7902010186

PRELIMINARY MULTIROD BURST TEST PROGRAM RESULTS AND IMPLICATIONS OF INTEREST TO REACTOR SAFETY EVALUATIONS*

Robert H. Chapman

Engineering Technology Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830

Presented at the Sixth Water Reactor Safety Research Information Meeting November 6-9, 1978 Gaithersburg, Maryland

By acceptance of this article, the publisher or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering the article.

*Research sponsored by the Office of Nuclear Regulatory Research, Nuclear Regulatory Commission under Interagency Agreements 40-551-75 and 40-552-75 with the U.S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Corporation.

7902010186

PRELIMINARY MULTIROD BURST TEST PROGRAM RESULTS AND IMPLICATIONS OF INTEREST TO REACTOR SAFETY EVALUATIONS

Robert H. Chapman

Oak Ridge National Laboratory Oak Ridge, Tennessee 37830

The Multirod Burst Test (MRBT) Program, in progress at Oak Ridge National Laboratory, is investigating LWR cladding deformation in singleand multirod test arrays under conditions representative of reflood and refill phases of a LOCA. In these tests internally pressurized, unirradiated Zircaloy-4 tubes containing electrically heated fuel simulators are tested to failure in a low-pressure, superheated-steam environment. The tubes are "uniformly" heated over a 915-mm length the simulator pressure, due to the small enclosed gas volume, also varies with temperature (and deformation) during the test.

To date 53 single rod transient burst tests have been conducted with heating rate of 28°C/sec. The data base covers a range of burst pressures from 770 to 19,150 kPa; the corresponding burst temperatures range from 1170 to 690°C. Four additional transient burst tests at lower heating rates (two each at 5 and 10°C/sec) and four isothermal (\circ 0°C/sec heating rate) creep rupture tests have been conducted to scope the effect of heating rate. Initial conditions for these tests were adjusted to cause failure at \sim 750°C.

Two 4 × 4 multirod tests (B-1 and B-2), one with and one without the shroud being heated, have been conducted with a bundle heating rate of $\sim 29^{\circ}$ C/sec; initial pressure conditions for these tests were selected to cause failure at about 860°C. An additional 4 × 4 array (B-3) was tested using a bundle heating rate of $\sim 10^{\circ}$ C/sec; the shroud was also heated in this test. Initial conditions were adjusted to cause failure at $\sim 760^{\circ}$ C.

Posttest examination (including flow tests) of the B-1 a.d B-2 test arrays, is essentially complete, and pertinent data are included in this summary. Although examination of the B-3 array is in progress, very little data are available at this time. The burst temperature-burst pressure data are in agreement with single rod test data obtained with comparable heating rates. However, greater deformation was observed in the bundle tests than would have been expected from our single rod tests; this may be the result of greater temperature uniformity in the bundles. On the other hand, deformation in the B-1 and B-2 test arrays was essentially the same, even though the boundary conditions were quite different (i.e., the shroud was heated in B-1 and unheated in B-2).

4

Preparations are in progress for testing another 4×4 array (B-4) in April 1979; present plans are for this to be an isothermal (0.760° C) creep rupture test, with the shroud being heated to the same temperature as the bundle.

Work on this program is routinely reported in a series of reports entitled *Multirod Burst Test Program Quarterly Progress Peport*. Significant results appear in the following reports of this series:

Report Number

ORNL/NUREG/TM-36 ORNL/NUREG/TM-74 ORNL/NUREG/TM-77 ORNL/NUREG/TM-95 ORNL/NUREG/TM-108 ORNL/NUREG/TM-135 ORNL/NUREG/TM-200 ORNL/NUREG/TM-217 Period Covered

January-March 1976 April-June 1976 July-September 1976 October-December 1976 January-March 1977 April-June 1977 July-December 1977 January-March 1978

Pertinent topical reports include:

- R. H. Chapman, compiler, Characterization of Zircaloy-4 Tubing Procured for Fuel Cladding Research Programs, ORNL/NUREG/TM-29, (July 1976).
- W. E. Baucum and R. E. Dial, An Apparatus for Spot Welding Sheathed Thermocouples to the Inside of Small-Diameter Tubes at Precise Locations, ORNL/NUREG/TM-33, (August 1976).
- 3. W. A. Simpson, Jr., et al., Infrared Inspection and Characterization of Fuel-Pin Simulators, ORNL/NUREG/TM-55, (November 1976).
- R. H. Chapman, et al., Effect of Creep Time and Heating Rate on Deformation of Zircaloy-4 Tubes Tested in Steam with Internal Heaters, ORNL/NUREG/TM-245 (October 1978).

ORNL WS-1233

MULTIROD BURST TEST PROGRAM IS A STUDY OF CLADDING DEFORMATION UNDER CONDITIONS REPRESENTATIVE OF REFLOOD AND REFILL PHASES OF A LOSS-OF-COOLANT ACCIDENT

- . ELECTRICALLY HEATED FUEL ROD SIMULATORS
- SINGLE ROD TESTS FOR PARAMETRIC EFFECTS
- MULTIROD TESTS FOR FLOW RESTRICTION

RESULTS ARE OF IMPORTANCE IN DETERMINING IF CORE GEOMETRY REMAINS AMENABLE TO COOLING

ornl

ORNL WS 1234

MULTIROD BURST TEST PROGRAM

OBJECTIVES

- . RUPTURE TEMPERATURE-PRESSURE-STRAIN RELATIONSHIP
- . EXTENT AND DISTRIBUTION OF DEFORMATION
- . FLOW RESISTANCE AS A FUNCTION OF DEFORMATION
- EFFECTS OF ROD-TO-ROD INTERACTION ON FAILURE
 BEHAVIOR
- BASIS FOR MULTIROD DEFORMATION FROM SINGLE ROD TESTS
- INTERNALLY CONSISTENT DATA SET FOR STATISTICAL ANALYSIS

omi

ORNL WS 1238

TEST PARAMETERS SIMULATE NUCLEAR FUEL RODS AND LOCA CONDITIONS

- INTERNAL ELECTRICAL HEATER
- . 915 mm "UNIFORM" HEATED LENGTH
- · ~0-30°C/SEC CLAD HEATING RATE
- · 47 CM³ GAS VOLUME
- SUPERHEATED STEAM ENVIRONMENT
- 770-19150 kPa BURST PRESSURE RANGE
- ✤ 1170-690⁰C BURST TEMPERATURE RANGE

orni

ORNL WS-1235

SIGNIFICANT PROGRAM ACCOMPLISHMENTS

SINGLE ROD BURST TESTS

- 53 TESTS WITH 28^oC/SEC HEATING RATE
- 2 TES'S WITH 10°C/SEC HEATING RATE
- 2 TESTS WITH 5°C/SEC HEATING RATE
- 4 TESTS WITH ~0°C/SEC HEATING RATE (I.E., ISOTHERMAL CREEP RUPTURE TESTS)
- 4 X 4 BUNDLE BURST TESTS
 - 1 HEATED SHROUD TEST WITH 28°C/SEC HEATING RATE
 - 1 UNHEATED SHROUD TEST WITH 28°C/SEC HEATING RATE
 - 1 HEATED SHROUD TEST WITH 10°C/SEC HEATING RATE

oml

ORNL-DWG 78-10669

ORNL TRANSIENTS FOR LOW HEATING RATE AND CREEP RUPTURE INTERNALLY HEATED SINGLE ROD TESTS IN STEAM

ELECTRICALLY HEATED TEST ASSEMBLY PROVIDES REALISTIC SIMULATION OF NUCLEAR FUEL ROD

.

ORNL-DWG 77-8294R

UNION CARBIDE

BUNDLE TESTS PROVIDE BETTER SIMULATION OF REACTOR CONDITIONS THAN SINGLE ROD TESTS

8

UNION CARBIDE ORNL

COMPARISON OF B-1, B-2, AND B-3 TESTS

.

