Environmental Impact Appraisal University of Missouri-Rolla Reactor

Environmental Impact Appraisal

for

4

192

pred.

.

University of Missouri - Rolla Nuclear Reactor

1628 337

Environmental Impact Appraisal

This section deals with the environmental effects which can be attributed to the operation of the University of Missouri - Rolla Training Reactor since its initial criticality on December 9, 1961. It will also address potential future environmental effects.

A. Facility, Environmental Effects of Construction

The UMR Training Reactor is housed in the Nuclear Reactor Building which is located on the east side of the UMR campus. The nuclear reactor was designed to be the only equipment operated in the building since operation commenced there have been no significant affect on the terrain, vegetation, wildlife, nearby water or aquatic life due to the installation of the reactor or the construction of the Nuclear Reactor Building.

There are no exterior conduits, pipelines, electrical or mechanical structures or transmission lines attached to the nuclear reactor facility other than utility service facilities which are similar to those required in other campus facilities, especially laboratories. Heat dissapation is accomplished by evaporation and conduction from the pool. There is no external cooling system on the UMR Training Reactor.

Make-up water for the cooling system is readily available and is obtained from the City of Rolla water supply. Radioactive gaseous effluents are normally limited to Ar41, for which the building is monitored. There are minimal radioactive liquid effluents associated with the operation of the UMR training reactor. Solid and liquid radioactive wastes are generated through the irradiation of samples to be used primarily on campus either for neutron activiation analysis or for radioisitopic tracer analysis. These radioactive samples are gathered, packaged and shipped off-site for storage at a Nuclear Regulatory Commission approved site by the campus Radiation Safety Office. The transportation of this waste is done in accordance with existing NRC-DOT regulations in approved shipping containers.

The sanitary waste systems associated with the Nuclear Reactor facility are similar to those at other university reactors. The design excludes the possibility of discharging un-monitored liquids into the sanitary waste system.

B. Environmental Effects of Facility Operation

The UMR Nuclear Reactor has a maximum power output of 200 KWt in the steadystate mode. The environmental effects of thermal effluents of this order of magnitude are negligible. The waste heat is rejected to the atmosphere through the roof of the Nuclear Reactor building. The average water make up to the facility has been 3.15X10⁴ liters per year (See Table 1). This amount of waterloss by evaporation has minimum effect on the environment.

The room in which the reactor is located is continuously monitored for gamma-ray fields and also for radioactive particles in the air. The gamma detector is an GM chamber mounted on the bridge which spans the pool of the reactor bay, directly above the core. The alarm set point of this monitor is normally 10.0 mr/hr. This alarm has never been unexpectedly triggered by a gamma-ray field of this magnitude since it was installed in 1961. The typical reading during full power reactor operations is in the downscale (<2 mr/hr) range. The particulate monitor is a continuous air monitor which samples the air within the reactor pool area. Dust particles are trapped in a filter which is held in place in front of an end-window Geiger-Muller tube. The alarm setpoint of the Constant Air Monitor is 7,000 counts/minute. This alarm has never been triggered due to high concentrations of radioactive particulates in the air. The typical background reading ranges from 50 to 500 counts/minute.

Film badges are located at various positions both inside and outside the reactor room. The film badges are currently placed in three locations:

1) one is located on the reactor bridge one meter above the surface of the pool over reactor core, 2) one is located in the control room and 3) one is located in the lower level experiment floor opposite the thermal column door. Film badges 1 and 3 are within posted radiation areas. The records for these building film badges monitors are given in table 2. The noteable increase in bridge monitor reading occured when the reactor power was increased to 200 KWt During the past two years the facility has reduced it's research use and converted to training. This change in use has reduced the average power and as a result lowered the bridge film badge readings.

In addition to the locations shown on table 2, the UMR Health Physics also monitors four of the campus building adjacent to the UMR Nuclear Reactor Building. Film badge monitors are located in Fulton Hall, Old Metallurgy, Norwood Hall and the Physics building. Since these film badges have been installed there has never been a reading greater than minimum detectable (10 mr/yr).

The radioactive waste discharged from the UMR Training Reactor for the years

-2-

1971 through 1979 is given in table 3. The solid waste is collected by the UMR Health Physicist for disposal when quanity warrents. The solid waste consists of spent resin, (Used in the pool demineralizer pool filters, paper, rubber gloves, plastic vials and other assorted reactor physics laboratory disposables.

The liquid waste produced (as shown in table 3) by the facility is discharged during demineralizer regeneration. This water is isotopically sampled using a Ge-Li/Multichannel Analyzer system prior to discharge. The sampling assumes compliance with 10CFR20 discharge limits. During the past nine years the discharged liquid has averaged 0.92% of the limits of 10CFR20 Table II.

