Sequoyah Nuclear Plant

TECHNICAL INSTRUCTION

TI-18

.

-

RADIATION MONITORING

Units 1 and 2

Prepared By:J.M. I	Pleva
Revised By: <u>Gridley/Wil</u>	lliams/Dilto
Submitted By: Waxee Sup	H. that
PORC Review: 10/ Date	16/79
Approved By: for Supe	(autull
Date Approved:	116/79
Rev. No. Date	Revised Pages
0 7/6/76	All
IC/16/79.	A11

DISTRIBUTION

10	Plant Master File
	Superintendent
	Assistant Superintendent (Oper.)
10	Assistant Superintendent (Maint.)
	Administrative Supervisor
	Maintenance Supervisor (M)
	Assistant Maintenance Supervisor (M)
	Maintenance Supervisor (E)
	Assistant Maintenance Supervisor (E)
Tu	Maintenance Supervisor (I)
1U	Results Supervisor
10	Operations Supervisor
	Quality Assurance Supervisor
	Health Physics
	Public Safety Services Supv.
	Chief Storekeeper
	Preop Test Program Coordinator
	Jutage Director
10	Chemical Engineer
10	Radiochem Laboratory
	Instrument Shop
	Reactor Engineer
10	Instrument Engineer
	Mechanical Engineer
_	Staff Industrial Engineer
10	Training Center Coordinator
	PSO - Chickamauga Engrg Unit - SNP
	Public Safety Services - SNP
10	Shift Engineer's Office
10	Unit Control Room
	QA&A Rep SNP
10	Health Physics Laboratory
10	Chief, Nuclear Generation Branch
10	P Prod Central Office File
10	Superintendent, WBNP
	Superintendent, BFNP
	Superintendent, BENP
	EN DES - MEB NEG
	SUDV., NEHES ROB, MS
	NKC-IE:II
	Power Security Officer, 604 PRB-C
	Muclear Materials Coordinator
	D Bred Dient Fre David
10	r Frod Flant Eng. Branch

Rev. No.	Date	Revised Pages R	ev. No.	Date	Revised Pages	
0	7/6/76	A11			_	_
1	10/16/79	A11				
The last p	age of this i	instruction is Number	-61-			
	-	177	2 002	7 911	060 44 6	

SQNP TI-18 Punchlist Page 1 of 1 Rev. 1

PUNCHLIST

Plant procedures should be changed to comply with TI-18 (IMI's, SI's 82, 83, etc.).

.

.

.

- 1

1. 29. 1

Warren H. Kiney 10-16.79

SQNP TI-18 Page 1 of 1 Rev. 1

INDEX

A. SCOPE

-

- B. Sequoyah Nuclear Plant Radiation Monitors
- C. Instructions and/or worksheets for setpoint determination and verification for "adiation monitors.
- D. Liquid Release Records Batch and continuous releases
- E. Gas Release Records Batch (containment purges and waste gas decay tank releases). Appendix A - Maximum instantaneous release rates (10 CFR 20) Appendix B - SNP Plant Vent Flowrates Appendix C - RD-35 Setpoint Derivation

SQNP TI-18 Page 1 of 3 Rev. 1

Section A

I. SCOPE

A. Purpose

This instruction serves the following purposes:

- Establishes initial setpoints for process radiation monitors and adjustment setpoints to account for changes in background conditions.
- Establishes initial setpoints for effluent radiation monitors and adjustment setpoints to account for batch releases and/or changes in backgr und conditions.
- 3. Establishes a method to verify detector efficiencies.
- 4. Summarizes, for informational purposes, batch gaseous and liquid effluent release data.
- B. Requirements

This technical instruction supports the surveillance programs used to satisfy technical specification requirements. Surveillance instructions reference this technical instruction for calculations of alarm/trip setpoints.

II. REFERENCES

- A. General Atomic Calibration Reports
 - 1. Required curves from these reports included in this instruction.
- B. SQNP Technical Specifications
- C. SQNP Final Safety Analysis Report

III DESCRIPTION

.-.

The remainder of this technical instruction is broken down into four sections and four appendices. A description of the purpose of each section and appendix follows.

- A. Section B.1 lists the appropriate section C portion to use for setpoint or efficiency verification of a particular detector type. Section B.2 lists each radiation monitor at Sequoyah and the section or sections required to determine monitor setpoints.
- B. Section C is used to determine each or all of the following for a particular detector type.

12/2 005

SQNP TI-18 Page 2 of 3 Rev. 1

- III. B. Continued
 - 1. Initial operational setpoint determination.
 - 2. Adjusted operational setpoint determination.
 - a. Monitor setpoints are initially determined by best judgement of what radiation levels will be and such that technical specifications will not be violated. After enough operation has occurred, monitor setpoints may require changes to allow for operational flexibility. However technical specifications will still be observed.
 - 3. Periodic operational setpoint determination
 - a. For certain effluent monitors, such as the shield building exhaust (RM-90-100), setpoints must be changed to suit each different type of release. For example, a release setpoint for a waste gas decay tank would be different than for a release of the containment purge air volume. Each different type of release will be controlled by an SOI and the performance of a surveillance instruction. The surveillance instruction will reference this technical instruction to calculate the release monitor setpoints.
 - 4. Detector Efficiency Verification
 - a. This technical instruction can be used to verify that a monitor is correctly responding. This is done by comparing the monitor's output to a gamma scan determination of what the monitor should read.
 - b. Section C and D provides a summary sheets of gaseous and liquid releases. These summary sheets are for historical purposes only and will be retained in the Radiochemical laboratory files. NOTES: All data collected on these sheets are recorded in the appropriate surveillance instructions which become part of the plants lifetime records. Therefore, the section D summary sheets will be maintained as QA documents because of number sequence for a release (batch or continuous).
 - c. Appendix A provides a list of Sequoyah's maximum allowable instantaneous release rates which were calculated in accordance with the Of site Dose Calculation Manual (ODCM). Each limit was established on the bases of limiting dose to 500 mr/yr to the total body from noble gases and 1500 mr/yr to the thyroid from iodines and particulates.
 - d. Appendix B tabulates the maximum design flowrates for each vent exhaust to be used in Section C setpoint calculations.

- 3-

1272 006

SQNP TI-15 Page 3 of 3 Rev. 1

.

.

-

.-

- e. Appendix C documents the derivation of the iodine monitor (RD-35) setpoint evaluation.
- f. Appendix D tabulates the FSAR and technical specifications limits required to calculate monitor setpoints in section C.

12:2 007

SQNP TI-18 Page 1 of 2 Rev. 1

Section B

B. SEQUOYAH RADIATION MONITOR IDENTIFICATION

B.1 TYPES OF DETECTORS

.-

.

Detector	Model Number	Refer to Section
Noble Gas- & Detector Noble Gas- & Detector Noble Gas- A Detector	(RD-32, RD-32-01) (RD-32-05) (RD-32-08)	C.1 C.2
Noble Gas- A Detector	(RD-30-01)	C.4
Iodine - Y Detector	(RD-35)	C.5
Particulate- Detector	(RD-36-01)	C.6
Liquid- Detector	(RD-33)	C.7
Liquid- Detector	(RD-33.06)	C.8

B.2 Sequoyah Nuclear Plant - Radiation Monitors

Monitor	Sample Stream	Detect Refer to	or Ty Sect	/pe tior	-
1-RM-90-99	Condenser Vacuum Pump Exhaust, U1		C.3		
1-RM-90-100	Shield Building Exhaust 11		0.3		
2-RM-90-100	Shield Building Exhaust, UL	C.1,	C.5 a	and	C.6
0-RM-00-101	Auviliant Building Exhaust, 02	C.1,	C.5 a	and	C.6
1-RM-90-101	Reactor Coolent Lation 117	C.1,	C.5 a	and	C.6
2-EM-90-104	Reactor Coolant Letdown, UL		C.8		
1-RM-90-106	Containment Building Lower Companyation 11		C.8		
2-RM-90-106	Containment Building Lower Compartment, UL	C.1,	C.5 a	ind	C.0
1-RM-90-112	Containment Building Lower Compartment, U2	C.1,	C.5 a	and	C.6
2-RM-00-112	Containment Building Upper Compartment, UI	C.1,	C.5 a	ind	C.6
0-RM-00-118	Voste Dieners Gen Baga	C.1,	C.5 a	and	C.6
1-PM-00-0	Waste Disposal Gas Effluent		C.4		
2-RM-00-110	Condenser Vacuum Pump Exhaust, Ul		C.1		
1 PM 00 100	Condenser Vacuum Pump Exhaust, U2		C.1		
2 PM 00 100	Steam Generator Blowdown Liquid Effluent, Ul		C.7		
2-RM-90-120	Steam Generator Blowdown Liquid Effluent, U2		C.7		
1-RM-90-121	Steam Generator Blowdown Liquid Effluent, Ul		C.7		
2-RM-90-121	Steam Generator Blowdown Liquid Effluent, U2		C.7		
0-RM-90-122	Waste Disposal Liquid Effluent		C.7		
0-RM-90-123	Component Cooling System Common		C.7		
-RM-90-123	Component Cooling System, Ul		C.7		
2-RM-90-123	Component Cooling System, U2		C.7		
1-RM-90-124	Steam Generator Blowdown, Ul		0.7		
2-RM-90-124	Steam Generator Blowdown, U2		C.7		
0-RM-90-125	Main Control Room Intake		C.1		
0-RM-90-126	Main Control Room Intake		C.1		

-5-

SQNP TI-18 Page 2 of 2 Rev. 1

Section B

.

*

~ . ′

Monitor	Sample Stream	Detector Type - Refer to Section	
1-RM-90-130 2-RM-90-730 1-RM-90-131 2-RM-90-131 0-RM-90-131 0-RM-90-133 0-RM-90-134 0-RM-90-140 0-RM-90-140 0-RM-90-140 0-RM-90-140 0-RM-90-170 2-RA-90-170 0-RM-90-205 0-RM-90-205 0-RM-90-205 0-RM-90-225 0-RM-90-225 0-RM-90-225 0-RM-90-12 0-RM-90-13 1-RM-90-14 2-RE-90-14 0-RE-90-15 0-RE-90-17 1-RE-90-62 2-RE-90-62	Containment Purge Exhaust, Ul Containment Purge Exhaust, U2 Containment Purge Exhaust, U1 Containment Purge Exhaust, U2 Service Building Exhaust Essential Raw Cooling Water, Header A Essential Raw Cooling Water, Header B Essential Raw Cooling Water, Header B Boric Acid Evaporator Condensate, U1 Boric Acid Evaporator Condensate, U2 Main Control Room Emergency Intake Main Control Room Emergency Intake Plant Liquid Discharge - Cooling Tower Blowdo Turbine Building Station Sump Discharge Condensate Demineralizer Discharge Fuel Loading Area Fuel Loading Area Unit 1 Hot Sample Room E1. 690.0 Area Lower Compartment Instrument Room	C.2 C.2 C.2 C.2 C.1,C.5 and C. C.7 C.7 C.7 C.7 C.7 C.7 C.7 C.7 C.7 C	6
	addet comparement instr ment Room	C.6	

1272 009

-6-

SQNP TI-18 Page 1 of 5 Rev. 1

Section C

Instructions and/or Worksheets for Setpoint Determination and Verification For Radiation Monitors

Section 18.C.1 RD-32,-32-01 DETECTORS

NOTE: These two detectors are identical with respect to detector size. The only difference is in the amount of shielding.

Monitors:	1-RM-90-100(E)	1-RM-90-106(P)	1-RM-90-119(E)	0-RM-90-205(P)
	2-RM-90-100(E)	2-RM-90-106(P)	2-RM-90-119(E)	0-RM-90-206(P)
	0-RM-90-101(E)	1-RM-90-112(P)	0-RM-90-125(P)	
	0-RM-90-132(E)	2-RM-90-112(P)	0-RM-90-126(P)	

NOTE: E=Effluent P=Process

- A. Setpoint Calculation
 - 1. Obtain gaseous release rate (or concentration) limits for nuclides used to determine monitor setpoint.
 - 2. Obtain vent flow of exhaust stream to be monitored.
 - Complete Worksheet No. 18-C.1A. Calculate setpoint count rate by multiplying nuclide concentration by its sensitivity and summing for all expected nuclides.
- B. Detector Efficiency Verification
 - 1. Obtain gaseous sample of medium per TI-16, and record the appropriate monitor's count rate at time of sampling on worksheet TI-18-C.1.B.
 - 2. Cour sample according to TI-12, Method B.5.
 - Complete Worksheet No. 18-C.1B. Calculate expected count rate by multiplying nuclide concentration by its sensitivity and summing for all detected nuclides. Compare with monitor count rate at time of sampling. Calculate percent deviation.
- NOTE: a. Sensitivities were determined for the beta rays (with intensities greater than one percent) of anticipated nuclides. The sensitivity for each beta ray was multiplied by the beta ray's intensity, and these products were summed, yielding an overall sensitivity. Sensitivities for these and other nuclides may be determined from Figure 18-C.1 and the nuclide's beta rays and respective intensities. Information supplied by "Nuclear Decay Data for Radionuclides ocurring in routine releases from nuclear fuel cycle facilities" (August 1977, prepared by Oak Ridge National Laboratory), and General Atomics calibration reports. (March 1974).

