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Abstract

Experiments were conducted tc test the validity of the scaling laws

which have been put forward for the small-scale modeling of the air clear-

ing phase of flow into the condensation pool of a pressure suppression

system. Three geometrically similar wNuells (differing in linear dimen-

sion by a factor of 4) were used, along with two liquids (differing in

density by a factor of three) and three gases (differing in enthalpy by

a factor of ten). When using different pressures, liquids, and gases,

the dimensionless pressures were in excellent agreement as long as the

four scaling parameters were held constant. The enthalpy flux must be

scaled by the use of an orifice to ensure that the pressures will scale.

Our tests uncovered two areas where the scaling laws will not hold

if the proper precautions are not taken. The vapor pressure of the liquid

must be kept quite low. If water is used it must be cooled to near freez-

ing when the system size is less than about 1:10 scale of a system with

pressures near atmospheric. It is also possible to avoid this problem

by using a liquid with a low vapor pressure, such as Meriam manometer

fluid.

Peak downloads will scale only if the containment walls are rigid

and precautions are taken to eliminate small air bubbles in the liquid.

The problem with the air bubbles can be eliminated by adding a surfactant

or by using a particular wetwell fluid (such as Meriam manometer fluid).

If these precautions are taken, the scaling laws originally put forward

by Moody are valid. g g }}J



-3-

NOMENCLATURE

C mass flow coefficient through orifice (dimensionless)m

d downcomer diameter (m)

d orifice internal diameter (m)j

D wetwell diameter (m)

g acceleration due to gravity (9.8 m sec-2)

G equivalent mass flux density through the orifice (kg m-2)

h specific stagnation enthalpy of drywell gas (J/kg)
D

P pressureatagivenpoint(kPa)

P(0) initial pressure prior to blowdown at a given point (kPa)

Pt to P pressures from transducers 1 to 4 (Fig. 2) (kPa)%

P drywell pressure (kPa)
D

P initial wetwell pressure (kPa)

P* dimensionless pressure at a point, Eq. (14)

R specific gas constant (universal gas constant divided by

molar mass of gas) (J/ K kg)

Re a Reynolds number for gas flow through the orifice, Eq. (5)

(dimensionless)

t time measured from the initiation of blowdown (sec)

t* dimensionless time = t/g/D

T drywell gas absolute temperature ( K)
D

v velocity at a given point (m sec-2)

v* dimensionless velocity = v//g5
3

V total volume of wetwell system downstream of orifice (m )

1775 218
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Y ratio of specific heats of drywell gas (dimensionless)

viscosity of drywell gas (kg.m-2t-2)
UD

dimensionless scaling parameters [Eqs. (7)-(11)]31 to nu

p density of wetwell liquid (kg m-3)

density of drywell gas (kg m'8)PD

T rise time for pressure in empty wetwell (used for orifice

calibration) (sec)

. 1775 219
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1. INTRODUCTION

During the past two years, considerable work has been done to

establish a proper design basis for the hydrodynamic loads in the

water-type pressure suppression containment of systems of boiling

water reactors (BWR's). Three generations of such systems have been

developed by the General Electric Company: Marks 1, 2, and 3. In

early 1975, during the testing by G.E. of the Park 3 systems, it be-

came apparent that certain loads had not been adequately considered

in the two earlier designs. At that time, there were 25 BWR reactors

with Mark 1 containments in the United States,19 of them operational,

and several reactors with Mark 2 containments in advanced construction

stages. A strong research and testing program was immediately mounted

by the nuclear industry and the Nuclear Regulatory Commission to re-

solve the problem as quickly as possible.1,2

Of major concern in the Mark 1 containment were the forces which

would be exerted on the containment during the initial stages of a loss-

of-coolant accident (LOCA), when the air in the drywell and vent system

is displaced by the steam from the (postulated) pipe rupture and ejected

into the wetwell of the containment system. This causes at first a sharp

downward force on the wetwell floor as the vents clear of water, and then

an upward load on the wetwell as the air trapped over the water is over-

compressed by the rapid upheaval of the condensation pool (" pool swell").

The pool swell also causes impact loads on the internal structures of

the wetwell.

The pool swell process is a complex one, for geometrical and other

1776 220-
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reasons, and at present the most acceptable method of predicting the

loads is through small-scale experimental modeling, using scaling laws

to extrapolate the small-scale results to full-scale conditions. This

is the approach that G.E. took in 1975, when they began simulating the

air expulsion stage of LOCA's in a 1/12-scale model of a typical Mark

l containment. Their model actually represented only a two-downcomer,

7.5 segment of the full 360 Mark 1 containment torus. The following"

year, the nuclear industry sponsored further tests in a similar 1/4-

scale mcdel, and NRC funded the Lawrence Livermore Laboratory to carry

out tests in a more elaborate 1/5-scale model of a 90 segment of the

Mark 1 torus. The industrial tests are completed and analyzed. How-

ever, much of the data remains in proprietary form. The Livennore"

tests are finished and the data should soon become available.

The method of small-scale modeling rests on a knowledge of the

scaling laws which ensure that dynamic similarity exists between tne

model and the full-scale system and which enable one to extrapolate

the data derived from the model to full-scale conditions. Because of

the complexity of the pool swell process, it turns out to be impossible

or impractical to achieve exact dynamic similarity between a small-

scale system and a full-scale one. However, by invoking a simplified

but nevertheless realistic model of the actual pool swell process,

F.J. Moody of G.E.8 was able to suggest a sufficiently simple set of

modeling laws to allow convenient small-scale modeling. These laws

are the basis for the industry's small-scale tests. The simplifying

assumptions on which the modeling laws are based are reasonable, but

1775 221
.
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fundamental experimental checks of the laws are nevertheless required.

