ENCLOSURE 2

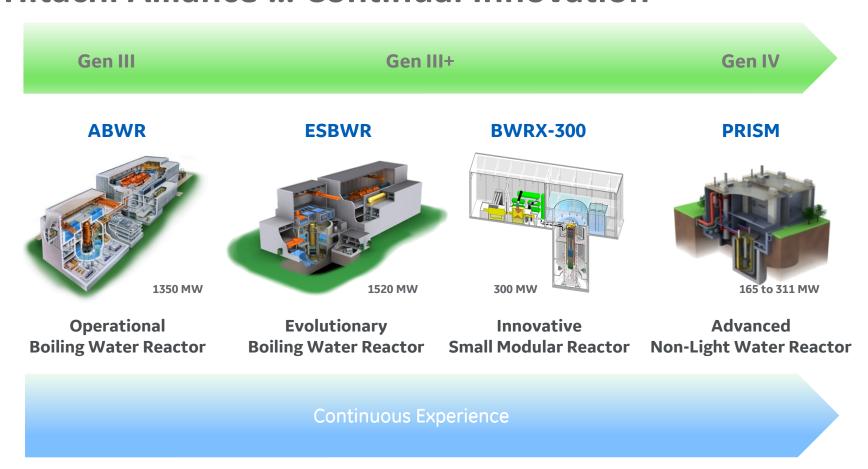
M190157

Presentation Slides for Pre-Application Meeting for Planned Submittal of GE-Hitachi BWRX-300 Selected Topical Reports

Non-Proprietary Information - Class I (Public)

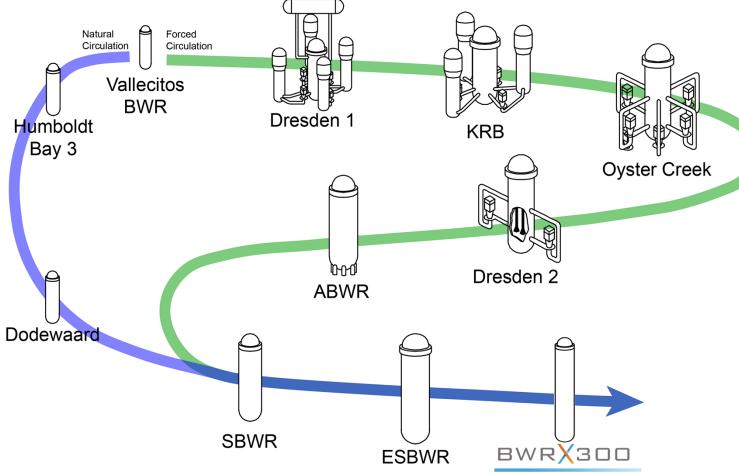
IMPORTANT NOTICE

This is a non-proprietary version of the Presentation Slides for Pre-Application Meeting for Planned Submittal of GE-Hitachi BWRX-300 Selected Topical Reports, from which the proprietary information has been removed. The header of each page in this enclosure carries the notation "Non-Proprietary Information." Portions of the enclosure that have been removed are indicated by an open and closed bracket as shown here [[]].

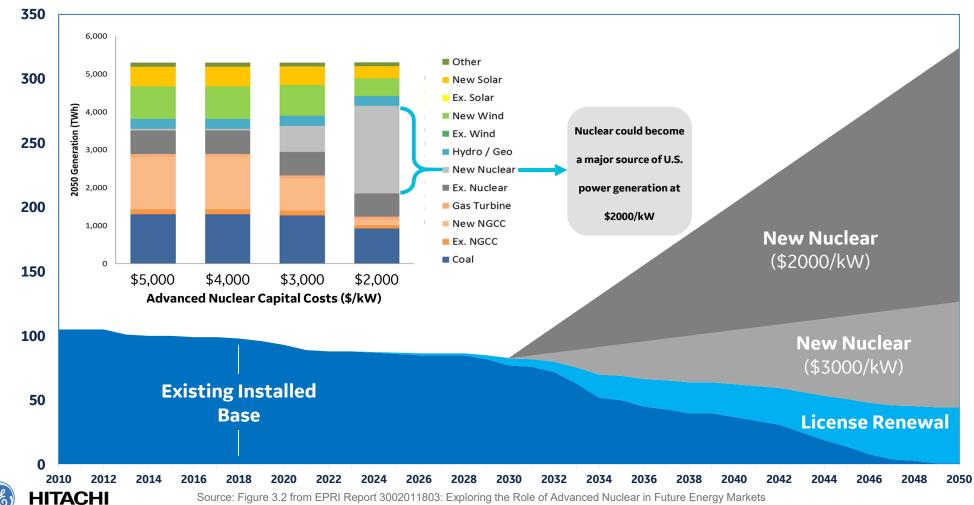

Pre-Application Meeting For Planned Submittal of GE Hitachi BWRX-300 Selected Topical Reports

September 26, 2019

Pre-Application Meeting For Planned Submittal of GE Hitachi BWRX-300 Selected Topical Reports