-7-

SQNP TI-18 Page 2 of 5 Rev. 1

Worksheet No. 18-C.1A

Setpoint Calculation Worksheet (Gas & Detector; RD-32,32-01)

Monitor

Dat: _____ Time

1. Obtain Limiting Nuclide Concentrations

For -90-100, -90-101, -90-119 and -90-132 obtain applicable vent exhaust limiting concentration by dividing release rate limit (section D, Appendix A) by the maximum design vent flowrate (Section D, Appendix B).

b. Monitors -90-106 and -90-112 have a Technical Specification Limit of 8.5E-03 Ci/cc. Int. al setpoint concentration will be 1/1° of this value based on Xel33. For -90-125 and -900-205 obtain limiting concentration from Appendix D

-8-

µ01/cc	Ar-41		
Ci/cc	Kr-85	µCi/cc	Xe-133M
Ci/ca	Kr-85m	<u> </u>	Xe-135
Ci/cc	Kr-87	µ Ci/cc	Xe-135M
LCi/cc	Kr-88	µ Ci/cc	Xe-137
u Ci/cc	Kr-89	µ Ci/cc	Xe-138
Ci/cc	Xe-131M	µCi/cc	(Other)
µCi/ce	Xe-133	µCi/cc	(Other)

SQNP TI-18 Page 3 of 5 Rev. 1

Worksheet 18-C.1A

Monitor				Dat	ate 7		Pime		
2.	Multiply	Nuclide	Limiting	Concentration	ъу	Detector	Efficiency	for	Nuclide
						(-)	Isc	otop	e-

Isotor: Conce	ntration.	Monitor	Efficiency - Isotope ⁽²⁾	Cal. Monitor Respons		
MCi/ce	AR-41 x	6.00E07	CPM/ 12 Ci/cc	=	CPM	
M Ci/ce	KR-85 x	5.66E07	CPM/ AL Ci/cc	=	CPM	
H Ci/cc	KR-85M x	5.89E07	CPM/ H Ci/cc		CPM	
M Ci/cc	KR-87 x	6.00E07	CPM/ A Ci/cc	=	CPM	
H Ci/cc	KR-88 x	4.71E07	CPM/ A Ci/cc	=	CPM	
H Ci/cc	KR-89 x	6.00EC7	CPM/ A Ci/cc	=	CPM	
H Ci/cc	YE-131M x	3.24E07	. CPM/12 Ci/cc	=	CPM	
HCi.'cc	Ke-133 x	3.50E07	CPM/A Ci/cc	=	CPM	
H C1/cc	XE-133M x	4.57E07	CPM/ 14 Ci/cc	=	CPM	
K Ci/cc	XE-135 x	6.00E07	CPM/H Ci/cc	=	CPM	
H Ci/cc	XE-135M x	1.30E07	CPM/ H Ci/cc		CPM	
H Ci/cc	Xe-137 x	6.00E07	CPM/ H Ci/cc	=	CPM	
H Ci/cc	XE-138 x	6.00E07	CPM/4 Ci/cc	=	CPM	
M Ci/cc	()x	()	CPM/ / Ci/cc	=	CPM	
A Ci/cc	()x	()	CPM/ H Ci/cc	=	Mar	

(a) Obtained From Figure 18-C.1. (Sum of isotopic energies multiplied by their respective percent abundances).

3. Total

CPM

4. Multiply Total (Step 3) Ey Appropriate Safety Factor (S.F.) For -90-100 S.F. = 0.2 -90-119 S.F. = 0.2 -90-101 S.F. = 0.5 -90-125 S.F. = 1.0 -90-106 S.F. = 0.1 -90-205 S.F. = 1.0 -90-112 S.F. = 0.1 NOTE: Safety factors can be changed only by the approval of the lead of cognizant chemical engineer and noted or worksheet in remarks section.

-90-132 S.F. = 0.2

Safety Factor x Total (Value from Step 3)

_____ X ____ CPM = ____ CPM

- 5. Background Count Rate For Monitor: CPM NOTE: Established by isolating monitor and injecting service air or air from room that radiation monitor is located into monitor. If cannot be obtained by this means use zero as the background (CPM) countrate.
- 6. Monitor Setpoint = (4) + (5) $\frac{CPM = +}{(4)} CPM = CPM = CPM$ (setpoint)

Chem. Engr. Assoc. Date -9-

SONP rI-18 Page 4 of 5 Rev. 1

Worksheet 18-C.1B

Section C.1

Detector Efficiency Verification (Gas @ Detectors; RD-32, -32-01)

Monitor	Date	Timo

Sample Activity Corrected to Time of Sampling. Obtain Count Rate. 1.

Nuclide Concer	ntration		Mon. Eff	iciency-Isotope	a) <u>Ca</u>	lculated Mon. Resp.
HCi/cc	AR-41	x	6.00E07	CPM/ MCi/cc	=	CPM
ACi/cc	KR-85	х	5.66E07	CPM/ACi/cc	=	CPM
Ci/cc	KR-85M	х	5.89E07	CPM/A Ci/cc	=	CPM
KCi/cc	KR-87	х	6.00E07	CPM/M Ci/cc	=	CPM
KCi/cc	KR-88	x	4.71E07	CPM/M Ci/cc	=	CPM
KCi/cc	e8	х	6.00E07	CPM/mCi/cc	=	CPM
µCi/cc	Xe-131M	x	3.24E07	CPM/ Ci/cc	=	CPM
KCi/cc	Xe-133	x	3.50E07	CPM/ Ci/cc	=	CPM
Ci/cc	Xe-133M	х	4.57EO	CPM/ L Ci/cc	=	CPM
Ci/cc	Xe-135	x	5.00E07	CPM/u Ci/cc	=	CPM
Ci/cc	Xe-135M	x	1.30E07	CPM/ Ci/cc	=	CPM
Ci/cc	Xe-137	x	6.00E07	CPM/ Ci/cc		CPM
"Ci/cc	Xe-138	x	6.00E07	CPM/H.Ci/cc		CDM
Ci/cc	()	x	()	CPM/A Ci/cc		CPM
MCi/cc	()	x	()	CPM/M Ci/cc		CPM

-

(a) Obtained from Figure 18-C.1. (Sum of Isotopic energies multiplied by their respective percent abundancies.)

2.	Total Calculated Monitor	Response	СРМ
3.	Background Count Pate for	Monitor:	CPM

NOTE: Established by isolating monitor and injecting service air or air from room where monitor is located into monitor. If cannot be obtained by this means then use zero as the background count rate.

4. Calculated Monitor Countrate: (2) + (3) =

$$(2)$$
 CPM + _ CPM = _ CPM

5. Actual monitor count rate reading at time of sample: _____ CPM

1272 013

Testers

CPM

			SQNP TI-18 Page 5 of 5 Rev. 1		
		1	Vorksheet 18-0	.1B	
			Section C.1		
lonitor	r	_	Date	Time	
5. Ca	alculate Percent	Deviation : (4)	<u>) - (5)</u> x 100		
	(4) (5)	X 100 //	_% (d), (c)		
	(4)	•			
N	OTES:				
þ	. For count rat Engr. for per	tes 10-500 CPM, n ccent deviations	notify Chemics greater than	al Engineer As: 30%. Note in	sociate or Chem. remarks section.
c	. For count rat engr. for per	tes greater than reent deviations	500 CPM, noti greater than	ily chem. engr 10%. Note in	. assoc. or chem. remarks section.
Anal	yst Date	Chem. 1	Engr. Assoc.	Date	
Remark	s:				

SQNP TI-18 Page 1 of 4 Rev. 1

SECTION C.2

RD-32-05 DETECT R

Monitors: 1-RM-90-130(E) 1-RM-90-131(E) 2-RM-90-130(E) 2-RM-90-131(E) NOTE: E = Effluent

NOTE: E = EIIIuer

A. Setpoint Calculation

- Setpoint shall be a fraction of the SNP Technical Specification (initial 1/10 of 8.5E-03 µCi/cc (tech. spec. limits) for containment concentration) based on XE-133. (XE-133 assumed to account for majority of activity at time of purge.))
- 2. Reevaluation of radiation setpoints will be based on grab samples taken from lower containment (RM-90-106) and allowable release rate through the shield building exhaust. The reevaluation of setpoint (tech spec fraction 1/10 of allowable limit) required approval of lead or cognizant chemical engineer and when initiated noted in worksheet remarks section.

Detector officiency Verification

- 1. Obtain gau sample from both upper and lower compartments per TI-16, and record appropriate purge monitor's count rate at time of sampling.
- Count sample(s) according to TI-12, method B.5. Use the most restrictive results for calculations (either upper or lower).
- Complete Worksheet No. 18-C.2B. Calculate expected count rate by multiplying nuclide concentration by its sensitivity^(a) and summing for all detected nuclides. Compare with purge monitor count rate at time of sampling. Calculate percent deviation.
 - NOTE: (a) Sensitivities were determined for the beta rays (with intensities greater than one percent) of anticipated nuclides. The sensitivity for each ray was multiplied by the beta ray's intensity, and these products were summed, yielding an overall sensitivity. Sensitivities for these and other nuclides may be determined from Figure 18-C2 and the nuclide's beta rays and respective intensities. Information supplied by "Nuclear Decay Data for Radionuclides occuring in routing releases from Nuclear Fuel Cycle Facilities" (August 1977, prepared by Oak Ridge National Laboratory), and General Atomics Calibration Reports E-115-721, April 1979).

SQNP TI-18 Curve 18-C.1 Page 1 of 1 Rev. 1

General Atomics Calibration Report E-199-350 (March 1974) - RD-32 detector.

SQNP TI-18 Page 2 of 4 Rev. 1 .

Worksheet No. 18-C.2A

SETPOINT CALCULATION WORKSHEET (Gas & Detector; RD-32-05)

Moni	tor Date Time
1.	Limiting isotope concentration: Ci/cc (Initial Setpoint: (8.5E-04 A Ci/cc based on Xe-133)
2.	Detector Efficiency for isotope in step 1= $($ CPM/ μ Ci/cc $)$ *(0.044) (obtained from Figure 18-C.2)
3.	Calculated Count Rate: (1) x (2) μ Ci/cc x CPM/ μ Ci/cc = CPM (Initial Count Rate Setpoint: 2243 CPM based on Xel33).
4.	Background Count Rate: CPM NOTE: Established by isolating monitor and injecting service air or air from room that initor is located into monitor. If cannot be obtained by this means are zero as background count rate.
5.	Monitor Setpoint: (3) + (4) $\begin{array}{c} CPM + \\ \hline (3) \end{array} CPM = \\ \hline CPM \\ \hline (4) \end{array} CPM = \\ \hline (Setpoint) \end{array}$
Ramo	Analyst Date Chem. Engr. Assoc. Date
Rema	rks:

1272 017

7

.-

SQNP TI-18 Page 3 of 4 Rev. 1 Worksheet No. 18-C.2B

DETECTOR EFFICIENCY VERIFICATION (Gas & Detector; RD-32-05)

		and the second		the state of the second s
1.	Sample activity corrected to (controlling ightest concents	time of sampling. ration).	Use most restrictin	ng isotope
	(0.044) *µCi/cc (cont NOTE: ^(a) Obtained from Figure	trolling isotope) * e 18-C.2	(CPM/µCi/cc) ^{(s}	•) =
2.	Background Count Rate:	CPM		
	NOTE: Established by isolatin room that monitor is lo this means then use zer	ng monitor and inje ocated into monitor ro as the backgroun	cting service air o . If cannot be obt d count rate.	or air from ained by
3.	Calculated Monitor Count Rate $\frac{CPM + CPM = (2)}{(3)}$: (1) + (2) CPM		
4.	Monitor count rate reading at	time of sampling:	CPM	
5.	Calculate percent deviation:	$\frac{(3)^{-(4)}}{(4)}$ X 100		
	Percent deviation = (13) CP	M (14) CPM		
		CPM (3)	X 100 = 9	(a),(b)
	NOTES: (a) For count rates in chemical engineer in remarks section (b) For count rates in associate or cher than 10%. Note in	10-500 CPM, notify r for percent devia on. greater than 500 CP mical engineer for in remarks section.	chemical engineer a tions greater than M, notify chemical percent deviations	engineer greater
	Analyst Late	Chem. Eng	r. Assoc.	Date
Rema	.rks:			

-15-

7

~

GENERAL ATOMICS CALIBRATION REPORT E-199-350 (March 1974). This is a curve for the RD-32 detector. Efficiencies for the RD-32-05 can be obtained by multiplying the efficiency from this curve by the ratio of the detector areas of the RD-32-05 to the RD-32 (Ratio equal to 0.044) and multiplying by percent abundance of each major photopeak.