This paper will describe a series of direct experimental tests of

the modeling laws for the early period of blowdown into the condensa-

tion pool when the gas being ejected from the drywell is mostly air

and condensation is negligible. The scaling laws are tested in geo-

metrically similar, drum-shaped "wetwell" test-sections with a single

downcomer. The geometry is not intended to precisely simulate any par-

ticular existing containment system. However, the major geometrical

parameters are approximately similar to a G.E. Mark 1 system. The

present paper is a complete description of the work which was reported

in part in Reference 4.

1775 222
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2. THE MODELING LAWS

In what follows we shall quickly derive the scaling laws for the

pool swell process. The approach follows Moody's,8 but is somewhat

more rigorous in its consideration of the effect of the vent system's

hydraulic resistance.

Consider a set of geometrically similar rigid systems, like the

one in Fig.1, consisting of a closed wetwell, partly filled with liquid,

connected to a drywell by one or several downcomer pipes. Geometrical

similarity includes the initial liquid level as well as the fixed fea-

tures. At t < 0 , the pressure in the wetwell and downcomer gas spaces

is P, , and the liquid is stationary. At t > 0 , the enthalpy hD

and the pressure P in the drywell increase rapidly with time.
D

We are interested in the scaling laws for the pressure distribution

in the wetwell and the velocity distribution of the watwell liquid. To

understand what these quantities depend on, we consider the following

simplified model of the actual pool swell process. First, we shall

assume (for the time being) that the pressure drop which occurs in the

downcomer during flow is largely localized; that is, it occurs primarily

at one given location in the downcomer, at the " orifice." Next, we note

that the process involves three separate fluid regions: the region I of

gas which is bounded by the orifice on the upstream side and the liquid

on the other; the region II of liquid; and the region III of trapped gas

in the wetwell. We shall assume that in regions I and III the gases are

perfect and no'ncondensable and the pressure unifonn (inertial effects
.

1775 223
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occur primarily in the liquid, not in the gas, and acoustic times are

short compared with the characteristic blowdown times). As for the

liquid we assume that its motion is incompressible and inviscid.t

(Acoustic times in the liquid are also very short, and the Reynolds

number very large.) After the bubble is formed, we assume that it

will drive the pool motion. Heat transfer is neglected between the

liquid and the gas, and between the gas and the wetwell structure.

Interfacial surface tension effects are assumed to be negligible.

Based on this simplified model of the process, we can deduce that

the pressure at a given point in the system must have the dependence

P(P,, p, g, D, y, h G, t) , (1)P =
D

where hG is the instantaneous enthalpy flux density associated with
D

the flow of gas through the orifice, expressed as an enthalpy flow rate

per unit downcomer area. h is the drywell gas enthalpy, and G is
D

the equivalent mass flux density through the orifice. The other symbols

are defined in the Nomenclature. (If y is different in regions I and

III, both values of y must be inserted.) An entirely similar depen-

dence applies to the velocity at a given point. That p, g, D, and t

must enter Eq. (1) is obvious because the pressure and velocity distri-

butions depend on the dynamics of the liquid pool. P and y enterg

through the isentropic pressure-volume relation for the trapped gas,

which controls the boundary condition for the region III side of the

liquid. The additional quantity hG represents the enthalpy flux
D

into region I. This quantity enters because it appears [in addition
i
.

.

1775 224



-10-

to some of the other variables in Eq. (1)] in the energy equation for

region I, and the energy equation controls the pressure-volume relation

for region I and therefore the boundary condition for the side of the

liquid.

Note that h and G do not appear separately in Eq. (1), but
D

only as a product. This is so because the region I mass conservation

law, which involves G separately, does not affect the pressure-volume

relation for the regim. The pressure-volume relation is controlled by

the energy equation alone. The mass conservation law controls the gas

density in region I, but the gas density plays no role here because

inertial effects in the gas phases are neglected and heat transfer is

absent. It is precisely because h and G appear only as a product,
D

but not individually, that it is possible to derive a sufficiently

simple set of modeling laws.

Applying straightforward dimensional analysis, we deduce from Eo.

(1) that a dimensionless pressure like (P - P )/P must have the depen-g g

dence

P P* /P h G(t) i
* D

t/g/D )IfI (2)=
P (pgD , y, , .

g p9 gi3/2

A dimensionless velocity like v//g'D has a similar dependence. The

implicit assumption, of course, is that we are referring to the pressure

or velocity at a particular spot in the system; otherwise, a dependence

on position must be included.

Equation (2) implies that if P /pgD and y are the same in twog

1775 225
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geometrically similar systems--a full-scale prototype and a small-scale

model, say--and if h G/pg' ' 2 D ' ' ' is the same in both at corresponding
D

values of the dimensionless time t/g/D , then the dimensionless pressure

(and velocity) will be the same in both at corresponding values of t/g/D .

This recipe for modeling is simple. However, there is still a

practical difficulty: one must know how to ensure that h G/pg * F 2
D

is the same in the model as in the prototype.

