A SIMPLIFIED METHOD OF COMPUTING CLAD AND FUEL STRAIN AND STRESS DURING IRRADIATION

University of California at Los Angeles for
U. S. Nuclear Regulatory Commission

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Ne ther the United States nor the United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any leyal liability or responsibility for the accuracy, completeness or isefulness of any information, apparatus, product or procers disclosed, nor represents that its use would not infringe piivately owned rights.

Available from

National Technical Information Service Springfield, Virginia 22161
Price: Printed Copy $\$ 9.75$; Microfiche $\$ 3.00$
The price of this document for requestors outside of the North American Continent can be obtained from the Natfonal Technfcal Information Service

A SIMPLIFIED ME IHOD OF COMPUTING
 CLAD AND FUEL STRAIN AND STRESS DURING IRRADIATION

Y.H Sun and D. Okrent

Principal Investigators
I. Catton
W. E. Kastenberg

Manuscript Completed: January 1977
Date Published: June 1977

School of Engineering and Applied Science
University of California
Los Angeles, CA 90024

Prepared for
Division of Reactor Sálety Research
Office of Nuclear Regulatory Research
U. S. Nuclear Regulatory Commission

Under Contract No. AT (49-24)-0246

PREFACE

This report represents one aspect of the research program "Safety Considerations of Commercial Liquid Metal Fast Breeder Reactors" (AT (04-3) PA223 and AT (49-24)-0246) funded by the U.S. Nuclear Regulatory Commission, Division of Reactor Safety Research. The research program is divided into the following tasks; a) transient analysis of fuel elements, b) accident analysis, c) post accident heat removal, d) fuel-coolant interactions and e) thermodynamic effects.

Reports prepared previously under this grant include the following:

1. Post Accident Heat Removal with Advanced LMFBR Fuels, R.D. Gasser, UCLA-ENG-7518 (March 1975).
2. Dry-out of a Fluidized Particle Bed with Internal Heat Generation; R.S. Koowen and I. Catton, UCLA-ENG-7519 (March 1975),
3. Laminar Natural Convection From Blunt Bodies with Arbitrary Surface Heat Flux or Surface Temperature; G.M. Harpole, UCLA-ENG-7527 (Apri1 1975).
4. Preliminary Assessments of Carbide Fuel Pins During Mild Overpower Transients; G.M. Nickerson, UCLA-ENG-7582 (October 1975).
5. A Simplified Method of Computing Clad and Fuel Strain and Stress During Irradiation; Y. Sun and D. Okrent, UCLA-ENG-7591 (Part I) (October 1975).
6. An Experimental Study of the Thermal Interaction for Molten Tin Dropped into Water; V.M. Arakeri, I. Catton, W.E. Kastenberg and M.S. Plesset, UCLA-ENG-7592 (December 1975).
7. A Mechanistic Study of Fuel Freezing and Channel Plugging During Fast Reactor Overpower Excursions; V.K. Dhir, K. Wong and W.E. Kastenberg, UCLA-ENG-7679 (July 1976).
8. A Simulation of Thermal Phenomenon Expected in Fuel Coclant Interactions In LMFBR's; J. Yasin, UCLA-ENG-76100, (September 1976).
9. On the Nonequilibrium Behavio: of Fission Gas Bubbles With Emphasis on the Effects of Equation of State; W. G. Steele, UCLA-ENG-76118 (December 1976).
10. A Method for the Determination of the Equation of State of Advanced Fuels Based on the Properties of Normal Fluids; M. J. Hecht, UCLA-ENG-? 6122 (December 1976).
LIST OF FIGURES vi
ACKNOWLEDGMENT viii
VITA AND PUBLICATIONS ix
ABSTRACT x
CHAPTER I. INTRODUCTION 1
CHAPTER II. THEORY 5
II. 1 The Displacement-Inelastic Strain and the Stress-Inelastic Strain Relations 5
II. 2 Inelastic Strain 10
II.2.1 The Stress and Strain Relation in Creep Deformation 10
II.2.2 The Creep Strain Rate 12
II.2.3 The Swelling Strain 13
II.2.3.1 The Swelling Strains in Cladding 13
II.2.3.2 The Swelling Strain in the Fuel Region 14
II. 2. 4 Hot Pressing 16
II. 2.5 Fission Gas Release and the Gas Pressure 17
CHAPTER III. THE PROCESS OF PROBLEM SOLVING 21
IIt. 1 The Basic Process
III. 2 Determination of the Mechanical Force (P_{fc}) Between the Fuel and the Clad After the Gap is Closed 25
III. 3 Interation for Creep Precision in the Fuel 28
III. 4 A Simplified Flow Chart 31
CHAPTER IV. PRELIMINARY CALCULATIONS 35
IV. 1 Calculations for Fuel Pin PNL-10-23 35
IV. 2 Calculations for $6 \mathrm{~kW} / \mathrm{ft}$ and $15 \mathrm{~kW} / \mathrm{ft}$ Fuel Pins Irradiated in EBR-II 37

TABLE OF CONTENTS (Cont'd.)

IV.2.1. The Low Power Case ($6 \mathrm{~kW} / \mathrm{ft}$) 37
IV.2.2 The High Power Case ($15.2 \mathrm{~kW} / \mathrm{ft}$) 39
CHAPTER V. APPLICATIONS 41
V. 1 List of Applications 41
V. 2 Calculation of the Fuel Element
Behavior in CRBR 43
V. 3 Calculations for Fuel Element Behavior
in a Conceptual 1000 MW LMFBR 65
V. 4 The Rate of the Fuel Swelling 73
V. 5 Discussion of Applications 73
V.5.1 The Fuel-Clad Mechanical Interaction 73
V.5.2 The Stress in the Clad. 75
V.5.3 The Strain in the Clad 78
V.5.4 Sensitivity of the Clad Swelling Correlation 79
V.5.4.1 High Power Case 79
V.5.4.2 Mid-Power Case 82
V.5.4.3 Low Power Case 85
V.5.4.4 The Average Values of $t_{G}, P_{f C}$, $\left(\sigma_{\theta}^{c}\right)_{\max }$, and $\left(e_{\theta}^{c}\right)$ 87
V.5.5 The Rate of Fuel Swelling 88
V. 6 Results and Discussion of Sensitivity Calculation for the Fuel Properties 88
V.6.1 The $12 \mathrm{~kW} / \mathrm{ft}$ Fuel Element 88
V.6.2 The $9 \mathrm{~kW} / \mathrm{ft}$ Fuel Element 91
V.6.3 The $6 \mathrm{~kW} / \mathrm{ft}$ Fuel Element 93
CHAPTER VI. CONCLUSIONS 97
REFERENCES 259
APPENDIX: LIST OF THE PROGRAM 261

LIST OF FIGURES

Figure II-1. Effect of Alloying UO_{2} with PuO_{2} 15
Figure II-2. Predicted Cas Release for a Mixed-Oxide Fueled Pin 19
Figure III-1 Radial Section of the Fuel Element 22
Figure III-2 Free Body Diagram of the Fuel Region 24
Figure III-j Free Body Diagram or the Cladding 24
Figure III-4 The Determination of (DP) 2 27
Figure III-5 The Determination of (DP) 27
Figure III-6 Adjusted Time Increment, Δt, Versus Maximum Fractional Stress Increment First Trial 30
Figure III-7 Adjusted Time Increment, Δt, Versus Maximum Fractional Stress Increment - $\mathrm{m}^{\text {th }}$ Trial 30
Figure III-8 Flow Chart for Creep Precision Iteration 33
Figure III-9 Simplified Flow Chart 34
PRELIMINARY CALCULATIONS
Figure E-1 through E-6 99-104
CRBR CALCULATIONS
$12 \mathrm{~kW} / \mathrm{ft}$ Cases
Case A0: Figure A0-1 through A0-7 105-111
Case Al: Figure Al-1 through A1-7 112-118
Case A3: Figure A3-1 through A3-7 119-125
Case A4: Figure A4-1 through A4-8 126-133
Case R1: Figure R1-1 through R1-3 134-136
$9 \mathrm{~kW} / \mathrm{ft}$ Cases
Case B0: Figure B0-1 through B0-7 137-143
Case B1: Figure B1-1 through B1-5 144-148
Case B3: Figure B3-1 through B3-8 149-156
Case B4: Figure B4-1 through B4-8 157-154
Case R2: Figure R2-1 through R2-3 165-167

LIST OF FIGURES (Cont'd.)

$6 \mathrm{~kW} / \mathrm{ft}$ Cases
Case N0: Figure N0-1 through N0-6 168-173
Case N1: Figure N1-1 through N1-6 174-179
Case N3: Figure N3-1 through N3-6 180-185
Case N4: xigure N4-1 through N4-6 186-191
CONCEPTUAL LMFBR CALCULATIONS
$15 \mathrm{~kW} / \mathrm{ft}$ CasesCase H0: Figure H0-1 through H0-9192-200
Case H1: Figure H1-1 through H1-7 201-207
Case H5: Figure H5-1 through H5-3 208-210
$9 \mathrm{~kW} / \mathrm{ft}$ Cases
Case M0: Figure M0-1 through M0-7 211-217
Case MI: Figure M1-1 through Ml-5 218-222
RATE OF FUEL SWELLING
Figure SFW 223
SENSITIVITY CALCULATIONS FOR FUEL PROPERTIES
$12 \mathrm{~kW} / \mathrm{ft}$ Cases
Figure SA-1 through SA-12. 224-235
$9 \mathrm{~kW} / \mathrm{ft}$ Cases
Figure SB-1 through SB-12 236-247
$6 \mathrm{~kW} / \mathrm{ft}$ Cases
Fig re $\mathrm{SN}-1$ through $\mathrm{SN}-10$ 248-257

ACKNOWLEDGMENT

I would like to express my great appreciation to all members of my Ph.D. Committee for their support and interest. I would like to thank especially Professor D. Okrent for his continued help and his patience, and for providing me with the financial support necessary to develop my ideas and incorporate them into computer codes. I am also grateful to Professor R. A. Westmann for many useful discussions. Mrs. V. Temes provided great help by editing the whole of this thesis. Mr. J. C. Cherng prepared the figures through many hours of effort. Their help is greatly appreciated.

VITA

January 5, 1946--Born, Chen-Do, Republic of China
1968--B.S., National Tsing-Hua University (Taiwan, Republic of China)
1969-1970--Teaching Assistant, National Tsfng-Hua University
1970-1971--Laboratory Assistant, National Tsing-Hua University
1971--M.S., National Tsing-Hua University
1972-1976--Research Assistant, School of Engineering and Applied Science, University of California at Los Angeles

PUBLICATIONS

YANG-HO SUN, J. P. CHIEN
"Rossi-Alpha Experiments in ZPR-L," Tsing-Hua Nuclear News, 1, 25, 1971.
Y. SUN, D. OKRENT, A. WAZZAN
"Probabilistic Formulation of Fission Gas Release in Uranium Alloy Fuels," Trans. Amer. Nuc1. Soc., 16, 81, June, 1973.
A. MADRID, Y. SUN, J. CERMAK, D. OKRENT
"On the Failure Modes of Irradiated LMFBR Fuel Pin During Transients," Trans. Amer. Nuc1. Soc., 18, 203, June, 1974.
Y. SUN, D. OKRENT
"A Simplified Method of Computing Clad and Fuel Strain and Stress During Irradiation," UCLA-ENG-7591, Oct., 1975.
Y. SUN, D. OKRENT
"On the Fuel-Clad Stress-Strain State at the Beginning of a Transient," International Meeting Fast Reactor Safezy and Related Physics, Chicago, Oct., 1976.

ABSTRACT OF THE DISSERTATION

A Simplified Method of Computing
Clad and Fuel Strain and Stress During Irradiation

by

Yang-Ho Sun

Doctor of Philosophy in Engineering University of California, Los Angeles, 1977

Professor David Okrent, Chairman

This dissertation develops a simplified, fast-running axisymmetric computer code, named KRASS (Kwik Running Analysis for Stress and Strain), intended for the prediction of fuel element conditions after long-term steady-state operation in a LMFBR. KRASS assumes that fuel restructuring has already occurred, and divides the fuel pellets into two zones, an inner, highly plastic hot region, and an outer, cooler region which together with the cladding can undergo creep.

This code allows for fission gas pressure, fuel swelling, hot pressing, and it also incluđes alternative correlations for stainless steel swelling. Fuel cracking is not included. The output of KRASS fncludes the radial and axial stress and strain distribution of the fuel and clad as a function of the burn-up. It takes KRASS 11×10^{2} machfne unit seconds on the IBM 360-91 to calculate the fuel element behavior to 15% burn-up, with seven axial sections in the fuel column.

The results of the calcu'ations indicate that the axial variation of the fuei-clad mechanical interaction greatly depends on the fluence-to-burnup ratio, as well as on the applicable stainless steel swelling correlation. The results also show that transient fuel element behavior studies of the pre-irradiated fuel must make allowance for these differences. At higher linear power ratings the largest fuel-clad mechanical interaction generally occurs in the lower third of the fuel element while at low power ratings, this interaction is largest at the axial midsection.

At high fluence-to-burnup ratios, the central axial nodes frequently exhibit gap reopening tendencies.

IHERE TS NO TEXT ON THIS PAGE

The study of steady-state fup: element behavior is important for long-term reactor operation; however, it is also important for transient accident analysis. The steady state behavior of fuel pins must be predicted with reasonable success if an acceptably accurate description of their behavior in transients is to be obtained. The ultimate course of a transient overpower accident depends on the mode of fuel pin failure. This, in curn, depends on the stress and strain conditions of the fuel and clad, due to fission gas release and retention, fuel and clad swelling, creep, loss of ductility, etc. Whether or not (and where) the fuel clad gap is open or closed prior to the transient, may be of major importance in predicting the time and location of the fallure.

In principle, the distribution of stress and strain in the fuel and in the cladding can be predicted from the knowledge of the fuel eiement geometry, the material properties, the temperature distribution, and the operating conditions. The fuel clad gap closure and the fuel clad mechanical interaction can also be predicted from the parameters given above.

Ordinarily, in a code such as LIFE [1], the computations of the axial and radial variations in the fuel pin behavior involve a considerable amount of computer time. This dissertation develops a simplified code, named KRASS (Kwik Running Analysis for Stress and Strain), for the predictions of fast reactor fuel element behavior.

In large LMFBR, the creep rate in the fuel may be enhanced by the high neutron flux, and thus, it can be twice that at the same

$$
733 \quad 054
$$

power rating for a fuel element in EBR II. A scheme is included in KRASS to provide a means for relatively precise creep calculations at higher creep rates in order to assure that this code can be applied to fuel element behavior prediction in a large LMFBa

Assuming plane strain and axial symmetry for a long cylinder, elastic equivalent analysis [2] is applied to give a system of diu-placement-inelastic strain and stress-inelastic strain relations. The inelastic strains, which include the creep strain and the swelling strain accumulated in one time step in the cylinder, are first determined from existing empirical formulae and from the stress state in the previous time step. The displacement-inelastic strain and the stress-inelastic strain are then used, so that the stress variation and the boundary movements in this cylinder (that are induced by the corresponding type of Inelastic strain) can be determined. Creep and the irradiation-induced swelling are considered both in the fuel and in the cladding. Hot pressing has also been considered in the fuel region.

After the fuel-clad gap closes, the mechanical interaction force between the fuel and the cladding can be determined by an iteration process, so that the displacement of the fuel outer boundary equals that of the clad inner boundary.

The fuel ragior is considered as two separate regions in the radial direction. The hot region has temperatures higher than $1500^{\circ} \mathrm{C}$, the cool region has teriperatures lower than $1500^{\circ} \mathrm{C}$. In the hot region of the fuel the temperature is much higher than the brittle-to-duccile transition temperature ($\mathrm{T}_{\mathrm{c}}=1350^{\circ} \mathrm{C}$) [3]; plastic flow occurs
rapidly and the material is weak. Hence, for the sake of simplicity, we have assumed that this region is stress ficee, and the gas pressure in the centrai void is transmitted directly to its outer boundary through this region. The thermal stress that builds up as a result or = high temperature in the fuel region during the first start-mp, wil. ve quickly relaxed by creep and by fuel restructuring. It is assumed the the thermal stress originating from start-up effects in the fuel region can be neglected. Also, since fuel restructuring is usually completed in the first stage of operation, we assume wiat this effect has been completed prior to the beginning of ou: calculation. Fuel cracks are also neglected.

The temperature distribution in the fuel element may change due to the burn-up effects in the fuel region. This variation is usually small and slow; thus it is neglected in the current version of the code. In the preliminary calculations KRASS was usad to compute results which could then be compared in th those obcalfned from postirradiation measurements and with results calculated using the LIFE III code. Then it was used for calculations involving actual applications. The fuel element behavior in CRBR, and in a conceptual CMFBR, has been studied using different correlations for the clad swelling. The major fuel properties have also been studied parametrically for CRBR fuel pins. It takes KRASS oleven hunwied machine unit seconds on the UCLA IBM-360-91 to calculate fuel element behavior to 15% burn-up, with seven axial sections in the fuel column.

CHAPTER II. THEORY
II. 1 The Displacement-Inelastic Strain and the Stress-Inelastic Strain Relations.

The inelastic strain (consisting of the swelling strain and the creep strain) changes its value during fuel and clad irradiation in a nuclear reactor, thus changing the stress level within the material. Dimensional changes may also result.

In this section relations will be introduced between displacement and inelastic strain, and between stress and inelastic strains.

Let us consider a long cylinder with inner radius "a" and outer radius "b", subject to a uniform internal pressure P_{i}, and an outer pressure P_{0}. Let r, θ, z be a set of cylindrical coordinates, and u, v, w the displacement along these three axes. The displacement w is initially assumed to be zero. Axfal symmetry of the structure and of the loading is also assumed. The three principal stresses are $\sigma_{r}, \sigma_{\theta}$, and σ_{z}. The shear stresses and shear strains on these principal planes are zero.

Under the conditions described above, the strain-displacement relations are:

$$
\begin{array}{lc}
e_{r}=\mathrm{du} / \mathrm{dr} & I I-1 \\
e_{\theta}=u / r & I I-2
\end{array}
$$

where e_{r}, e_{θ} are the strain components.
According to the elastic equivalent relation the stress and the elastic component of the total strain should follow [2]:

$$
\left\{\begin{array}{l}
\sigma_{r}=\lambda\left(e-e^{\prime \prime}\right)+2 \mu\left(e_{r}-e_{r}^{\prime \prime}\right) \\
\sigma_{\theta}=\lambda\left(e-e^{\prime \prime}\right)+2 \mu\left(\varepsilon_{\theta}-e_{\theta}^{\prime \prime}\right) \\
\sigma_{z}=\lambda\left(e-e^{\prime \prime}\right)+2 \mu\left(e_{z}-e_{z}^{\prime \prime}\right)
\end{array}\right\}
$$

Here $e_{r}{ }^{\prime \prime}, e_{\theta}{ }^{\prime \prime}$ and $e_{z}{ }^{\prime \prime}$ are the inelastic strain components. e_{r}, e_{θ}, and e_{z} are the components of the total strain and

$$
\begin{aligned}
& e^{\prime \prime}=e_{r}^{\prime \prime}+e_{\theta}^{\prime \prime}+e_{z}^{\prime \prime} \\
& e=e_{r}+e_{\theta}+e_{z} .
\end{aligned}
$$

Substituting Equations II-1 and II-2 into Equation II-3, we get:

$$
\left\{\begin{array}{l}
\sigma_{r}=(\lambda+2 \mu)\left(\frac{d u}{d r}-e_{r}^{\prime \prime}\right)+\lambda\left(\frac{u}{r}-e_{\theta}^{\prime \prime}\right)-\lambda e_{z}^{\prime \prime} \\
\sigma_{\theta}=(\lambda+2 \mu)\left(\frac{u}{r}-e_{\theta}^{\prime \prime}\right)+\lambda\left(\frac{d u}{d r}-e_{r}^{\prime \prime}\right)-\lambda e_{z}^{\prime \prime} \\
\sigma_{z}=-(\lambda+2 \mu) e_{z}^{\prime \prime}+\lambda\left(\frac{d u}{d r}-e_{r}^{\prime \prime}\right)+\lambda\left(\frac{u}{r}-e_{\theta}^{\prime \prime}\right)
\end{array}\right.
$$

The governing equation of equilibrium for a cylinder is:

$$
\frac{d \sigma_{r}}{d_{r}}+\frac{\sigma_{r}-\sigma_{\theta}}{r}=0
$$

Substituting Equation II-4 into Equation II-5, and ther integrating twice with respect to r, yields:

$$
\begin{align*}
(\lambda+2 \mu) u & =\frac{\lambda}{r} \int_{a}^{r}\left(e_{r}^{\prime \prime}+e_{\theta}^{\prime \prime}+e_{z}^{\prime \prime}\right) r d_{r}+\frac{2 \mu}{r} \int_{a}^{r} r e_{r}^{\prime \prime} d r \\
& +\frac{2 \mu}{r} \int_{a}^{r} r \int_{a}^{r} \frac{e_{r}^{\prime \prime}-e_{\theta}^{\prime \prime}}{r} d_{r} d_{r}+\frac{c_{1} r}{2}+\frac{c_{2}}{r}
\end{align*}
$$

Substituting Equation II-6 into the first equation in II-4 we get:

$$
\begin{aligned}
\sigma_{r}= & -\frac{2 \mu \lambda}{(\lambda+2 \mu)} \frac{1}{r^{2}} \int_{a}^{r}\left(e_{r}^{\prime \prime}+e_{\theta}^{\prime \prime}+e_{z}^{\prime \prime}\right) r d r-\frac{4 \mu^{2}}{\lambda+2 \mu} \frac{1}{r^{2}} \int_{a}^{r} r e_{r}^{\prime \prime} d r \\
& -\frac{4 \mu^{2}}{(\lambda+2 \mu)} \frac{1}{r^{2}} \int_{a}^{r} r \int_{a}^{r} \frac{e_{r}^{\prime \prime}-e_{\theta}^{\prime \prime}}{-r} d_{r} d_{r}+2 \mu \int_{a}^{r} \frac{e_{r}^{\prime \prime}-e_{\theta}^{\prime \prime}}{r} d r \\
& +\left(\frac{\lambda+\mu}{\lambda+2 \mu}\right) c_{1}-\frac{2 \mu}{\lambda+2 \mu} \frac{1}{r^{2}} c_{2}
\end{aligned}
$$

The boundary conditions are:

$$
\begin{array}{lll}
\sigma_{r}=-P_{i} & \text { at } & r=a \\
\sigma_{r}=-P_{0} & \text { at } & r=b
\end{array}
$$