SQNP TI-18 Page 1 of 6 Rev. 1

SECTION C.3

RD-32-08 DETECTOR

Monitors: 1-RM-90-99(E) 2-RM-90-99(E)

NOTE: E=Effluent

A. Setpoint Calculation

- Obtain gaseous release rate (or concentration) limits for nuclides used to determine setpoint.
- 2. Obtain vent flow of exhaust to be monitors ...
- Complete Worksheet No. 18-C.3A. Calculate setpoint count rate by multiplying nuclide concentration by its sensitivity and summing for all expected nuclides.

B. Detector Efficiency Verification

- 1. Obtain gaseous sample per TI-16, and record the appropriate monitor's count rate at time of sampling.
- 2. Count sample according to TI-12, method B.5.
- Complete Worksheet No. 18-C.3.B. Calculate expected count rate by multiplying nuclide concentration by its sensitivity^(a) and summing for all detected nuclides. Compare with monitor count rate at time of sampling. Calculate percent deviation.

-17-

NOTE: (a) Sensitivities were determined for the beta rays (with intensities greater than one percent) of anticipated nuclides. The sensitivity for each beta ray was multiplied by the beta ray's intensity, and these products were summed, yielding an overall sensitivity. Sensitivities for these and other nuclides may be determined from Figure 18-C.3 and the nuclide's beta rays and respective intensities. Information supplied by "Nuclear Decay Data for Radionuclides occurring in routine releases from nuclear fuel cycle facilities" (August 1977, prepared by Oak Ridge National Laboratory), and General Atomics calibration report E-115-721, April 1979.

SQNP TI-18 Fage 2 of 6 Rev. 1

Worksheet No. 18-C.3A

SETPOINT CALCULATION WORKS HEET (Gas @ Detector; RD-32-03)

Monitor

Date

Time

 Obtain Limiting Concentration by dividing release rate limit (Appendix A) by the maximum design vent flowrate (Section D, Appendix B).

Isotope Cond	entration	Maximum Design Flowrat	e Isotope Limiting Conc.
	AR-41 KR-85 KR-85M KR-87 KR-88 KR-89 Xe-131M Xe-133 Xu-133M Xe-135 Xe-135M Xe-137 Xe-138 ()	CFM x 28320 CC/CF	<pre>= Ci/CC AR-41 = Ci/CC KR-85 = Ci/CC KR-85 = Ci/CC KR-87 = Ci/CC KR-88 = Ci/CC KR-89 = Ci/CC Xe-131M = Ci/CC Xe-133M = Ci/CC Xe-135M = Ci/CC Xe-135M = Ci/CC Xe-137 = Ci/CC Xe-137 = Ci/CC Xe-138 = Ci/CC Xe-138</pre>
			and an and an

Multiply Limiting Concentration by detector efficiency for each nuclide.

 (a) Obtain from General Atomic Calibration Report E-115-721, April 1979.

Isotopic Concentration		Monitor	Efficiency -	Isotope ^(a)	Calc. Mon.	Response
A Ci/CC AR-41	x	6.06E05	CPM/#Ci/CC	54	CPM	
L Ci/CC KR-85	х	6.23E05	CPM/A Ci/CC	-	CPM	
M Ci/CC KR-85M	х	6.48E05	CPM/ K Ci/CC	=	CPM	
L Ci/CC KR-87	х	6.06E05	CPM/M Ci/CC	=	CPM	
A Ci/CC KR-88	х	5.18E05	CPM/H Ci/CC	=	CPM	
L Ci/CC KR-89	x	6.06E05	CPM/A Ci/CC	=	CPM	
∠ Ci/CC XE-131M	х	3.56E05	CPM/A Ci/CC	=	CPM	
Ci/CC Xe-133	х	3.85E05	CPM/A Ci/CC	=	CPM	
Ci/CC Xe-133M	х	5.03E05	CPM/# Ci/CC	=	CPM	
Ci/CC Xe-135	х	6.06E05	CPM/ACi/CC	=	CPM	
A Ci/CC Xe-135M	х	1.43E05	CPM/H Ci/CC	=	CPM	
M Ci/CC Xe-137	х	6.06E05	CPM/4 Ci/CC	=	CPM	
M Ci/CC Xe-138	х	6.06E05	CPM/A Ci/CC	=	CPM	
µ Ci/CC()	x	()	CPM/A Ci/CC	=	CPM	
µCi/CC().	x	()	CPM/H Ci/CC	=	CPM	
1.5						

(a) Obtained from Figure 18-C.3. (See note on figure).

^{1272 021}

SQN: TI-19 Pa_c 3 of 6 Rev. 1

Worksheet No. 18-C.3A

Moni	tor		Date	Time		_
3.	Total calculate	ed monitor re	sponse:	СРМ		
4.	Background Cour	nt Rate for M	onitor:	СРМ		
	NOTE: Establis room the this met	shed by isolat at monitor is thod then use	ting monitor a located into zero as the b	nd inserting se monitor. If ca ackground count	rvice air or air nnot be obtained rate.	from by
5.	Monitor Setpoir	nt = (3) +	(4) * 0.1 (safety factor)		
	<u>(0.1</u>) * <u>(3)</u>	CPM +	CPM = (Setpoint	CPM t)		
	NOTE: Safety i zant che	factor can be mical engine	changed only ar and noted in	by the approval n remarks secti	of the lead or on of worksheet.	cogni-
	Analyst	Date	Chem. Engr.	Assoc.	Date	
Rema	rks:					

1272 022

* .^

SQNP TI-18 Page 4 of 6 Rev. 1

Worksheet No. 18-C.3B

Detector Efficiency Verification (Gas & Detector; RD-32-08)

Moni	tor	Date	Time
1.	Sample activity corrected	to time of sampling	. Obtain count rate.
Isot	ope Concent: tion Mon.	Efficiency-Isotope ^{(a}	Computed Mon. Response
		E05 CPM/A Ci/CC E05 CPM/A Ci/CC	= CPM = CPM = CPM = CPM = CPM = CPM = CPM = CPM = CPM
(a) ₀	$\begin{array}{c} -\mu \ \text{Ci/CC} & \text{Xe-135} & \text{X} & \text{6.06.} \\ -\mu \ \text{Ci/CC} & \text{Xe-137} & \text{X} & 1.43 \\ -\mu \ \text{Ci/CC} & \text{Xe-137} & \text{X} & 6.06. \\ -\mu \ \text{Ci/CC} & (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	E05 CPM/A CI/CC E05 CPM/A CI/CC E05 CPM/A CI/CC) CPM/A CI/CC) CPM/A CI/CC	= CPM = CPM = CPM = CPM = CPM
	boained from righte 10-0.5	(See roothote on ri	gure).
2.	Total Calculated Monitor	Response	CPM
.3.	Background Count Rate for	Monitor:	CPM
	NOTE: Established by iso room that monitor this means, then u	lating monitor and i is located into moni se zero as the backg	njecting service air or air from tor. If cannot be obtained by round count rate.
4.	Calculated monitor count	rate: (2) + (3)	
	(2) CPM + (3) CPM =	CPM	
5.	Monitor Count Rate readin	g at time of samplin	g: CPM
6.	Calculate percent deviation	on: $\frac{(4) - (5)}{(4)} \times 100$ (5) x 100 = %	= % dev. (1), (2)
	CPM (4)		1272 023

-20 -

.-

SQNP TI-18 Page 5 of Rev. 1

Worksheet No. 18-C.

Monitor		Date		Time		
NOTES :						
(1)	For count a for percent	rates of 10-500 CPI t deviations gerat	M, notify Ch er than 30%.	em. Engr. Ass Note in rem	soc. or Chem marks sectio	. Engr.
(2)	For count Engr. for	rates greater than percent deviations	500 CPM, no greater tha	tify Chem. En n 10%. Note	ngr. Assoc. in remarks	or Jnem. section.
An	alyst	Date	Chem.	Engr. Assoc.		Date

Remarks:

.

.-

-

This is a curve for the RD-32 detector. Efficiencies for the RD-32-03 can be obtained by multiplying the efficiency from this curve by the ratio of the detector areas of the RD-32-08 to the RD-32 (Ratio equal to 0.011) and multiplying by percent abundance of each major photopeak.

POOR ORIGINAL

1272 025

SQNP TI-18 Section C.4 Page 1 of 4 Rev. 1

RD-30-01 DETECTOR

Minitor: 0-MR-90-118(E)

NOTE: E = Effluent

- A. Setpoint Calculation
 - 1. Obtain sample, per TI-16, and pressure of gas decay tank to be released.
 - 2. Count sample according to TI-12, Method B.5.
 - 3. Complete worksheet no. 18-C.4A. Calculate setpoint count rate by multiplying the detected nuclides concentration by the detector sensitivity (a) for each nuclide. It is assumed that only KR-85 remains in significant quantity at the time of tank discharge when tank has been held for 60 days.

B. Detector Efficiency Verification

- 1. Obtain gas sample of gas decay tank exhaust header, per TI-16, and the monitor's count rate at the time of sampling.
- 2. Count sample according to TI-12, Method B.5.
- Complete worksheet no. 18-C.4B. Calculate expected count rate by multiplying nuclide concentration by detector sensitivity. Compare with monitor count rate. Calculate percent deviation.

NOTE:

(a) The sensitivity was determined for the beta rays (with intensities greater than one percent) of KR-85. The sensitivity for each beta ray was multiplied by the beta ray's intensity and these products were summed, yielding an overall sensitivity. Sensitivities for the beta rays of KR-85 were determined from Figure 18-C.4. Information supplied by "Nuclear Decay Data for Radionuclides occuring in routine release from Nuclear Fuel Cycle Facilities" (August 1977, prepared by Oak Ridge National Laboratory), and General Atomics Calibration Reports.

1272 026

- 23-

SQNP T1-18 Page 2 of 4 Rev. 1

Worksheet No. 18-C.4A Setpoint Calculation Worksheet (Gas & Detector; RD-30-01)

 Sample activity corrected to time of sampling. Activity concentration should be expressed. At ambient conditions. Multiply by detector isotopic sensitivity.

Isotope Concentration	Monitor Efficiency-Is	otope ^(a) Comp.	Mon. Response
	x 5.42E04 CPM/# Ci/CC x 4.86E.4 CPM/# Ci/CC x 6.12E04 CPM/# Ci/CC x 5.97E04 CPM/# Ci/CC x 4.23E04 CPM/# Ci/CC x 3.28E04 CPM/# Ci/CC x 5.53E04 CPM/# Ci/CC x 9/81E03 CPM/# Ci/CC x 5.10E04 CPM/# Ci/CC x() CPM/# Ci/CC x() CPM/# Ci/CC		CPM CPM CPM CPM CPM CPM CPM CPM CPM CPM
tained from Figure 18-C	.4.		
Total Calculated Monito	r Response	CPM	
Complete monitor setpoi inadvertent trips)	nt by multiplying by a	factor of 1.1 (f	actor to pre
1.1 x CPM (val	ue in step 2)	=	CPM
Monitor Background Coun	t Rate:		
Note: Obtained by taki	ng monitor reading prio	r to initiating	the release.
Monitor Setpoint: (3) CPM (3) +	+ (4) CPM (4) =	CPM	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

1272 027

÷

--

SQNF TI-18 Page 3 of 4 Rev. 1

Worksheet No. 18-C.4B Detector Efficiency Verification (Gas & Detector; RD-30-01)

1. Sample activity corrected to time of samplick. Express activity concentration at ambient conditions. Multiply by detector sensitivity.