We address this last problem by considering the scaling laws for

the flow through a standard orifice or any flow restriction in a pipe

system, set between an upstream point where the pressure P is speci-
D

fied (in Fig. 1, the drywell) and a downstrerm point where the pressure

is P (in Fig. 1, the region I). We consider the set of geometrically

similar restrictions in a pipe of diameter d (the downcomer), and we

assume that the region where the pressure drop occurs is sufficiently

localized that the flow there can be considered quasi-steady. We can

then show from dimensional considerations that a dimensionless mass

flux density, which we shall call the mass flow coefficient Cm ' I"

analogy to the discharge coefficient C for volume flow in nozzles,i
d

6
5 (3)C*

~2(PD - P)
~b

D pD -,

# ote that by this definition the pressure drop P P is equal toN
pDv,basedonkhedrywellgas2Cm-2 times the dynamic pressure,

density and the velocity in the downcomer. Thus, Cm-2 is a sort of
total head loss coefficient for the downcomer, including both the
viscous loss as well as the inviscid Bernoulli pressure drop.

1775 226
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must have the functional fonn

(d. P -P )
CC =

' '
m m

D /

is the diameterHere, pD is the gas density at the upstream station, dj
' ' of the standard orifice, and

/pD D d PdP
D (5)Re E =

U
D u

D D

is a characteristic Reynolds number for the flow (see the Nomenclature

for the symbols). The dependence on d /d in Eq. (4) is written forj

the particular case where the resistance is a standard orifice. More

generally, the form of Eq. (4) would simply depend on the geometry of

the restriction.

In terms of the mass flow coefficient introduced .n Eq. (3), we
O

can write
,

b ( RT UP P P /P-P
_D_

PGb
D ,gY w W I W

C* |\ 9
l. (6)w )Y-1 P pgD P

pg ''' D g D D\ wl /3/2
_ _

Now, we have seen that if y and P /^gD are the same in theg

model and prototype systems, similarity will be achieved--that is,

(P-P )/P, will be the same in both systems at corresponding values

of dimensionless time t/g/D --i f Gh /pg'' 02 is also the same at
D

corresponding t/g/D . From Eq. (6) we see that this condition is

P / P, and C (RT /gD) '' are the same in both systemssatisfied if
D m D

1775 227o i
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at corresponding values of dimensionless time t/g/D . According to

Eq. (4), on the other hand, C depends on dimensionless time only via
m

the dimensionless pressure ratio (P -P)/P Hence, C (RT /gD)'"
D D. m D

will be the same in both systems at corresponding dimensionless

times if it is the same at corresponding values of (P -P)/P
D D*

Our conclusion, then, is that the proper modeling laws for pool

swell are that

na E Y (7)

and
P
*

n2 (8)pgD

be the same in the model and the prototype system, that

[P (9)n3 E

W

be the same in the model and prototype system at corresponding values

of

t* E t/g/D (10),

.

and that

/ RT
D: C ( }nu m( gD )

be the same in the model as in the prototype system at all values of

the dimensionless pressure drops (P - )I encountered in the pro-
D D

cess. It then follows that a dimensionless pressure like (P-P )/P ,g g

.or dimensionless velocity like v/,gD , at any given point will be the
,

1775 228
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same in the model as in the prototype. In general, the dimensionless

quantities will have the fonn

P-P
W V u , n , t*) (12)f(ni,n2,or = s u .

P, g

The modeling procedure is thus the following:

"

(a) Make the model geometrically similar to the prototype, including

the location, but not the magnitude, of the flow restriction in

the downconer.

in the model to that of the prototype system by in-(b) Adjust nu

creasing the resistance (for example, by using an orifice in the

line) so as to balance the effect of the smaller D [see Eq. (11)].'

This can be done after several orifices with different d 's havej

been calibrated at their design Re's [see Eq. (4)] over the range

of (P -P)/P expected in the blowdown process. One should try
D D

is approximately the sameto ensure, by trial and error, that nu

in both systems over the whole excursion in (P )I
D D*,

and n2 in the model as in the proto--- (c) Use the same values of T 1

type, and the same applied pressure history n3(t*).

(d) Measure P* = (P-P )/P, and v* = v/ @ versus t* in the model,
g

and calculate P and v for the prototype from the knowledge that

P* and v* are the same in both systems at geometrically corres-

ponding locations and t* .

1775 229
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The development given above has assumed that the flow resistance

in the downcomer is localized, that is, it occurs primarily at a known

station. This situation is in fact approximated fairly well in the

tests which are described in what follows. Actual containment systems,

however, are more complex, and the question arises whether this intro-

duces complications into the modeling. Is only the total flow resis-

tance important, or must one also be concerned with the actual distri-

bution of the resistance in the line?

It should be emphasized that in steady or quasi-steady adiabatic

flow it makes no difference to the downstream pressure or the enthalpy

flux whether the flow resistance is localized, or distributed in var-

ious parts of the piping system. Only the overall effect counts.

In unsteady flow, however, there may be some difference since the dis-

tribution of the resistance in the line affects the time it takes the

pipe system to fill up in response to an increased driving pressure.

As to how this might affect the modeling, we make the following remarks.

(1) In a real containment system, the flow resistance occurs (to

a good approximation) in a series of " discrete" locations in the vent

system: at the entrance, at bends, area reductions, tees. By applying

the energy equation to each uniform-pressure region between successive

restrictions, one can easily show that completely accurate modeling

should be achieved if in the model the vent system geometry is identi-

cal to that of the prototype, but each discrete flow resistance is

scaled so as to make the local m, the same in both systems.

