THREE MILE ISLAND NUCLEAR STATION

\$ 1975 SEMI-ANNUAL REPORT II

JULY 1 THROUGH DECEMBER 31

THE ATTACHED FILES ARE OFFICIAL RECORDS
OF THE OFFICE OF REGULATION. THEY HAVE
BEEN CHARGED TO YOU FOR A LIMITED TIME
PERIOD ANS MUST BE RETURNED TO THE
CENTRAL RECORDS STATION 008. ANY PAGE(S)
REMOVED FOR REPRODUCTION MUST BE RETURNED
TO ITS/THEIR ORIGINAL ORDER. 1 4 4 0 0 0 0 7

TICE

DEADLINE RETURN DATE

5

RETURN TO REGULATORY CENTRAL FILES PA

7910170 92 4 ENTRAL RECORDS STATION

3-1-76

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT

For The

THREE MILE ISLAND NUCLEAR STATION

50-207/300

1975 SEMI-ANNUAL REPORT II

JULY 1 THROUGH DECEMBER 31

Prepared for METROPOLITAN EDISON COMPANY

34

RADIATION MANAGEMENT CORPORATION

FEBRUARY 1976

TABLE OF CONTENTS

																											-	PAGE
LIST	OF	F	IG	UR	ES	5																						11
LIST	OF	Т	AB	LE	S														·									ii
SUMM	ARY																		ď			÷			Ţ			1
INTRO	טסט	СТ	IC	N										·				ï	i		·		į.					2
PROGR	RAM																					ï						3
	Ob De	je si	ct	iv	/e:	S			:	•	:		:	:			:	٠	:	٠					٠	:	٠	3
									i																			4
RESUL	LTS	A	NO	0)IS	SC	US	SI	ON					٠		٠	ż	٠		٠		٠		٠	٠		٠	4
	Aq	ua mo	ti	c	Er	ic	ir	on nv	men	it inme	ent		٠		:	٠	:		:			:	:			٠	*	9
	Te	re	es	tr	e i	al di	Eat	nv	iro	nme	ent		Ċ.	:	:		•		:		:	:	•	:	į	:	•	12 14
ASSE																		×										14
CONC	LUS	IO	NS						٠					·								·						19
REFE	REN	CE	S						٠	į	٠			ż				,	·									20
APPE	ION	X	A	5	Sar	пр	11	ng	Lo	ca	tic	ns			ě					,								22
APPE	IDN	X	3	0	a	ta	7	ab	les					J														29

LIST OF FIGURES

			PAGE
1.	MONTHLY AVERAGE TRITIUM CONCENTRATIONS IN THE SUSQUEHANNA RIVER IN THE VICINITY OF TMINS		10
2.	MONTHLY AVERAGE GROSS BETA CONCENTRATIONS IN AIRBORNE PARTICULATES IN THE VICINITY OF TMINS		13
3.	MONTHLY AVERAGE GAPMA DOSE RATES AT TMINS	٠	15
	LIST OF TABLES		
			PAGE
1.	SYNOPSIS OF THE OPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM FOR TMINS		5
2.	SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN ENVIRONMENTAL SAMPLES FROM TMINS		6
3.	SUMMARY OF DIRECT RADIATION MEASUREMENTS AT TMINS		8
4.	JULY-DECEMBER 1975 ENVIRONMENTAL SAMPLE DATA WHICH RESULTED IN NON-ROUTINE REPORTING		1.6
5.	COMPARISON OF STATION EFFLUENT DATA FOR TRITIUM AND CO-58 WITH MEAN RIVER FLOW		18

POOR ORIGINAL

SUMMARY

Ouring the period July 1 to December 31, 1975, Radiation Management Corporation (RMC) participated in the operational radiological environmental monitoring program (REMP) conducted by Metropolitan Edison Company at Three Mile Island Nuclear Station (TMINS).

The RMC portion of this program as designed to aid in meeting the obligations of the Environmental Technical specifications for TMINS Unit #1 (TMI-1)(1).

A total of 924 analyses were performed on 554 samples during the period covered by this report. These samples were taken from the aquatic, atmospheric, and terrestrial environments and included direct radiation measurements. Additional samples and analyses beyond those required by the environmental technical specifications were performed as noted in the data tables of Appendix B.

Surface water (4 locations, 23 samples) was analyzed for H-3 and gamma emitting nuclides. Untreated drinking water (2 locations, 12 samples) was analyzed for H-3, Sr-89, Sr-90 and gamma emitting nuclides. Fish (2 locations, 9 samples) and sediment (3 locations, 6 samples) were also taken from the aquatic environment and analyzed for Sr-89, Sr-90 and gamma emitting nuclides.

The atmospheric environment sampling program included air particulates, air iodine, and precipitation. Air particulates (10 locations, 263 samples) were analyzed for gross beta activity and gamma emitting nuclides. Charcoal cartridges (4 locations, 106 samples) were analyzed for I-131. Precipitation, primarily rain water, (4 locations, 24 samples) was analyzed for gross beta activity, H-3, Sr-89, Sr-90, and gamma emitting nuclides.

Milk (6 locations, 27 samples) was taken from the terrestrial environment and analyzed for $I \sim 131$, $Sr \sim 89$, $Sr \sim 90$, and gamma emitting nuclides. In accordance with environmental technical specifications, an update on the milking animal census was performed during this period. A distribution of 1095 milking cows at 35 locations was determined, a decrease of 19 cows since June 1975. Green leafy vegetables (4 locations, 4 samples) were taken and analyzed for gamma emitting nuclides.

In addition, 320 analyses for immersion dose (21 locations, 80 packets) using TLDs were made during this period.

All radionuclide concentrations were similar to those normally found in local unaffected areas, except for H-3, Co-60 and I-131 in surface water and Co-58 in sediment.

The H-3 concentrations in surface water at the downstream indicator locations (0.5 and 1.5 miles downstream) showed elevated levels relative to the upstream samples twice during the reporting period. No increase in the H-3 levels at the downstream locations where river water is used as a drinking water source was observed. Therefore, no measurable dose can be attributed to the release of H-3 from TMINS.

During July Co-58 was detected in 2 sediment samples; probably the result of station operation. Since no Co-58 was detected in surface water or fish, the only significant dose pathway resulting from this Co-58 would

be frum standing on the shoreline. A highly conservative dose estimated yields an insignificant dose to a hypothetical maximum individual of 0.08 mrem/year.

Co-60 was detected during July at station 8E1 and during August at station 9A2 in surface water samples. The maximum level observed was 2.4 pCi/l. A maximum individual drinking 2 1/day of this water for a 30 day period could receive an insignificant dose of < 0.006 mrem. I-131 was detected in surface water from station 9A2 during August at a level of 50 pCi/l. but was undetected in all drinking water samples. Therefore, no measurable dose can be attributed to this level of I-131.

It is therefore concluded that station operation produced only insignificant and temporary changes in the observed environmental levels of radioactivity. These temporary changes could have resulted in an insignificant dose to a hypothetical maximum individual of <0.1 mrem.

INTRODUCTION

A complete radiological environmental monitoring program (REMP) for Three Mile Island Nuclear Station (TMINS) has been conducted by Metropolitan Edison Company since June 1969. Radiation Management Corporation has participated in this program since February 21, 1974. Results of the preoperational phase of the REMP up to June 5, 1974, and of the operational phase (June 5, 1974 to June 30, 1975) were reported in previous RMC documents(2,3,4). This report continues the operational series with coverage of the second six months of 1975. It presents in detail the type and number of samples analyzed, the analyses performed and the data generated by RMC during the period July 1 to December 31, 1975. Interpretation of the data and conclusions are presented.

Three Mile Island is the site of an operating nuclear power unit of the pressurized water reactor (PWR) type. When complete the station will consist of two reactor units. Unit 1, rated at 871 MWe, achieved criticality on June 5, 1974. This marked the beginning of the operational phase of the REMP. Unit 2, rated at 959 MWe, is under construction and scheduled for commercial operation in 1978.

The station is located on Three Mile Island in the Susquehanna River, in Dauphin County, ten miles southeast of Harrisburg, Pennsylvania. The average flow of the river at this point is 34,000 cfs(5). The site consists of an 814 acre tract on Three Mile Island and several smaller adjacent islands. General climatic conditions are characterized by a mild continental-type climate with little severe weather. Agriculture is the largest land usage in the area (48%), with the emphasis on poultry, dairy cattle and field crops(6).

NOR ORDENAME The census of milking cows located within five miles of TMINS(6) was updated in the previous semi-annual report(4) and again during this report period. The distribution and approximate locations of these animals are given in table 3-19 (appendix 3).

More specific information on the demography, meteorology and land use characteristics of the local area may be found in the Environmental Report(7), Environmental Statement(3), Final Safety Analysis Report for TMI-2(9), and the Environmental Report Supplement II(10).

PROGRAM

In the operational phase of the REMP, radioanalytical data are collected for comparison to that generated in the preoperational phase. Differences between these two periods are examined statistically to determine whether any station effects exist base on the magnitude and fluctuations of radioactivity levels determined in the preoperational phase.

Objectives

The objectives of the operational radiological environmental program are:

- To fulfill the obligations of the Radiological Surveillance-Environmental sections of the Environmental Technical Specifications for TMI-1.
- To determine whether any statistically significant increase occurs in the concentration of radionuclides in critical pathways.
- 3. To detect any buildup of long-lived radionuclides in the environment.
- 4. To detect any change in ambient gamma radiation levels.
- 5. To verify that radioactive releases are within allowable limits and that TMI-1 operations have no detrimental effects on the health and safety of the public or on the environment.

This report provides information for the Metropolitan Edison Company, regulatory agencies and the public record toward these objectives.

Design

In order to meet the stated objectives, an appropriate operational REMP was developed by RMC in cooperation with Metropolitan Edison Company. Samples for the operational REMP were taken from the aquatic, atmospheric, and terrestrial environments. Samples of various media were selected to obtain data for the evaluation of the radiation dose to man and important organisms. Sample types were based on (1) established critical pathways for the transfer of radionuclides through the environment to man, and (2) experience gained during the preoperational and initial operational phases. Sampling locations were determined from site meteorology, Susquehanna River hydrology, local demography and land uses.

Sampling locations were divided into two classes—indicator and control. Indicator stations are those which are expected to manifest station effects, if any exist; control samples are collected at locations which are believed to be unaffected by station operations. Fluctuations in the levels of radionuclides and direct radiation at indicator stations are evaluated with respect to analogous fluctuations at control stations, which are unrelated to station operation. Indicator station data are also evaluated relative to background characteristics established prior to station operation. Additional samples beyond those required by the Environmental Technical Specifications were collected and analyzed; they are listed as management audit samples in the data tables (Appendix 3).

The analysis of samples and the analytical data generated during the program are routinely evaluated by the RMC project leader who is the liaison with Metropolitan Edison Company personnel. Further review of REMP design and analytical data is performed by RMC and Metropolitan Edison Company RS+EE professional staff in light of current regulatory trends and operating experience. The analytical procedures and quality control methods utilized by RMC(11) meet or exceed the minimum sensitivities required by the Environmental Technical Specifications (1).

