9	MEMBER KIRCHNER: It doesn't provide a lot
10	of fission gas retention at all.
11	MEMBER PETTI: No, that's not true, Walt.
12	It provides a high degree of fission gas retention.
13	MEMBER KIRCHNER: Yes, but it's subject,
14	Dave, to cracking and all kinds of things under
15	irradiation and stress from heat. So, I mean, you
16	really hang your hat on the silicon carbide. The
17	performance.
18	MEMBER PETTI: But, for instance, if the
19	silicon carbide layer failed in the particle, what is
20	seen experimentally is cesium release but no noble gas
21	release, because the pyrolytic carbon layers are
22	intact and prevent the fission gas from coming out.
23	So, it's how to interpret what you see experimentally.
24	MEMBER KIRCHNER: Okay, I'll yield the
25	point, but not too much. And I would have preferred
I	I

(202) 234-4433

	50
1	the zirc carbide. But anyway, they didn't go there.
2	MEMBER PETTI: Well, we can have that
3	discussion some other time. I'm on the other side of
4	the fence on that.
5	MEMBER KIRCHNER: Thank you.
6	DR. CORSON: So yeah, just quickly to go
7	through metallic fuel, so next slide. So, it's
8	specifically looking at U-10 zirc, so ten percent
9	zirconium. That's what we expect most of or the
10	initial applicants to come in with.
11	We're also considering a mix of uranium
12	and plutonium, with tin-zirconium as well. But
13	certainly initially, we expect U-10 zirc. So, this
14	has been proposed for sodium FAST reactors and, as Amy
15	mentioned, for some heat pipe reactors.
16	This fuel is typically paired with high-
17	temperature steel cladding, HT-9 was used towards the
18	end of the EBR program, and we expect that's what
19	applicants would use as well.
20	And this fuel has years of domestic and
21	international operating experience. Once again,
22	EBR-II is the best example that we have.
23	MEMBER CORRADINI: Again, something I'm
24	not familiar with, so I just thought I'd ask. So,
25	FFTF I thought ran with HT-9 also?
	I

(202) 234-4433

	51
1	DR. CORSON: FFTF had yes, but it had
2	oxide fuel. So, FFTF had oxide driver fuel. But they
3	did test metallic fuel. But the actual fuel in that
4	fuel reactor was an oxide. MOX fuel. So yeah, next
5	slide.
6	So, this just shows what a metallic fuel
7	rod looked like. This is back from PRISM, which might
8	be used similar design might be used for the BTR.
9	So, I think the big thing to note here is
10	a very large fission gas plenum. And also, there's a
11	very large initial gap between the fuel slugs and the
12	cladding, which is initially filled with sodium.
13	As Steve had mentioned, this metallic fuel
14	swells quite a bit. That's why you have this big gap.
15	And you have this big plenum because you release a
16	very large amount of fission gases. So
17	MEMBER KIRCHNER: Since you brought it up,
18	or someone did, what would they do if I remember
19	it, the fuel was cast. So, is it proposed now to go
20	to some other alloy approach or extrusion, or would it
21	be an extrusion?
22	DR. CORSON: Yeah.
23	MEMBER KIRCHNER: Okay. And then, do we
24	have any feeling about general dynamic behavior with
25	regard to swelling? Because, as you point out, the
	1

(202) 234-4433

	52
1	large gap and the sodium is there to provide good
2	conductivity, and so on and so forth. Do we know
3	do we have any preliminary evidence about how an
4	extruded slug would work versus the cast?
5	DR. CORSON: So, I have to say not that
6	I'm aware of. I mean, certainly I agree we're going
7	to have to deal with larger uncertainty until we have
8	actual evidence of manufactured fuel, how it performs.
9	But certainly, for our purposes in
10	research, we can get away a little bit more with
11	larger uncertainties, just because how we do our
12	confirmatory analysis.
13	MEMBER KIRCHNER: So, just sticking to
14	what you're doing in your co-development, so when it
15	comes to FAST, do you have confidence in the models,
16	that they'll deal with the change in the what would
17	you call it, the structural yeah, the fabrication
18	technique for those slugs?
19	DR. CORSON: I mean, certainly we're going
20	to rely on what our historical data. And if we have
21	new evidence, then we will update the codes as
22	MEMBER KIRCHNER: Then, you're going to
23	have to put some uncertainty
24	DR. CORSON: Yeah.
25	MEMBER KIRCHNER: kind of factor.
ļ	I

(202) 234-4433

	53
1	DR. CORSON: And that's why we do things
2	like sensitivity studies, to see, okay, we say
3	swelling is this much, but what if it's really a
4	little bit greater? How would that affect things?
5	So yeah, that's why we really rely on
6	sensitivity studies, to look at these cliff effects.
7	MEMBER BALLINGER: My understanding is
8	that the swelling was actually intentional. In other
9	words, once you get above about 30 percent, or 20 or
10	30 percent, you get interconnected porosity. And then
11	the fission gas solutions gets easy. You got this
12	large plenum. So, it's pretty well understood, I
13	thought.
14	DR. CORSON: For the old manufacturing
15	process. So
16	MEMBER BALLINGER: But I guess but
17	metallic fuel is metallic fuel. It's going to swell
18	like a dead fish.
19	(Laughter.)
20	DR. CORSON: Yeah, so you're certainly
21	right, it's going to swell.
22	MEMBER CORRADINI: I'm trying to visualize
23	that. Say that again.
24	PARTICIPANT: You've seen veils flow up.
25	DR. CORSON: Yeah, you're right. It's
I	1

	54
1	going to swell no matter what. But is it going to
2	swell exactly the amount that we saw in the past, or
3	are there going to be differences?
4	MEMBER BALLINGER: Well, when you get to
5	30 percent, once you get interconnected porosity,
6	you're pretty much done. Right?
7	MEMBER CORRADINI: What I think Ron is
8	saying, is if it's more, it's of no consequence.
9	That's what I thought you were getting at.
10	But I know we're getting into the weeds,
11	but I thought I remembered that we had a well,
12	there was some meeting, I can't remember what
13	meeting and Terra Power already had similar
14	radiations of their extruded fuel. Am I mis-
15	remembering?
16	DR. CORSON: Could be. Sorry, I'm not
17	aware of that.
18	MEMBER CORRADINI: Okay.
19	MEMBER PETTI: There are a plan to do some
20	irradiations on the extruded fuel, but there may
21	MEMBER CORRADINI: Oh, I thought they had
22	done the irradiations in Russia.
23	PARTICIPANT: M-46.
24	MEMBER PETTI: Yeah. Well, okay, I'm not
25	sure at what scale that extrusion was done.
Į	I

(202) 234-4433

	55
1	MEMBER CORRADINI: Well, I'm sure there
2	were teeny tiny axial links. But I thought they had
3	done extruded fuel. That's the reason I was curious.
4	MEMBER PETTI: There's larger scale
5	extrusion work going on right now that's sort of at a
6	pilot scale, I think. And the plan is to irradiate
7	that as well.
8	MEMBER CORRADINI: I see. Okay.
9	MEMBER PETTI: I think Terra Power I
10	would personally put Terra Power in the same sort of
11	knowledge and approach as Joy described. They know
12	they have to irradiate, and so they're working that.
13	MEMBER CORRADINI: So, they're aware of
14	the need.
15	MEMBER PETTI: Yes.
16	MEMBER REMPE: In the data that you have
17	looked at because again, some of those other
18	reports emphasize how EBR-II fuel varied over its
19	operating years are you seeing much variability
20	when some of the I mean, have you started plotting
21	certain performance parameters as a function of for
22	different fuels, and seeing any or is it all just
23	the same no matter who made it, or not even started
24	looking at the data yet?
25	DR. CORSON: So, I would say EBR-II
ļ	1

(202) 234-4433

	56
1	actually used different metallic fuels throughout its
2	lifetime. So, that could be why the performance
3	changed. They used what, U-Fissium, I think, early
4	on, and then they eventually went to U-10 zirc.
5	But
6	MEMBER BALLINGER: That's because of the
7	reprocessing part.
8	DR. CORSON: Yeah.
9	MEMBER BALLINGER: Yeah.
10	MEMBER REMPE: So, are you seeing
11	variation, is what I'm kind of I mean, have you
12	started looking at the data and your models, or you
13	just aren't that far yet? You just
14	DR. CORSON: Yeah, not that far. I mean,
15	we've done preliminary assessments. But we've used
16	three test cases. I mean, there are certainly way
17	more test cases in the database that Argonne has. So,
18	we'll look at that going forward.
19	MEMBER REMPE: I'd be interested if you
20	can see some differences in the performance for over
21	the years of fuel.
22	DR. CORSON: Yeah. I mean, that's
23	certainly something we'll need to take into
24	consideration going forward.
25	So, metallic fuel performance, I already
I	I

(202) 234-4433

touched on the last point, the fission gas release and swelling. Of course, it's metal. It has very good thermal conductivity. But then, it also has a lower melting point. So, those are just things that you have to be aware of when you're doing your analysis. So, next slide.

7 Phenomena important to safety. One interesting thing that happens with these metallic 8 9 fuels is that the zirconium and uranium tend to 10 redistribute inside this fuel slugs as you go along. And this can have -- basically, they can form like 11 different local phases, which are melting 12 temperatures, or eutectic behavior, and so on. 13

So, it's something to be aware of, because it can impact fuel performance. Of course, you always have to be aware of manufacturing. And then, usual suspects, fee conduction, and so on.

18 MEMBER PETTI: So, I have a question. Do 19 you guys actually plan to try to model the 20 redistribution in the FCCI?

21 DR. CORSON: Yeah, that's something where 22 it's a maybe right now. So, our plan right now is to 23 look at whether or not we think it's necessary. So, 24 we're going to do some preliminary assessments and 25 determine whether or not we need the zirconium

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	58
1	redistribution model.
2	I would also say that there are some
3	models out there that we can scavenge if we feel we
4	need to. So, to answer the question, maybe.
5	MEMBER PETTI: Yeah, because you'll find
6	a lot of stuff in the literature today on FCCI and
7	trying to understand it better. Lots of university
8	work going on and the like. So, it's still an active
9	area of research.
10	DR. CORSON: Yeah, I know. We did talk
11	about this a little bit with DOE, like the lanthanide
12	behavior and how that impacts fuel failure, and so on.
13	So yeah, we're aware of it. Whether we actually model
14	it or not is to be determined.
15	MEMBER PETTI: Okay.
16	DR. CORSON: So, right now we're going to
17	talk a little bit about how we selected which code
18	we're going to use going forward.
19	So, there's a lot more on this in the
20	report, but I'll go through this real quickly. So,
21	again, we need a tool that we can use.
22	We're going to focus on fuel performance
23	and we're going to focus on solid fuels, so this just
24	excludes our consideration of fuel salts for this
25	volume, or salt fuel reactors. And then, I'm going to
	I

(202) 234-4433

	59
1	discuss a few of the criteria we used.
2	There's really two big choices. It's
3	either FAST, NRC's code, which is a follow-on of the
4	FRAPCON code, and then there's INL's BISON code. So,
5	I'll just go through this fairly quickly. I talked
6	about
7	MEMBER CORRADINI: So let's stop there for
8	a minute. But both of them rely on the same database.
9	DR. CORSON: Yeah. They do. So, there
10	are
11	MEMBER CORRADINI: So, is it like
12	Chevrolet and Ford?
13	DR. CORSON: There are certainly a lot
14	of
15	MEMBER CORRADINI: Why do I need a Ford
16	when I've got a Chevrolet?
17	DR. CORSON: So, there's a lot of
18	similarities. I will say BISON is more detailed and
19	it also has some interplay with the MARMOT code, which
20	has the mesoscale-type calculation. So, it goes into
21	a little more detail than FAST does. And it doesn't
22	have the same assessment database, at least for Light
23	Water Reactors, at this point.
24	MEMBER CORRADINI: So, you gave me some
25	pros. So, I sense the last one was a con.
	1

(202) 234-4433

	60
1	MR. GEELHOOD: Yeah, I know that's a major
2	con was
3	MEMBER CORRADINI: I think you have help
4	from the peanut gallery. You have to identify
5	yourself and talk into the mike.
6	MR. GEELHOOD: Yeah, this is Ken Geelhood.
7	PARTICIPANT: Is this turned on or not?
8	MEMBER CORRADINI: It should be on. You
9	just got to get real close, Ken. Real close. Real
10	close.
11	PARTICIPANT: Aim it straight
12	MR. GEELHOOD: So, I would say the
13	assessment database of FRAPCON and FAST is much
14	bigger. Probably almost a factor of ten greater than
15	what INL's used to assess BISON.
16	So, I would say that would be a pro of
17	FAST, is that we have such a large assessment
18	database, we can have higher confidence within a
19	larger area of power and burn-up levels.
20	MEMBER CORRADINI: But then, let me ask a
21	question back to James, but you have help. So, if I
22	now take myself out of the Light Water business and I
23	take myself into the other business of metallic fuel
24	or TRISO fuel, both will have to take the same
25	database and, excuse my English, tune itself to that
I	

(202) 234-4433

	61
1	database. Is that not true?
2	MR. GEELHOOD: I don't really think that
3	tuning to a database is really what we do. So, we
4	kind of have two levels of data. So, there's separate
5	effects data. When you irradiate something, then you
6	measure thermal connectivity, how much it swelled,
7	things like that.
8	So, we develop models based on that. And
9	then, we do assessments. So, when you irradiate
10	something, maybe you've put a lot of instrumentation
11	in, you can measure temperature in situ. You can
12	measure straining afterward.
13	Then, we just compare to that. It would
14	be tempting to go back and then try to change
15	something to get your predictions, but that's not
16	really our approach.
17	Our approach is to fit all the separate
18	pieces, and then see how well they do.
19	MEMBER CORRADINI: So, the separate
20	effects experiments lead to your model improvement,
21	and then the assessment database with what I'll call
22	a more integral measured test
23	MR. GEELHOOD: Yes.
24	MEMBER CORRADINI: is what you compare
25	to.
ļ	1

(202) 234-4433

	62
1	MR. GEELHOOD: Mm-hmm.
2	MEMBER CORRADINI: Okay, I got it.
3	MEMBER REMPE: But you need to say who you
4	are too. I'm sorry.
5	PARTICIPANT: He did. He did.
6	MEMBER REMPE: You did say?
7	MR. GEELHOOD: Yeah, I'm Ken Geelhood from
8	PNNL.
9	MEMBER REMPE: Okay, thank you. Then, I
10	had a question to I mean, you made the comment
11	about MARMOT. And in the interface between BISON and
12	MARMOT, the explanation you gave is good in that you
13	talk about we have separate effects for thermal
14	conductivity degradation, and then we have an integral
15	database.
16	My understand is this mesoscale MARMOT
17	database is very, very, very, very limited, if any,
18	especially when you get into FAST reactors. And so,
19	that's, I think, a difference.
20	My understanding is the fundamental
21	equations are a bit different in BISON. Now, you're
22	right that they're to the same integral effects, but
23	it's not clear to me that you have separate effects
24	for the BISON MARMOT type of interface. Is that a
25	true statement?
	I

(202) 234-4433

	63
1	MR. GEELHOOD: I would say that's a very
2	true statement. I would say that when we already know
3	the answer, so to speak, in LWRs, then the proof's in
4	the pudding. So, MARMOT could forget what we already
5	know, fission gas release, then maybe you could have
6	some confidence in moving it on.
7	But to date it hasn't been successful at
8	predicting what we already know based on fundamental
9	equations. And so, if it can't do that, I don't think
10	it's ready to go to what we don't know.
11	MEMBER REMPE: Thank you.
12	MEMBER CORRADINI: Can I just ask either
13	James or Ken just to be clear? As you would learn
14	from what people call mesoscale, I assume grain
15	boundary size stuff, is that what MARMOT is, grain
16	boundary size stuff?
17	MR. GEELHOOD: Probably even lower than
18	that.
19	MEMBER CORRADINI: Thousands of atoms
20	stuff-ish?
21	MR. GEELHOOD: Probably. They call it the
22	mesoscale. It's in between atoms
23	MEMBER CORRADINI: It's not an atom and
24	it's not a grain. It's somewhere between.
25	MR. GEELHOOD: Yeah.
Į	I