Isotope Concentration	Monitor Efficiency-Isoto	ope ^(a)	
	x 5.42E04 CPM/ # Ci/CC x 4.86E04 CPM/ # Ci/CC x 6.12E04 CPM/ # Ci/CC x 5.97T04 CPM/ # Ci/CC x 3.28E04 CPM/ # Ci/CC x 5.53E04 CPM/ # Ci/CC x 9.81E03 CPM/ # Ci/CC x 5.10E04 CPM/ # Ci/CC x () CPM/ # Ci/CC		CPM CPM CPM CPM CPM CPM CPM CPM CPM CPM
2 Total Calculated	e 10-0.4		
2. Iotal calculated			CPM
3. Compute monitor s inadvertent trips	etpoint by multiplying by).	a factor of 1.	1 (factor to prevent
1.1 x CP	M (value in Step 2)	=	СРМ
4. Monitor backgroun	d count rate:		CPM
NOTE: Obtained b	y taking reading prior to	initiating disc	charge.
5. Add (3) + (4):	CPM (3) +	CPM (),) -	ODM.
6. Monitor count rat	a wonding at time of and		CPM
o. Monitor count rat	e reading at time of sampl.	ing:	CPM
7. Calculate percent	deviation: (5) (6) x (5)	100	
СРМ (5) .	- CPM (6)		
	x 100 =	% (a),	(d)
NOTES: (a) For count for percen (b) For count chem. engu section be	rates 10-500 CPM, notify on t deviations greater than rates greater than 500 CPM r. for percent deviations g elow.	chem. engr. ass 30%. Note in 4, notify chem. greater than 10	cc. or chem. engr. remark section below. engr. 23soc. or %. Note in rearks
Analyst I	Date Chem. Engr. A	Assoc.	Date
Remarks:			

.-

SQNP TI-18 Figure 18-C.4 Fage 4 of 4 Rev. 1

1272 029

POOR ORIGINAL

Operating at 760 mm Hg abs and 25°C. GENERAL ATOMICS CALIBRATION REPORT E-115-593 (March 1978).

-26-

SQNP TI-18 Page 1 of 5 Rev. 1

Section C.5

RD-35 Detector

Monitors:	1-RM-90-100(E)	1-RM-90-106(P)
	2-RM-90-100(E)	2-RM-90-106(P)
	0-RM-90-101(E)	1-RM-90-112(P)
	0-RM-90-132(E)	2-RM-90-112(P)

NOTE: P=Process

E=Effluent

Setpoint Calculation Α.

- Obtain iodine release rate (or concentration) limit for nuclide used to determine setpoint 1.
- 2. Obtain maximum design vent flow of exhaust stream to be monitored, monitor sample flowrate (controlled < 2 CFM), and sample time (usually 168 hoursone week).
- 3. Complete worksheet no. 18-C.5A. Calculate setpoint count rate by multi-plying nuclide concentration by its sensitivity^(a).

в. Detector Efficiency Verification

- 1. Obtain charcoal filter from monitor per TI-16, and record appropriate monitor's count rate at time of sampling.
- 2. Count sample according to TI-12, Method B.5.
- Complete worksheet no. 18-C.5B. Calculate expected count rate by multi-plying nuclide concentration by its sensitivity . Compare with 3. monitor count rate. Calculate percent deviation.
- NOTE: (a) RD-35 is a single channel analyzer monitoring I-131.

-27-

(b) Detector sensitivity for I-131 (2.7 x 10⁴ cpm/µCi) supplied by General Atomics Calibration Report (November 1974).

SQNP TI-18 Page 2 of 5 Rev. 1

Section C.5 Worksheet No. 18-C.5A

Setpoint Calculation Worksheet (Iodine & Detector; RD-35)

1. Obtain Limiting Nuclide Concentration:

a. For -90-100, -90-101, and -90-132, obtain limiting concentration by dividing release rate limit (Appendix A) by the maximum design vent flowrate (Appendix B).

b. For -90-106 and -90-112, obtain limiting concentration from FSAR (Final Safety and Analysis Report), Table 12.1-1.

K Ci/CC

2. Calculate average monitor flowrate for sample period.

$$\frac{\text{CFM x 60 } \min_{\text{hr}} x \frac{24 \text{ hr}}{\text{day}} x 2.832E04 \frac{\text{CC}}{\text{ft}^3} = \frac{\text{CC}}{\text{day}}$$

3. Determine accumulation term by the following equation:

A = (Nuclide Concentration * Monitor Efficiency^(a) * Monitor Flowrate $(1) (_____MCi/CC) (I-131=2.7x10 CPM/µCi) * (2) (CC/day)$ (Sample Period (whole days) $<math display="block">A = (1) \qquad \mu Ci/CC (I-131) \times 2.7E04 (CPM) \times (2) \qquad CC \\ \mu Ci) \qquad (2) \qquad Days$ $A = (CP) \\ (Day)^2$

Note: (a) Obtained from General Atomic Calibration Report

is delle TI-18 Page 3 of 5 Rev. 1

Section C.5 Worksheet No. 18-C.5A

4. Determine nuclide decay term:

NOTE: For I-131 and a sampling period of 7 days $DT = 16.5 D^2$

.

.

-

-

.

See Appendix C derivation of equations to evaluate nuclide decay term for sampling periods less than 7 days.

Monitor Setpoint = Accumulator term (A) x decay term (DT) 5. (Less Background) (3) (4)

Monitor background count rate: CPM 6.

7. Add (5) and (6)

_____ CPM + _____ CPM = _____ CPM

SQNP TI-18 Page 4 of 6 Rev. 1

Section C.5 Worksheet No. 18-C.5B

Detector Efficiency Verification (Iodine & Detector; RD-35)

Mon	itor Date	Time
1.	Sample activity corrected to time of sampling:	
	<u> </u>	
2.	Monitor Background count rate:	
	CPM -	
3.	Monitor count rate at time of sampling:	
	CPM	
4.	Calculated detector sensitivity for I-131:	
	(3) CPM CPM .	
	$\frac{1}{(1)}\mu^{Ci}$	
5.	Calculate percent deviation:	
	CPM/ µCi - 2.7E04 ^(a) CPM/µCi	
	x 100 =	%
	(a) RD-35 Monitor efficiency for I-131.	

1272 033

* .

SQNP TI-18 Page 5 of 6 Rev. 1

Section C.5 Worksheet No. 18-C.5B

Monitor						1	Date _		-	Time			
Notes:	(1)	For for	count percei	rates nt dev:	10-500 iations	CPM, great	notify ter tha	chem. n 30%.	engr. Note	assoc. in rem	or arks	chem. s sect	engr. ion.

. . . .

÷ .

-

.-

(2) For count rates greater than 500 CPM, notify chem. engr. assoc. or chem. engr. for percent deviations greater than 10%. Note in remarks section.

	Analyst	Date	Chem. Engr. Assoc.	Date
Remarks:			and a strategy and a second second	and the state

SQNP TI-18 Page 6 of 6 Rev. 1

Section C.5

RD-32 Monitor Setpoints - Initial (Does not include background count rate)

Service Building (-90-132): 3710 CPM Auxiliary Building (-90-102): 3876 CPM (for 220,000 CFM) Upper Compartment (-90-112): 29750 CPM Lower Compartment (-90-106): 29750 CPM Shield Building (-90-100): 58333 CPM

1272 035

-

-

SQNP TI-18 Page 1 of 5 Rev. 1

Setpoint

Section C.6

- RD-36-01 Particulate & Detector for the following process monitors: Α.
 - (I) 8 CFM Effluent Monitors:

-RM-90-100	2-RM-90-106
-RM-90-100	1-RM-90-112
-RM-90-101	2-RM-90-112
L-RM-90-106	0-RM-90-132

(II) 10 CFM Area Monitors:

0-RM-90-12		0-RM-90-16
0-RM-90-13		0-RM-90-17
1-RM-90-14		1-RM-90-62
2-RM-00-14		2-RM-90-62
0-RM-90-15		0-RM-90-138

(III) Setpoints:

ffluent	Monitor

1-RM-90-100	1.1E-8 AC1/CC
2-RM-90-100	1.1E-8 µ Ci/CC
C-RM-90-101	1.4E-9 M Ci/CC
1-RM-90-106	1.5E-5 L Ci/CC
2- PM-90-106	1.5E-5 LC1/CC
1-RM-90-112	1.5E-5 µCi/CC
2-RM-90-112	1.5E-5 M Ci/CC
0-RM-90-132	2.8E-9 µCi/CC
Area Monitor	Setpoints ^(a)
0-RM-90-12	3.0E-9 M.Ci/CC
0-RM-90-13	3.0E-9 #Ci/CC
1-RM-90-14	3.0E-9 1 Ci/CC
2-RM-90-14	3.0E-9 4 Ci/CC
0-RM-90-15	3.0E-9 H Ci/CC
0-RM-90-16	3.0E-9 MCi/CC
0-RM-90-17	3.0E-9 / Ci/CC
1-RM-90-62	3.0E-9 Ci/CC
2-RM-90-62	3.0E-9 4Ci/CC
0-RM-90138	3.0E-9 # Ci/CC

-

Notes: (a) Setpoints for area monitors are initial setpoints only, to be reset by Health Physicist following operating experience.

(b) I-131 is used to convert ACi/CC to CPM for each monitor.

SQNP TI-18 Page 2 of 5 Rev. 1

Section C.6

B. Detector Efficiency Verification

- Obtain particulate filter sample according to TI-16, and record the monitor count rate at time of sampling on work sheet no. 18.C.6.1.
- Count sample according to TI-12, method B.5. Identify the major contributing nuclides and its activity on work sheet no. 18.C.6.1.
- Obtain the monitors average flow rate for samples duration from SI-2. Record on worksheet no. 18.C.6.a.
- 4. Complete worksheet no. 18.C.6.1. Calculate expected count rate by dividing each nuclides activity by the monitors average flow rate and the sample duration time, then multiplying by the nuclides sensitivity and decay factors using the following formula:

Sensitivity CPM/(µCi/CC) Nuclide Decay Activity Correction (e Monitor expected Avg. Monitor (ft /min) *Sample Conversion (2.83 x 10 (min) CPM flow rate duration Factor Where: $\lambda = 0.693$ and, t = duration time (hr)Half life (hr)

- (c) Obtained from figure 18-C.6
 - Sum the computed CPM' for all detected nuclides and add monitor's background CPM.
 - Compare total expected CPM with the monitor's count rate at time of sampling. Calculate percent dev.ation.
 - 7. For count rates 10-500 ('PM, notify chem. engr. assoc. or chemical engineer for percent deviations greater than 30%.
 - 8. For count rates greater than 500 CPM, notify chemical engineer assoc, or chemical engineer for percent deviations greater than 10%.

-34 -

SQNP TI-18 Page 3 of 5 Rev. 1

Section C.6

Rad - nue lides	Sensitivities ^(d) 8CFM	Sensitivities (d)	<u>Half</u> Life
Barium - 1?9 Barium - 740 Cesium - 134 Cesium - 136 Cesium - 137 Cesium - 138 Cobalt - 58 Cobalt - 58 Cobalt - 58 Cobalt - 60 Fluorine - 18 Iodine - 131 Iodine - 132 Iodine - 135 Iron - 59 Lanthanum - 140 Molybdenum - 99 Rubridium - 88 Zirconium - 95 Yttrium - 99	1.03E12 9.97E11 7.35E11 6.26E11 9.45E11 9.45E11 5.8E11 9.86E11 1.017E12 1.0E12 1.076E12 6.69E11 1.03E12 1.12E12 1.009E12 7.14E11 6.26E11	1.08E12 G.07E12 7.74E11 7.69E11 1.037E12 1.03E12 1.52E11 7.2E11 1.03E12 1.01E12 1.069E12 1.07E12 1.15E12 7.99E11 1.09E12 1.20E12 1.06E12 8.87E11 7.69E11	1.38 hours 307.2 hours 1.8224 hrs 314.4 hrs 2.64525 hrs 0.503 hrs 1699.2 hrs 4.6224 hrs 1.83 hrs 192.96 hrs 2.03 hrs 0.943 hrs 6.61 hrs 1070.4 hrs 42.2 hrs 66.0 hrs 0.297 hrs 1535.5 hrs

C. RD-36-01 Particulate 🖍 Detector Sensitivities

(c) Obtained from figure 18-C.6.

