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ABSTRACT

Semiscale gravity feed reflood and FLECHT-SET tests have been
reviewed to determine phenomena which may be important during LOFT
reflood. FLOOD4 and RELAP4/MOD6 predictions for Semiscale and
FLECHT-SET tests were compared to experimental data. Based on these
comparisons, uncertainties were estimated for the LOFT reflood predic-
tions; these uncertainties were then utilized to bound the extent of
cladding oxidation expected for the LOFT L2-3 and L2-4 tests.
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SUMMARY

Semiscale gravity feed reflood tests and FLECHT-SET tests have
been reviewed to determine phenomena which may be important during
LOFT reflood. The tests evaluated generally show little cladding
temperature rise during reflood. The tests also indicate that water
vaporization in the steam generator or upper plenum will cause
fnsignificant steam binding.

The FLOOD4 and RELAP4/MOD6 reflood codes generally predicted peak
cladding temperatures to within 100°F. Calculated quench times may
differ from experimental measurements by as much as 100 seconds. It
is predicted that little rise in cladding temperature will occur
during reflood. The complex aeometry of the LOFT upper plenum <hould
z1sure that little liquid will reach the steam generators and result
in steam binding.

The comparison of model pred:ctions to the Semiscale and FLECHT-
SET data provide uncertainty bounds on the predicted L2 Series peak
cladding temperature histories. These uncertainties in peak cladding
temperature (+ 100°F) and quench time (’398 sec) were utilized to
evaluate and bound the extent of cladding oxidation expected for each
L2 series LOCE. The oxidation limit established for LOFT cladding is
not exceeded even for the most severe cladding tomperatures which will
ensure at least partial ductility of the cladding curing the test
secuence. Thus cladding oxidation is not predicted to be a limiting
factor during the L? tests.
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I. INTRODUCTION

Current reflood predictions for the high power LOFT tests indicate

peak cladding temperatures in excess of 2000°F may be maintained for
100-200 seconds. Cladding oxidation will result at these temperatures
causing some degradation of cladding strength.

In order to place bounds on the cladding oxidation expected
during the LOFT L2 test series, the ability to model the reflood phase
of a LOCE has been studied to identify important parameters which
influence cladding temperature.

This report reviews gravity feed reflood experiments (FLECHT-SET,
Semiscale) and two codes used to predict pressurized water reactor
reflood behavior, FLOOD4 and RELAP4/MOD6. Phenomena which may be of
importance during the reflooding of the LOFT L2 tests and the ability
of the codes to predict such phenomena are discussed. Reflood code
uncertainties are combined with cladding oxidation characteristics to
place bounds on potential oxidation of the LOFT cladding. “

Section II presents a general description of reflood phenomena.
Section III discusses FLECHT-SET and Semiscale gravity feed tests;
Section IV discusses current modeling capability in the FLOOD4 and
RELAP4/MOD6 codes and compares the model predictions with FLECHT-SET
and Semiscale results. In addition, potential three dimensional
effects which may be important during reflood are also discussed.
Section V presents bounding limits on cladding temperature response
and on cladding oxidation for the LOFT L2-2, L2-3 and L2-4 tests.
Section VI summarizes the major conclusions regarding the reflood
behavior expected for LOFT.
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IT. GENERAL REFLOOD DESCRIPTION

The nuclear core of a reactor may be cooled following the blow-
down phase of LOCA by injecting the ECC water directly into the lower
plenum or by injecting the coolant into the downcomer or cold leg.
Systems utilizing downcomer or cold leg injection, such as LOFT, are
referred to as gravity feed reflood systems.

The core flooding rate for gravity feed systems is dependent on
the difference between the core pressure and the downcomer gravity
head.

Gravity feed systems are characterized by oscillations in the
core inlet flow. Contact between the ECC water and the hot fuel rods
results in vigorous boiling and steam generation. The steam gener-
ation increases the core pressure until the coolant inertial effects
are overcome and the ECC flow is reversed. The steam generation rate
then decreases allowing steam to vent which results in a drop in the
system pressure. Positive flow is then re-established and the oscil-
latory cycle is repeated. Semiscale tests and FLECHT gravity feed
tests have exhibited these flow oscillations.