Table 1 summarizes information on the Three Mile Island Nuclear Station operational REMP as performed by RMC. Appendix A explains the RMC sample coding system which specifies sample type and relative locations at a glance. Table A-1 gives the pertinent information on individual sampling locations, while Maps A-1, -2 and -3 show their geographic locations.

Exceptions

The operational REMP was conducted in accordance with the Environmental Technical Specifications for TMI-1(1). Deviations from the program as described in table 3 of these specifications occurred during this period. Because aquatic plants are very scarce in the vicinity of TMINS, none were available for sampling during this report period. This problem was aggravated by heavy floods on the Susquehanna in the fall when a record flow rate of 73,900 cfs was established at Harrisburg for the month of September.

Milk samples were not available at station SA3 for the months of July, August and September since the single dow at that location was not producing during these months. However, samples were collected and analyzed routinely during those months at station 5B1, only 0.1 mile further from the site in the same easterly direction. This second farm (70 co.") adequately covered the need for samples.

Pump outages resulted in the loss of 5 air particulate and air iodine samples. Flooding conditions in late September resulted in the loss of 2 additional air particulate and one air iodine samples. However, the overall air sample recovery rate was greater than 96%.

RESULTS AND DISCUSSION

The averages and ranges of analytical results are summarized in tables 2 and 3. Table 2 is a summary of gross beta, H-3, Sr-89 and Sr-90, I-131 and gamma spectrometric results for various samples. Table 3 is a summary of ambient radiation levels as measured by thermoluminescent dosimeters. Results for each type of sample were grouped according to the analysis performed. Means and standard deviations of these results were calculated when applicable. These standard deviations represent sample population variability rather than analytical variability. For this ca sulation, all results below the MDL were considered to be at the MDL.

1448 210 POOR ORDERNAME. The data for individual samples are presented in tabular form in appendix 8, tables 8-1 through 3-18. Within the data tables a 95% (± 2 sigma) confidence interval is supplied. These intervals represent the range of values into which 95% of repeated analyses of the sample would fall. All results occurring at or below the relevant minimum detectable level were reported as being "less than" the MDL value.

TAME. 1

SYHOPSIS OF THE OPTRATIONAL RADIOLOGICAL INVIRONMENTAL MONITORING PURERA FOR THIRS JULY 1 THROUGH DECIDINFR 31, 1975

Surface Mater M Fish SA Sediment SA Air Particulates W Air Todine W	9 2 6	32 °	N-3 Sr-89 2r-90	И	Statement of the Party of the P
alates	м п	•	Sr-99		30
alates	N 6	•	06-25	õ	9
alates	N F	•		c	9
Jates	N 6	6	Garma	I	35
Jates	•		Sr-09	SA	6
alates	•		Sr-90	SA	6
alates	,		Самта	SA	6
Jates		9	Sr-49	SA	9
alates			Sr-90	SA	9
ulates			Gamma	SA	9
Air Iodine II	10	263	Beta		263
			Gamma	π	12
		106	11-131	n	106
Precipitation M		24	E-3	ō	8
			Beta	=	24
			Sr-89	V3	*
			Sr-90	SA	4
			Gumma	ō	=
HIIK . M**	9	27	1-131	E	27
			Sr-39	c	11
			Sr-90	o	=
Green Leafy					
Vegetables A	-	4	Gamma	٧.	*
Dos freters	21	80	Gamma	, E	320

* Hovember and December samples composited
** Samples discontinued in December during nongrazing season
*** Quarterly for October, Hovember and December

1448 211

POURS OFFICE OFFICE OFFICE OF THE PROPERTY OF THE PR

SHIMIARY OF RADIOHRCLIDE CONCENTRATIONS IN PHVIRONMENTAL SAMPLYS FROM THIFS

зигх 1 типоиси пестинев 31, 1975

Surface Mater H-3(upstream) 10 10 20 20 8r-89 6 1 20 8r-90 6 1 35 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	96464 540461 150464 3900461 0.1 0.8 0.1 0.8 6.2 0.410.4 2 2 5019.4 3.0 4.614.5 3.0 4.614.5 3.0 4.614.5 3.1 0.1 0.2 0.1 0.2 0.110.1 	86012300
H-3(downstream) 20 Sr-89 6 Sr-90 6 Sr-90 6 Gamma 35 Gamma	150164 3900190 0.1 0.18 0.2 0.18 6 0.6 2.411.1 2 2.615.4 3.0 4.614.5 3.2 1714 3.0 6.14.5 9 1714 30001300 6.1001610 9 11 0.22 0.0510.03 0.110.1 4MOL 0.151.04 0.03 0.151.04 0.03 0.251.03 0.151.04 0.03 0.251.03 0.151.04 0.03 0.251.03 0.151.04 0.08 0.251.03 0.1910.03 0.8110.08 0.08 0.8110.08 0.08 0.8110.08	
Sr-99 Sr-99 Gamma Ne-7 K-40 Co-60 I-131 Sr-89 Sr-90 Gamra K-40 K-20 Co-58 Co-137 Co-144 Ka-226 Th-232	cent. 1216 6 2,411.1 2 2,411.1 3.0 4.614.5 3.2 1714 3.0 4.614.5 3.2 1714 30001300 61001610 9 3216 0.0510.03 0.110.1 4MDL 1.910.2 911 0.110.1 6.02 0.0110.1 6.03 0.151.04 0.03 0.151.04 0.03 0.251.03 0.1910.03 0.251.03 0.1910.03 0.8110.05 0.03 0.251.03 0.1910.03 0.8110.05 0.1910.03 0.8110.05	
Gamma Be-7 K-40 Co-50 I-131 Sr-89 Sr-90 Gamma K-40 K-40 K-40 K-40 K-40 K-40 K-40 K-20 Gamma K-20 Gamma Gamm	CMDI. 1216 6 6 7.411.1 2 3.0 3.0 4.614.5 3.2 3.2 1714 3.0 4.614.5 3.2 1714 3.0 4.614.5 3.2 1714 3.0 4.614.5 3.2 1714 3.0 4.614.5 3.2 4.614.5 3.2 4.614.5 3.2 4.614.5 3.2 4.614.5 3.2 4.614.5 3.2 4.614.5 3.2 4.614.5 3.2 4.614.5 4.614.5 4.614.5 4.614.0 6.03 6.13 6.2 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13	
Ne-7 Ne-7 K-40 Co-50 I-131 Sr-40 Sr-89 Sr-90 Sr-89	CHDI, 1216 6 6 2.411.1 2 8.06 2.411.1 3.0 4.614.5 3.2 1714 3.0 4.614.5 3.2 1714 3.0 6.10 0.2 6.11 0.2 6.12 0.110.1 CHDI, 1.910.2 911 2222 6.02 0.0110.1 CHDI, 0.2 0.110.1 CHDI, 0.1510.0 6.03 0.151.04 6.03 0.251.03 6.1910.03 0.8110.05 6.1910.03 0.8110.05 6.1910.03 0.8110.05 6.1910.03 0.8110.05 6.1910.03 0.8110.05 6.1910.03 0.8110.05 6.1910.1 1.310.1	
K-40 Co-60 I-131 Sr-89 Sr-89 Gamma K-40 Cs-137 Sr-89 K-40 K-40 Kn-54 Co-58 Sr-85 III-95 III-232	6 2.411.1 2 5019.4 3.0 4.614.5 3.2 1714 30001300 61001610 9 3216 0.1 0.0510.03 0.110.1 <a 10.05"="" 10.052="" doi.org="" href="htt</td><td></td></tr><tr><td>Sr-89 Sr-90 Gamera K-40 K-40 K-40 K-40 K-7 K-40 K-106 Sh-125 Cs-137 Ce-144 Ka-226 Th-232</td><td>9.6 2.411.1 3.0 4.614.5 3.2 1714 30001300 61301610 9 3216 0.05±0.03 0.1±0.1 4MDL 0.22 0.03 0.15±0.04 0.03 0.25±0.03 0.03 0.25±0.03 0.03 0.25±0.03 0.03 0.25±0.03 0.03 0.25±0.03 0.03 0.25±0.03 0.15±0.04 0.08 0.25±0.03 0.15±0.04 0.08 0.25±0.03 0.15±0.04 0.08 0.15±0.04 0.08 0.15±0.04 0.08 0.15±0.04 0.08 0.15±0.04 0.08 0.15±0.04 0.08 0.15±0.1</td><td></td></tr><tr><td>F-131 Sr-89 Sr-89 Sr-90 Gamma K-40 Cs-137 Sr-89 Sr-90 Gamma Re-7 K-40 Hn-54 Co-58 Sr-95 Hn-95 Hn-95 Hn-106 Sh-125 Cs-137 Ce-144 Ra-226 Th-232</td><td>2 5019.4 3.0 4.614.5 3.2 1714 30001300 61001610 9 3216 0.0510.03 0.110.1 4MDL 1.910.2 911 2212 0.03 0.110.1 0.03 0.151.04 0.03 0.251.03 0.2 0.4710.05 0.03 0.251.03 0.1910.03 0.8110.08 0.08 0.8110.08 0.08 0.8110.08 0.08 0.8110.08</td><td></td></tr><tr><td>Sr-99
Sr-90
Gamma
K-40
Cs-137
Sr-89
Gamma
He-7
Kn-40
Hn-54
Co-58
Sh-125
Cs-137
Cs-137
Cs-137
Cs-137
Cs-137</td><td>3.0 4.614.5 3.2 1714 30001300 61001610 9 3216 -0.0510.03 0.110.1 	
Sr-90 Gamma K-40 Cs-137 Sr-69 Sr-89 Sr-89 K-40 Kn-54 Co-58 Cs-137 Cc-144 Ra-226 Th-232	3.2 1714 30001300 61001610 9 3216 0.1 0.0510.03 0.110.1 0.02 0.03 0.151.04 0.03 0.251.03 0.2 0.151.04 0.03 0.251.03 0.2 0.151.04 0.03 0.251.03 0.1910.03 0.8110.05 0.1910.03 0.8110.05 0.1810.1 1.310.1 0.561.03 1.310.1	
Gamea K-40 Cs-137 Sr-69 Sr-90 Gamra Ha-7 K-40 Hn-54 Co-58 Sr-95 Hn-95 Hn-95 Th-232	30001300 61001610 9 3216 0.1 0.2 4MDL 1.910.2 911 2212 0.02 0.0110.1 0.03 0.151.04 0.03 0.251.03 0.1910.03 0.510.2 4MDL 0.03 0.510.2 0.1910.03 0.8110.08 0.08 0.861.08 1.310.1	
K-40 Cs-137 Sr-89 Sr-89 Sr-90 Gamera Re-7 Re-7 Re-7 Rn-54 Co-58 Sr-95 Rn-106 Sh-125 Cs-137 Cs-137 Cs-137 Cs-144 Ra-226 Th-232	0.0510.03 0.110.1 CMDL . 1.910.2 911 22.2 0.02 0.0410.02 0.03 0.151.04 0.03 0.251.03 0.1910.03 0.251.03 0.1910.03 0.8110.05 0.1910.03 0.8110.08 0.08 0.910.1 0.561.03 1.310.1	
Sr-89 Sr-90 Gamra Re-7 K-40 Rn-54 Co-58 Sr-95 Rn-106 Sh-125 Ca-137 Ca-144 Ra-226 Th-232	6.1 0.0510.03 0.110.1 (MDL) 1.910.2 (MDL) 22:2 (MDL) 22:2 (MDL) 0.03 (M.10.05 (MDL) 0.03 (MDL) 0.1110.05 (MDL) 0.1110.01 (MDL) 0.1110.	0.511.0
Sr-90 Gamra Re-7 K-40 K-40 K-40 Co-58 Sr-95 IB-95 IB-95 IB-95 IB-125 Ca-137 Ca-137 Ca-137	 40.05.10.03 410.1 22.12 6.02 6.03 6.15.04 6.03 6.15.04 6.03 6.25.1.03 6.2 6.40.0 6.19.10.2 6.19.10.3 6.20.3 6.19.10.0 6.20.0 6.20.0<	0.511.0
Gamera Re-7 K-40 Rn-54 Co-58 Zr-95 III-95 Rn-106 Sh-125 Ca-137 Ca-144 Ra-226 Th-232	<pre><mdl< td=""><td>0.511.0</td></mdl<></pre>	0.511.0
Re-7 K-40	AMDL 1.2212 0.02 0.0410.02 0.03 0.151.04 0.03 0.251.03 0.2 0.510.2 AMDL 0.1110.05 0.1910.03 0.1110.05 0.06 0.9110.08 0	1619
Mn-40 Mn-54 Co-58 Zr-65 Mb-95 Mu-106 Sh-125 Cs-137 Ce-144 Ra-226 Th-232	0.02 0.0410.02 0.03 0.151.04 0.03 0.251.03 0.2 0.251.03 0.1910.03 0.3110.08 0.08 0.910.3 0.110.1 1.310.1	
Co-54 -2x-65 -2x-65 -3x-126 -3x-126 -3x-127 -3x-126	0.03 0.151.04 0.03 0.151.04 0.03 0.251.03 0.1910.03 0.3110.05 0.00 0.0110.00 0.00 0.010.00 0.00 0.010.00 0.00 0.010.00	.4910.46
ZE-95 IIII-95 IIII-96 Sh-125 Ca-137 Ca-144 III-232	0.03 0.151.04 0.03 0.251.03 0.2 0.510.2 4MPL 0.1110.05 0.1910.03 0.8310.08 0 0.08 0.910.3 0.361.08 1.310.1	.4910.46
Mb-95 Ru-106 Sh-125 Ca-137 Ca-144 Ra-226 Th-232	0.03 0.251.03 0.2 0.510.2 AMDL 0.1110.05 0.1910.03 0.8310.08 0 0.08 0.910.3 0.361.08 1.310.1	.4310.46
Ru-106 Sb-125 Ca-137 Ce-144 Ra-226 Th-232	0.2 0.510.2 «MDL 0.1110.05 0.1910.03 0.8110.08 0 0.08 0.910.2 0.110.1 1.110.1 0.861.08 1.310.1	.4910.46
Sb-125 Ca-137 Ca-144 Ra-226 Th-232	0.1910.03 0.1310.08 0 0.08 0.910.2 0.08 0.910.2 0.10.1 1.310.1	.4910.46
Ca-137 Ca-144 Ra-226 Th-232	0.1910.03 0.8310.08 0 0.08 0.910.3 0.110.1 1.310.1 0.861.08 1.310.1	.4310.46
Ce-144 Ra-226 Th-232	0.08 0.910.2 0.110.1 1.310.1 0.361.08 1.310.1	
Ra-226 Th-232	0.361.03 1.310.1 0.361.09 1.310.1	
Th-232	0.861.08 1.310.1	i.
212		1.110.3 px
12		
2		