The values of c_{1} and c_{2} and can be obtained from Equation II-7, using Equations II-8 and II-9. Resubstituting these values of c_{1} and c_{2} into Equation II-7 we get:

$$
\begin{align*}
& \sigma_{r}(r)=\left(\sigma_{r}(r)\right)_{e}+\left(\sigma_{r}(r)\right)_{p} \\
& u(r)=(u(r))_{e}+(u(r))_{p} . \tag{II}
\end{align*}
$$

Similarly, we can write:

$$
\begin{align*}
& \sigma_{\theta}(r)=\left(\sigma_{\theta}(r)\right)_{e}+\left(\sigma_{\theta}(r)\right)_{p} \\
& \sigma_{z}(r)=\left(\sigma_{z}(r)\right)_{e}+\left(\sigma_{z}(r)\right)_{p} .
\end{align*}
$$

Here:

$$
\begin{array}{ll}
\left(\sigma_{r}(r)\right)_{e}=\frac{a^{2}}{b^{2}-a^{2}}\left(P_{i}-P_{0}\right)\left(1-\frac{b^{2}}{r^{2}}\right)-P_{o} & \text { II-14 } \\
\left(\sigma_{\theta}(r)\right)_{e}=\frac{a^{2}}{b^{2}-a^{2}}\left(1+\frac{b^{2}}{r^{2}}\right)\left(P_{i}-P_{0}\right)-P_{0} & \text { II-15 } \\
\left(\sigma_{z}(r)\right)_{e}=\frac{\lambda}{\lambda+\mu} \frac{1}{b^{2}-a^{2}}\left(a^{2} P_{i}-b^{2} p_{o}\right) & \text { II-16 } \\
(u(r))_{e}=\frac{a^{2}}{2\left(b^{2}-a^{2}\right)}\left[\frac{r}{\lambda+\mu}+\frac{b^{2}}{\mu r}\right]\left(P_{i}-P_{o}\right)-\frac{r}{2(r+\mu)} P_{o} & \text { II-17 }
\end{array}
$$

$$
\begin{align*}
\left(\sigma_{r}(r)\right)_{p}= & -\left[I_{1}(r)+I_{2}(r)+I_{3}(r)-I_{4}(r)\right] \\
& +\frac{b^{2}}{b^{2}-a^{2}}\left(1-\frac{a^{2}}{r^{2}}\right)\left[I_{1}(b)+I_{2}(b)+I_{3}(b)-I_{4}(b)\right] \quad I I-18 \\
\left(\sigma_{\theta}(r)\right)_{p}= & I_{1}(r)+I_{2}(r)+I_{3}(r)+\frac{\lambda}{\lambda+2 \mu} I_{4}(r)-\frac{2 \mu \lambda}{\lambda+2 \mu}\left(e_{\theta}^{\prime \prime}+e_{z}^{\prime \prime}\right)-2 \mu e_{\theta}^{\prime \prime} \\
& +\frac{b^{2}}{b^{2}-a^{2}}\left(1+\frac{a^{2}}{r^{2}}\right)\left[I_{1}(b)+I_{2}(b)+I_{3}(b)-I_{4}(b)\right] I I-19 \\
\left(\sigma_{z}(r)\right)_{p}= & \frac{\lambda}{\lambda+2 \mu} I_{4}(r)-\frac{2 \mu \lambda}{\lambda+2 \mu}\left(e_{\theta}^{\prime \prime}+e_{z}^{\prime \prime}\right)-2 \mu e_{z}^{\prime \prime} \\
& +\frac{\lambda}{\lambda+\mu}-\frac{b^{2}}{b^{2}-a^{2}}\left[I_{1}(b)+I_{2}(b) I_{3}(b)-I_{4}(b)\right] \\
(u(r))_{p}= & \frac{r}{2 \mu}\left[I_{1}(r)+I_{2}(r)+I_{3}(r)\right] \\
& +\frac{b^{2}}{2\left(b^{2}-a^{2}\right)\left[\frac{r}{\lambda+\mu}+\frac{a^{2}}{\mu r}\right]\left[I_{1}(b)+I_{2}(b)+I_{3}(b)-I_{4}(b)\right]}
\end{align*}
$$

Here the s ntegrals are:

$$
\begin{align*}
& I_{1}(r)=\frac{2 \mu \lambda}{\lambda+2 \mu} \frac{1}{r^{2}} \int_{a}^{r} e^{\prime \prime} r d_{r} \\
& I_{2}(r)=\frac{4 \mu^{2}}{\lambda+2 \mu} \frac{1}{r^{2}} \int_{a}^{r} e_{r}^{\prime \prime} r d r \\
& I_{3}(r)=\frac{4 \mu^{2}}{\lambda+2 \mu} \frac{1}{r^{2}} \int_{a}^{r} r \int_{a}^{r} \frac{e_{r}^{\prime \prime}-e_{\theta}^{\prime \prime}}{r} d_{r} d_{r} \\
& I_{4}(r) \\
& =2 \mu \int_{a}^{r} \frac{e_{r}^{-e} e_{\theta}}{r} d_{r} \\
& e^{\prime \prime}=e_{r}^{\prime \prime}+e_{\theta}^{\prime \prime}+e_{z}^{\prime \prime}
\end{align*}
$$

λ and μ are Lame's Constants,

$$
\lambda=\frac{2 \mu \nu}{1-2 \nu,} \quad \mu=\frac{E}{2(1+\nu)}
$$

E and ν are the Young's modulus and the Poisson's ratio, respectively.

In the formulae listed above, an axial force must be applied to the ends of the cylinder to keep the axial displacement equal to zero. Saint-Venant's principle [4] can be applied for this effect. If the real restriction in the axtal direction is F_{z} and we superimpose a uniform axial stress C_{3} so that the resultant axial force is equal to the restrictive force F_{z}, C_{3} can be determined from:

$$
\pi\left(b^{2}-a^{2}\right) C_{3}+\int_{a}^{b} 2 \pi r\left(\sigma_{z}\right)_{w=0} d r=F_{z}
$$

i.e.

$$
C_{3}=\frac{F_{z}-\int_{a}^{b} 2 \pi r\left(\sigma_{z}\right)_{w=0} d r}{\pi\left(b^{2}-a^{2}\right)}
$$

Here $\left(\sigma_{z}\right)_{w=0}$ is the axial stress for zero axial strain $(\omega=0)$, described in Equation II-13.

The real axial stress should thus be:

$$
\sigma_{z}=\left(\sigma_{z}\right)_{w=0}+C_{3}=\left(c_{z}\right)_{w=0}+\frac{F_{z}-\int_{a}^{b} 2 \pi r\left(\sigma_{z}\right)_{w=0} d r}{\pi\left(t^{2}-a^{2}\right)} \quad \text { II }-29
$$

The displacement u is also affected by the superposed axial stress C_{3}. Therefore, the term, $v C_{3} r / E[4]$ must be added to the right hand side of Equation II-11.

In Equations II-10 through II-13, the first term on the right hand side represents the effect in to by the pressure on the walls of the fuel and the cladding. The second term on the right hand side represents the effects that were induced by inelastic strains, e.g. the creep, the swelling, and the hot pressing strains. Thus:

$$
e_{i}^{\prime \prime}=e_{i}^{c^{\prime \prime}}+e_{i}^{s w}+e_{i}^{h p}=e_{i}^{c "}+e_{i}^{s w}{ }^{\prime \prime} \quad \text { II }-30
$$

where
e_{i}^{c} is the creep strain
$e_{i}^{\text {sw }}$ is the swelling strain
$e_{i}^{h p}$ is the hot pressing strain
i represents the components in r, θ, and z directions. Applying Equation II-30 to Equations II-22 through II-28, we can find the I values corresponding to the creep and swelling effects. If we substitute these I values into Equations II-10, II-11, II-12, II-13, and into Equations II-28 and II-29, the creep and swelling-induced stresses can be found.

II. 2 Inelastic Strains

The inelastic strain includes creep strain and irradiation induced strain.

II.2.1 The Stress and Strain Relations in Creep Deformation

At low temperatures, the stress-strain curves are essentially time-independent. However, if the temperature of the material exceeds about half of its melting-point, a departure from this idealization becomes noticeable and the strain increases under constant load.

The creep strains should follow the Prandtl and Reuss assumption, i.e., the plastic-strain increment at any instant is proportional to
the deviatoric stress. Using the principal stress axes, we get:

$$
\frac{d e_{r}^{c}}{s_{r}}=\frac{d e_{\theta}^{c}}{s_{\theta}}=\frac{d e_{z}^{c}}{s_{z}}=d_{K},
$$

where $d e_{r}^{c}, d e_{\theta}^{c}$, and $d e_{z}^{c}$ are the increment of creep strains in the r, θ and z directions, respectively.
$\mathrm{S}_{\mathrm{r}}, \mathrm{S}_{\theta}$ and S_{z} are the deviatoric stress components.
d_{K} is an instantaneous, positive constant of proportionality, which may vary during the loading process.

Equation II-31 satisfies the condition of zero dilation, i.e.,

$$
d e_{r}^{c}+d e_{\theta}^{c}+d e_{z}^{c}=0
$$

The effective stress σ^{*} and strain e^{*}, are defined (in terms of the principal stresses and creep strains) as:

$$
\begin{align*}
& \sigma^{*}=\frac{1}{\sqrt{2}} \sqrt{\left(\sigma_{r}-\sigma_{\theta}\right)^{2}+\left(\sigma_{\theta}-\sigma_{z}\right)^{2}+\left(\sigma_{r}-\sigma_{z}\right)^{2}} \\
& e^{\star}=\frac{\sqrt{2}}{3} \sqrt{\left(e_{r}^{c}-e_{\theta}^{c}\right)^{2}+\left(e_{\theta}^{c}-e_{z}^{c}\right)+\left(e_{r}^{c}-e_{z}^{c}\right)^{2}}
\end{align*}
$$

It can be shown [5] that σ^{*} is proportional to the total shear stress, which gives an accurate measurement for the gross amount of plastic creep deformation in a polycrystalline material.

In a uniaxial case σ^{*} reduces to σ_{r} and e_{c}^{*} to e_{r}^{c}. Equation II-31 gives the relative proportion of the incremental plastic-strain components to the corresponding deviatoric-stress components. Also, in the uniaxial case $\sigma^{*}=\sigma_{r}=\frac{3}{2} S_{r}$. From these:

$$
d_{K}=\frac{3}{2} \frac{d e_{c}^{*}}{\sigma^{*}}
$$

Equation II-35 can be generalized to multiaxial cases by using σ^{*} and e_{c}^{*} defined in Equation II-33 and II-34.

II.2.2. The Creep Strain Rate

The creep strain rate can be represented by the following:

$$
\begin{equation*}
\frac{d e_{c}^{*}}{d t}=A e^{-\theta / R T_{\sigma} *^{m}}+\left[\frac{A_{1}}{d^{2}} e^{-\theta_{1} / R T}+B \phi\right] \sigma^{*^{n}} \tag{1}
\end{equation*}
$$

$$
\mathrm{II}-36
$$

For mixed oxide fuel, we are presently using

$$
\begin{aligned}
& A=\frac{1.376 \times 10^{-4}}{-90.5+D} \\
& D=\text { fuel density percentage. }
\end{aligned}
$$

If the calculated D value is less than 92 , we shall substitute $D=92$.

$$
\begin{aligned}
\theta & =132000 \mathrm{cal} / \mathrm{mole} \\
\theta_{1} & =90000 \mathrm{cal} / \mathrm{mole} \\
\mathrm{~A}_{1} & =9.726 \times 10^{6} /(-87.7+\mathrm{D}) \\
\mathrm{d} & =\text { grain diagram, } \mu(\sim 10) \\
\mathrm{B} & =8.0 \times 10^{-24} \\
\mathrm{~m} & =4.5 \\
\mathrm{n} & =1 \\
\phi & =\mathrm{flux}
\end{aligned}
$$

For 316 cW S.S., used presently, the parameters are:

$$
\begin{aligned}
\mathrm{A} & =2.7 \times 10^{-11} \\
\theta & =95000 \mathrm{cal} / \mathrm{mole} \\
\mathrm{~A}_{1} & =0 \\
\mathrm{~B} & =4.655 \times 10^{-34} \\
\mathrm{~m} & =7 \\
\mathrm{n} & =3
\end{aligned}
$$

II-38

Knowing σ^{*}, $\mathrm{de}{ }_{\mathrm{c}}^{*}$ can be determined from Equation II-36. Then, from Equations II-31 and II-35 the increment of the creep components, i.e. $d e_{r}^{c}, d e_{\theta}^{c}$ and $d e_{z}^{c}$, within a time step can be obtained.

II.2.3. The Swelling Strain

It is assumed that all swelling strain components are equal, i.e.:

$$
e_{r}^{s W}=e_{\theta}^{s W}=e_{z}^{s W}=\frac{1}{3} e^{s W}
$$

where $e^{s W}$ is the total volumetric swelling strain.
II.2.3.1. The Swelling Strains in the Cladding

For $20 \% \mathrm{cw}, 316$ stainless steel, four options have been included in the code as possible correlations for frradiation-induced swelling. These are:
a) $\frac{\Delta V}{V_{0}}=R\left[\phi t 10^{-22}+\frac{1}{\alpha} \ln \left\{\frac{1+\operatorname{Exp}[\alpha(\tau-\phi t)]}{1+\operatorname{Exp}(\alpha \tau)}\right\}\right][6] \quad$ II -40
where

$$
\begin{aligned}
\Delta \mathrm{V} / \mathrm{V}_{\mathrm{O}}= & \text { fractional volume change } \\
\phi \mathrm{t}= & \text { fluence, } \quad \text { unit }=\mathrm{a} / \mathrm{cm}^{2} \quad(\mathrm{E}>0.1 \mathrm{Mev}) \\
\mathrm{R}= & \beta \operatorname{Exp}\left[-88.5499+0.531072 \mathrm{~T}-1.24156 \times 10^{-3} \mathrm{~T}\right. \\
& \left.+1.37215 \times 10^{-6} \mathrm{~T}^{3}-6.14 \times 10^{-10} \mathrm{~T}^{4}\right] \\
& \quad+\quad-12+6.89 \times 10^{-3} \mathrm{~T} \\
\alpha= & \left.-1.16 .51979 \times 10^{-7} \mathrm{~T}^{3}-3.26491 \times 10^{-10} \mathrm{~T}^{4}\right]
\end{aligned}
$$

$$
\mathrm{T}=\text { neutron irradiation temperature in }{ }^{\circ} \mathrm{C}
$$

$$
\beta=\text { multiplicative factor to describe confidence }
$$

limits, $\beta=0.01$ for nominal swelling
In this correlation there is a swell ng threshold that is temperature dependent.
b) $\frac{\Delta V}{V}=\frac{1}{2}\left(9 \times 10^{-35}\right)(\phi t)^{1.5}\left(4.028-3.712 \times 10^{-2} \mathrm{~T}+1.0145 \times 10^{-4} \mathrm{~T}^{2}\right.$

$$
\left.-7.879 \times 10^{-8} \mathrm{~T}^{3}\right)[7]
$$

II-41
The limits of applicability of this formula are $\phi t<10^{23}{ }_{\mathrm{n}} / \mathrm{cm}^{2}$, $\mathrm{E}>0.1 \mathrm{Mev}$, and $360^{\circ} \mathrm{C}<\mathrm{T}<600^{\circ} \mathrm{C}$. The confidence limits are $\pm 50 \%$.
c) $\frac{\Delta V}{V}=9.71574 \times 10^{-41}(\phi t)^{1.6877368}{ }_{\operatorname{Exp}\left[-\left(1.214 \times 10^{-2} \mathrm{~T}\right.\right.}$ $\left.-6.0696)^{2}\right][8]$

11-42
This gives a swelling which peaks at $\mathrm{T}=500^{\circ} \mathrm{C}$.
d) $\frac{\Delta V}{V}=9.71574 \times 10^{-41}(\phi t)^{1.6877368} 8_{\operatorname{Exp}\left[-\left(1.214 \times 10^{-2} T\right.\right.}$ $\left.-7.284)^{2}\right][8]$

II-43
This gives a swelling which peaks at $\mathrm{T}=600^{\circ} \mathrm{C}$.

II.2.3.2. Swelling Strain in the Fuel Region

The isothermal tests described in Chubb's paper [9] give relation between the temperature and the strain rate induced by the fission gas swelling at a burnup rate of 2×10^{13} fissions/cc-sec.

The curves in Figure II-1 follow the formula:

$$
\dot{\Delta}=10^{(0.001046 T-5.08378)},
$$

where
$\dot{\Delta}=\frac{\Delta \dot{u}}{b}$ is the ratio of the displacement rate to the radius of the outer boundary.

T is the temperature in ${ }^{\circ} \mathrm{F}$.
Assuming a linear relation between the fission gas swelling rate and the burnup rate in the fuet, the displacement of the fuel outer boundary during Δt time will be:
EXTERNAL DIAMETRAL SWELLING RATE, PERCENT PER 10^{20} FISSIONS $/ \mathrm{cm}^{3}$

Figure II - 1. Effect of Alloying UO_{2} with PuO_{2}.

$$
\Delta u=b \dot{\Delta} \frac{(3600 \times \Delta t) B}{10^{20}}=3.6 \times 10^{-17} b \dot{\Delta} B(\Delta t),
$$

where B is the burnup rate in fission/cc-sec.
On the other hand, from Equations II-21 and II-39, the relation between the swelling strains and the outer boundary displacement can be expressed by:

$$
u(b)=\left(\lambda+\frac{2 \mu}{3}\right) \frac{1}{\lambda+2 \mu} \frac{1}{b}\left\{1+\frac{\mu}{\lambda+\mu}\right\} c_{s w} \int_{a}^{b} r d r \quad .
$$

Since the experiment in Reference [9] is almost isothermal, e_{SW} is assumed to be constant across the fuel region.

By equating Equations II-45 and II-46, we get the fission gas swelling in the fuel as follows:

$$
e_{s w}^{F}=3.6 \times 10^{-17} \frac{b}{G} \dot{\Delta B}(\Delta t),
$$

where

$$
G=\left(\lambda+\frac{2 \mu}{3}\right) \frac{1}{\lambda+2 \mu} \frac{1}{b}\left\{1+\frac{\mu}{\lambda+\mu}\right\} \int_{a}^{b} r d r
$$

In order to achieve best fit to the results obtained from the LIFE-III code, an adjustable parameter AG $=3.4$ is introduced in Equation II-47 for the low power calculations. This adjustment gives a fuel swelling rate that approximates the upper binding curve in Fig. II.1.
II. 2.4 Hot Pressing

The temperature in the fuel region is usually high. Dislocation glide and stress-enhanced diffusional creep can reduce the volumetric strain under hydrostatic compression. The amount of change in the volumetric strain $\Delta e^{h p}$ caused by this hot pressing process can be expressed as: [8]

$$
\Delta e^{h p}=\frac{c}{T} \exp \left(-\frac{\theta}{T}\right) \sigma\left(1-\frac{\rho}{\rho_{t h}}-e^{s w}\right) \Delta t
$$

where

$$
\begin{aligned}
\sigma & \left.=\frac{1}{3}\left(\sigma_{r}+\sigma_{\theta}+\sigma_{z}\right) \text { is the hydrostatic pressure (dyne/cm }{ }^{2}\right) \\
c & =4.7 \times 10^{6} \frac{\mathrm{~cm}^{2} \mathrm{~K}^{\circ}}{\text { dyne sec }} \\
Q & =4.43 \times 10^{4}{ }^{\circ} \mathrm{K} \\
\Delta t & =\text { time increment (sec) } \\
\rho & =\text { fuel density } \\
\rho_{t h} & =\text { the theoretical fuel density } \\
e^{\text {sw }} & =\text { fission gas swelling in the fuel region } \\
T & =\text { temperature in }{ }^{\circ} \mathrm{K}
\end{aligned}
$$

It is assumed that all hot pressing strain components are equal, i.e.

$$
\Delta e_{r}^{h p}=\Delta e_{\theta}^{h p}=e_{z}^{h p}=\frac{1}{3} \Delta e^{h p}
$$

II.2.5 Fission Gas Release and the Gas Pressure

The fission gas bubbles migrate in the fuel region as a result of temperature and the stress gradient, and can be released through the grain boundarles and cracks that interconnect to the surface. The gas release percentage in the undisturbed fuel zone [10] can be expressed by:

$$
F=1-\frac{\left.\frac{1-\exp \left(-6.84 \times 10^{-5} \mathrm{~B}\right)}{\left(6.84 \times 10^{-5}\right) \mathrm{B}}\right\}}{\{0.421 / \exp (10.05 Q)\}}
$$

where B is the burnup (MWD/MTM)
and Q is the 11near heat rate (kw/ft).
100% gas release is assumed in the equiaxial grain zone and in the columnar grain zone. The relation between F and B is shown in Figure II-2.

At first, most of the gas atoms are released to the central void, and then to the plenum through the interconnected volds, cracks, and any separation between the fuel pellets. It is assumed that the gas pressure in the central void is equal to that in the plenum. The gas pressure can thus be determined by the ideal gas law as follows:

$$
P_{p}=P_{c V}=\frac{\left(E N_{F}+N_{I}\right) R \bar{T}}{V_{p}+V_{c V}},
$$

$P_{p}, P_{c v}, V_{p}, V_{c v}$ are the pressures and the volumes of the plenum and of the central void, respectively.
N_{F} is the number of total gas atoms generated
N_{I} is the initial number of gas atoms
F is the fraction of total gas atoms released
\bar{T} is the average temperature in the plenum and in the central voi..

Figure II - 2. Predicted Gas Release for a Mixed-0xide Fueled Pin.

CHAPTER III. THE PROCESS OF PROBLEM SOLVING

III.1. The Basic Process

In the cooler fuel region the creep strain rate is about 10^{-4} /hour, corresponding to a $10^{3} \mathrm{psi}$ load. In the hot fuel region the creep strain rate is much higher. The thermal stress that has built up during the start-up period can thus be released quickly and should have negligible effect on fuel element behavior at later times. It is assumed in the code that this thermal stress is negligible.

The brittle-to-ductile transition temperature is approximately $1350^{\circ} \mathrm{C}$ for the fuel material. In the higher temperature region there is a heavy plastic flow and the material is very weak. This region can be considered stress free, with the gas pressure in the central void transmitted directly to the cooler boundary of the columnar region (Figure III.1).

This code treats steady state operations only. During such operation the variations of creep, swelling, and fission gas pressure are slow processes, therefore, the change in the stress state is also relatively slow. If the time intervals are small enough, it is a good assumption to calculate the creep strain using the stress state in the previous time step. An iteration process has been built into the code to assure that the ratio of the stress variation caused by the creep effect to the total stress state is less than a prescribed value. (See the simplified flow chart.) If this ratio is larger than the assigned value, the time interval of this step is linearly reduced to meet the prescribed value (Section III-3).

Figure III - 1. Radial Section of the Fuel Element.