(2) If the vent system geometry is faithfully modeled, but the

,

1775 230
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main flow restriction is further downstream in the model than in the

prototype--as would occur, for example, if a single orifice in the

downcomer were used in the model to bring the model's n, to the

prototype value--then one would expect that the model would, if any-

thing, tend to show a more violent vent clearing and pool swell than

the prototype. This is so because the vent system would tend to follow

the rising drywell pressure faster than the properly scaled value so

that at a given dimensionless time, the dimensionless driving pressure

would tend to be higher in the model than in the prototype system. The

modeling would thus tend to be conservative.

(3) If the vent in the model system is not geometrically scaled,

but has a smaller volume than the scaled one, and if the total flow

resistance is properly scaled so that nu is the same in the model as

in the prototype, but the model's flow resistance is localized at a

point near to the vent exit, then the model should again, if anything,

tend to have a more violent vent clearing and pool swell than the proto-

type. The reason is the same as that given above.

One might stress, in concluding this section, that if h and G
D

had appeared individually in Eq. (1) rather than as a product, we would

have found that instead of nu there would be two modeling parameters,

s = (RT /gD)''' . If one had to make ns the same innu' =C and u
Dm

a small-scale system as in a large one, modeling would be very difficult

because the gas enthalpy would have to be scaled with system size. This

difficulty is removed only if one recognizes, as Moody did,3 that it is

merely the product hG that appears in Eq. (1). As a result, only the
D

.
. 1776 231
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product Tr. of C and (RT /gD)ir2 must be scaled, and this canm D

be done relatively easily by adjusting the line discharge coefficient

Cm'

1775 232
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TABLE 1. Geometric Parameters of Wetwell Test System

downcomer area 0.033=
pool area

liquid depth
6=

downcomer diameter

submergence
2=

downcomer diameter

wetwell gas volume j,

liquid volume

1775 233
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3 EXPERIMENTS

The scaling laws were verified experimentally in the somewhat

simplified " containment system" geometry system shown in Fig. 2. The

wetwell was a simple cylindrical vessel of internal diameter D. A

single downcomer with internal diameter d = 0.182 D and length 2.73D

entered the wetwell from the top center. The top of the downcomer

opened directly into a "drywell" which in our tests was simply a res-

ervoir with a volume large compared with that of the airspace in the

wetwell, so that the drywell pressure remained essentially constant

during the entire blowdown process. Although our system was not in-

tended to be geometrically identical to any particular existing con-

tainment system, its gross geometrical parameters did roughly simulate

the G.E. Mark 1 system (see Table 1).

Wetwells of three different sizes were tested, having diameters

D = 14 cm, 28 cm, and 55 cm. These will be referred to as our small,

medium-sized, and large wetwells, respectively. The height of the

small and medium-sized systems was 2.18 D. In both, the wetwell was

precisely half full of water, and the downcomer submergence was 0.364 0.

The total height of the large system was 2.09 0, that is, it was slightly

mis-scaled compared with the others. However, the downcomer submergence

and the height of the airspace were exactly the same in the large system

as in the small and medium-sized systems, although the depth of the water

was 1.00 D instead of 1.09 D . We believe that this difference is insig-

nificant, because high-speed films have shown that, beneath the bubble

c .
1775 234
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which forms during blowdown, the water is essentially stagnant. The

floor pressure is then transmitted across stagnant water, and should

not be affected by small changes in the depth of the water. It is,

however, important to properly scale the downcomer submergence and

the height of the airspace, as was done.

The small and medium-sized wetwells were made of plexiglas, with

side wall thicknesses of 0.6 cm and 1.3 cm, respectively. In both

systems the roof and floor consisted of plexiglas plates about 2 cm

thick. A second small wetwell, with precisely the same internal dimen-

sions as the plexiglas one, was made out of 3 cm thick steel: this was

our small system with absolutely rigid walls. The large system wcs

PVC with a side wall thickness of 0.6 cm (heavily reinforced and

braced) and roof and wall thicknesses of about 3 cm.

Blowdown was initiated in our system by a pneumatically operated

valve consisting of a rubber-lined flat disc that pressed against the

top of the downcomer when the valve was closed and which was rapidly

withdrawn to open the valve. The opening time was short and did not

affect the ensuing flow processes.

The test sections were instrumented to measure pressures (via

Kistler Model 206 low-pressure piezotron transducers) at four loca-

tions (transducer numbers 1-4) as shown in Fig. 2. The response of

the transducers was recorded on a storage oscilloscope and the traces

were then photographed for subsequent analysis. High-speed films

(1000 frames per second) were also taken of the pool swell in our

I
- ! 1775 235i
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small and medium-sized test systems.

The discha;ge coefficient associated with the gas flow rate through

the downcomer could be independently controlled by placing interchange-

able orifice plates in the downcomer,11.5 downcomer diameters upstream

of the downcomer exit (Fig. 2). The orifices were calibrated with each

of the three gases that were used in our experiments. This calibration

for C as a function of (P -P)/P [where P is the pressure at them D D

downcomer exit--see Eq. (4)] was performed by setting the drywell pres-

sure at P and the wetwell pressure at P =P and measuring the ini-D

tial rate of pressure rise in the empty wetwell (containing no liquid)

when the valve was opened. Using the first law of thennodynamics, and

assuming adiabatic conditions, it is easy to show that

b/P -PiD 1 (13)C* P
1 i=

,

nd ( D / I2

y/2RT
4 D

where V is the total volume downstream of the orifice (wetwell plus

downcomer) and T is the time it would take the wetwell pressure to

reach P if it were to '-ep rising at its initial rate. Figure 3
D

shows some typical results of orifice calibrations for different gases.