TABLE 2 (CONE.)

SUMMARY OF RADIOMUCLIDE CONCENTRATIONS IN INVIRONMENTAL SAMPLES FROM THIRS

JULY 1 THROUGH DECEMBER 31, 1975

SAMPLE TYPE	AMALYSIS PERFORMED	NO. OP SAMPLES ANALYZED	NO. ABOVE MPL	MINIMIM	низишн	AVEPACE ± 2 SIGNA	UNITS	
Air Particulates	Beta	263	259	1015	99142	29139	16 pci/m	
	Gamma	12						
	Be-7		12	2112	150115	65144	10 1Ci/m	
	Hn-54		2	0.1	0.310.2		10 1 121/m	
	Zr-95		5	0.2	2.110.5	0.511.1	10-3 (C1/m)	
	MI,-95		11	<mdl.< td=""><td>4.310.5</td><td>0.812.4</td><td>10-2 jei/m</td></mdl.<>	4.310.5	0.812.4	10-2 jei/m	
	Ru-106		3	0.6	1013	3:5	A Area come design	
	Sh-125		. 6	<mdl.< td=""><td>2.110.7</td><td>0.510.6</td><td>10 1 Ci/m</td></mdl.<>	2.110.7	0.510.6	10 1 Ci/m	
	Cs-137		1.2	0.110.1	4.310.5	0.811.4	10 ; 101/0	
	Ce-141		1	« MDL	0.610.3		1d ; per/m	
	Ce-144		10	0.5	22±2	4.017.9	10 pci/m	
	Ma-22		1	0.3	2.110.6		10 C1/m 10 C1/m 10 C1/m 10 C1/m 10 C1/m 10 C1/m 10 C1/m	
Air Iodine	1-131	106	0	7	29	-	10-3 pci/m3	
Precipitation	11-3	8	3	80	120161	87127	pci/1	
	Beta	24	17	3	1215	6.716,0	pCi/1	
	Sr-89	4	0	0.4	0.5		pci/1	
	Sr-90 .	4	0	0.3	0.4		1Ci/1	
	Be-7 (gamma)	8	5	CHOL	2317	17:9	pci/1	
tilk	1-131	27	0	0.04.	0.03		rci/1	
	Sr-89	11	9	0.9	3		pci/1	
	Sr-90	11	10	0.7	7.911.7	3.914.2	pCi/1	
Green Leafy .	Garma	4						
Vegetables	K-40		4	1.610.4	4.210.4	3,212,2	pCi/q(wet)	

TABLE 3
SUPPLARY OF DIRECT RADIATION MEASUREMENTS AT THINS
JULY 1 THROUGH DECEMBER 31, 1975.

SAPPLE	NO. OF SAMPLES	SAMPLING PERIOD	NO. ABOVE	мінімин	нахтипи	AVERAGE 1 2 SIGMA	UNITS
CONTROL LOCA	T10#5				100		
Monthly 71.D Dose Rate	96	6-28-75 to 12-24-75	96	4.710.8	7.710.2	6.010.4	mrem/standard month
INDICATOR LOC	CATIONS						
donthly TLD Dose Rate	224	6-28-75 to 12-24-75	224	4,210,2	5,910,2	5.010.4	mrem/standard month

Aquatic Environmen

face Water

Monthly surface water samples were collected at 6 locations on the dates shown in table 4-1. Weekly grab samples from stations 103, 9A2 and 981 were taken and composited monthly. Samples from stations 8E1, 15F1 and 7G1 were taken on a semi-continuous basis and composited to monthly samples. Beginning with the November samples, H-3 analyses were reduced from monthly to quarterly. Hence, the November and December samples were composited prior to H-3 analysis in accordance with TMI-1 ETS table 3. Each sample was analyzed for H-3 and gamma emitting nuclides by RMC procedures HXH and TGC, respectively. Samples from 8E1, 15F1 and 7G1 (drinking water treatment facilities) were also analyzed for Sr-89 and Sr-90. A new upstream sampling location (103) was established on Swatara Creek in January 1975 for assessment of any radionuclides which may be added by that tributary. The results therefrom are included in this recort.

Results of H-3 analyses are presented in table B-2 and figure 1. Concentrations of H-3 were observed to increase in August, September and October at one or both of the two downstream indicator stations 9A2 and 9B1. No increase was observed at these times at station 7G1 (Columbia). These concentrations returned to background levels in the Movember-December composite at all downstream locations. The dose implications of these H-3 levels and a comparison with liquid effluent data are discussed under "Assessment of Impact".

kusults of analyses of surface water for Sr-89 and Sr-90 are presented in table 8-3. These analyses were made on untreated water from the Brunner Island water treatment facility (8E1), the Steelton municipal water works (1571) and the Columbia water treatment plant(7G1). All Sr-89 concentrations were below the MDL (0.8 pCi/1); Sr-90 concentrations were at or below MDL (1.0 pCi/1) in all of the samples analyzed.

Gamma spectrometric analysis of surface water samples (table 8-4) showed that the naturally occurring nuclides K-40 and Be-7 were present at concentrations above their respective MDLs in 2 samples each. The gamma emitting nuclides Co-60 and I-131 were detected in the surface water sample from station 9A2 during August at concentrations of 2.4 and 50 pili/1, respectively. Since I-131 was not found in any of the drinking water samples or in any other aquatic pathway, no significant dose can be attributed to this nominal level. The maximum dose implications of the observed Co-60 concentrations are discussed under "Assessment of Impact".

Fish

Fish samples were collected at 2 locations each in July and October of this reporting period. Only adult fish were taken for samples. 1 4 4 8 ? 1 5 popula oppopula These were separated into classes of bottom feeder versus predator-game species; fillets were analyzed. Gamma spectrometry (TGC) and Sr-89 and Sr-90 analyses (SRB, SRD) were performed on subdivided fish samples.

results of these analyses are given in table 8-5. Sr-89 was detected ... one of the 9 samples. Sr-90 was detected in 6 of the 9 samples with the highest value of 4.2 oCi/Kg detected in the upstream sample(1681).

r studie s

Sediment

Three sediment various more taken in July and again in October. All samples mere inclived (r Sr-3) and Sr-90 and gamma emitting nuclides, by RMC analytical personance SRD, SRB and TGC, respectively.

Strontium in sediment results are given in table 8-6. Sr-89 was not detected in any of the samples. Sr-90 was detected in two samples.

The results of the gamma analyses are given in table 8-7. The naturally occurring radionuclides (K-40, Ra-226 and Th-232) were found in all 6 sediment samples. In October, Cs-137 was detected in a sample from Station 11A1 at a level of 0.83 pCi/g. This level was greater than 4 times the control station value of 0.19 pCi/g but not significantly different from those values observed during the preoperational period. A number of radionuclides typically found in fallout also were present in detectable amounts. These included Nb-95, Zr-95, Ru-106, Sb-125 and Ce-144, all of which were present in 20-30% of the samples. Except for Co-58, all nuclides found were detected in both upstream and downstream samples and no significant variations is concentration were apparent.