The boundary displacements of the fuel and the cladding are calcuiated in each time step. Thus the closure of the fuel-cladding gap can be calculated by the differential displacement of the fuel and cladding boundaries. Before the gap closes, the plenum gas pressure acts on the fuel outer wall and on the cladding inner wall. After gap closure the mechanical interaction force can be determined by an iteration process so that the displacement of the fuel outer wall is equal to that of the cladding inner wall. A fast-converging iteration subroutine is included in the code to provide , ans for a fast determination of the interacting forces between the $1 e l$ and the clad after gap closure (Section III.2).

Once the pressure at the fuel and clad walls has been determined, the stress and strain distribution, caused by different physical effects, can be determined by the formulae in Chapter II.

The axial restriction F_{z}, used in Equation II-28, is different for the fuel column and for the cladding.

For the fuel column, as described in Figure III-2, the axial restriction is the plenum pressure P_{r}, acting at the end. After the fuel-clad gap is closed, the friction force F_{r}, acting between the fuel and the cladding, contributes to the axial restriction too. So, the total axial restriction, F_{z} for the fuel column is:

$$
F_{z}^{F}=\pi\left(b_{f}^{2}-a_{f}^{2}\right) p_{r}+\left(2 \pi b_{f} L\right) F_{r} q .
$$

Here $\mathrm{F}_{\mathrm{r}}=\mu \mathrm{P} \mathrm{fc}_{\mathrm{c}}$,
If is the friction coefficient,
P_{fc} is the mechanical interaction between the fuel and the cladding.

Figure III - 2. Free Body Diagram of the Fuel Region.

Figure III - 3. Free Body Diagram of the Cladding.

L is the distance to the upper end of the
fuel column
$q=0$, if the fuel-clad gap is open
$q=1$, if the fuel-clad gap is closed.
As shown in Figure III-3, the axial restriction for the cladding can be written as:

$$
F_{z}^{c}=\pi\left(b_{c}^{2} p_{c}-a_{c}^{2} P_{r}\right)+\left(2 \pi a_{c} L\right) F_{r} q
$$

III.2. Determination of the Mechanical Force (P_{fc}) Between the Fuel and the Clad After the Gap Is Closed

After the fuel-clad gap is closed, there is a mechanical interaction force (P_{fc}) between the fuel and the clad. The increment of $p_{f c}$ in each time step should be such that the displacement of the outer boundary of the fuel and of the inner boundary of the clad is equal. An iteration process has been included in the code (see the simplified flow chart) to determine the change of $P_{f c}(D P)$ in each time step.

Let us consider a coordinate system with $\Delta \mathrm{U}_{\mathrm{F}}$ displacement of the fuel outer wall along the X -axis, and with $\Delta \mathrm{U}$ c displacement of the clad inner wall along the Y-axis (see Figures III-4 and III-5) in a time interval $\Delta t_{i} . \quad(D P)_{1}$, the first approximation of $D P$ is equal to the change of P_{fc} in the last time step. If the fuel-clad gap is still open in the last time step, then (DP) ${ }_{1}$ is equal to the gas pressure change during the last time step. By applying (DP) ${ }_{1}$ we get $\left(\Delta U_{C}\right)_{1}$ and $\left(\Delta U_{F}\right)_{1}$. If the absolute value of $\left[\left(\Delta U_{C}\right)_{1}-\left(\Delta U_{F}\right)_{1}\right] /\left(\Delta U_{C}\right)_{1}$ is not smaller than a prescribed value (5% in this code), a second approximation, (DP) ${ }_{2}$ should be tried.

As shown in Figure III-4, it is assumed that (DP) ${ }_{2}$ is located at the crossing of l fines \bar{m} and \bar{n}. \bar{m} contains all those points where $\left(\Delta U_{C}\right)=\left(\Delta U_{F}\right), \bar{n}$ passes through point $(D P)_{1}$ and is perpendicular to line $\overline{\mathrm{m}}$. Thus, $(\mathrm{DP})_{2}$ is expected to have a corresponding $\left(\Delta \mathrm{U}_{\mathrm{c}}\right)_{2}$ and $\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{2}$, so that $\left(\Delta \mathrm{U}_{\mathrm{C}}\right)_{2}=\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{2}$. As shown in Figure III. $4,\left(\Delta \mathrm{U}_{\mathrm{C}}\right)_{2}$ and $\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{2}$ can be expressed by $\left(\Delta \mathrm{U}_{\mathrm{C}}\right)_{1}$ and $\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{1}$ as :

$$
\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{2}=\left(\Delta \mathrm{U}_{\mathrm{c}}\right)_{2}=\frac{\left(\Delta \mathrm{U}_{\mathrm{c}}\right)_{1}+\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{1}}{2}
$$

In Figure III-4, $(\mathrm{DP})_{1}$ corresponds to a $\left(\Delta U_{c}\right)_{1}$ displacement of the cladding wall. As $\Delta \mathrm{P}_{\mathrm{fc}}$ varies from (DP) ${ }_{1}$ to (DP) ${ }_{2}$, the variation of ΔU_{c} is: $\left(\Delta U_{c}\right)_{2}-\left(\Delta U_{c}\right)_{1}$. By assuming that

$$
\frac{(\mathrm{DP})_{1}}{(\mathrm{DP})_{2}}=\frac{\left(\Delta \mathrm{U}_{\mathrm{c}}\right)_{1}}{\left(\Delta \mathrm{U}_{\mathrm{c}}\right)_{2}-\left(\Delta \mathrm{U}_{\mathrm{c}}\right)_{1}}
$$

(DP) $)_{2}$ can be determined as:

$$
(\mathrm{DP})_{2}=(\mathrm{DP})_{1} \frac{\left[\left(\Delta \mathrm{U}_{\mathrm{C}}\right)_{1}+\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{1}\right] / 2-\left(\Delta \mathrm{U}_{\mathrm{C}}\right)_{1}}{\left(\Delta \mathrm{U}_{\mathrm{c}}\right)_{1}}
$$

If the sbsolute value of $\frac{\left(\Delta U_{C}\right)_{2}-\left(\Delta U_{F}\right)_{2}}{\left(\Delta U_{C}\right)_{2}}$ is still not smaller than the allowed number, a more effective process is used to assure a fast convergence.

As shown in Figure III-5, $\overline{\mathrm{P}}$ is the line connecting points (DP) ${ }_{1}$ and $(\mathrm{DP})_{2}$. Point (DP) is assumed to be on P also and have $\Delta \mathrm{U}_{\mathrm{C}}=\Delta \mathrm{U}_{\mathrm{F}}$ displacement.

Figure III-5 shows that ΔU_{C} and ΔU_{F} can be expressed by the first and second trials as:

Figure III - 4. The Determination of $(D P)_{2}$

Figure 111 - The Determination of (DP)

$$
\Delta \mathrm{U}_{\mathrm{c}}=\Delta \mathrm{U}_{\mathrm{F}}=\mathrm{b} /(1-\mathrm{a})
$$

where $\quad a=\frac{\left(\Delta U_{c}\right)_{2}-\left(\Delta U_{c}\right)_{1}}{\left(\Delta U_{F}\right)_{2}-\left(\Delta U_{F}\right)_{1}}$
and

$$
\mathrm{b}=\left(\Delta \mathrm{U}_{\mathrm{c}}\right)_{2}-\mathrm{a}\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{2} .
$$

It can also be shown that the distance between points (DP) and (DP) ${ }_{2}$ is:

$$
\mathrm{LP2}=\sqrt{\left[\left(\Delta U_{F}\right)-\left(\Delta U_{F}\right)_{2}\right]^{2}+\left[\left(\Delta U_{C}\right)-\left(\Delta U_{C}\right)_{2}\right]^{2}}
$$

and the distance between points $(\mathrm{DP})_{1}$ and $(\mathrm{DP})_{2}$ is:

$$
\mathrm{L} 12=\sqrt{\left[\left(\Delta U_{F}\right)_{1}-\left(\Delta U_{F}\right)_{2}\right]^{2}+\left[\left(\Delta U_{c}\right)_{1}-\left(\Delta U_{c}\right)_{2}\right]^{2}}
$$

Corresponding to the different $\left(\Delta U_{C}\right)$ and ($\left(\Delta_{F}\right)$ values in the first and second trial, the following relation is used to determine the third trial (DP):
(i) $\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{1}>\left(\Delta \mathrm{U}_{\mathrm{C}}\right)_{1}$ and $\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{2}>\left(\Delta \mathrm{U}_{\mathrm{c}}\right)_{2}$

$$
D P=D P_{2}-\left|D P_{1}-D P_{2}\right| \frac{L F 2}{L 21}
$$

(ii) $\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{1}<\left(\Delta \mathrm{U}_{\mathrm{c}}\right)_{1}$ and $\left(\Delta \mathrm{U}_{\mathrm{F}}\right)_{2}<\left(\Delta \mathrm{U}_{\mathrm{C}}\right)_{2}$

$$
D P=D P_{2}-\left|D P_{1}-D P_{2}\right| \frac{L P 2}{L 21}
$$

(iii) all other cises

$$
\mathrm{DP}=\mathrm{DP}_{2}+\left(\mathrm{DP} \mathrm{D}_{1}-\mathrm{DP}_{2}\right) \frac{\mathrm{LP} 2}{\mathrm{~L} 21}
$$

If (DP) ${ }_{i-2}=(D P)_{1},(D P)_{2}, \ldots(D P)_{i}$ are the steps of the iteration process, then the DP value will be reached when $\left(\Delta U_{C}-\Delta U_{F}\right) / \Delta U_{C}$ is smaller than the prescribed number.

III-3. Iteration for Creep Precision in the Fuel
The increment of creep strain within a time step is determined by an empirical formula corresponding to the stress level in the previous
time step. In order to achieve precision in the creep increment calculation, a suitable time increment should be chosen for the time step, so that the creep increment and the stress variation (caused by this creep increment) is kept lower than a certain value (RV1).

If $P H, P R$ and $P Z$ are defined as:

$$
\left.\begin{array}{l}
\mathrm{PH}=\Delta \sigma_{\theta} / \sigma_{\theta} \\
P R=\Delta \sigma_{r} / \sigma_{r} \\
P Z=\Delta \sigma_{z} / \sigma_{z}
\end{array}\right\}
$$

where $\Delta \sigma_{\theta}, \Delta \sigma_{r}, \Delta \sigma_{z}$ are the stress increments caused by the creep affect within this time step, and $\sigma_{\theta}, \sigma_{r}, \sigma_{z}$ are the components of the total stress level in the previous time ε tep. Also, let us designate:
$A M X=\max \{P H, P R, P Z\}$.
III-11
To assure precision of the calculation, AMX should be kept smaller than RV1. But, in order to save computing time, AMX should be larger than another value RV2. We can thus adjust the time increment (Δt), so that RV1 < AMX < RV2 (See F1g. III-6).

Let Δt_{o} be the initial time increment and let u_{0} determine $A M X_{0}$. If $A M X$ o is not within the allowed interval for $A M X$, we adjust Δt by a linear relation between AMX_{0} and RV1, as described in Figure III-6. Thus, the first trial of time increment Δt is;

$$
\Delta t_{1}=\Delta t_{0} \frac{R V 1}{(A M X)_{0}}
$$

We an calculate (AMX) ${ }_{1}$ by using t_{1} in Equation III-7. If (AMX) ${ }_{1}$ is still not in the allowed interval for AMX, we shall readjust Δt. As described in Figure III.11, the second trial of the time increment Δt_{2} will be:

ALLOWED INTERVAL FOR AMX

Figure III - 6. Ac sted Time Increment, Δt, Versus Maximum Fractional S ress Increment - First Trial.

Figure III - ?. Adjustrd Time Increment, Δt, Versus Maximum Fractional Stres: Increment - $m^{\text {th }}$ Trial.

$$
\Delta t_{2}=\Delta t_{1}+\left(\Delta t_{0}-\Delta t_{1}\right) \frac{R V 1-A M X_{1}}{A \cdot A_{0}-A M X_{1}}
$$

This process can be repeated by using

$$
\Delta t_{m+1}=\Delta t_{m}+\left(\Delta t_{m-1}-\Delta t_{m}\right) \frac{R V 1-A M X_{m}}{A M X_{m-1}-A_{m}}
$$

.ntil AMY has a value inside the allowed interval.
A flow chart for the creep precision iteration is shown in Figure III-8.
III. 4. A Simplified Flow Chart.

Figure III-9 illustrates the calculation of the strain change, boundary displacements, fuel-clad gap thickness and stress distribution. The process consists of the computation of :

1. The strain change $\left(\Delta e^{c}\right)$ and the stress change $\left(\Delta \sigma^{c}\right)$ caused by the creep effect. An iteration process is used to adjust Δt so, that $\Delta \sigma^{c} / \sigma$ is small enough to result precise creep values.
2. The increment of the swelling strain and of the fission gas release. By knowing the available gas volume, the fission gas pressure can be determined.
3. The boundary displacements within this time step.
4. The fuel-clad gap thirkness. If the gap is still open, the fission gas pressure acts at the suter boundary of the fuel and at the inner boundary of the clad. If the gap is closed, an iteration process is used to determine the fuel-clad mechanical interaction force (f_{fc}).
5. The stress distribution. This can be determined after the stress change (due to the swelling effect) and the pressures are calculated.

This process is repeated for all the axial sections and for all the time steps.

Figure III - 8. Flow Chart for Creep Precision Iteration.

INITIAL INPUTS

Figure III - 9. Simplified Flow Chart

CHAPTER IV. PRELIMINARY CALCULATIONS

IV.1. Calculations for Fuel Pin PNL-10-23

The fuel pin PNL-10-23, which had been irradiated in the EBR--II, has been chosen for comparison with the code. The specification of this fuel are the following:

Fuel $\mathrm{UO}_{2}-\mathrm{PuO}_{2}$ (65 wt \% enriched U-235)
Fuel pellet diameter: 0.194 in ., density: $90.9 \% \mathrm{TD}$
Fuel columnar length: 13.5 in .
Fuel smear density: 85.5% TD
Fuel-cladding gap width: 3 mils
Cladding material: $23 \% \mathrm{CW} 316$ S.S.
Cladding dimension: 0.23 in . OD $\times 0.015 \mathrm{in}$. thick
Gap plenum volums: $6.1 \mathrm{~cm}^{3}$
Peak linear heat rating: $9.87 \mathrm{~kW} / \mathrm{ft}$
Peak burn-up: 5\%
The post-irradiated fuel zone boundaries at the mid-plane are the following:

Central Void	Columnar Grain	Equiaxed Grain
Radius ($\mathrm{m}^{2} 1 \mathrm{~s}$)	Radius (mils)	Radius (mils)

6.4
52.5
69.1

The mixed oxide fuel should be restructured completely above $\sim 1650^{\circ} \mathrm{C}$ (columnar grain growth region), and the equiaxed grain growth is observed at about $1300^{\circ} \mathrm{C}$. By normalizing the radius of the columnar zone and the equiaxial grain zone to $1650^{\circ} \mathrm{C}$ and $1300^{\circ} \mathrm{C}$, respectivaly, the radial temperature distribution in the fuel region can be determined. The reported cladding surface temperature can also be used to determine the radial temperature distribution in the cladding.

By using the above values as inputs, the stresses, strains, boundary deformations, and the gap closures for the fuel PIN PNL-10-23 have been calculated.

A second sample case, with a smaller (2.4 mils) initial gap, has also been calculated. The gap closed at a 3.5% burn-up.

The results of these two primary calculations are shown in Figure E-1 through Figure E-3.

Figure E-1 shows the boundary movements of the fuel outer wall and the clad inner wall. In the first case, the initial gap thickness is larger, and the gap does not close before a 5% burn-up. In the second case, a small initial gap has been used that closed at 3.2% burn-up after 10,800 hours of irradiation. After 2 years of irradiation (5% burn-up), the post irradiation measurement of the clad boundary displacement was 1.26 mils . The calculated value is 1.5 mils ; it is close to the measured value.

Figure E-2 shows the displacement of the clad wall (U C_{C}) in the first and in the second case, after the clad has been irradiated for 10,800 hours. The fuel-clad mechanical interaction (P_{fc}) in the second case is also shown in this figure. Because the gap is closed and P_{fc} acts on the cladding boundary, U_{c} is larger than it was in the first case.

The maximum radial hoop stress $\left(\sigma_{\theta}^{c}\right)_{\max }$ acts in the outer wall of the clar. Figure E-3 shows the time behavior of this stress. $\left({ }_{\theta}^{c}\right)_{\text {max }}$, that was induced by the start-up heating, is first relaxed by the creep effect, then, it is increased by the irradiation-induced
swelling of the clad. After the gap closure in the second case, $\left(\sigma_{\theta}^{c}\right)_{\max }$ is increased by the P_{fc} acting on the clad inner wall. IV.2. Calculations for $6 \mathrm{~kW} / \mathrm{ft}$ and $15 \mathrm{~kW} / \mathrm{ft}$ Fuel Pins Irradiated in EBR-II.

In order to compare the results of our code to that of LIFE III, two sample calculation inputs of the LTFE III code ($6 \mathrm{~kW} / \mathrm{ft}$ and $15 \mathrm{~kW} / \mathrm{ft}$) have been used as inputs for the KRASS code.
IV.2.1. The Low Power Case ($6 \mathrm{~kW} / \mathrm{ft}$).

This is a calculation for a test fuel element that was irradiated in EBR. The specifications of the fuel element are the following:

```
Fuel: }\mp@subsup{\textrm{UO}}{2}{}-\mp@subsup{\textrm{PuO}}{2}{}\mathrm{ (65% wt enriched)
Fuel pellet radius: 0.11148 inch
Fuel density: 92.9% TD
Fuel columnar length; 13.5 inch
Cladding length: 36 inch
Fuel-cladding gap width: 1 mils
Cladding materials: 20% CW 316 S.S.
Cladding dimension: 0.25 inch OD x 12.5 mils thickness
Peak linear heat rating: 9.87 kW/ft
Coolant iniet temperature: 700 F
Coolant outlet tenperature: 980 F
Neutron Flux: 0.65 x 10 15 neut/\mp@subsup{cm}{}{2}
```

The temperature after the start-up period (printed by LIFE III) was used as the input for the KRASS code. The stresses, strains, boundary movements and the gap closures were calculated for this $6 \mathrm{~kW} / \mathrm{ft}$ fuel element.

The fuel ie divided into three axial components in the computation. The results of the KRASS code were compared to those of the LIFE III code in Figures E-4 and E-5. As Figure E-4 shows, the fuel-clad closure is calculated 980 hours by LIFE III, and at 1150 nours by KRASS. After the gap closure the P_{fc} values given by both codes are very similar. The maximum radial hoop stress in the clad is measured at the outer wall by both codes. Because of fuel-clad interaction P_{fc} at the inner wall, the stress and strain magnitudes start to increase in the clad in about 260 hours after the gap closure. At this time the value of P_{fc} is large enough to compensate the outward swelling of the fuel; the increase rate of $p_{f c}$ is thus reduced, and the hoop stress in the clad starts to be relaxed by the creep effect.

Comparing the results of the two codes after 2750 hours of irradiation (Figure E-4) we find:

KRASS
$\left(\sigma_{\theta}^{c}\right)_{\max } \quad 28 \mathrm{ksi}$
$\begin{array}{lll}\mathrm{e} & 0.87 \% & 0.67 \%\end{array}$
After 7500 hours of irradiation:
KRASS LIFE III

$\left(\sigma_{\theta}^{c}\right)_{\max }$	27.5 ksi	29.7 ksi
$\left(e_{\theta}^{c}\right)_{t}$	2.46%	2.70%

Figure E-5 shows the displacement of the fuel outer wall (U_{F}) and of the clad inner wall (U_{C}). As this figure indicates, after 2750 hours and 7500 hours, the U_{F} and c_{c} values calculated by the KRASS code are similar to those given by the LIFE-III code.

IV .2.2. The High Power Case ($15.2 \mathrm{~kW} / \mathrm{ft}$).
This is a calculation for a test fuel element irradiated in the EBR-II. The specifications are the following:

Figure E6 shows the fuei-clad gap closure, the fuel-clad interaction force, the total hoop strain $\left(e_{\theta}^{c}\right)_{t}$, and the $\left(\sigma_{\theta}^{c}\right)_{\max }$, calculated by the $v_{\text {LASS }}$ code. The fuel-clad gap closes at 1600 hours. Before gap closure the irradiation-induced swelling strain is the main contributor to the $\left(e_{\theta}^{c}\right)_{t}$. After gap closure the creep strain induced by $P_{f c}$ in the clad gives a larger $\left(e_{0}^{c}\right)$. 150 hours after gap closure $P_{f c}$ reaches a large enough value to compensate the outward swelling of the fuel. The increase rate of P_{fc} is thus reduced. 150 hours after gap closure ${ }^{*} \mathrm{fc}$ increases by 750 psi , which results in a 5.9 ksi increase of $\left(\sigma_{\theta}^{c}\right)_{\max }$. After 1750 hours, the creep rate in the clad is $1.9: 10^{-7} / \mathrm{hr}$.

This is three times that of the $6 \mathrm{~kW} / \mathrm{ft}$ case. This large creep rate is due to the higher neutron flux used in this calculation. Because of this creep in the clad, and the small reduction of P_{fc} due to the fuel creep, $\left(\sigma_{\theta}^{c}\right)$ max starts to reduce its magnitude 150 hours after the gap closure. At 4% burn-up, $P_{f c},\left(\sigma_{\theta}^{c}\right)_{\max }$, and $\left(e_{\theta}^{c}\right)_{t}$ is 550 psi , 4.8 ksi , and 0.06%, respectively.

In this high power case, the available version of LIFE III gave results which oscillate in their values, because the code did not have a subroutine to control creep stablilty in the fuel region. In the KRASS code, a control scheme was included to assure that in each time step, the cbange of state caused by the creep affect is small enough to allow accurate calculations.

The results of the KRASS code are within thn envelope of the oscillatory results given by LIFE III.

CHAPTER V. APPLICATTONS

V.1. List of Applications.

The KRASS code is used for the calculations of the fuel element behavior in CRBR and in a large conceptual LMFBR. The fuel element specifications in these reactors are the following:

CRBR
Fuel material:
Fuel pellet radius:
Fuel density:
Fuel smear density:
Core column length:
Fuel-clad gap:
Cladding material:
Cladding radius:
Cladding thickness:
Fission gas plenum length:
Peaking linear power:
$12 \mathrm{~kW} / \mathrm{ft}$
Coolant inlet temperature: $730^{\circ} \mathrm{F}$
Coolant outlet temperature: $1050^{\circ} \mathrm{F}$
$16.03 \mathrm{~kW} / \mathrm{ft}$
Conceptual LMFBR
$(\mathrm{U}-\mathrm{Pu}) \mathrm{O}_{2}$
0.135 inch

85\% TD
80\% TD
42.8 inch
2.5 mils

20\% CW, 316 S.S.
0.14 inch

17 mils
37.6 inches
$760^{\circ} \mathrm{F}$
$1170^{\circ} \mathrm{F}$
$12 \mathrm{~kW} / \mathrm{ft}, 9 \mathrm{~kW} / \mathrm{ft}$ and $6 \mathrm{~kW} / \mathrm{ft}$ fuel elements have been analyzed in CRRB applications and calculations were made for the $15 \mathrm{~kW} / \mathrm{ft}$ and $9 \mathrm{~kW} / \mathrm{ft}$ elements used in a conceptual large LMFBR. Different correlations are used to calculate the irradiation swelling in the clad. The creep rate in the fuel, the smear density, and the fuel density are also varied. The cases of calculations are listed in the following.