	8-1	<u>B-2</u>	8-3
BUNDLE HEAT RATE (°C/SEC)	29.5	28.5	9.5
SHROUD HEAT RATE (OC/SEC)	20.0	0	7.5
INLET STEAM TEMPERATURE (°C)	349	332	320
INLET STEAM REYNOLDS NUMBER	250	290	263
INITIAL TEMPERATURE (°C)	356	334	329
INITIAL PRESSURE (KPA)	8680	8770	11610
MAXIMUM PRESSURE (KPA)	9100	9200	12110
BURST PRESSURE (KPA)	7425	7560	9425
BURST TEMPERATURE (°C)	865	857	764
BURST TIME (SEC)	17.0-17.6	17.8-18.3	44.5-47.6
BURST STRAIN (%)	32-59	34-58	3
TUBE VOLUME INCREASE (%)	27-55	28-52	7
TB - TS AT BURST TIME (°C)	140	355	80

ORNL-DWG 78-19007

ORNL-WS-1347

ORNL-PHOTO 5027-77

LOW HEATING RATE (~10⁰C/SEC) APPARENTLY CAUSED GREATER DEFORMATION IN B-3 TEST AS EVIDENT ON NORTH FACE (LEFT) AND EAST FACE (RIGHT)

ORNE PHOTO 3842 7RA

OR-1. PHOTO 5089-78

COMPARISON OF DEFORMATION IN B-1 AND B-3 TESTS REFLECTS DIFFERENCE IN HEATING RATE

ORNL-WS-441

ORNL STEAM FLOW RATE HAS AN EFFECT ON BURST LOCATION

- STEAM FLOW WAS LOWER IN B-1 AND B-2 THAN IN SINGLE ROD TESTS B-1 RE \approx 250; B-2 RE \approx 290; SR RE 600-800
- SOME BURSTS IN 8-1 (4) AND 8-2 (8) ABOVE UPPER GRID BUT IN AGREEMENT WITH IR-SCAN
- HEATER FROM 8-2 ROD 4 TESTED IN TWO SINGLE ROD TESTS WITH GRIDS
 - ONE AT STEAM FLOW NORMALLY USED IN SR TESTS
 - ONE AT STEAM FLOW SOMEWHAT LOWER THAN 8-2 TEST
- . RESULTS

UNION

- BURST OCCURRED BELOW GRID WITH NORMAL STEAM FLOW
- BURST OCCURRED ABOVE GRID WITH LOW STEAM FLOW
- STEAM TEMPERATURE MEASUREMENTS SHOW SHORT THERMAL ENTRANCE ZONE FOR LOW RE
- · CONCLUSIONS:
 - LOW STEAM FLOW COMBINED WITH CHARACTERISTICS OF HEATERS CAUSED BURSTS TO OCCUR ABOVE UPPER GRID IN B-1 AND B-2
 - BURST LOCATIONS CAN BE LOWERED (AND POSSIBLY CLUSTERED) IN
 BUNDLES BY INCREASING THE STEAM FLOW
 - DEFORMATION NOT SENSITIVE TO STEAM FLOW RATE FOR 200 < RE < 800
 - CONVECTIVE HEAT LOSSES TO STEAM BECOME MORE IMPORTANT ON TUBE TEMPERATURE PROFILE WITH DECREASING HEATING RATES.

ORNL-DWG 78-11144

ORNL BURST LOCATION CAN BE DISPLACED BY CHANGE IN STEAM FLOW

URNL WS 437A

BUNDLE STRAIN METHODOLOGY

- . CAST BUNDLE IN EPOXY AND SECTION AT -15 MM INTERVALS
- . MAKE -1X AND -5X PHOTOGRAPHS OF EACH SECTION

UNION CAMBIDE ORNL

- DIGITIZE INSIDE AND OUTSIDE PERIPHERY (20:40 POINTS ON 5X PHOTOL OF EACH TUBE IN SECTIONS AND RECORD DATA ON MAGNETIC TAPE FOR COMPUTER PROCESSING
- . FIT DIGITIZED DATA (CUBIC SPLINE ROUTINE) AND PROCESS DATA
- CALCULATE ID & OD CIRCUMFERENCE AND AREAS, CENTROIDS, AND STRAIN
- . PLOT SECTION PROFILES WITH CENTROIDS, LABEL ROD AND STRAIN
- FIT ILEAST SQUARESI ORIGINAL GRID PATTERN TO POSITEST TUBE CENTROIDS
- . PUNCH DATA ON CARDS FOR SUBSEQUENT PROCESSING
- PLOT DEFORMATION AND HEAT GENERATION PROFILES FOR INDIVIDUAL TUBES
- . CALCULATE VOLUME INCREASE OF EACH TUBE OVER HEATED LENGTH
- CALCULATE MAXIMUM AND MINIMUM FLOW RESTRICTION FOR SECTION
- MAXIMUM RESTRICTION FOR BURST TUBES CONSIDERS FLAREOUT AS BLOCKAGE
- MINIMUM RESTRICTION CONSIDERS TUBE OF CIRCULAR CROSS SECTION WHOSE PERIMETER EQUALS THAT OF THE BURST TUBE (CONDITION PRIOR TO BURST)
- BOTH DEFINITIONS USE ACTUAL TUBE OUTSIDE AREA FOR NON-BURST TUBES
- PLOT BUNDLE MAXIMUM AND MINIMUM FLOW AREA RESTRICTION PROFILES.

RNL COMPUTER PROCESSING OF DATA PROVIDES ACCURATE INDICATION OF STRAIN AND ACCURATELY REPRODUCES SECTION GEOMETRY

UNION

ORNL-DWG 78-18194

SECTION AT 77.3-CM ELEVATION

14

ORNL BURST STRAINS IN B-2 ABOUT THE SAME AS IN B-1 BUT GREATER THAN IN SINGLE ROD TESTS WITH UNHEATED SHROUD

ORNL-DWG 78-11141

GRNL OWG 78 19013

CARBIDE VOLUME INCREASE (I.E., AVERAGE STRAIN) IN B-1 WITH HEATED SHROUD ABOUT SAME AS B-2 WITH UNHEATED SHROUD AND BOTH GREATER THAN SINGLE ROD

15

ORNL DWG 78 11137

65 COMPUTER SIMULATION OF B-1 SECTION AT 76.5 CM ELEVATION SHOWING MAXIMUM AND MINIMUM FLOW RESTRICTION DEFINITIONS

ORNL-PHOTO 1946 78R

()Ap(1)A (: A H B-()4

ORNL-DWG 78-18191

ORNL-DWG 78-18192

ORNL COMPARISON OF B-1 AND B-2 COOLANT CHANNEL RESTRICTION

ORNL-DWG 78-15528A

UNION RNL

AXIAL TEMPERATURE DISTRIBUTION OF B-2 WAS FAIRLY UNIFORM UNTIL TIME OF BURSTS

CARBIDE DRNL RADIAL T

Sour nue in and

GRN1: DWG 76-19010

RADIAL TEMPERATURE DISTRIBUTION OF B-2 WAS VERY UNIFORM UNTIL TIME OF BULISTS

GRNL DWG 78 19012

AXIAL TEMPERATURE DISTRIBUTION OF B-3 WAS FAIRLY UNIFORM UNTIL TIME OF BURSTS

ORNL DWG 78 19011

UNION

RADIAL TEMPERATURE DISTRIBUTION OF B-3 WAS VERY UNIFORM UNTIL TIME OF BURSTS

ORNL-WS-442

BUNDLE FLOW TESTS

A. OBJECTIVES OF TESTS

UNION

UNION

ORNL

- MEASURE AND COMPARE AXIAL PRESSURE LOSSES ALONG LENGTH OF REFERENCE AND DEFORMED BUNDLES AT SEVERAL FLOW RATES
- PREDICT MEASURED AXIAL PRESSURE LOSS PROFILES WITH COBRA-IV
- B. RESULTS WILL PROVIDE
 - METHOD OF EXTRAPOLATING MRBT CHANNEL RESTRICTION DATA TO OTHER TESTS AND REACTOR CORE THERMAL-HYDRAULIC ANALYSES
 - INDICATION OF GEOMETRICAL DETAIL NECESSARY TO DUPLICATE MEASURED LOSSES WITH COBRA-IV
- C. TEST EQUIPMENT AND CONDITIONS
 - EXISTING FLOW LOOP LIMITS RE FROM 10⁴ TO 10⁵ FOR 4 X 4 ARRAY
 - SINGLE PHASE WATER AT ROOM TEMPERATURE AND 400 KPA MAXIMUM PRESSURE
 - TWO FLOW SHROUDS TO GIVE DATA ON BUNDLE BYPASS FLOW
 - USE TUBE EXTENSIONS TO PROVIDE DEVELOPED VELOCITY PROFILE AT INLET
 - MEASURE PRESSURE LOSSES ON TWO SIDES OF SHROUD
 - NO INFORMATION ON CROSSFLOW OR VELOCITY PROFILES IN BUNDLE

ORNL-DWG 78-11145

FLOW TEST CONFIGURATION OF B-1 IN SHROUD 1

ORNL-DWG 78-6680R CARBIDE 8-1 AND 8-2 PRESSURE LOSS PROFILES ABOUT THE SAME IN SHROUD 1 180 . 156 . 140 pap . 0.0 13 A 12 110 201 100 --70 x 24 AVERAGED & 1 PRESSURE LOSS FLOW RATE - 1 BT X 10⁻² m³ MM MAXIMUM REYNOLDS NUMBER ------50 AVERAGED # 2 PRESSURE LOSS 202 FLOW RATE - 1 89 x 10⁻² m²/me MAXIMUM REVNOLOS NUMBER - 9.7 40 0000 30 LOW DIRECTION -20 . 0 10 GAID. CHID Diffico I 0 10 20 30 40 50 80 DISTANCE FROM BOITTOM OF HEATED ZONE sen 100 -40 - 30 30 10 70 80 90 106

OBNE WS 1571

CARBION ORNL COMPARISON OF EXPERIMENTAL DATA WITH

AGREEMENT DEPENDENT ON FOUR VERY IMPORTANT FACTORS.