(202) 234-4433

	64
1	MEMBER CORRADINI: Okay. But as you learn
2	that, there would have to be separate effects
3	experiments either currently in the Light Water
4	business, or for TRISO or metal, to better improve the
5	modeling within MARMOT.
6	MR. GEELHOOD: Certainly. I think that
7	someone could use their advanced microscope skills,
8	various spectroscopy things, to try to get some sort
9	of data that would be used as input to MARMOT. But I
10	think that's very difficult and I don't think it's
11	been done successfully to date.
12	MEMBER CORRADINI: If I take that away and
13	ask are there separate effects enough well, I guess
14	we're getting away from why you answer
15	MR. GEELHOOD: I think I know what you're
16	answering. Like the inputs, what it means, what are
17	its material properties? I don't think they're very
18	easy to measure.
19	MEMBER CORRADINI: Oh, I was going to say
20	something more I'm back to my Chevrolet and Ford
21	question, which is, if I have an experimental
22	database, can I not then use those separate effects
23	data to either help in the performance of FAST or
24	BISON?
25	MR. GEELHOOD: I suppose you could. But
l	

(202) 234-4433

	65
1	on some level, if that's what you're doing, then would
2	you rather have one knob to tune, or 50 knobs way down
3	in the weeds to tune? And if ultimately you're
4	getting the same answer, then we should go with the
5	most simple approach.
6	MEMBER CORRADINI: Okay. All right,
7	thanks. I got it.
8	MEMBER BALLINGER: Along the lines of what
9	Dave Petti has been saying, we need to be careful
10	about hitting a fly with a sledgehammer. When you
11	have a FAST reactor fuel where you have a sodium gap,
12	what happens to the fuel is decoupled to some extent,
13	except for the fuel-clad chemical interaction part
14	from the cladding. And so, from the standpoint of a
15	source term determination
16	MR. GEELHOOD: So, they're not totally
17	decoupled. So, we
18	MEMBER BALLINGER: Well, I didn't say
19	totally decoupled. I didn't use the word totally. I
20	said, with the exception of.
21	MR. GEELHOOD: Well, but we see kind of
22	two swelling regimes. We see an unrestrained
23	swelling, maybe of like 20 percent.
24	MEMBER BALLINGER: Yep.
25	MR. GEELHOOD: But then, once it comes in
I	I

(202) 234-4433

	66
1	contact, certainly the swelling rate goes down quite
2	a bit, because the cladding is pretty strong and
3	provides quite a bit of restraint to that swelling.
4	And so, but when you get that restrained
5	swelling, that is now straining the cladding, and so
6	that is leading to damage of the cladding.
7	MEMBER BALLINGER: But when you have
8	again, when you have 30 percent swelling, you got
9	interconnected porosity, when you get interaction
10	between that and the clad, the clad doesn't go out
11	exclusively. The fuel goes in.
12	In other words, the fuel is able to
13	accommodate the plastic deformation.
14	MR. GEELHOOD: To some degree. But it
15	does strain somewhat
16	MEMBER BALLINGER: Yeah, yeah. It does
17	strain the cladding.
18	MR. GEELHOOD: maybe like a couple of
19	percent. And so, that is now a damage mechanism that
20	you want to worry about.
21	MS. WEBBER: Can I just make one comment?
22	So, notwithstanding the staff's approach to selecting
23	one code versus another, I think the other thing I
24	think about is that some of these advanced reactor
25	potential applicants, I'll call them may use BISON.
	1

(202) 234-4433

	67
1	And so, there's active development on BISON.
2	And so, at the very least, the staff needs
3	to have some level of familiarity with BISON, to be
4	able to ask the appropriate questions during a
5	licensing review.
6	And so, I think while they're considering
7	the use of BISON, there still may be a lot of
8	development work that needs to be undertaken. But
9	having a familiarity with BISON will help if we have
10	applicants who use it in the future.
11	MEMBER CORRADINI: So, I'm sure this is a
12	terrible analogy. However, I look upon this as RELAP5
13	and TRACE.
14	MS. WEBBER: I don't know. I don't know
15	that much. Personally, I don't know that much about
16	the process.
17	MEMBER CORRADINI: I don't either, but I
18	look upon these as two things that then demand an
19	experimental database that must be fed, both, as Ken
20	said, as separate effects and
21	MS. WEBBER: I don't think we would
22	disagree.
23	MR. GEELHOOD: That's a reasonable
24	analogy. And the way we're looking at FAST and BISON
25	is, we want the capability of using either one. Okay?
Į	I

(202) 234-4433

	68
1	And we'll factor that in. And eventually, we'll find
2	out which one's working better.
3	DR. CORSON: Next slide.
4	MS. WEBBER: Okay.
5	DR. CORSON: So yeah, we've already talked
6	about all the phenomena we need to model. We've also
7	touched on multi-physics, do we need to couple, or can
8	we take a more serial approach.
9	Certainly, we would like a code that could
10	do either, ideally. Next slide.
11	So, of course, we need to consider code
12	development costs. We don't want to spend unnecessary
13	money. And that means we need to consider full life
14	cycle costs: validation, code maintenance, because we
15	expect if applicants do come in and reactors do get
16	built, we're going to need these codes for the long-
17	term, because there's training, and so on. So, that's
18	just something to consider.
19	Whether or not we're going to be ready to
20	meet industry schedule, as I said, we really need to
21	be ready and we want a code that's going to be ready
22	on time.
23	Computational research requirements. So,
24	right now we basically run on Windows, although this
25	is changing, I will say.
Į	I

(202) 234-4433

While it's nice to have something that can run on Windows, we are moving to the cloud. We have a Linux instance that we've been working on. So, this isn't so prohibitive necessarily if we don't have Windows.

Impacts on staff. So, certainly, we've touched on this a little bit. But as much as possible, we would like something simpler, just if possible, because it's easier to understand.

10 It's not to say that we can't understand 11 something that's complex, but certainly we have 12 limited time, it's easier for us if we have a simpler 13 model. And it makes sense too, because it might allow 14 us to do our reviews much more quickly if we have 15 something simple that we can understand, than going 16 into a very complex code.

17 And then lastly, this issue of regulatory independence that comes up. We really need to 18 19 understand all the assumptions that go into whatever It certainly helps if we're actively 20 code we use. involved with code development, to really understand 21 what the code is doing, so that we can better perform 22 our reviews. So, based on all these criteria --23 24 CHAIR BLEY: I like what I've read and what you've been saying here. As we went through 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	Volume 1 especially, I think things were a little more
2	up in the air.
3	It strike me there's and you guys have
4	said this a couple of times today in another way
5	there's a difference between what you choose to do for
6	confirmatory analysis, what you choose to require, or
7	at least suggest as a good option for you to review,
8	is very different from what a vendor decides to do.
9	But I think some of the concern we heard
10	earlier at other meetings was, if we require vendors
11	to use more complicated tools than they really need,
12	that kind of doubles the expense of dealing with all
13	of these issues.
14	So, I like the way you're talking today
15	about what you need in-house, and I think that'll help
16	the vendors as well.
17	MS. WEBBER: I mean, I just want to
18	comment on that. So, we talk about this quite a lot,
19	that the vendors have to design these reactors and
20	make sure that they are designed, constructed, and
21	operate safely.
22	So, they may have to have computational
23	capabilities well beyond what our needs are. And so,
24	that's something that we think about and talk about
25	quite a bit. And so, the capability of those codes
	I

(202) 234-4433

	71
1	may be much more I don't know what the word is
2	developed and more extensive than perhaps what our
3	needs are. So, I just wanted to make that comment.
4	DR. CORSON: So yeah, based on all these
5	criteria, we're going to work on FAST going forward.
6	I mean, we've been actively involved with FRAPCON,
7	FRAPTRAN, FAST code for decades. So, it makes sense
8	to continue with this.
9	But as Ken said, we are still following
10	what the BISON team are working on. And it certainly
11	helps us to be familiar with the BISON models. So
12	(Off-mic comment.)
13	MS. WEBBER: Protesting the question.
14	MEMBER CORRADINI: So, no, we're just
15	educating ourselves.
16	DR. CORSON: Okay. Just making sure you
17	didn't have a question.
18	MEMBER CORRADINI: No no.
19	DR. CORSON: So, okay.
20	MEMBER CORRADINI: We're not shy.
21	DR. CORSON: Okay. So now, Lucas is going
22	to talk about what we're doing to get FAST ready, and
23	what our plans are then for the future.
24	MS. WEBBER: Are we moving off of this?
25	DR. CORSON: Yeah.

72 1 MEMBER PETTI: So, just a question. Are you aware of some of the latest results in TRISO-2 3 modeling that the AGR program has done where they've 4 done а really detailed look at every thermal mechanical material property that's needed and varied 5 them, and figured out which are the ones that really 6 7 make a difference and which of the ones don't make a 8 difference? That might be quite helpful for you guys 9 as you think about what you're doing for FAST. 10 DR. CORSON: So, yeah. That would certainly be helpful. Is that a published INL report? 11 MEMBER PETTI: Yeah. I was the reviewer 12 before I retired. So, it was done in 2018. 13 14 DR. CORSON: Okay. 15 MS. WEBBER: Can we ask you for an action 16 item, to give us that report? 17 DR. CORSON: We may have it. But I have so many INL reports that it may have gotten lost. 18 19 MEMBER PETTI: Yeah. I mean, it can really help you leapfrog. Similarly, are you aware of 20 the four volume, comprehensive nuclear material 21 publication that goes through all the Gen-4 systems, 22 and there's chapters on fuels and there's chapters on 23 24 the modeling of those fuels? 25 DR. CORSON: Yes. So, we are aware of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	that.
2	MEMBER PETTI: Good. Good. That's
3	scheduled for updating, actually
4	DR. CORSON: Okay.
5	MEMBER PETTI: in the next year or so.
6	So, be on the lookout.
7	DR. CORSON: Yeah, that would be good. If
8	you could give us a heads-up, that would certainly be
9	helpful as well.
10	MEMBER CORRADINI: So, Dave, just to close
11	the loop, maybe you want to when you send it, send
12	it to Weidong and Derrick so that they can pass it on
13	to Kim, just so we
14	MEMBER PETTI: Okay.
15	MS. WEBBER: Yeah, pass it along to James
16	Corson as well.
17	DR. CORSON: Yeah, and thanks a lot for
18	that. That would be really helpful.
19	MS. WEBBER: He'll get to it a lot faster
20	than I will.
21	DR. CORSON: Maybe.
22	MS. WEBBER: Are we moving on?
23	MR. KYRIAZIDIS: All right, so good
24	morning. So, my name is Lucas Kyriazidis. I'll be
25	reviewing the development plans for FAST for non-LWRs.
I	

```
(202) 234-4433
```

	74
1	So, as James has highlighted, the NRC has
2	selected to pursue using FAST as its fuel performance
3	code to further develop and use it during confirmatory
4	calculations for non-LWRs.
5	Highlighting some of the reasons why we've
6	made that selection, is just that we've been actively
7	involved with the development of FAST, in addition to
8	FRAPCON and FRAPTRAN, throughout its creation.
9	Also, as Ken has highlighted, has an
10	extensive assessment database for LWRs. So, if you
11	want to go on to the next slide.
12	I'll go over the generic non-LWR
13	development needs, and what its current capabilities
14	are, and then what we plan on doing to the code.
15	So, in its current state, FAST is limited
16	to modeling 1.5-D cylindrical fuel rods. In here,
17	1.5-D cylindrical fuel rods, or 1.5-D analysis, simply
18	refers to the fact that each radial node is
19	calculated, and then well, let me sorry.
20	1.5-D simply refers to the fact that the
21	transport equations are solved in the radial direction
22	for each axial slice. And then, simple relations are
23	used to handle the actual transport.
24	MEMBER CORRADINI: Hang on. So, that
25	seems reasonable. So, where does that break down?
ļ	1

(202) 234-4433

	75
1	Because what you're telling me is in the world of
2	reactor physics, that was what life was before some
3	magical 3-D slice connection. Right?
4	I mean, all reactor physics are basically
5	just 2-D analysis. And then, I connect actually by
6	some sort of simple connection algorithm. So, what
7	you're telling me here is I do a radial, and then I
8	don't have any circumferential variation, but I then
9	connect axially over some lane scale.
10	MR. KYRIAZIDIS: Correct.
11	MEMBER CORRADINI: Okay. So, why is
12	that where does that break down?
13	MR. KYRIAZIDIS: So, the only reason
14	that's okay is because the fuel rods are volume
15	skinny. And so if you had a fuel rod
16	MEMBER CORRADINI: A fat fuel rod.
17	MR. KYRIAZIDIS: A fat fuel rod, you could
18	have some axial heat transfer.
19	MEMBER CORRADINI: Okay, fine.
20	MR. KYRIAZIDIS: But when you have a
21	pencil, you don't really get significant heat transfer
22	up and down.
23	MEMBER CORRADINI: That's what I guessed
24	you were going to say. So, pellets, or TRISO fuel,
25	are the issue? I'm still trying to understand where
Į	

(202) 234-4433

Í	76
1	the issue lies that I might where I'm going with
2	this is I'm sorry, I'm jumping I'm trying to not
3	do 2- and 3-D because all I can see is just
4	computers
5	DR. BAJOREK: Like, I think
6	MEMBER CORRADINI: Churning.
7	DR. BAJOREK: part of this might be we
8	have seen a couple of designs. The AHTR, one of the
9	molten assault, the fuel looks like a manhole cover.
10	MEMBER CORRADINI: Oh.
11	DR. BAJOREK: Okay, with swats through it.
12	MEMBER CORRADINI: Oh, I see.
13	DR. BAJOREK: Okay, very 3-D. And it's
14	geometry. We've also we would also be using FAST
15	for some accident-tolerant fuels. If you've seen, I
16	think it's the light bridge design, looks kind of like
17	a licorice stick. Okay? That one would be very
18	difficult to handle with this, but almost everything
19	else would be a one-and-a-half.
20	MEMBER CORRADINI: Okay. All right.
21	Thank you. I appreciate it. Thank you again.
22	MR. KYRIAZIDIS: So, based on the
23	currently proposed non-LWR fuel forms, FAST would be
24	extremely limited. So, we're going to overview what
25	we need to do to get the code ready. So, a couple of
	I

(202) 234-4433

	77
1	needs that we've identified is to expand the
2	geometries that FAST can handle.
3	So, we want to incorporate new solvers
4	that can handle spherical geometries, in addition to
5	irregular geometries, and also expand the 1.5-D
6	assumption to handle 1-D spheres, 2-D and 3-D
7	dimensions.
8	And this will happen when we incorporate
9	new solvers, so there are contracts in place and works
10	ongoing to incorporate new finite difference and
11	finite volume options.
12	And I think it was stated by Steve that
13	1-D will be sufficient for spherical geometries, but
14	the 2-D and 3-D capabilities will really handle the
15	heat pipe reactors.
16	So, I think James touched a little bit
17	earlier in the presentation, but FAST is also being
18	coupled to other neutronics and thermal hydraulic
19	codes. So, there are ongoing work to couple FAST to
20	TRACE through the MOOSE framework.
21	And this will really expand the thermal
22	hydraulic capabilities of FAST, and possibly allow for
23	feedback effects to be accounted for.
24	But another benefit of this is to allow
25	FAST to communicate to other codes in the MOOSE
	1

(202) 234-4433

	78
1	framework. And then, coupling SCALE and EPIC to FAST
2	would allow for more redefined power profile, or radio
3	power profile.
4	MEMBER CORRADINI: EPIC is part of the
5	SCALE?
6	MR. KYRIAZIDIS: It is. It is. And I'll
7	give you just a brief highlight of it. But yes, SCALE
8	and EPIC would be used to calculate the intra pen
9	power distribution, in addition to the isotropic
10	distribution.
11	And EPIC is just a simplified, faster
12	running version of SCALE, designed for use in FAST.
13	And yeah, like I said, it would be used to just
14	calculate the radial power profiles. Next slide.
15	So, moving from the generic FAST
16	development needs, I'm going to start focusing on
17	TRISO, then follow that with metallic fuels.
18	So, in its current state, FAST can't be
19	used to model any spherical fuel form, such as TRISO.
20	It's restricted to 1.5-D cylindrical fuel rods. But
21	there are features in FAST that we can recycle to
22	model TRISO. Some of these features are calculating
23	fission gas pressure.
24	And also, we have the basic infrastructure
25	in place to incorporate new material properties,
I	I