The dependence of C n (P ' appears to be quite insensitive
m D D

to the other parameters d /d, y, and Re in Eq. (4), since the curves
4

in Fig. 3 for different gases and different orifices have quita similar

shapes. Thus modeling requirement (b) in the previous section was fully

satisfied. We have chosen the value of C at (P -P)/P = 1/3 as am D D

1775 236\' '' '

..



-22-

reference value for each gas-orifice combination, and it is that value

which is used in comparing the experimental results discussed in the

next section.

Our goal in these experiments was to test the scaling laws outlined

in Section 2 by varying the quantities P , P , p, D, R, and Cm , whichD

are the easily altered scaling parameters, and determining whether the

dimensionless dependent variables, such as the dimensionless pressure,

were functions of only the dimensionless groups, Eqs. (7)-(11).

In our test program, the linear system size was varied by about a

factor of four: D = 14-55 cm.

Three gases were used: air (with y = 1.4) and helium and argon (with

y = 1.67). The latter two were chosen because their gas constant R dif-

[Eq. (11)] tofers by a factor of 10, and hence allows the parameter nu

be changed by a factor of 3.2 by changing gas alone, without changing

pressures, flow orifice, or system size.

Two liquids were used: water and Meriam manometer fluid (1,1,2,2-

tetrabromoethane, specific gravity 2.95). Flow constriction diameters

relative to the downcomer diameter, d /d , were varied by a factor ofj

2. Absolute pressures were varied by a factor of about 6 in the wet-

well and 9 in the drywell.

Table 2 shows the corresponding ranges over which 'he dimensionless

scaling parameters were varied in our tests. Also shown for reference

are the values of the same parameters for a design basis LOCA in a G.E.

Mark I containment system.
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TABLE 2. Values of Dynamic Scaling Parameters

Our System
Parameter Mark 1 System (Design Conditions)

n1 Y 1.4 1.4, 1.67=

iP /pgD 2-3 4.15, 8.29n2 =
g

ns P /P 1-3 2.0, 3.0=
D y

C (RT /gD)b i
c:a 25 8.5 - 6.0n. =

m D

2 4# or the Mark 1 system, we take D 3 x (pool area per downcomer).F
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4. RESULTS AND DISCUSSION

4.1 Typical Pressure Histories

Figure 4 shows some pressure traces measured in the medium-sized

system (D = 28 cm). Trace 4(a) is the pressure on the wetwell floor,'

center (transducer #1, Fig. 2), trace 4(b) is the pressure on the wet-

well ceiling (transducer #3), and trace 4(c) is the pressure in the

downcomer just downstream of the orifice (transducer #4). The function

of transducer #4 was to signal the initiation of blowdown, and we mea-

sured all times from the start of the increase in pressure of this

transducer. Since that transducer was in communication with the down-

comer via a narrow hole (1/16" in diameter and several inches long),

its response may have been partially attenuated by the intervening

line. Thus trace 4(c) should not be used for inferring detailed quan-
1

titative information about conditions in the downcomer. The floor

pressure measured off-center (transducer #2, Fig. 2) was virtually

identical to the center floor pressure in our tests. The main fea-

tures of the traces shown are typical of those obtained in all three

systems, with all the gases tested. Figure 4(a) is a trace of the wet-
' well floor pressure which has a " clean" first peak with no superposed

oscillations. Such oscillation-free floor pressure traces were ob-

tained only when special precautions were taken to suppress small sus-

pended gas bubbly in the{ pool, as will be discussed in more ' detail
, ,1 1

later. All the traces in Fig. 4 show the departure in pressure at a
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given point from the initial pressure at that point before the initia-

tion of blowdown: P - P (0), for example.1 i

4.2 Verification of the Scaling Laws

To check for scaling we set out to verify whether the dimension-

less forms of the pressures we measured were indeed functions only of

the four modeling parameters ni to nu and the dimensionless time

t* = t/gD . Since our drywell pressure was constant, we found it con-

venient to define the dimensionless pressure as

P - P(0) (14)P, _- p ,

D

where P is the pressure at a given point and time, and P(0) is the

initial, pre-blowdown pressure at the same point. Oar purpose is to

show that

P*(ni,n2, n , n , t* ) (15)P* =
a u ,

but that P* is not affected independently by any of the separate

and t* . Rather than comparingquantities that make up ni to nu

1.ne entire pressure histories for different cases, it is convenient

to select some easily recognizable characteristics of the pressure

histories and restrict the comparison to those. We have selected

the following:

(1) The first peak in the floor pressure, which occurs just

1776 240
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after vent clearing [ Fig. 4(a)].

(2) The time corresponding to the first peak in the floor pressure.

(3) The minimum floor pressure after vent clearing [ Fig. 4(a)].

(4) The time corresponding to the minimum floor pressure after

vent clearing [ Fig. 4(a)].

(5) The first peak in the ceiling pressure [ Fig. 4(b)].

(6) The time corresponding to the first peak in the ceiling

pressure [ Fig. 4(b)].

All of the five quantities listed above should be a function only

of ni to ng .