- Notes: (c) Sensitivities were determined for the Beta decay (with intensities greater than one percent) of anticipated nuclides. The sensitivity for each Beta decay was multiplied by the beta decays intensity, and these products were summed, yeilding an overall sensitivity. Sensitivities for other nuclides may be determined from curve 18.C.6 and the nuclides. Beta decay energy and respective intensities. Information supplied by "Nuclear Decay Data for Radionuclides occurring in routine releases from Nuclear Fuel Cycle Facilities" (August 1977), prepared by Oak Ridge National Laboratory.
 - (d) Figure 18-C.6 sensitivities are based on monitor flow rate of 8 or 10 CFM operating in fixed filter mode for 1 hour(units for sensitivity are (CPM/((Ci/CC)))

		SQNP TI-18 Page 4 of 5 Rev. 1			
		Section C.6 Worksheet 18.C.6.1			
	CALI ((RD-	BRATION WORKSHEET NO. 18 36-01) Particulate Monit	.6-1 ors)		
		Monitor Date Time	-		
1.	Monitor reading at time	of sampling:	CPM		
2.	Average monitor flow rat	e during ft ³ /	min sample duration	n, from S	I-2.
3.	Identified _Nuclides	. Nuclide Activity (MCi/CC)	Nuclide ^(e) Count Rate (CPM	<u>1)</u>	
	Ba = 140 Cs = 137 Co = 58 Co = 60 Fe = 59 I = 131				
•				-	
4.	NOTE: (e) Count rate of	Total	mation C 6 (P h)	_ CPM	
5.	Expected count rate = to = (# Calculate monitors perce	otal CPM + background (4) + 100 CPM CPM			
υ.	% deviation = <u>Calculated</u>	CPM - Actual CPM - 100			
	Cal = $(\# 5) - (\# 5)$	(# 1) x 100			
		%			
Lab	Anal;st		/	1272	070
Chem	ical Eng. ASsoc.		• /	1212	03.
Appr	oved By Chemical Engineer				

-36 -

.-

Map P'-10 Corve th.c.C Page 5 of 5 Rev. 1

B ENELGY HEV HAX

RD-36 particulate detector: count rates operating at 1 in./hr after 2 hr min or operating in fixed filter mode for 1 hr.

General Atomics Calibration Report E-199-349 (March 1974)

-37-

SQNP TI-18 . Section C.7 Page 1 of 5 Rev. 1

RD-33 & DETECTOR

Monitors: 1-RM-90-120(E) 2-RM-90-123(P) 0-RM-90-141(E) 2-RM-90-120(E) 1-RM-90-124(P) 1-RM-90-170(P) 1-RM-90-121(E) 2-RM-90-124(P) 2-RM-90-170(P) 2-RM-90-121(E) 0-RM-90-133(E) 0-RM-90-211(E) 0-RM-90-122(E) 0-RM-90-134(E) 0-RM-90-212(E) 0-RM-90-123(P) 0-RM-90-140(E) 0-RM-90-225(E) 1-RM-90-123(P)

Note: P = Process E = Effluent

A. Setpoint Calculation

- 1. Obtain liquid sumple of medium per TI-16.
- 2. Count sample according to TI-12, method B.5.
 - . Complete Worksheet No. 18-C.7A. Calculate setpoint count rate by multiplying nuclide concentration by its sensitivity (a) and summing for all detected nuclides.

B. Detector Efficiency Verification

- 1. Obtain liquid sample of medium per TI-16 and record the appropriate monitor's count rate at time of sampling.
- 2. Count sample according to TI-12, method B.5.
- Complete Worksheet No. 18-C.7B. Calculate expected count rate by multiplying nuclide concentration by its sensitivity^(a) and summing for all detected nuclides. Compare with monitor count rate at time of sampling. Calculate percent deviation.
- NOTES: (a) Sensitivies were determined for the gamma rays (with intensities greater than one percent) of anticipated nuclides. The sensitivity for each gamma ray was multiplied by the gamma ray's intensity, and these products were summed, yielding an overall sensitivity. Sensitivities for these and other n lides may be determined from Figure 18-C.7 and the nuclide's gar rays and respective intensities Information supplied by "Nuclear Dec., Jata for Radionuclides Occurring in Routine Releases from Nuclear Fuel Cycle Facilities" (August 1977, prepared by Oak Ridge National Laboratory) and General Atomics Calibration Reports (February 1976).

-38-

SQNP TI-18 Section C.7 Page 2 of 6 Rev. 1

Worksheet No. 18-C.7A

Setpoint Calculation Worksheet (Liquid & Detector; RD-33)

Monitor

Date Time

1. Sample activity corrected to sample time.

Isotope Concent	tration	Monitor	Sensitivity-	Isotope ^{(a}	.)	Isotopic Computed Monitor Response
M Ci/cc	Sb-122 X	3.01E08	CPM/M Ci/cc	(Sb-122)	-	CPM
µ Ci/cc	Sb-124 X	6.65E0b	CPM/# Ci/cc	(Sb-124)	= "	CPM
<u>µ</u> Ci/çe	Ba-140 X	1.34E08	CPM/M Ci/cc	(Ba-140)	= -	CPM
K Ci/cc	Ce-144 X	3.65E07	CPM/# Ci/cc	(Ce-144)	= -	CPM
KCi/cc	Cs-134 X	8.79E08	CPM/ACi/cc	(Cs-134)	= -	CPM
" " Ci/cc	Cs-137 X	3.41E08	CPM/A Ci/cc	(Cs-137)	= -	CPM
µ Ci/cc	Cr-51 X	4.08E07	CPM/M Ci/cc	(Cr-51)	= -	CPM
K Ci/cc	Co-58 x	5.06ECS	CPM/# Ci/cc	(Co-58)	= -	CPM
<i>µ</i> Ci/cc	Co-60 X	6.48E08	CPM/# Ci/cc	(Co-60)		CPM
K Ci/cc	F-18 X	8.03E08	CPM/M Ci/cc	(F-18)		CPM
M Ci/cc	I-131 X	4.02E08	CPM/M Ci/cc	(I-131)	= -	CPM
M Ci/cc	I-133 X	4.06E08	CPM/ Ci/cc	(I-133)	= -	CPM
KCi/cc	I-135 X	3.99E08	CPM/A.Ci/cc	(I-135)	= -	CPM
µ Ci/cc	Fe-59 X	3.47E08	CPM/A Ci/cc	(Fe-59)	= -	CPM
# Ci/cc	La-140 X	7.05E08	CPM/M Ci/cc	(La-140)	=	CPM
M Ci/cc	Mn-54 X	3.80E08	CPM/MCi/cc	(Mn-54)	= -	CPM
MCi/cc	Mn-56 X	4.82E08	CPM/A Ci/cc	(Mn-56)	= -	CDM
µ Ci/cc	Mo-99 X	1.19E08	CPM/µ Ci/cc	(Mo-99)	= -	CPM
H Ci/cc	ND-95 X	3.89E08	CPM/M Ci/cc	(ND-95)		CDM
µ Ci/cc	Na-24 X	5.20E08	CPM/A Ci/cc	(Na-24)	=	CPM
H Ci/ c	Tc-99m X	3.09E08	CPM/m Ci/cc	(Tc-99m)	=	CPM
K Ci, cc	Xe-133 X	1.85E07	CPM/A Ci/cc	(Xe-133)	= -	CPM
# Ci/cc	Xe-135 X	3.80E08	CPM/ACi/cc	(Xe-135)		CPM
M Ci/cc	Zn-65 X	1.88E08	CPM/A Ci/cc	(Zn-65)	=	CPM
M Ci/cc	Zr-95 X	3.89E08	CPM/A Ci/cc	(Zr-95)		CPM
K Ci/cc	Ru-103 X	3.80E08	CPM/MCi/cc	(Ru-103)	=	CPM
K Ci/cc	()x()	CPM/ACi/cc	()	=	CPM
µCi/ce	()x()	CPM/# Ci/cc	()		CPM
M Ci/cc	()x()	CPM/ Ci/cc	()	=	CPM

2.

(Total Calculated) = ____ CPM

1272 042

(a) Obtained from Figure 18-C.7. (Summary of isotopic energies multiplied by their respective isotope (major peaks) percent abundances).

SQNP TI-18, Section C.7 Worksheet No. 18-C.7A Page 3 of 6 Rev. 1

Date Time

Total = CPM

3. For monitor(s) 1-RM-90-120(E) 2-RM-90-120(E) 1-RM-90-121(E)

> 2-RM-90-121(E) 0-RM-90-122(E) 0-RM-90-225(E)

NOTE: E = Effluent

(b) For monitor 0-RM-90-211 the setpoint will be 0.90 X Total Calculated (From Step No. 2). Setpoint for monitor 0-RM-90-211 is: 0.90 X CPM = _____ CPM Background = + ____ CPM Total = ____ CPM

NOTES:

 Scaling factor to prevent alarms/trips due to variations in the effluent concentrations at the release point. This cannot be changed without the prior approval of the lead or cognizant chemical engineer and noted in the remarks section of worksheet.

1236	Lab Analyst	Date	Chem.	Engr.	Assoc.	Date
Remarks:				199		

-40-

SQNP TI-18 Section C.7 Page 4 of 6 Rev. 1.

Worksheet No. 18-C.7B

Detector Efficiency Verification Worksheet (Liquid & Detector; RD-33)

Monitor			Date	Time
1. Sample activity	y corrected to say	mple time. ON	btain Count	Rate.
Isotope Concent	tration Monitor	Sensitivity-	Isotope ^(a)	Isotopic Computed Monitor Response
M Ci/cc	Sb-122 X 3.01E0	8 CPM/ Ci/cc	(Sb-122) =	CPM
H Ci/cc	Sb-124 X 6.65E0	8 CPM/A Ci/cc	(Sb-124) =	CPM
Ci/cc	Ba-140 X 1.34E0	8 CPM/A Ci/cc	(Ba-140) =	CPM
HCi/cc	Ce-144 X 3.65E0	7 CPM/m. Ci/cc	(Ce-144) =	CPM
Ci/cc	Cs-134 X 8.79E0	8 CPM/H Ci/cc	(Cs - 134) =	CPM
Ci/ce	Cs-137 X 3.41E0	8 CPM/A Ci/cc	(Cs-137) =	CPM
Ci/cc	Cr-51 X 4.08E0	7 CPM/M Ci/cc	(Cr-51) =	CPM
Ci/cc	Co-58 x 5.06E0	8 CPM/M Ci/cc	(Co-58) =	CPM
Ci/ce	Co-60 X 6.48E0	8 CPM/A Ci/cc	(Co-60) =	CPM
Ci/cc	F-18 X 8.03E0	8 CPM/ Ci/cc	(F-18) =	CPM
Ci/cc	I-131 X 4.02E0	8 CPM/A Ci/cc	(I-131) =	CPM
K Ci/cc	I-133 X 4.06E0	8 CPM/H Ci/cc	(I-133) =	CPM
H Ci/cc	1-135 X 3.99 0	B CPM/M Ci/cc	(I-135) =	CPM
M Ci/cc	Fe-59 X 3.1.71.7	B CPM/A Ci/cc	(Fe-59) =	CPM
H Ci/cc	La-140 X 7.05508	B CPM/MCi/cc	(La - 140) =	'PM
H Ci/cc	Mn-54 X 3.80E2	B CPM/H Ci/cc	(Mn - 54) =	CPM
H Ci/cc	Mn-56 X 4.82E08	B CFM/M Ci/cc	(Mn - 56) =	CPM
HCi/cc	Mo-99 X 1.19FO	B CPM/M Ci/cc	(Mo-99) =	CPM
Ci/cc	Nb-95 X 3.89E08	B CPM/H Ci/cc	(Nb-95) =	CPM
H Ci/cc	Na-24 X 5.20E08	B CPM/ Ci/cc	(Na-24) =	CPM
"Ci/cc	Tc-99m X09E08	B CPM/H Ci/cc	(To-00m) =	CDM
L Ci/cc	Xe-133 X 1.85E0	CPM/A Ci/cc	(Xe=133) =	CPM
H Ci/cc	Xe-135 X 3.80E08	B CPM/H Ci/cc	(Xe-135) =	CPM
L Ci/cc	Zn-65 X 1.88E08	B CPM/H Ci/cc	(2n-65) = -	CPM
"Ci/cc	Zr-95 X 3.89E08	B CPM/ H Ci/co	(2n-05) = -	OPM OPM
"Ci/cc	Ru-103 X 3.80F0	B CPM/H Ci/co	(Bu=103) =	CPM CPM
H Ci/cc	()X	CPM/4 Ci/cc	(1111-105) =	CPM CPM
H. Ci/ac	()x	CPM/H Ci/ce		CPM CPM
H Ci/cc	()x	CPM/H Ci/ce		CPM
	·/^	- 01 M/AC01/66	·/ = -	CPM

2.

(Total Calculated) = ____ CPM

(a) Obtained from Figure 18-C.7 (Summing of isotopic energies multipled by their respective isotope (major peaks) percent abundance).