(202) 234-4433

	79
1	properties such as UCO, pyrolytic carbon, and silicon
2	carbide.
3	And the bottom half of the slide just
4	highlights specific development needs for modeling
5	TRISO in FAST.
6	MEMBER CORRADINI: I was going to ask
7	about PARFUME. So, that's the basis by which
8	MR. KYRIAZIDIS: That is going to be our
9	starting point for material properties. We'll also do
10	a code-to-code comparison between FAST and BISON,
11	BISON AND PARFUME. Yeah, I'll get into that a little
12	bit.
13	MEMBER CORRADINI: So, maybe
14	(Simultaneous speaking.)
15	MEMBER CORRADINI: We're letting our
16	Chairman lead the way in example. So, you're doing
17	a I wanted you to repeat that so I understood.
18	So, PARFUME is strictly a spherical
19	geometry modeling of TRISO fuel? Am I understanding
20	that correctly? I know that
21	MR. KYRIAZIDIS: You got to do TRISO.
22	MEMBER CORRADINI: somebody online
23	knows this, but
24	MR. KYRIAZIDIS: Yeah.
25	MEMBER CORRADINI: I wanted to task
I	I

	80
1	you.
2	MR. KYRIAZIDIS: It does do TRISO fuel
3	particles, but I think I read that it also does clay-
4	type fuel. But I'm not familiar with that. But yes,
5	it was used to do TRISO fuel particles.
6	MEMBER CORRADINI: And so that's why you
7	want to do the code-to-code
8	MR. KYRIAZIDIS: Yes. Yep, yep.
9	MEMBER PETTI: Yeah. So, Mike, the
10	particles are spherical, but the fuel elements come in
11	different geometries. So, it does spherical at the
12	particle level and it does cylindrical plate at the
13	fuel element level.
14	MEMBER CORRADINI: But to be politely
15	kidding, you're on conflict since you were one of the
16	authors of PARFUME.
17	MEMBER PETTI: Yeah. I'm just providing
18	technical background.
19	MEMBER CORRADINI: Thank you. That's all
20	we were I figured that's where we were going with
21	this.
22	MR. KYRIAZIDIS: So, I just want to
23	highlight some of the specific development needs for
24	FAST to model TRISO. So, as we stated, the FAST needs
25	to currently be modified to allow the model of
l	I

(202) 234-4433

1 spherical geometries, but also be able to solve the governing equation, such as heat transportation and 2 3 mechanical stress through spheres. And this is 4 ongoing right now.

But also need to expand FAST's material property library. Currently, we don't have properties 6 that relate to TRISO in FAST. And our starting point 8 would be just to take what PARFUME has in its material 9 properties, and work that into FAST.

10 And then lastly, once these abovementioned features are developed, we would require to 11 do validation and assessment of whether or not we 12 incorporated these features correctly. And this will 13 14 consist of open literature benchmarks against AGR, in 15 addition to code-to-code comparisons between BISON and 16 PARFUME.

17 And here, just a note of clarification from the slides. Underdevelopment means that we are 18 19 currently working on this task right now. And then under contract means that we have a contract in place 20 but work hasn't begun yet. Next slide please. 21

So, moving forward, the FAST development 22 team has identified specific data needs. 23 24 MEMBER CORRADINI: Can I stop you?

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. KYRIAZIDIS: Yep. 81

25

5

7

	82
1	MEMBER CORRADINI: So or maybe this
2	slide is where I was going to go. I was going to ask,
3	when does the use of FAST stop and the use of MELCOR
4	begin? Or is that coming?
5	MR. KYRIAZIDIS: That comes towards the
6	end of the presentation.
7	MEMBER CORRADINI: Okay, fine.
8	MR. KYRIAZIDIS: And James will cover
9	that.
10	MEMBER CORRADINI: Because when we had the
11	Volume 3 presentation, I seem to remember the MELCOR
12	types told us that they were also using a TRISO model
13	within MELCOR. So, I assume there's some sort of
14	pass-off.
15	MR. KYRIAZIDIS: Yes.
16	MEMBER CORRADINI: Okay.
17	MEMBER KIRCHNER: So, this slide really
18	just wants to highlight some of the specific data
19	needs that we need to model TRISO. So, we've
20	identified or highlighted three areas, the first being
21	coding material properties, the second being UCO
22	properties, and lastly, in a broader one, it's study
23	state and transient fuel performance data.
24	So, coding material properties have
25	referred to the pyrolytic carbon layers. And the AGR
	1

(202) 234-4433

Í	83
1	program, it has been cited that there are large
2	uncertainties. This is okay, but if we want to bring
3	down those uncertainties, we would need more data.
4	The second being a bigger area as UCO
5	properties. Currently, in PARFUME it assumes that UCO
6	properties are the same as UO2. This will be adjusted
7	with AGR. But as for the time being, we are missing
8	UCO properties.
9	And the last being study state and
10	transient fuel performance data. This would be data
11	that would be used to assess FAST. This also includes
12	like the effects and interactions between the coolant
13	and particle graphite matrix, and effects of air/water
14	ingress.
15	We have used this data to determine
16	whether or not we would need to use FAST to calculate
17	the effects. But yeah, next slide please.
18	FAST assessment data for TRISO fuel. So,
19	as stated, FAST will require integral data to perform
20	validation. So, the current plan is to utilize data
21	from DOE's AGR program. And based on our current
22	understanding of AGR, AGR will provide the industry
23	TRISO data for the development of material property
24	models and integral assessment data.
25	It should be noted that AGR will focus on
	I

(202) 234-4433

	84
1	UCO fuel kernels. So, that addresses the data need on
2	the previous slide. AGR will also produce a variety
3	of PIE data that will be used to develop material
4	property models.
5	And it also performs safety tests. And
6	this will be where we get our assessment data and code
7	assessment code assessment and validation data.
8	MEMBER KIRCHNER: Curiosity. The AGR, is
9	the program being run to support the BISON code at a
10	mesoscale, or is the data being generated at a more
11	macro level?
12	MR. KYRIAZIDIS: My understanding is macro
13	scale. But if anyone wants to add to the
14	MEMBER KIRCHNER: That's what I would
15	expect.
16	MEMBER PETTI: That's what it is, Walt.
17	MEMBER KIRCHNER: Yeah. Okay.
18	MEMBER PETTI: Just a point that there's
19	another benchmark you guys might be interested in
20	besides the IAEA that Gen 4 benchmark, that focuses
21	just on the fission particle release from the fuel.
22	And we can get you that. I think it's
23	just completed. So, it'll be another one for you to
24	compare against.
25	MS. WEBBER: That would be great.
I	1

(202) 234-4433

	85
1	MR. KYRIAZIDIS: And the last point I want
2	to touch on this slide is, the NRC will coordinate
3	with INL to come up with a similar and same VNV test
4	suite between BISON and FAST. And this will be where
5	we do our code-to-code comparisons.
6	So now, moving on to metallic fuel.
7	Metallic fuel is much more developed in FAST when
8	compared to TRISO. Modeling metallic fuel can be
9	done, but only limited to study state and 1.5-D
10	cylindrical fuel rods.
11	FAST has been implemented with material
12	properties for U-Zr and U-Pu-Zr fuel, with H29
13	cladding. But as stated, it's only limited to study
14	state calculations.
15	Material properties that need to be
16	implemented for transient analysis includes heat
17	capacities, entropies, and H29 cladding the old stress
18	models.
19	I think Ken mentioned that we have done
20	preliminary assessment on EBR-II fuel. This was a
21	paper presented at top fuels in 2018. We'll highlight
22	some of the results in the next couple of slides, but
23	I'll just give you an overview of what the paper
24	discussed.
25	It discussed the modeling process, the

(202) 234-4433

1 limitations of FAST, and additional future work that FAST needs to be changed to perform, I guess, refined 2 3 assessments. 4 Two areas of future work were noted, the 5 first being a more refined fission gas release model, especially in the low burn-up areas. 6 And the second 7 was to evaluate the need to implement a zirconium redistribution model. 8 We'll get into the details of the results 9 10 in the next couple of slides. But I quess I just wanted to highlight the development needs for metallic 11 fuels, the first being, incorporate material 12 properties for transient analysis, the second being, 13 14 for redefined fission gas release model, and the third being, incorporate a zirconium redistribution model, 15 16 fourth being to expand allowable geometries -- this 17 would be specifically to address non-cylindrical geometries, such as the heat pipe reactor -- and 18 19 lastly, just perform more assessment, because of the available data, such as EBR-II data. 20 MEMBER CORRADINI: I don't know enough 21 So, in the heat pipe-cooled 22 about these designs. reactor, the fuel is not cylindrical? 23 I thought it was like a block of stuff with cylindrical pencils 24

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

interspersed with heat pipes.

(202) 234-4433

25

(202) 234-4433

86

	87
1	MR. KYRIAZIDIS: So, I don't know how much
2	of this I can go into.
3	MEMBER CORRADINI: Well then fine. Never
4	mind.
5	MR. KYRIAZIDIS: So, yeah. It's not
6	necessarily
7	MEMBER CORRADINI: If there's no more that
8	you can say about it, that's fine. But the answer
9	is
10	MR. KYRIAZIDIS: Yeah. I don't want to
11	MEMBER CORRADINI: it's complicated.
12	MR. KYRIAZIDIS: Yeah.
13	MEMBER CORRADINI: Okay, fine.
14	MR. KYRIAZIDIS: Yeah, I don't want to say
15	more than that.
16	MEMBER CORRADINI: Okay, fine.
17	MEMBER PETTI: Could you guys model
18	annular fuel?
19	MR. KYRIAZIDIS: With the new solvers, we
20	will be able to.
21	MEMBER PETTI: Okay, great.
22	MR. GEELHOOD: We can currently model
23	annular pellets. So, like VBR pellets, or pellets in
24	the blanket region.
25	MEMBER PETTI: Good.
	I

	88
1	MR. KYRIAZIDIS: So, this slide highlights
2	some of the metallic fuel data that we have identified
3	that we require. This would really expand what we can
4	model in FAST, but also give us the ability to model
5	transients in FAST.
6	Some of the data needs here identified are
7	H29 cladding, strain capability and fatigue data, and
8	this really would give us an insight of how much
9	strain the cladding can withstand before failure.
10	Another data need identified is rod
11	internal pressure limits and end-of-life internal
12	pressure. This would be used to assess FAST against.
13	And the last being study state and transient data.
14	And this includes transient fission gas release data,
15	cladding strain and centerline fuel temperature.
16	And again, this would be used to validate
17	fission swelling models in FAST, in addition to
18	fission gas release. And the data would likely come
19	from EBR-II, FFTF, and TREAT-M.
20	So, next point I want to talk about is the
21	assessment data for metallic fuel. And this really
22	so, in addition to thermal mechanical data, we need
23	integral assessment data. And Argonne National Lab
24	has been developing a database to house a large
25	portion of the EBR-II data. And we believe that this
I	I

(202) 234-4433

	89
1	should provide the essential data needed to validate
2	FAST against.
3	So, recently, DOE hosted a DOE/NRC non-LWR
4	data need meeting. This happened in September of this
5	year. And during this meeting, an overview of what
6	data was available was presented to us with respect to
7	metallic fuels.
8	Examples included were EBR-II and FFTF
9	transient testing data. So, there is ongoing work for
10	us to get access to this database and begin reviewing
11	what's in this database.
12	It is believe that there is enough data in
13	there to be sufficient for initial licensing efforts.
14	And then, similarly to the TRISO statement, NRC will
15	coordinate with the BISON team to establish a common
16	validation of verification test cases for metallic
17	fuels. And this includes like a code-to-code
18	comparison.
19	MEMBER CORRADINI: So, to get back to
20	Joy's point, Dr. Rempe's point, this is all cast
21	versus what some of the potential
22	MR. KYRIAZIDIS: Correct.
23	MEMBER CORRADINI: designs would have
24	as extruded. So, that has yet to be that
25	difference has yet to be determined.
	I

(202) 234-4433

	90
1	MR. KYRIAZIDIS: Correct.
2	MEMBER CORRADINI: Okay.
3	MEMBER REMPE: But my point's even a bit
4	broader. I'm not sure the cast from EBR-II was always
5	the same, because if you look at like look up a
6	couple of the reports you cited in this document and
7	they were explicit about what's changed over the
8	years.
9	And I'm just curious what kind of
10	differences one sees in the change over the years,
11	because you may get since they haven't done it for
12	a long time, some differences, just because somebody's
13	coming in new with cast fuel. And you talked about
14	manufacturing defects. I'm real curious on if it's
15	the same.
16	MR. KYRIAZIDIS: I mean, that's just
17	something that we'd handle with our sensitivity and
18	uncertainty-type analysis. So, if the database does
19	show differences in performance historically from
20	EBR-II, at least we'll know we'll have some idea of
21	what the range of differences are.
22	So, we could perhaps bound our
23	calculations, or even maybe push them a little further
24	in different directions, to explore any cliff edges
25	that we might have.
I	I

(202) 234-4433

	91
1	So, yeah, that's certainly something that
2	we'll need to do once we start digging into this
3	database.
4	So, the next slide gets into the
5	preliminary assessment that we've done. So, as I
6	mentioned, in 2018 NRC staff and PNNL lead the efforts
7	of doing a preliminary assessment on EBR-II fuel in
8	FAST.
9	But we have copies of the report, or it's
10	out there publicly on the top fuel website. But in
11	this assessment, EBR-II fuel forms of U-Zr and U-Pu-Zr
12	fuel bonded with liquid sodium clad in H29, were
13	modeled. Coolant was liquid sodium.
14	And here, we just showed the outlet
15	temperature and fission gas release. Just wanted to
16	touch we do have like a simplified fission gas
17	release model in FAST and that's just assumed to be a
18	constant 70 percent independent of burn-up.
19	And I previously mentioned that we do want
20	to have a more redefined fission gas release model, to
21	really address the lower burn-up regions, outlet
22	temperature for sodium, values agree fairly well, so
23	it really showed that we incorporated our hue transfer
24	correlations correctly in FAST.
25	MEMBER CORRADINI: So, help me. What's
ļ	

(202) 234-4433

	92
1	16 percent burn-up atom percent to megawatt days per
2	ton?
3	MR. GEELHOOD: So, one atom percent is
4	close to ten gigawatt days per ton.
5	MEMBER CORRADINI: Okay, fine. Okay,
6	thank you.
7	MR. KYRIAZIDIS: So, these results only
8	highlight the X-425 case. And this was the U-Pu-Zr
9	case. But we also looked at U-Zr and that report
10	highlighted three cases. We'll go on to the next
11	slide.
12	And this really just shows cladding
13	strains as a function of axial height, but also burn-
14	up. And this just shows that FAST is able to predict
15	the trend and, I guess, the magnitude, fairly well.
16	We're within .3 percent strain.
17	Ken was one of the leading authors of this
18	paper, so if there's specific questions, we could have
19	him speak to them. But this is all I really want to
20	touch on, the preliminary assessment.
21	So, in Volume 2, we covered other fuel
22	forms that weren't metallic, and charged those, such
23	as oxide-based fuels, such as U02 and MOX, but also
24	ceramic-based, such as carbides and nitrides.
25	So here, I just want to touch a little bit
I	

(202) 234-4433

	93
1	on what the methodology would be required to get these
2	into FAST.
3	MEMBER REMPE: Could I slow you down for
4	just a second?
5	MR. KYRIAZIDIS: Yeah. Yeah, yeah.
6	MEMBER REMPE: I'm thinking about this
7	response about the correlation between atom percent
8	and ten gigawatt-based for metric ton uranium. What
9	data point? Was that like 170 gigawatt days from
10	that
11	MR. KYRIAZIDIS: Yes, that reactor fuel
12	was burned to very high burn-ups.
13	MEMBER REMPE: Which reactor was that in?
14	MR. KYRIAZIDIS: This was EBR-II.
15	MEMBER REMPE: Really? Okay, thank you.
16	I just was curious. That's a lot. Okay, thanks.
17	Yeah, that's a lot. Thank you. Sorry to interrupt.
18	MR. KYRIAZIDIS: Oh, no problem. No
19	problem. So, there are other non-LWR fuel forms being
20	investigated. As I highlighted, there are U02, MOX,
21	ceramic-based fuels, such as carbides and nitrides.
22	These fuel forms are of lower priority,
23	based on our current understanding of industry plans.
24	We've laid out the methodology in the TRISO section
25	and metallic fuel sections of what we need to do to
1	