We note first that our tests uncovered two effects which may cause

deviations from the currently accepted scaling laws if the model scale

is made too small. The first is caused by excessive water vapor in the

wetwell airspace, and tends to give reduced peak uploads. For proper

scaling, the absolute pressures must be reduced in proportion to system

size, and consequently the proportion of water vapor in the wetwell air-

space increases as the model size decreases. This tends to reduce the

pressure rise due to the airspace compression, and hence the uploads.

The effect can be significant at scales less than about 1/10 at room

temperature, but we found that in our experiments the problem could be

minimized by cooling the water to near freezing and thereby reducing

its vapor pressure (see discussion in Section 4.3 below). All the ce11-

ing pressure data show, from the small and medium-sized systems with

water as the liquid are ter pool temperatures not too far from freezing.

'
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This precaution was not taken with the large system, however, where

the absolute gas pressures were relatively high. Nor wat it necessary

to cool the smaller system when Meriam fluid was used as the wetwell

liquid; that fluid has a very low vapor pressure even at room tempera-

ture.

The second effect is due to the presence of very small air bubbles

suspended in the water or attached to the wetwell walls. These can give

a " springiness" to the pool and can cause an effect similar to the fluid-

structure interactions which might occur if the containment walls them-

selves were flexible, namely, an oscillatory component on the pressures

measured in the wetwell pool. High-amplitude oscillations can be gener-

ated after the almost impulsive loading of the floor that occurs ime-

diately after downcomer clearing. In the presence of the superposed

oscillation, floor pressures are no longer properly scaled and the

apparent peak downloads can be considerably higher than one would get

in the absence of bubbles. The air bubble problem can be eliminated,

however, by the addition of a surfactant (such as Kodak " Photo-Flo")

to the wetwell water, or by using a different wetwell liquid (such as

Meriam manometer fluid) (see discussion in Section 4.4 below). Under

these conditions, measured downloads scale according to the Moody laws.

All the data we show on the scaling of the first peak in the floor pres-

sure (which occurs in response to the almost impulsive loading following

vent clearing), with water as the wetwell liquid, are taken with Photo-

Flo added. In the experiments in the small system with Meriam fluid as

the wetwell liquid, there appeared to be no problems with bubbles.
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,

Figure 5-14 summarize our results on scaling from all the air
*

tests with both water and Meriam fluid as the wetwell liquids. Note,
'

that not all of the graphs include data from all three systems. Figures

5 to 11 plot dimensionless pressures Pi - P(0) against n% with ni,
.

held constant; Figs.11 to 14 plot dimensionless times ,n2, and n3
.

t/g/D against ng again with ni to n3 held constant. Results
,

~

,

(n2 = 4.15 and n2 = 8.29) and at twofor tests at two values of 32 -

'

3) are shown. The time marked " ventvalues of n3 (n3 = 2 and n3 =

" clearing" is actually the time measured for the first peak in the floor

,

pressure, which occurs just after vent clearing. );
' The results constitute clear support for the scaling laws. Allow-

"

_
ing for some scatter in the data, the dimensionless dependent variables

*

At theappear to be functions of only the proposed scaling parameters.,

the tests in systems of different size (dif-same values of ni to n%-
,

~4 fering in linear dimension by up to a factor of 4) have the same dime)-',
; sionless pressures or times. It should be emphasized that the dimensional

m ' dependent variables--for example, the raw pressure data that appear in ,

dimensionless form in Fig. 9--differ in magnitude by up to 400%. Only
;

when reduced to dimensionless form do the data for each variable fall
.

" on a single smooth curve as shown.

,

Figures 15 to 24 are results from the helium and argon tests in

the three wetwells. Again, dimensional pressures and times have been*
,

.

.

In view of the wide range of three of the experi-plotted against nu .

mental parameters varied in these tests--a factor of 10 in gas enthalpy,
>

*

3 in liquid density, and 4 in system size--the agreement in. the dimensionless
- e .
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dependent variables is very good. The importance of the gas enthalpy,

which appears in us , is clearly confirmed: dynamically similar tests

with helium and argon in the same wetwell system required different

downcomer orifices, such that the n%'s were matched, to give satis-

factory agreement in the recorded pressures and times.

The central role of the enthalpy flux parameter in modelingnu

the pool swell can be further emphasized by comparing data from systems

that have the same values of ni to n3 , but have geometrically simi-

lar orifices (i.e., are completely geometrically similar) instead of

having the same values of n. Figure 25 shows the data from Fig. 9

for the air / water tests in the three systems, but the ordinate is now

d /d (a dimensionless orifice diameter) which is an indication of down-j

comer geometry, rather than of nu , the measured enthalpy flux. It is

clear that with ni to v3 exactly matched in the three systems, and

at the same value of d /d (i.e., exact geometric similarity), but withj

different nu , the dimensionless pressures measured in the three sys-

tems are quite different. The point can be made even more strongly by

replotting the data from the helium and argon tests. Figures 26 and 27

show the same data as Fig. 19, plotted against the new ordinate d /d .j

The behavior of the two gases and of the different size systems now

appears vastly different. The conclusion is that proper orificing of

the downcomer line is an important ingredient of the scaling procedure.
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4.3 Effect of Excessive Vapor Pressure in Small-Scale Tests

Our initial test series showed that in experiments with water at

room temperature in the wetwell the dimensionless ceiling pressures in

the small system (D = 14 cm) fell below the corresponding values in the

medium-sized system (D = 28 cm), and these in turn fell somewhat below

the values in the large system (D = 55 cm). However, in tests con-

ducted at low wetwell pool temperatures (close to freezing), dimension-

less histories in all three systems with water were the same and agreed

with the results from tests in the small system with Meriam fluid. We

attribute this behavior to the presence of water vapor in the wetwell

airspace prior to blowdown in the higher temperature tests. Signifi-

cant amounts of water vapor will not only change the value of y for

the gas in this region, but may also provide a mechanism for condensa-

tion and rapid heat transfer during pool swell. These effects are, of

course, not accounte<i for in the scaling analysis. At room temperature

the vapor pressure of wcter is about 3 kPa--a significant fraction of

the initial wetwell pressure, 5.67 kPa, required in many of the small

system tests. By cooling the wetwell pool in an ice-water bath the

water vapor pressure is reduced to about 0.5 kPa, a value which is

apparently low enough not to affect the compression of the wetwell air-

space significantly.