Symbols: LP: linear power ($\mathrm{kW} / \mathrm{ft}$)
NCSW: options for the correlation of swelling in the clad (Equations in Section 2.3.1 of Chapter II).
$N Z$ total number of axial sections for the fuel column. 1st axial section is the bottom section of the fuel pin. ϕ : neutron flux ($\times 10^{15}$ neut $/ \mathrm{cm}^{2} \mathrm{sec}$)
(1) Basic Cases

Case	Reactor	LP	NCSW	NZ	¢
AO	CRBR	12	II-40	3	4.7
A1	CRBR	12	II-41	3	4.7
A3	CRBR	12	II-42	3	4.7
A4	CRBR	12	II-43	3	4.7
R1	CRBR	12	II-40	7	4.7
BO	CRBR	9	II-40	3	3.5
B1	CRBR	9	II-41	3	3.5
B3	CRBR	9	II-42	3	3.5
B4	CRBR	9	II-43	3	3.5
R2	CRBR	9	II-40	7	3.5
NO	CRBR	6	II-40	3	2.4
N1	CRBR	6	II-41	3	2.4
N3	CRBR	6	II-42	3	2.4
N4	CRBR	6	II -43	3	2.4
H0	Conceptual LMFBR	15	II-40	3	8.5
H1	Conceptual LMFBR	15	II-41	3	8.5
H5	Conceptual LMFBR	15	II -40	5	8.5
MO	Conceptual LMFBR	9	II-40	3	5.2
M1	Conceptual LMFBR	9	II -41	3	5.2

The ratio of the axial section lengths is:
$1: 1: 1$ for $N Z=3$ cases in CRBR
$1: 2: 1$ for $N Z=3$ cases in the conceptual reactor.
The axial section lengths were equal for $N Z=5$ and $N Z=7$ cases.
(2) Sensitivity of the fuel properties

$$
\begin{aligned}
& \text { NCSW }=\text { II }-40 \text { for all cases } \\
& N Z=3 \quad \text { for all cases } \\
& P_{D}=\text { fuel density } \\
& D_{S}=\text { smear density } \\
& \dot{\Delta}=10^{8.368 \times 10^{-4}} \mathrm{~T}\left({ }^{\circ} \mathrm{F}\right)-4.6628668 \text { (Equation II-44.1) } \\
& \dot{\Delta}=10^{5.23} \times 10^{-4} \mathrm{~T}\left({ }^{\circ} \mathrm{F}\right)-4.031495 \text { (Equation II-44.2) }
\end{aligned}
$$

Equation 11-44.1 and Equation II-44.2 represent two different fuel swelling models from that of Equation IT-44. In these two equations the temperature dependence of the fuel swelling has a slope 0.8 and 0.5 times that of Equation II-44. The amount of fuel swe11ing is the same for all three cases at an average cold fuel region temperature. The cases for this sensitivity study are listed on the following page. V.2. Calculation of the Fuel Element Behavior in CRBR
(1) Case A0 (CRBR, $12 \mathrm{~kW} / \mathrm{ft}$)

Figure A0-1 shows the time history of the fuel-clad gap closure and the fuel-clad mechanical interaction force. As the figure shows, the gap closes after 1831 hours, 1498 hours, and 1971 hours in the 1st, 2nd, and 3rd axial sections, respectively. After the gap closes, the highest $P_{f c}$ is in the 1st axial section. After 13000 hours (12% burn-up), P_{fc} has the value of $5.1 \mathrm{ksi}, 1.4 \mathrm{ksi}$, and 3.3 ksi in the 1st, 2nd and 3rd axial sections, respectively. The plenum pressure is 1.0 ksi at this burn-up.

Case	Reactor	L.P.	ϕ	Fianges of Parameters from the Basic Case	Basic Case
AA	CRbR	12	4.7	creep rate in the fuel $\times 1.5$	AO
$A B$	RBR	12	4.7	creep rate in the fuel $\times 0.5$	A0
AG	CRBR	12	4.7	$\rho_{S}=88 \% \mathrm{TD}$	A0
AH	CRBR	12	4.7	$\rho_{S}=83 \% \mathrm{TD}$	AO
AI	CRBR	12	4.7	$\rho_{D}=85 \% \mathrm{TD}, \rho_{S}=80 \% \mathrm{TD}$	AO
AN	CRBR	12	4.7	$\Delta=$ eqn. $11-44.1$	AO
AS	CRBR	12	4.7	$\dot{\Delta}=$ eqn. $I I-44.2$	AO
BA	CRBR	9	3.5	creep rate in the fuel $\times 1.5$	BO
BB	CRBR	9	3.5	creep rate in the fuel $\times 0.5$	BO
BG	CRBR	9	3.5	$\mathrm{P}_{\mathrm{S}}=88 \% \mathrm{TD}$	BO
BH	CRBR	9	3.5	$\rho_{\text {S }}=83 \% \mathrm{TD}$	BO
BI	CRBR	9	3.5	$\rho_{D}=85 \% \mathrm{TD}, \rho_{S}=80 \% \mathrm{TD}$	BO
BN	CRBR	9	3.5	$\dot{\Delta}=$ eqn. II-44.1	BO
BS	CRBR	9	3.5	$\dot{\Delta}=$ eqn. $\mathrm{II}-44.2$	BO
NA	CRBR	6	2.4	creep rate in the fuel $\times 1.5$	No
NB	CRBR	6	2.4	creep rate in the fuel $\times 0.5$	NO
NG	CRBR	6	2.4	$\rho_{\mathrm{S}}=88 \% \mathrm{TD}$	NO
NH	CRBR	6	2.4	$\mathrm{P}_{\mathrm{S}}=83 \% \mathrm{TD}$	NO
NI	CRBR	6	2.4	$\rho_{D}=85 \% \mathrm{TD}, \rho_{S}=80 \% \mathrm{TD}$	NO
NN	CRBR	6	2.4	$\dot{\Delta}=$ eqn. $\mathrm{II}-44.1$	NO
NS	CRBR	6	2.4	$\dot{\Delta}=$ eçn. II-44.2	NO

Figure A0-2 shows the clad swelling rate at each radial node in each axial section. The difference between the swelling rate curves in each axial section represents the differential swelling rate, which can generate hoop tension across the clad wall. The swelling rate starts to have significant value after 8000 hours, 4800 hours, and 3200 hours irradiation in the first, the second, and the third axial section, respectively. As in Figure A0-2, the differential swelling rate is $10^{-6} / \mathrm{hr}$ at 10500 hours in the first axial section. In the second axial section, the differential swelling rate is $1.4 \times 10^{-6} / \mathrm{hr}$, $3.0 \times 10^{-6} / \mathrm{hr}$, and $1.2 \times 10^{-6} / \mathrm{hr}$ at $\mathrm{t}=5200$ hours, 6200 hours and 10000 hours, respectively. In the third axial section the differential swelling rate changes its direction at 6600 hours and has values of $1.2 \times 10^{-6} / \mathrm{hr}, 3.8 \times 10^{-6} / \mathrm{hr}$ and $0.8 \times 10^{-6} / \mathrm{hr}$ at $\mathrm{t}=4000$ hours, 5200 hours, and 10000 hours, respectively.

Figure A0-3 shows the stress rate at the clad outer wall, the creep ($\dot{\sigma}_{c p}$), the swelling ($\dot{\sigma}_{s w}$), and the pressure ($\dot{\sigma}_{\mathrm{p}}$) effects.

From the differential swelling rate across the clad wall described above, the behavior of $\dot{\sigma}_{s w}$ in each axial section can be understood. In the first axial section $\dot{\sigma}_{s w}$ becomes significant after 10500 hours radiation. After 13000 hours it has a value of $5 \mathrm{psi} / \mathrm{hr}$. In the second axial section $\dot{\sigma}_{\text {sw }}$ becomes significant at 4800 hours with a peak value of $12.5 \mathrm{psi} / \mathrm{hr}$ at 6050 hours, and is almost a constant $6 \mathrm{psi} / \mathrm{hr}$ after 8000 hours. In the third axial section $\dot{\sigma}_{\text {sw }}$ becomes significant at 3400 hours. It has a peak of $21 \mathrm{psi} / \mathrm{hr}$ at 5200 hours. Because the differential swelling changes direction, at 6600 hours $\dot{\sigma}_{\text {sw }}$ changes to negative and has a constant $-4 \mathrm{psi} / \mathrm{hr}$ value after 7500 hours.

Several days after gap closure the P_{fc} induced $\dot{\sigma}_{\mathrm{p}}$ reaches a peak value of $8 \mathrm{psi} / \mathrm{hr}, 5.5 \mathrm{psi} / \mathrm{hr}$, and $7.1 \mathrm{psi} / \mathrm{hr}$ in the first, second, and third axial sections, respectively.

Because of the thin wall geometry of the clad, any change of $\dot{\sigma}_{\text {sw }}$ and $\dot{\sigma}_{p}$ can generate a shear force, which can produce $\dot{\sigma}_{c p}$ in the clad. As Figure A0-3 shows, $\dot{\sigma}_{c p}$ always tries to relax the stress produced by the swelling or the pressure. Before the gap closure there is also a large creep rate in each axial section due to the relaxation of the thermal stress that was induced during the start-up period.

The sum of $\dot{\sigma}_{p}, \dot{\sigma}_{\mathrm{cp}}$ and $\dot{\sigma}_{\mathrm{sw}}$, in Figure A0.3, represents the net stress rate dt the clad outer wall. The stress variation can also be obtained from this net stress rate.

Figure A0-4 shows the time behavior of the maximum clad stress $\left(\sigma_{\theta}^{c}\right)_{\max }$ at the clad outer wall. The thermal stress, induced by the start-up heating, at first is relaxed by the creep effect. After the gap closes, the stress suddenly increase- due to the effect of $P_{f c}$. This stress increment induces shear, which in turn relaxes the stress a few hundred hours after the sudden increase. The stress is then increased by the action of P_{fc}. In the time period during which the differential swelling in the clad becomes active, the stress increases its value. This stress increase is followed by a decrease. At 13000 hours (12% burn-up), the maximum clad stress is 19.4 ksi , $9.4 \mathrm{ksi}, 13.5 \mathrm{ksi}$ in the first, the second, and the third axial section, respectively.

Figure A0-5 shows the radial distribution of the clad hoop stress as a function of time. The start-ur thermal stress has a large radial
slope in each axial section. At 1315 hours (1.3% burn-up), this stress is relaxed by the creep effect. At 4050 hours (3.9% burn-up peak) it increases to a positive value due to the action of $P_{f c}$ after gap closure. At 8053 hours (7.7% burn-up), the radial slopes of the stress distribution increase in the second and the third axial sections. This is the result of the differential swelling in the ciad in these two sections. At 12818 hours (11.8% burn-up peak). The clad swelling Increases the slope in the first axial section, and the creep decreases the slope in the other two sections.

Figure A0-6 shows the total hoop strain in the clad for each axial section. After 13000 hours of irradiation, the total hoop strain (e_{θ}^{c}) tot is $5.1 \%, 1.9 \%$, and 4.2% in the first, second and third axial section, respectively.

Figure $\mathrm{A} 0-7$ shows the radial distribution of the total hoop strain and the swelling strain in the clad. In the first axial section the swelling strain is small; the creep strain induced by $P_{f c}$ is the major contributor to the total strain. In the second and the third axial section the contribution of the swelling strain to the total strain is 67.1% and 25%. The remaining part of the total strain is mainly creep strain.
(2) Case Al (CRBR, $12 \mathrm{~kW} / \mathrm{ft}$)

Figure A1-1 shows the sonverature dependence of the swelling in the clad. It also shows the temperature range across the clad wall in each axial section. The differential swelling across the clad wall is sma11.

Figure Al-2 shows the fuel-clad gap closures and the fuel-clad interaction force (P_{fc}). The gap closes at 1800 hours, 1650 hours, and 2000 hours in the first, second, and third axial sections, respectively. At 13000 hours (12% peak burn-up), the $\mathrm{p}_{\mathrm{fc}_{\mathrm{C}}}$ is 4.9 ksi .1 .6 ksi , and 3.4 ksi in each axial section, respectively. The plenum pressure is 1.0 ksi at that time.

Figure Al-3 shows the clad hoop stress rate due to the irradiated swelling ($\dot{\sigma}_{s w}$), the creep ($\dot{\sigma}_{c p}$), and the pressure ($\dot{\sigma}_{p}$). Because of the small differential swelling, $\dot{\mathrm{S}}_{\text {sw }}$ is small in all three axial sections. In the second axial section, the fuel temperature is higher, the fuel is softer and so $P_{f c}$ is smaller. The combination of $\dot{\sigma}_{s w}, \dot{\sigma}_{c p}$ and $\dot{\sigma}_{p}$ gives the net hoop stress rate, which determines the stress variation in the clad.

Figure A1-4 shows the history of $\left(\sigma_{\theta}^{c}\right)_{\max }$ in each axial section. In the second and third axial sections, the maximum hoop at the clad outer wall is caused by the $P_{f c}$. After 13000 hours irradiation, $\left(\sigma_{\theta}^{c}\right)_{\max }$ is $20 \mathrm{ksi}, 10.2 \mathrm{ksi}$, and 15.7 ksi in each axial section, respectively.

Figure Al-5 shows the radial distribution of the hoop stress across the clad wall. The thermal stress induced by start-up heating is first relaxed by the creep effect. After the fuel-clad gap closes, P_{fc} causes tension across the clad wall.

Figure A1-6 shows the total hoop strain in each clad axial section. At 13000 hours, the total strain is $5.4 \%, 1.8 \%$ and 4.2% in the first, second, and third axial section.

Figure Al-7 shows the radial distribution of the total hoop strafn and the creep strafn across the clad wall. At 1000 hours the creep strain is $86.1 \%, 34.0 \%$, and 76.9% of the total strain in the first, second and third axial sections, respectively. The rest of the total strain is mainly swelling strain.
(3) Case A3 (CRBR, $12 \mathrm{~kW} / \mathrm{ft}$)

Figure A3-1 shows the temperature dependence of the clad swelling and the temperature range across the clad wall in each axial section. The swelling is larger at the hot region (inner wall) in the first axial section while in the second and the third axial sections, it is larger at the cooler region (outer wall). The differential swelling across the clad wall is larger in the first and the second axial sections than in the third one.

Figure A3-2 shows the fuel-clad gap closure and the fuel-clad interaction force. The gaps close at 1900 hours, 1600 hours and 1970 hours in the first, second and third axial sections, respectively. At 13000 hours (12.0% peak burn-up), P_{fc} is $4.7 \mathrm{ksi}, 1.2 \mathrm{ksi}$, and 3.5 ksi in each axial section, respectively.

Figure A3-3 shows the hoop stress rate at the outer wall of the clad due to the pressure ($\dot{(}_{\mathrm{p}}$), the swelling $\left(\dot{\sigma}_{\mathrm{cw}}\right)$, and the creep $\left(\dot{\sigma}_{c p}\right)$. Because of the differential irradiated swelling across the clad wall, $\dot{\sigma}_{\text {sw }}$ is positive in the first axial section and negative in the second and the third axial sections at the outer wall of the clad. The combination of $\dot{\sigma}_{p}$, $\dot{\sigma}_{s w}$, and $\dot{\sigma}_{c p}$ gives the net hoop stress rate $\left(\dot{\sigma}_{\theta}\right)$ which governs the behavior of the hoop stress at the outer wall of the clad.

Figure A3-4 shows the history of the maximun hoop stresses. In the first axial section, the maximum hoop is 20.5 ksi at 13000 hours at the clad outer wall because of the smaller swelling in this region. In the second axial section, the clad inner wall has smaller swelling and so the maximum hoop stress is found in this region at 13000 hours with a value of 11.5 ksi . In the third axial section, the maximum hoop occurs in the clad inner wall. After 9800 hours, the P_{fc} is large enough to induce larger tensions and causes maximum hoop stress in the clad outer wall. At 13000 hours, the maximum hoop stress is 15.5 ksi in chis axial section.

Figure A3-5 shows the hoop stress distribution across the clad wall at 0 hours, 1310 hours, 3920 hours, 7920 hours, and 11730 hours. Figure A3-6 shows the total hoop strain in the clad. At 13000 hours (12% peak burn-up), it is $6.6 \%, 4.6 \%$, and 4.3% in the first, second and third axial section, respectively.

Figure A3-7 shows the radial distribution of the total hoop strain and the creep strain across the clad wall. At 10000 hours, the creep strain is $66.7 \%, 6.8 \%$, and 75.8% of the total hoop strain in the first, second, and third axial sections, respectively. The rest of the total strain is mainly swelling strain.
(4) Case A4 (CRBR, $12 \mathrm{~kW} / \mathrm{ft}$)

Figure A^{4-1} shows the clad swelling pattern as a runction of the temperature. The temperature range across the clad wall in each axial section is also shown. The third axial section has the largest clad sivelling, while the second axial section has the largest differential swelling across the clad wall.

Figure A4-2 shows the gap thickness and the fuel-clad interaction force in each axfal section. The gap closes at 1830 hours, 1550 hours, and 2100 hours in the first, the second and the third axial section, respectively. After the gap closure P_{fc} is highest in the first axial section because of the lower fuel temperature and less clad swelling. P_{fc} is $5 \mathrm{ksi}, 1.4 \mathrm{ksi}$ and 3.5 ksi in the first, the second, and the third axial section, respectively at 13000 hours (12.0% peak burn-up). The plenum pressure is 1 ksi at this time.

Figure A4-3 shows the clad-hoop stress rate due to creep, swelling, and pressure. In the second axtal section $\dot{\sigma}_{\text {sw }}$ is large because of the large differential swelling across the clad wall. This $\dot{\sigma}_{\text {sw }}$ can generate $\dot{\sigma}_{c p}$ and relax the stress induced by the differential swelling effect. Because of the higher fuel temperature in this axial section, the fuel is softer and $\dot{\sigma}_{p}$ is smaller. In the first and the second axial sections, the stresses induced by swelling and pressure can also be relaxed by the creep effect. In all three axial sections the summation of $\dot{\sigma}_{s w}, \dot{\sigma}_{c p}$, and $\dot{\sigma}_{p}$ represents the net rate for the hoop stress in the clad. The behavior of the hoop stress variation (Figure A4-4) can thus be understood clearly by knowing this net hoop stress.

Figure $\mathrm{A}_{4}-4$ shows the maximum hoop stress in the clad. First the start-up thermal stress is relaxed by the creep effect. After the gap is closed, the stress is first relaxed by the high shear generated by a sudden jump of P_{fc}. Then the stress is increased by the clad differential swelling and the acting of P_{fc}. At 13000 hours (12.0% burn-up peak), the maximum hoop stress is $20.5 \mathrm{ksi}, 12.2 \mathrm{ksi}$, and
16.0 ksi in the first, the second, and the third axial sections, respectively.

Figure A4-5 shows the radial distribution of the hoop stress across the clad wall at different times. Because of the differential thermal expansion during he start-up period, the thermal stress at $t=0$ hour has a large slope across the clad wall. This stress can be relaxed by the creep effect to a flatter slope. In the second axial section, the differential swelling causes a larger slope even at large burn-ups. In the first and the second axial sections, P_{fc} causes tension across the clad wall.

The total hoop strain is shown in Figure $\mathrm{A} 4-6$. The radial distribution of the total strain and the creep strain across the clad wall is shown in Figure A4-7. Because of the large P_{fc} in the f.rst axial section, the creep strain is the main contributor to the total strain. As a result of the large clad swelling in the third axial section, the swelling strain makes the largest contribution to the total strain in that section. At 10000 hours (9.2% peak burn-up), the creep strain is $88.2 \%, 29.4 \%$, and 45.0% of the total strain in the first, second and the third axial section, respectively. The rest of the total strain is mainly swelling strain. At 13000 hours (12% peak burn-up), the total hoop strain is $4.8 \%, 3.0 \%$, and 5.9% in each axial section, respectively.

The percentage of the axial displacement for the fuel and the clad is shown in Figure A4-8. Before 1700 hours, the fuel axial displacement is small because the fuel-clad gap is still open and there is no clad confinement in the radial direction. At 12000 hours (11% peak
burn-up), 21.3% and 0.36% of the axial displacement is in the fuel and the clad, respectively.
(5) Case R1 (CRBR, $12 \mathrm{~kW} / \mathrm{ft}$)

Figure R1. 1 shows P_{fc} in each axial section. After 13000 hours of irradiation, $P_{f c}$ is $6.6 \mathrm{ksi}, 3.0 \mathrm{ksi}, 1.8 \mathrm{ksi}, 1.4 \mathrm{ksi}, 1.7 \mathrm{ksi}$, 2.2 ksi , and 4.5 ksi in each axial section, respectively.

Figure R1. 2 shows $\left(\sigma_{\theta}^{c}\right)_{\max }$ in each axial section. $\left(\sigma_{\theta}^{c}\right)_{\max }$ exhibits peaks at 6400 hours, 5400 hours, and 6500 hours in fourth, fifth and sixth axial sections, respectively. After 13000 hours of irradiation $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ is $23.5 \mathrm{ksi}, 14.8 \mathrm{ksi}, 10.9 \mathrm{ksi}, 8.5 \mathrm{ksi}, 9.5 \mathrm{ksi}, 12.6 \mathrm{ksi}$, and 18.4 ksi in each axial section, respectively.

Figure R1. 3 shows (e_{θ}^{c}). After 13000 hours of irradiation, it is $6.3 \%, 3.0 \%, 1.9 \%, 1.6 \%, 2.3 \%, 3.3 \%$, and 5% in each axial section, respectively.
(6) Case BO (CRBR, $9 \mathrm{~kW} / \mathrm{ft}$)

Figure B0-1 shows the fuel-clad gap closure and the fuel-clad interaction force after the closure. The gap closed at 2160 hours, 1780 hours, and 2140 hours in the first, second, and third axfal sections, respectively. $P_{f c}$ increases to $3.5 \mathrm{ksi}, 0.8 \mathrm{ksi}$, and 1.7 ksi at 8000 hours ($\mathrm{Bu}=6 \%$ peak) and is $6 \mathrm{ksi}, 1.1 \mathrm{ksi}$, and 2.4 ksi at 13000 hours $(B u=9.2 \%$ peak $)$ in each axial section, respectively. The plenum pressure is 0.66 ksi at 13000 hours.