Co-58 was detented in 2 downstream samples during July, but not in October. Fact that 0.68 was detected in July and not in October, is probably the result of the September flood which removed the normal sediment load in this reach of the river. The highest concentration observed in July was 0.47 pCi/g. This, when compared to upstream values of <0.02 pCi/g and TMINS discharge data, can be attributed to station operation. The implications of these 0.68 levels are discussed under "Assessment of Impact".

Atmospheric Environment

The atmospheric environment around TMINS was examined by analyzing air particulate filters, charcoal cartridges and precipitation. Air particulate samples were collected at 10 locations with low volume air samplers using Hollingsworth and Yoss HV-70 gauze backed filters. At 4 of these locations, air iodine samples were collected on Cesco "B" charcoal flow through cartridges connected in series following the air particulate filters. Air volumes sampled were measured with temperature compensated dry gas meters and recorded. Both air particulate and air iodine samples were collected weekly.

Precipitation was collected by using a 12 inch diameter funnel draining into a 5 gallon polyethylene bottle. The accumulated samples were collected and composited for monthly analysis. The amount of precipitation phase 217 fell during the sampling period was measured and recorded.

Air Particulates

All air particulate samples were analyzed weekly for gross beta activity by RMC procedure TBO and monthly composites of all indicator and of all control samples were examined for gamma emitting nuclides by RMC procedure TBC.

Results of the gross beta analyses are listed in table 3-8. Gross concentrations of teta emitters in air decreased slightly from July through December. This decrease was similar to the preoperational trend. The indicator and control monthly averages plotted in figure 2 demonstrate these annual - nds and show similar behavior at both indicator and control locations. Monthly gross beta activity in all samples averaged 0.029 oCi/m3.

The gamma spectrometric results on monthly composites of air particulate filters are presented in table 3-9. Prominent nuclides found in most samples were naturally occurring Be-7 and the probable fallout nuclides, Ce-144, Cs-137, Zr-95 and Nb-95. In addition, Mn-54 and Sb-125 were detected in 3 of 12 and 6 of 12 samples, respectively. The short-lived fallout nuclide Ce-141 was detected in 1 of 12 samples. No significant differences were observed between indicator and control composites and previously obtained data. Typical MDLs for gamma spectrometric analysis of air particulate samples are listed in table 8-18.

Air Iodine

Gaseous fodine was collected on charcoal cartridges at 4 locations. The resulting samples were analyzed weekly for I-131 by RMC procedure IXB. Results are listed in table 8-10. All results were less than the respective MDLs which were of the order of 0.01 pCi/m3.

Precipitation

Monthly precipitation samples were analyzed for gross beta activity by RMC procedure TBA. The RMC analytical procedures n.KH and TGC were utilized for the analysis of H-3 and gamma emitting nuclides, respectively, quarterly composites of precipitation from each station. Concentrations of Sr-89 and Sr-90 (RMC procedures SRC, SRA) were determined in semi-annual composites from each station. The results of gross beta activity measurements in precipitation samples are presented in table 8-11.

The data for this period ranged from 3.3 to 14 pCi/l while averaging 5.7 pCi/1. The wet desposition of beta activity averaged 0.6 nCi/m2, ranging from 0.2 to 1.7 nCi/m2. No significant differences between indicator and control locations were observed.

The results of analyses of quarterly composites of precipitation for H-3 and gamma emitting nuclides are presented in table 8-12. Tritium concentrations averaged 87 pCi/l slightly lower than pre-operational levels. The gamma emitting nuclides 3e-7 and Zr-Nb-95 were the only ones detected in precipitation. The observed levels of these nuclides were similar at both indicator and control locations. Typical MDLs for gamma spectrometric analyses of precipitation are listed in table 8-18.

Semi-annual composites of precipitation samples from each station were analyzed for Sr-89 and Sr-90 and the results are presented in table 3-13. Of the 4 samples analyzed, Sr-89 and Sr-90 were below MDL in all.

Terrestrial Environment

OR ORIGINALL The terrestrial environment around TMINS was examined by analyzing 1448 . ples of milk from 6 locations on a monthly basis and green leafy

vegetables on an annual basis. Two gallon milk samples were collected and shipped fresh to RMC. Each sample was analyzed for I-131 using RMC Sr-89 (SRC) and Sr-90 (SRA). Green leafy vegetables (cabbage) were taken in July at 4 stations. Each sample was analyzed for gamma emitters by RMC procedure TGC.

The results of I-131 analyses are presented in table B-14. None of the 27 milk samples analyzed showed detectable levels of I-131. Concentrations of Sr-89 and Sr-90 in quarterly composites of milk samples are listed in table 8-15. Of the 12 samples analyzed, Sr-89 was not detected while Sr-90 was detected in 9. Results from indicator stations were similar to those from the control station and all results were similar to preoperational levels.

The results of gamma spectrometric analysis of green leafy vegetable samples (table 8-16) showed detectable levels of natural K-40 only. No other gamma emitters were detected.

Direct Radiation

The ambient radiation levels in the area of Three Mile Island Nuclear Station were determined with energy compensated calcium sulfate (Tm) thermoluminescent dosimeters. A total of 80 monthly TLD packets (4 TLDs each) were placed at 21 locations around TMINS. The results of the TLD measurements are presented in table 8-18. All TLD results presented in this recort have been normalized to a standard month (30.4 days) to eliminate the differences in exposure periods. The resulting e rate was similar to reoperational levels averaging 5.3 mrad/standard month.

The projected annual dose computed from results for this reporting period is 64 mrads, or 64 mrem assuming a quality factor of 1. An annual dose equivalent of 82 mrem was computed for the Harrisburg area and published by the EPA(12). The difference between this calculated value and the measured RMC value is not considered significant because of the differences in technique and the statistical variability of each. The average monthly ambient radiation dose rates for indicator and control stations are plotted in figure 3. No trends in ambient gamma radiation levels as a result of TMI-1 operations are apparent from this graph.

ASSESSMENT OF IMPACT

The gaseous and liquid effluent streams from TMI-1 were continously sampled and/or monitored for the presence of radioactive materials by Matropolitan Edison Company. The REMP was designed and conducted in a manner to nermit identification of the radionuclides actually released from the station.

PODR ORIGINAL It the radioactive materials released from TMI-1 to the environs, only H-3, Co-50, and I-131 in surface water and Co-53 in sediment showed a statistically significant contribution from TMI-1. Those samples showing concentrations statistically different from preoperational or trol station values are listed in table 4. Thus, the only pathways

SAMPLE TYPE	STATION PO.	SAMPLING DATES	MANASTS	***		
Surface Sater	9A2	August	н-3	3000100	151/1	
		October August	H-3 Gamma Co-60	3490196 2,410.4	pCi/1 pCi/1	11°R-30
			1-131	5019.4	pci/1	EER-30
	991	August September October	11-3 11-3 11-3	2720±81 1200±76 1930±76	pCi/l pCi/l pCi/l	HRP-7 HRF-30 HRR-30
Sedie ent	1111	July	Co-58	0.4710.05	pCi/g	NPP-30
		October	Garma Ca-137	0.8310.08	pci/g	urr-30
	981	July	Gamma Co-59	0.3410.03	pci/g	NRP-30

COR ORIGINAL

m

.,,

for potential exposure of individuals or of a segment of the population to radioactive materials from station operation is from consumption of river water or from shoreline deposits. Table 5 compares TMINS discharge data for H-3 and Co-58 with mean river flow. Since the H-3, Co-60, and I-131 were not detected in any other aquatic pathways (e.g. fish or sediment) except surface water, no significant dose can be attributed to these other potential pathways.

Untreated river water is monitored as part of the TMINS REMP at 2 locations (Brunner Island, 8E1, and Columbia, 7G1) in the downstream vicinity which use treated river water continuously for human consumption. At no time during the reporting period did H-3 or I-131 levels at these stations differ statistically from those at the upstream station. It can then be concluded that these H-3 and I-131 levels did not result in a significant dose to man.

On one occasion during the reporting period (July) Co-60 was detected at a concentration of 2.1 pCi/l in untreated drinking water from station 821. The maximum dose which could be attributed to this level is 0.005 mrem to the GI tract or 0.0006 mrem to the total body from consumption of this untreated water for one month. In addition, a similarly small dose (0.08 mrem) could have been received from standing 500 hours on the sediment in which 0.47 pCi/g of Co-58 was detected during July. These dose calculations were performed using the basic equations employed in WASH-1258(15). These insignificant doses are the maxima which could be attributed to the radio-nuclides released to the Susquehanna River by TMI-1.

1448 223
POSIBLO DELIGIBLE DELIGIBLE

COMPARISON OF SPECIFIC RADIOMICLIDES IN SURFACE WATER WITH STATION FEELINGS DATA

	Jur.	AIIG	SFP	OCT	HOV	pre
Mean River Flow at Marrisburg (CFS)	15,500	8,600	73,900	61,700	35,404	32,600
Total Liquid Tritium Peleases for Month (curies)	22.5	67.0	42.8	45.6	15,4	20,3
Estimated Addition of as Houthly Average (pCi/l)	H-3 20	110	7.9	10	5.9	8.4
Total Liquid Co-58 Release for Month (curies)	1.65:-2	3.46-3	3.5E-3	5.0E-3	4.2E-3	6.10-3

CONCLUSIONS

The preoperational Radiological Environmental Monitoring Program (REMP) conducted by RMC and Metropolitan Edison Company was continued as the operational program after TMI-1 initial criticality on June 5, 1974. The REMP (from July 1 through December 31, 1975) described in this report was conducted according to the Environmental Technical Specifications for TMINS which permitted the objectives of the program to be met. Additional sampling and analyses beyond those required by the Technical Specifications were performed. All results therefrom were reviewed by RMC and Metropolitan Edison to assess all possible environmental pathways.

Although other possible dose pathways to man were considered in the environs of the TMINS site, tritium, Co-60, I-131 and Co-58 were the only radionuclides of TMINS origin detected above background levels with only Co-58 and Co-60 potentially contributing to dose. The radiation dose to people from ambient gamma radiation, as measured by thermoluminescent dosimeters, averaged 5.3 mrem/month and showed no evidence of a TMINS contribution during this operational period of TMI-1. The radiation dose to people in the TMINS environs is compared with the exposure from other artificial and natural sources in the following table:

Source of Exposure	Annual Dose in mrem
Medical Ambient Gamma (TLD)	72(14) 64
Radionuclides in body (primarily K-40)	18(14)
Global fallout	4(14)
TMINS (Co-58 in sediment, Co-60 in water)	<0.1

Even though the TMI-1 contribution to population exposure is very small (approximately 0.1% of that from other sources), the TMINS has a continuing program to improve operating techniques and to maintain equipment directed toward reducing releases of radioactive materials to the environment. Therefore, it can be concluded that operation of TMI-1 did not significantly alter the radiological characteristics of the TMINS environs. The radionuclides and radiation levels observed were principally due to natural radioactivity and global fallout.