(202) 234-4433

	94
1	get these fuel forms into FAST.
2	And then historically speaking, we have
3	seen U02 MOX fuel being used in the FFTF, but also
4	nitrides and ceramics have been used in EBR-II. So,
5	we believe that the data is out there, but we just
6	there's no current near-term plans for it.
7	MEMBER KIRCHNER: Lucas, I've just
8	seeing the UN there reminds me that at Los Alamos we
9	made fuel for the SP-100. That was a space reactor.
10	And it was now a FAST system.
11	I know the fuel was made. I don't know if
12	there are any detailed irradiation data. But the pin
13	size and such was very similar to the EBR-II.
14	MR. GEELHOOD: We do have a lot of the
15	SP-100 data at PNNL. It's not publicly available and
16	it's marked expert control right now. But we do have
17	access to that if need be.
18	MR. KYRIAZIDIS: So, this last slide, at
19	least the last slide in this section, just deals with
20	the methodology that we would take to get these fuel
21	forms into FAST.
22	So first, we would identify important
23	phenomenon on UO2, the carbides and nitrides-based
24	fuels. We did a little bit of that in Volume 2. The
25	second step would be to gather material properties and
ļ	I

(202) 234-4433

95 1 determine whether or not we would have to model these important phenomena in FAST. 2 3 So, an example of this is, we identified 4 zirconium redistribution from metallic fuels. So, now 5 we're doing the valuation of whether or not we need to 6 incorporate that into FAST. That's just one example 7 for metallic fuels. And the last point is to perform 8 assessment. So, like I said before, we believe that 9 there is data out there for uranium carbide and 10 uranium nitrides, and UO2. 11 So, that covers my section. I'm going to 12 pass it back to James to do the discussion between 13 14 fuel performance and DBs, and beyond DBs. 15 MEMBER REMPE: Before you go there, I've been thinking from the very beginning of this meeting 16 17 the discussion about where you crossed off the flowing metal fuel in your comment. And you're right. 18 19 Section 3.8 says, hey, we're going to do that in Volumes 1 and 3 type of tools. 20 I'm just kind of thinking about, well, how 21 would you do that? And I quess I can understand in 22 MELCOR how you might be able to do it, although the 23 devil will be in the details. 24 But I'm just kind of wondering what you 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	would do in Volume 1 with a flowing metal fuel? Would
2	you have some sort of heat source in there? Because
3	you won't be dealing with any sort of fission product
4	release or transport, but it what would you do in
5	Volume 1 type of.
6	DR. BAJOREK: The molten salts are very
7	interesting and they kind of go into two areas. What
8	we would be doing is we would be tracking the
9	precursors through the system. So, you have to add
10	those to the codes.
11	And you have to have feedback between your
12	reactor kinetics the point kinetics, or something
13	more advanced in order to get your power
14	distribution within the system.
15	It also becomes a little bit of a
16	chemistry problem, because in some of these molten
17	salt reactors, the fuel salt in particular, the
18	fission process will be building up with time.
19	That's going to be changing your thermal
20	physics properties. It's going to change some of your
21	cross-sections in there? And as we go along with the
22	molten fuel salts, we're going to have to understand
23	the chemistry at the time of the expected scenario,
24	whatever those might be, and be able to have a
25	feedback on the kinetics that keep track of where the
ļ	1

(202) 234-4433

	97
1	precursors are.
2	Because if you have, let's say a loss of
3	flow, okay? Now, instead of the precursor is dumping
4	their neutron over by the heat transfer mechanism, it
5	might be back in the core and that might be a
6	reactivity increase.
7	In terms of fuel performance, okay, we
8	can't really think of anything right now that fits
9	into that realm of your traditional fuel performance.
10	What changes with burn-up, apart from the chemistry as
11	you use salt.
12	MEMBER REMPE: So, with the first example
13	you cited, affirming data to validate this precursor
14	tracking thing that you're talking about?
15	DR. BAJOREK: MSRE is probably well,
16	it's the best and only information for the fuel salt
17	reactor. That's something that, as we go on, we'll be
18	pointing out as a data need, that we are going to need
19	better information on that.
20	MEMBER REMPE: But MSRE didn't have some
21	sort of test where you have data. So, there's no data
22	in them. Folks are going to have to think about that.
23	DR. BAJOREK: That has to be developed.
24	MEMBER REMPE: Okay, thank you.
25	DR. CORSON: Okay, yeah. So, to wrap
Į	

(202) 234-4433

	98
1	things up, I'm going to talk about how FAST fuel
2	performance interfaces with design-basis accidents and
3	beyond-design basis accidents.
4	So, a lot of what FAST is used for for
5	LWRs is normal operations and AOOs. So, it runs by
6	itself, does its own thing with minimal inputs from
7	other codes.
8	But for LWRs, we do use FAST for some
9	design-basis accident calculations, in conjunction
10	with TRACE and with some neutronics codes. So, the
11	MELLLA+ calculations are really good examples of where
12	we use FAST. And we feed initial conditions and take
13	input from TRACE and from the PARCS. So, that's just
14	one example of how we use it for design-based
15	accidents.
16	For beyond-design basis accidents in LWRs,
17	as I mentioned earlier, we really don't use FAST to
18	support that. So, next slide.
19	Now, going forward, how do we do this for
20	a design basis event and beyond design basis events
21	for non-LWRs? For design-basis events, I think it
22	would be a similar sort of approach to what we
23	currently do now, where we pass some information back
24	and forth between codes.
25	We've touched on this already. Whether
ļ	I

(202) 234-4433

	99
1	it's a tight coupling or something more manual is to
2	be determined. But it's certainly a very similar
3	approach we would use.
4	Now, for beyond-design basis events, we do
5	think FAST would have some role. And Dr. Corradini
6	asking about this. But it's especially important I
7	think for TRISO fuel. MELCOR does a lot of the
8	fission product tracking and it does have some models.
9	But it doesn't know what the fuel failure criteria is.
10	Right now, it would take fuel failure as
11	a function of temperature burn-up and so on. And it
12	doesn't know what that table looks like. So, FAST
13	could be a code that could provide that.
14	Again, we could also use experiments or
15	something else, or we could use FAST to try to extend
16	the experimental database as much as we can. But
17	that's where FAST could have a role for beyond-design
18	basis events.
19	MEMBER CORRADINI: But if there's I
20	mean, just to use Dr. Petti's analogy, if there is a
21	weak coupling, FAST could develop a table which then
22	can be used within MELCOR. I mean
23	DR. CORSON: Yeah.
24	MEMBER CORRADINI: Okay.
25	DR. CORSON: Yeah, exactly. So, MELCOR
I	

(202) 234-4433

	100
1	needs a table, whether it's fast or experiment
2	MEMBER CORRADINI: Okay, I got it.
3	DR. CORSON: Yeah.
4	MEMBER CORRADINI: I got it. Okay.
5	DR. CORSON: So, next slide. So, this
6	goes
7	MEMBER PETTI: Just a point. Back in the
8	NGNP days, INL provided NRC Stu Ruben in
9	particular of a spot surface analysis of exactly
10	that. So, it's probably somewhere in the archives of
11	the NRC, so you get a fact of what was done.
12	DR. CORSON: Yeah, we're aware of that.
13	It's just with the new fuel, oxycarbide fuel, there
14	would be some differences. So, MELCOR has something
15	right now. But we would like to be able to update it
16	with the latest information, if possible.
17	So, this is just a TRISO example that I
18	just talked about. So, we can skip over this and just
19	go to the summary.
20	MEMBER REMPE: Before you go to the
21	summary
22	DR. CORSON: Sure.
23	MEMBER REMPE: I brought this up when
24	we had the Volume 1 and 3 discussion, and I guess its
25	caused some consternation from folks. But instead of
I	I

(202) 234-4433

	101
1	calling things design basis and beyond-design basis,
2	to me, I guess in the SRP they talk about design basis
3	accidents.
4	And when we think about fission product
5	release, it covers AOOs, the whole spectrum. And what
6	I really see is something about a more integrated
7	evaluation in Volume 3 that could be used for the
8	whole spectrum in a simpler way, and it does provide
9	input to a source term.
10	And then I think Volume 1's more detailed
11	evaluations, where you have to have this coupling, and
12	there's a need for that because you have to be ready.
13	But why don't we try and think of it that way, instead
14	of design basis versus beyond-design basis.
15	Because AOOs aren't exclusively covered if
16	you go with this division you have. And so, it's a
17	simple terminology to it. And so, I was trying to
18	point out and people got hung up on a different
19	DR. BAJOREK: We're rethinking the
20	terminology. It's the design basis, beyond-design
21	basis, that's part of our dialect that we've gotten
22	used to for the last 40 years.
23	As we start to use for some units LMP,
24	okay, there's going to be a gray area between those
25	two. And I think I'm going to go into it
Į	I

(202) 234-4433

	102
1	MS. WEBBER: Yeah, Steve's going to talk
2	about that.
3	DR. BAJOREK: when I talk later on.
4	It's addressing the same problem from two different
5	angles of attack.
6	MEMBER REMPE: And historically, they're
7	not going with the old way of and that's what I was
8	trying to bring up at the beginning about this. We
9	don't put conservatisms in this. No, we're going to
10	do best-estimate and put uncertainties. And I think
11	that's what you're going to do, from what I'm hearing.
12	DR. BAJOREK: Yeah. And I think
13	Dr. Petti's point is very well taken. Our initial
14	approaches are trying to be as simple as possible. In
15	the last couple of slides we talked about the coupling
16	of FAST and other codes, and using it for thermal
17	hydraulics.
18	That's one of those things that we would
19	likely use as more of a side calculation, as opposed
20	to the everyday type of evaluation.
21	I like to think of it a little bit more
22	as, do I need all of the detail in my reactor core
23	when I the more I look with TRACE? Now, even
24	though we can go through and model it like a model,
25	every assembly in there, we don't really care about
I	I

(202) 234-4433

	103
1	that most of the time.
2	We're after the hot assembly. Okay? And
3	that might be the parallel over here, where the
4	coupling is necessary now for me to take my more
5	simple calculation, and now look at some of those
6	details that might become of interest in the review.
7	MEMBER REMPE: So, I think we're
8	approaching this a similar conclusion here, that I
9	think, again, changing the volume names, and then your
10	introduction document that you gave us a while back to
11	talk about that approach would really make this hang
12	together a lot better.
13	But I know you don't have a lot of time
14	before you come back to us and all that. But boy, I
15	sure would like to see that. Because I think it makes
16	a much better story.
17	MS. WEBBER: Well, what I would like to do
18	is, so Steve's going to touch on a lot of those
19	comments. And so, we're just ending with this
20	presentation. I don't know if you did you finish
21	this slide.
22	MEMBER REMPE: I interrupted him before he
23	did, because he was going the route design basis and
24	beyond-design basis, so I thought it was a good time
25	to interrupt him.
	1

(202) 234-4433

	104
1	MS. WEBBER: So, it might be good to
2	continue the dialogue when Steve's presentation
3	MEMBER REMPE: Sure. Okay.
4	DR. CORSON: I mean, this is just a
5	summary though, of what we talked about. We think
6	FAST is the preferred path. We're working on
7	developing it for non-LWRs for metallic and TRISO
8	fuel. And we expect we'll have the data that we need
9	to support licensing.
10	Again, we have a very different level of
11	what we need than their's might need. We don't
12	necessarily need quite as much detail.
13	So, I think, while we say we might be in
14	really good shape, the vendors may have a slightly
15	different perspective on what data they need. So,
16	just to clarify that point and to conclude. So, I'd
17	be happy to answer any other questions you have right
18	now.
19	CHAIR BLEY: I think for the members,
20	we're going to have a talk by Steve. We're just
21	trying to address a number of things we've brought up
22	in various meetings. So, questions of that general
23	nature will wait until then.
24	At this time we're going to recess for
25	15 minutes. Be back here at quarter till.
ļ	I

(202) 234-4433

	105
1	(Whereupon the above-entitled matter went
2	off the record at 10:30 a.m. and resumed
3	at 10:48 a.m.)
4	MS. WEBBER: Yes, let's turn it over to
5	Steve.
6	DR. BAJOREK: Thank you very much. Good
7	morning, everyone. I am Steve Bajorek from the Office
8	of Research. And what we wanted to follow-up this
9	morning on is a more continuing discussion on
10	Volumes I Volume 2 and Volume 3 and how they all
11	fit together. We've had a number of questions over
12	the last couple of months. Just to bring everybody
13	everybody back, we had a subcommittee meeting on
14	May the 1st. We went through Volumes 1 and 3. A
15	couple of weeks ago, September 4, we had a I guess
16	it was a ACRS review of research activities. We
17	talked about what the work the we're doing in DSA.
18	And there were some additional questions on non-LWR
19	analysis because that falls the code development,
20	that falls in the DSA scope.
21	Now, just to kind of go back and, you
22	know, set the stage in where we're at with Volumes 1,
23	2 and 3 is the whole idea behind the IAPs. You know,
24	and the strategy, too, that we've been talking about
25	is readiness. Our mission has been to be ready. We

(202) 234-4433

started this work about two years ago. It's -- it's evolving as we go on. Now, and part of readiness means -- doesn't -- don't be prepared for a particular unit, or one or two particular units. Our goal here is to be ready for all plant designs. Okay, we're assuming that they are all equally likely to come in for a design certification.

Licensing approach has not been fully defined yet. Okay, now over the last couple --

10 CHAIR BLEY: I read that somewhere else. They're all equally likely -- well maybe they are 11 eventually. But you know, of course -- you know, some 12 are coming in sooner than others. And your -- in the 13 14 last report, Volume 2, you have a big table that shows 15 what you're doing next year and what you're doing the And that -- you didn't tell us how you 16 year after. 17 came up with what you're doing when. But I -- I assume it has mostly to do with what you expect to see 18 19 first?