Figure BO-2 shows the swelling rate at each radial node across the clad wall. The swelling rate becomes sfgnificant at 10000 hours, 7000 hours and 6000 hours in the first, the second and the third axial sections. The differential swelling rate across the clad

wall can result in stress change. In the first axial section, the differential swelling rate across the clad is $0.7 \times 10^{-6} / \mathrm{hr}$ at 13000 hours. In the second axial section, it is $1.0 \times 10^{-6} / \mathrm{hr}$, $1.2 \times 10^{-6} / \mathrm{hr}$ and $1.1 \times 10^{-6} / \mathrm{hr}$ at 8000 hours, 10000 hours and 13000 hours, respectively. In the 3rd axial section, it is $0.9 \times 10^{-6} / \mathrm{hr}$, $2.6 \times 10^{-6} / \mathrm{hr}$, and $-0.2 \times 10^{-6} / \mathrm{hr}$ at 6500 hours, 8000 hours, and 13000 hours, respectively. The differential swelling rate changes its direction at 10000 hours in the third section.

Figure B0-3 shows the rate of the hoop stress, due to creep, swelling and pressure at the outer wall of the clad. In the second axial section, the clad stress rate (due to P_{fc}) is lower than that in the other two sections, because the fuel temperature is higher, and so the fuel is softer. The stress due to swelling becomes significant at 10000 hours, 7000 hours, and 6000 hours in each section, respectively. In the second axial section, the differential swelling rate stays almost constant, and so does the stress rate due to swelling after 9400 hours. In the third axial section, the stress rate due to the swelling reaches a maximum at 8400 hours and then decreases due to a decrease in the differential swelling across the clad wall. After 11200 hours, this swelling stress becomes negative with a value of $=0.5 \mathrm{psi} / \mathrm{hr}$ at 13000 hours.

As we can see in Figure $B 0-3$, any change in the stress rate, due to pressure and swelling, can induce a creep stress rate which relaxes the stress. The combination of the stress rate due to the pressure, swelling, and creep effects, gives the net stress rate which determines the stress variations.

Figure $\mathrm{BO}-4$ shows the history of $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ in each axial section. The thermal stresses, induced by the start-up heating, are first relaxed by the creep effect. The gap closure is followed by a stress jump under the influence of P_{fc}. This induces shear to the clad and the creep effect can relax the stress several hundred hours after the stress jump. The clad differential swelling results in stress variations at about 8000 hours in the second and the third axial sections. In the first axial section, the increase of $P_{f c}$ results in stress increment. At 13000 hours (9.2% peak burn-up), the hoop stress at the clad outer wall is $21.5 \mathrm{ksi}, 9 \mathrm{ksi}$, and 13 ksi in the first, second, and third axial sections.

Figure BO-5 shows the radtal distribution of the hoop stress across the clad wall at different times. The start-up thermal stress is first relaxed to a flatter shape. After हुap closure p_{fc} adds tension to the hoop stress all across the clad wall. The slope increment of the hoop curves in the second and third axial section at 13000 hours and 8075 hours is due to the differential swelling across the clad wall.

Figure $10-6$ shows the total hoop strain at the clad outer wall. It is $5.2 \%, 1.4 \%$ and 2.2% at 13000 hours (9.2% peak burn-up) in each axial section, respectively.

Figure B0-7 shows the radial distribution of the total hoop strain and the creep strain across the clad wall. At 10000 hours, the creep strain is $90 \%, 40 \%$, and 60% of the total strain in the first, the second, and the third axial sections, respectively. The remaining part of the total strafn is mainly swelling strain.
(7) Case B1 (CRBR, $9 \mathrm{~kW} / \mathrm{ft}$)

Figure B1-1 shows the temperature dependence of the swelling in the clad. It also shows the temperature range across the clad wall In each axial section. The swelling is the largest in the third axial section, and is the smallest in the first axial section.

Figure Bl-2 shows the gap closure (GAP) and the interaction force between the fuel and the clad. The gap closes at 2100 hours, 1800 hours, and 2200 hours in each axial section, respectively. After gap closure, $P_{f c}$ is largest in the $1 s t$ axial section and is smallest In the second axial section. After 13000 hours of irradiation $(\mathrm{Bu}=9.5 \%), \mathrm{P}_{\mathrm{fc}}$ is $5.6 \mathrm{ksi}, 0.9 \mathrm{ksi}$, and 2.3 ksi in each axial section, respectively. At this time, the plentm pressure is 0.5 ksi .

Figure B1-3 shows the maximum hoop stress in the clau. The radial maximum of the hoop stress is located at the outer wall of the clad in all three axial sections. Because of the larger $P_{f i c}$ in the first axial section, $\left(\sigma_{\theta}^{c}\right)_{\max }$ is arger there than in the other two sections. After 13000 hours of irradiations, $P_{f c}$ is 20.6 ksi , 9.8 ksi , and 13.9 kei , in each axfal section, respectively.

Figure B1-4 shows the total hoop strain in the clad. Because of the large P_{fc} in the first axial section, the total hoop strain is also larger there than in the other two sections. Afte: 13000 hours of irradiation, the total hoop strain is $5.3 \%, 2.5 \%$, and 3.5%, in each axial section, respectively.

Figure B1-5 shows the radial distribution of the hoop strain across the clad wall. It also shows the creep strain. The creep
strain is $94 \%, 26.7 \%$, and 28.6% of the total hoop strain in each axial section, respectively.
(8) Case B3 (CRBR, $9 \mathrm{~kW} / \mathrm{ft}$)

Figure B3-1 shows the temperature dependence of the swelling pattern in the clad. It also shows the temperature range across the clad wall in each axial section. The clad has larger swelling at the cooler region (outer wall) in the second and the third axial section. In the first axial section, the swelling is larger in the hotter region (inner wall). The differential swelling across the clad wall is large in the first and third axial section and small in the second axial section.

Figure B3-2 shows the fuel-clad gap closure, and the fuel-clad interaction force after the closure. The gap closes at 2212 hours, 2008 hours, and 2187 hours in the first, second, and third axial section, respectively. $P_{f c}$ has its highest value in the first axial section. At 13600 hours (9.2% peak burn-up), it is $5.6 \mathrm{ksi}, 1.0 \mathrm{ksi}$, and 2.9 ksi in each axial section, respectively. At 12000 hours, the plenum pressure is 0.6 ksi .

Figure B3-3 shows the hoop stress rate at the clad outer wall due to differential swelling ($\dot{\sigma}_{s w}$), creep ($\dot{\sigma}_{c p}$), and pressure ($\dot{\sigma}_{p}$). In the first axial section the $\dot{\sigma}_{s w}$ is positive and $\dot{\sigma}_{p}$ is larger than in the other two exial sections. In the second and the third axial section $\dot{\sigma}_{s w}$ is negative. The combination of the $\dot{\sigma}_{s w}, \dot{\sigma}_{\mathrm{cp}}$, and $\dot{\sigma}_{\mathrm{p}}$ gives the net stress rate which determines the stress variation in the clad.

Figure B3-4 shows the maximum hoop stress in the clad in each axtal section. The stress behavior at the clad outer wall can be understood by examining Figure $B 3-3$. In the second and the third axial sections the maximal houp stress occurs at the inner wall of the clad. This is due to the larger swelling at the outer wall, results in hoop tension to the inner wall, and hoop compression to the outer wall of the clad. At 13000 hours 9.2% peak burn-up), the maximum hoop stress is $22.5 \mathrm{ksi}, 7.7 \mathrm{ksi}$, and 15.5 ksi in the first, second, and third axial section, respectively.

Figure B3-5 shows the radial distribution of the hoop stress across the clad wall. The thermal stresses, induced by the start-up heating, are first relaxed to a flatter shape by the creep effect (1380 hours). At 4130 hours, 8000 hours, and 12000 hours, P_{fc} induces tension to all three axial sections, and the differential swellings increase the slope of the curves. Because of the different direction of the differential swelling, the sign of the slope of the hoop curve in the first axial section is opposite to those in the other two axial sections.

Figure B3-6 shows the total hoop strain in the clad. At 13000 hours, the total strain is $5.9 \%, 4.2 \%$ and 2.4% in the first, second, and third axial secion, respectively.

Figure B3-7 shows the radial distribution of the total hoop strain and the craep strain across the clad wall. At 10000 hours (7% peak burn-up), the contribution of che creep strain to the total strain is $70.4 \%, 3.3 \%$, and 44.4% in each axial section, respectively. The remainder is mostly swelling strain.
(9) Cose B4 (CRBR, $9 \mathrm{~kW} / \mathrm{ft}$)

Figure B4-1 shows the temperature dependence of the swelling in the clad and the temperature range across the clad wall in each axial section. The swelling is Fighest in the third axial section and lowest in the first axial section. The differential swelling across the clad wall is inghest in the second axial section.

Figure B4-2 shows the fuel-clad gap closure and the fuel-clad interaction force in each axial section. The gaps close at 2150 hours, 1800 hours, and 2250 hours in the first, second and third asial section, respectively. At 13000 homrs, P_{fc} is $5.4 \mathrm{ksi}, 1.0 \mathrm{ksi}$, and 2.9 ksi in each axial section. The plenum pressure is 0.55 ksi at that time.

Figure B4-3 shows the hoop stress rate, at the outer wall of the clad, due to the differential swelling ($\sigma_{s w}$), the creep effect ($\dot{\sigma}_{\mathrm{cp}}$), and the pressure $\left(\dot{\sigma}_{p}\right)$. As this figure shows, $\dot{\sigma}_{s w}$ is high and $\dot{\sigma}_{p}$ is low in the second axial section. The summation of $\dot{\sigma}_{s w}, \dot{\sigma}_{c p}$, and $\dot{\sigma}_{p}$ gives the net stress rate at the outer wall of the clad. The net stress rate is low in the second axial section.

Figure B4-4 shows the time history of the maximum hoop stress in the clad. The hoop stress is maximal at the outer wall of the clad in all three axial sections. At 13000 hours the maximum hoop stress is $21 \mathrm{ksi}, 10.5 \mathrm{ksi}$, and 16.2 ksi in the axial sections.

Figure $\mathrm{B} 4-5$ shows the radial distribution of the hoop stress across the clad wall. The thermal stress induced by the start-up heating is first relaxed by the creep effect. After an irradiation of 4020 bours, 8060 hours, and 11700 hours, P_{fc} is the main cuntributor

to the hoop tensile in the first axial section. The differential clad swelling causes the larger slope in the second axial section. In the third axial section, both the $P_{f c}$ and the differential clad swelling contribute to the stress change across the clad wall.

Figure R4-6 shows the time instory of the total hoop strain in the clad. At 13000 hours it is $5.0 \%, 1.75 \%$, and 3.9% in each axial section, respectively.

Figure B4-7 shows the radial distribution of the total hoop strain and the creep strain across the clad wall. At 10000 hours, the creep strain is $97 \%, 25 \%$, and 22.5% of the total strain in each axial section, respecrively. The rest of the total strain is mainly the swelling strain.

Figure B4-8 shows the percentage of the axial displacement for the fuel and the clad. At 13000 hours, it is 24.5% for tie fuel and 0.24% for the clad.
(10) Case R2 (CRBR, $9 \mathrm{~kW} / \mathrm{fc}$)

Figure R2-1 shows the gap closure and the interaction force between the fuel and the clad, in each axial section. This figure shows that the gap closes at 2400 horrs, 1900 hours, 1750 hours, 1750 hours, 2100 hours, 2200 hours, and 2450 hours in each axial section, respectively. After 13000 hours of irradiation ($\mathrm{Bu}=9.5 \%$), P_{fc} is $6.4 \mathrm{ksi}, 4.0 \mathrm{ksi}, 1.8 \mathrm{ksi}, 0.7 \mathrm{ksi}, 1.0 \mathrm{ksi}, 2.8 \mathrm{ksi}$, and 5.9 ksi in aact. axial section.

Figure R2-2 and Figure R2-3 show $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ and the total hoop strain in each axial section. After 13000 hours of irradiation, $\left(\sigma_{\theta}^{c}\right)_{\max }$ is $22.8 \mathrm{ksi}, 18.3 \mathrm{ksi}, 11.6 \mathrm{ksi}, 7.7 \mathrm{ksi}, 6.1 \mathrm{ksi}, 15 \mathrm{ksi}$,
and 16.6 ksi ; the total hoop strain is $6.2 \%, 3.6 \%, 1.7 \%, 1.5 \%, 1.6 \%$, 2.6%, and 4.3% in each axial section, respectively.
(11) Case NO (CRBR, $6 \mathrm{~kW} / \mathrm{ft}$)

Figure NO-1 shows the fuel-clad gap closure and the fuel-clad interaction forces. The gap closes at 7200 hours, 3700 hours, and 5800 hours in the first, second, and the third axial sections, respectively. At 17000 hours $(\mathrm{Bu}=8 \%)$ the fuel-clad interaction force is $1.4 \mathrm{ksi}, 2.6 \mathrm{ksi}$, and 1.7 ksi in each axial section, respectively. The plenum pressure is 500 psi.

Figure NO-2 shows the hoop stress rate, at the outer wall of the clad, due to swelling ($\dot{\sigma}_{\text {sw }}$), the creep effect ($\dot{\sigma}_{\mathrm{cp}}$), and the pressure $\left(\dot{\sigma}_{p}\right)$. $\dot{\sigma}_{p}$ becomes significant after the gap closes. $\dot{\sigma}_{\text {sw }}$ becomes significant at 12800 hours, 11200 hours, and 13200 hours in the first, second, and third axial sections. The combination of $\dot{\sigma}_{c p}$, $\dot{\sigma}_{\text {sw }}$, and $\dot{\sigma}_{p}$ is the net stress rate $\dot{\sigma}$ which governs the behavior of the hoop stress at the outer wall of the clad.

Figure NO-3 shows the maximum hoop stress in the clad. It appears at the outer wall in all three axial sections. At 17000 hours, it is $9.4 \mathrm{ksi}, 14.0 \mathrm{k} i$, and 10.6 ksi in the axial sections, respectively.

Figure NO-4 shows the radial distribution of the hoop stress across the clad wall.

Figure $\mathrm{N}-5$ shows the total hoop strain in the clad. At 17000 hours, the total hoop strain is $0.60 \%, 2.7 \%$, and 1.7% in the first, second, and third axial sections, respectively.

Figure NO-6 shows the radial distribution of the total hoop strain and the creep strain across the clad wall. At 15100 hours, the creep strain is $46.7 \%, 57.3 \%$, and 33.3% of the total strain in each axial section, respectively. The rest of the total strain is mainly swelling strain.

(12) Case NI (CRBR, $6 \mathrm{~kW} / \mathrm{ft}$)

Figure N1-1 shows the temperature dependence of irradiation induced swelling in the clad, ard the temperature 1 ange across the clad wall.

Figure N1-2 shows the fuel-clad gap closure and the fuel-clad interaction force in each axial section. The gap closes at 7100 hours, 3800 hours, and 5800 hours in the first, second, and third axial sections, respectively. At 17000 hours, the $P_{f c}$ is 1.2 ksi , 2.4 ksi , and 1.6 ksi in each axial section, respectively. The plenum pressure is 0.5 ksi .

Figure N1-3 shows the maximum hoop stress in the clad. It occurs at the outer wall of the clad in all three axial sections. At 17000 hours, it is $11.0 \mathrm{ksi}, 14 \mathrm{ksi}$, and 12.5 ksi in the axial sections, respectively.

Figure N1-4 shows the radial distribution of the hoop stress across the clad walls at 0 hour, 1310 hours, 3870 hours, 8040 hours, and 10140 hours.

Figure N1-5 shows the total hoop strain in the clad. At 17000 hours, it is $1.5 \%, 2.6 \%$, and 2.0% in the first, the second, and the third axial section, respectively.

Figure N1-6 shows the radial distribution of the total hoop strain and the creep strain across the clad wall at 5000 hours, 7500 hours, and 10000 hours. The rest of the total strain is mainly the swelling straln.
(13) Case N3 (CRBR, $6 \mathrm{~kW} / \mathrm{ft}$)

Figure N3-1 shows the temperature dependence of swelling in the clad, and the temperature range across the clad wall in each axial section. The swelling in the clad is high in the second and the third axial sections and is lower in the first axial section.

Figure N3-2 shows the fuel-clad gap closures and the fuel-clad interaction forces. The gap closes at 8100 hours, 4500 hours, and 7700 hours in the first, second, and third axial section, respectively. *t 17000 hours, the P_{fc} is $0.94 \mathrm{ksi}, 1.62 \mathrm{ksi}$, and 1.04 ksi in each axial section, respectively. The plenum pressure is 0.5 ksi .

Figure N3-3 shows the maximum hoop stress in the clad. It occurs at the outer wall in the first and the second axial section, and at the clad inner wall in the third axial section. At 17000 hours, it is $10.8 \mathrm{ksi}, 12.6 \mathrm{ksi}$ and 8.4 ksi in each axial section, respectively. Figure N3-4 shows the radial distribution of the hoop stress across the clad wall at $0 \mathrm{hr}, 4600 \mathrm{hrs}, 8100 \mathrm{hrs}$, and 100000 hrs . The slope of the hoop curves in the third axial section have an opposite sign from those in the other two axial sections. This is due to the different direction of the differential swelling across the clad wall and in the axial sections.

Figure N3-5 shows the total hoop strain in the clad. At 17000 hours, it is $2.7 \%, 5.9 \%$, and 4.4% in each axial section, respectively.

Figure N3-6 shows the radial distribution of the total hoop strain and the creep strain across the clad wall at 5000 hrs , 7500 hrs , and $10000 \mathrm{hrs}$. At 10000 hrs , the creep strain is 6.7%, 8.3%, and 2.8% of the total strain in each axial section, respectively. The rest of the total strain is mainly the swelling strain. (14) Case N4 (CRBR, $6 \mathrm{~kW} / \mathrm{ft})$

Figure N^{-1}-1 shows the temperature dependence of the swelling in the clad, and the temperature range across the clad wall in each axial section. The clad swelling is small in the first axial section and larger in the third axial section. The swelling is larger at the clad inner wall (hotter region) than that at the clad outer wall (cooler region) in all three axial sections.

Figure N4-2 shows the fuel-clad gap closures and the fuel-clad interaction forces. The gap closes at 7170 hours, 3700 hours, and 6000 hours in the first, second, and third axial sections, respectively. The plenum pressure is 0.5 ksi .

Figure $N 4-3$ shows the maximum hoop stress in the clad. It occurs at the outer wall of the clad in all three axial sections. At 17000 hours, it is $7.0 \mathrm{ksi}, 13.8 \mathrm{ksi}$, and 11.4 ksi in each axial section, respecti iy.

Figure $\mathrm{N} 4-4$ shows the radial distribution of the hoop stress across the clad wall at $0 \mathrm{hr}, 1314 \mathrm{hrs}, 3870 \mathrm{hrs}, 7930 \mathrm{hrs}$, and 10030 hrs.

Figure N4-5 shows the total hoop strain in each axial section. At 17000 hours, it is $0.2 \%, 1.8 \%$, and 2.1% in the first, second, and third axial sections, respectively.

Figure N4-6 shows the distribution of the total hoop strain and the creep strain across the clad wall at 5000 hours, 7500 hours, and 10000 hours. At 10000 hours, the creep strain is $50 \%, 60 \%$, and 15.3% of the total strain in each axial section, respectively. The rest of the total strain is mainly the swelling strain.
V.3. Calculations for Fuel Element Behavior in a Conceptual 1000 MW LMFBR
(1) Case HO (LMFBR, $15 \mathrm{~kW} / \mathrm{ft}$)

Figure HO-1 shows the time history of the fuel-clad gap closures and the fuel-clad interaction forces. The gap closes at 1915 hours, 830 hours, and 2270 hours in the first, second and third axial sections, respectively. The gap of the second axial section reopens at 3230 hours and has a value of 4.4 mils at 13000 hours. The $P_{f c}$ increases with time and has a value of 860 psi and 840 psi at 13000 hours in the first and third section, respectively. The plenum pressure is 810 psi at that time.

Figure $\mathrm{HO}-2$ shows the displacement of the fuel outer boundary (FUB) and the clad inner boundary in the second axial section. Before the fuel-clad gap closure, the movement of the fuel outer boundary reduces the gap and closes it - 830 hours. After 830 hours, the clad confinement reduces ti.e rate of FUB. After 2800 hours, the swelling in the clad beocmes higher, the clad starts to swell faster thaa the fuel boundary, and the gap reopens at 3230 hours.

Figure HO- 3 shows the effect of clad confinement on the fuel boundary movement. During the 400 hours of gap closure in the second
axial section, the clad limits the fuel movement in the radial direction within two mils.

Figure HO-4 shows the rate of swelling strain at the radia nodes across the clad wall. The swelling rate becomes significant at 4000 hours, 2000 hours, and 600 hours in the first, second and third axial sections, respectively. The differential swelling strain across the clad wall can induce stresses in the clad. In the first axial section, the differential swelling is $2 \times 10^{-6} / \mathrm{hr}$ and $3.8 \times 10^{-6} / \mathrm{hr}$ at 4800 hours and 6800 hours, respectively. After 4800 hours, it is constant. The hotter region always has larger swelling and the cooler region has smaller swelling in the second axial section. The differential swelling is $3 \times 10^{-6} / \mathrm{hr}, 1.1 \times 10^{-6} / \mathrm{hr}$, and $4.5 \times 10^{-6} / \mathrm{hr}$ at 2200 hrs , 3000 hrs , and 3400 hrs , respectively in this region. After 3440 hrs , the peak of the swelling rate shifts to the center node (b). The differential swelling rate is about $2 \times 10^{-6} / \mathrm{hr}$ after 4200 hours. In the third axial section, the differential swelling is $1.8 \times 10^{-6} / \mathrm{hr}$ and $3.5 \times 10^{-6} / \mathrm{hr}$ at 800 hours and 1400 hours. Before 1440 hours, the hotter node (a) has a higher swelling rate and the cooler node (c) has a smaller swelling rate. After 2400 hours, the direction of the differential swelling changes, i.e., the cooler node (c) has the higber swelling rate and the hotter node (a) has the stualler one. The differential swelling is $4.1 \times 10^{-6} / \mathrm{hr}$ and stays almost constant after 2450 hours.