- 1 FRICTION FACTOR CORRELATION MUST HAVE PROPER RE AND P.D. DEPENDENCE
 - TONG'S REVIEW SUGGESTS 30% INCREASE (P/D = 1.32) OVER SMOOTH TUBE
 - . REVIEW OF MAREK ET AL SUGGESTS 6% INCREASE
 - DATA FROM FLOW TESTS SUGGEST 20 28% INCREASE
- 2 GRID SPACER LOSS COEFFICIENT
 - EARLIER MRBT TESTS GAVE COEFFICIENT OF 0.37
 - RECENT MRBT TESTS INDICATE RANGE OF 0.50 TO 0.60
- 3. GEOMETRICAL DESCRIPTION OF BUNDLE SUBCHANNELS AT EACH NODE
 - TEST GEOMETRY HAS 4 TYPES OF SUBCHANNELS WITH A TOTAL OF 25
 - . METHOD USED TO UBTAIN COBRA INPUT RESTRICTION DATA AT EACH NODE
 - AVERAGE TUBE DEFORMATION + 1/16 OF BUNDLE DEFORMATION
 - AVERAGE TUBE DEFORMATION (ASSUMED CIRCULAR SHAPED AND CENTERED ABOUT ORIGINAL TUBE) WAS USED FOR EACH OF THE 25 SUBCHANNELS
- 4. ACCURACY OF EXPERIMENTAL PARAMETERS

ORNL-DWG 78-11147

ORNL COBRA-IV MODELS REFERENCE BUNDLE PRESSURE LOSS PROFILE IN SHROUD 1 WITH APPROPRIATE FRICTION FACTOR MODIFICATION

ORNL-DWG 78-11149

UNION

ORNL COBRA-IV MODEL OF B-1 PRESSURE LOSS PROFILE IN SHROUD 1 WITH APPROPRIATE FRICTION FACTOR MODIFICATION IS NOT CONSERVATIVE WITH MINIMUM FLOW RESTRICTION DEFINITION

ORNL-DWG 78-11148

ORNL COBRA-IV MODELS B-1 PRESSURE LOSS PROFILE IN SHROUD 1 WITH APPROPRIATE

27

SUMMARY OF FLOW TESTS

- PRESSURE LOSS DATA VS RE FOR 8-1, 8-2, AND REFERENCE BUNDLE IN SHROUD 1
- . PRESSURE LOSS DATA VS RE FOR 8-2 AND REFERENCE BUNDLE IN SHROUD 2
- NO INFORMATION ON CROSSFLOW AND VELOCITY PROFILES IN BUNDLES
- DATA AGREE WITH THEORY BUT LIMITED TO THESE FLOW CONFIGURATIONS
 AXIAL PRESSURE LOSS OF 8-1 AND 8-2 50-60% GREATER THAN REFERENCE BUNDLE
- PRESSURE LOSS OF B-1 AND B-2 BO-BOA GREATER THAN REFERENCE BON
 PRESSURE LOSS PROFILES FOR B-1 AND B-2 NOT TO DIFFERENT
- PRESSURE LOSS PROFILE FOR B-1 CORRELATES WITH FLOW CHANNEL RESTRICTION DATA; B-2 ANALYSIS EXPECTED TO CORRELATE ALSO
- COBRA ANALYSES INDICATE 20-28% INCREASE IN FRICTION FACTOR FOR P/D = 1.32
- AVERAGE TUBE RESTRICTION DESCRIPTION ADEQUATE FOR COBRA PREDICTION OF B-1 DATA; MAY NOT BE ADEQUATE FOR B-2
- MAXIMUM FLOW RESTRICTION DEFINITION FOR B-1 BURSTS AGREES BETTER WITH DATA, MINIMUM DEFINITION AGREES BETTER WITH B-2 DATA

 COBRA ACCURATELY PREDICTS MRBT 4 X 4 DEFORMED BUNDLE PRESSURE LOSS PROFILES WITH SIMPLIFIED SPECIFICATION OF THE RESTRICTION PROVIDED FRICTION FACTOR CORRELATION AND GRID LOSS COEFFICIENT ARE SELECTED CAREFULLY

- MAY NEED FLOW TESTS ON LARGE BUNDLES TO SELECT BEST BURST RESTRICTION DEFINITION
- NEED BETTER UNDERSTANDING AND DATA ON FRICTION FACTOR VS RE AND P/D RATIO FOR DEFORMED AND UNDEFORMED ARRAYS

ORNL WS 1237

ORNI WS 1510

IMPORTANT RESULTS RELATING TO ECCS ACCEPTANCE CRITERIA

SINGLE ROD BURST TESTS

- DEFORMATION MECHANISMS IDENTIFIED
- DEFORMATION LESS THAN EARLIER RESULTS
- BURST TEMPERATURE BURST PRESSURE CORRELATION
- BURST PRESSURE DECREASES WITH DECREASING HEATING RATE

MULTIROD BURST TESTS

- DEFORMATION GREATER THAN OBSERVED IN SINGLE ROD TESTS
- NO EVIDENCE OF ROD BURST PROPAGATION
- EFFECT OF RELATIVELY COLD BOUNDARY NOT YET CLARIFIED

MULTIROD FLOW TESTS

- FLOW RESTRICTION DOES NOT APPEAR EXCESSIVE
- COBRA PREDICTIONS IN AGREEMENT WITH EXPERIMENT

oml

1	înit	ial co	nditio	ns		Approximate	Approx	imate	bur t	condit	ions		Prete	st predicted		Burst temperatu
Rod	Differential	T	empera	ture (°C)	maximum	Differential	Т	empera	ture (°C)	Time	burst	conditions ²		predicted from
No.	pressure (kPa)	TE-1	TE-2	TE-3	TE-4	d'.erential (kPa)	pressure (kPa)	TE-1	TE~2	TE-3	TE-4	(sec)	Pressure (kPa)	Temperature (°C)	Time (sec)	burst pressure (°C)
1	8695	354	354	355	355	9105	7750	852	852	821	844	17.15	8040	843	20	846
2	8690	360	357	354	352	9085	7415	864	848	815	867	17.20	8040	843	2	851
. 3°	6520 ^{°°}	354	356	356	354	6520	3785 ^{°°}	924	937	936	911	22.90	8040	843	20	918
4	8680	360	355	355	352	9090	7945	816	854	860	810	17.05	8040	843	20	843
5	8715	355	354	334	352	9115	6930	859	840	864	872	17.65	8040	843	20	858
6	8690	354	356	355	355	9150	7615	866	872	861	826	17.10	8040	843	20	848
7	8695	356	355	357	355	9085	7255	869	827	863	833	17.30	8040	843	20	853
8	8685	353	357	359	353	9100	7405	872	840	831	856	17.20	8040	843	20	851
9	8705	353	358	357	357	9135	7100	855 ^d	870	894 ^d	823	17.35	8040	843	20	856
10	8680	355	354	359	356	9090	7300	873	870	826	821	17.20	8040	843	20	853
11	8625	355	356	356	352	9035	7270	844	847	838	842	17.45	8040	843	20	853
12	8645	353	356	355	e	9065	7685	856	863	845	e^{-}	17.00	8040	843	20	847
13	8700	359	359	355	353	9115	7525	832	861	878	873	17.05	8040	843	20	849
14	8685	351	357	356	354	9135	7355	818	843 ^d	874 ^d	875	17.40	5040	843	20	852
15	8690	356	356	356	359	9090	7325	865	821	846	845	17.40	8040	843	20	852
16	8675	354	357	355	359	9095	7530	825	846	807	848	17,20	8040	843	20	849

Preliminary summary of B-1 test results

²Prediction based on results of single-rod test SR-29. (Burst temperature determined by external bare-wire the mocouples.)

^bBased on burst temperature-burst pressure correlation from single-rod burst tests (external bare-wire thermocouples).

⁹Rod 3 developed a severe leak prior to the test and its behavior is abnormal; burst occurred 2.05 sec after power cutoff.

^dThermocouple became detached from wall during assembly; indicated temperature is probably higher than existed on wall.

[@]Thermocouple was inoperative during test.