The gas and portialate discharged to the air by the building ventillation system is also shown in table 3. A detailed study was made in 1978 which showed that the concentration of gas was 3.1×10^{-8} µci/ml (Ar41) and the concentration of particulate was 1.3×10^{-8} µci/ml (Rb88 & Cs138) during full power (200Kw) reactor operations. The gas and particulate then discharged to the environment amounts to 1.1×10^{-8} µci/ml. The discharge concentration is approximately 25% of the allowable limits of 10CFR20 table II for the predominant isotope of Ar41. It should be pointed out that these values occur only for full power operation and therefore represent maximum values under normal conditions. This facility is used extensively for training purposes ($\sim 95\%$) which do not require full power operation. During the past two years (1978-1979) full power operation was required for only 50 hours or approximately 1.2% of the total operating time.

Pool water analysis is also done at regular intervals (normally once per month) by the UMR Health Physicist. The results of the sampling is shown in table 4. The rather abrupt change indicated between 1974 and 1975 occurs due a change in sample procedures. Prior to 1975 a boil off to dry sample technique with gas flow proportional counter was used and since that time a one liter liquid sample has been counted using a Ge-Li/Multi Channel Analyzer system. The values shown in table 3 are only averages for a given year and are a function of reactor power history and waiting time after sample collection.

An independent pool water analysis was performed in 1974 by the Environmental Protection Agency and results are consistant with those obtained on the UMR campus. The results show no peaks above background and thus indicate that there are no measurable radioactive isotopes in the samples. The analysis further shows that the pool water is not only within 10CFR20 discharge limits but usually less radioactive than most city water supplies.

Another area of concern is the generation of high and low-level radioactive wastes. The storage or reprocessing of spent fuel elements is not a major concern at the UMR Nuclear training reactor because our typical annual U^{235} burn-up is approximately 1.1 grams per year or approximately 1.1% of our excess reactivity. During the course of activation analysis experiments and isotope production runs, the facility generates an average of 0.2 m³ of low-level radioactive waste annually (as shown in table 3). The main constituents of this waste are short-lived isotopes such as Na²⁴, Al²⁸, Cl³⁸, Mn⁵⁶, La¹⁴⁰, Eu¹⁵², Eu¹⁵⁴, Dy¹⁶⁵, Au¹⁹⁸. These wastes are shipped to authorized disposal sites in approved containers at interval directed by the UMR Health Physcist.

C. Environmental Effects of Accidents

Accidents ranging from failure of experiments to the largest core damage and fission product release considered possible result in doses of only a small fraction of 10 CFR Part 100 quidelines and are considered negligible with respect to the environment.

D. Unavoidable Effects of Facility Construction and Operation

The unavoidable effects of construction and operation involves the materials used in construction that cannot be recovered and the fissionable material used in the reactor. No adverse impact on the environment is expected from either of the unavoidable effects.

E. Alternatives to Construction and Operation of the Facility

There are no suitable or more economical alternatives which can accomplish both the educational and the research objectives of this facility. These objectives include the training of students in the operation of nuclear reactors, the production of radioisotopes (table 5), its use as a source of neutrons for neutron activation analysis, and also its use as a demonstration tool to familiarize the general public with nuclear reactor operations.

F. Long-Term Effects of Facility Construction and Operation

The long-term effects of a research facility such as the UMR Nuclear training reactor are considered to be beneficial as a result of the contribution to scientific knowledge and training. This is especially true in view of the relatively low capital costs (\$250,000) involved and the minimal impact on the environment associated with a facility such as the UMR Training Reactor.

G. Costs and Benefits of Facility and Alternatives

The annual operating cost for a facility such as the UMR Training Reactor is on the order of \$130,000 with very little environmental impact. The benefits include, but are not limited to: training of Nuclear Power Plant operating personnel, conduction of activation analysis, production of short-lived radioisotopes, and education of students and public. Some of these activities could be conducted using particle accelerators or radioactive sources, but these alternatives are at once more costly and less efficient. There is no reasonable alternative to a nuclear training reactor of the tupe presently used at the University of Missouri - Rolla Campus for conducting the broad spectrum of activities previously mentioned.

The annual cost of operating the facility are shown in table 6. These costs have been increasing over the ten years shown but are well below the economic inflation experienced by most sections of the country. This fact is demonstrated in the constant 1967 \$ column. It suggest that the economic benefits of the facility are increasing with time in service.

The number of nuclear engineering students and visitors for several years is given in table 7. A direct benefit to the general public is vested in the 196 Nuclear Engineering degrees granted during the facilities operating period.

It is possible to have a Nuclear Engineering degree program without a program without a Nuclear Reactor Facility. However, past experience for most disciplines show a much better understanding when experiments and experience accompany a lecture/problem learning system.

Another example of the benefits recovered from a facility of this type is the visitors tours. Approximately 36,000 people have visited the facility and have either been shown by demonstration or by lecture/tour, the purpose of nuclear reactors in our society.