Figure H0-5 shows the hoop stress rate at the outer wall of the clad due to swelling ($\dot{\bar{\sigma}}_{\text {sw }}$) and the creep $\left(\dot{\sigma}_{c p}\right) . \dot{\sigma}_{\text {sw }}$ is caused by the differential sweiling rate across the clad wall, described in

Figure HO-4. In the first axlal section, $\dot{\sigma}_{\text {sw }}$ becomes significant at 3900 hours and stays almost constant ($20 \mathrm{psi} / \mathrm{hr}$) after 5800 hours. In the second axial section, $\dot{\sigma}_{\text {sw }}$ becomes significant at 1900 hours and reaches a peak value of $65 \mathrm{psi} / \mathrm{hr}$, at 3050 hours. After 4400 hours, $\dot{\sigma}_{\text {SW }}$ is small because the differential swelling across the clad wall is small. In the third axial section $\dot{\sigma}_{s w}$ becomes significant at 750 hours and reaches a peak of $23 \mathrm{psi} / \mathrm{hr}$ at 1600 hours. After 1900 hours $\dot{\sigma}_{\text {SW }}$ becomes negative because the direction of the differential swelling across the clad wall is changed. The change of $\dot{\sigma}_{s w}$ is always followed by the change of $\dot{\sigma}_{c p}$ in the same direction to relax the swelling stress in the clad. Because of the high temperature and neutron flux in this case, the fuel-clad mechanical interaction force is small. The combination of $\dot{\sigma}_{s w}$ and $\dot{\sigma}_{c p}$ represents the net stress rate $(\dot{\sigma})$ which governs the stress variations at the outer wall of the clad. The net stress is negative in the first several hundred hours because the creep relaxes the thermal stress, induced by the start-up heating. $\dot{\sigma}$ becomes positive at 3900 hours, 2000 hours, and 600 hours in the first, second, and third axial section, respectively. In the first axial section, $\dot{\sigma}$ is positive and small after 6000 hours. In the second axial section $\dot{\sigma}$ is positive between 2000 hours and 3000 hours, and is negative between 3000 hours and 4600 hours. After 4600 hours $\dot{\sigma}$ is positive, but small. In the third axial section, $\dot{\sigma}$ is positive between 600 hours and 1570 hours and becomes negative at 1570 hours. Figure HO-6 shows the maximum hoop stress in the clad. It occurs at the outer wall in the first axiai section and at the inner wall in the second and the third axial sections after 800 hours and 2500 tours,
respectively. The hoop stress has a peak at 3200 hours and 1500 hours, 10.5 ksi and 8.2 ksi in the second and the third axial section. The time variation of the hoop stress at the outer wall of the clad can be seen in Figure HO-5. At 14000 hours, the maximum hoop stress is $9.2 \mathrm{ksi}, 6.4 \mathrm{ksi}$, and 7.6 ksi in the first, second and third axial sections, respectively. The maximal hoop stress is 10.5 ksi at 3200 hours at the outer wall of the clad in the second axial section.

Figure H0-7 shows the radial distribution of the hoop stress across the clad wall. The thermal stress is relaxed at $t=0$ by the creep effect and then it is influenced by the differential swelling rate and the creep relaxation across the clad wall.

Figure H0-8 shows the total hoop strain at the outer wall of the clad at 13000 hours. It is $2.5 \%, 6.2 \%$ and 3.7% in the first, second and third axial sections, respectively.

Figure H0-9 shows the radial distribution of the total hoop strain and the swelling strain across the clad wall. At 12000 hours the swelling strain is $80 \%, 93.8 \%$, and 82.2% in each axial section, respectively.

Case H1 (LMFBR, $15 \mathrm{~kW} / \mathrm{ft}$)
Figure H1-1 shows the temperature dependence of the irradiationinduced swelling in the cladding and the temperature range across the clad wall.

The first axial section has higher differential swelling across the clad wall chan the other two axial sections.

Figure H1-2 shows the fuel-clad gap closure and the fuel-clad interaction forces in zach axial section. The gap closes at

2230 hours, 1000 hours, and 2100 hours in each axial section, respectively. At 13500 hours, the clad swells away from the fuel and the fuel-clad gap reopens in the second axial section. At 12000 hours, the P_{fc} is $830 \mathrm{psi}, 775 \mathrm{psi}$, and 800 psi in each axial section, respectively. The fission gas pressure is 760 psi at that time.

Figure H1-3 shows the maximum hoop stress in the clad. It occurs at the clad outer wall in the first and second axial sections and at the clad inner wall in the third axial section. At 13000 hours, the maximum hoop stress is $7.5 \mathrm{ksi}, 6.8 \mathrm{ksi}$, and 6.3 ksi in the first, second, and third axial sections, respectively.

Figure H1-4 shows the radial distribution of the hoop stress across the clad wall. The thermal stress, induced by the start-up heat, at first is relaxed by the creep effect. The slope of the curves in the third axial section is opposite to those in the first and second axial sections after 8300 hours and 16000 hours. This is due to the differential irradiated swelling of the clad in the third axial section. Its direction is opposite to those in the other two axial sections.

Figure H1-5 shows the total hoop strain in the clad. At 13000 hours, the total strain is $2.5 \%, 4.5 \%$, and 3.4% in each axial section, respectively.

Figure H1-6 shows the radial distribution of the total hoop strain and the swelling strain across the clad wall. At 15000 hours, the swelling strain is $88.9 \%, 94 \%$, and 84.6% of the total strain in each axial section, respectively.

Figure H1-7 shows the percentage of the axial displacement for the fuel and the clad. At 13000 hours it is 16% for the fuel and 1.1\% for the clad.
(3) Case HS (LMFBR, $15 \mathrm{~kW} / \mathrm{ft}$)

Figure $\mathrm{H} 5-1$ shows the gap closure and P_{fc}. The gap closes at 2100 hours, 1400 hours, 800 he irs, 1200 hours, 2500 hours in each axial section, respectively. The gaps in the second, the third, and the fourth axial sections reopen at 4400 hours, 3200 hours, and 2700 hours, respectively. The gaps in the first and the fifth section do not reopen. After 13000 hours irradiation, P_{fc} is 960 psi and 900 psi , respectivelv in these two gaps.

Figure H5-2 shows $\left(\sigma_{\theta}^{c}\right)_{\max }$ in the clad. It reaches a peak value at 3200 hours, 2300 hours, and 1400 hours in the third, fourth, and fifth axial section, respectively. In the first and second axial section $\left(\sigma_{\theta}^{c}\right)_{\max }$ starts to increase rapidly at 4100 hours and 3200 hours, respectively, and appears at the outer wall of the clad. In the other axial sections $\left(\sigma_{\theta}^{c}\right)_{\max }$ occurs at the inner wall of the clad after 5000 hours of irradiation.

Figure H5-3 shows the hoop strain in the clad. After 13000 hours of irradiation, $\left(e_{\theta}^{c}\right)$ is $2.6 \%, 5.1 \%, 6.7 \%, 6.0 \%$, and 4.2% in each axial section, respectively.
(4) Case MO (LMFBR, $9 \mathrm{~kW} / \mathrm{ft}$)

Figure MO-1 shows the fuel-clad gap closures and the fuel-clad interaction forces. The gap closes at 2100 hours, 1300 hours, and 2600 hours in the first, second, and third axial sections, respectively. After 14000 hours of irradiation, $P_{f_{C}}$ is 1280 psi ,

500 psi , and 660 psi in each axial section, respectively. Because of the faster clad swelling, P_{fc} reduces its magnitude at 4400 Fours and at 5000 hours in the second and the third axial sections, respectively. The plenum pressure is 450 psi at 14000 hours.

Figure MO-2 shows the swelling rate of the radial nodes in each axial section of the clad. The differential swelling across the clad wall becomes significant at 5400 hours, 5000 hours, and 4400 hours in the first, second, and third axial sections, respectively. The smallest swelling rate occurs at the outer wall of the clad in all three axial sections. The differential swelling across the clad wall is constant after 6600 hours, 6200 hours, and 7200 hours. The differential swelling induces tension to the hoop stress at the outer wall of the clad.

Figure MO-3 shows the hoop stress rate at the outer wall of the clad due to swelling ($\dot{G}_{\text {sw }}$), creep ($\dot{G}_{c p}$), and pressure (\dot{G}_{p}). As an effect of the differential swelling across the clad wall, $\dot{\sigma}_{\text {sw }}$ is positive in each axial section. The combination of $\dot{g}_{s w}, \dot{\sigma}_{\mathrm{Cp}}$, and $\dot{\sigma}_{p}$ gives the net hoop stress rate $\left(\dot{\sigma}_{\theta}\right)$, which governs the variation of the hoop stress at the outer wall of the clad. $\dot{\sigma}_{\theta}$ has a significant positive value between 5200 hours and 6600 hours, 4600 lours and 6000 hours, and 4200 hours and 6200 hours in the first, second, and third axial sections, respectively. In the third axial section $\dot{\sigma}_{\theta}$ is negative between 6300 hours and 7200 hours.

Figure M0-4 shows the maximum hoop stress in the clad. It occurs at the outer wall of the clad in all three axial sections. In the third axial section there is a peak at 6300 hours with a
7.5 ksi magnitude. The time behavior of the maximum hoop stress can be understood by knowing the net hoop stress rate (Figure MO-3). At 14000 hours, the maximum hoop stress is $9.3 \mathrm{ksi}, 7.6 \mathrm{ksi}$, and 6.8 ksi in the first, second, and third axial section, respectively.

Figure MO-5 shows the distribution of the hoop stress across the clad wall at $0 \mathrm{hr}, 1260 \mathrm{hrs}, 4020 \mathrm{hrs}, 8150 \mathrm{hrs}$, and 12030 hrs .

Figure MO-6 shows the total hoop strain in the clad. At 14000 hrs, it is $1.4 \%, 2.9 \%$, and 3.3% in the first, second, and third axial section, respectively.

Figure MO-7 shows the distribution of the total hoop strain and the creep strain across the clad wall. At 10000 hours, the swelling strain is $43 \%, 78.7 \%$, and 85.8% of the total strain in e ch axial section, respectively. The rest of the total strain is mostly creep strain.
(5) Case M1 (LMFBR, $9 \mathrm{~kW} / \mathrm{ft}$)

Figure M1-1 shows the fuel-clad gap clusure (GAP) and the fuelclad interaction forces (P_{fc}). The gap closes at 2100 hours, 1800 hours, and 3400 hours in the first, second, and third axial sectione. respectively. At 14000 hrs , the P_{fc} is $128 \mathrm{ksi}, 0.5 \mathrm{ksi}$, and 0.76 is i in each axial section, respectively. The plenum pressure is 0.45 ksi .

Figure M1-2 shows the maximum hoop stress in the clad. It appears at the outer wall of the clad in all three axial sections. At 14000 hrs, it is $8.7 \mathrm{ksi}, 5.6 \mathrm{ksi}$, and 5.4 ksi in each axial section, respectively.

Figure M1-3 shows the radial distribution of the hoop stress across the clad wall at $0 \mathrm{hr}, 1580 \mathrm{hrs}, 4080 \mathrm{hrs}, 8200 \mathrm{hrs}$, and 11810 hrs .

Figure M1-4 shows the toti i hoop strain in the clad. At 14000 hours, it is $1.4 \%, 2.1 \%$, and 2.0% in the first, second, and third axial sections, respectively.

Figure M1-5 shows the radial distribution of the total hoop strain and the creep strain across the clad wall at 5000 nours, 7500 hours, and 10000 hours. At 10000 hours the sy . 10 .ng strain is $77.8 \%, 92 \%$, and 90% of the total strain in each axial section, respectiveiy.
V.4. The Rate of the Fuel Swelling

The calculated rates of the fuel swelling for cases HO, MO, and NO are shown in Figure FSW. Some other data for the fuel swelling are also shown in this figure.
V.5. Discussion of Applications

In sections V.5.1, V. 5.2, and V.5.3 the fuel-clad mechanical interaction, the stress in the clad, and the strain in the clad are discussed for cases AO, BO, NO, R1 and R2 in CRBR, and cases HO, MO, and H5 are for the conceptual reactor. In section V.5.4, the sensitivity of the clad-swelling correlation is discussed.

V.5.1 The Fuel-Clad Mechanical Interact on

In the $12 \mathrm{kl} / \mathrm{ft}$ linear power case for CRBR, a large portion of the fuel is in the columar and equiaxed zone. The undisturbed zone is relatively small. This undisturbed fuel is mechanically strong and can prevent the outward swelling of the weak fuel region. After the fuel-clad gap closure, the interaction force is dependent on the amount of mechanically strong fuel which can push the clad effectively as it swells. In $12 \mathrm{~kW} / \mathrm{ft}$ and $9 \mathrm{~kW} / \mathrm{ft}$ fuel elements the amount of
the strong fuel is relatively small in the second axial section, the fuel temp rature and the creep race are higher; $P_{f c}$ is thus smaller than in the other sections. Because of the lower temperature distribution in the first axial section, there is more cold fuel zone and less fuel creep rate. The fuel can push the clad stronger after gap closure. P_{fc} is thus higher in this section than in the other two sections.

As Figure $\mathrm{A} O-1$ and Figure $\mathrm{BO}-1$ show, P_{fc} is larger in the first, and smaller in the second axial section throughout the whole irradiation history. After 10800 hours of irradiation $(\mathrm{Bu}=10 . \%)$ in the $12 \mathrm{~kW} / \mathrm{ft}$ case, the calculated P_{fc} is $4.2 \mathrm{ksi}, 1.2 \mathrm{ksi}$, and 2.8 ksi in the first, second, and third axial section, respectively. Aiter 13700 hours of irradiation ($\mathrm{Bu}=9.8 \%$) in the $9 \mathrm{~kW} / \mathrm{ft}$ case, the calculated $P_{f c}$ is $6.2 \mathrm{ksi}, 1.1 \mathrm{ksi}$, and 2.6 ksi , in the axial sections, respectively. Figures $R 1-1$ and $R 2-1$ also show larger $P_{f c}$ in the bottom half of the fuel pin.

In the $9 \mathrm{~kW} / \mathrm{ft}$ case, the temperature distribution and the neutron flux are lower, hence the creep rate in the fuel is lower than $12 \mathrm{~kW} / \mathrm{ft}$ case. Consequently the strong fuel can push the clad more effectively and at the same burn-up it results in a higher $P_{\text {fc }}$ for the $9 \mathrm{~kW} / \mathrm{ft}$ than for the $12 \mathrm{~kW} / \mathrm{ft}$ fuel element.

In $6 \mathrm{~kW} / \mathrm{ft}$ fuel elements, the linear power is low and the fuel is strong. In this case, the higher linear power and the relatively higher temperature in the second axial section causes the fuel to swell faster and push the clad stronger. As Figure NO-1 shows, P_{fc} is larger in the second axial section than in the other sections.

After 17000 hours of irradiation ($\mathrm{Bu}=8 \%$), the calculated P_{fc} is $1.4 \mathrm{ksi}, 2.6 \mathrm{ksi}$, and 1.7 ksi in each axial section, respectively. As the neutron flux increases from the assumed 4.6×10^{15} neut $/ \mathrm{cm}^{2}-\mathrm{sec}$ in CRBR to 8.5×10^{15} neut $/ \mathrm{cm}^{2}-\mathrm{sec}$ in the conceptual LMFBR, there is a faster generation rate of interstatials and vacancies in the fuel, which enhances the creep rate. This effect reduces the fuel-clad intaraction forces after gap closure. Also, the high flux leads to faster swelling in the clad which further reduces the mechanical interaction. For fuel elements irradiated 19000 hours in the conceptual reactor, and 10900 hours in CRBR, both with 8% burn-up, the calculated P_{fc} in the first axial section is 1.6 ksi in the conceptual LMFBR and 4.9 ksi in CRBR (Figures MO-1 and BO-1). In the case of $15 \mathrm{~kW} / \mathrm{ft}$ fuel element in the conceptual LMFBR, the fuel-clad gap closes after 1300 hours of irradiation in the second axial section. This gap reopens after 3200 hours of irradiation (Figure HO-1). If we fuel column has five axial sections instead of three, the gap reopens at 4400 hours, 3200 hours, and 2800 hours in the second, third, and fourth axial sections, respectively (Figure HO-0). This gap reopening is caused by the larger rate of clad swelling. No gap reopening has been calculated for CRBR's with 4.6×10^{15} neut/ cm^{2}-sec flux.

V.5.2 The Stress in the Clad

The stresses in the clad are induced mainly by the action of P_{fc} and by the differential irradiation-induced swelling across the clad wall. For the $12 \mathrm{~kW} / \mathrm{ft}$ and the $9 \mathrm{~kW} / \mathrm{ft}$ fuel element in CRBR, P_{fc}, and thus $\left(\sigma_{\theta}^{c}\right)_{\max }$, is higher in the first section than those in the
other two sections. Because of the low $P_{f c}$ in the second section, $\left(\sigma_{\theta}^{c}\right)_{\max }$ has its lowest value there. As Figures $A 0-4$ and $B O-4$ show, at a 10% of burn-up (10800 hours irradiation in 12 kW ! ft case and 13700 hours in $9 \mathrm{~kW} / \mathrm{ft}$ case), $\left(\sigma_{\theta}^{2}\right)_{\max }$ is $17.6 \mathrm{ksi}, 8.5 \mathrm{ksi}$, and 12.5 ksi for the $12 \mathrm{~kW} / \mathrm{ft}$ case, and $\mathrm{i}=22.0 \mathrm{ksi}, 9.2 \mathrm{ksi}$, and 13.5 ksi in $9 \mathrm{~kW} / \mathrm{ft}$ case, in each axial section, respectively. The calculations, performed for sevon axial sections in $12 \mathrm{~kW} / £ \mathrm{t}$ and $9 \mathrm{~kW} / \mathrm{ft}$ fuel elements, show that the bottom half of the fuel pin has larger $\left(\sigma_{\theta}^{c}\right)_{\max }$ than the upper half (Figures R1-2 and R2-2).

In $6 \mathrm{~kW} / \mathrm{ft}$ fuel elements in $\mathrm{CRBR}, \mathrm{P}_{\mathrm{fc}},\left({ }_{\theta}^{\mathrm{c}}\right)_{\max }$ have the highest value in the second section, while thair lowest value is in the first section. At an 8% burn-up (after 17000 hours of irradiation), $\left(\sigma_{\theta}^{c}\right)_{\max }$ is $9.4 \mathrm{ksi}, 14 \mathrm{ksi}$ and 10.6 ksi in each axial section, respectively (Figure NO-3).

In che conceptual LMFBR, $\left(\sigma_{\theta}^{c}\right)_{\max }$ is much lower than in CRBR. This is due to a much lower $P_{f c}$ in the conceptual reactor, where the fuel creep rate is much larger. In the first and third axial sections of a $9 \mathrm{~kW} / \mathrm{ft}$ fuel element, $\left(\sigma_{\theta}^{c}\right)_{\max }$ is about half of that in CRBR.

As Figures MO-4 and BO-4 show, a $9 \mathrm{~kW} / \mathrm{ft}$ fuel element irradiated for 19000 hours in conceptual reactor or 10900 hours in CRBR (8% burn-up), $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ is $10.4 \mathrm{ksi}, 8 \mathrm{ksi}$ and 7.4 ksi in the conceptual reactor, and is 20 ks , 9 ksi and 11.5 ksi in CRBR, for each axial section, respectively.

At certain burn-ups, depending on the clad temperature distribution, the vacancies, induced by the neutron irradiation in
the clad, reach supersaturation. The rate of the void growth, which causes the irradiation-induced swelling in the clad, can thus fncrease rapidly (Figure AO-2). Because of the differential temperature, there is also a differential swelling, which generates stress peaks in the clad. This stress peak appears in the third section of the fuel elements in CRBR after 5200 hours and 8700 hours of irradiation, in the $12 \mathrm{~kW} / \mathrm{ft}$ and the $9 \mathrm{~kW} / \mathrm{ft}$ cases, respectively. These peaks are smaller than the axial maximum of the hoop stress in the first section. There is no stress peak in the first section because of the relatively low temperature. In the $6 \mathrm{~kW} / \mathrm{ft}$ fuel elements, the neutron flux and the differential swelling across the clad wall are low, therefore no stress peak is observed (Figure NO-3).

Because of the higher neutron flux in the conceptual LMFBR, the stress peaks occur earlier, at 3200 hours and at 1500 hours of irradiation, in the second and third sections, respectively, for the $15 \mathrm{~kW} / \mathrm{ft}$ case. Secause of the higher temperature and the larger differential sivelling in the clad, these peaks are high. The one in the second section is the highest stress in the life-time of the fuel element (Figure H0-6). The peak magnitudes are 10.5 ksi and 8.2 ksi , In the second and the third sections, respectively. There is also a rapid increase of $\left(\sigma_{\theta}^{c}\right)_{\max }$ in the first section at 4300 hours, with an increase of 5.6 ksi in a 1300 hour time interval.

The $9 \mathrm{~kW} / \mathrm{ft}$ fuel elements in the conceptual LMFBR have lower temperatures than the $15 \mathrm{~kW} / \mathrm{ft}$ element, so the stress peaks are reduced In the clad. The maximum stress peak is 7.5 ksi in the third axial section which is lower than most of the $\left(\sigma_{\theta}^{c}\right)_{\max }$ in the first axial
. ction during the irradiation history. $\quad\left(\sigma_{\theta}^{c}\right)_{\max }$ rapidly increases In the first and the second axial sections too, at 5200 hours and 4600 hours, respectively. The magnitude of increase is 2.8 ksi and 4.0 ksi in these two sections, respectively (Figure $\mathrm{MO}-4$).

V.5.3. The Strain in the Clad

The total strain in the clad results from the clad swelling and from the creep strain induced by the acting $P_{f c}$ at the inner boundary of the clad. Because of the relatively large $P_{f c}$ for fuel elements in CRBR, a significant part of the total strain in the clad is the creep strain. Because of the larger $P_{f c}$ in the first section of $12 \mathrm{~kW} / \mathrm{ft}$ and $9 \mathrm{~kW} / \mathrm{ft}$ fuel elements in CRBR, the contribution of the creep strain to the total strain is large, more than 90%. In the second axial section about 33% and 40% of the total hoop strain is the creep strain. In $6 \mathrm{~kW} / \mathrm{ft}$ fuel elements in CRBR, the creep strain in the clad is $46.7 \%, 53.7 \%$, and 33.3% in the first, second, and third axial sections, respectively. The larger creep strain in the second section is caused by the larger P_{fc}. For fuel elements of 8% burn-up (irradiated 8640 hours in the $12 \mathrm{~kW} / \mathrm{ft}, 10900$ hours in $9 \mathrm{~kW} / \mathrm{ft}$, and 17000 hours in $6 \mathrm{~kW} / \mathrm{ft}$ case) in CRBR, the total hoop strain in the clad is $2.4 \%, 0.6 \%$, and 1.6% for the $12 \mathrm{~kW} / \mathrm{ft}, 3.7 \%$, 0.8%, and 1.4% for the $9 \mathrm{~kW} / \mathrm{ft}$, and $0.6 \%, 2.7 \%$, and 1.7% in $6 \mathrm{~kW} / \mathrm{ft}$ case, in the first, second, and third axial sections, respectively. At the same burn-up of irradiation, the larger hoop strain in the first axial section in $9 \mathrm{~kW} / \mathrm{ft}$ and $12 \mathrm{~kW} / \mathrm{ft}$ case is caused by a larger creep strain. There is a larger hoop strain in the second
axial section in the $6 \mathrm{~kW} / \mathrm{ft}$ than in the $12 \mathrm{~kW} / \mathrm{ft}$ and the $9 \mathrm{~kW} / \mathrm{ft}$ case, because of the larger creep strain.