Rod Dif No. p	Init	ial co	onditio	ons		Approximate	Approx	imate	burst	condit	ions		Prete	st predicted		
Rod	Differential	1	Cempera	iture (°C)	maximum	Differential	1	empera	ture (°C)	Time	burst	conditions ²		Burst temperature predicted from
No.	pressure (kPa)	TE-1	TE-2	TE-3	TE−⇒	differential (kPa)	pressure (kPa)	TE-1	TE-2	TE-3	TE-4	(sec)	Pressure (kPa)	Temperature (°C)	Time (sec)	burst pressure ^D (°C)
1	8810	334	335	334	335	9240	7700	790	803	825	870	18.30	8040	843	20	846
2	8805	335	335	336	339	9220	7685	818	841	846	844	18.00	8040	843	20	847
3	8795	333	334	332	336	9245	7560	852	853	845	826	18.30	8040	843	20	849
4	8775	336	336	333	337	9205	7585	861	872	807	854	18.30	8040	843	20	848
5	8775	333	334	336	336	9205	7770	854	866	835	852	17.85	8040	843	20	845
6	8785	335	335	334	335	9220	6925	857	827	843	834	17.95	8040	843	20	858
7	8740	334	333	333	333	9160	7360	824	861	838	850	17.85	8040	843	20	852
8	8750	335	334	333	334	9200	7565	856	840	813	792	17.80	8040	843	20	849
90	7715 ⁰	335	334	332	335	7715	6110	928	846	864	871	20.05	8040	843	20	872
10	8730	334	334	332	334	9175	7345	827	862	827	856	18.10	8040	843	20	852
11	8735	333	334	332	333	9165	7670	832	819	832	853	17.80	8040	843	20	847
12	8760	336	334	334	333	9200	7545	851	832	829	827	18.15	8040	843	20	849
1.3	8755	338	333	334	332	9175	7820	856	805	883	867	18.15	8040	843	20	845
14	8755	333	334	334	335	9140	7230	828	858	832	855	18.30	8040	843	20	854
15	8790	336	334	334	337	9205	7945	824	807	799	836	18.05	8040	843	20	843
16	8790	333	334	333	334	9220	7700	848	839	795	814	18.15	8040	843	20	846

Preliminary summary of B+2 test results

²Prediction based on results of single-rod test SR-29. (Burst temperature determined by external bare-wire thermocouples.)

b Based on burst temperature burst pressure correlation from single-rod burst tests (external bare-wire thermocouples).

[°]Rod 9 developed a moderate leak prior to the test and its behavior is abnormal.

Rod Differential No. pressure	ial co	onditio	ns		Approximate	Approx	imate	burst	condit	ions		Prete	st predicted		Buret temperature	
Rod	Differential	1	empera	ture (°C)	maximum	Differential	Т	empera	ture (°C)		burst	conditions ^D		predicted from
No.	pressure (kPa)	TE-1	TE-2	TE-3	TE-4	differential (kPa)	pressure (kPa)	TE-1	TE-2	TE-3	TE-4	Time (sec)	Pressure (kPa)	Temperature (°C)	Time (sec)	burst pressure (°C)
1	11585	325	326	329	330	12060	9605	755	737	751	771	46.89	9500	761	47.1	819
2	11600	328	330	330	330	12065	8825	748	779	762	741	46.89	9500	761	47.1	830
3	11620	331	326	330	329	12135	5115 ^d	674d	606d	763d	682 ^d	63.84 ^d	9500	761	47.1	889
4	11630	328	330	330	330	12130	9090	761	765	767	736	47.64	9500	761	47.1	826
5	11565	327	330	329	330	12055	9480	752	763	764	760	46.29	9500	761	47.1	821
6	11580	326	329	331	330	12055	9155	757	770	767	769	46.19	9500	761	47.1	825
7	11725 ^e	332	325	330	330	11755 ^e	11355 ^e	724	742	754	738	44.79 [€]	9500	761	47.1	795
8	11655	326	328	330	329	12180	9105	748	755	756	746	46.19	9500	761	47.1	826
9	11535	324	330	330	331	12035	9105	754	750	785f	731	45.74	9500	761	47.1	826
10	11575	332	330	330	330	12075	9390	739	774	761	768	45.79	9500	761	47.1	822
11	11610	327	329	331	330	12130	9625	750	739	749	775	45.14	9500	761	47.1	819
12	11685	330	330	330	3213	12100	9755	757	761	745	7009	45.59	9500	761	47.1	817
13	11570	331	329 -	329	330	12075	10245	737	760	755	748	44.54	9500	761	47.1	810
14	11610	326	324	329	329	12105	9690	714	728	756	769	45.59	9500	761	47.1	818
15	11650	329	329	328	329	12170	9205	753	749	751	750	46.49	9500	761	47.1	825
16	11680	325	330	329	330	12190	9705	740	747	743	731	45.79	9500	761	47.1	817

Preliminary summary of B-3 test results²

²These quick-look data may change as further information becomes available.

^bPrediction based on results of single rod test SR-42, using external, bare wire thermocouple measurement for determining burst temperature.

[°]Based on correlation from single rod burst tests (at 28°C/sec heating rate), using burst pressures from Column 8 as input.

^dRod 3 may have developed a "pinhole" leak at ~11200 kPa (see text for discussion); large burst occurred 16.65 sec after power was terminated.

^eRod 7 developed a leak prior to test; this rod was tested essentially at constant pressure due to attempt to compensate for leak.

^fTE 9-3 was known to be detached from Zircaloy prior to test, causing a high reading; TE 9-1 reading selected as burst temperature.