DR. BAJOREK: Well, up until now, most of our work has been generic. We have to do that, one, to avoid costs to any particular potential applicant. And we have been able to do that because there has been a number of different physical phenomena -things that you need to do that is there regardless

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

	107
1	of, you know, the design. Putting different solvers
2	in a code and that type of type of thing. Doesn't
3	matter who it's for. We are getting to the point now
4	where, and by working with NRO we are starting to
5	see some of the applicants maybe taking a lead. And
6	our expectation, there are going to be a couple of
7	them that are going to be front-runners in this review
8	process. So we are starting to shift gears and put a
9	little bit more emphasis on those now.
10	CHAIR BLEY: So you're still expecting
11	applications late this year? Maybe next year?
12	DR. BAJOREK: The NRO will correct me, but
13	I believe that Oklo is still targeting a submittal in
14	December of this year. We have been talking with
15	another applicant, and they are regular visitors here
16	to talk to us on their applications. I don't know the
17	schedule, but I think a fluoride high-temperature
18	reactor is is one of those. And and thank you
19	very much, because that's what I wanted to do is, you
20	know, talk just a little briefly about the advanced
21	reactor landscape. It does continue to evolve and
22	change. This is the the current schematic that we
23	use of it. If you go back and look maybe a year ago,
24	microreactors were not on there. They were sort of
25	buried in here somewhere else. But you can see the
	1

(202) 234-4433

(202) 234-4433

	108
1	the lay of the land here. And the green that we see
2	that's supposed to be a kind of green on the on
3	the the schematic here for the micro-reactors.
4	It's pretty much apparent to the staff and maybe
5	everybody that these are getting an awful lot of
6	attention right now. We've been talking with Oklo.
7	They look like they are very serious at coming in on
8	the near term. There are others out there. Only two
9	of them have given us a RIS. And, you know, to talk
10	about when they are going to do submittals. But we
11	attended a micro-reactor workshop back in, I think it
12	was June. And it was surprising that there were
13	there must have been about 10 or 12 different
14	organizations which are all targeting micro-reactors
15	and some some various flavor to come in. And
16	they're talking about having these up and going within
17	the next couple three years. I mean, very, very
18	short short time scales.
19	And the complication for the staff is
20	is both with the the technical analysis and with
21	policy. The microreactors you can see, some are
22	stationary. Some are mobile. And that's a brand new
23	thing for for the staff to have to to really
24	deal with. But the other point on this landscape is,
25	if we look at some of the microreactors, we're looking
	1

(202) 234-4433

(202) 234-4433

1 things which are down maybe a megawatt, at two megawatts. That's almost more on a test reactors type 2 3 of scale -- up to some of these which I think are at 4 least several hundred. I think a couple of them are several thousand thermal megawatts. So as we are 5 6 preparing for these, we are still a little bit leery about saying, hey, one size of review is going to fit 7 8 all. And we think that is going to have to be 9 addressed as we move on. So our bottom line is to be ready for all of these, and for the various types of 10 reviews that might -- that might go on. The next one. 11 MEMBER KIRCHNER: Before you go on, how --12 you've colored also the liquid salt fueled -- two of 13 14 them in your green. Am I reading this chart correctly? Terrestrial and terra power? 15 16 DR. BAJOREK: Terrestrial and terra power 17 -- I think the color is not coming -- coming through here. That's --18 19 MEMBER KIRCHNER: Okay, so -- so that's not one of the leading --20 DR. BAJOREK: That's not -- those aren't 21 one of the leads. I would say it's --22 (Simultaneous speaking.) 23 24 MEMBER KIRCHNER: That would complicate 25 your life greatly.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	110
1	PARTICIPANT: You're asking about the
2	applicants?
3	DR. BAJOREK: Which applicants are most
4	likely to come in
5	(Simultaneous speaking.)
6	MS. CUBBAGE: Yes, so we're not going to
7	speculate on that right now. The only thing I can say
8	publicly is that Oklo is planning to submit a combined
9	licensed application in December. And we are engaged
10	with those other applicants, and they have varying
11	plans. And as Steve mentioned, Kairos, we've had very
12	extensive pre-application engagement over the last
13	year, which is indicative of their progress.
14	MEMBER CORRADINI: So Amy, since you're
15	there.
16	MS. CUBBAGE: Yes.
17	MEMBER CORRADINI: Help me remind me
18	so, the first expectation is directly to a combined
19	license application without a without a
20	certification?
21	MS. CUBBAGE: That's right. So the
22	combined licensed application would include all of the
23	siting, environmental and design information in the
24	combined license and not reference to certify design.
25	MEMBER CORRADINI: Under 10 CFR
I	

(202) 234-4433

	111
1	MS. CUBBAGE: Part 52.
2	MEMBER CORRADINI: Okay. Under 52.
3	MS. CUBBAGE: So there's an option for a
4	combined license that they could reference and certify
5	design, an ESP, neither or both. And they're opting
6	to reference neither and add all the information in
7	one application.
8	CHAIR BLEY: What makes that different
9	from Part 50, then?
10	MS. CUBBAGE: It's it's Part 50
11	would be the construction permit and then operating
12	license, whereas this would be a combined operating
13	license.
14	CHAIR BLEY: All at once? Okay.
15	MS. CUBBAGE: All at once.
16	CHAIR BLEY: But it wouldn't then be a
17	certified design?
18	MS. CUBBAGE: It would not be a certified
19	design. Of course, with the one issue one review
20	you know, we certainly could leverage this review
21	to to provide a license for a future reactor.
22	MEMBER CORRADINI: So I know we don't care
23	about this, but I in this committee but I guess
24	I am kind of curious. This strikes me as a well,
25	so maybe I am not understanding. So under Par 52 and
	I

(202) 234-4433

	112
1	but they would be using the I will get it wrong.
2	I want to call it the LMP. They'll be using the LMP
3	approach? Or it's not clear?
4	MS. CUBBAGE: I can speak to that as well.
5	We had some early engagement with them on a pilot for
6	using an LMP approach. And they have not yet formally
7	communicated how they're going to do their analysis.
8	And it may involve a maximum credible, or a maximum
9	hypothetical accident approach with some underpinnings
10	at LMP. But we're waiting to see that in their
11	application.
12	MEMBER CORRADINI: So so it could be a
13	light water reactor-like approach where or, a non-
14	power reactor approach.
15	MS. CUBBAGE: That's possible.
16	MEMBER CORRADINI: Because most research
17	reactors essentially have an MCA. Okay.
18	MEMBER REMPE: So if they were to use an
19	LMP, how does that or, excuse me, a if they were
20	to use the maximum credible accident, why would we
21	need a detailed code? I mean, aren't you just going
22	to blow the core out?
23	MS. CUBBAGE: I think we would be looking
24	more at a MELCOR/MACCS type of an approach if we were
25	to do confirmatory calculations against something like
	I

(202) 234-4433

	113
1	that event.
2	MEMBER REMPE: Okay.
3	DR. BAJOREK: Can we move on?
4	MEMBER CORRADINI: So I am sorry. I
5	I know we're talking about this, but where'd she
6	go?
7	(Laughter.)
8	MEMBER CORRADINI: She's fast. She
9	doesn't want to be
10	(Laughter.)
11	PARTICIPANT: I am sorry, what?
12	MEMBER CORRADINI: What I guess I mean,
13	Joy Joy asked a question about the tool. I want to
14	ask a higher-level question. If I take an MCA
15	approach like a non-power reactor, the licensing, if
16	audited and analyzed appropriately, could be
17	significantly simpler.
18	MS. CUBBAGE: There's a potential that we
19	could have a a simpler review if you have a a
20	scenario that we can all agree is credible, or is
21	bounding of credible events and significant
22	demonstrated margin. So those are things that we
23	would consider in the review how much margin is
24	there available
25	MEMBER CORRADINI: Okay.

(202) 234-4433

	114
1	MS. CUBBAGE: and what other
2	certainties exist?
3	MEMBER CORRADINI: Okay, thank you very
4	much. Appreciate it.
5	DR. BAJOREK: The approach that we've
6	taken in Volumes 1, 2 and 3 have been primarily to try
7	to identify the gaps in the needed capabilities. It's
8	not to try to tell how we're going to review any of
9	these, or even say what scheme we're going to be
10	using. But it's, what gaps are we going to need to
11	satisfy in order to have the tools that will do this
12	broad range okay of different different
13	different types of designs. As we see it, we have two
14	distinct but complimentary and coordinated sets of
15	analysis tools that are going to look at this range of
16	anticipated staff review questions. Volume 1 is more
17	looking at I'm not even I'm not even word to
18	use I'm no longer use design basis anymore.
19	MEMBER REMPE: That's why it's in red,
20	right? That title has been put in red, and I wondered
21	if that's why you're thinking of changing the title?
22	DR. BAJOREK: Actually, we forgot to
23	change it in the first place.
24	MEMBER REMPE: Oh, okay.
25	(Laughter.)
	I

	115
1	DR. BAJOREK: Change it to black. Okay?
2	But the goal behind the types of codes that we get in
3	Volume 1 are to answer staff review questions are
4	the safety functions and the systems acceptable?
5	Okay. Basically like you would in a light water
6	reactor world, is the ECCS system adequate? We expect
7	to see those types of questions. When that plant, or
8	that system is operated, is it operating within the
9	operational limits that we feel are safe? And
10	finally, I think one of the best things that you
11	really get out of those types of tools is you is
12	you get the that's where you develop your staff
13	expertise. How does the machine work? Okay? By you
14	exercising those tools, you start to understand what
15	are the physics? What are the phenomena which are
16	important to the operation of that design? What are
17	the sensitivities to those phenomena? Okay? And what
18	are the uncertainties that you should be considering
19	as part of that review to make sure you don't head
20	yourself over some type of a cliff?
21	On the opposite end of things, when you're
22	looking at the the analyses from Volume 3, you'll
23	start off, well what is that fission product
24	inventory? Where's the what is the source term?
25	And where do those fission products go? We can look

(202) 234-4433

(202) 234-4433

	116
1	at it from that opposite end. And even if you do get
2	a a smaller-type of reactor more on a research
3	end you could still have a fairly sizable fission
4	product inventory. Remember lifting rods in a trigger
5	reactor. You made sure there was nobody in the bay
6	when you lifted one out of the water because you could
7	get a very sizable dose very quickly. So even though
8	it's a small power megawatt size, you may still have
9	a fission product inventory that you want to make sure
10	is contained.
11	So together, as we exercise both of these
12	these types of tools, with Volume 2 feeding into
13	either one of these, okay, this is where the staff is
14	going to learn how these new machines operate. That
15	is going to be important to us because in many cases
16	or in some cases, we are dealing with systems that
17	do not have a lot of operating experience. We have
18	not operated or developed these in the past. And
19	they're being developed by organizations that, I
20	think, have been characterized as mom and pop shops
21	where they do not have a lot of experience in
22	licensing reactors, licensing fuel, or licensing
23	evaluation models in order by which to to evaluate
24	them.
25	A few questions on the role of NRC codes

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 with respect to the LMP. In development of the tools, this remains to be defined. Okay, it's going to 2 3 depend on what the applicant submits to it, which 4 route they want to go. They may or may not use the They may decide to go to something -- something 5 LMP. different. 6 So our goal? Be ready because we don't 7 know what that approach is going to be. And we don't 8 know what the user office is going to need as part of 9 that review at this point. They may need those 10 details at some point, they may not. But we need to be ready on both ends of the spectrum. 11 Now we've gotten a few of the LMP pilot 12 And -- and I think that they do provide 13 studies in. 14 a little bit of insight on where review questions 15 might be generated. Can I just put the -- the LMP up

16 there, with just a few stars up there on where things 17 are -- what you see. I would characterize the ones that I've looked at -- most of the stars are on that 18 19 v-axis. They're on that frequency curve. Essentially, they're saying there is no source term. 20 There is not going to be release. The defense-in-21 depth barriers work, and there's lots of margin. 22 That is where we would expect our reviewers to start having 23 24 question. Do you have that safety margin? Do you If I fail that next 25 have that defense-in-depth?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

barrier -- might be the fuel, it might be the vessel, okay? Top or bottom. I mean, we've got very thinwalled vessel. It might need a heat exchanger. Something along those. Does that point on that left axis and it's uncertainty with those phenomena pop you to the opposite side here?

7 Given that the vast -- almost the majority 8 of points are lining up on there, we would expect some 9 of those review questions to start focusing on those 10 types of questions. And our belief right now is that is where you are going to need some detail in your --11 in your analysis in order to justify that margin, or 12 show it doesn't exist. 13 You've got other cases out 14 there where, yes, you're going to have a source term. 15 There's going to be a non-zero dose. And I think 16 that's very apparent in gas-cooled reactors where you 17 have circulating activity, you have graphite dust, you have air ingress, you have water ingress. You have a 18 19 high pressure system to begin with. And there's going be some mobility of those -- those fission 20 to That is probably a case where I am hoping 21 products. when it comes to the tools I am dealing with, go away. 22 23 Okay?

CHAIR BLEY: That would be really nice. Can you tell us anything about what the pilot studies

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	have been?
2	(No audible response.)
3	CHAIR BLEY: Are they the pilot study
4	
5	(Simultaneous speaking.)
6	CHAIR BLEY: the LMP pilot studies?
7	DR. BAJOREK: There's been, I think, four
8	or five of them
9	CHAIR BLEY: Are they public? Are they
10	available?
11	DR. BAJOREK: I
12	MEMBER KIRCHNER: Are these are these
13	the desktop exercises?
14	(Simultaneous speaking.)
15	PARTICIPANT: I believe so.
16	DR. BAJOREK: Several companies
17	PARTICIPANT: So they provided us several
18	references.
19	MEMBER KIRCHNER: Oh, it's the same ones?
20	PARTICIPANT: Yes.
21	MEMBER KIRCHNER: That's good.
22	DR. BAJOREK: There's been four or five
23	I'm not sure if they're public or not. That's why I
24	kind of made up the
25	(Simultaneous speaking.)
ļ	

	120
1	PARTICIPANT: Okay, yes.
2	MEMBER CORRADINI: I think staff last year
3	provided I am trying to think which two.
4	PARTICIPANT: This one, I know one.
5	PARTICIPANT: There was PRISM, too.
6	DR. BAJOREK: PRISM PRISM was out
7	early. There's there's a
8	PARTICIPANT: PRISM and MHGTR.
9	MEMBER CORRADINI: That's right. That's
10	the one.
11	DR. BAJOREK: We've also seen a couple
12	recent ones from a molten salt and at least one of the
13	the microreactors. At least conceptual. So we're
14	we're starting to get more information out there.
15	I am just not sure whether it's publicly available or
16	distributable. But anyway, the bottom line is, we're
17	starting to see a couple of ranges a couple of
18	different types of situations in you know, our goal
19	then is to be prepared for this range of questions,
20	okay, that we just don't know because we don't have
21	the application yet.
22	MS. WEBBER: I think John Segala is at the
23	microphone.
24	MR. SEGALA: Yes, hello, this is John
25	Segala, Chief of the Advanced Reactor Policy Branch in
	1

(202) 234-4433

	121
1	the Office of New Reactors. We have six pilot
2	reports. They're all on our public website under
3	advanced reactors. You can click on all of them and
4	take a look through them.
5	PARTICIPANT: Thank you.
6	MR. SEGALA: They're all limited scope.
7	They don't do the entire LMP process.
8	MEMBER CORRADINI: Thank you, John.
9	DR. BAJOREK: Okay. In one of the emails
10	we received there were a number of questions. So I
11	tried to organized
12	CHAIR BLEY: Yes, I I kind of picked
13	those out of the transcript and from note people fed
14	me. So those are individual people's questions or
15	comments.
16	DR. BAJOREK: Thank you
17	MEMBER CORRADINI: These aren't the same
18	questions that Mike asked of us
19	CHAIR BLEY: That Mike asked of us?
20	MEMBER CORRADINI: Mike Case asked us some
21	questions as we had
22	(Simultaneous speaking.)
23	CHAIR BLEY: No. Well, unless he parroted
24	them back.
25	MEMBER CORRADINI: Okay.
	1

CHAIR BLEY: They came from us first. MEMBER CORRADINI: Oh, okay.

DR. BAJOREK: These are the ones that came 3 4 from -- from your email. And I wanted to cover some 5 of these and I don't think we have time to give to 6 each and every one. So certainly ask if you have 7 questions. One of those, you know, what are the most 8 significant modeling and simulation gaps for non-LWRs 9 in the reports submitted? And, you know, we -- you 10 know, an ethic and prioritize. You know, we -- we feel that the Volumes 1, 2 and 3 do point out the gaps 11 that are needed both in what you need to do to the 12 codes, okay, and where some of the experimental data 13 14 is needed and lacking and what the validation you're 15 going to need. We do agree that, yes, there needs to 16 be some prioritization. As we move forward it's 17 certainly in our best interest to start to focus on one or two of these designs and try to make more 18 19 progress in those rather than spreading the wealth among everybody at this point. And that's going to be 20 21 especially the case as we start to do more validation work -- which is fairly time intensive. 22

23 Right now I would say that microreactors 24 and the Kairos design look like they're maybe a little 25 ahead of the pact. But that's -- that can change

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	123
1	quickly. Data needs something that's very important.
2	And now that we're starting to identify the gaps and
3	what validation is, kind of one of our next steps is
4	to continue with that validation and identify data
5	needs. We had a recent meeting with Department of
6	Energy and the labs a couple of weeks ago. And we're
7	characterizing the data as data that preexists. Okay,
8	maybe like EBR EBR-II. We need to get it. We need
9	to understand it. We have to bring it in-house. We
10	have to be assured of the quality of that data. And
11	I think the question is on completeness. You know,
12	they extruding versus the casting. Those types of
13	questions. But first we have to get those data.
14	There's a lot of other data out there. We
15	don't have ready access to it, so we're trying to
16	identify where it's at. Is it in a format that we can
17	still use? Because a lot of these data are quite old.
18	Analysts now want to have this in electronic format so
19	they can go ahead and use and start to get this in
20	in the case where there are gaps in the experimental
21	data, nobody has it. We're trying to point that out
22	and at least identify to Department of Energy in the
23	labs that for us to be convinced of the safety case,
24	there are uncertainties that are going to have be
25	addressed in the data. We've started that process.
ļ	I

(202) 234-4433

(202) 234-4433

1 And Ι think this is the -the next step in understanding where we need to develop these codes, 2 and what's important for some of these 3 these - -4 reactor designs.