In the conceptual LMFBR the P_{fc} is small; therefore, the creep strain is a smaller fraction of the total strain in the clad. In the first axial section, where the largest $P_{f c}$ occurs at $15 \mathrm{~kW} / \mathrm{ft}$ and $9 \mathrm{~kW} / \mathrm{ft}$, about 20% of the total hoop strain in the clad is the creep strain. For fuel element of 8% burn-up after 13000 hours ($15 \mathrm{~kW} / \mathrm{ft}$), and 19000 hours ($9 \mathrm{~kW} / \mathrm{ft}$) irradiation in the conceptual reactor, the total hoop strain in the clad is $2.8 \%, 7.1 \%$, and 4.0% in $15 \mathrm{~kW} / \mathrm{ft}$ case, and $2.5 \%, 4.6 \%$, and 5.1% in the $9 \mathrm{~kW} / \mathrm{ft}$ case in thz axial sections, respectively. The total strain in the first axial section is less than in the other sections because there is less clad swelling resulting from the cooler temperature in this section. In the $15 \mathrm{~kW} / \mathrm{ft}$ case, the maximum clad swelling occurs in the second section, the total strain is thus higher there than in the other sections. In the $9 \mathrm{~kW} / \mathrm{ft}$ case the maximal clad swelling occurs in the third axial section; the total strain is thus higher there. Because of the cooler temperature in the $9 \mathrm{~kW} / \mathrm{ft}$ case, the average clad swelling, and therefore the average total strain, is smaller than in the $12 \mathrm{~kW} / \mathrm{ft}$ case.
V.5.4. Sensitivity of the Clad Swelling Correlation

As different correlations are used for the clad swelling, different fuel pin behavior may follow.

V.5.4.1. High Power Case

For $12 \mathrm{~kW} / \mathrm{ft}$ fuel elements in CRBR, different correlations are used for the irradiated swelling in the clad for cases A0, A1, A3, and
and A4. In these cases, the fuel boundary movements, induced by the fuel creep and by the fuel swelling, are the mafor contributors to the ${ }^{t} G$ and $P_{f c}$ values. Since the same fuel creep and fuel swelling model are used, t_{G} and $P_{f c}$ values are similar in these cases. The average ${ }^{t}{ }_{G}$ is 1850 hours, 1590 hours, and 1960 hours, the average $P_{f c}$ at 13000 hours is $4.9 \mathrm{ksi}, 1.5 \mathrm{ksi}$, and 3.4 ksi in the first, second, and third axial sections, respectively. The variation of t_{G} and $P_{\text {fc }}$ relative to their average value is within 9%. Right after the gap closure, a rapid increase of P_{fc} and of $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ follows. The average time for these fast increases is 96 hours. In that period the average P_{fc} increase is $1.1 \mathrm{ksi}, 0.5 \mathrm{ksi}$, and 0.9 ksi and the average $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ increase is $6.2 \mathrm{ksi}, 2.7 \mathrm{ksi}$, and 5.3 ksi in the first, second, and third axial sections, respectively. The smaller $p_{f c}$ increase in the second section is due to the higher fuel temperature, which induces softer mechan:cal properties. In cases A1, A3 and $\AA 4$, the swelling in the clad is a linear function of time. There is thus no peak of $\left(\sigma_{\theta}^{c}\right)_{\max }$ in these cases. If the peak of the clad swelling is at $600^{\circ} \mathrm{C}$, the sweliing strain is larger at the hotter region (inner wall) than at the cooler region (outer wall), so, as in cases A0, A1, and A4, $\left(\sigma_{\theta}^{c}\right)_{\max }$ cccurs at the outer wall of the clad. When the clad swelling peak shifts to $500^{\circ} \mathrm{C}$ (case A3), the differential swelling across the clad wall reverses its direction in the second and the third sections, and so, $\left(\sigma_{\theta}^{c}\right)_{\max }$ shifts to the inner wall of the clad. But, in case A3, because of the increased $P_{f c}(2.6 \mathrm{ksi}$ after 8300 hours irradiation), $\left(\sigma_{\theta}^{c}\right)_{\max }$ in the third axial section shifts to the outer wall of the clad. As in case $A 0, A 1, A 3$, and $A 4$ cases have
their highest $\left(\sigma_{\theta}^{c}\right)_{\max }$ in the first section and the lowest $\left(\sigma_{\theta}^{c}\right)_{\max }$ in the second section. Because of the large $P_{f c}$ in the first section, the change of the clad swelling has small effect on $\left(\sigma_{\theta}^{c}\right)_{\max }$ in this section. After 13000 hours of irradiation ($\mathrm{Bu}=12 \%$), the average $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ in the first axial section is $20.1 \pm 0.3 \mathrm{ksi}$. In the second axial section, $P_{f c}$ is smaller, the variation of $\left(\sigma_{\theta}^{c}\right)_{\max }$ is larger due to the changing of the clad swelling. In cases $A 0, A 1$, and $A 4$, the average $\left(\sigma_{\theta}^{c}\right)_{\max }$ is $10.8 \pm 1.1 \mathrm{ksi}$.

The hoop strain magnitude in the clad is affected significantly by the change of the clad swelling model. In cases AO and A1, their values are similar. The average of the total hoop strain after 13000 hours of irradiation is $5.3 \%, 1.8 \%$, and 4.2% in each axial section, respectively.

In case A3, the peak of the clad swelling moves to $500^{\circ} \mathrm{C}$, the swelling strain in the first and the second section increases significantly; $\left(e_{\theta}^{c}\right)$ tot is larger than in cases A0 and A1. The largest $\left(e_{\theta}^{c}\right)$ is in the first axial section. After 13000 hours of irradiation, it is 6.6%, and is larger in the second section than in the third one. In case A4, because of the larger swelling in the second and the third axial sections of the clad, $\left(e_{\theta}^{c}\right)$ is larger than in cases $A 0$ and A1. The swelling in the third axial section is alsc significantly increased. The largest e_{θ}^{c} is 5.9% in this axial section after 13000 hours of irradiation.

For $15 \mathrm{~kW} / \mathrm{ft}$ fuel element in the conceptual reactor with 8×10^{15} neut/ $\mathrm{cm}^{2}-\mathrm{sec}$ neutron flux, the variation of t_{G} and P_{fc} in the first and the third sections are small as the swelling model in the
clad is varied. The average t_{G} is 2100 hours, 950 hours, and 2150 hours in each axial section, respectively. The average variation is 5.6%. Because of the high neutron flux level in the second axial section, the time variation of the gap reopening is large. It reopens after 3200 hours of irradiation in case HO, and after 13500 hours of irradiation in case A1. The gap is 5.7 mils in case $H 0$ and 0.2 mils in case Hl after 15000 hours of irradiation ($\mathrm{Bu}=9 \%$). In case Hl , the rate of clad swelling is a linear function of time, thus there is no peak for $\left(\sigma_{\theta}^{c}\right)_{\max }$. In the conceptual reactor fu-l element $P_{f c}$ is relatively small; a change of the swelling in the clad can thus have a more significant effect on $\left(\sigma_{\theta}^{c}\right)_{\max }$ than in CRBR. As Figures HO-6 and H1-3 show, $\left(\sigma_{\theta}^{c}\right)_{\max }$ behaves differently in cases $H 0$ and H1. After 8000 hours of irradiation, this difference is $2.3 \mathrm{ksi}, 0.2 \mathrm{ksi}$, and 1.7 ksi ; after 13000 hours of irradiation, it is $1.6 \mathrm{ksi}, 0.7 \mathrm{ksi}$, and 1.3 ksi in the first, second and third axial sections, respectively. As Figures HO-7 and H1-4 show, the hoop stress radial distribution across the clad wall is very different in the two cases. All these relatively large differences are caused by the effect of the clad s'elling model if $P_{f c}$ is low. In the conceptual reactor $\left(e_{\theta}^{c}\right)$ is less in case $H 1$ than in case H0. Especially in the second axial section, where it is 64% of that in case 40 . These decreases are due to the small clad swelling in case H1.

V.5.4.2. Mid-Power Case

For $9 \mathrm{~kW} / \mathrm{ft}$ fuel elements in CRBR, different irradiated swelling correlations are used for cases BO, B1, B3 and B4. The effect of the changed model for the clad swelling is similar to those in the $12 \mathrm{~kW} / \mathrm{ft}$
cases. ${ }^{t_{G}}$ and $P_{f c}$ variations are small, within 11%. The average ${ }_{t_{G}}$ is 2190 hours, 1860 hours, and 2210 hours; the average $P_{f c}$ is $5.1 \mathrm{ksi}, 0.9 \mathrm{ksi}$, and 2.6 ksi , in the first, second and third axial sections, respectively. After gap closure the average duration of $P_{f c}$ and of the hoop stress increase in the clad is 89 hours. In this time the average $P_{f c}$ increase is $1.2 \mathrm{ksi}, 0.4 \mathrm{ksi}$, and 0.8 ksi , and the average $\left(\sigma_{\theta}^{c}\right)_{\max }$ increase is $6.6 \mathrm{ksi}, 1.9 \mathrm{ksi}$, and 3.6 ksi in each axial section, respectively. Both P_{fc} and $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ show the largest magnitude in the first section and the smallest one in in the second section in all, B0, B1, B3 and B4 cases. In B1, B3, and B4 cases, the swelling is a linear function of time, so there is no peak of $\left(\sigma_{\theta}^{c}\right)_{\max }$. In cases B0, B1, and B4, the swelling is larger in the hotter region (inner wall) than in the cooler region (outer wall) of the clad, so $\left(\sigma_{\theta}^{c}\right)_{\max }$ occurs at the outer wall. In case B3, the direction of the differential swelling across the clad wall changes fts direction in the second and the third sections, so $\left(\sigma_{\theta}^{c}\right)$ max is at the inner wall in these two sections. After 12000 hours of irradiation $(\mathrm{Bu}=8.9 \%)$ the average $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ is $20.8 \mathrm{ksi}, 8.6 \mathrm{ksi}$ and 15.0 ksi in each axial section, respectively. The average variation is 8.5%. $\left(e_{\theta}^{c}\right)$ is greatly dependent on the swelling model in the clad. In case B4, the swelling strain in the third section is increased; therefore, $\left(e_{\theta}^{c}\right)$ increases significantly and exceeds that in the second section, it is 1.8 times larger in case B4 than in case B0. As the peak of the clad swelling model shifts to $500^{\circ} \mathrm{C}$ (case B3), the swelling strain in the second and third sections is increased. In the second axial section it is 2.8 times larger than that in case B0.

Because of a large $P_{f c}$, and a large creep strain in the first section, the maximum value of e_{θ}^{c} is in this section for all B0, B1, B3, and B4 cases. The average $\left(e_{\theta}^{c}\right)$ in the first axial section is 5.37%. The average variation of this value is 9%.

For $9 \mathrm{~kW} / \mathrm{ft}$ fuel elements in the conceptual reactor with 8.5×10^{15} neut $/ \mathrm{cm}^{2}-\sec$ neutron $f 1 \mathrm{ux}$, as the model of the clad swelling is changed in cases M0 and M1, the average t_{G} is 2075 hours, 1425 hours, and 2950 hours in the first, second, and third axial sections, respectively. After 13000 hours of irradiation, the average $P_{f c}$ is 1.14 ksi and 0.6 ksi in the first and in the third axial sections, respectively. The average variation of ${ }^{t}{ }_{G}$ is 10%, the average variation of P_{fc} in the first and in the third axial section is 5.8%. No gap reopening has been calculated for either the MO or the M1 case.

The swelling rate in the clad is linear in time in case M1, thus there is no peak for $\left(\sigma_{\theta}^{c}\right)_{\max }$. As Figure M0-4 and Figure M1-3 show, the diffe ence of $\left(\sigma_{\theta}^{c}\right)_{\max }$ in these two cases at 6000 hours is relatively large, $1.3 \mathrm{ksi}, 1.9 \mathrm{ksi}$, and 1.35 ksi in each axial section, respectively. The differences are small at 16000 hours, 0.3 ksi , 1.2 ksi, a 10.9 ksi in each axial section, respectively. $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ is smaller in case M1 than in case M0 throughout the calculated history. As Figures M0-5 and M1-4 show, the slope of $\left(\sigma_{\theta}^{c}\right)$ across the clad wall is larger in case M0 than in case M1.

In case $M 1\left(e_{\theta}^{c}\right)$ is less in the second and the third section than in case M0. It is 0.73 and 0.61 of the value in case M0 for the second and the third axial sections, respectively. In the first axial
section $\left(e_{\theta}^{c}\right)$ is similar in the two cases. The differences in the (e_{θ}^{c}) values are due to the different swelling of the clad.
V.5.4.3. Low Power Case

Different swelling correlations are used in cases NO, N1, N3, and N4 for $6 \mathrm{~kW} / \mathrm{ft}$ fuel element calculations in CRBR. In cases NO, N1, and N4 the t_{G} and $P_{f c}$ differences are small. The average t_{G} is 7150 hours, 3717 hours, and 5817 hours in the first, second, and third axial section, respectively. After 17000 hours of irradiation, the average $P_{f c}$ is $1.20 \mathrm{ksi}, 2.41 \mathrm{ksi}$, and 1.53 ksi in each section, respectively. In case N3, the peak swelling shifts from $600^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$, thus there will be more clad swelling within the same temperature range. Because of the small rate of the fuel swelling in the low linear power cases, the clad swelling effects are relatively lar e. Hence, the changes of E_{G} and $P_{f c}$ in case N3 are significant. Becn ie of the larger clad swelling, ${ }^{t}$ is larger and $P_{f c}$ is smaller in case N3 than in case No. t_{G} is 8100 hours, 4500 hours and 7700 hours in the firec, second and third axial sections, respectively. After 17000 hours of irradiation $(\mathrm{Bu}=8 \%), \mathrm{P}_{\mathrm{fc}}$ is 1.62 ksi in the second axial section, (1.0 ksi lower than in case NO). Right after the gap closure, the average time for the rapid increases of $P_{f c}$ and of $\left(\sigma_{\theta}^{c}\right)_{\max }$ is 67 hours. In this time, the average increase of $P_{f c}$ is $0.49 \mathrm{ksi}, 0.59 \mathrm{ksi}$, and 0.57 ksi , and the average $\left(\sigma_{\theta}^{c}\right)$ inax increase is $2.7 \mathrm{ksi}, 3.3 \mathrm{ksi}$, and 2.9 ksi in each axial section, respectively. Because of the linear time function of the swelling rate in cases N1, N3, and N4, the $\left(\sigma_{\theta}^{c}\right)_{\max }$ behavior is almost linear in time after gap closure.

In cases NO, N1, and N $4\left(\sigma_{\theta}^{c}\right)_{\max }$ occurs at the outer wall of the clad. In case N3, in the first and the second axial sections it is at the outer wall, and in the third axial section at the inner wall of the clad. This is due to the larger swelling at the outer wall of the clad for the third axial section in case N3. In all cases with $6 \mathrm{~kW} / \mathrm{ft}$ fuel elements, $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ has a higher magnitude in the second axial section than in the other ones. After 17000 hours of irradiation the average $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ is $9.5 \mathrm{ksi}, 13.6 \mathrm{ksi}$ and 10.7 ksi in each axial section, respectively. The variation of this average value is within 2.6% in the second, and within 5.6% in the first and third sections.
$\left(e_{\theta}^{c}\right)$ is greatly dependent on the swelling model in the clad. In case N1, because of a larger swelling strain in the first axial section, $\left(e_{\theta}^{c}\right)$ is twice that of case NO. In the first and the second axial sections of case $N 4$, the smaller swelling strain and creep strain result in smaller $\left(e_{\theta}^{c}\right)$ than in case NO. It is 0.3 and 0.7 that of case No. In the third axial section, $\left(e_{\theta}^{c}\right)$ is 1.3 times larger in case $N 4$ than in case NO. In case N3, the peak of the clad swelling shifts from $600^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$, the swelling strain is significantly increased in all the three axial sections, and $\left(e_{\theta}^{c}\right)$ thus is $4.5,2.2$, and 2.6 times that of case NO for the first, second, and third axial sections, respectively.

After 17000 hours of irradiation $(\mathrm{Bu}=8 \%)$ in cases $\mathrm{NO}, \mathrm{N} 1$, and N4 the average $\left(e_{\theta}^{c}\right)$ is $1.0 \%, 2.3 \%$, and 1.9% in eaci axial section, respectively. The variation from this average value is 37%. In case $\mathrm{N} 3,\left(e_{\theta}^{c}\right)$ is $2.7 \%, 5.9 \%$, and 4.4% in each axial section,
respectively. For cases $N 0, N 1, N 3$, and $N 4$, the average creep strain is 26% of the total strain.
V.5.4.4. The Average Values of $t_{G}, P_{f c},\left(\sigma_{\theta}^{c}\right)_{\max }$, and $\left(e_{\theta}^{c}\right)$.

As discussed previously, different correlations for the clad swelling give different results. For fuel pins with 8% burn-up, the average $t_{G}, P_{f c}, \sim_{\theta}^{c}$) max , and $\left(e_{\theta}^{c}\right)$ is listed as follows:

$$
\overline{t_{G}} \pm \overline{t_{G}}
$$

Reactor	Linear Power (kW/ft)	$\begin{gathered} \text { Axial } \\ \text { Section } \end{gathered}$	$\overline{t_{G}} \pm \overline{\Delta t_{G}} \mathrm{hr}$	$\overline{\mathrm{P}_{\mathrm{fc}}} \pm \overline{\Delta \mathrm{P}_{\mathrm{fc}} \mathrm{ksi}}$	$\overline{\sigma_{\theta} \pm} \overline{\Delta \sigma_{\theta}} \mathrm{kssi}$	$\overline{\mathrm{e}_{\theta} \pm} \overline{\Delta \mathrm{e}_{\theta} \%}$
CRBR	12	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{ll} 1850 \pm & 25 \\ 1550 \pm & 75 \\ 2075 \pm & 74 \end{array}$	$\begin{aligned} & 3.3 \pm 0.10 \\ & 1.0 \pm 0.25 \\ & 2.3 \pm 0.03 \end{aligned}$	$\begin{array}{r} 16.4 \pm 0.4 \\ 9.1 \pm 1.4 \\ 12.4 \pm 0.5 \end{array}$	$\begin{aligned} & 2.4 \pm 0.3 \\ & 1.3 \pm 0.7 \\ & 2.1 \pm 0.6 \end{aligned}$
	9	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2217 \pm 22.3 \\ & 1767 \pm 44.3 \\ & 2117 \pm 55.7 \end{aligned}$	$\begin{aligned} & 4.7 \pm 0.25 \\ & 0.87 \pm 0.1 \\ & 1.90 \pm 0.30 \end{aligned}$	$\begin{array}{r} 19.9 \pm 0.6 \\ 8.8 \pm 0.7 \\ 12.8 \pm 0.9 \end{array}$	$\begin{aligned} & 3.9 \pm 0.3 \\ & 1.8 \pm 0.8 \\ & 2.2 \pm 0.5 \end{aligned}$
	6	3	$7387 \pm$ 356 $3912 \pm$ 294 $6325 \pm$ 172	$\begin{aligned} & 1.1 \pm 0.17 \\ & 2.2 \pm 0.30 \\ & 1.4 \pm 0.25 \end{aligned}$	9.6 ± 1.30 13.6 ± 0.50 10.6 ± 0.80	$\begin{aligned} & 1.2 \pm 0.80 \\ & 3.3 \pm 1.40 \\ & 2.6 \pm 0.90 \end{aligned}$
Conceptual LMFBR	15	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{rr} 2100 \pm & 200 \\ 900 \pm & 50 \\ 2100 \pm & 10 \end{array}$	$\begin{aligned} & 0.9 \pm 0.02 \\ & \text { (open) } \\ & 0.85 \pm 0.02 \end{aligned}$	$\begin{aligned} & 8.4 \pm 0.8 \\ & 6.5 \pm 0.3 \\ & 6.8 \pm 0.7 \end{aligned}$	$\begin{aligned} & 2.6 \pm 0.2 \\ & 5.7 \pm 1.3 \\ & 3.7 \pm 0.3 \end{aligned}$
	9	1 2 3	$\begin{aligned} & 2075 \pm \quad 75 \\ & 1425 \pm 162.5 \\ & 2950 \pm \quad 450 \end{aligned}$	$\begin{aligned} & 1.6 \pm 0.01 \\ & 0.68 \pm 0.01 \\ & 0.96 \pm 0.02 \end{aligned}$	$\begin{array}{r} 10.5 \pm 0.1 \\ 7.3 \pm 0.7 \\ 7.6 \pm 0.2 \end{array}$	$\begin{aligned} & 2.4 \pm 0.2 \\ & 4.0 \pm 0.7 \\ & 2.6 \pm 0.5 \end{aligned}$

This table shows that for the $12 \mathrm{~kW} / \mathrm{ft}$ and $9 \mathrm{~kW} / \mathrm{ft}$ fuel pin in CRBR with 8% burn-up, the axial maximum of $\overline{P_{f c}},\left(\overline{\sigma_{\theta}^{c}}\right)$, and $\left(\overline{e_{\theta}}\right)$ is in the first axial section, thus the axial weak point of the clad is in that section. In a $6 \mathrm{~kW} / \mathrm{ft}$ fuel pin, the weak point of the clad shifts to the second axial section.