 3 TE 12-4 had very slow response on both heatup and cooldown transients and its readings should be ignored.

Elevation								Tube	No.							
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0.0	1.5	0.6	2.7	2.1	1.4	1.5	1.2	1.3	1.7	1.8	1.8	1.7	2.7	1.9	1.7	1.6
1.8	5.6	8.1	7.6	8.4	6.2	10.1	7.4	8.2	8.2	9.2	6.2	8.2	8.9	8.1	8.7	6.4
3.3	7.8	18.3	10.0	10.3	8.4	15.6	13.5	16.0	13.7	20.1	11.1	10.3	10.5	12.1	20.1	12.6
5.2	7.6	17.7	7.7	10.7	8.2	12.9	14.1	16.9	15.0	18.2	13.5	9.3	8,7	12.8	26.8	12.6
8.9	3.5	4.8	4.0	5.0	4 . 4	5.0	5.5	6.3	5.0	6.5	6.1	4.9	3 . 8	4.6	5.3	5.2
11.8	4.6	5.6	4.1	6.0	5.2	6.1	6.4	7.3	5.2	5.8	7.0	5.9	4.4	4.7	0.2	2.4
14.1	13.2	16.1	8.7	12.0	17.3	20.3	17.7	16.3	18.4	21.0	20.5	15.8	25.0	16.0	21+3	17.9
15.4	11.8	15.3	10.4	13.0	24.0	21.0	16.9	10.0	20.0	25.0	20.5	15.9	30.9	18.9	30.4	21.9
17.3	12.7	14.1	10.7	13.2	29.1	20.4	18.5	10.4	20.1	22.44	25.0	14.4	24.9	19.2	30.0	22+2
18.8	12.2	17.9	9.0	15.4	20.2	22.03	20.1	10.1	27.9	20.3	69.9	14.0	10.7	27+1	50.5	20. 5
20.1	13.0	19.1		14.4	20.0	23.5	21.9	10.1	20.4	30.3	52.0	12.7	11.5	22.4	30.0	28.6
20.0	1.04 1	19.1	0.3	12.3	20.9	23.2	22.7	17.6	29.2	50.1	49.0	14.2	12.2	23 5	33.0	30.3
22.0	13.3	20.1	8.0	12.0	27.4	23.5	25. 2	18.3	20.6	44.5	40.9	14.0	16.1	22.9	28.1	38.4
25.5	11.2	22.6	0.7	12.6	28.0	21.3	28.2	18.0	25.6	39.2	44.0	16.7	15.2	25.4	27.2	37.8
24.5	11.6	24.2	8.5	13.3	35.9	24.3	30.2	16.8	37.8	37.2	42.6	16.3	17.8	26.7	19.2	27.0
28.1	12.0	22.9	8.3	14.2	44.1	34.4	28.8	17.2	28.7	35.4	32.4	16.3	22.6	24.1	16.5	21.6
29.7	11.4	20.5	8.2	12.1	34.8	42.7	25.3	17.5	22.4	28.0	22.9	14.9	25.2	20.4	16.4	19.7
30.7	10.2	20.8	8.7	11.6	28.3	37.3	24.3	18.5	20.8	24.1	20.1	14.7	27.0	19.1	18.8	19.3
33.2	8.2	21.0	7.9	9.7	22.9	24.7	27.6	21.1	17.9	21.1	19.5	17.1	19.5	18.2	22.2	17.3
34.5	8.0	19.8	9.2	10.6	24.6	27.0	26.6	20.8	17.9	22.3	20.0	17.6	16.7	16.5	21.3	17.6
36.6	8.4	18.3	10.4	11.9	25.3	23.6	24.9	23.0	15.6	19.9	20.8	15.7	16.6	17.0	19.3	22.3
38.1	10.1	20.7	10.2	12.2	25.8	20.4	22.8	26.8	15.7	18.8	22.0	15.6	21.7	18.9	20.6	24.0
39.7	15.2	24.1	8.1	12.1	26.2	18.8	23.0	29.1	19.2	19.8	23.2	18.2	54.4	23.9	22.25	22.0
40.8	15.0	23.8	8.0	12.2	27.4	18.2	22.4	29.4	22.9	22.4	22.7	18.2	58.9	26.5	20.4	20.6
42.9	13.2	21. 6	9.7	13.6	34.4	15.9	21.5	34.9	32.2	23.0	19.7	20.6	26.6	29.4	19.3	21.3
44.7	14.5	22.3	11.9	14.6	37.7	15.3	24.4	41.9	39.6	21.7	19.5	26.4	23.9	39.1	23.5	23.3
44.7	14.9	21.9	10.3	15.2	41.8	15.4	29.3	35.5	43.7	21.3	20.0	31.7	28.7	41.4	25.7	19.8
47.5	14.4	21.1	9.5	15.2	42.5	17.2	30.0	30.9	47.1	23.0	20.5	35.4	26+7	38.1	25.3	18.3
48.6	12.8	19.3	12.3	15.7	37. "	16.0	27.3	28.0	39.0	22.7	18.1	37.4	24.0	31 + 4	23.6	18.8
50.4	14.7	17.7	8.55	14.0	33.3	15.4	25*1	24.7	37.5	22.6	18.1	31.2	24,2	27.8	20.4	19.2
52.4	18.3	18.4	10.3	11.7	26.1	15.0	21.3	53.8	36.8	23.1	18.6	23.5	23.9	26,0	20.4	17.3
54.0	17.3	18.8	7.8	11.1	23.6	13.4	20.1	19.5	22+5	21+2	17.4	18.2	21.4	21.9	23+2	15+2
55+0	1.3+2	15.8	6.9	11.2	24+3	12.1	17.4	18.5	28.2	19+1	16.4	15.3	17+1	17.2	21+2	14+ 3
57.8	11.4	14.5	6.9	11.5	28.5	9.0	17.0	21.0	21.8	15.5	14.1	14.0	15.4	17.9	17.1	14.8
60.1	14.2	15.0	0.2	14.8	20.2	8.1	22.8	18.0	18.9	14.0	13.8	11+0	10+2	17.1	17.3	10. 5
01.1	10.9	11. 7	2.2	11.1	10.0	1.0	10.0	12+0	12.0	1.2+1	11.3	4.4	14.0	13.3	12.3	7+0
04+1	3. 0	4,0	2.1		2.0	2.2	4.2	4.9	216	4+0	4.1	4.1	2.6	4.0	2.4	7. 9
00.9		5.0	2.0	12.1	20 4	6.0	2.1	12.9	13.0	4.0	13.3	12.2	12 1	12 4	12.6	3.0
00.0	12.7	16.0	7.0	12.1	20.0		10.0	16.6	14.0	17.2	12.0	16.6	12.0	16.0	12.1	12.7
72.7	26+0	22.0	0.6	16 0	43.3	6.4	36.6	17.3	74 5	17.2	16.2	14.6	13.0	23.4	16.1	13.7
74 2	32.3	27 8	10.3	22.4	43.6	6.3	36.6	17.0	31.0	19.7	17.0	14.1	14.9	28.3	20.1	14.2
76.5	35.4	20.5	10.3	36.1	44.8	5.2	35.7	15.7	25.6	20.4	16.1	18.7	20.8	26.0	21.2	16.5
77.3	29. 2	32.6	10.2	28)	30.7	4.8	33.4	16.2	20.6	17.1	16.8	10.9	19.8	23.0	18.4	15.9
50.2	25.7	31.5	9.0	21.1	26.6	5.6	23.6	18.2	22.7	15.6	17.2	17.7	21.2	23.1	18.2	12.8
81.6	20.5	27.9	8.4	18.3	22.5	6.1	19.7	12.6	17.6	14.4	16.3	15.1	16.6	20.5	19.9	11.9
83.5	19.0	27.6	8.1	13.5	23.5	7.8	17.1	10.7	18.2	14.5	15.1	14.4	17.5	17.5	21.4	13.1
85.1	13.3	25.8	5.1	7.9	19.0	4.9	11.4	9.0	19.5	11.1	12.6	12.4	19.5	14.0	17. 2	12.7
86.5	12.6	17.6	6.3	6.3	12.9	6.3	8.8	9.2	19.5	10.4	11.5	10.9	18.8	10.5	12.8	11.3
87.9	9.6	7.7	3.4	5.2	6.9	2.8	5.9	7.0	11.4	7.5	7.8	7.6	11.3	6.3	8.1	9.6
90.0	4.9	2.6	1.3	3.7	2.0	1.5	3.1	2.5	1.5	2.5	2.9	0.7	1.7	2.5	4.0	3.8
92.5	-0.2	-0.2	0.3	0.9	-0.2	-0.1	0.0	0.2	0.2	-0.0	0.4	0.4	0.1	0.4	0.5	0.5

Strain in B-1 tubes in percent

Upper limit of deformed 8-1 tube ateas (mm²)

Elevation								Tube 5	ka.								Totel
(20)	1	ż	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
0.0	96	94	98	97	96	95	95	96	9.6	96	97	96	98	97	96	9.6	1549
1.8	104	109	108	109	105	113	108	109	109	111	105	109	111	109	110	105	1742
3.3	108	131	113	113	110	125	120	125	121	135	115	113	114	117	135	118	1919
5.2	108	129	108	114	109	119	121	128	123	130	120	111	110	119	150	118	1926
8.9	100	102	101	103	102	103	104	105	103	106	105	103	100	102	103	103	1651
11.8	102	104	101	104	103	105	105	107	103	106	107	104	101	102	105	103	1671
14.1	11 4	126	110	117	128	135	120	150	131	137	135	125	145	127	171	130	2080
15.4	11.7	124	114	11.9	244	137	128	125	1.54	140	135	125	112	132	1.14	139	2107
17.3	119	123	114	119	157	135	131	126	136	141	146	122	140	133	170	163	2273
18.8	124	130	112	124	149	140	135	131	153	144	142	121	110	140	180	155	2303
20.1	121	132	108	123	138	143	138	1.50	158	151	211	121	110	147	180	156	2274
20.6	121	132	108	122	136	142	137	128	121	120	212	135	110	120	150	227	2600
22.3	121	132	109	118	140	143	2.4.2	129	155	110	207	107	3.33	141	153	283	2464
23.9	120	134	111	117	151	140	146	1.30	154	209	121	121	121		122	14.5	2312
25.5	115	140	109	118	155	137	153	130	172	1.75	140	121	129	150	132	163	2330
26.5	11.6	144	110	120	1.12	144	158	121	1.7.6	170	190	120	169	120	127	110	2311
28.1	117	141	109	122	194	173	122	128	122	172	109	120	144	1.55	126	133	2281
29.7	116	136	109	117	140	253	146	129	140	193	191	142	140	132	120	122	2173
30.7	113	13	110	110	154	176	144	131	150	144	1.20	122	122	120	120	122	2107
33.2	105	136	109	112	141	145	152	131	130	1 37	133	120	127	1.24	137	170	2108
34.5	109	13.4	111	11.4	145	150	199	136	130	1.24	124	129	127	1.2.0	137	14.0	2100
36.6	110	130	113	117	147	143	145	191	125	1.34	130	1.25	121	120	126	14.2	21.00
38.1	113	136	113	118	148	135	141	150	120	132	140	120	5 3 0	140	120	120	2250
39.7	124	144	109	117	149	132	141	150	135	1.54	141	130	201	140	135	134	2237
40.8	125	143	109	117	152	130	140	150	141	140	171	120	160	154	133	137	2251
42.9	119	138	112	120	169	125	1.28	170	107	1 2 0	122	140	163	1 80	14.5	14.2	24.09
44.7	122	140	11,	122	111	124	144		102	1.30	136	14.7	165	24.3	147	134	254.8
46.7	123	139	113	124	166	124	125	1.1.1	291	8.24	125	210	150	174	147	120	2423
47.5	122	137	112	124	193	128	128	100	201	141	130	222	142	141	147	13.2	2350
48.6	119	133	118	125	110	126	151	153	100	140	120	266	144	152	125	122	2289
50.4	123	129	160	122	10.5	124	140	140	175	1.4.1	1 2 1	147	143	140	135	128	2195
52.4	130	131	113	110	140	123	1.27	122	14.2	1 2 7	120	130	130	130	141	124	2121
54.0	128	132	108	115	143	120	1.24	133	103	1 3 2	126	124	128	120	137	122	2052
55.6	120	125	106	115	144	111	129	121	130	1.24	120	123	126	125	128	123	20.04
57.8	110	122	106	110	124	111	14.1	120	120	122	121	114	126	129	124	114	1979
60.1	122	123	105	123	137	107	1 2 7	110	110	121	115	113	122	120	120	111	1875
61.7	115	117	103	110	124	0.9	10.2	10.2	101	102	101	1.01	1.03	1.02	103	102	1630
64.1	100	101	91	101	104	07	102	102	104	102	102	1.0.1	1.02	1.02	104	100	1636
66.9	102	102	91	201	1.24	107	124	117	121	120	120	117	117	11.8	120	113	1898
68.8	124	118	103	117	120	102	122	122	124	129	121	122	110	127	119	118	2006
70.3	140	120	104	127	102	102	140	128	140	128	124	122	119	142	126	120	2129
72.7	147	124	112	127	196	102	177	128	160	134	128	121	123	153	135	122	2257
74.2	163	100	115	25.0	191	103	276	125	147	125	126	1 3 1	136	150	137	127	2540
10.0	243	101	112	230	190	103	144	126	136	124	123	134	134	141	131	125	2406
11.3	215	214	113	230	102	102	163	130	140	125	125	129	137	141	130	119	2140
80.2	197	161	111	131	140	105	136	110	120	122	126	123	127	135	134	117	2047
81.0	136	153	110	101	140	105	120	114	130	122	124	122	129	129	137	119	20.26
83.5	132	195	109	120	192	108	110	112	122	115	110	110	1 2 2	121	128	110	1936
85.1	120	148	103	109	132	105	110	111	133	114	114	115	132	114	119	115	1860
86.5	118	129	101	105	100	101	106	107	114	1.09	108	10.0	114	105	109	112	1724
87.9	112	108	100	103	104	94	00	0.9	94	Q.	90	94	96	99	101	100	1576
90.0	102	98	90	100	0.2	90	03	93	64	93	94	94	93	94	94	94	1503
92+5	43	93	24	42	4.5		1.5	22					1.1				