REFERENCES

- Metropolitan Edison Company. "Three Mile Island Nuclear Station-Technical Specifications." Appendix B. DPR 50, 1972.
- (2) Radiation Management Corporation. "Three Mile Island Muclear Generating Station-Preoperational Radiological Environmental Monitoring Program". RMC-TR-75-17, 1975.
- (3) Radiation Management Corporation. "Three Mile Island Nuclear Station-Radiological Environmental Monitoring Program-First Operational Period." RMC-TR-75-02, 1975.
- (4) Radiation Management Corporation. "Three Mile Island Nuclear Station-1975 Semi-annual Report". RMC-TR-75-13, 1975.
- (5) United States Department of the Interior-Geological Survey.
 "Water Resources Data for Pennsylvania, Part-1." 1973
- (6) Radiation Management Corporation. "Three Mile Island Nuclear Generating Station-Agricultural Land Use Survey". RMC-TR-75-1, 1975.
- (7) Metropolitan Edison Company. "Environmental Report, Operating License Stage-Three Mile Island Nuclear Station Unit 1 and Unit 2", 1971.
- (8) United States Atomic Energy Commission. "Final Environmental Statement-Three Mile Island Nuclear Generating Station Units 1 and 2". Docket Nos. 50-289 and 50-320, 1972.
- (9) Metropolitan Edison Company, Jersey Central Power and Light Company, Pennsylvania Electric Company. "Final Safety Analysis Report, Three Mile Island Nuclear Station-Unit 2". Docket No. 50-320, 1974
- (10) Metropolitan Edison Company, Jersey Central Power and Light Company, Pennsylvania Electric Company. "Environmental Report Supplement II, Three Mile Island Nuclear Station." Docket No. 50-320, February 1975.
- (11) Radiation Management Corporation "Analytical and Quality Control Program." RMC-TM-75-3, 1975.
- (12) Donald T. Oakley, "Natural Radiation Exposure in the United States," U.S. Environmental Protection Agency, ORP/SID 72-1, June 1972.

1448 226 OF OF THE WARDS

REFERENCES (Cont.)

- (13) S. E. Thompson, C. A. Burton, D. J. Quinn and T. C. Ng, "Concentration Factors of Chemical Elements in Aquatic Organisms." UCRL-50564 (Rev. 1), October 1972.
- (14) "The Effects on Populations of Exposure to Low Levels of Ionizing Radiation" (BEIR REPORT). National Academy of Sciences, 1972.
- (15) United States Atomic Energy Commission. "Final Environmental Statement-ALAP WASH-1258," 1972.

APPENDIX A

1448 228 BARBARA

APPENDIX A Sampling Locations

Sample Identification

RMC identifies samples by a three part code. The first two letters are the power station identification code, in this case TM. The next one to three letters are for the media sampled.

AI = Air Iodine FPL = Green Leafy
AP = Air Particulates Vegetables
AQF = Fish ID = Immersion Dose (TLD)
AQP = Aquatic Plants M = Milk
AQS = Sediment RW = Precipitation
E = Soil SW = Surface Water

The last four symbols are a location code based on direction and distance from the site. Of the last four symbols, the first two represent each of the sixteen angular sectors of 22-1/2 degrees centered about the reactor site. Sector one is divided evenly by the north axis and other sectors are numbered in a clockwise direction; i.e., 2=NNE, 3=NE, 4=ENE, 5=E, etc. The next digit is a letter which represents the radial distance from the plant:

S = On-site location E = 4-5 miles off-site A = O-1 miles off-site B = 1-2 miles off-site B = 1-2 miles off-site B = 10-20 miles off-site B = 10-20 miles off-site B = 3-4 miles off-site

The last number is the station numerical designation within each sector and zone; e.g. $1, 2, \ldots$

The location portions of these codes (i.e. IS1, 3A1, etc.) are shown in the attached table along with more detailed information and a map coordinate number used to indicate the sampling locations. This sample identification system is used to designate the individual samples in the analytical result tables, Appendix B.

TAPLE A-1

RADIOLOGICAL FUVINOPHENTAL MOHITORIES PROGRAM SAMPLING LOCATIONS

	CODE	HAP HO.	DESCRIPTION*
	152	2	0.4 miles N of site
	252		0,7 miles RHE of site on light pole in middle of Worth Bridge
	25.3	\$	0.7 miles MME of site beside guard house at North Gate
	452	1	0.3 miles FHE of site on top of dike, East Fence
	553	6	0.2 miles E of site on top of dike, East Pence
	851	10	0.5 miles SSF of site at South Weather Station
	983	12	0.4 miles S of site at South Reach of Three Mile Island
	1181	14	6.1 miles SW of site, west of Mechanical Draft Towers on dike.
	1452	316	0.4 miles Wiff of site at Shelly's Island picuic area
14	1651	17	0.2 miles HRW of site at gate in fence on vest side of Three Mile Island
4 (IA2	19	0,7 miles N of site at north tip of Three Mile Island
8	441	23	0,5 miles FMF of site on Laurel Rd., Met. Ed. Pole #668-01.
23	145	22	0.4 miles E of site on north side of Observation Center Building
30	£ VS	2.9	0.9 miles E of site on Boover Farm
	9.6.2	2.7	0.5 miles S of site below Discharge Pipe
	1141	2.9	0,2 miles SW of site off Discharge Pipe
	16.61	31	0.4 miles MMF of site on Febr Island
<	410.3	13	1.1 miles FME of site, west of Gringrich Road
ON ON	581	34	1.0 mile E of site on Peck Road
	ne		
	7		

TABLE A-1 (Cont.)
RADIOLOGICAL PHVIROHMENTAL HONITORING PROGRAM SAMPLING LOCATIONS

CODE	ЧАН ,ОИ	DESCRIPTION*
783	37	1.6 miles SE of site on east side of Conewago Creek
9111	39	1.5 miles S of site, above York Haven Dam
1001	41	1.1 miles SSW of site on south beach of Shelly's Island
1201	42	1.6 miles MSC of site adjacent to Fishing Creek
1681	30	1.1 miles Whit of site below Fall Island
101	43	2.6 miles N of site at Middletown Substation
1402	45	2.7 miles WMM of site near Intersection of Routes 262 and 392
8E1	45a	4.1 miles SSE of site at Brunner Island
111	47	6 miles N of site at Hummelstown Substation on Piddler's Elbow Road
1F2	48	9 miles N of site on Union Deposite Road, west of Hoernerstown
5F1	49	9 miles E of site on East Ridge and Greentree Roads
7F1	51	9 miles SF of site at Drager Farm off Engle's Tollgate Road
15F1	53	8.7 miles HW of site a Steelton Municipal Water Works
461	54	10 miles EME of site at Lava - Pet. Ed. Pole (J1813
761	55	15 miles SF of site at Columbia Mater Treatment Plant
961	56	13 miles S of site in Met. Ed. York Load Dispatch Station
1561	58	15 miles NW of site at West Fairview Substation
5111	60	80 miles E of site on RMC roof in Philadelphia
5112	61	80 miles E of site on RMC roof in Philadelphia

^{*} All distances are measured from a point that is midway between the Reactor Buildings of Units One and Two

1" = APPR. 10 MILES

Map A-3

THREE MILE ISLAND NUCLEAR STATION Location of Operational Radiological Environmental Monitoring Stations Greater Than 5 Miles from the Site

POOR ORIGINAL

APPENDIX B

POOR ORIGINAL

APPENDIX B Data Tables

Appendix B is a presentation of the results of the TMINS Radiological Environmental Monitoring Program.

TABLE	TITLE	PAC	GΕ			
	AQUATIC ENVIRONMENT					
8-1	Sampling periods for Surface Water	. 3	2			
3-2	Concentrations of Tritium in Surface Water	. 3	3			
3-3	Concentrations of Sr-89 and Sr-90 in Untreated Drinking Water		4			
3-4	Concentrations of Gamma Emilters in Surface Water	. 3	5			
8-5	Concentrations of Sr-89 and Sr-90 and Gamma Emitters in Fish	. 3	6			
3-6	Concentrations of Sr-89 and Sr-90 in Sediment	. 3	7			
3-/	Concentrations of Gamma Emitters in Sediment	. 3	8			
	ATMOSPHERIC ENVIRONMENT					
8-8	Concentrations of Beta Emitters in Air Particulates .	. 3	9			
3-9	Concentrations of Gamma Emitters in Air Particulates	. 4	3			
3-10	Concentrations of I-131 in Filtered Air	. 4	4			
8-11	Concentrations and Deposition of Beta Emitters in Precipitation	. 4	6			
8-12	Concentrations of Tritium and Gamma Emitters in Precipitation	. 4	7			
8-13	Concentrations of Sr-89 and Sr-90 in Precipitation .	. 4	3			
	TERRESTRIAL ENVIRONMENT					
3-14	Concentrations of I-131 in Milk	. 4	9	1448	236	
0 1	Concentrations of Sr-89 and Sr-90 in Milk	. 5	0		700	MAIL
3-15	Concentrations of Gamma Emitters in Green Leafy Vegetables	. 5	1	POOR	OBILL	MANAGE

APPENDIX B Data Tables (Cont.)

HUMBER	TITLE					
	DIRECT RADIATION					
B-17	TLD Dose Rate					
	MINIMUM DETECTABLE LEVELS					
8-18	Typical MDLs for Gamma Spectrometry 53					
	COW CENSUS					
8-19	Distribution of Milk Cows Within Five Miles of TMINS					

TABLE B-1 SAMPLING PERIODS FOR SURFACE MATER SAMPLES

STATION NO.	JUL,	AUG	SEP	OCT	NOV	DEC
TM-SE-1C3*	7-05-75	8-02-75	9-06-75	10-04-75	11-06-75	12-03-75
	to 7-26-75	to 8-30-75	9-27-75	to 11-01-75	to 11-26-7:	12-31-75
974-SW-15F1	6-29-75	7-27-75	8-31-75	9-30-75	11-02-75	12-03-75
	to 7-26-75	to 8-30-75	9-29-75	to 11-01-75	to 11-26-75	12-31-75
TM-SE-9A2	7-05-75	8-02-75	9-06-75	10-04-75	11-06-75	12-03-75
	to 7-26-75	8-30-75	9-27-75	11-01-75	to 11-26-75	12-31-75
TH-SW-9B1	7-05-75	8-02-75	9-06-75	10-04-75	11-06-75	12-03-75
	to 7-2€-75	to 8-30-75	to 9-20-75	to 11-01-75	to 11-26-75	12-31-75
211-SU-9E1*	6-28-75	7-26-75	8-30-75	9-29-75	11-01-75	11-26-75
	7-26-75	to 8-30-75	to 9-28-75	to 11-01-75	to 11-26-75	12-31-75
911-SV-7C1	6-28-75	7-26-75	8-30-75	9-26-75	10-25-75	12-03-75
	to 7-26-75	to 8-30-75	e-26-75	to 10-25-75	to 12-03-75**	to 12-31-75

Management audit samples Composite sampler inoperative; composite of weekly grabs

TABLE B-2 CONCENTRATIONS OF TRITION IN SURFACE WATER Results in Units of pCi/1 ± 2 sigma