-5-

Pool Water Use for UMR - Reactor [gallons]

year

Month	1970	1971	1972	1973	1974	1975	1976	1977	1978
Jan	801	1184	258	685	296	620	735	387	461
Feb	922	1442	632	658	387	956	374	290	647
March	756	1114	1105	795	586	530	1090	427	332
April	1680	739	1114	1330	315	587	1173	529	301
May	621	681	1050	1360	548	574	664	560	523
June	768	1303	616	827	443	300	600	361	776
July	938	1400	910	712	538	870	947	303	357
Aug	883	1041	605	420	668	661	571	456	425
Sept	693	722	560	490	640	545	701	392	431
Oct	1007	1457	410	508	990	533	674	699	421
Nov	982	860	442	295	1486	963	515	497	551
Dec	897	310	456	627	399	837	502	522	595
Total	10948	12253	8158	8707	7296	7706	8546	5423	5820
A									
Average	emonthly		*						
	912.3	1021.1	\$ 679.8	725.6	608.0	642.2	712.2	451.9	485.0

* Building Air Conditioner Installed

I

l

I

Building Film Badge Records (readings in mr/year)

		Position	
Year	1	2	3
1961	20	40	
1962	м	м	
1963	5	м	
1964	5	м	
1965	м	м	
1966	м	м	
1967	560	80	
1958	250	м	
1969	110	м	
1970	360	м	
1971	110	м	
1972	170	20	
1973	170	м	
1974	280	м	
1975	180	м	
1976	250	м	м
1977	40	м	м
1978	30	м	м

I

I

I

Position 1 Reactor Bridge 1.5 meters above pool surface over reactor core 2 Control Room

3 Lower level experiment room opposite thermal column.

Note: 1. Reading of M means that exposure to badge was less than the lowest measurable limit (~10 mr)

 Reactor re-licensed for 200 KWt in 19c7 origional license was for 10 KWt.

Radioactive Waste Discharge

Year	Solid	Liquid	Gas & Particulate
1971	7.7mci	3500gal = 0.2mci	Not available
1972	0.0	3200gal = 14.0mci	10,000mci
1973	0.0	1400gal = 5.0mci	6,700mci
1974	0.0	2200gal = 12.8mci	9,000mci
1975	0.0	3000gal = 24.22mci	900mci
1976	1.Omci	3450gal = 7.7mci	115.19mci
1977	0.07mci	2400gal = 17.2mci	100.873mci
1978	0.01mci	2700gal = 0.5mci	22.8mci
1979	0.0	1500gal = 0.5mci	19.2mci
Total	8.78mci	23450gal = 82.12mci	26857.99mci
Average	0.975mci	2605gal = 9.12mci	2984.2mci

- Note (1) Solids consists of spent resin, filters, paper plastic with isotopes of Cr-51, Co-60, Co-58, Fe-59, Mn-54, Na-24, La-140, Ba-140, and Tritium.
 - (2) Liquids consists of water used for deminilizer regeneration with isotopes of Cr-51, Co-60, Co-58, Fe-59, Mn-54, Na-24, La-140, Ba-140, and Tritium.
 - (3) Gas and particulates are exausted by fans from the reactor building during operation with isotopes of Kr-88, Rb-88, Xe-138, Cs-138, and Ar-41.

I

I

Pool Water Samples

Year	Activity
1971	4.0X10 ⁻⁶ µci/ml
1972	13.7X10 ⁻⁶ µci/ml
1973	13.4X10 ⁻⁶ µci/ml
1974	12.3X10 ⁻⁶ µci/m1
1975	0.20X10 ⁻⁶ µci/ml
1976	0.38X10 ⁻⁶ µci/ml
1977	0.1X10 ⁻⁶ µci/ml
1978	0.49X10 ⁻⁶ µci/ml
1979	0.11X10 ⁻⁶ µci/m]

Note: The method of calculation was changed in 1975 from boil off and planchet count to a one liter liquid gross count followed by isotope analysis.

.

By Product Release for Research Purposes

Year	Activity	Samples on Campus	Samples off Campus
1971	294.8	53	21
1972	553.0	51	19
1973	341.0	55	9
1974	145.00	40	12
1975	145.02	74	1
1976	25.89	46	0
1977	112.8	68	0
1978	14.3	26	0
1979	32.7	20	0

University Expenditures for Reactor Support

Year	Total	Total in	Salary & Wages	Special Equipment
1969	\$87,424	78,057	\$69,544	None
1970	89,515	75,222	59,910	None
1971	83,056	65,916	60,121	None
1972	80,796	61.116	60,431	None
1973	87,343	60,153	67,380	6,587
1974	91,381	57,763	73,651	1,863
1975	90,357	54,366	73,102	None
1976	89,223	51,218	69,261	None
1977	81,095	44,265	67,654	None
1978	108,485	56,151	93,511	None
1979	130,058	63,660	108,277	4,567

Students^{*} and Visitors Utilizing the Reactor Facility

Year	Eagrees	Granted	Total Enrolled	Visitors
	BS	Grad		
1962	3	2	3	Not available
1963	3	0	2	Not available
1964	1	0	5	Not available
1965	9	1	6	Not available
1966	4	4	9	Nr' available
1967	5	6	15	Nct available
1968	4	7	26	2500
1969	7	1	74	2650
1970	11	7	79	2100
1971	10	11	70	2300
1972	6	4	82	2400
1973	11	3	84	2300
1974	9	1	77	2000
1975	11	4	101	2000
1976	20	2	104	2900
1977	3	3	76	2500
1978	10	2	83	1825
1979	5	0	88	2040

* Nuclear Engineering Students at UMR

1628 349

-12-