After we identified this problem, we conducted tests with the small

and medium-sized systems in ice-baths, so that the water was just slightly

above freezing. Figures 28 to 30 show the effects of changing the tem-
,

perature. The solid points represent data taken for water at room
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temperature. The open points represent data taken when the vapor pres-

sure was negligible--for the small and medium-sized systems an ice bath,

and for the small system with Meriam manometer fluid. The curves on the

plots are drawn through the low vapor pressure data and the data from

the large system. Note that for fixed values of ni, n2, and n3 , the

points from the small system are in general below those of the medium-

sized system. This is because the small system is operating at lower

absolute pressures. Similarly, there is less deviation as n2 is in-

creased.

Tests in the large system have not yet been conducted in an ice

bath. It appears from our figures that there might be some slight

effect even in this system. In experiments with Meriam manometer

fluid (specific gravity 2.95) replacing water as the wetwell liquid,

we have found the vapor pressure effect to be entirely absent--a result

consistent with the extremely low vapor pressure of this liquid at room

temperature (about 0.003 kPa).

Tests of the floor pressure in our medium-sized system have shown

no vapor-pressure effects, and we believe this to be true of our small

system also. All of our floor pressure data, with or without surfactant,

was taken at room temperature. Generally, in tests with helium, the

water vapor problem appeared to be most acute. We attribute this to

the fact that helium equilibrates more quicklywithwater than either

argon or air.

It is not surprising that the first indication of conditions in

which there is a departure from the scaling laws came from the tests
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'

' " in our smallest system. Apart from the rigidity of the walls and the : ,

incompressibility of the liquid, the key assumptions underlying the ; .

development of the modeling laws in Section 2 are: perfect and noncon-
:-g

H 3

densable gases in the drywell and wetwell, negligible heat transfer !< =

2
i

from gas to liquid, inviscid motion in the wetwell pool, and negligible
* .

. surface tension effects. All of these assumptions are more likely to

be satisfied as system size is increased. Our results show that except ; -**
1

,

for the first assumption (noncondensable gas in the wetwell pool), theI

' iassumptions do hold in systems as small as our smallest wetwell (D = 14

. | cm), and that provided the pool is cold, even the first assumption is
. . !

L satisfied. This conclusion is very encouraging. The scaling laws
|

.
clearly do hold in the small-scale systems that we have tested, going

,

! down to about 1/24 of full-scale Mark l conditions, and there is every+
k -

reason to believe that they will be equally applicable in any larger-

- ; scale tests.
i

"

-

, ,

,
4.4 On the Precautions That Must be Taken to Avoid Pool .;

'

'

Oscillations due to Gas in the Liquid !'

, .: ,-
I% ! As we noted above, most of our original tests with water as the
....

wetwell liquid showed a strong oscillatory component superposed on theP

; floor pressure near the time of vent clearing ' Fig. 31b). The oscilla- |
!

4] tory component appeared to have been caused by pool oscillations which
-

t
resulted from the presence of air in the liquid, presumably in the form : -

"

of very small bubbles either in the liquid or at the liquid / solid boun-
<

4

|
daries. That the bubbles were the cause, and not actual wall flexure

|'
'
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and oscillations (true fluid-structure interactions), was deduced from

three observations. First, tests in the absolutely rigid-wall small

system, which had 3 cm thick steel walls, showed floor pressure oscil-

lations similar to those in the small system with plexiglas walls. Sec-

ondly, the addition of a surfactant (Kodak Photo-Flo, in an amount

reconmended by the manufacturer) removed the oscillatory component.

Finally, when Meriam fluid was used as the wetwell liquid (in the

small system only), there appeared to be no problem with trapped gas

and the concomitant pressure oscillation.

The hypothesis that the pressure oscillations are due to pool

vibrations which result from bubbles is further supported by Fig. 31,

which shows a series of runs made with a light oil as the liquid (spe-

cific gravity 0.876). Runs were made every minute, and we show pres-

sure traces of every other run. Figure 31a shows the first, smooth

pressure trace obtained. Note that the first peak in the floor pres-

sure is somewhat less than the final pressure. Figure 31b shows a trace

obtained two minutes later--its appearance is similar to that of the

water traces to which no surfactant has been added. The next three

traces show the oscillations becoming progressively larger and larger.

The maximum pressure in the last trace is almost four times that of

the first (note the change in scale). We believe this sequence of

traces obtained in rapid, consecutive blowdowns is explained by the

progressive accumulation of bubbles suspended in the relatively vis-

p cous. oil of the pool. Our hypothesis that the oscillations are due

to bubbles is given further support by the fact that a trace taken
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after the bubbles had had time to clear (e.g., by allowing the system

to stand undisturbed, overnight) often had a shape free of superposed

oscillations.