STATION HO.	JUL	AUG	SFP	ост	HOV + DEC*	VALUAGE
UPSTREAM LOCAT	TIONS					
771-St!-1C3**	430±66	250±61	170±60	150±58	120164	2401250
TM-SH-15F1	220±63	290±61	200±60	96±64	540±61	270±339
UPSTRFAM AVERAGE	320±300	270±56	180145	12017	330±580	250±200
DOWNSTREAM LOC	ATIONS					
771-SH-9A2	90163	3900±90	420167	3490±96	300166	1660±3700
TM-5W-9B1	170163	2720±81	1200±76	1930±76	380±59	128012100
TM-SU-REL**	200±63	270±59	200160	120160	200157***	2001110
11'-SU-7G1	480±66	260161	410±66	150±64	220165	300±270
DOVT'STREAM AVERAGE	260±290	1800±3600	560±880	1450±3200	280±160	860±2490

Monthly samples were composited prior to analysis (future analyses to be quarterly only) Management audit samples

^{***} December sample only

TAPLE P-1

CONCENTRATIONS OF SR-89 AND SR-90 IN UNIVERSITED DRINGING WATER Results in Units of pCi/l

STATION NO.	START DATE	STOP DATE	SR-89	SR-90
TH-SW-15F1	6-29-75 9-30-75	9-29-75 12-31-75	<0.2 <0.8	<0.2 0.410.4
TM-5W-8E1*	6-28-75	9-28-75 12-31-75	<0.1	<1.0
PP-5W-7G1	6-28-75	9-26-75	<0.1	0.0>

Management audit sample *

TABLE H-4

CONCENTRATIONS OF GAMMA FMITTERS IN SURFACE WATER

Results in Units of pCi/1 ± 2 signa

STATION NO.	HUCLIDE*	JUL.	AUG	SEP	ост	NOV	DEC
7M-SW-1C3**	K-40	в	17±10	6	7	7	7
714-5N-15F1	Be-7	<mdj.< td=""><td>< MDL</td><td>8.4±6.6</td><td><mdl.< td=""><td>< MDI.</td><td>ZHDL.</td></mdl.<></td></mdj.<>	< MDL	8.4±6.6	<mdl.< td=""><td>< MDI.</td><td>ZHDL.</td></mdl.<>	< MDI.	ZHDL.
TM-SN-9A2	K-40 Co-60	32±10 0.7	7 2.4±0.4	6.6	6	9,0	7
TM-SW-901	I-131***	7	50±9.4 17±11	2	7	7	6
TM-SK-SEL**	Co-60	2.1:1.1	0.6	0.7	0.6		0.6
TM-5E-7G1	Be-7	<mdt.< td=""><td><mdi.< td=""><td>1216</td><td>< MDL</td><td>ZMM.</td><td><1991.</td></mdi.<></td></mdt.<>	<mdi.< td=""><td>1216</td><td>< MDL</td><td>ZMM.</td><td><1991.</td></mdi.<>	1216	< MDL	ZMM.	<1991.

All other gamma emitters <MDI.

** Hanagement audit samples

*** Results corrected for decay to midpoint of sampling period

+ Results delayed in laboratory

(1)

TABLE B-5

CONCENTRATIONS OF SR-89 AND SR-90 AND GAMMA EMITTERS IN FISH

Results in Units of pCi/kg ± 2 sigma

STATION NO.	SAMPLE TYPE*	SAMPLING MOUTH	SR-89	SR-90	K-40**	CS-137*
OPSTREAM SAMP	LES					
T*4-AOF-16B1	Catfish Brown Bullhead	July	<3.0	3.4±2.0	3500±350	917
TP-A0F-16B1	S. Mouth Bass Rock Bass	July	<4.1	5.0±).4	3700±370	3218
TM-AOF-16B1	Rock Bass	October	<5.6	3.912.6	4600±460	30±16
111-VOL-12HJ	Catfish	October	<8.8	4.914.6	3200±320	12±8
DOWNSTREAM SAI	PPLES					
111-ΛΟΡ-91:2	Catfish S. Mouth Bass	July	<4.5	. <3.2	3100±310	10±8
ти-док-982	Rock Bass	July	₹7.5	8.9±3.4	6100±610	29±11
PM-AQF - 9B 2	Catfish	October	<6.4	<5.7	3700±370	3116
TM-AOF-9B2	S. Month Bass Rock Fish	October	<7.7	17±4	3600±360	2119

^{*} Bottom feeders - catfish, brown bull head; predator/game - small mouth bass, rock bass

^{**} All other gamma emitters < MDL

TABLE B-6

CONCENTRATIONS OF SR-89 AMD SR-90 IN SEDIMENT

Results in Units of pCi/g(dry) ± 2 sigma

STATION NO.	SAMPLING DATE	SR-89	SR-90
TH-AQS-1A2	7-30-75 10-23-75	<0.2 <0.07	<0.1 <0.06
TM-AOS-9B1	7-30-75	<0.2	0.1±0.1
TM-A0S-11A1	7-30-75 10-23-75	<0.2 <0.1	<0.1 <0.1
тм-лос-11л2	10-23-75	<0.1	0.05±0.03

TABLE P-7

CONCENTRATIONS OF GARMA INITTERS IN STDIMENT Results in Units of pCi/g(dry) i 2 sigma

HUCLIDE	711-AQS-1A2 7-30-75	111-A0S-1A2 10-23-75	TM-AQS-9B1 7-30-75	775-AQS-11A1 7-30-75	TM-AQS-11A1 10-23-75	Tr-AOS-11A2 19-23-75
Be-7	< MPL	0.410.1	1.910.2	0.210.1	<mdl.< td=""><td></td></mdl.<>	
K-40	1812	9±1	2212	1411	1812	1411
Hn-54	.0.02	<0.02	0.0410.02	<0.02	<0.0>	<0.02
60-58	<0.02	<0.02	0.3410.03	0.4710.05	<0.02	<0.02
2r-95	. 0.03	<0.03	0.1510.04	<0.04	<0.0>	<0.03
50-44	<0.03	<0.93	0.2510.03	0.0610.02	<0.01	×0.0×
ки-106	· n.2	<0.2	0.510.2	<0.2	<0.2	. 0.2
Sb-125	- MDE	<mdl< td=""><td>0.1340.05</td><td><ndi.< td=""><td><mdi.< td=""><td>Cupt.</td></mdi.<></td></ndi.<></td></mdl<>	0.1340.05	<ndi.< td=""><td><mdi.< td=""><td>Cupt.</td></mdi.<></td></ndi.<>	<mdi.< td=""><td>Cupt.</td></mdi.<>	Cupt.
Cs-137	0.5210.05	0.19±0.03	0.6210.06	0.3710.04	0.83±0.08	0.3210.93
Co-144	0.2	<0.03	0.910.2	. <0.2	<0.1	<0.1
Ra-226	1.310.1	0.110.1	1.210.1	1.010.1	1,210.1	1.340.1
111-232	1.210.1	0.8610.08	1.3±0.1	1.010.1	1.110.1	1,210.1
• A11 o	All other gamma emitters < Mp.	tters < MDf.				

			STAT	ion no.		
DATE:	STOP DATE	771-AP-1F1	TM-AP-5F1	TM-AP-7F1	TM-AP-9F1	TM AP-1561
6-28-75	7-05-75	6318	61±7	NS*	44±6	51±7
7-05-75	7-12-75	4 17	46±6	ns*	44±6	55±7
7-12-75	7-19-75	26±6	37±6	NS*	32±6	18±4
7-19-75	7-26-75	21±5	22±6	<10	2115	24±5
7-26-75	8-02-75	34±7	36±7	30±6	3416	4217
8-02-75	8-09-75	2516	33±7	2616	2916	35±7
8-09-75	8-16-75	36±7	4217	4617	4117	5019
8-16-75	8-23-75	27±6	2716	3216	26±6	15±5
8-23-75	8-30-75	2616	19±6	2716	2816	22±6
8-30-75	9-06-75	1815	2217	1315	2016	18±5
9-06-75	9-13-75	26±6	NS*	2116	17±5	22±6
9-13-75	9-20-75	15 ± 4	7215	18±5	18±4	12±4
0-20-75	9-27-75	96:39	2015	11:4	1815	17±5
)-27-75	10-04-75	2315	25±5	1715	2415	18±5

No sample, pump inoperative

1448 245

TAFLE B-8 (Cont.)

CONCENTRATIONS OF PEPA FHITTERS IN AIR PARTICULATES

Results in units of 10 PCi/m ± 2 sigma

			STATIO	on 110.		
START DATE	STOP DATE	TH-AP-1F1	TM-AP-5P1	TM-AP-7F1	TM-AP-9G1	тм-лр-15G
10-04-75	10-21-75	24±6	27±6	1414	2615	2215
10-11-75	10-18-75	22±6	1816	3016	2916	31±6
10-18-75	10-25-75	1915	2816	20±5	2616	2716
10-25-75	11-01-75	15±4	15±5	97±43	12±4	17±5
11-01-75	11-06-75	2317	2718	27±8	2217	19±7
11-06-75	11-13-75	1816	17±6	17±5	16 ±5	18 ±5
11-13-75	11-20-75	28±6	2315	14 ± 4	2715	46±7
11-20-75	11-26-75	2416	2216	2216	2315	25±6
11-26-75	12-03-75	2916	25±6	85±37	. 24±7	2915
12-03-75	12-01-75	1315	22:6	1715	34±10	17±5
12-10-75	12-17-75	2616	1915	2215	28±8	2116
12-17-75	12-24-75	2316	2216	1716	2215	21±6
12-24-75	12-31-75	1616	12±5	1715	1815	21 16
AVERAGE		28±34	29 ± 28	28±43	26±16	26 1 24

TAPLE B-8(Cont.)