Open Session

GE Hitachi Alliance ... Continual Innovation

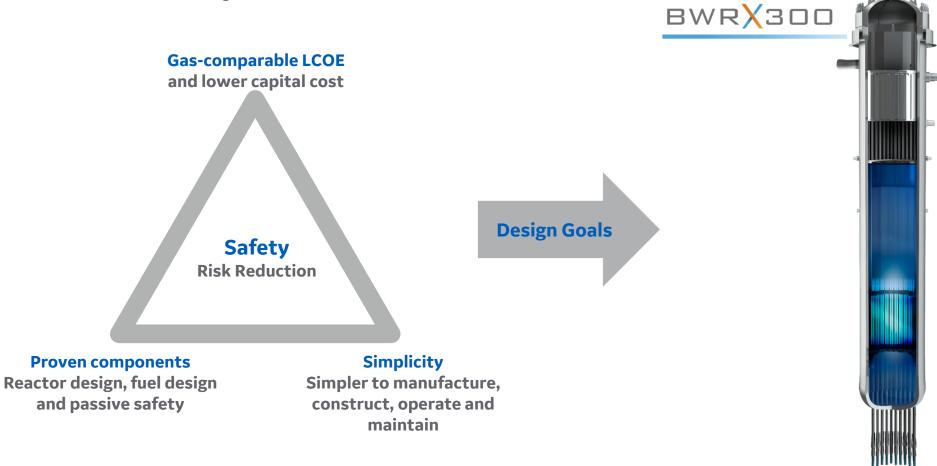


Boiling Water Reactor Evolution

Nuclear Inflection Point

Copyright 2019 GE Hitachi Nuclear Energy Americas, LLC - All Rights Reserved

- 10th generation BWR
- 300 MWe SMR
- World class safety
- LCOE competitive with gas
- Up to 60% capital cost reduction per MW
- Scaled from licensed ESBWR
- Designed to mitigate LOCA
- Reduced on-site staff and security
- Design-to-cost approach: <\$1B total & <\$2,250/kW
- Proven components, fuel, and supply chain
- Constructability integrated into design


Deployable by 2027

Copyright 2019 GE-Hitachi Nuclear Energy Americas LLC – All Rights Reserved

BWRX-300 Objectives

Proven Reactor Technology

Dryer:

Same features as ABWR* & ESBWR ...
Same as upgrades for existing fleet ...
Size nearly identical to KKM**

Steam Separators

Same as ABWR* & ESBWR ... Similar to others in the BWR fleet

GNF2 Fuel:

18,500+ bundles delivered ... Utilized by ~70% of BWR fleet

Control Rod Blades:

 $\label{eq:Same as ABWR* ...} Same as ABWR* ... \\ Longer than ESBWR ... \\ Almost identical to latest design for BWR fleet$

Reactor Pressure Vessel:

Same material and fabrication processes as ABWR*, ESBWR and many of the BWR fleet ... Diameter almost identical to KKM**

Chimney:

Uses ESBWR and Dodewaard*** technology ... Simplified

Fine Motion Control Rod Drives:

Same as ABWR* & ESBWR

- * ABWR fleet has combined 22+ years of operating experience
- ** Kernkraftwerk Mühleberg (KKM): 355 MWe BWR/4 in operation since 1972
- *** Dodewaard: 58MWe natural circulation BWR. 1969 ~ 1997

Break

Pre-Application Meeting For Planned Submittal of GE Hitachi BWRX-300 Selected Topical Reports

Closed Session

Agenda

- 1. BWRX-300 Licensing Plan and Schedule
- 2. Design Objectives and Key Licensing Topics
- Reactor Pressure Vessel Isolation and Overpressure Protection Design Features
- 4. Licensing Topical Report Objectives and Regulatory Basis

BWRX-300 Licensing Plan and Schedule

BWRX-300 Overall Licensing Plan and Schedule

П

BWRX-300 Licensing Topical Report Purpose

[[

BWRX-300 Licensing Topical Reports

ГΓ

BWRX-300 Licensing

ΓΓ

Design Objectives and Key Licensing Topics

BWRX-300 Design Goals

Defense-in-Depth Concept

Safety Assessment Framework

[[

ESBWR Probabilistic Risk Assessment Core Damage Frequency Contributors

BWRX-300 Innovations that Mitigate Loss of Coolant Accidents I

BWRX-300 Innovations that Mitigate Inadvertent Open Relief Valve

RPV Isolation and Overpressure Protection Design Features

RPV Isolation

BWRX-300 Reactor Pressure Vessel

Minimize the Probability of Coolant Loss

Mitigating Loss of Coolant Accidents

[[

Reactor Pressure Vessel Assembly

[[

Reactor Pressure Vessel Isolation Valve Configuration

[[

Large Pipe Break Response

[[

Small Pipe Break Response

[[

Licensing Topical Report Contents Related to Reactor Pressure Vessel Isolation

[[

Overpressure Protection

Overpressure Protection

[[

BWRX-300 Overpressure Protection

[[

Isolation Condenser System Features

Licensing Basis Acceptance Criteria

[[

Licensing Technical Report Contents Related to Overpressure Protection

BWRX-300 Licensing Topical Report Objectives – Approval of Regulatory Basis

BWRX-300 Licensing Topical Report Approval

[[

Closing Remarks and Questions