Lower limit of B-1 deformed tube areas (mm²)

Elevation								Tube	No.								
(cn)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1é	lotal
0.0	96	94	98	97	96	96	95	96	96	96	97	96	98	97	96	96	1549
1.8	104	109	108	109	105	113	108	109	109	111	105	109	111	109	110	105	1742
3.3	108	131	113	113	110	125	120	125	121	135	115	113	114	117	135	118	1919
5.2	108	158	108	114	109	119	151	128	123	130	120	111	110	119	150	118	1926
8.9	100	105	101	103	102	103	104	105	103	106	105	103	100	102	103	103	1651
11.8	102	104	101	104	103	105	105	107	103	106	107	104	101	102	105	103	1671
14.1	119	126	110	117	128	135	129	1.26	131	137	135	125	146	127	151	130	2080
15.4	117	124	114	119	144	137	128	125	134	140	135	125	175	132	174	139	2167
17.3	119	123	114	119	157	135	131	126	136	141	146	125	146	133	173	147	2175
12.8	124	130	112	124	149	140	135	1.51	153	149	195	121	127	146	179	152	2273
20.1	121	132	108	12.5	158	143	138	130	158	157	217	121	118	147	187	156	2301
20.0	121	132	108	122	136	142	137	128	157	150	215	118	116	142	180	154	2274
22+3	121	122	109	118	140	142	142	129	123	110	207	122	117	138	1.9	159	2219
23.9	120	134	111	117	151	140	140	130	154	195	195	127	121	141	153	179	2324
60.2	112	140	104	118	120	1.51	153	130	142	111	196	127	124	147	129	105	2312
20.2	110	140	110	120	112	199	158	121	111	1.72	190	120	129	150	133	151	2330
20.1	11.7	124	109	117	170	100	100	120	122	1.62	104	120	140	126	127	130	2311
20.7	112	136	1104	111	110	176	140	127	140	120	125	123	140	132	120	133	2218
33.2	100	136	100	110	161	1/0	152	137	120	1 2 7	132	120	122	122	120	120	21/3
34.5	109	134	111	116	145	150	160	136	130	130	134	120	133	126	137	120	2107
36.6	110	120	112	117	147	143	145	1.50	125	134	134	125	127	120	122	16.0	2100
39.1	113	136	113	11.0	149	125	143	150	125	122	140	125	138	132	126	140	2151
30.7	124	166	100	117	140	132	141	156	133	134	141	120	221	143	130	130	2250
40.8	125	143	109	117	152	130	140	156	141	140	141	130	236	149	135	136	2288
42.9	119	13.8	112	120	169	125	128	170	163	143	134	136	150	156	133	137	2251
44.7	122	140	117	122	177	124	144	188	182	138	133	149	143	180	142	142	2352
44.7	123	139	113	124	188	124	156	171	103	137	134	162	155	187	147	134	2395
47.5	122	137	112	124	190	128	158	160	201	141	135	171	150	178	147	130	2391
48.6	119	133	118	125	176	126	151	153	180	140	130	176	143	161	142	132	2314
50.4	123	129	141	122	166	124	140	145	177	140	130	161	144	152	135	133	2270
52.4	130	131	113	116	148	123	137	143	175	141	131	142	143	148	135	128	2195
54.0	128	132	108	115	143	120	134	133	163	137	129	130	138	139	141	124	2121
55.6	120	125	106	115	149	117	129	131	153	132	126	124	128	129	137	122	2052
57.8	116	122	106	116	154	111	128	137	138	124	121	123	124	125	128	123	2004
£0.1	122	123	105	123	135	109	141	130	132	123	121	116	126	129	124	114	1979
61.7	115	117	103	116	124	107	127	119	119	121	115	113	122	120	120	111	1875
64.1	100	101	97	101	104	98	102	102	101	102	101	101	103	102	103	102	1630
66.9	102	102	97	101	104	97	104	103	104	102	102	101	103	102	104	100	1636
68.8	124	118	103	117	136	102	126	117	121	20	120	117	117	118	120	113	1898
70.3	140	126	109	122	152	103	133	122	128	128	121	122	119	127	119	118	2006
72.7	147	139	112	127	192	102	149	128	145	128	124	122	119	142	126	120	2129
74.2	163	153	113	140	197	103	174	128	160	134	128	121	123	153	135	122	2254
76.5	172	159	113	173	196	103	172	125	147	135	126	131	136	150	137	127	2309
77.3	156	164	113	153	182	102	166	126	135	128	123	134	134	141	131	125	2221
80.2	147	161	111	137	149	104	143	130	140	125	128	129	137	141	130	119	2140
81.6	136	153	110	131	140	105	134	118	129	122	126	123	127	135	134	117	2047
83.5	132	152	105	150	142	108	128	114	130	155	124	122	129	129	137	119	20.26
85.1	120	148	103	109	132	103	116	113	233	115	118	118	133	121	128	119	1935
86.5	118	129	101	105	119	101	110	111	133	114	116	115	132	114	119	115	1860
87.9	112	108	100	103	104	99	104	107	116	108	108	108	116	105	109	112	1726
90.0	102	98	96	100	97	96	99	98	96	98	99	94	96	98	101	100	1576
92.5	93	93	94	95	93	93	93	93	94	93	94	94	93	94	94	94	1503