SQNP TI-18, Section C.7 Worksheet No. 18-C.7B Page 5 of 6 Rev. 1 Date _____ Time

3. Monitor _____ Reading at time of sampling: _____ CPM (Less Background).

4. Calculate monitor's percent deviation from calculated value:

% Deviation = (Valu, '1 Step No. 2) - (Value in Step No. 3) x 100 = ____% (a),(b) (Value in Step No. 2)

÷

NOTES: (a) For count rates 10-500 CPM, notify Chemical Engineering Associate or Chemical Engineer for percent deviations greater than 30%.

(b) For count rates greater than 500 CPM, notify Chemical Engineering Associate or Chemical Engineer for percent deviations greater than 10%.

. Analyst	Date	Chem. Engr. Associate	Date
Remarks:			
.•			
	127	72 045	

CQNP T1-18 Face 6 of 6 Rev. 1

FIGURE 18-C.7

SQNP TI-18 Section C.8 Page 1 of 6 Rev. 1

RD-33-06 Y DETECTOR

Monitors: 1-RM-90-104(P) 2-RM-90-104(P)

NOTE: P = Process

A. Setpoint Determination

1. Setpoint is to reflect any detection of failed fuel in the primary coolant and remain above expected activity levels as the life of the core progresses. The alarm will be arbitrarily set amid scale (10 CPM) initially and readjustment based on operating experience.

B. Detector .iciency Verification

- 1. Obtain liquid sample of coolant letdown per TI-16, and record the monitor count rate at the time of sampling.
- 2. Count sample according to TI-12, method B.5.
- 3. Complete Worksheet No. 18-C.8B. Calculate expected count rate by multiplying nuclide concentration by its sensitivity and summing for all detected nuclides. Compare with monitor count rate at time of sampling. Calculate percent deviation.
- NOTES :

(a) Sensitivies were determined for the gamma rays (with intensities greater than 1 percent) of participated nuclides. The sensitivity for each gamma ray was multiplied by the gamma ray's intensity, and these products were summed, yielding an overall sensitivity. Sensitivities for other nuclides may be determined from Figure 13-C.8 and the nuclide's gamma rays and respective intensities. Information supplied by Nuclear decay data for Radionuclies occuriing in routine releases from nuclear fuel cycle facilities" (August 1977, prepared by Oak Ridge National Laboratory) and General Atomics Calibration Report (July 1975).

1272 047

-44-

SQNP TI-18 Section C.8 Page 2 of 6 Rev. 1

Worksheet No. 18-C.8A

Setpoint Calculation Worksheet (Liquid & Detector; RD-33-06)

1. Sample activity corrected to sample time. <u>Isotope Concentration Monitor Sensitivity-Isotope(a)</u> <u>ACCI/CC Sb-122 X 2.57E05 CPM/ACCI/CC (Sb-122) = CPM</u> <u>CCI/CC Sb-124 X 6.04E05 CPM/ACCI/CC (Sb-124) = CPM</u> <u>CCI/CC Ba-140 X 1.14E04 CPM/ACCI/CC (Ba-140) = CPM</u> <u>CCI/CC Cc-144 X 2.54E04 CPM/ACCI/CC (Ca-134) = CPM</u> <u>CCI/CC Cs-137 X 3.01E05 CPM/ACCI/CC (Ca-134) = CPM</u> <u>CCI/CC Cs-137 X 3.01E05 CPM/ACCI/CC (Cs-137) = CPM</u> <u>CCI/CC Cs-137 X 3.01E05 CPM/ACCI/CC (Cs-137) = CPM</u> <u>CCI/CC Cs-58 x 4.46E05 CPM/ACCI/CC (Cs-137) = CPM</u> <u>CCI/CC Cs-58 x 4.46E05 CPM/ACCI/CC (Cs-58) = CPM</u> <u>CCI/CC Cs-60 X 6.04E05 CPM/ACCI/CC (Cs-68) = CPM</u> <u>CCI/CC F-18 X 6.96E05 CPM/ACCI/CC (I-131) = CPM</u> <u>CCI/CC I-131 X 3.45E05 CPM/ACCI/CC (I-131) = CPM</u> <u>CCI/CC I-135 X 3.6FE05 CPM/ACCI/CC (I-135) = CPM</u> <u>CCI/CC I-135 X 3.95E05 CPM/ACCI/CC (I-135) = CPM</u> <u>CCI/CC I-135 X 3.6FE05 CPM/ACCI/CC (I-135) = CPM</u> <u>CCI/CC I-135 X 3.18E05 CPM/ACCI/CC (I-135) = CPM</u> <u>CCI/CC I-135 X 3.6FE05 CPM/ACCI/CC (I-135) = CPM</u> <u>CCI/CC I-135 X 3.18E05 CPM/ACCI/CC (I-135) = CPM</u> <u>CCI/CC Mn-54 X 3.39E05 CPM/ACCI/CC (In-56) = CPM</u> <u>CCI/CC Mn-54 X 3.39E05 CPM/ACCI/CC (In-56) = CPM</u> <u>CCI/CC Mn-55 X 3.4TE05 CPM/ACCI/CC (Mn-56) = CPM</u> <u>CCI/CC Mn-55 X 3.4TE05 CPM/ACCI/CC (Mn-56) = CPM</u> <u>CCI/CC Nn-55 X 3.4TE05 CPM/ACCI/CC (Na-24) = CPM</u> <u>CCI/CC Xn-155 X 3.1E050 CPM/ACCI/CC (Na-24) = CPM</u> <u>CCI/CC Xn-155 X 3.4TE05 CPM/ACCI/CC (Na-24) = CPM</u> <u>CCI/CC Xn-155 X 3.4TE05 CPM/ACCI/CC (Xa-24) = CPM</u> <u>CCI/CC Xn-155 X 3.4TE05 CPM/ACCI/CC (Xa-24) = CPM</u> <u>CCI/CC Xn-155 X 3.4TE05 CPM/ACCI/CC (Xa-25) = CPM</u> <u>CCI/CC Zn-65 X 1.69E05 CPM/ACCI/CC (Zn-95) = CPM</u> <u>CCI/CC Zn-65 X 1.69E05 CPM/ACCI/CC (Zn-95) = CPM <u>CCI/CC Zn-6</u></u>	Mon	itor	1000	1		Date	Time
Isotope Concentration Monitor Sensitivity-Isotope (a) Isotopic Computer Monitor Response MCi/cc Sb-122 X 2.57E05 CPM/ACi/cc (Sb-122) = CPM MCi/cc Sb-124 X 6.04E05 CPM/ACi/cc (Sb-124) = CPM MCi/cc Ba-140 X 1.14E04 CPM/ACi/cc (Ba-140) = CPM MCi/cc Ca-144 X 2.54E04 CPM/ACi/cc (Ca-144) = CPM MCi/cc Cs-137 X 3.01E05 CPM/ACi/cc Cs-134) = CPM MCi/cc Cs-137 X 3.01E05 CPM/ACi/cc Cs-137) = CPM MCi/cc Cs-137 X 3.01E05 CPM/ACi/cc Cs-137) = CPM MCi/cc Cs-58 x 4.46E05 CPM/ACi/cc Cs-137) = CPM MCi/cc Co-56 x 4.45E05 CPM/ACi/cc Cs-137) = CPM MCi/cc Co-58 x 4.46E05 CPM/ACi/cc Cs-131) = CPM MCi/cc Co-60 X 6.04E05 CPM/ACi/cc Co-60) = CPM MCi/cc Co-58 x 4.46E05 CPM/ACi/cc Co-60) = CPM MCi/cc Co-60 X 6.04E05 CPM/ACi/cc Co-60) = CPM MCi/cc F-18 X 3.45E05 CPM/ACi/cc Co-60) = CPM MCi/cc F-13 X 3.45E05 CPM/ACi/cc	1.	Sample activity	correct	ed to sam	ple time.		
		Isotope Concent	ration	Monitor	Sensitivity-1	(a)	Isotopic Computed Monitor Response
— Ci/cc Sb-124 X 6.04E05 CPM/# Ci/cc (Sb-124) =CPM — Ci/cc Ba-140 X 1.14E04 CPM/# Ci/cc (Ba-140) =CPM — Ci/cc Cc-144 X 2.54E04 CPM/# Ci/cc (Ba-140) =CPM — Ci/cc Cc-144 X 2.54E04 CPM/# Ci/cc (Ca-144) =CPM — Ci/cc Cc-137 X 3.01E05 CPM/# Ci/cc (Cs-134) =CPM — Ci/cc Cs-137 X 3.01E05 CPM/# Ci/cc (Cs-137) =CPM — Ci/cc Cs-137 X 3.01E05 CPM/# Ci/cc (Cs-137) =CPM — Ci/cc Cs-58 x 4.46E05 CPM/# Ci/cc (Cs-58) =CPM — Ci/cc Co-58 x 4.46E05 CPM/# Ci/cc (Co-60) =CPM — Ci/cc C-131 X 3.45E05 CPM/# Ci/cc (Co-60) =CPM — Ci/cc I-131 X 3.43E05 CPM/# Ci/cc (I-131) =CPM — Ci/cc I-133 X 3.56E05 CPM/# Ci/cc I-133) =CPM — Ci/cc I-135 X 3.67E05 CPM/# Ci/cc I-135) =CPM — Ci/cc I-135 X 3.39E05 CPM/# Ci/cc I-135) =CPM — Ci/cc Ka-140 X 6.45E05 CPM/# Ci/cc I-140) =CPM — Ci/cc Mn-54 X 3.39E05 CPM/# Ci/cc In-		M Ci/cc	Sb-122	X 2.57E05	CPM/ACi/cc	(Sb-122) =	CPM
		HCi/cc	Sb-124	X 6.04E05	CPM/# Ci/cc	(Sb-124) =	CPM
	-	L Ci/cc	Ba-140	X 1.14E04	CPM/A Ci/cc	(Ba-140) =	CPM
		µCi/cc	Cc-144	X 2.54E04	CPM/A Ci/cc	(Ce-144) =	CPM
		KCi/cc	Cs-134	X 7.81E05	CPM/A Ci/cc	(Cs-134) =	CPM
		K Ci/cc	Cs-137	X 3.01E05	CPM/ Ci/cc	(Cs-137) =	CPM
	_	K Ci/cc	Cr-51 .	X 3.45E04	CPM/ MCi/cc	(Cr-51) =	CPM
	_	K Ci/ec	Co-58	x 4.46E05	CPM/A Ci/cc	(Co-58) =	CPM
		M Ci/cc	Co-60	X 6.04E05	CPM/A Ci/cc	(Co-60) =	CPM
		H Ci/cc	F-18	X 6.96E05	CPM/ACi/cc	(F-18) =	CPM
		L Ci/cc	I-131	X 3.43E05	CPM/A Ci/cc	(I-131) =	CPM
		MCi/cc	I-133	X 3.56E05	CPM/A Ci/cc	(I-133) =	CPM
		M Ci/cc	I-135	X 3.67E05	CPM/# Ci/cc	(I-135) =	CPM
		MCi/cc	Fe-58	X 3.18E05	CPM/A Ci/cc	(Fe-59) =	CPM
		A Ci/cc	La-140	X 6.45E05	CPM/ACi/cc	(La - 140) =	CPM
		H Ci/cc	Mn-54	X 3.39E05	CPM/A Ci/cc	(Mn - 54) =	CPM
μ Ci/ce Mo-99 X 9.95E04 CPM/μCi/ce (Mo-99) = CPM μ Ci/ce Nb-95 X 3.47E05 CPM/μCi/ce (Nb-95) = CPM μ Ci/ce Na-24 X 5.23E05 CPM/μCi/ce (Na-24) = CPM μ Ci/ce Te-99m X 2.18E05 CPM/μCi/ce (Te-99m) = CPM μ Ci/ce Xe-135 X 3.12E05 CPM/μCi/ce (Xe-135) = CPM μ Ci/ce Zn-65 X 1.69E05 CPM/μCi/ce (Zn-65) = CPM μ Ci/ce Zr-95 X 3.47E05 CPM/μCi/ce (Zn-65) = CPM		H Ci/cc	Mn-56	X 4.42E05	CPM/A Ci/cc	(Mn - 56) =	CPM
	1	K Ci/cc	Mo-99	X 9.95E04	CPM/ MCi/cc	(Mo-99) =	CPM
		M Ci/cc	Nb-95	X 3.47E05	CPM/µCi/cc	(Nb-95) =	CPM
H Ci/cc Tc-99m X 2.18E05 CPM/H Ci/cc (Tc-99m) = CPM H Ci/cc Xe-135 X 3.12E05 CPM/H Ci/cc (Xe-135) = CPM H Ci/cc Zn-65 X 1.69E05 CPM/H Ci/cc (Zn-65) = CPM H Ci/cc Zn-95 X 3.47E05 CPM/H Ci/cc (Zn-65) = CPM		HCi/ce	Na-24	X 5.23E05	CPM/M Ci/cc	(Na-24) =	CPM
µCi/cc Xe-135 X 3.12E05 CPM/µCi/cc (Xe-135) = CPM µCi/cc Zn-65 X 1.69E05 CPM/µCi/cc (Zn-65) = CPM µCi/cc Zr-95 X 3.47E05 CPM/µCi/cc (Zr-95) = CPM		H Ci/cc	Tc-99m	X 2.18E05	CPM/M Ci/cc	(Tc - 99m) =	CPM
		L Ci/cc	Xe-135	X 3.12E05	CPM/A Ci/cc	(Xe-135) =	CPM
Ci/cc Zr-95 X 3.47E05 CPM/A Ci/cc (Zr-95) = CPM		#Ci/cc	Zn-65	X 1.69E05	CPM/A Ci/cc	(2n-65) =	CPM
		L Ci/cc	Zr-95	X 3.47E05	CPM/A Ci/cc	(2r-95) =	CPM
μ C1/CC Ru-103 X 3.30E05 CPM/ μ C1/CC (Ru-103) = CPM		K Ci/cc	Ru-103	X 3.30E05	CPM/M Ci/cc	(Ru - 103) =	CPM
Ci/cc ()X CPM/M Ci/cc () = CPM		L Ci/cc	()	X	CPM/M Ci/cc	() =	CPM
$\mu Ci/cc () X CPM/\mu Ci/cc () = CPM$		"Ci/cc	()	X	CPM/M Ci/cc	() =	CPM
$\mu Ci/cc$ ()X CPM/ $\mu Ci/cc$ () = CPM		H Ci/cc	();	х	CPM/H Ci/cc	() =	CPM

2.