5 Does this strategy represent the best 6 course of action with -- to develop sufficient 7 expertise? What changes? We've hit on this a few 8 times, and we think that the introduction report -- I 9 called it the overview here -- we need to build on 10 that one because that's -- it's too vaque and confusing at this point -- is what the approach. 11 You know, I think the -- the idea is that, hey, we have a 12 set of tools that is going to be looking at adequacy 13 14 of the safety functions. And I use that term as rather than an active system because everyone wants to 15 16 go to passive systems, or a microreactor where it's 17 natural forces that remove the energy from the system. Okay, they may not even want to say that they have a 18 19 safety-significant component as part of all this. But -- you know, it's -- so we needed to get the adequacy 20 of those safety functions and also be able to make 21 understand 22 sure the source term and its we distribution for both internal and external events, if 23 that's what results in an MHA. 24

We think that both capabilities are going

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1 to be needed as the NRC moves ahead. If we're going to be doing our independent analysis, and we're going 2 3 to do it in an efficient, effective manner, okay, we 4 expect that the reviews to be much more expedited than 5 they have been in the past. I think that the 6 applicants need that, and that might be justified 7 because of the margins which are out there. But that 8 means for us, we have to get those capabilities 9 developed before those applications come in the door. 10 I am sorry, Mike? MEMBER CORRADINI: No, no, no. 11 I'm just I'm trying to understand the third bullet. 12 listening. So are you saying the staff has a -- a consensus view 13 14 on how to re -- I will use the rewrite, or re-describe the overview of the attack of this? 15 Well the -- I think the 16 MS. WEBBER: 17 reference to the overview report is really a reference to the introduction, which we presented on May 1st. 18 19 Is that right, Steve? 20 DR. BAJOREK: Yes, that's the introduction. 21 Are you in the process of 22 CHAIR BLEY: revising that? Might we see a revision before you 23 come back in a few weeks? 24 MS. WEBBER: We hadn't start revising it 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	126
1	yet, but
2	CHAIR BLEY: Well, then you aren't going
3	to give us any
4	(Simultaneous speaking.)
5	MEMBER CORRADINI: Okay, that's fine. But
6	so let me a little bit about it. The the first
7	thing in quotes tells me that you would need a set of
8	tools to make sure that I'm within operational limits
9	for AOOs? I'm still I'm struggling to understand
10	I understand you need a tool for the source term.
11	That I get. I don't understand the first thing in
12	quotes what are your meaning there?
13	(Off-mic comments.)
14	MEMBER CORRADINI: Yes, I know that, but
15	I
16	(Simultaneous speaking.)
17	MEMBER CORRADINI: Can I show that without
18	a tool? That's what what's going through my mind
19	is
20	DR. BAJOREK: Some systems will look at a
21	decay heat removal system. Okay? And they may be
22	dependent on a shutdown to remove the energy, okay?
23	Is the staff convinced that that system works
24	adequately, which within the the operating
25	limits of the reactor? Some of the some of these
	I

(202) 234-4433

	127
1	designs say we're so safe, we can do a unanticipated
2	loss of heat sink, or loss of flow multiple
3	failures. And we don't need an SSCs to do that.
4	Okay, well if you don't take credit for that and you
5	have to remove the energy by either natural forces or
6	your remaining systems, we expect those types of
7	things to be come up as questions in the review.
8	Now those now those are the types of
9	things that you don't have a source term.
10	MEMBER CORRADINI: No, I understand.
11	DR. BAJOREK: everything within the
12	system. But the staff we would expect that as we
13	look at you know, maybe an example and, you
14	know, this is there is a large break LOCA. Okay,
15	where you have a tool that basic function is to help
16	define the power limit for the reactor
17	(Simultaneous speaking.)
18	MEMBER CORRADINI: No, I mean I mean,
19	let's just let's pick on something since I don't
20	know even what this thing looks like. The Oklo
21	design, it strikes me, if I have a heat pipe and I
22	understand based on experiments, the performance of
23	the heat pipe, now I have to understand how the heat
24	pipe couples to the core, how it couples to the power
25	conversion system, how it also couples to a some
	I

(202) 234-4433

	128
1	sort of redundant or a high, reliable decay heat
2	removal system when it's shutdown. And then I have to
3	ask myself, how many of these things don't work and I
4	still am okay? So I could do that with a lot of
5	relatively simple calculations once I have the data on
6	the heat pipe performance. But without that data
7	MEMBER KIRCHNER: Mike, since I worked in
8	that area
9	(Simultaneous speaking.)
10	MEMBER KIRCHNER: Well, I probably what
11	they'll do is design it so whether the heat pipe
12	functions or not, doesn't matter. They'll just have
13	passive decay heat removal out of the by conduction
14	out of the body of the reactor core. And I
15	shouldn't pre-guess what they're design approach would
16	be. But that would be one approach.
17	(Simultaneous speaking.)
18	MEMBER KIRCHNER: And then you can
19	demonstrate with simple calculations that you could
20	reject all of the decay heat.
21	MEMBER CORRADINI: Okay.
22	MEMBER REMPE: So I guess to there was
23	an example brought up during the Volume 1 discussions
24	where I could see what Steve's saying make sense. The
25	gas reactor and the hot deck. Thermal stratification.
l	I

(202) 234-4433

That might be something that needs a tool. Now, you could also just put a hole in MELCOR and blow it out and see what happens with sensitivity studies. But if a vendor were to come in and really need to reduce the margin for some reason, you might need it. But I guess -- and so I like what you're coming through here and saying.

Associated with it, I think, 8 is the 9 implied assumption that the resources devoted to it 10 may not be as much at first until you -- you know, you're going to be ready, but you realize that these 11 detailed tools may probably not be needed as often as 12 the workhorse to get you source term. Is that a good 13 14 extrapolation of what you're saying too?

15 DR. BAJOREK: I think it is, and you know, 16 I mean, I'll throw out one example. You know, because 17 we are interested in microreactors, we've already completed a -- a small reference model that looks and 18 19 should operate much like one of the microreactors. And this is a way that we will be able to examine, you 20 know, the performance -- the operation. What happens 21 if you fail one heat pipe? The parts have said, hey, 22 scenario you've got to look at is cascading effects. 23 24 No, that's -- that -- you might get the -- with a simple calculation -- might need to be more detailed 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	130
1	as you look at some of these structures, which are
2	kind of complex. And some scenarios. So you you
3	explore things on a simple basis. When we did this
4	one, we don't want a all-inclusive model of a heat
5	pipe and the sonic velocities inside the pipe. It's
6	a super conductor. Dial-in a large thermal
7	conductivity. See how it operates. Are you close to
8	a limit? Are you less than a limit? If I increase
9	the power, you know, a little bit higher, do I run
10	into a eutectic temperature in the metallic fuel?
11	Okay, when you go through some of those transients.
12	Once we get our feet wet on that, we're going to be
13	able to tell I think pretty quickly whether we
14	actually have to go to a a lot more detail, or hey
15	that's that's what you that's enough for the
16	staff to ask intelligent questions of the applicant
17	because it's their analysis that's going to be the
18	the analysis of record.
19	CHAIR BLEY: I wanted to jump in. We
20	I talked earlier and said, could you get us this
21	report ahead of time? I don't think that's
22	reasonable, even if Steve says it's not a big deal.
23	But if you had some slides at the full committee
24	meeting that outlined what you were going to include
25	in that revision, I think that would make our letter
	1

(202) 234-4433

(202) 234-4433

	131
1	writing much easier.
2	MS. WEBBER: Yes, I took that as a no
3	earlier in the presentation.
4	CHAIR BLEY: Okay. I think that could be
5	really important for us.
6	DR. BAJOREK: Final point on here, I think
7	one of the comments is a pilot study. You know, I
8	just in talking amongst yes, we think a pilot study
9	on the staff's end is a good idea. Pick a design.
10	Stay away from proprietary issues. Address it from
11	both tools. How would we calculate something with the
12	LMP? It will at least be informative as we move
13	forward and we do get a real a real application in.
14	So it's a matter of resources and what would be a
15	design that we would be able to use in a more of a
16	public format?
17	Should the NRC consider developer and
18	applicant codes for confirmatory or sensitivity
19	analyses? I think, you know, our view is that we want
20	to we I think we agreed with one of the comments
21	we got there. We really don't want to just pick up
22	the applicant's tool and repeat some calculations.
23	And I think the idea here is that you have to
24	understand these codes. You just can't pick these
25	things up and use them as a black box. You have to
	I

(202) 234-4433

1 learn how to use them. You have to understand what's inside them. You've got to look under the hood before 2 3 you really understand how they really are. And many 4 applicants -- you know, the applicants are all over 5 the place in what they've talked about as potential 6 codes they're going to use. So we'd rather, you know, 7 focus on maybe a smaller set, learn those and use 8 those rather than try to address anything that those 9 50 or 60 designs might come in with. 10 We have found -- you know, our -- looking at this from the safety function analysis point of 11 view is that using the -- the NIM tools in combination 12 with some of the NRC tools gives us something that 13 14 allows us to use the details if we want to go there. 15 But it also represents a very large cost savings to 16 the NRC. In working with DOE, we're expecting them to do the code development -- the verification of those 17 -- of those codes. We -- yes? 18 19 CHAIR BLEY: What do you have to do to have confidence in the codes once the DOE says, V&V is 20 done, these are great? 21 DR. BAJOREK: Well first of all, we work 22 with them to do V&V. And we say, hey, if you look --23 24 (Simultaneous speaking.) CHAIR BLEY: Okay, so it's not just --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	133
1	DR. BAJOREK: It's not just what now,
2	we're pointing out and that was part of the data in
3	the NIM, hey we're going to point out what validation
4	that we think is important for us to have the
5	confidence in the codes. And one way that's not real
6	difficult because as you look at the non-LWR
7	there's not a whole lot of data out there. So you're
8	we're all kind of we all want to know which life
9	preserver we're going after. So that I don't think
10	that's a that's really that's not a a point
11	of contention. I think the developers realize, yes,
12	they have to validate those types of tools. Well,
13	they're doing that. And that's that's a big
14	expense. And I am not even sure we have the total
15	number of staff to go ahead and do that.
16	But, as part of the learning process, we
17	are doing some of that that validation ourselves.
18	We're engaged in an IAEA or we think we are going
19	to be able to do this one using a Chinese fast reactor
20	data. That's a separate issue. You know, that will
21	help us benchmark some of the fast reactor analysis
22	tools. We have a staff member that's setting up a
23	model for FFTF. We're going to do this. We're doing
24	this in-house. I am hoping to actually maybe talk
25	with Dr. Corradini. I am looking for the Wisconsin
	I

(202) 234-4433

(202) 234-4433

134 1 RCCS data, and the NSTF RCCS data. We will be taking some of these things and we'll be doing our own 2 3 validation because that's how we're going to learn and 4 we're going to train ourselves to make sure we 5 understand those tools, look under the hood to make sure they're doing the right things for the right 6 7 reasons. And if they aren't working properly, we're 8 going to get on the phone to the developers and have 9 that corrected. Let me -- you made the --10 CHAIR BLEY: kind of a big point in Volume 2 that in some cases the 11 costs work out kind of equally no matter which way you 12 qo. But also that, you know, you have a computer base 13 14 here that's pretty limited. Someone mentioned earlier, I think it was James, that there's a way to 15 16 qo --17 DR. BAJOREK: Using the --In the cloud and run --CHAIR BLEY: 18 19 BAJOREK: We -- we've -- we think DR. we've mastered that. We've been doing that with TRACE 20 and --21 So you don't think you'd be 22 CHAIR BLEY: computer limited should you need to use these more 23 24 than you expect you'll have to? DR. BAJOREK: No, we're looking at it in 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	three different ways. One, we think most of these
2	things will run on desktop-type systems with multiple
3	processors. Those are our those aren't very
4	expensive anymore. Using the cloud gives us access to
5	a lot. But we've also been talking and working with
6	the Department of Energy, and they've given us access
7	to their high performance computing system. So, you
8	know, some of us have accounts on those. We're
9	starting to use those. So we've got three different
10	areas. But we think, for the most part, running on
11	desktop-type systems of 16 or 32 CPUs is going to
12	handle handle these types of things. And that's
13	we're pretty confident that the high performance
14	system is not going to not going to come bite us.
15	CHAIR BLEY: And issue? Okay.
16	MEMBER REMPE: So could you go to slide 12
17	where you have BlueCRAB. And I'd like to understand
18	this last bullet a little bit more. You've got yes
19	because I think sometimes it's good to look at the
20	actual slides here or, the the codes.
21	PARTICIPANT: Got it?
22	(Simultaneous speaking.)
23	MEMBER REMPE: Yes, that one.
24	DR. BAJOREK: Let's let's
25	MEMBER REMPE: So you're saying you
l	I

(202) 234-4433

(202) 234-4433

	136
1	said the DOE codes is going to save us money. Which
2	of those codes that are now white because you
3	you did listen to a prior suggestion of putting all
4	the NRC ones on the left. Which of the codes is going
5	to save you money there?
6	DR. BAJOREK: I think it's ultimately
7	MOOSE and SAM that will do most do a lot of this.
8	MEMBER REMPE: And help NRC in saving
9	money?
10	DR. BAJOREK: As I mentioned, MOOSE allows
11	you to do data transfers. Okay? And I think I said
12	on one of the other slides, you know, you see all the
13	stuff in coupling. For the Fortran lovers out there,
14	think of these as sub-routines. Okay? It's much
15	easier than it had been 20 or 30 years ago. Okay, so
16	but, you know, something like MOOSE allows you to
17	do these data transfers. It also allows you to do
18	tensor mechanics. So if I am looking at a let's
19	say a microreactor that is heating up, the big
20	feedback there is as it grows radially and axially,
21	that's your that's your source of negative
22	reactivity. That's what shuts it down. And that's
23	what you've got to predict. We don't have that in our
24	NRC codes, okay?
25	You have the same problems in a sodium
I	I

1 fast reactor, VTR. Now they -- they get a little bit easier because the core plate is all in a constant 2 3 temperature bath and you can kind of do a side 4 calculation. But this allows you to attack those 5 types of things. SAM has some attribute in there that allows you to get at thermal striping stratification 6 7 where systems codes don't do a very good job. And 8 just to point out, a couple of things that we've tried 9 to clean up on this is, you know, the solid arrows --10 those are things which are done. We've completed It's operating And we're ready to move ahead 11 those. The dashed are things that we're working 12 on those. And that's coupling fast either to trace directly 13 on. 14 or through MOOSE. MOOSE might actually be the easiest 15 And just to kind of pick up on, you know, this way. -- this coupling And why sometimes it's good -- right 16 17 now, if you go to FAST to TRACE, you've got that solid line over there on the left. What that basically 18 19 means -- I go run FAST And FRAPCON. I take the input. give it to the analysts. Now, for those 30-some 20 Ι heat structures, you type in the arrays. It may take 21 you a couple of weeks, but you'll have something to do 22 for those couple of weeks. 23 24 So doing that type of a coupling is

25 actually a big cost and time saver, okay? But anyway,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

138 1 let's assert a point here. Now, if you go to the next 2 one --3 MEMBER REMPE: No, before you leave here. 4 You said MOOSE and I got the data transfer and there might be even some numerics that you didn't -- or 5 numerical solutions that you might like -- and all 6 7 that, the SAM -- that's with the sodium reactor? Or 8 what does it do? Help me remember. 9 That -- oh, I am sorry. DR. BAJOREK: 10 That does all liquid metal reactors -- lead-bismuth, sodium, also does molten salts. 11 MEMBER REMPE: Okay, why can't you put --12 liquid 13 Ι thought you'd already put some metal 14 properties in TRACE? And what does SAM do you don't have the capability with your current --15 16 (Simultaneous speaking.) 17 DR. BAJOREK: We could put them in the TRACE, but SAM is where the validation is going on. 18 19 MEMBER REMPE: So --DR. BAJOREK: I can --20 MEMBER REMPE: It can -- because --21 22 DR. BAJOREK: You know, I can qo and validate TRACE against all the liquid metal type of 23 24 tests out there, but I will be asking for my colleague at the end of the table for quite a pot of money in 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	order to go ahead and do that.
2	MEMBER CORRADINI: But I think what Joy is
3	asking I am not I am not sure where she is
4	going, but I think at least on this question what she
5	is asking is SAM just simply a liquid metal RELAP?
6	(No audible response.)
7	MEMBER CORRADINI: Isn't it?
8	DR. BAJOREK: Yes, it's basically you
9	know, in one way it's RELAP that you can do a sodium
10	you know, you can do the liquid metals, the sodium,
11	molten salts.
12	MEMBER CORRADINI: I mean, it was
13	developed in a in a different group, but in for
14	all intents and purposes, a tube and tank model.
15	(Simultaneous speaking.)
16	MEMBER CORRADINI: It's essentially
17	orifice
18	DR. BAJOREK: Yes, it's a systems code.
19	MEMBER CORRADINI: Okay, fine.
20	DR. BAJOREK: There are there is
21	there is there are some models in there that kind
22	of gives you a a CFD light that you if you
23	choose to turn it on. So it has some of those
24	capabilities.
25	MEMBER CORRADINI: Okay.
I	

	140
1	(Simultaneous speaking.)
2	DR. BAJOREK: But, anyway
3	MEMBER REMPE: So okay, so then I would
4	be careful with that bullet that was earlier in this
5	presentation. It's not all the DOE codes, it's some
6	codes. And it may save you money is where you I
7	wouldn't be over-stating it. But there's selected
8	ones. It's not the everything in your
9	(Simultaneous speaking.)
10	DR. BAJOREK: We've done an evaluation.
11	It will save us money.
12	MEMBER REMPE: Okay, but for all of these
13	codes? PRONGHORN and MAMMOTH, too?
14	DR. BAJOREK: I do it by application.
15	MEMBER REMPE: So all of these codes that
16	are in white and green?
17	DR. BAJOREK: Applying yes, yes.
18	MEMBER REMPE: Are going to save you money
19	if you use them? And you do want to do all of them
20	because the DOE is going to validate them to your
21	standards?
22	DR. BAJOREK: Let me let me just also
23	explain on this. This this figure, which we call
24	all that stuff on there BlueCRAB is sort of the
25	the artists' pallet. Okay? These are all the
	1

(202) 234-4433

tools that we're interested in. But when it comes to an application, okay -- modeling a sodium fast, a microreactor -- you don't use all of these. Let's go to the next one.