As the coolant contacts the fuel rods, a frothy two-phase mixture
in advance f the quench front is formed. As more steam is generated
and the steam velocity increases, liquid from the froth layer is en-
trained in the steam flow and carried up past the fuel rod. The en-
trained droplets may cool the upper elevations of the fuel rod by
physical contact on the rod and/or by serving as a radiant heat sink.
The entrained droplets and steam are not in thermodynamic equilibrium
so it is possible to have the droplets entrained in superheated
steam. The heat transfer mechanisms associated with the cooling of
rods during reflood are not weil understoodl.

]
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In the upper plenum, the steam may exit through the broken loop
or through the intact loops. The intact loops offer less resistance
to the steam flow so most of the steam passes into the intact loops.
It has been calculated that approximately 80% of the flow for LOFT
will pass through the intact loops. The entrained droplets can be
either de-entrained in the upper plenum (deposited and form a liquid
film on upper plenum internal structures) or be carried along with the
steam into the broken or intact loops. The droplets which are de-
entrained may remain on the upper plenum surfaces, may be reentrained,
or may fall back into the core thereby providing additional cooling to
the upper core elevations. The droplets which are not de-entrained
and are carried into the intact loop may be partially or totally
vaporized in the steam generators. Vaporization of the entrained
droplets creates a higher system pressure which retards the flooding
rate. This leads to higher peak cladding temperatures and longer
quench and temperature turnaround times.

As a result of liquid entrainment and fallback from the upper
plenum to the core, the core cooling process proceeds from both the
bottom and top of the core. As time progresses, enough reflooding
water has been added to the system that the fuel rod is cooled and
brought to the saturation temperature of the water.

The major phenomena controlling the fuel rod response during the
reflood phase of a LOCA are (1) fuel rod stored energy and decay power
generation, (2) fuel rod internal pressure, (3) thermal and mechani )
properties of the fuel and cladding, and (4) cladding surface heat
transfer characteristics.

The initial steady state fuel rod stored energy will strongly
influence peak cladding temperatures during blowdown; current calcu-
lations indicate from 50-75% of the initial stored energy still
remains within the fuel rod at initiation of reflood. An important

998
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parameter is the fuel cladding gap which influences heat removal from
the fuel pellet to the cladding and surrounding coolant. Internal
fuel rod pressure strongly influences cladding deformation (ballooning
or collapse). The thermal and mechanica) properties of the cladding
are important in characterizing both heat transfer from the fuel rod
and cladding deformation and potential failure.

System related parameters which affect the the cladding surface
heat transfer are ECC fluid subcooling, flooding rates, containment
pressure, loop flow resistances, upper plenum geometry effects on
droplet de-entrainment and liquid fallback, two-phase heat transfer,
liquid entrainment and carryover fraction, and droplet vaporization in
the steam generators.

A considerable amount of research has been and is being performed
to 1dentify and quantify the controlling hydrodynamic effects and heat
transfer during reflood. Two of these programs, the Westinghouse
FLECHT-SET Phase Bl experiments and the Semiscale gravity feed reflood
tests have been reviewed and important parametric effects will be
summarized in the next section.

998
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ITI. EXPERIMENT DATA REVIEW

1. FLECHT-SET RESULTS

The FLECHT-SET B1 tests : were designed to simulate the gravity
feed reflood behavior of a commercial PWR. The test assembly contained
a 10 x 10 array of 12-foot, electrically heated rods. System volumes,
heights, and loop resistances were scaled to that of a PWR. Steam
generators were included in both the broken and intact loops.

The influence of upper plenum flow area, system pressure, coolant
subcocling, peak power, core inlet resistance, and intact and broken
loop resistance on quench time, cladding temperatures and temperature
turnaround times were examined. Of the parameters investigated, the
rod power and system pressure were found to have the greatest effect,
These results are consistent with earlier PWR FLECHT experiments3.

Increases in fuel rod power generation at the start of reflood
were shown to result in higher cladding temperature rises and delay in
achieving temperature turnaround and quench as shown in Figure 1. The
higher cladding temperatures at the start of reflood caused higher
steam generation rates and more entrainment early in reflood. While
the increased entrainment led to an initial increase in heat transfer,
it also resulted in less fluid accumulation in the core. This produced
a decrease in quench front velocity and caused lower heat transfer
later in reflood as shown in Figure 2.