The scaling laws outlined in Section 2 do not, of course, account

for the presence of bubbles and bubble-induced pool oscillaticns, and

thus the 'eak floor pressures measured in tests performed witnout thep

appropriate precautions are not expected to obey scaling laws. It

should be emphasized, however, that since the amplitudes of the pool

oscillations were very small compared with system size, the bulk pool

displacements, pool swell velocities, and pressures in the wetwell and

downcomer airspaces were not significantly affected by the brief pool

oscillations after vent clearing.

)]] 6
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5. CONCLUSIONS

(1) Our experiments confirm the modeling laws outlined in Eqs.

(7)-(12) for the air clearing phase of the flow into a water-type

pressure suppression system. These are in essence the laws that were

originally put forward by Moody,' and they require that the enthalpy

flux from the downcomer be scaled down in a small model by the use of

an orifice, so that the scaling parameter is properly simulated.nu

If this is not done (for example, as when an appropriate orifice is

not used in the small-scale model, although the dynamic conditions

are otherwise properly scaled), the wetwell pressures can be signifi-

cantly mis-scaled. (One notes, however, that the first peak in the

floor pressure, as well as all the characteristic times, were insensi-

tive to nu in our tests, except near the very lowe-t values of nu

that we tested.) With these laws, accurate small-scale testing of the

process is possible.

(2) In order to ensure proper scaling in small-scale tests, it

is necessary to take precautions against excessive vapor content in

the wetwell " airspace." In tests with room-temperature water at suf-

ficiently small scales (smaller than about 1:10 if the full-scale wet-

well is at about standard atmospheric pressure) the presence of exces-

sive water vapor in the wetwell tends to give reduced peak ceiling

pressures. This effect of vapor pressure can, however, be minimized

by cooling the water to a temperature near freezing, or by replacing

' tite! water with another liquid, such as Meriam manometer fluid, which
,
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has a very low vapor pressure.a

(3) Peak downloads on the wetwell floor can be expected to scale

with the proposed scaling laws only if the containment walls are rigid >

and if precautions are taken to eliminate the presence of small air

, ,

bubbles in the pool liquid. Both fluid-structure interactions caused-

by the flexure of the pool bounding walls, and the presence of air in

the liquid, tend to give a " springiness" to the wetwell pool, and can ,

i cause high-amplitude oscillations in the floor pressure after the almost

impulsive loading of the floor immediately after downcomer clearing.

1 Such oscillations are not accounted for in the present scaling laws.

One may expect that generally, the problem with air bubbles tends to

get worse as scale is reduced. We note, however, that since the ampli-
-

tudes of the oscillatory pool motion are very small when compared with

system size, bulk pool displacements, pool swell velocities, and pres-

sures in the airspaces are not affected by such pool oscillations. The

problem with air bubbles can be eliminated by the addition of a surfac-
'

,

tant (such as Kodak Photo-r io) to the wetwell water, or by using a par-

ticular wetwell liquid (such as Mariam manometer fluid) where the problem

with bubbles appears not to arise. When these precautions are taken, and

when the pool boundaries are rigid (that is, the period of their natural
_

oscillation is much shorter than the shortest transient time in the im-

posed hydrodynamic loading), floor loads scale according to the proposed

laws.
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FIGURE 4. Pressure histories (air 7 water, D = 28 cm,

n = 1.4, n2 = 4.15, na = 3, n. = 21.4).
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FIGURE 7. First peak in floor pressure versus n.
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FIGURE 10. First peak in wetwell ceiling pressure and
minimum floor pressure as functions of n .
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FIGURE 11. D,imensionless times versus n o.
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FIGURE 13. Dimensionless times versus %.
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FIGURE 14. Dimensionless times versus ,..
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FIGURE 15. First peak in floor pressure versus r,..
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FIGURE 16. First peak in floor pressure versus n..
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FIGURE 17. First peak in floor pressure versus n .
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FIGURE 18. First peak in wetwell ceiling pressure and
minimum floor pressure as functions of %.

1775 270
.

1



-56-

* = 4.15 =3y=l67 D g

He Ar Liquid D(cm) P,(Nm-2)

e o Water (Ice Both) 14 5,670

m O Water (Ice Both) 28 I I,3OO

Y v Water (Room Temp) 55 22,100

A Mui m(RoomTemp) 14 16,700
1.0 -

v

.9 -

A

a e

.8 -

y

e
.7 -

g

a
First Peak in

.6 - Ceiling Pressure
0P-P(0) 9

P
O A

.5 - e
v

.4 -

U

0

.3 - ,$
v

.2 - V
O O y

O
O Minimum Floor Pressure

I -
,

Af ter Vent Clearingo U

l I I I

o 10 20 30 40 50 60 70

* gD
FIGURE 19. First peak in wetwell ceiling pressure and

minimum floor pressure as functions of v..
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FIGl!RE 20. First peak in wetwell ceiling pressure and
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FIGURE 21. Dimensionless tirnes versus n .
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FIGURE 22. Dimensicaless time versus "s.
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FlGURE 23. Dimensionless times versus %.
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FIGURE 24. Dirnensionless tirnes versus %.
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FIGURE 28. Vapor pressure ef fect on first peak in ceiling pressure.
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FIGURE 29. Vapor pressure effect on first peak in ceiling pressure.
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FIGURE 30. Vapor pressure effect on first peak in ceiling pressure.
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