5 In our microreactor model, these are the 6 only ones that get turned on. Okay, you get cross-7 sections from SERPENT, okay? And you have your 8 kinetics passing information as the model expands. 9 And getting its heat-pipe information from SAM through 10 a very simplified component. So when it comes to validating, you know, something for a microreactor, 11 you're looking at a very -- a small population out of 12 all of those tools. 13

14 MEMBER CORRADINI: I guess -- I guess --15 I understand how you're explaining to Joy. I -- where 16 I am personally -- I have a hard time is, since I 17 don't know it, is if you have invested all of this time and effort in SCALE and Parks, to switch to 18 19 SERPENT and MAMMOTH strikes me as a big training exercise. I understand SAM because you either got to 20 put it there, or you got to put it in TRACE. But the 21 reactor physics part of this strikes me as an odd sort 22 of choice. Just me alone. I'm -- knowing -- because 23 24 I then drag your reactor physics people in and ask them quite --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

142 1 DR. BAJOREK: This might be the blind leading the blind, then, but one of the things that we 2 kind of have to keep in mind when we're dealing with 3 4 fast reactors -- and for that matter, you know, some 5 of the gas-cooled reactors -- the mean free path of the neutrons are much, much larger than they are --6 7 MEMBER CORRADINI: Sure. 8 DR. BAJOREK: -- in a light water reactor. 9 is diffusion-based, okay? PARCS MAMMOTH can do 10 diffusion, but it also has transport capabilities. And it has a mesh that I can put the detail where I 11 want it, or I can ignore it. Okay? So I can -- I can 12 make it run much like a PARCS or a diffusion-based 13 14 code, but where I have to look at a situation where my 15 control rod over here is -- is affecting my assembly 16 over here, I can do that. I can't really do that with 17 PARCS. Joe can probably explain this much better. MR. KELLY: This is Joe Kelly from Office 18 19 In this particular example for the of Research. microreactor --20 Turn the mic on. 21 PARTICIPANT: Okay, Joe Kelly from the 22 MR. KELLY: Office of Research. This particular microreactor 23 24 example is a good one to show why you would choose the As Steve stated earlier, the two 25 advanced tools.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	primary negative activity feedbacks have to do with
2	radio expansion of the core support plate, and then
3	axio-thermal expansion of the fuel slugs. So we do
4	that, you know, with the thermal analysis in SAM and
5	then the tensor mechanics module in MOOSE. That gives
6	us the displacements. But how do you factor those
7	displacements into the reactivity feedbacks? In the
8	case of MAMMOTH, because this is all an unstructured
9	finite element mesh, we actually distort the mesh and
10	let the reactivity feedbacks calculate themselves.
11	And I verified that for uniform dilations by checking
12	with Monte Carlo solution versus the MAMMOTH solution
13	for the microreactor model and it worked very, very
14	well. And there's no way we can do that with our
15	legacy tools.
16	DR. BAJOREK: Thank you, Joe. The other
17	the other point that, you know, I might want to
18	make and if Dr. Petti is still there is this is
19	also a bit of an example on how we can take some
20	simplifications. And SAM, for example, we have a very

1 1 1 2 simple model in there to represent the heat pipe. And 21 we're not convinced we need all the detail. 22 That's one place. But if you notice FAST and BISON are shut 23 off on this. Okay? The initial approach is just to 24 25 use models for thermal conductivity, specific heat --

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 you know, those material properties -- those go in either through SAM or for MOOSE. And just use it like 2 3 that. Okay? We can get most of the information out. 4 If we have to go to the detail, then we 5 can go back and start turning on something like FAST 6 or BISON if you need more information for the fuel. 7 Or if there's a reactor cavity cooling system that's 8 associated with this, a water-cooled system -- now 9 that we already have the link over to TRACE and we can 10 model helical coil tubes and all sorts of geometries where we have boiling and sub-cooled boiling and stuff 11

that we really like to spend our time on -- okay,
because that's fun too -- we can go ahead and use
TRACE for that or any of the secondary systems.

So we do make it a little bit simpler for 15 the analyst that if he has to do something like model 16 17 the secondary system in RCCS, there are things that we have some familiarity with. And we think that for 18 looking at boiling in tubes or boiling anywhere in a 19 -- in a bundle, we think TRACE is extremely well 20 validated for that type of thing. So it is taking 21 advantage of things that we've already validated for. 22 23 Taking advantage of tools that have largely been 24 developed for these types of tasks -- and taking 25 advantage of working together with Department of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Energy where they are responsible for validation and development of these tools. We take on the -- the 2 3 need to understand them, learn them effectively, and 4 use these to help address the questions that we get 5 from our friends at NRR or NRO. And I don't know where we're at in terms of slides. 6 7 MEMBER PETTI: Steve, I had a question. 8 What's the strategy in the event DOE changes its 9 direction and decides not to support these at the 10 level that they decided to, you know, a year ago. This is not uncommon in the DOE space. 11 (Simultaneous speaking.) 12 DR. BAJOREK: How would you know that? 13 14 (Laughter.) 15 DR. BAJOREK: That's -- that's certainly 16 an -- is a question mark. The funding for these types 17 of tools in advanced modeling simulations has been consistent over the last ten years. I think in the 18 19 most recent bill, actually the number has gone up. I -- I am sorry, I can't predict the future, 20 am especially with our funding. 21 But --(Simultaneous speaking.) 22 MEMBER CORRADINI: But, I --23 24 DR. BAJOREK: -- we have the same problem with our -- our funding is for those types of things. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	146
1	MEMBER CORRADINI: I guess what what
2	there are still kind of underlying assumption, which
3	I am not sure you're the right one to answer this, but
4	I am going to put Kim on the hot seat. The assumption
5	is that what you get delivered from DOE is validated.
6	I am real concerned that you're going to actually have
7	enough data to take for these complicated
8	calculations and actually have the data you need.
9	That's the one thing I thought we started with that
10	Joy asked.
11	DR. BAJOREK: That's that's a bit of a
12	that's a separate question.
13	MEMBER CORRADINI: Right.
14	DR. BAJOREK: It's one, taking the data
15	you have and validating those tools. The other
16	question and that's one of the reasons we had this
17	data need meeting do we have all the data that we
18	need out there to validate it? And one of the things,
19	I mean, since we had microreactors up here we can
20	model these things. There's some information for heat
21	pipes. I don't think there's a whole lot of
22	information when it comes to taking one of these
23	monolith structures and ensuring that you can get
24	convection, radiation and conduction through a a
25	system where you may have a lot of contact resistance.
I	1

(202) 234-4433

	147
1	Physically, you can do it.
2	PARTICIPANT: Right.
3	DR. BAJOREK: But the way you have
4	something that the whole system of codes can handle
5	that's a shortcoming. And
6	MS. WEBBER: But I also think that, you
7	know, with the notion of developing these reference
8	plant models ahead of the application, you know, the
9	purpose for that is to sort of evaluate where the
10	safety issues are, and then focus data needs in that
11	regard.
12	DR. BAJOREK: Oh, yes, and it was brought
13	up earlier the idea of uncertainties, that's key.
14	I mean, when we get these reference models, one of the
15	things we want to do are sensitivity studies to
16	explore and understand the uncertainties. Now you
17	kind of it's kind of code, telling you that. But
18	what are the phenomena which tend to be more
19	problematic in your your evaluation? At least
20	tells you where you can sharpen the pencil, or where
21	you might want to ask and push for more data. And the
22	other thing with uncertainties we don't want to put
23	any more codes on top of this. But the goal is to use
24	our SNAP tool. Symbolic Nuclear Analysis Programs.
25	It's a graphical a graphical process, say
I	

(202) 234-4433

	148
1	processors that guys of this age like to use. You
2	know, I I kind of like card decks. But, you know,
3	that's a way of processing the input and output. But
4	we have we have linked that. We have merged that
5	with the DAKOTA statistical package so that when we
6	run something from SNAP, we can take a model, run it
7	in times whatever you need to get the the
8	statistics bring that stuff back and then you get
9	a statistical evaluation of your figure of merit and
10	some of the coefficients that you get you out of it
11	that tell you which ones were more dominant.
12	So you know, our goal as we go along is
13	certainly to integrate uncertainty in the uncertain
14	capabilities that we would use with light water
15	reactors. So that's you know, not talked talked
16	up much in the report, but that is part of the part
17	of the goal.
18	MEMBER REMPE: So this story hangs better.
19	A couple of questions. One, you are using these codes
20	to identify data needs, and the codes aren't
21	validated, so you might have a pitfall there. The
22	other thing is, I think I asked this a long time ago,
23	and I think the last time I asked it, I was told yes,
24	DOE said they would give you the source coding. Is
25	that still true?
	1

(202) 234-4433

	149
1	DR. BAJOREK: Yes. We have access to
2	that.
3	MEMBER REMPE: Okay. And you'll be able
4	to archive it? I mean, if you invest any time on it,
5	that way you better make sure because, like Dave
6	mentioned, DOE does change its mind sometimes.
7	DR. BAJOREK: If somebody comes along and
8	disbands Department of Energy, yes we would be able to
9	get the source code and move on. But you know, I
10	don't think that's going to happen.
11	CHAIR BLEY: Steve, just to give you an
12	anchor, you had just finished slide 8. So if Kim
13	types number 9 and return, she'll jump right to slide
14	9.
15	DR. BAJOREK: Go back one more please.
16	Yes, I think we covered that one.
17	MEMBER CORRADINI: I think I think
18	but if but since you did it I think Dr. Rempe's
19	point about significant cost savings is without
20	without putting words in her mouth, strikes me as a
21	stretch. I can see where there's cost savings in very
22	specific instances, but it's almost a case-by-case
23	sort of discussion.
24	DR. BAJOREK: Well, put together a model
25	for EBR-II, okay, FFTF, MSRE DOE is off doing
I	I

(202) 234-4433

1 those. Now I -- I've kind of gone under the rule of thumb that if you set up a plant model or a very large 2 3 integral tests, it can take you a good six months to 4 put those -- that model together with any kind of --5 any kind of, simple -- you know -- you start adding up things which are going to take, you know, a dozen or 6 7 so of these tests -- and separate effects tests -- you 8 start adding those up, you get to a large number. 9 Okay, we're talking about things that's already on 10 Department of Energy's plan, okay? We're going to reinforce the need for those. They're going to do 11 them. They're going to try to push the -- but the 12 schedule --13 14 MEMBER CORRADINI: But where I am pushing 15 back, though Steve, is where you pointed to SAM versus TRACE in installing a liquid metal, I can see it. But 16 I would have to almost look at each one of these 17 individually to decide if I make the decision. That's 18 19 where the -- where I think Joy and I kind of reacted to the bold and the underlying. 20 DR. BAJOREK: Yes, I think it's on an 21 application basis --22 Okay, fine. 23 MEMBER CORRADINI: 24 DR. BAJOREK: You know, you're closer in 25 one place to the other. Microreactors -- we aren't

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	151
1	going to get there with our our tools.
2	MEMBER REMPE: But you may not need such
3	a sophisticated tool for the microreactors. They may
4	not be pushing the margin. You might be able to do
5	something a lot simpler with MELCOR MACCS as mentioned
6	earlier by NRR.
7	DR. BAJOREK: Well like you said, we're
8	we're becoming ready. I if we can approach it with
9	MELCOR and MACCS, okay that's good. In other reviews
10	that, you know, I've been involved with, the staff
11	wants to get into the details. Okay? We're
12	(Simultaneous speaking.)
13	MEMBER KIRCHNER: It's not like that. I
14	mean, you're always going to have a safety function.
15	I was going to save this comment, but maybe this is a
16	good time to make it. There always will be a safety
17	function, even with the microreactors. Whether it's
18	passive or active, there's going to be for example,
19	advanced reactor design criteria in 26 is going to
20	have to be satisfied.
21	DR. BAJOREK: Sure.
22	MEMBER KIRCHNER: So you are going to have
23	to verify that. So you always have a safety function
24	like evaluation to complete. That's what sets a
25	microreactor apart from a spent nuclear fuel cap. You
I	

(202) 234-4433

	152
1	have to ensure that it shuts down. So I don't think
2	you do that in MELCOR.
3	MEMBER REMPE: You have to make sure that
4	you don't go critical in a spent fuel path too.
5	(Laughter.)
6	(Simultaneous speaking.)
7	DR. BAJOREK: You know, kind of follow on
8	that, if if they say that the reactor will shut
9	down passively, we're going to want to be convinced
10	and do our calc and show, yes, it will shut down. And
11	if it shuts down, will it go re-critical under some
12	situation? And I you know, I'd like to you
13	know, I love to do hand calculations. They're more
14	fun. But it's you know, there are going to be
15	situations where we're going to have to delve in to
16	some of those details. And that's what we're where
17	we're getting ready for those.
18	CHAIR BLEY: To the comments from my
19	colleagues here. You've demonstrated at least to
20	my satisfaction that there are situations in which
21	there will be substantial cost savings. If we get no
22	applications, you know, it's there's no cost
23	savings anywhere. But you are prepared to take any
24	application and use the tools that or you're
25	becoming prepared to use the tools that will address
	I

(202) 234-4433

153 1 whatever the application is. And that to me is the -makes sense. 2 3 (Simultaneous speaking.) 4 DR. BAJOREK: Ready and -- the one thing 5 about, you know, using some of the legacy tools -- we saw that landscape of dozens of different reactor 6 7 types. I don't know what that landscape will evolve to 8 in five years. Are we going to have ten gas-cooled 9 Thirty microreactors? A couple of leadreactors? 10 bismuth and some molten salt? I don't think anyone things we're going to see that. It's probably going 11 12 to wind up to a design or two. Okay? So at this taking all of this 13 point, okay, we aren't new 14 infrastructure and putting it in my TRACE or my NRC 15 codes, which I am going to have to hang on to. The more I put into those codes, the more complex I make 16 17 those and their maintenance as I make any -- any other change. 18 19 So at this point, it's not a bad -- we don't think it's a bad idea to go ahead and use 20 separate set of tools, okay, and if the day comes that 21 we're building 50 microreactors, okay, and then we can 22