System pressure was found to significantly effect the peak clad-
ding temperature characteristics as shown in Figure 3. The system
pressure directly influences the specific volume of the two-phase
mixture. Increases in system pressure decrease the coolant specific

99%
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volume. A lower specific volume permits a larger mass flow. The
increased mass flow increases tie heat transfer which decreases quench
and turnaround times and reduces the cladding temperature rise.

Coolant subcooling was shown to have a small influence on mid-
plane heat transfer characteristics as shown in Figure 4. Decreasing
the subcooling resulted in earlier boiling of the coolant. The early
boiling produces early entrainment and good initial heat transfer, but
reduced heat transfer at later times. A decrease in subcooling
resulted in small increases in quench times.

Increases in core inlet and broken loop resistances were shown to
have negligible effect on midplane heat transfer characteristics as
shown in Figures 5 and 6 respectively. The core inlet res.stance
comprises a small fraction of the loop resistance. Hence, the mass
flow and loop pressure drop is insensitive to changes in core inlet
resistance. Similarly, the broken loop flow is much less than the
intact Toop flow. Changes in the broken loop did not significantly
affect reflood. Increases in the intact loop resistance did retard
the raflooding rate and caused lower steam flow and longer turnaround
and quench times due to a reduction in the flocding rate.

Changes in upper plenum flow area had negligible effect on clad-
ding temperature, turnaround time, or guench time.

2. SEMISCALE RESULTS

A series of gravity feed reflood tests were conducted in the
Semiscale MOD1 systema. The tests encompassed a broad range of
conditions and provided a data base for the development of the FLOODA
code and reflood information to LOFT.

The Semiscale gravity feed reflood tests were conducted with the
initial system conditions matched to the conditions expected following

a blowdown. The system pressure was established by controlling the qq%
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pressure in the pressure suppression system. The initial water level
in the lower plenum was established and the core power was set at the
desired value. The ECC injection was initiated when the desired peak
cladding temperature was achieved.

The core inlet oscillations observed in the FLECHT-SET tests were
also observed in the Semiscale gravity feed tests. The oscillation in
the surface heat transfer coefficient, shown in Figure 7, closely
followed the coolant oscillations. For the initial 25 seconds, the
heat tr-asfer coefficient oscillated between 0 and 60 BTU/ht-ftzoF.
From 2" seconds unti) just’prior to quench, heat transfer coefficients
vary from 20-100 BTU/hr-ftdoF. At quench, a large increase in heat
transfer occurs.

Figure 8 is a typical plot of quench time as a function of ele-
vation. OQuenching occurs at the top and bottom of the rod and pro-
gresses towards the rod midplane. The bottom quenching is due to the
advancement of the cooling liquid while droplet de-entrainment and
faliback from the upper plenum, coupled with lower power, results in
top quenching. From Figure 8, three regions of approximately equal
quench front velocities can be constructed. The quench velocities
ranged from 0.5 in/sec in region I to 0.2 in/sec in region II to 0.16
in/sec in region IIl. The quench velocity decreased somewhat with
increased cladding temperature. The occurrence of top quenching
suggests that the peak cladding temperature will not migrate up the
rod as reflood progresses. Once the midplane temperatures have turned
around, the thermal rise of the fue” - »< has been effectively term-
inated.

A reflood boiling curve ‘as cor-.-~ucted from experimental data.
From this curve, five heat transfer regimes «ere identified. They
were (1) forced convection to steam, (2) dispersed flow, (3) film
boiling with some forced convection between vapor and liquid,
(4) transition boiling, and (5) nucleate boiling. The r>qimes are

identified in Figure 9. Region T includes convection to steam and

998 169
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dispersed flow boiling. Region Il is film boiling while region III
encompasses the end of film boiling, transition boiling, and the start
of nucleate boiling,

The peak cladding temperature increases slightly during the first
few seconds of reflood when the surface heat transfer is characterized
by convection to steam. As the liquid entrainment increases in the
dispersed flow regime, the cladding temperatur: rise is terminated and
the rod begins to cool. The end of film boiling and start of tran-
sition boiling marks the commencement of quench. Quench is achieved
when the cladding surface heat transfer returns te nucleate boiling.
Semiscale results indicated that for midplane peak power elevations
that the majority of the time is spent in the film boiling mode. From
Figure 9, it is observed that the cladding temperature does not
reflect large temperature oscillations as would be expected from the
oscillating heat transfer coefficients. This is a result of the near
adiabatic state of the rod. Thus, a valid approximation to the heat
.ransfer coefficient is a smooth curve which averages the oscillations
as shown in Figure 9,

Parameter studies such as the effect of power and pressure were
not performed in the Semi cale tests although comparison of various
tests do give an indication of the influence of certain parameters on
reflood behavior. These results were consistent with the FLECHT para-
meter studies.

