INSERVICE INSPECTION OF TMI-1 PUMPS PROVIDED WITH EMERGENCY POWER SOURCES ## I. Scope and Objectives This attachment describes the inservice inspection program for all Class 1, 2, and 3 pumps which are provided with an emergency power source. The objective of this program is to provide assurance of the operational readiness of these pumps during their service life. ## II. Identification of Class Boundaries Class 1, 2, and 3 boundaries were established in accordance with the NRC Standard Review Plan Section 3.2.2 (11/24/75), ANSI N18.2A (1975), and Regulatory Guide 1.26 Revision 3. ## III. Applicable Code Edition and Addenda In accordance with 10 CFR 50, paragraph 50.55a (b), the applicable Code Edition and Addenda are the 1974 Edition with Addenda through Summer 1975. ## IV. Period of Applicability In accordance with 10 CFR 50, paragraph 50.55 a (g) (4) (iv), this program is applicable from January 1978 to September 1979. ## V. Inspection Program The inspection program, which is detailed in the attached Table D-1, will be carried out in accordance with ASME Section XI, 1974 Edition with Addenda through Summer 1975. Specific exceptions to the ASME XI Code requirements for each component are identified in attached Table D-2 along with the basis for each exception requested. 1408 165 ## THREE MILE ISLAND UNIT NO. 1 ## INSERVICE INSPECTION PROGRAM - PUMPS TABLE D-1 | | PUMP NUMBER (S) | FLOW
DIAGRAM | ISI
DRAWING | TEST QUANTITIES MEASURED * | | | | | | | TEST | |--|----------------------------|-----------------|----------------|----------------------------|----|----|---|---|-------|----|--------------------------------| | PUMP NAME | | | | N | Pi | ΔР | Q | V | LEVEL | Тъ | INTERVAL | | SPENT FUEL | SF-P1A
SF-P2A | c-302-630 | 300-018-GN1 | h. | | | х | х | х | | MOMTHLY
DURING
OPERATION | | EMERGENCY
FEEDWATER
(MOTOR
DRIVE) | EF-P2A
EF-P2B | C-302-081 | 300-009-GN1 | | х | х | х | х | х | х | MONTHLY
DURING
OPERATION | | EMERGENCY
FEEDWATER
(TURBINE
ORIVE) | EF-P1 | C-302-081 | 300-009-GN1 | х | х | х | х | х | х | х | MONTHLY
DURING
OPERATION | | MAKE-UP
& PURIFICA-
TION | MU-P1A
MU-P1B
MU-P1C | C-302-661 | 300-017-GN1 | | х | х | | х | х | х | MONTHLY
DURING
OPERATION | | | 1408 166 | | | | | | | | | | | ^{*} SEE ASME SECTION XI FOR DEFINITION OF TEST QUANTITIES ## THREE MILE ISLAND UNIT NO. 1 ## INSERVICE INSPECTION PROGRAM - PUMPS TABLE D-1 | | PUMP NUMBER (S) | FLOW
DIAGRAM | ISI
DRAWING | TEST QUANTITIES MEASURED * | | | | | | | TEST | |--|----------------------------|-----------------|----------------|----------------------------|-----|-------|-----|---|----------------|----|--------------------------------| | PUMP NAME | | | | N | Pi. | Δ Ρ . | Q | V | LUBR.
LEVEL | Tb | INTERVAL | | NUCLEAR
SERVICE
RIVER
WATER | NR-PIÀ
NR-PIB
NR-PIC | C-302-202 | 300-002-GN1 | | х | х | | | | | MONTHLY
DURING
OPERATION | | NUCLEAR
SERVICE
CLOSED COOL
ING WATER | NS-P1A
NS-P1B
NS-P1C | C-302-610 | 300-010-GN1 | | х | . х | | х | х | х | MONTHLY
DURING
OPERATION | | REACTOR
BUILDING
EMERGENCY
COOLING | RR-P1A
RR-P1B | C-302-202 | 300-002-GN1 | | х | х | X . | | | | MONTHLY
DURING
OPERATION | | SCREEN WASH | SW-PlA
SW-PlB | C-302-203 | 300-014-GN1 | | х | х | | | | | MONTHLY
DURING
OPERATION | | | 1408 | | | | | | | | | | | | | 107 | | | | | 10 | | | | | | ^{*} SEE ASME SECTION XI FOR DEFINITION OF TEST QUANTITIES ## THREE MILE ISLAND UNIT NO. 1 ## INSERVICE INSPECTION PROGRAM - PUMPS TABLE D-1 | | PUMP NUMBER (S) | FLOW
DIAGRAM | ISI | TEST QUANTITIES MEASURED * | | | | | | | TEST | |---|------------------|-----------------|-------------|----------------------------|----|----|---|---|----------------|----|--------------------------------| | PUMP NAME | | | DRAWING | N | Pi | ΔР | Q | V | LUBR.