-

.--

.

(Total Calculated) = ____ CPM

(a) Obtained from Figure 18-C.8. (Summing of isotopic energies multiplied by their major peaks respective isotope percent abundances).

-45-

SQNP TI-18 Section C.8 Page 3 of 6 Rev. 1

WORKSHEET NO. 18-C.8A

Date	Time	

3.	For Monitor(s)	1-RM-90-104
		2-RM-90-104

.

Lab Analyst	Date	Chem. Engr. Associat	e Date
emarks:			
			1272 049

SQNP TI-18 Section C.8 Page 4 of 6 Rev. 1

Worksheet No. 18-C.8B

Detector Efficiency Verification Worksheet (Liquid **7** Detector; RD-33-06)

Monitor		Date	Time
1. Sample activity correct	ed to sample time. Of	btain count	rate. Isotopic Computed
Isotope Concentration	Monitor Sensitivity-	Isotope	Monitor Response
H Ci/cc Sb-122	2.57E05 CPM/ Ci/cc	(Sb-122) =	CPM
H Ci/cc Sb-124	6.04E05 CPM/# Ci/cc	(Sb-124) =	CPM
H Ci/cc Ba-140	(1.14EO4 CPM/H Ci/cc	(Ba-140) =	CPM
H Ci/cc Ce-144	(2.54EO4 CPM/M Ci/cc	(Ce-144) =	CPM
Ci/cc Cs-134	7.81E05 CPM/MCi/cc	(Cs - 134) =	CPM
Ci/cc Cs-137	3.01E05 CPM/H Ci/cc	(Cs - 137) =	CPM
Ci/cc Cr-51	3.45E04 CPM/# Ci/cc	(Cr-51) =	CPM
Ci/cc Cc-58	4.46E05 CPM/# Ci/cc	(Co-58) =	CPM
u Ci/cc Co-60	6.04E05 CPM/# Ci/cc	(Co-60) =	CPM
Ci/cr: F-18	6.96E05 CPM/H Ci/cc	(F-18) =	CPM
M Ci/cc I-131	3.43E05 CPM/# Ci/cc	(I-131) =	CPM
Ci/cc I-133	C 3.56E05 CPM/# Ci/cc	(I-133) =	CPM
Ci/cc I-135	(3.67E05 CPM/ Ci/cc	(I-135) =	CPM
Ci/cc Fe-58	3.18E05 CPM/# Ci/cc	(Fe-59) =	CPM
LCI/cc La-140	K 6.45E05 CPM/H Ci/cc	(La-140) =	CPM
LCi/cc Mn-54	(3.39E05 CPM/# Ci/ce	(Mn-54) =	CPM
LCi/cc Mn-56	K 4.42E05 CPM/M Ci/cc	(Mn-56) =	CPM
Ci/cc Mo-99	K 9.95E04 CPM/ # Ci/cc	(Mo-99) =	CPM
Ci/cc Nb-95	K 3.47E05 CFM/m Ci/cc	(Nt -95) =	CPM
Ci/cc Na-24	C 5.23E05 CPM/H Ci/cc	(Na-24) =	CPM
Ci/cc Tc-99m	(2.18E05 CPM/M Ci/cc	(Tc - 99m) =	CPM
LCi/cc Xe-135	3.12E05 CPM/# Ci/cc	(Xe-135) =	CPM
H Ci/cc Zn-65	(1.69E05 CPM/ A Ci/cc	(2n-65) =	CPM
Ci/cc Zr-95	3.47E05 CPM/# Ci/cc	(2r-95) =	CPM
Ci/cc Ru-103	C 3.30E05 CPM/M Ci/cc	(Ru-103) =	CPM
µ Ci/ce ()	CPM/H Ci/cc	() =	CPM
(Ci/cc ()	CPM/H Ci/cc	() =	CPM
Ci/cc ()	CPM/MCi/cc	() =	CPM

2.

(Total Calculated) = ____ CPM

(a) Obtained from Figure 18-C.8. (Summing of isotopic energies multiplied by their respective major peak(s) isotope percent abundances).

-47-

SQNP TI-18 Section C.8 Page 5 Of 6 Rev. 1

Worksheet No. 18-C.8B

Date Time

3. Monitor _____ CPM (less background)

4. Calculate monitor's percent deviation from calculated value:

% deviation = (Value in No. 2) - (Value in No. 3) X 100 = _____% (Value in No. 2)

- NOTES: (1) For count rates 10 500 CPM, notify Chemical Engineering Associate. or Chemical Engineer for percent deviations greater than 30 percent.
 - (2) For count rates greater than 500 CPM, notify Chemical Engineering Associate or Chemical Engineer for percent deviations greater than 10 percent.

1272 051

Lab Aanalyst

Date

Chem. Engr. Associate Date

Remarks:

-48-

SCHP TT-18 Page 6 of 6 Rev. 1

Fl.;ure 13-C.8

GENERAL ATCHICS CALIBRATION REPORT E-115-389 (July 1975)

SQNP TI-1^R Section D Page 1 of 3 Rev. 1

- D. Liquid Release Records. Batch and Continuous Releases.
 - Attachment A is to number and to chronologically list releases Batch and Continuous.
 - Attachment B is to number and to chronologically list all releases for a particular tank (separate sheet for each tank)
 - 1. Evaluate the release permit number to be assigned to the (batch or continuous) liquid release by obtaining the next sequential number from Attachment A logsheet being used and log on an appropriate SI and TI-18 Attachments A and B. The release permit number is evaluated using the following numbered sequential formula: (1) - (2) - (3) - (4)

Release Permit Number = (XX) - (XXXXX), (XX) - (XXX)

- (1) Current Year (i.e. 79, 80, 81, . . .)
- (2) Sequential Number of Total Plant Releases
- (3) Tank Number

01 Laundry and Hot Shower Tank "A" 02 Laundry and Hot Shower Tank "B" 03 Chemical Drain Tank 04 Waste Condensate Tank "A" 05 Waste Condensate Tank "B" 06 Waste Condensate Tank "C" 07 Monitor Tank 08 Cask Decontamination Collector Tank 09 High Crud Tank "A" 10 "IIgh Crud Tank "B" 11 Non-Reclaimable Waste Tank 12 Waste Evaporator Distillate Tank "A" 13 Waste Evaporator Distillate Tank "B" 14 Ul Steam Generator Blowdown Flash Tank 15 U2 Steam Generator Blowdown Flash Tank 16 CDWE Blowdown Tank (4) Sequential Number of Individual Tank Releases

SQNP TI-18, Section D Page 2 of 3 Rev. 1

ATTACHMENT A Liquid-Batch and Continuous Releases

Release Permit Number XX-XX-XXXXX-XXX	Date	Time Start	Time Stop	Maximum Allowable Flow(GPM)	Dilution Flow (GPM)	Volume Released (GAL)	Total MPC Before Release	Fraction After Release	Total Release Activity(Ci	Analyst)
							·			
	<u></u>						·			
							· · · · ·			
1272										
2 054										

-57-

SQNP TI-18, Section D Page 3 of 3 Rev. 1

ATTACHMENT B Tank Tank Number Liquid-Batch and Continuous Releases Release Permit Time Maximum Dilution Time Volume Total MPC Fraction Total Number Start Stop Allowable Flow Released Date Before After Release Analyst XXXXXXXXXXXXX Release Release Activity(Ci) Flow(GPM) (GPM) (GAL) 4 . . .

1272 055

4

.

52-

SQNP TI-18, Section E Page 1 of 2 Rev. 1

E. Gaseous Release Record - Batch (Gas Decay Tank Releases)

Evaluate the release permit number to be assigned to the batch gaseous release (gas decay tank or containment purge) by obtaining the next sequential release number from Attachment C logsheet being used and log on appropriate SI and TI-18 Attachment C. The release permit number is evaluated using the following numbered sequential formula.

(1) (2) (3) (4) Rlease Permit Number = (XX) - (XXXX) - (XX) - (XXX)

- (1) Current Year (i.e. 79, 80, 81 . .)
- (2) Sequential Release Number (To 1. for Plane)
- (3) Gas Decay Tank (A, B, C. . .) or Containment Purge (P)
- (4) Sequential Release Number (for individual tank)

SQNP TI18, Section E Page 2 of 2 Rev. 1

ATTACHMENT C GASEOUS RADWASTE - BATCH RELEASES

4

1

-54-

Release Permit Number XX-XXXX-X-XXX	Date Start	Time Start XXXX	Date Stop	Time Stop XXXX	Max.Allowable Flowrate (CFM)	Monitor Setpoint (µCi/cc)	Total Curies Released (Ci)	Cumulative Curies Release (Ci)	Analyst
									·
									·
1272									
057									

SQNP TI-18 Appendix A Page 1 of 3 Rev. 1

J. R. Calhoun, Director of Nuclear Power, 716 EB, C

G. F. Stone, Acting Director of Occupational Health and Safety, ROB, M

September 28, 1979

SEQUOYAH NUCLEAR PLANT ENVIRONMENTAL TECHNICAL SPECIFICATIONS

This is in response to your memorandum of September 19, 1979. Attached are the revised calculations of maximum instantaneous plant gaseous release rate limits for SQN which include limits for the service building. These release rates have been back-calculated from 10CFR20 dose limits of 500 mrem/yr to the total body from noble gases and 1,500 mrem/yr to the thryoid from iodines and particulates. Due to the addition of the service building releases, release rate limits for the containment, auxiliary, and turbine buildings are approximately 99 percent of those which were transmitted from E. A. Belvin to H. J. Green on March 29, 1979. Because the dose rates at any time, due to radioactive materials release in gaseous effluents from the site, shall be limited to the above values (Specificationtion 3.11.2.1, NUREG-0472, Draft Radiological Effluent Technical Specification for PWR's), the attached relvise rates represent upper limits which should not be exceeded. However, the plant will not be in violation of Specification 3.11.2.1 unless the instantaneous total plant release rate exceeds the total plant release rate limit specified in the attachments. Where automatic isolation does not exist, the actual monitor alarm setpoints should be set at some fraction of the above values. This should be done to assure that total plant releases do not at any instant exceed the above limits. In all cases, detector fluctuations (e.g., voltage variation) should be considered when calculating the setpoints. Please address questions to Regis Nicoll or Rod Reed at extension 2767.