CONCENTRATIONS OF BETA INITIERS IN AIR PARTICULATES

Results in Units of 10⁻³ pCi/m³ ± 2 sigma

		TATE	ion no.			
STOP DATE	TH-AP-152	ም1- ΛΡ-2S3	1M-AF-851	TT:- AP-5A3	TY-AP-12B1	Valida
7-05-75	61±7	56±7	53±7	50±9	81:5	5(113
7-12-75	1614	6218	46±7	4216	27±7	42120
7-19-75	3516	31±6	18±4	3216	30±7	26114
7-26-75	11:4	2016	2615	84±36	12±6	27141
8-02-75	1615	32±3	42±14	39±7	35±8	36 : 15
8-09-75	31±6	26±8	3016	99142	27±6	36145
8-16-75	34±6	21±7	30±6	34±7	4417	36 ± 1.7
8-23-75	24±6	21±7	30±7	26±6	30±6	26±10
8-30-75	14±5	26±7	1916	90±42	2816	30±43
9-06-75	2115	20±4	2416	10±4	2015	1920
9-13-75	16 15	2015	2016	1815	2215	2016
9-29-75	89±36	86±29	2015	60±36	20±5	41±64
9-27-75	1615	2016	17±6	16±4	15±4	25150
10-04-75	ns*	NS*	15±4	1915	22±7	2017
	7-05-75 7-12-75 7-19-75 7-26-75 8-02-75 8-09-75 8-16-75 8-23-75 8-30-75 9-06-75 9-13-75 9-29-75	7-05-75 61±7 7-12-75 16±4 7-19-75 35±6 7-26-75 11±4 8-02-75 16±5 8-09-75 31±6 8-16-75 34±6 8-23-75 24±6 8-30-75 14±5 9-06-75 21±5 9-13-75 16±5 9-29-75 89±36 9-27-75 16±5	STOP DATE TH-AP-1S2 TH-AP-2S3 7-05-75 61±7 56±7 7-12-75 16±4 62±8 7-19-75 35±6 31±6 7-26-75 11±4 20±6 8-02-75 16±5 32±8 8-09-75 31±6 26±8 8-16-75 34±6 21±7 8-23-75 24±6 21±7 8-30-75 14±5 26±7 9-06-75 21±5 20±4 9-13-75 16±5 20±5 9-29-75 89±36 86±29 9-27-75 16±5 20±6	DATE TH-AP-1S2 TM-AP-2S3 TM-AF-0S1 7-05-75 61±7 56±7 53±7 7-12-75 16±4 62±8 46±7 7-19-75 35±6 31±6 18±4 7-26-75 11±4 20±6 26±5 8-02-75 16±5 32±8 42±14 8-09-75 31±6 26±8 30±6 8-16-75 34±6 21±7 30±6 8-23-75 24±6 21±7 30±7 8-30-75 14±5 26±7 19±6 9-06-75 21±5 20±4 24±6 9-13-75 16±5 20±5 20±6 9-20-75 89±36 86±29 20±5 9-27-75 16±5 20±6 17±6	STOP DATE TH-NP-1S2 TH-NP-2S3 TH-NF-8S1 TH-NP-5A1 7-05-75 61±7 56±7 53±7 50±9 7-12-75 16±4 62±8 46±7 42±6 7-19-75 35±6 31±6 18±4 32±6 7-26-75 11±4 20±6 26±5 84±36 8-02-75 16±5 32±8 42±14 39±7 8-09-75 31±6 26±8 30±6 99±42 8-16-75 34±6 21±7 30±6 34±7 8-23-75 24±6 21±7 30±7 26±6 8-30-75 14±5 26±7 19±6 90±42 9-06-75 21±5 20±4 24±6 10±4 9-13-75 16±5 20±5 20±6 18±5 9-29-75 89±36 86±29 20±5 60±36 9-27-75 16±5 20±6 17±6 16±4	STOP DATE TH-AP-1S2 TH-AP-2S3 TH-AF-8S1 TH-AP-5A1 TH-AP-12B1 7-05-75 61±7 56±7 53±7 50±9 63±8 7-12-75 16±4 62±8 46±7 42±6 27±7 7-19-75 35±6 31±6 18±4 32±6 30±7 7-26-75 11±4 20±6 26±5 84±36 12±6 8-02-75 16±5 32±8 42±14 39±7 35±8 8-09-75 31±6 26±8 30±6 99±42 27±6 8-16-75 34±6 21±7 30±6 34±7 44±7 8-23-75 24±6 21±7 30±7 26±6 30±6 8-30-75 14±5 26±7 19±6 90±42 28±6 9-06-75 21±5 20±4 24±6 10±4 20±5 9-13-75 16±5 20±4 24±6 10±4 20±5 9-27-75 89±36 86±29 20±5 60±36 20±5 <tr< td=""></tr<>

* Ho sample, purp inoperative

1418 24/

POOR

STAR®	stor		STA	rion no.			
DATI:	DATE	TH-AP-1S2	TT1-AP-2S3	711-AP-ES1	T11-AP-5A1	TM-AP-12B1	VALET CE
10-04-75	10-11-75	73±39	25±16	19 15	94±37	26±5	35153
10-11-75	10-18-75	22 14	2116	25±6	19±4	17:5	23110
10-18-75	10-25-75	15±4	24±6	13±5	26.±6	2215	22±10
10-25-75	11-01-75	90±40	84±52	77±44	10±4	2625	43176
11-01-75	11-06-75	33±10	2019	22±7	14±7	22±7	27113
11-06-75	11-13-75	1314	1216	17±5	1319	2316	1716
11-13-75	11-20-75	26 ± 5	94150	1414	2215	2615	321*7
11-20-75	11-26-75	20±8	2617	2216	90142	2316	501'3
11-26-75	12-03-75	ns*	16 ± 6	85138	2115	1725	37115
12-03-75	12-10-75	17±7	<5**	1114	<3**	1615	20115
12-10-75	12-17-75	2015	15110	10 25	10 ±4	2415	20:12
12-17-75	12-24-75	1315	21±3	1716	2616	26±6	21:1
2-24-75	12-30-75	16±5	12±7	1415	<4 * *	11 15	15±0
VERAGE		30±46	32±48	28±37	39±59	25121	29179

TABLE B-8 (Cont.)

to sample, pump inoperative

1-12

^{**} Result not included in average; sample volume in question

TAPLE P-9

CONCENTRATIONS OF GAMMA PHITTINS IN AIR PARTICULARIES Pesults in Units of 10 3 pCi/m3 d 2 signa

STACIOU NO.	HUCLIDF*	8-02-75	8-30-75	9-27-75	11-01-75	12-03-75
TE1-AP-BACKGROUND	Be-7	150115	8448	4915	7017.9	05110
	Ha-22	<0.1	2,110.6	<0.3	<0.3	5.0>
	rn-54	0.310.2	<0.3	<0.4	<0.3	.0.3
	56-13	2,110.5	<0.7	9.05	<0.5	<0.7
	50-46.	4.310.5	1.210.4	0.310.2	0.210.2	0.410.3
	Ru-196	1013	3.0	<4.0	<3.0	<4.0
	55-135	2,110.7	1,110.8	1.211.0	ZMDE <	301.
	Cs-137	4.310.5	0.710.3	0.410.3	0.510.2	0.410.3
	Ce-141	0.610.3	< MpI.	Z104>	<wp><wpl></wpl></wp>	KIRTS.
	Ce-144	22±2	5.011.5	1.311.1	2.5±1.5	6.513.4
SH-AP-TED ICATOR	Be-7	2112	9109	2713	. 38 t.d	5115
	Mn-54	<0.1	0.210.1	<0.1	<0.1	0.05.10.04
	2r-95	9.210.1	0.210.1	~0.2	. v. 2	0.110.1
	Mb-95	0.710.1	0.610.2	0.110.1	0.210.1	0.110.1
48	Ru-106	1.911.0	<1.0	2.011.1	<1.0	<1.0
	Sb-125	<m><ri>rioit.</ri></m>	0.710.5	0.310.2	0.210.2	< no.
9.0 41-55	Cs-137	0.610.1	0.6±0.2	0.310.1	0.110.1	0.210.1
9	Ce-144	3.011.0	3.011.0	<0.5	1.610.8	0.610.4

START	STOP		STATI	ON NO.	
PATE	DATE	TH-AI-152	TM-AI-351	TM-AI-5A1	T:4-A1-15G1
6-28-75	7-05-75	<8	<8	<13	<8
7-05-75	7-12-75	< 8	<8	<7	<8
7-12-75	7-19-75	< B	<3	< 8	<7
7-19-75	7-26-75	< 0	<8	<8	<8
7-26-75	8-02-75	< 9	< 29	<10	< 9
8-02-75	8-09-75	<8	< 9	< a	<10
8-09-75	8-17-75	<10	<10	<16	< 20
8-16-75	8-23-75	< 11	< 5	<10	<8
8-23-75	8-30-75	<8	< 9	<7	<7
8-30-75	9-06-75	<7	<7	. <7	<7
9-06-75	9-13-75	<7	< 3	<7	<7
9-13-75	9-20-75	<7	<10	<.8	<7
9-20-75	9-27-75	<10	<10	<7	<8
9-27-75	10-04-75	185**	<7	<.7	<

Results corrected for decay to sampling stop date

** Ho sample, pump inoperative

1.

TAPLE E-10 (Cont.)

CONCENTRATIONS OF I-131 IN FILTERED AIR

Results* in Units of 103 pci/m3

START	STOP		STATI	on no.	
DATE	DATE	TM-AI-152	TM-AI-RS1	TM-AI-5A1	TN:-AI-15G1
10-04-75	10-11-75	<8	<7	<7	< 8
10-11-75	10-18-75	<7	<9	<7	9
10-19-75	10-25-75	< 7	< 9	<7	<1
10-25-75	11-01-75	<7	<8	<7	<7
11-01-75	11-06-75	<16	<12	<12	<12
11-06-75	11-13-75	<6	< 6	<6	×: 0
11-13-75	11-20-75	<8	<8	<3	<8
11-20-75	11-26-75	<15	<12	< 9	< 6
11-26-75	12-03-75	MS**	< 5	< 5	<7
12-03-75	12-10-75	<13	<8	-10	<10
12-10-75	12-17-75	< 6	< 7	<6	<6
12-17-75	12-24-75	<7	<7	< 9	< 9
12-24-75	12-31-75	<10	<13	<10	~12

* Pesults corrected for decay to sampling stop date

** No sample, pump inoperative

252

CONCENTRATIONS OF BITA FRITTERS IN PRECIPITATION

Results in Units of pCi/l t 2 sigma

STATION NO.	6-28-75 to 7-26-75	7-26-75 to 8-30-75	8-30-75 to 9-27-75	9-27-75 to 11-01-75	11-01-75 to 11-26-75	11-26-75 to 12-31-75	AVERAGE
TM-101-351	1114	6.7±4.3	<4	3.8±2.4	<3	7.1:3.1	6.015.8
T11-R1/-5A1	7.7±3.5	1215	<4	4.112.4	<4	12±3	7.317.7
TH-141-7F1	9.4±3.7	5.014.2	<4	5.512.5	5.8±3.5	1213	7.016.0
7°4-191-1561	11:4	8.014.4	<4	6.412.6	<3	5.913.0	6,515.5
AVERAGE	9.813.2	7.916.0		5.012.4	-	9.216.4	6.716.0

RETAITHTER DEFOSITION Results in Units of nCi/m² ± 2 sigma

STATION NO.	6-28-75 to 7-26-75	7-26-75 to 8-30-75	8-30-75 to 9-27-75	9-27-75 to 11-01-75	11-01-75 to 11-26-75	11-26-75 to 12-31-75	AVERACE
TH-141-851	0.910.3	0.210.1	<1.5	0.3±0.2	<0.3	0.4±0.2	0.6:1.0
121- F1:- 5A 1	0.510.2	0.410.2	<1.2	0.210.1	<0.2	0.610.2	0.510.7
77!-1:1-7F1	0.9±0.3	0.210.2	<1.7	0.3±0.1	0.510.3	0.610.2	9.711.1
TH-PH-15G1	0.910.3	0.610.4	<1.7	0.4±0.2	< 0, 2	0.410.2	0.7:1.1
AVERAGE	0.310.4	0.410.4		0.3±0.2		0.510.2	0.610.9

TABLE P-12

CONCENTRATIONS OF TRITIUM AND GAMMA FMITTERS IN PRECIPITATION

Results in Units of pCi/l ± 2 sigma

STATION NO.	STAPT DATE	DVal:	1:-3	Be-7	OTHERS
					,
911-PW-881	6-28-75	9-27-75	86±64	< NDI	< WDP
	9-27-75	12-31-75	< 80	MDL	<wdi*< td=""></wdi*<>
111-1812-5A1	6-28-75	9-27-75	120±61	16±7	- MDI.
	9-27-75	12-31-75	<80	13±7	< MDI.
TM-RU-15G1	6-28-75	9-27-75	<80	2317	· MPI.
***********	9-27-75	12-31-75	<80	19±7	< Wibt*
94-R9-7F1	6-28-75	9-27-75	88±64	14±7	< MDL
	9-27-75	12-31-75	<80	MDL	< MDI.