LEVEL | Тъ | INTERVA | | BUILDING
SPRAY | BS-P1A
BS-P1B | c-302-712 | 300-012-GN1 | | х | х | x | х | х | х | MONTHLY
DURING
OPERATION | | DECAY HEAT
REMOVAL | DH-P1A
DH-P1B | c-302-640 | 300-005-GN1 | | х | х | x | х | х | х | MONTHLY
DURING
OPERATION | | DECAY HEAT
CLOSED COOL-
ING WATER | DC-P1A
DC-P1B | C-302-645 | 300-003-GN1 | | х | х | х | х | x | х | MONTHLY
DURING
OPERATION | | DECAY HEAT
RIVER WATER | DR-P1A
DR-P1B | C-302-202 | 300-002-GN1 | | Х | Х | х | | | | MONTHLY
DURING
OPERATION | | | 1408 168 | | | | | | | | | | | ^{*} SEE ASME SECTION XI FOR DEFINITION OF TEST QUANTITIES THREE MILE ISLAND UNIT NO. 1 # INSERVICE INSPECTION PROGRAM - PUMPS TABLE D-1 | TEST | INTERVAL | MONTHLY
DURING
OPERATION | MONTHLY
DURING
OPERATION | | |----------------------------|------------------|--|-----------------------------------|----------| | | $T_{\mathbf{b}}$ | | | | | * 0 | LUBR.
LEVEL | | × | | | ASURE | ^ | | × | | | ES ME | ď | | | | | TEST QUANTITIES MEASURED * | ΔP | × | × | | | | Pi | × | × | | | | N | | | | | ISI | DRAWING | 300-014-GN1 | 300-011-GN1 | | | FLOW | DIAGRAM | C-302-203 | C-302-847 | | | | PUMP NUMBER (S) | SW-P2A
SW-P2B | AH-P3A
AH-P3B | 1408 169 | | | PUMP NAME | SCREEN HOUSE
VENTILATION
EQUIPMENT | CONTROL BLDG.
CHILLED
WATER | | # * SEE ASME SECTION XI FOR DEFINITION OF TEST QUANTITIES ## THREE MILE ISLAND - UNIT NO. 1 INSERVICE INSPECTION PROGRAM - PUMPS EXCEPTIONS TO ASME XI REQUIREMENTS TABLE D-2 | PUMP NAME | PUMP NO. | ASME XI
CODE CLASS. | ASME III
CODE CLASS | ASME XI EXCEPTION REQUESTED * | JUSTIFICATION | TESTING PERFORMED IN
LIEU OF CODE REQUIREMENT | |--|-------------------|------------------------|------------------------|-------------------------------|--------------------------|--| | REACTOR BUILD- | RR-P1A | 3 | NON
NUCLEAR | V | SEE NOTE 1 | MOTO VIBRATION WILL BE MEASURED | | EMERGENCY
COOLING | RR-P1B | | | Tb
LUBR. LEVEL | SEE NOTE 2
SEE NOTE 2 | NONE | | SCREEN
VASH | SW-P1A
SW-P1B | 3 | NON
NUCLEAR | Q
V | SEE NOTE 3
SEE NOTE 1 | NONE
MOTOR VIRATION WILL BE
MEASURED | | | | | | LUBR. LEVEL | SEE NOTE 2
SEE NOTE 2 | NONE | | SCREEN HOUSE
VENTILATION
EQUIPMENT | SW-P2A
SW-P2B | 3 | NON
NUCLEAR | Q
V | SEE NOTE 3
SEE NOTE 1 | NONE
MOTOR VIBRATION WILL BE
MEASURED | | | | | | LUBR. LEVEL | SEE NOTE 2
SEE NOTE 2 | NONE | | CONTROL BLDG.