In general, the experimental data shows that system related para-
meters and physical properties do not greatly affect peak cladding
temperatures; however, some effect on quench times due to these para-
meters has been observed.

System stored energy and heat transfer related paramenters are
the key parameterc influencing cladding temperature and coolant be-
havior during reflood. Of particular interest are the heat transfer

998
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parameters. The fuel rod stored energy related quantities are under-
stood and are known or can be specified with some degree of accuracy.
The heat transfer related parameters, in particular the specification
of heat transfer regimes and droplet entrainment and vaporization
cannot, at present, be accurately specified 5'6’7.

18
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IV. MODELING CAPABILITY

RELAP4 /MOD6 8 and FLOOD4 ? are the computer codes presentiy
available at INEL for reflood analysis.

1. FLOOD4

FLOODA was developed from FLECHT data to calculate the core and
system behavior during Semiscale reflood tests. FLOODA couples the
system hydraulic response with core heat transfer and steam generation.
Four heat transfer correlations are used to simulate the boiling curve
and the mode of heat transfer depends upon the fuel rod elevation,
water elevation, and the surface temperature.

Below the quench elevation, the heat transfer is forced convection
to liquid. At the quench front, nucleate boiling and the Hsu tran-
sition boiling correlation are used. Further, from the quench front
in the dispersed flow region, a heat transfer correlation developed
from the FLECHT data is used.

The entrainment correlation used by FLOOD4 dejrends upon the steam
flow, the system pressure, the hyd-aulic diameter, the elevation
(1ength) of the collapsed liquid level above the quench front, and an
entrainment multiplier.

The film boiling correlations for dispersed flow heat transfer
and entrainment require user input constants. FLOOD4 also requires
the user to input the entrained liquid fraction which is vaporized in
the steam generator. Accurate specification of these constants is
necessary for reasonable predictions. To some extent, the input ‘1
constants are system specific. The constants associated with the QS ‘\
dispersed flow and film boiling correlations do not seem to vary much qq
; _between Semiscale and FLECHT tests. The input quantity describing the
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liquid vaporization fractions in the steam generators may vary from
system to system. For Semiscale and FLECHT, the FLOOD4 liquid vapor-
ization fractions are identical.

Figures 10 and 11 compare FLOOD4 predictions with Semiscale
results. FLOOD4 fairly well predicts peak cladding temperatures but
underpredicts quench times and overpredicts heat transfer coefficients.
The optimized constants resulted in good predictions of peak cladding
temperatures, but flow oscillations, heat transfer coefficients and
core inlet mass flow are still overpredicted. Peak cladding tempe -
atures are predicted to within 100°F and quench times are predicted
to within +60 seconds.

2. ~t£LAP4/MOD6

RELAPA/MOD6 was developed to model a broad spectrum of reflood
situations. Consequently, many of the correlations used in the
reflood model require user specified constants. The appropriate value
of the constants are not always reac ily apparent and experimental data
is necessary to accurately specify the constants.

Figures 12 through 17 presents results from reference 10 comparing
baseline RELAP4/MOD6 predictions (using default values of input
constants) and best-fit RELAP4/MOD6 predictions (input constants op-
timized to give best fit between prediction and experiment with Semi-
scale and FLECHT data). Table 1 summarizes and compares the
RELAP4/MOD6 calculations with experimental measurements from Semiscale
test S-03-2.

Considerable scatter exists in the RELAP4/MOD6 predictions. The
best-fit predictions are usually more accurate than baseline pre-
dictions. But even best-fit predictions may miss quench times by
1?%% seconds.

20
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Feak cladding temperatures during reflood are normally predicted
within 100°F. Until LOFT reflood data becomes available, much
uncer®ainty will exist in the LOFT RELAP4/MOD6 re“"ood calculations.