23 start doing some more consolidation and refining them 24 where we're at. We're not there yet. Where are we 25 at?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Oh, last question -- we talked about it know, the 2 earlier on the you licensing - -3 modernization and, you know, some of the - the 4 various cases and sort of in conclusion, the -- you 5 know, the scope and type of independent calculations -- they'll likely depend on what that design is, what 6 7 the margin is, what the perceived margin is. It may 8 or may not use the LMP. But because of the -- you 9 know, the lack of experimental and operational data 10 for non-LWRs, we feel there are going to be -- we would expect there's going to be some technical issues 11 that are going to have high analytical uncertainty and 12 we may need to use the -- the details of these codes, 13 14 or we may be able to get around it. Time will tell. 15 And that's -- we have -- we've kind of covered, I 16 think the -- those parts there. So -- that's -- yes, 17 that was just a -- that's just extra. Anyway, I wanted -- I do want to thank everyone's questions. 18 19 It's -- it's very engaging. And we appreciate it. Thank you. 20 CHAIR BLEY: Thank you. Anything else 21 from the members? We'll be going around the table in 22

a few minutes. We're going to get the phone line opened up. But while we wait for that, is there anybody in the room who would like to make a comment?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	155
1	If so, please come to the microphone and identify
2	yourself.
3	MEMBER CORRADINI: They look happy back
4	there. They look happy.
5	CHAIR BLEY: It's open. It's magically
6	quiet. Anyone on the phone line who would like to
7	make a comment, please identify yourself and make your
8	comment. There's only one on the phone line. Say yes
9	or no. I guess that's it.
10	Well, at this point, I would like to go
11	around the table and I'd like to ask people to think
12	of all three volumes and the introduction when you
13	make your comments and thinking about things that we
14	need to flag in the letter and things we'd like to see
15	the staff focus on at the full committee meeting. Why
16	don't we start on the phone. Who's on the phone?
17	Matt Sunseri. Matt, do you have anything?
18	MEMBER SUNSERI: Yes. Thanks, Dennis. I
19	thought as far as the staff has gone to meeting their
20	obligation to Congress to develop codes and be ready
21	for the next generation of this work is a big step, I
22	guess, in that direction. And a lot of effort is
23	being put in.
24	As far as things for us to think about, I
25	agree with the comments that other committee members

(202) 234-4433

	156
1	have made regarding, and I'll characterize, the
2	framing the application of this suite of information.
3	So there's the various sections, if you will, that
4	apply to different functional areas and then some to
5	come and then the introduction.
6	But as it was mentioned, I think putting
7	something together like a framework of how applicants
8	will tie this thing, the beginning to end, would be
9	useful, I think. We can talk about that.
10	CHAIR BLEY: Thanks, Matt.
11	MEMBER SUNSERI: Thank you for all the
12	thorough presentations.
13	CHAIR BLEY: Pete Riccardella, are you on
14	the phone still?
15	MEMBER RICCARDELLA: I am. I am. I have
16	to say I found the presentations very education, worth
17	getting up early for. I don't have any comments.
18	CHAIR BLEY: Well, you can go back to bed
19	now. Dave Petti?
20	MEMBER PETTI: Yeah. I appreciated the
21	presentations. I just think that it's going to be
22	really important in that introduction to set the
23	context a little bit better. I think a lot of what
24	we've heard wasn't adequately reflected yet in that
25	introduction, the need for flexibility and different
	1

(202) 234-4433

	157
1	approaches depending on when you need the sharpest
2	pencil, you get the sharpest pencil. But sometimes
3	you don't need that. Some of that, I think, in the
4	introduction would help it a lot going forward.
5	CHAIR BLEY: Thank you, Dave.
6	MEMBER PETTI: No problem.
7	MEMBER REMPE: Oh, yeah. I want to thank
8	everyone for their presentations and their work. I
9	agree that the intro but also the volumes will need to
10	have some tweaking to get it's not just the intro.
11	I really am glad the decision or discussion of saying
12	maybe we won't talk about design basis anymore and
13	we'll talk about more detailed tools or safety
14	function tools.
15	But I think writing the letter would be
16	simplified, as you've said, if you commit to all the
17	plan changes in the intro. As you do that, I'd recall
18	the opening statement or a question Mike had about
19	what's not still covered. If you have a transportable
20	reactor, that's going to be a big thing that the NRC
21	has still got to deal with in high enrichment and
22	things like that.
23	So it would make the story even hang
24	better if you identify what you have done and haven't
25	done. And again, I appreciate you considering our

(202) 234-4433

	158
1	comments and trying to address them because it helps
2	to better understand what you really had in mind.
3	Because I think many members have said it wasn't
4	communicated in the reports. And so a lot of the
5	questions came because we were concerned.
6	MS. WEBER: I think on just your latter
7	point, there is a paragraph in the introduction that
8	describes Volume 1, 2, and 3 and alludes to Volume 4
9	and 5. It's just not clearly identified as Volume
10	Volume 4 is identified. Volume 5 is a little less
11	clear. But we can enhance that.
12	MEMBER REMPE: Okay. Thank you.
13	CHAIR BLEY: Mike Corradini?
14	MEMBER CORRADINI: Oh, you're going in
15	some different order.
16	CHAIR BLEY: Just random order.
17	MEMBER CORRADINI: Okay. All right. So
18	thanks to the staff. I appreciate that. I think
19	we've been doing this now for at least the third or
20	fourth meeting. I can't remember how long we've been
21	doing this. I think it all started because one of the
22	Commissioners asked a question and I won't put the
23	context other than that.
24	I guess I'm looking I think the way the
25	discussion has evolved since the last May 1st meeting
ļ	I

(202) 234-4433

	159
1	to this one, I think I sense that there's a coming
2	together of the staff in how you want to explain this.
3	But I think there's four attributes that have got to
4	be there.
5	Dave already said one which was the need
6	for flexibility. I think Walt and Joy mentioned it a
7	couple times, a need for simplicity. I think Steve's
8	point about I think I can't remember what slide.
9	It was Slide 7 where he pointed out the need for
10	show the adequacy of safety function operational
11	limits.
12	There's a need for completeness. You
13	don't necessarily stay on one tool for everything.
14	But on the other hand, you want to make sure you're
15	complete. And then the one that I guess I thought I
16	said in May but I'll just repeat it here is you've got
17	to work the problem backwards.
18	The only reason for all intents and
19	purposes, the only reason we care about this is the
20	source term. So I'd work it backwards from there and
21	ask, what do I need to verify? I know what the source
22	term is. I essentially feel confident that the safety
23	functions per the advanced reactor design criteria are
24	met and then I stop.
25	I will say something that maybe we
ļ	I

(202) 234-4433

1 shouldn't talk about here but I worry about is if the cost of licensing is the same cost and the size of the 2 3 machine decreases, all of a sudden, the cost of 4 licensing becomes predominant. That's a bad thing. 5 And if I were the reactor vendors, I'd sure make that apparent to some audience and it may not be you guys. 6 7 So it seems to me I've got to make sure 8 this kind of fits together in some sort of overall 9 But those four attributes I think are package. 10 important. And I assume, as Ken was saying and Dennis suggested, if you guys -- you can't rewrite it. 11 But if you can at least enunciate the key points of it 12 come the October full committee, I think that'd be 13 14 very beneficial. That's it. 15 Harold Ray is next. CHAIR BLEY: 16 MEMBER RAY: I agree with the comments 17 that have been made, Dennis. And I have nothing to add. 18 19 CHAIR BLEY: Ron? MEMBER BALLINGER: Yeah, I can't add -- I 20 was going to say pretty much the same thing about the 21 introduction and things like that but can't add much. 22 MEMBER DIMITRIJEVIC: I'm late to the 23 24 party, so I have nothing to add to a lot of writing or I just want to say that in general this 25 anything.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	161
1	principle of simplicity and flexibility will be the
2	ones which will help most on expedite the review
3	process.
4	You said that you are training expertise
5	to expedite that process. But actually what would
6	expedite that process is finishing and developing
7	licensing approach which will allow for the lowest
8	facility to have a streamlined process which may not
9	require very complex calculations or uncertainties.
10	CHAIR BLEY: Thank you, Vesna. Charlie?
11	MEMBER BROWN: Not being a code person, an
12	electrical I&C guy, I actually understood some of what
13	James and Steve were talking about as well as Lucas on
14	the generalities. And I guess I appreciated that
15	presentation in terms of your interactions with the
16	codes and stuff like that.
17	On Steve's presentation on one of the
18	slides, I did not ask this because everybody else was
19	on a roll and it would've interrupted the flow on the
20	technical side. But on your Slide 5, you had a
21	heading, a role of NRC codes with LMP and then stated
22	in the first bullet that that remains to be
23	CHAIR BLEY: Whoever is on the phone, put
24	yourself on mute, please.
25	MEMBER BROWN: The first bullet said,
ļ	I

(202) 234-4433

	162
1	remains to be defined and will be based on applicant
2	submittals and user needs. And so I didn't ask it
3	because it was kind of a, what's the overall context?
4	I thought codes were codes and you needed codes. And
5	it made it it sounded like you didn't need any
6	codes based on somebody's submittal.
7	And so didn't quite understand the context
8	of the bullet relative to all the rest of the
9	presentation. I don't think that adds anything to the
10	letter. But I, quite frankly, did not understand the
11	idea that LMP is just thrown out the window based on
12	what the applicants may submit. So that was if you
13	have an answer to that, that would
14	MS. CUBBAGE: I'd like to answer
15	MEMBER BROWN: be appreciated.
16	MS. CUBBAGE: that. This is Amy
17	Cubbage, general staff. I actually reacted to that
18	bullet as well with the same thoughts you had. And I
19	think regardless of whether it's an LMP approach or a
20	more traditional approach, there will be events.
21	There'll be events. They'll need to be analyzed, and
22	you'll have to have codes to do it that are validated.
23	So the LMP are not it's a little bit of a red
24	herring in this context.
25	MEMBER BROWN: Okay. Codes are codes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	163
1	You will be using codes. That's
2	MS. CUBBAGE: Yes.
3	MEMBER BROWN: the way I read your
4	answer.
5	MS. CUBBAGE: Yes.
6	(Simultaneous speaking.)
7	DR. BAJOREK: Yeah. My point was to the
8	extent we have to apply. You have to use
9	MEMBER BROWN: Whether simple or complex.
10	DR. BAJOREK: Simple or complex.
11	(Simultaneous speaking.)
12	MEMBER BROWN: I got it. Then I
13	understand. Okay. Thank you very much. Sorry to
14	throw that little
15	CHAIR BLEY: Thanks, Charlie.
16	MEMBER BROWN: fish in the water here.
17	CHAIR BLEY: Walt?
18	MEMBER KIRCHNER: Thank you for the
19	presentations. I will be repeating myself, I guess.
20	But I see that the staff has a lot of flexibility and
21	choices. Their analyses are confirmatory, so they can
22	pick the tool they think they need to match the
23	requirements to make their assessment on safety
24	functions or whatever. It's different for the
25	applicant because the applicant has to make proof.
I	1

(202) 234-4433

	164
1	I think FRAPTRAN which was most of the
2	presentation this morning. That is, I think, a good
3	choice, a prudent choice for the NRC. So that's one
4	member's opinion.
5	What I still remain unclear about, and
6	this is more for NRO, not for you and NRR. It's just
7	not clear to me what the expectations are for the
8	applicants. If the applicants pick up your document
9	and think that applies to them, I think that would be
10	very misleading.
11	So I think in the introduction
12	strengthening what this is about and who it's for,
13	it's not for the applicants. It's for the staff
14	MS. WEBER: I think that's part of the
15	MEMBER KIRCHNER: to be ready.
16	MS. WEBER: intro.
17	MEMBER KIRCHNER: It's part of the intro,
18	but I think it could stand out and make it clear that
19	if they pick the same thing you pick, that doesn't
20	mean that they have verified qualified codes for their
21	application. And so I remain a little bit again,
22	it's a question more for a different time. But it's
23	not clear to me what the expectations of the
24	applicants are going to be for these non-LWRs.
25	I would expect that their codes would be
	1

(202) 234-4433

	165
1	NQA-1 and DNV. And the burden is on the applicant
2	through a topical report or some other mechanism to
3	make that case.
4	DR. BAJOREK: In meetings
5	MEMBER KIRCHNER: And that's much
6	different than what is required of the staff.
7	DR. BAJOREK: In meetings with them, we've
8	tried to point out that, hey, this is a path the NRC
9	is doing. And it's because of the flexibility of the
10	number of types out there.
11	MEMBER KIRCHNER: Yeah.
12	DR. BAJOREK: If an applicant wants to go
13	a separate way, that's certainly their choice. And if
14	you only have one design to have to design and
15	license, it's going to look a lot different than what
16	we're
17	MEMBER KIRCHNER: Yeah.
18	DR. BAJOREK: presenting here.
19	MEMBER KIRCHNER: So with that, thank you,
20	Dennis.
21	CHAIR BLEY: Yeah, thanks. I do want to
22	compliment all of you on really good presentations and
23	discussions and open discussions. I appreciate that.
24	I appreciate also what feels to me like a coming
25	together of thoughts since our first meeting. Well,
I	

(202) 234-4433

	166
1	it was kind of we got all these options and we've
2	evaluated some. Here, we're starting to think about
3	here's how we'll actually try to use them when things
4	come up.
5	And again, you won't have the document.
6	But if you can give us some slides on what that
7	revised overview is going to look like and the things
8	it's covering, I think that's great. I like Mike's
9	principles and I especially like Walt's mention.
10	Yeah, I was looking at these and I wrote a note to
11	myself.
12	These are probably going to be NUREGs,
13	although they don't say so on the cover. I'm not sure
14	what they're going to be, but they're going to be
15	looked at. And I think that first document has got to
16	make clear what you've said here today, that this is
17	for your to decide how to be prepared to review
18	things. And applicants are free to come up with their
19	own approaches.
20	And you haven't I don't think you've
21	put out guidance that tells them anything about what
22	codes are okay to use, if you use these, you're okay.
23	And that we're expecting and you've said it twice
24	today that these are going to be QA'ed and come in
25	with a I think the document itself, at least Volume

(202) 234-4433

	167
1	2 talked about having topical reports come in to get
2	approved on the codes people use. So making all that
3	stuff clear I think is important.
4	MS. WEBER: I think that
5	CHAIR BLEY: I'm sorry. Go ahead.
6	MS. WEBER: to that last point, I mean,
7	I don't think in the history of NRC we've ever said
8	that applicant has to use Code XYZ.
9	CHAIR BLEY: No, but you've often said if
10	you use Code X, your life is going to be a whole lot
11	easier. And we're going to be looking for that at
12	some point. I was just hanging up I didn't talk to
13	Derek and I forget how much time we have on the
14	agenda. So talk with Weidong and Derek in between
15	times to see how much time. I'm not quite sure how
16	you
17	MS. WEBER: It's two hours as I understand
18	it.
19	CHAIR BLEY: You squished this up to cover
20	all the volumes. So you got to think on that. Kind
21	of emphasize
22	MS. WEBER: Yeah, the intro.
23	CHAIR BLEY: the intro and the kind of
24	things we were talking about that everybody has talked
25	about in our meetings and give a summary of the
I	1

(202) 234-4433

	168
1	possible codes in each of the three areas and how
2	you're addressing that. So lots less than we had in
3	the two meetings, three if you count the research
4	meeting. But a real focus in on how they're going to
5	be used and what you're going to be expecting.
6	So thanks very much. At this point, we
7	are adjourned.
8	(Whereupon, the above-entitled matter went
9	off the record at 12:03 p.m.)
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	I

Advanced Reactor Code Development Status

Fuel Performance Analysis for Non-Light Water Reactors

Kimberly A. Webber Office of Nuclear Regulatory Research

Presented to: ACRS Future Plant Design Subcommittee Meeting September 17, 2019


NRC's Implementation Action Plan, Strategy 2 – Computer Codes

Volume 2 = Fuel Performance – Subject of September 17th meeting Volume 4 = Radiation Protection – Work in Progress

Agenda

- Overview Kim Webber
- Volume 2 Fuel Performance Analysis for Non-LWRs – James Corson, Lucas Kyriazidis
- Response to May 1st and September 4th Questions on IAP "Strategy 2" Codes – Steve Bajorek