CHILLED WATER | AH-P3A
AII-P3B | 3 | NON
NUCLEAR | Q
T _b | SEE NOTE 3
SEE NOTE 5 | NONE
NONE | | | | | | | | | | | | R DEFINITION OF | | | | | TION XI FOR DEFINITION OF TEST QUANTITIES # THREE MILE ISLAND - UNIT NO. 1 INSERVICE INSPECTION PROGRAM - PUMPS EXCEPTIONS TO ASME XI REQUIREMENTS TABLE D-2 | PUMP NAME | PUMP NO. | CODE CLASS. | ASME III
CODE CLASS | ASME XI EXCEPTION REQUESTED * | JUSTIFICATION | TESTING PERFORMED IN LIEU OF CODE REQUIREMENT | |---|----------------------------|-------------|------------------------|---|---|--| | DECAY HEAT
RIVER WATER | DR-P1A
DR-P1B | 3 | NON
NUCLEAR | V
T _b
LUBR. LEVEL | SEE NOTE 1
SEE NOTE 2
SEE NOTE 2 | MOTOR VIBRATION WILL BE MEA-
NONE SURED | | SPENT FUEL | SF-P1A
SF-P1B | 3 | N-3 | Pi
ΔP
' T _b | SEE NOTE 4
SEE NOTE 4
SEE NOTE 5 | Pi WILL BE CALCULATED
NONE
NONE | | MAKEUP &
PURIFICATION | MU-P1A
MU-P1B
MU-P1C | 2 | N-2 | Q | SEE NOTE 3 | NONE | | NUCLEAR SER-
VICE
RIVER WATER | NR-P1A
NR-P1B
NR-P1C | 3 | NON
NUCLEAR | Q
V
T _b
LUBR. LEVEL | SEE NOTE 6 SEE NOTE 1 SEE NOTE 2 SEE NOTE 2 | WILL BE MEASURED PURING SHUTDOWN MOTOR VIBRATION WILL BE MEASURED NONE NONE | | NUCLEAR SER-
VICE
CLOSED COOL-
ING | NS-P1A
NS-P1B
NS-P1C | 3 | NON
NUCLEAR | Q | SEE NOTE 3 | NONE | SEE ASME SECTION XI FOR DEFINITION OF TEST QUANTITIES ## JUSTIFICATION NOTES ## FOR TABLE D-2 ## Note 1 This is a vertical deep well type pump with the pump submerged under water at all times. It is not practical to measure pump vibration in this type of installation. Past operating experience has shown that motor vibration is indicative of pump mechanical problems in this type of installation. Therefore, motor vibration will be measured in lieu of pump vibration. ## Note 2 This is a vertical deep well type pump with the pump submerged under water at all times. Pump bearings are lubricated by the fluid being pumped. There are no installed means of measuring bearing temperature and the pump design and installation makes it impractical to measure in any other manner. ## Note 3 There are no flow meters installed in the flow path of this pump therefore test quantity "Q" cannot be measured. An exception is requested per 10 CFR 50, 50.55 a (g) (4) since measurement of system flow would require a design change to this system and therefore not be within the limits of the current design. ## Note 4 Since there is no pump inlet pressure gauge installed, test quantities Pi and AP cannot be directly measured. An exception is requested per 10 CFR 50, 50.55 a (g) (4) since measurement of pump inlet pressure would require a design change to this system and therefore not be within the limits of the current design. However, pump inlet static pressure will be calculated based upon the difference in elevation between pump suction and the source of pump suction fluid. ## Note 5 Pump bearing temperature cannot be measured on this pump since the bearings are located deep inside the pump casing and are surrounded by an oil reservoir. An exception is requested per 10 CFR 50, 50.55 a (g) (4) in that measurement of parameter $T_{\rm h}$ is not practical within the limits of design of this pump. ## Note 6 Flow metering for this system is located in the common discharge lines from all three pumps. Plant operating requirements dictate the operation of at least two Nuclear Service River Water pumps during plant operations, thereby making it impossible to measure flow for a single pump. Pump flow will be measured for each pump during plant shutdown when operation of only one pump is required.