G. F. Stone

RMN:SH Attachments cc (Attachments): ARMS PP, 823 EB-C J. M. Ballentine, SQN E. F. Thomas, 550 CST2, C L. M. Mills, 400 CST2, C D. R. Patterson, W10Cl26 C, K

bc (Attachments): John Dills, SQN Ronnie Kitts, SQN R. B. Maxwell, ROB, M M. L. Rollins, 401 KB, C

SQNP TI-18, Appendix A Page 2 of 3 Rev. 1

TABLE 1

NOBLE GASES

(H Ci/s)

Nuclide	Containment Building	Auxiliary _Building	Turbine Building	Service Building	Total
Ar-41	1.8E+03	-	-	1.8E+01	1.8E+03
Kr-85m	1.7E+02	1.6E+02	1.1E+02	4.5E+00	4.4E+02
Kr-85	3.7E+04	1.4F+02	9.1E+01	3.7E+02	3.8E+04
Kr-87	6.0E+01	8.7E+01	6.0E+01	2.1E+00	2.1E+02
Kr-88	2.6E+02	3.0E+02	2.0E+02	7.6E+00	7.7E+02
Kr-89	6.1E-01	2.0E+00	4.7E+00	7.3E-02	7.4E+00
Xe-131m	1.9E+03	1.2E+02	8.0E+01	2.2E+01	2.1E+03
Xe-133m	1.2E+03	2.7E+02	1.8E+02	1.7E+01	1.7E+03
Xe-133	1.8E+05	2.1E+04	1.4E+04	2.1E+03	2.2E+05
Xe-135m	5.8E+00	1.4E+01	1.5E+01	3.4E-01	3.5E+01
Xe-135	7.3E+02	5.1E+02	3.3E+02	1.6E+01	1.6E+03
Xe-137	1.3E+00	4.2E+00	8.7E+00	1.4E-01	1.4E+01
Xe-138	1.83+01	4.3E+01	4.6E+01	1.1E+00	1.1E+02
Total	2.2E+05	2.3E+04	1.5E+04	2.6E+03	2.6E+05

a. Calculated for worst case land site boundary, N sector, 950 meters, where total body submersion dose equals 2.13E-01 mrem/yr.

1272 059

-

-

SQN MAXIMUM INSTANTANEOUS PLANT RELEASE RATE LIMITS FOR 10CFR20 COMPLIANCEª

SQNP TI-18, Appendix A Page 3 of 3 Rev. 1

TABLE 2

SQN MAXIMUM INSTANTANEOUS PLANT RELEASE RATE^a LIMITS FOR 10CFR20 COMPLIANCE IODINE AND PARTICULATES (M(Ci/s)

	Containment	Auxiliary	Turbine	Service	
Nuclide	Building	Building	Building	Building	Total
	Service Restricted				
H-3	12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1.8E+03	1.8E+01	1.8E+03
C-14	2.7E+01	-	-	2.7E-01	2.7E+01
Cr-51	8.7E-07	6.7E-08	1.2E-06	2.2E-08	2.2E-06
Mn-54	1.0E-06	5.5E-08	1.5E-06	2.6E-08	2.6E-06
Fe-59	1.0E-06	7.2E-08	· 1.8E-06	3.0E-08	2.9E-06
Co-58	3.0E-07	1.8E-08	3.1E-05	3.1E-07	3.2E-05
Co-60	1.0E-06	5.3E-08	9.2E-07	2.0E-08	2.0E-06
Br-84	1.7E-05	1.2E-03	5.8E-05	1.3E-05	1.3E-03
Br-85	4.4E-07	4.0E-05	8.3E-07	4.1E-07	4.2E-05
Rb-88	7.0E-02	5.3E-02	3.5E-04	1.2E-03	1.3E-01
Sr-89	4.0E-07	2.6E-08	5.5E-07	9.7E-03	0 0F-07
Sr-90	1.5E-08	7.4E-10	2.9E-08	4.4E-10	4 5E-08
Sr-91	4.0E-08	5.0E-08	3.0E-07	3 OF-00	3 OF-07
Y-90	1.6E-08	1.3E-09	2.8E-08	4 5E-10	J. 6E-08
Y-91m	2.5E-08	3.1E-08	1 45-07	1.05.00	4.02-00
Y-91	2.4E-06	1.5F-07	6 UE-06	1.9E-09	2.0E-01
Y-93	8.2E-09	1.0E-08	1 28-07	1 1 2 00	9.02-00
Zr-95	7.25-08	h hE-00	2.05.07	2.45-09	1.4E-07
ND-05	7 35-08	3.7E-00	2.92-07	3.05-09	3. (E-01
Mo-00	1.0E-00	3.1E-09	2.01-01	3.0E-09	3.6E-07
To-99	G 5E-05	3.4E-05	4.0E-04	6.2E-06	6.2E-04
Ru-106	9. JE-09	3.0E-05	3.5E-04	4.7E-06	4.8E-04
Te-120	6 8E 06	1.4E-10	2.9E-08	4.3E-10	4.3E-08
T 131	0.02-00	2.0E-00	7.0E-05	7.8E-07	8.0E-05
1-131 MT 121	2.1E-02	7.6E-02	1.6E-02	1.1E-03	1.1E-01
M1-131	2.1E-02	7.65-02	1.6E-02	1.1E-03	1.1E-01
1-132	0.3E-04	2.8E-02	4.4E-03	3.3E-04	3.3E-02
MI-132	6.3E-04	2.8E-02	4.4E-03	3.3E-04	3.3E-02
1-133	5.6E-03	1.1E-01	2.3E-02	1.4E-03	1.4E-01
MI-133	5.6E-03	1.1E-01	2.3E-02	1.4E-03	1.4E-01
I-134	1.8E-04	1.2E-02	8.5E-04	1.3E-04	1.3E-02
MI-134	1.8E-04	1.2E-02	8.5E-04	1.3E-04	1.3E-02
I-135	1.5E-03	5.5E-02	9.1E-03	6.6E-04	6.6E-02
MI-135	1.5E-03	5.5E-02	9.1E-03	6.6E-04	6.6E-02
Cs-134	3.6E-05	1.9E-06	2.2E-04	2.5E-06	2.6E-04
Cs-136	9.0E-06	9.7E-07	1.2E-04	1.3E-06	1.3E-04
Cs-137	2.6E-05	1.3E-06	1.8E-04	2.1E-06	2.1E-04
Ba-140	1.5E-07	1.6E-08	7.1E-07	8.7E-09	8.8E-07
La-140	1.6E-07	1.1E-08	4.8E-07	6.4E-09	6.6E-07
Ce-144	4.6E-08	2.4E-09	1.4E-07	1.9E-09	1.9E-07
Pr-143	3.8E-08	3.7E-09	1.4E-07	1.8E-09	1.85-07
Pr-144	4.6E-08	2.6E-09	9.5E-08	1.4F-00	1.58.07
Np-239	2.4E-07	9.0E-08	4.1E-06	4 5E-08	1.92-01
Total	2.7E+01	6.2E-01	1.8E+03	1.8E+01	1.85+02

 Calculated for worst case land site boundary, N sector, 950 meters, where infant thyroid dose equals 1.39E+01 mrem/yr.

-57-

.--

SQNP TI-18, Appendix B Page 1 of 1 Rev. 1

PLANT VENT FLOWRATES (Maximum Design Flow)

Shield Building: 28,000 CFM (Each) Auxiliary Building: 200,000 CFM Service Building: 10,400 CFM (Monitored by radiation detector) Condenser Vacuum Exhaust (Turbine Building): 100 CFM⁽¹⁾ Gas Decay Tank Exhaust Header: 22.5 CFM . Reference: 47W866 Series

.

(1) Design maximum flowrate is 45 CFM - using value of 100 CFM for conservatism.

SQNP TI-18, Appendix C Page 1 of 2 Rev. 1

RD-35 DETECTOR-IODINE SETPOINT CALCULATION EQUATIONS

Assume infinte number of layers of radioative material being deposited on monitoring medium. The summation of the product of the rate of accumulation A(t) and the rate of decay EXP(-Lt) is proportional to the monitor count rate.

1.a. Counts =
$$\sum A(t_i)(EXP(-Lt_i)(\Delta t_i))$$

The limit of this summation as Δt , approaches zero is the definite integral of the above mentioned product.

1.b.
$$\lim \sum_{i \to 0} A(t)_i EXP(-Lt_i) \Delta t_i = \int A(t) EXP(-Lt)(dt) = Counts$$

Assume linear rate of accumulation over 1 week relative to reactor life. One week is normal sample period.

2.
$$A(t) = \int_0^s f(t) dt$$

14

4.

where f(t) = A(t)

Substitute Eq. in Step (2) into Eq. in Step (1.b)

3. Counts =
$$\int_0^t A(t) EXP(-Lt) dt = A \int_0^t S(t)(EXP(-Lt) (dt))$$

Integrate Eq. (3) by parts

Let
$$U = t$$
 $dv = EXP(-Lt)dt$
 $dU = dt$ $v = -1 = EXP(-Lt)$

$$\int_{0}^{t_{s}} (t)(EXP(-Lt) (dt) = \int_{0}^{t_{s}} (-t) \left(\frac{1}{L}\right) EXP(-Lt) - \int_{0}^{t_{s}} \left(\frac{1}{L}\right) EXP(-Lt) dt$$
$$= \left[\left(\frac{-t}{L}\right) EXP(-Lt) + \left(\frac{-1}{L}\right) EXP(-Lt)\right]_{0}^{t}$$
$$= \left(\left(\frac{-t}{L}\right) EXP(-Lt_{s}) - \left(\frac{EXP(-Lt_{s})}{L^{2}}\right) - \left(0 - \left(\frac{1}{L}\right)\right)\right)$$
$$= \left(\frac{1}{L^{2}}\right) - \left(\frac{t_{s} EXP(-Lt_{s})}{L}\right) - \left(\frac{EXP(-Lt_{s})}{L^{2}}\right)$$

SQNP TI-18, Appendix C Page 2 of 2 Rev. 1

where L (Lamda) = $\frac{LN(2)}{t(1/2)}$ = $\frac{0.693}{8.04d}$ = $\frac{0.0862d^{-1}}{0.0862d^{-1}}$

 $t_{g} = 7d$ t(1/2) = Half Life I-131

Insert these values for L and t_s into Eq. in Step (4) and evaluate.

$$(t)(EXP(-Lt))(at) = 16.5a^2$$

0

and and

• . •

5. The accumulation term is determined by the following equation.

A(t) = (Max. instantaneous nuclide Conc.) X (Monitor Efficiency) X (Mon. Flowrate) (Monitor Time)

Assume exhaust concentration is equal to concentration in monitor sample stream. The product of Eq. in Step (5) and Step (4) will given the desired concentration.

SQNP TI-18, Appendix D Page 1 of 1 Rev. 1

SETPOINTS FOR RADIATION MONITORING

٠.. •

* .-

 Process and Effluent Monitor Setpoints in FSAR and Technical Specification (process/monitors) are tabulated as follows:

Monitor	Reference	Setpoint
RM-90-106	Table 3.3-6 (Tech.Spec)	1.95x10 ⁻² µCi/cc - Noble Gas
RM-90-112	Table 3.3-6 (Tech.Spec)	1.95x10 ⁻² HCi/cc - Noble Gas
RM-90-106	Table 3.3-6 (Tech.Spec)	1.5x10 ⁻⁵ A Ci/cc - Particulate
RM-90-112	Talle 3.3-6 (Tech.Spec)	1.5x10 ⁻⁵ / Ci/cc - Particulate
RM-90-125	FSAR Section 11.4.2.2.5	1x10 ⁻⁵ M Ci/cc Based on Xe-133
RM-90-126	FSAR Section 11.4.2.2.5	1x10 ⁻⁵ K Ci/cc Based on Xe-133
RM-90-205	FSAR Section 11.4.2.2.5	1x10 ⁻⁵ # Ci/cc Based on Xe-133
RM-90-206	FSAR Section 11.4.2.2.5	1x10 ⁻⁵ K Ci/cc Based on Xe-133
RM-90-123	FSAR Section 11.4.2.1.3	1.5x10 ⁻⁶ K Ci/cc Based on I-131
RM-90-124	FSAR Section 11.4.2.1.5	5.0x10 ⁻⁵ A Ci/cc Based on I-131
RM-90-133	FSAR Section 11.4.2.1.2	1.5x10 ⁻⁶ H Ci/cc Based on I-131
RM-90-134	FSAR Section 11.4.2.1.2	1.5x10-6 A Ci/cc Based on I-131
RM-90-140	FSAR Section 11.4.2.1.2	1.5x10 ⁻⁶ <i>H</i> Ci/cc Based on I-131
RM-90-141	FSAR Section 11.4.2.1.2	1.5x10 ⁻⁶ H Ci/cc Based on I-131
RM-90-170	FSAR Section 11.4.2.1.6	1.0X10 ⁻⁵ μ Ci/cc Based on I-131
RM-90-102	FSAR Section 11.1.2.2.3	10 mr/hr
RM-90-103	FSAR Section 11.4.2.2.3	10 mr/hr

1272 064

-61-