Strain in B-2 tubes in percent

Elevation								Tube	No.							
(cm)	1	2	3	4	5	6	7	.6	9	10	11	12	13	14	15	1*
0.0	- C . 2	-0.2	-0.3	0.3	0.0	-0.4	-0.1	0.3	-0.8	-0.1	-0.4	0.1	-0.9	-0.5	-0.4	0.0
1.0	4.4	5.7	6.0	5.8	4.1	7.1	7.4	6.9	4.6	5-1	5.1	7.2	4.1	6.3	4.8	4.R
3.4	10.5	11.3	12.3	10.6	10.5	18.8	14.1	11.6	8.2	10.4	10.9	13.0	8.9	15.0	9.6	7.7
5.0	10.4	11.5	11.0	11.5	9,9	17.1	12.0	11.1	6.5	10.7	11.0	11.2	9.3	13.2	10.4	8.3
6.5	8.5	9.7	8.0	7.8	7.6	17.5	10.4	7.5	7.0	9.0	9+0	8.5	1.4	9.8	7.5	6.6
8.8	4.6	4.9	3.9	4.1	3.9	5.0	4.4	4.2	3.1	3.1	3.9	3.9	3.5	3.7	3.1	3+1
11.5	3.7	3.9	3.9	4,4	3.7	5.6	4.3	4.5	3.4	3.7	4.8	4.0	3.5	4+2	2.9	4+2
13.3	6.6	1.1	5.2	7.9	6.1	14.7	12+1	9+8	9.3	9.4	13.7	10,5	8+2	10.3	9.1	0.7
15.1	13.3	11.4	11.5	9.5	8.5	20.9	15.1	13.2	10.7	12.4	16.8	19.0	11.0	17.3	0.8	1 - 1
16.8	15.3	16.3	14.0	11.6	11.7	22.9	15.7	16+2	10.9	10.2	10.3	17.5	19.4	28.4	11.2	10.5
18.1	15.0	18.2	17.6	13.0	14.3	23.2	15.6	10.7	11.0	10.5	16.9	17.9	15.7	37.8	12+3	11.7
19.5	19.2	19.5	19.7	13.7	18.7	22.4	17.9	21.1	14.7	21+2	10.0	20.1	20.9	41.0	12.0	12.9
21.4	15.8	17,5	14.9	10.8	18.0	21.6	17.9	22.8	13.8	22.0	12+2	24.1	19.9	32.4	11+1	11.0
23.2	15.5	16.1	21.4	9.7	18.3	24.1	18.4	27.0	14.9	23.3	17.1	21. 1	10.7	27+0	13.1	13.3
25.0	10.2	13.0	24.4	11.0	11.4	23.4	21.0	21.4	12.4	21.0	1342	10.5	16.0	22.2	17.3	14.1
20.9	12.4	11.9	25.9	13.5	19.0	19.0	23.4	20.1	14.2	23.4	13.3	10.5	16.0	15.6	18.0	10.7
20.7	10.5	12.1	29.0	10.1	17.1	21.0	29.7	14.1	13.0	23.8	16.1	10.0	13.6	16.0	17.6	11.7
30.0	17.1	15.3	26+7	10.0	14.7	20.0	23.0	10.1	13.3	21.0	16.6	20.2	12.0	17.3	13.7	13.5
36.0	12.0	17+3	20.0	17.0	10.0	22.0	10.4	16.1	1.2.0	18.4	16.0	20.2	16.1	17.7	1.3.7	13. 2
36.6	12.0	18.0	23. 6	14.0	15.3	64.3	17.4	14.1	13.5	20.1	16.7	1.0.1	16.5	22.7	13.9	11.7
37.7	13.6	18.7	24.0	13.0	17.0	67.8	15 7	20.7	15.0	25.0	16.2	16.5	14.6	30.1	16.2	12.7
30.5	12.2	18.0	20.1	13.0	15.4	30.4	10.4	23.4	12.5	32.4	14.4	14.2	12.3	28.0	16.0	13.3
41.7	10.0	18.7	29.7	15.6	16.6	35.3	23.1	20.4	16.2	42.8	16.9	18.9	17.6	26.8	17.3	9.41
43.3	32.2	18.8	20.5	17.0	15.4	44.3	10.7	37.6	14.2	33.0	14.8	21.0	17.1	21.3	15.3	18.3
44.7	22.4	15.0	37.7	18.3	14.9	40.7	17.3	33.0	14.4	27.3	16.0	18.4	15.9	18.9	12.9	21.6
46.2	27.8	17.0	38.4	19.7	16.0	36.4	17.2	23.3	17.0	23.2	16.1	18.1	14.7	17.9	11.8	29.0
67.7	34.5	18.9	30.8	19.8	19.0	37.3	20.1	18.2	21.1	24.5	17.7	18.8	16.0	18.3	13.5	30.8
49.7	28.5	19.6	21.5	18.9	20.7	34.9	20.6	17.4	19.0	22.2	15.9	20.4	14.3	19.2	16.5	22.2
51.6	21.0	20.0	16.0	23.4	27.1	28.9	17.3	18.4	17.7	20.5	18.5	22.1	14.5	20.8	17.4	19.8
63.6	16.1	19.7	19.3	29.4	35.0	25.9	20.1	17.5	19.5	21.8	10.3	25.7	22.0	23.5	20.6	28.2
54.9	15.1	21.9	19.2	21.2	29.0	20.0	22.6	17.6	16.1	22.0	17.6	27.1	29.9	24.2	20.5	37.1
56.2	26.7	25.3	21.3	27.2	25.2	25.6	23.6	22.2	17.6	24.8	17.7	28.1	41.4	27.7	23.2	41.7
57.6	17.1	22.3	21.4	28.1	21.5	21.3	19.3	24.1	14.7	21.6	13.6	23.4	34.6	25.2	20.4	32.4
59.8	12.4	14.7	18.7	23.7	15.0	17.7	16.9	16.8	12.9	17.3	10.9	17.4	16.1	18.2	14.1	17.0
61.8	11.0	10.3	12.4	12.7	10.5	13.6	14.8	11.8	11.2	13.6	10.5	14.0	13.1	12.1	10.5	10.8
63.8	5.1	5.3	4.9	6.1	5.1	5.5	5.7	6.0	3.7	5.4	5.3	5.8	6.4	5.7	5.0	6.4
66.5	4.6	4.9	5.2	6.5	4.7	5.8	6.3	5.9	4.1	5.1	5.5	5.2	5.5	5.0	4.0	5.1
68.4	10.2	10.8	13.6	10.8	11.0	17.7	18.1	11.6	12.4	13.7	15.0	11.0	10.9	10.8	8.2	9.3
70.1	14.6	18.3	19.7	15.9	16.0	27.0	23.1	16.7	17.0	17.8	20.7	16.8	9.7	19.1	12.6	12.6
71.6	15.0	22.2	21.3	21.5	20.6	27.0	21.8	17.8	19.4	18.1	20.2	16.6	9.7	25.8	12.7	14.3
73.1	16.1	25.1	24.8	30.5	22.0	25.6	23.1	19.3	23.0	18.7	20.9	17.7	10.8	26.7	13.5	17.6
74.6	21.7	33.0	37.4	37.8	23.3	30.6	27.7	22.1	29.2	22.2	26.4	19.7	16.5	24.8	17.0	20.1
76.2	23.2	38.5	40.3	42.0	22.0	35.4	31.9	22.3	23.9	25.3	34.4	23.2	17.3	22.7	22.2	22.5
78.C	24.3	29.0	33.6	33.2	23.6	28.8	34.2	21.9	20.2	27.6	39.8	26.3	17.3	23.1	31.4	23.1
79.5	22.9	20.7	22.4	27.1	23.9	22.5	39.7	21.6	19.6	28.0	35.2	29.4	16.7	22.2	35.1	22.0
61.6	17.3	17.9	16.8	26.5	19.0	23.8	55.6	16.3	19.1	28.3	25.9	39.7	14.3	18.7	25.2	16.2
83.8	11.4	15.9	15.0	18.9	14.1	24.0	32.7	12.0	16.1	21.1	20.1	21.8	10.6	16.1	14.4	11.6
86.0	8.0	13.8	12.7	12.9	15.4	14.8	20.7	11.5	13.9	23.0	14.6	11.8	7.5	14.3	9.8	10.8
ee.1	6.5	8.1	6.3	7.5	10.3	9.2	12.2	8.4	7.8	12.1	7.8	7.1	5.2	9.7	6.8	8.4
89.5	1.2	1.6	1.7	3.0	1.9	1.9	2.4	1.2	1.5	3.5	0.7	3.3	-0.1	2.4	0.3	1.1
91.5	C. 4	0.4	0.8	1.2	1.1	0.1	1.0	-0.1	0.5	1.7	0.5	0.9	0.1	1.5	0.4	0.5