3. POTENTIAL 3-D EFFECTS DURING REFLOOD

A study of the important parameters influencing reflood character-
istics of a large PWR has been recently completed by EGLG N . The
effects of th-ee-dimensional hydrodynamic effects within the core
region, and the behavior of entrained liquid in the upper plenum, hot
leg, and steam generator were examined. Steam binding, the creation
of a system back pressure due to steam generation, retards the flooding
rate and can increase both the cladding temperature rise and the time
to quench. Steam generation due to droplet vapor ization in the upper
plenum or steam generators was identified as a potential major con-
tributor to the steam binding problem. Calculations indicate that
heat transfer from the upper plenum structures to the two-phase
mixture is important for cnly a short period of time early in
reflood. The energy stored in the upper plenum internals is small and
is quickly removed. The net effect of upper plenum heat transfer on
steam binding is small.

The determination of liguid vaporization in the steam generators
is difficult. The amount of vaporization is a function of initial
droplet entrainment, subsequent de-entrainment in the upper plenum,
the droplet size and the transit time of the drops through the steam
generator tubes,

A computer simulation of the flow paths in the upper plenum indi-
cates that most droplets will impinge on some surface in the upper
plenum. Upon impinging, the droplets may deposit (de-entrain) on the
surface or possibly shatter into smaller droplets and remain en-
trained. It is doubtful if the shattering process occurs to an

appreciable extent. Two mechanisms have been postulated by which the
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liquid may reach the steam generators, (1) the liquid in the upper
core region may once again be entrained and carried to the steam
generators, or (2) the de-entrainment process may produce a frothy
mixture which may be transported to the steam generators. It is
highly likely, however, that once de-entrainment occurs the liquid
will remain deposited or fall back into the core.

Droplet vaporization in the steam generators depends primarily on
the droplet size and on the time the droplet spends in the steam gener-
ator. Small droplets, due to their large surface area/volume ratio,
are more easily vaporized and slower velocities which result in longer
transit time enhance vaporization. Table II summarizes the FLECHT
predicted transit time through the steam generator as a function of
droplet size and estimates the fraction of each droplet conver:ied to
steam for several droplet diameters.

TABLE 11

Water Droplet Size Versus Steam Generator Transit [ i-e
and Fraction of Dropplet Converted to Steam While
Traversing the Steam Generator

Droplet Diameter - in 0.1544 0.0977 0.0564 0.0178
Transit Time - sec | o 1.5 .3 1.05
% decrease in droplet dia. 1.95 3.24 6.0 24.0

s can be seen in Table II, the transit time through the steam
generators is small, even for large diameter drops, so that vapor-
ization can only occur for extremely small droplets. FLECHT-3ET B1
results support these estimates and indicate very little vaporization

occurs in the steam generators. 998 \ B/
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Figures 18 and 19 present calculations to estimate evaporation in
the steam generators for the Semiscale tests. The figures show that
little increase in quality, and therefore, little evaporation, occurs
in the steam generator,

The Semiscale experimental results tend to confirm these calcu-
lations. Apparently little liquid from the Semiscale reflood tests
reached the steam generators and vaporization in the steam generators
was insignificant.

Radiation is expected to be an important mode of heat transfer
during refill and the early stages of reflood for the high powered
LOFT tests Lz'. The presence of numerous unheated guide tubes in
the core, which act as radiant heat sinks, may cause circumferential
temperature gradients to be established both on the central rod quide
tubes and the adjacent fuel rods. Some bowing of the fuel rods and
the gquide cubes may result from the circumferential temperature
gradientc., The effect of the bowing on fuel response has not been
evaluated. Guide tube and/or fuel rod bowing may affect fuel module
movement.

The LOFT Test L2-6 will contain fuel rods prepressurized to
350 psilind will provide valuable data concerning the extent of bal-
looning ™. Reference 14 discusses the potential for coplaner
ballooning and resulting fiuid channel blockage. It was concluded
that in a PWR, coplaner ballooning was possible but not likely due to
statistical variations in the cladding temperatures as a result of
fuel rod stored energy, fuel rod rewetting resulting during blowdown,
and local cladding temperature variation during the ballocning
process.
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V. CLADDING OXIDATION

The previous sections have reviewed FLECHT-SET and Semiscale
gravity feed reflood experiment results and summarized reflood modeling
capabilities. From these sections, it is expected that peak reflood
cladding temperatures for the LOFT LOCE's will be predicted to within
100 °F. Quench time will be predicted to within 100 seconds and the
contribution to core steam binding due to liquid vaporization in the
LOFT steam generators will be minimal.