448 253 Onle Male

4-1

TABLE P-13
COMMENTRATIONS OF SP-89 AND SR-90 IN PRECIPITATION
Results in Units of pCi/1

START DATE	STOP DATE	SR-89	SR-90
		DK 11.5	
6-28-75	12-31-75	<0.4	<0.3
6-28-75	12-31-75	<0.5	<0.4
6-28-75	12-31-75	<0.5	<0.4
6-23-75	12-31-75	<0.5	<0.3
	6-28-75 6-28-75 6-28-75	6-28-75 12-31-75 6-28-75 12-31-75 6-28-75 12-31-75	6-28-75 12-31-75 <0.4 6-28-75 12-31-75 <0.5 6-28-75 12-31-75 <0.5

TAPLF B-14

CONCEMPRATIONS OF I-131 IN MILK Results* in Units of pCi/1

STATION NO.	301.	AUG	SEP	OCT	NON	DEC**
TP-F-4B3	<0.05	<0.05	. <0.07	<0.05	<0.05	
911-N-581	<0.05	<0.05	<0.0>	<0.05	F0.03	
17H-M-7B3	90.0>	<0.08	<0.03	<0.05	<0.03	
4H-M-14C1	90.0>	40.06	<0.08	<0.05	<0.04	
TH-M-112	<0.05	<0.03	<0.07	<0.05	<0.04	
TT1-N-5A3+	‡	‡	‡	90°0>	<0.04	

Mesults corrected for decay to sampling date No samples in December; non-grazing season

1448 255
POOR ORIGINAL

Hanagement audit sample

con dry - no sample available

TAPLE R-15

CONCENTRATIONS OF SR-89 AND SR-90 IN MILK

Results in Units of pCi/l ± 2 sigma

STATION NO.	START DATE	STOP* DATE	SR-89	SR-90
TM-M-4B1	7-26-75	9-27-75	<2.1	3.9±1.1
	11-02-75	12-01-75	<1.5	2.7±0.7
TM-H-5B1	7-26-75	9-27-75	<1.4	1.8±0.7
	11-01-75	12-01-75	<1.5	2.5±0.7
тм-и-7в3	7-26-75	9-27-75	<2.1	4.3±1.1
	11-01-75	12-01-75	<0.9	<0.7
774-M-14C1	7-26-75	9-27-75	<1.9	4.7±1.0
	11-01-75	12-01-75	<1.8	4.3±0.9
m-n-1F2	7-26-75	9-27-75	<3.3	7.911.7
	11-01-75	12-01-75	<2.0	6.9±0.9
TM-M-5A3**	11-01-75***	12-01-75***	<1.4	2.810.7

^{*} No samples in December; non-grazing season

^{**} Management audit sample

^{***} Cow dry July to September - no sample available

CONCENTRATIONS OF GAMMA EMITTERS IN CREFN LFAFY VEGI "AFTLFS

Results in Units of pCi/g(wet) ± 2 sigma

OTHERS	< MDE	< MDI.	<mdi.< th=""><th>< MDI,</th></mdi.<>	< MDI,
K-40	1.6±0.4	3.4±0.4	4.210.4	3,4±0.5
SAMPLING DATE	3-30-75	8-30-75	8-30-75	8-30-75
STATION NO.	TM-PPI5A4	TM-FPL-783	TP4-FPL-14C1	TM-FPL-1F2

1448 258 Dalle Dalle

TABLE B-17
TLD DOSE RATE
Results in Units of mrem/standard month

STATION NO.	6-28-75 to 7-26-75	7-26-75 to 8-30-75	8-30-75 to 10-04-75	10-04-75* to 12-24-75	AVERAGE
CONTROL LOCATI	ONS				
TH-10-1F1	6.0±0.6	6.210.2	6.4±0.3	6.210.3	6.2±0.3
TH-10-7F1	7.2t0.2	7.710.2	7.410.4	7.410.2	7.410.4
774-1D-4G1	5.5±0.2	5.8t0.3	5.7±0.8	5.8±0.3	5.710.3
"Y-10-961	5.7:0.1	6.2±0.7	6.2±0.4	6.0±0.7	6.0±0.5
TH-10-15G1	5.4±0.2	5.810.3	5.610.5	5.710.2	5.610.4
T21-1D-5H1	5.5±0.4	5.1±0.4	4.7±0.8	5.2±0.4	5.110.7
INDICATOR LOCA	TIONS				
TH-ID-182	4.910.4	5.210.6	5.410.3	5.510.5	5.310.5
"H-ID-252	4.7±0.4	4.410.2	4.7±0.4	4.610.5	4. (±0.3
rr-10-451	5.010.5	5.210.4	5.410.2	5.310.3	5.210.3
"H-ID-552	4.6±0.1	4.8±0.2	4.910.3 .	5.110.3	4.310.4
TI-10-851	5.3±0.2	5.6±0.1	5.110.2	5.310.4	5.310.4
711-19-982	5.010.4	5.610.4	5.5±0.5	5.410.3	5.4±0.5
rtt-ID-1151	5.410.4	5.7±0.5	5.6±0.6	5.910.2	5.610.4
11-10-1482	**	4.3±0.4	5.1:0.5	* * *	4.7±1.1
m-19-16S1	5.2±0.2	5.5±0.1	5.4±0.3	5.8±0.3	5.510.5
1.1-10-4VJ	4.9±0.5	5,210,6	5.0±0.5	5.110.2	5.0:0.3
10-51	5,010.5	5.210.2	5.210.5	5.110.3	5.110.2
rn-10-16A1	4.4±0.3	4.7±0.1	4.5±0.7	* * *	4.510.3
!#- ID- 10B1	5.710.1	5.910.4	5.710.5	***	5.610.2
P4-10-12B1	4,210,2	4.5±0.5	4.410.2	4.1±0.4	4.3±0.4
r1-10-101	4.310.3	4.7±0.2	4.310.3	4.710.2	4.5±0.5
VERAGE	5,2:1.4	5.4:1.5	5.311.4	5.5:1.4	5.311.4

- Changed to quarterly exposure periods
- ** TIN stolen
- ** TID not collected due to river freezing

TABLE B-18

TYPICAL MILS* FOR GAMPA SPECTROMETRY

9.0 10.0 4.0 4.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	nucl.ibf.	(1/C1/1)	PARTICHTATES (10-3 pci/m3)	PRECIPITATION (PC1/1)	FISH (pc1/kg)	SPRIMPPT (pci/9)
9.0 10.0 4.0 4.0 4.0 0.6 0.6 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.7 0.7 0.7 2 0.7 0.7 0.7 2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	ta-22	0.3	0.4	0.3	1	0.03
1	-40	9.0	10.0	0.6	10	1.0
0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	r-51	4.0	4.0	4.0		0.2
0.7 0.6 0.6 -106 0.7 0.7 0.7 2.0 1.4 0.6 0.6 0.0 0.6 0.6 0.0 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.6 0.6 0.1 0.8 0.1 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9	fn-54	9.0	9.0	9.0	1	0.02
95 0.7 0.7 0.7 2.0 1.4 2.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0	20-58	0.7	9.0	9.0	1	0.03
95 0.7 0.5 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Pa-59	0.7	0.7	0.7	20	0.03
2.0 1.0 2.0 6.6 6.9 6.6 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	09-00	0.7	0.5	0.7	6	0.03
95 0.6 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Zn-75	2.0	1.0	2.0	10	0.04
5.0 3.0 5.0 3.0 6.0 6 0.6 0.6 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	2r-Hh-95	9.6	0.3	9.0	9	0.04
9.6 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	Ho-99	5.0	3.0	5.0	9.9	0.2
40 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	Ru-Rh-106	3.0	1.5	3.0	30	0.3
40 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.	Ag-110m	9.0	9.0	0.6	4	90.0
0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.8 0.8 1.0 0.8 1.0 0.8 4.0 2.0 4.0	re-129m	0.0	0.6	0.6	10	0.3
0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.8 0.8 0.8 0.8 1.0 0.8 0.8 0.8 1.0 0.8	1-131	0.5	0.5	6.5	s	0.02
0.6 0.6 0.6 0.6 0.6 0.8 0.8 0.8 140 0.8 0.8 4.0 2.0 4.0	Te-132	0.5	0.1	0.4	7	0.03
0.6 0.6 0.6 0.8 0.8 0.8 0.6 0.3 0.6 140 0.8 0.8 1.0 1.0 1.0	1-133	9.0	9.0	9.0	\$	0.02
0.6 0.3 0.6 140 0.8 1.0 0.8 1.0 1.0 1.0	Cs-134	0.6	9.0	9.0	9	0.02
140 0.8 0.8 4.0 2.0 4.0	C6-136	0.8	9.0	8.0	10	0.02
140 0.8 0.8 4.0 4.0 1.0 1.0 1.0	Cs-137	9.0	0.3	9.0	Œ	0.02
1.0 1.0	Ea-La-140	9.0	1.0	9.0	7	0.02
1.0 1.0	Ce-144	4.0	2.0	4.0	30	0.04
9.0	Ra-226	1.0	1.0	1.0	10	0.5
2.0 2.0	mb-212	2.0	2.0	2.0	20	0.5

1448 259
POOR ORIGINAL

TABLE E-19 DISTRIBUTION OF MILKING CONS PITTIN FIVE MILES OF THIRS

PARM	FARM DISTANCE	OF COUS	FARM DIRECTION	FARM DISTANCE	OF COUS
11	3.1	70	ESF	3.8	45
ш	4.9	1	ESE	4.3	23
HE	2.3	17	ESE	4.5	34
NE	1.4	45	SF.	1.4	43
BE	4.1	85	SF	4.0	40
EME	1.0	35	SF	4.1	69
EHE	2.5	1	SE	4.7	48
EME	4.2	36	SE	4.8	18
EUE	4.4	80	ssv	4.9	29
ENE	4.5	40	SP	4.7	1
EHE	4.8	63	WSW .	4.0	2
Е	0.8	2	WSW	4.4	1
Е	1.0	70	tnev!	2.7	25
E	3.5	20	tmn?	2.9	6
ESF ESF	3.1	29 1	MAN	3.1	5 35
ESF .	3,2	34	thui	4.2	1
ESF	3.6	33			