Elevation							T	she No.									
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL
0.0	\$3	93	93	94	93	92	93	94	92	52	92	93	91	92	92	93	1490
1.8	102	104	105	104	101	107	107	106	102	103	103	107	101	105	102	102	1670
3.4	114	115	117	114	114	132	121	116	109	114	115	119	111	123	112	108	1862
5.0	114	116	115	116	113	128	119	115	110	114	115	115	111	119	114	109	1850
6.9	110	112	109	108	108	120	114	108	107	111	111	110	107	112	108	106	1767
8.8	102	103	101	101	100	103	101	101	99	\$5	101	100	100	100	99	99	1616
11.5	100	101	101	105	100	104	101	102	100	100	102	102	100	101	99	10	1622
13.3	110	108	111	108	106	123	117	112	111	112	119	114	109	113	103	106	1791
15.1	120	116	116	112	110	136	124	119	114	118	127	125	116	128	106	107	1902
10.8	124	126	122	116	116	141	125	126	115	120	131	129	122	159	115	114	2009
10.1	125	130	129	119	122	142	125	131	115	127	128	130	125	177	118	116	2065
19.9	133	133	1.24	121	131	140	130	137	123	138	127	130	130	233	118	119	2195
23.3	134	129	124	114	120	128	130	141	121	140	124	195	133	104	115	117	2112
25.0	175	120	158	112	1.20	143	131	151	123	1.92	123	139	131	140	119	120	2006
26.6	120	114	14.9	120	122	134	147	134	129	137	120	1 3 3	120	126	129	117	20.96
26.5	127	110	157	127	122	137	146	120	122	1.57	120	1.32	100	120	120	114	20.94
20.0	123	110	164	131	122	130	142	126	120	142	124	133	110	125	120	114	2085
32.0	118	124	153	134	127	136	138	126	120	137	122	1 35	110	122	121	120	2070
34.0	116	1.24	130	129	123	143	133	123	1 21	1 3 1	123	136	126	120	110	110	2062
35.5	115	130	138	121	124	194	129	126	120	134	127	130	127	140	121	116	21.05
37.7	120	131	143	120	130	248	125	136	123	146	126	124	122	158	126	118	2205
39.5	117	123	135	121	125	182	131	142	120	164	122	1.22	118	155	125	120	2128
41.7	132	125	143	125	126	171	141	157	126	256	127	132	129	150	128	127	2302
43.3	139	125	156	128	125	194	133	259	122	165	127	137	128	137	124	131	2338
44.7	142	123	177	131	123	185	128	165	122	151	126	1.31	125	132	119	138	2225
46.2	152	128	179	134	126	174	128	142	128	142	126	130	123	130	117	155	2218
47.7	204	132	160	134	132	176	135	130	137	145	129	1.32	125	131	120	160	2288
49.7	155	133	138	132	136	170	136	129	132	135	134	135	122	133	127	139	2196
51.6	136	134	126	142	151	155	128	131	129	136	131	139	122	136	129	133	2166
53.5	130	134	133	156	261	148	134	129	133	138	130	147	139	142	136	153	2352
54.9	132	139	133	151	155	148	140	129	130	140	129	151	158	144	135	175	2296
56.2	136	146	137	151	146	147	143	139	129	145	129	153	253	152	142	271	2527
57.6	128	140	138	153	138	137	133	144	123	138	120	142	169	146	135	164	2254
59.8	120	123	131	143	123	129	127	127	119	128	115	129	126	120	121	128	2027
61.8	115	113	118	11.8	114	120	123	117	115	120	114	121	119	117	114	114	1881
63.8	103	103	103	105	103	104	104	105	100	103	103	104	105	104	103	105	1665
ee.5	102	102	103	106	102	104	105	104	101	103	104	103	104	103	101	103	1658
68.4	113	115	150	114	115	129	130	116	118	121	123	115	115	114	109	111	1886
70.1	123	130	134	125	126	151	141	127	128	125	136	127	112	132	118	118	2065
11.0	123	139	137	138	136	151	138	129	133	130	135	127	112	148	119	122	2124
/3.1	120	140	145	159	139	147	141	133	141	131	136	129	114	150	120	129	2195
74.0	138	165	1/4	1//	192	159	152	139	184	139	149	1 34	127	145	128	135	2394
70.0	142	205	204	200	139	171	102	139	145	1.40	168	141	128	140	139	140	2663
70.0	144	100	100	100	143	175	100	139	1 35	1.52	228	144	128	141	161	191	2478
81.5	120	130	1.2.7	16.0	133	143	205	1.76	134	103	110	120	127	139	184	134	2384
83.8	116	125	125	132	1.21	143	166	110	126	137	198	130	114	131	122	120	2925
84.0	100	121	110	110	124	122	134	114	120	141	122	117	100	122	112	110	2066
88.1	104	1.09	105	10.0	113	111	117	109	108	117	108	107	103	112	104	109	1750
2,23	55	40	96	99	97	97	98	95	49	100	94	00	03	98	96	95	1550
\$1.5	94	94	95	95	95	93	95	93	94	96	94	95	93	96	94	94	1518

Upper limit of B-2 deformed tube areas (mn^2)

.

Elevation							T	ube No.									
(cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL
0.0	92	93	93	94	93	92	93	94	92	92	92	93	91	92	92	93	1490
1.8	102	104	105	104	101	107	107	106	102	103	103	107	101	105	102	102	1670
3.4	114	115	117	114	114	132	121	116	109	114	115	119	111	123	112	108	1862
5.0	114	116	115	116	113	128	119	115	110	114	115	115	111	119	114	109	1850
6.5	110	112	109	108	108	120	114	108	107	111	111	110	107	112	108	106	1767
8.6	102	103	101	101	100	103	101	101	99	99	101	100	100	100	99	99	1616
11.5	100	101	101	102	100	104	101	102	100	100	102	102	100	101	99	101	1622
13.3	110	108	111	108	104	123	117	112	111	112	119	114	109	113	103	106	1791
15.1	120	116	116	112	110	136	124	119	114	118	127	125	116	128	106	107	1902
16.8	124	126	122	116	116	141	125	126	115	126	131	129	122	154	115	114	2009
18.1	125	130	129	119	122	142	125	131	115	127	128	130	125	177	118	116	2065
19.5	133	133	134	121	131	140	130	137	123	136	127	136	136	188	118	119	2150
21.4	134	129	134	114	130	138	130	141	121	140	124	145	133	164	115	117	2115
23.2	133	126	138	112	131	145	131	151	123	142	123	139	131	148	119	120	2118
25.0	126	121	144	115	129	142	137	152	124	137	120	1 31	126	140	124	123	2096
26.5	124	116	148	120	122	134	142	136	122	1.37	120	132	123	125	128	117	2054
28.5	127	118	157	127	123	137	145	129	123	143	122	133	123	124	131	114	2083
30.0	123	118	164	131	123	138	142	126	120	142	124	132	118	125	129	116	2076
32.0	110	124	153	134	123	136	138	126	120	137	122	135	119	128	121	120	2060
34.0	116	124	139	129	123	143	133	123	121	131	123	136	126	129	119	119	2042
35.9	119	130	138	121	124	194	129	126	150	134	127	130	127	140	121	116	2105
37.7	120	131	143	120	130	233	125	136	123	140	126	124	122	158	126	118	2190
39.5	117	123	135	121	125	162	131	142	120	164	122	122	118	155	125	120	2128
41.2	132	125	143	125	126	171	141	157	126	191	127	132	129	150	128	127	2237
43.3	139	125	156	128	125	194	133	177	122	165	127	137	128	137	124	131	2256
44.7	142	123	177	131	123	185	128	165	122	151	126	1 31	125	132	119	138	2225
46.2	152	128	179	134	126	174	128	142	128	142	126	130	123	130	117	155	2218
47.7	165	132	160	134	132	176	135	130	137	145	129	132	125	131	120	160	2253
49.1	155	133	138	132	136	170	136	129	1.32	135	134	135	122	133	127	139	2196
51.6	13e	134	159	142	151	155	128	131	129	136	131	139	122	136	129	133	2166
53.5	1:0	134	133	156	170	148	134	129	133	138	130	147	139	142	136	153	2261
24.5	132	139	133	151	155	148	140	129	130	140	129	151	158	144	135	175	2296
56.2	136	146	137	151	146	147	143	139	129	145	129	153	187	152	142	188	2378
57.6	128	140	138	153	138	137	133	144	123	138	120	142	169	146	135	164	2254
9.8	120	123	131	143	123	158	127	127	119	128	115	129	126	130	121	128	2027
61.8	115	113	118	118	114	150	*53	117	115	120	114	121	119	117	114	114	1881
63.8	103	103	103	105	103	104	104	105	100	103	103	104	105	104	103	105	1665
06.5	102	102	103	106	102	104	105	104	101	103	104	103	104	103	101	103	1658
68.4	113	115	150	114	115	129	130	116	118	121	123	115	115	114	10.9	111	1886
70.1	123	130	134	125	126	151	141	127	128	125	136	127	112	135	118	118	2065
71.6	123	139	137	138	136	151	138	129	133	130	135	127	112	148	119	122	2124
73.1	126	146	145	159	139	147	141	133	141	131	136	129	114	150	120	129	2195
74.e	138	165	174	111	142	159	152	139	156	135	149	134	127	145	128	135	2366
76.2	142	179	184	188	139	171	162	139	143	146	168	141	12.8	140	139	140	2459
18.0	144	155	166	166	143	155	168	139	135	152	183	149	128	141	161	141	2432
19.5	141	136	140	151	143	140	182	138	134	153	170	156	127	139	170	139	2366
61.6	128	130	127	149	132	143	559	126	132	154	148	182	155	131	146	126	2311
83.8	116	125	125	132	121	143	164	119	126	137	135	138	114	126	122	116	2066
0.68	109	121	118	119	124	123	136	116	121	141	122	117	108	122	112	114	1930
88,1	106	109	105	108	113	111	117	109	108	117	108	107	103	112	106	109	1758
64.6	55	96	96	99	97	97	98	95	96	100	94	99	93	98	94	95	1550
\$1.5	54	94	95	95	95	93	95	93	94	96	94	95	93	96	94	94	1518

Lower limit of 8-2 deformed tube area (mm^2)