The peak cladding temperature and quench time uncertainties wore
combined with best estimate calculations of LOFT reflood behavior to
construct bounding cladding temperature histories. These temperature
curves were then used to calculate cladding oxidation expected for the
LOFT L2 tests,

The reflood calculations were per7ormed with the FLOODA reflood
dynamics code. The power-time histories and the ECC injection rates
used in the FLOOD4 calculation were taken from RELAP4/MOD6 blowdown
and refill predictions. The entrainment and heat transfer constants
used were those which allowed the best match between FLOODA predic-
tions and Semiscale gravity feed test data.

The best estimate FLOOD4 predictions of LOFT center module
cladding surface temperatures for tests L2-2, L2-3 and L2-4 are given
in Figure 20. Several trends are apparent from these curves. Only a
small cladding heatup occurs and the heatup period is confined to the
first 10 seconds of reflood. After this period, the cladding slowly
cools until quench occurs.

During refill and the early portions of reflood, nearly adiabatic
heat transfer conditions are predicted to exist. During this period,
the surface heat transfer may not be sufficient to remove the energy

- generated by the decay of accumulated fission products. Cladding 998
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heatup is therefore possible. As a result of the near thermal equii-
ibrium in the fuel rod, and the large resistances to heat flow within
the rod, limited energy can be transferred to the cladding during the
first few seconds of the reflooding period when surface heat transfer
conditions may permit cladding heat up.

Zircaloy cladding oxidation characterstics have been evaluated
and LOFT cladding temperature and time-at-temperature limits huve been
established in Reference 15 and are shown in Figure 21.

These limits are based on:

(1) The need to retain at least partial ductility of the clad-
ding during the LOFT tests.

(2) ORNL oxidation data for zircaloy tubing in a steam environ-

ment 16,17 =

(3) U0,-zircaloy oxidation data 18,19,20

The limiting oxidation correlation presented in Figure 21 (from
Reference 15) was utilized to estimate the expected cladding oxidation
which would result from the FLOODA calculated best estimate and upper
bound LOFT cladding temperature histories. The upper bound temperature
histories based on the uncertainties in peak cladding temperatures and
quench times which were determined by comparing the mo: ‘1 predictions
to experimental results, are shown in Figure 22. The percentage of
the allowable cladding oxidation limit was calculated and the results
are given in Table III for the L2-2, 1L2-3 and L2-4 tests. In no case,
even for the upper bound temperature response, was the cladding oxi-
dation calculated to exceed the partial ductility retention limit.

993 "
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TABLE ITI

Expected Peak Cladding Oxidation for
the LOFT L2 Series LOCE's

Fraction of Allowable

Test Oxidation Limit (1)
L2-4 Extended Quench 0.896
L2-4 Best Estimate 0.2625
L?2-4 Enhanced Quench 0.221
L2-3 Extended Quench 0.054
L?2-3 Best Estimate 0.031
L2-3 Enhanced Quench 0.023
L2-? Extended Quench 0.0245
L?2-2 Best Estimate 0.0083
L?2-2 Enhanced Quench 0.0083

(1)

1.0 means the allowable oxidation 1imit (partial cladding
ductility) has besn reached.
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VI. CONCLUSTONS

The following conclusions can be made as a result of this study:

'. FLECHT-S£T and Semiscale reflood tests for reflood condi-
tions similar to those expected for LOFT showed 1ittle
cladding temperature rise. Th* contribution to steam
binding due to 1iquid vamorizaiion in the steam generators
and upper plenum is expected %o be small.

2. Current code capability to predict reflood response generally
predicts peak cladding temperatures to within 100°F and
quench times to within 100-200 seconde,

3. Three-dimensional effects ma, he important for the LOFT
tests. The more important 3-D effects mav include,
(1) liquid entrainment phenomera which wiil effect core heat
transfer, (2) radiation heat traansfer for the higher power
tests, and (3) cladding ballooning and/or cladding bowing
which may effect core flow distributions.

4. Cladding oxidation for the L2-Series tests is not expected
to result in nil-ductility (brittle) cladding even for upper
bound cladding temperatures.

a1
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