In the conceptual LMFBR, $\overline{\mathrm{P}_{\mathrm{fc}}}$ and $\left(\overline{\sigma_{\theta}^{c}}\right)$ is smaller than in CRBR. In the $15 \mathrm{~kW} / \mathrm{ft}$ fuel pfn , the fuel-clad gap reopens at 8200 hours average irradiated time. In both the $15 \mathrm{~kW} / \mathrm{ft}$ and $9 \mathrm{~kW} / \mathrm{ft}$ fuel pins, the axial maximum of F_{fc} and $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\text {max }}$ occurs in the first axial section, while that of $\left(\overline{\mathrm{e}_{\theta}}\right)$ is in the second axial section.
V.5.5. The Rate of Fuel Swelling

As Figure FSW shows, the calculated rates of the fuel swelling are close to the results reported in CONF-731004.
V.6. Results and Discussion of Sensitivity Calculation for the Fuel Properties

Because of the higher neutron flux and temperature, the fuel is soft in the conceptual LMFBR. The fuel properties thus are less sensitive to the clad behavior than in CRBR. Fuel creep rate, fuel density, smear density and fuel swelling have been studied parametrically for CRBR fuel pins. Cases AO, BO, and NO have been used as bases for these studies for the $12 \mathrm{~kW} / \mathrm{ft}, 9 \mathrm{~kW} / \mathrm{ft}$, and $6 \mathrm{~kW} / \mathrm{ft}$ cases, respectively.
V.6.1. The $12 \mathrm{~kW} / \mathrm{ft}$ Fuel Element

For the $12 \mathrm{~kW} / \mathrm{ft}$ cases, Figures $\mathrm{SA}-1$ through $\mathrm{SA}-3$ show the variations of P_{fc}, the clad stress, and the clad hoop strain, by varying the fuel creep to 1.2 (Case $A A$) and 0.5 (Case $A B$) times that in case $A 0$. As we can see in these figures, the gap closure times (t_{G}) are not changed significantly. The $P_{f c}$ reduces by 250 psi , and increases by 205 psi as the fuel creep rate is varied to 1.5 and 0.5 times its value in $A 0$, respectively.

Because of the changing $P_{f c}$, the stress differences in the cled (cases $A 0, A A$, and $A B$) are significant, especialiy prior to 6000 hours irradiation. At 3000 hours, the clad stress for case $A B$ increases hy $1.8 \mathrm{ksi}, 2.0 \mathrm{ksi}$, and 1.4 ksi , with respect to that in case A 0 , for the first, second and third axial sections, respectively. After 6000 hours, the differences of clad stress for these three cases decrease by several hundred psi.

The strains in the clad decrease by increasing the fuel creep and increase by decreasing the fuel creep. This changing clad strain is mainly due to the change of the creep strains induced by the fuelclad interaction forces. After 13000 hours of irradiation, the average variation of the hoop strain is 0.3%.

In case AO, the fuel density is 91.3% and the smear density is 85.5% of the theoretical density (with 3 mils initial fuel-clad gap). In case $A G$, the smear density is changed to 88%, which is equivalent to a initial gap that closes at 400 hours, 100 hours, and 550 hours in each axial section, respectively. After the gap is closed, the P_{fc} magnitudes, and consequently the stress and the strain in the clad, do not change significantly with respact to those in case A0. In case $A H$, the smear density is changed to 83% which is equivalent to a. 5 mils Initial gap. t_{G} is thus 2900 hours, 2800 hours and 3200 hours in each axial section, respectively (Figure SA-4). ${ }^{P}{ }_{f c}$, the stress, and the strain in the clad are smaller than in case A0. At 13000 hours, the difference in the clad stress is 800 psi, 500 psi, and 750 psi, and in the hoop strain is $0.6 \%, 0.28 \%$, and 0.4% in each axial section, respectively (Figures SA-5, SA-6).

In case AI, the initial gap is 3 mils and the fuel density is 85% of the theoretical density (with 80% smear density). Because of the same initial gap as in case $A 0,{ }^{t}$, will also be similar (Figure SA-7). The reduction of the fuel density enhances the creep rate in the fuel, thus, $P_{f c}$, the stress, and the strain in the clad are reduced in case AI. At 13000 hours, the reduction of $P_{f_{C}}$ with respect to that in case A 0 , is $1 \mathrm{ksi}, 0.3 \mathrm{ksi}$, and 0.65 ksi (Figure SA-7). The reduction of the maximum hoop stress in the clad is $2.2 \mathrm{ksi}, 0.6 \mathrm{ksi}$, and 1.3 ksi . The reduction of the hoop strain in the clad is $1.2 \%, 0.32 \%$, and 0.91% in each axial section, respectively (Figures SA-8 and SA-9).

In cases $A N$ and $A S$, the model of the fuel swelling is varied. As shown in Figure $S A-10,{ }^{t}{ }_{G}$ and $P_{f c}$ are reduced significantly in all axial sections. In the first axial section, where the highest $P_{f c}$ occurs, it is reduced by 25.7% and by 50.5%, compared to case $A 0$. This reduction of $P_{f c}$ is caused by less bulix swelling in the fuel.

Figure SA-11 shows the maximum hoop stress in the clad for AN, $A S$, and $A 0$. Because of the great reduction of $P_{f c}$ in cases AN and AS, the maximum clad stresses are also reduced significantly. At 13000 hours, the maximum hoop stress in the first axial section is reduced by 14% and by 31% for cases AN and AS , respectively.

Figure SA-12 shows the total hoop strain in the clad. This is reduced in all three axial sections because P_{fc} is reduced, and as a consequence, the creep strain in the clad will also be reduced. At 13000 hours, the total hoop strain in the first axial section is reduced by 1.8% and 3.5% for cases AN and AS , respectively.

V.6.2. The $9 \mathrm{~kW} / \mathrm{ft}$ Fuel Element

For the $9 \mathrm{~kW} / \mathrm{ft}$ fuel element, Figures $\mathrm{SB}-1$ through $\mathrm{SB}-12$ show the values of $t_{G}, P_{f c}$, the stress, and the strain in the clad for cases B0, BA, and BB. In case BA, $t_{\mathrm{G}}, \mathrm{P}_{\mathrm{fc}}$ and $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ are not changed significantly. At 13000 hours, P_{fc} is smaller than in case BO by 200 psi . The average decrease of e_{θ}^{c} is 0.2%.

In case $\mathrm{BB},{ }^{\mathrm{t}}{ }_{\mathrm{G}}$ is larger than in case BO , it is 2550 hours, 1800 hours, and 2250 hours in each axial section, respectively. $\mathrm{P}_{\mathrm{fc}},\left(\sigma_{\theta}^{c}\right)$ and $\left(e_{\theta}^{c}\right)$ are larger than in case B0. After 13000 hours of irradiation, the average changes of $\mathrm{P}_{\mathrm{fc}},\left(\sigma_{\theta}^{c}\right)$, and $\left(e_{\theta}^{c}\right)$ are 250 psi , 750 psi and 0.4%, respectively (Figures SB-1 through SB-3).

In cases BG and BH , the smear density is changed to 88% and 83%, respectively. This is equivalent to an initial gap of 1.87 mils for case BG and 5 mils for case BH. As shown in Figure SB-4 for case BG, the gap closes at 860 hours, 280 hours, and 630 hours, in each axial section, respectively. After the gap closure P_{fc} is similar in cases BO and BG. In case BH the gap closes at 3400 hours, 3200 hours, and 3480 hours in the first, second and third axial section, respectively. The P_{fc} is siightly smaller in each axial section. At 14000 hours in case $\mathrm{BH}, \mathrm{P}_{\mathrm{fc}}$ is $420 \mathrm{psi}, 108 \mathrm{psi}$, and 230 psi lower in each axial section than in case BO.

Figure SA-5 shows $\left(\sigma_{\theta}^{c}\right)_{\max }$ in cases $B 0, B G$, and BH. After the fuel-clad gap closes, the difference of $\left(\sigma_{\theta}^{c}\right)_{\max }$ is induced by the P_{fc} variation. After 5000 hours, $\left(\sigma_{\theta}^{c}\right)_{\max }$ is similar for cases $B 0$ and $B G$, and is lower in case BH than in case BO. At 14000 houis, it is lower by $850 \mathrm{psi}, 500 \mathrm{psi}$, and 690 psi than that in case BO. Figure SB- 5 .
shows the total hoop strain in these cases. It is similar to that in case BO. In case BH at 14000 hours it is lower by $0.38 \%, 0.2 \%$, and 0.22% than that in case B 0 , for each axial section, respectively.

In case BI, the initial gap is kept the same (i.e. 3 mils) as that in case BO, but the fuel density is reduced to 85% of the theoretical density. This effect has eas the fuel creep, and thus reduces P_{fc} in each axial section. As shown in Figure SB-7, the gap closure time is not changed significantly. After the gap closes, P_{fc} is lower in case BI than in case BO. At 14000 hours, this difference is $910 \mathrm{psi}, 130 \mathrm{psi}$, and 330 psi for each axial section, respectively.

Figure SB-8 shows the $\left(\sigma^{c}\right)_{\max }$ for cases BO and BI. The differences of $\left(\sigma^{c}\right)_{\max }$ are mainly due to the differences of p_{fc}. In case BI at 14000 hours it is lower by $1600 \mathrm{psi}, 510 \mathrm{psi}$, and 900 psi than that in case B0 in each axial section, respectively. Figure SB-9 shows the total hoop strain in the clad for these two cases. Because of the lower $P_{f c}$ in case BI, the total hoop stratn in the clad is lower. At 14000 hours, the difference of the total hoop strain in the clad for cases BO and BI is $0.9 \%, 0.14 \%$ and 0.3%, in each axial section, respectively.

In cases $B N$ and $B S$, the model of the fuel swelling is varied. Because of slower fuel swelling in these two cases, P_{fc}, the clad stress, and the strain are lower than in case B0. As shown in Figure SB-10, the reduction of P_{fc} is $6.4 \mathrm{ksi}, 4.3 \mathrm{ksi}$, and 2.6 ksi in the first axial section; $1.2 \mathrm{ksi}, 0.9 \mathrm{ksi}$, and 0.7 ksi in the second axial section; and $2.7 \mathrm{ksi}, 1.7 \mathrm{ksi}$, and 1.0 ksi in the third axial section, for cases $B O$, $B N$, and $B S$, respectively.

Figure SB-11 shows the $\left(\sigma_{0}^{c}\right)_{\max }$ in the clad. Because the same clad swelling model has been used, the shape of $\left(\sigma_{\theta}^{c}\right)_{\max }$ is similar in each axial section for cases BO, BN, The difference in the $\left(\sigma_{\theta}^{c}\right)_{\max }$ magnitude is due to the difference in P_{fc}. At 14000 hours, $\left(\sigma_{0}^{c}\right)_{\max }$ is $22.5 \mathrm{ksi}, 19 \mathrm{ksi}$, and 15 ksi in the first axial section; $9.3 \mathrm{ksi}, 8.8 \mathrm{ksi}$, and 8.2 ksi in the second axial section; and 13.7 ksi , 10.2 ksi , and 7.0 ksi in the third axial section for cases BO, BN, and BS, respectively.

Figure SB-12 shows the hoop strain in the clad for these three cases. Because of the lower P_{fc} and creep strain, the total hoop strain in the clad is lower for cases BN and BS than that in case BO. At 14000 hours, the total hoop strain is $5.9 \%, 3.7 \%$, and 1.5% in the first axial section; $1.9 \%, 1.7 \%$, and 1.3% in the second axial section; $2.6 \%, 2.1 \%$, and 1.4% in the third axial section, for cases $B 0, B N$, and BS, respectively.
V.6.3. The $6 \mathrm{~kW} / \mathrm{ft}$ Fuel Element

For $6 \mathrm{~kW} / \mathrm{ft}$ cases, Figures $\mathrm{SN}-1$ through $\mathrm{SN}-10$ show the variation caused in $\mathrm{P}_{\mathrm{fc}}, \mathrm{t}_{\mathrm{G}}$, the stress, and the strain in the clad by varying the fuel creep to 1.5 (case NA) and 0.5 (case NE.) times that in case NO.

As Figure $\mathrm{SN}-1$ shows, the gaps close earlier in case NA than in case NB. This happens 'secause in case NA the fuel boundary movement is retarded by the slower creep rate in the fuel. The magnitude of $P_{f c}$ is not changed significantly. At 14000 hours, $P_{f c}$ is similar for cases NO and NA. In case NB it is 130 psi and 204 psi lower for the second and the third axial section than that of case NO.

Figure SN-2 shows the maximum clad hoop stress $\left(\sigma_{\theta}^{c}\right)_{\max }$ for cases NO, NA, and NB. Because of the si ae swelling model for each case, the shape of $\left(\sigma_{\theta}^{c}\right)_{\max }$ is similar and its magnitude is influenced by the gap closure time and by the magnitude of P_{fc}. After 12400 hours, the magnitudes of $\left(\sigma_{0}^{c}\right)_{\max }$ are similar in cases NO and NA. In case NB it is 340 psi and 580 psi lower for the second and the third axial sections, respectively.

Figure SN-3 shows the hoop strain in the clad in cases NO, NA, and NB. Because of the similar clad swelling and P_{fc}, the amount of the total strain is similar in each case. At 14000 hours, it is 0.1% and 0.07% lower, in case NB, for the second and the third axial sections, respectively. These differences are caused by the lower P_{fc}.

Figures $\mathrm{SN}-4$ and $\mathrm{SN}-5$ show P_{fc}, the gap closure times, and the clad stress for cases NO, NG, and NH. In cases NG and NH, the smear density is changed to 88% and 83%, respectively, i.e., the initial gap is changed to 3 mils in case NO, to 1.87 mils and 5 mils in cases NG and NH. Figure $\mathrm{SN}-4$ shows that the gaps close earlier in case NG and later in case NH. Because of the same swelling rate in the fuel, the $P_{f c}$ is almost the same in these low power cases after gap closure. Figure $\mathrm{SN}-5$ shows $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\max }$ in cases $N 0, \mathrm{NG}$, and NH . Because P_{fc} is almost the same after the gap closure, and the swelling model is the same for the fuel and the clad, the $\left(\sigma_{\theta}^{c}\right)_{\max }$ values are the same for all three cases. The total hoop strain change in the clad is not significant.

Figures SN-6 and SN-7 show case NI, where the initial gap is kept at 3 mils and the fuel density is changed from 91.3% in case NO,
to 85% of the theoretical dansity in case NI. As the density is lowered, there is a faster creep effect in the fuel and so the fuelclad gap can close earlier. In case NI, the gap closes at 6700 hours, 3750 hours, and 5700 hours in each axial section, respectively. The P_{fc} is $\mathrm{a}^{2} \mathrm{E}$ smaller in case NI than that in case NO. At 12000 hours, this difference is about 150 psi in each axial section. Figure SN^{-7} shows $\left(\sigma_{\theta}^{c}\right)_{\text {aax }}$ for cases NO and NI. The differences of $\left(\sigma_{\theta}^{c}\right)_{\max }$ in these two cases are mainly due to the differences in t_{G}. Because the difference of $P_{f c}$ is not significant, the $\left(\sigma_{\theta}^{c}\right)_{\max }$ differences are negligible after gap closure. The difference of the total hoop strain in the elad is insignificant.

The model for the fuel swelling is varied in cases NN and NS. Because of t..e lower fuel temperature and lower fuel swelling, the changes of P_{fc} and of $\left(\sigma_{\theta}^{\mathrm{c}}\right)_{\text {max }}$ are not as significant as in higher linear power fuel elements. As shown in Figure SN-8, at 14000 hours, in case NN P_{fc} is lower by 160 psi , and by 70 psi than in case $N 0$ for the second and third axial sections, respectively. In case NS P_{fc} is lower by 510 psi and 208 psi than in case NO for the second and third axial section, respectively. These $P_{f c}$ differences induce $\left(\sigma_{\theta}^{c}\right)_{\max }$ differences in each axial section. As Figure $\mathrm{SN}-9$ shows, in case NS at 14000 hours, $\left({ }^{\mathrm{c}}\right)_{\max }$ is lower by 1240 psi and 720 psi than that in case NO for the second and third axial section, . pectively. The total hoop strains in cases NO, NN and NS are shown in Figure SN-10. In case NS at 14000 hours, the hoop strain is 0.4% and 0.1% lower than in case NO for the second and the third axial sections, respectively.

CHAPTER VI. CONCLUSIONS

1. The KRASS code is a simplified computer code which can be used for the prediction of axial and radial variations of fuel element behavior in an LMEBR under steady state irradiation. It takes eleven hundred machine unit seconds on the UCLA IBM-360-91 to calculace fuel element behavior to 15% burn-up with seven axial sections in the fuel column.
2. At $12 \mathrm{~kW} / \mathrm{ft}$ and $9 \mathrm{~kW} / \mathrm{ft}$, the axial maximum of P_{fc} and $\left(\sigma_{\theta}^{c}\right)_{\max }$ occurs in the bottom section, while at $6 \mathrm{~kW} / \mathrm{ft}$, it occurs in the mid-section of the fuel element.
3. The higher neutron flux in the large LMFBR may enhance the creep rate in the fuel and lower the fuel-clad mechanical interactions. The hoop stress in the clad is thus lower in the large LMFBR than in the CRBR in most cases.
4. Because of the high neutron flux in the large LMFBR, the fuel-clad gap in the mid-section of the fuel pin with higher linear power may reopen. The time for this reopening is greatly dependent on the clad swelling model. No gap reopening has been calculated for fuel pins in the CRBR.
5. As the temperature changes from $600^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ for peak clad swelling, the radial maximum of the hoop stress can move from the clad outer wall to the clad inner wall in some of the axial sections. The radial stress distribution across the clad wall is also significantly changed.
6. Because of the larger $P_{f c}$ in CRBR, a large fraction of the total strain in the clad is due to creep strain. In the bottom section
of the $12 \mathrm{~kW} / \mathrm{ft}$ element, where P_{fc} is high and the clad swelling is low, the fraction of the creep strain could be 80%. In large LMFBR, $P_{f c}$ is low, thus irradiation induc ad swelling is the main contributor to the total strain.
7. The amount of the total clad strain is greatly dependent on the irradiation induced swelling model. In CRBR, the total strain in the clad is also significantiy influenced by the $\mathrm{P}_{\mathrm{fc}}-$ induced creep strain.
8. As the corzelation of the clad swelling with the swelling threshold (Equation II-40) used in the calculation shows, a stress peak is induced in the clad by the larger differential swelling across the clad wall near the chreshold burn-up. In the large LMPBR, these stress peaks are high and occur at low brirn-up.
9. As the creep rate of the fuel, the fuel pin smear density, or the fuel density is varied, mudest variations of the fuel pin behavior are calculated. As the fuel swelling model is varied, the varlations in fuel pin ehavior become significant.

Figure E - :. Fcel Element Boundary Positions.

Fig.E-2 The Fuel-Clad Mechanical Interaction($P_{f c}$), and the Displacement of the Cladding Inner Surface (U_{c})

Fig. E-5 The Fuel and the Cladding Boundary Movements

$\left(e_{e}^{c}\right)(\mathrm{z})$

Figure E - 6. The Fuel-Clad Interaction ($P_{f C}$), the Maximum Hoop Stress $\left(\left(\sigma_{\theta}^{c}\right)_{\text {max }}\right)$, and the
Hoop Strain $\left(e_{\theta}^{c}\right)$ in the Clad (Case EBR - $15 \mathrm{~kW} / \mathrm{Ft}$).

Figure AO-1. The Gap Thickness, the Fuel-Clad Interaction Force, and the Fission Gas Pressure. (Case AO)

Figure A0 - 2. The Swelling Strain Rate (per hour) in Each Axial Section. (Case A0)

Figure AO-3. The Net Hoop Stress and the Stress Rate, Due to Swelling, Creep, and Pressure at the Outer Wall of the Clad.

$$
\begin{aligned}
& \text { 1: } \mathrm{t}=0 \mathrm{hrs} \mathrm{Bu}=0 \mathrm{~F} \text { (peak) } \\
& \text { 2: } \mathrm{t}=1315 \mathrm{hrs} \mathrm{Bu}=1.3 \mathrm{~g} \text { (peak) } \\
& 3: \mathrm{t}=4050 \mathrm{hrs} \mathrm{Bu}=3.9 \mathrm{~F} \text { (peak) } \\
& 4: \mathrm{t}=8053 \mathrm{hrs} \mathrm{Bu}=7.7 \mathrm{I} \text { (peak) } \\
& 5: \mathrm{t}=12818 \mathrm{hrs} \mathrm{Bu}=11.8 \% \text { (peak) }
\end{aligned}
$$

Figure $\mathrm{A} 0-5$. The Hoop Stress Distribution Across the Clad Wall.

Fig. A0. 7 The Total Hoop Strain and the Creep Strain Across the Clad Wall (Case AO)

$12 \mathrm{~kW} / \mathrm{ft}$ Cases
 Case Al

Figure Al. 1 The Temperature Dependance of the Irradiation Swelling and the Temperature Range Across the Clad wall (Case Al-1)
(5Ifw) deb

Fig. Al-3. The Net Hoop Stress Rate (1) and the Stress Rate at the Clad Outer Wall Due to the Creep (2), the Swelling (3), and the Pressure (4). (Case A-1)

Figure Al-5. The Distribution of the Hoop Stress Across the Clad Wall

$733 \quad 110$

A1-7 The Distribution of the Total Hoop Strain and the Creep Strain Across the Clad Wall (Case Al)
$12 \mathrm{~kW} / \mathrm{ft}$ Cases
Case A3

6u!11OMS pelf

Figure A3-3. The Net Hoop Stress Rate and the Stress Rate, Due to Pressure, Swelling, and Creep at the Outer Wall of the Clad.

Fiq. A3.4 The Maximium Hoop Stress in the Clad. (Case A3)

Figure A3-5. The Distribution of the Hoop Stress Across the Clad Wall

$$
k=1
$$

- Hoop Strain
- -. Creep Strain

Figure $A S-7$. The Distribution of the Hoop Strain and the Creep Strain Across the Clad Wall.
$12 \mathrm{~kW} / \mathrm{ft}$ Cases
Case A4

Fig. A4-1 The Temperature Dependence of the Irradiated Swell ing and the Temperature Range Across the Clad Wall.

Fig. A4-4 The Maximum Hoop Stress in the Clad (Case A4).

Figure A4-5. The Hoop Stress Distribution Across the Clad wall.

——Hoop Strain
— - Creep St ain
Figure A4 - 7. The Hoop Strain and the Creep Strain Across the Clad Wall. (Case A4)

$12 \mathrm{~kW} / \mathrm{ft}$ Cases
Case R1

133

733

Figure BO-1. The Fuel-Clad Interaction Forcc, the Gap Thickness, and the Plenum Pressure in Each Axial Section
(Case B0)
a: Inner node in the clad
b : Central node in the clad

Figure BO - 2. The Swelling Rate Across the Clad Wall.

Figure $80-3$. The Net Hoop Stress Rate and the Stress
Due to Pressure, Creep, and Swelling at the Clad Outer Wall.

Figure BO - 5. The Hoop Stress Distribution Across the Clad Wall. (Case BO)

Figure BO - 7. The Hoop Strain and the Creep Strain Across the Clad Wall

Figure B1 - 1. The Temperature Dependence of the Irradiated Swe?limb and the Yemperature Ragge Across the Clad Wall. (Case B1)

Fig. B1.2 The Fuel-Clad Interaction Force (P_{fc}), the Sap Thickness, and the Plenum Pressure ($\mathrm{P}_{\mathrm{gas}}$) in each Axfal Section. (Case B1)

Fig. B1-. . The Distribution of the Total Hoop Strain and the Creep Strain Across the Clad Wall.

Figure B3-1. The Temperature Dependence of the Irradiated Strain, and the Temperature Range across the Clad Wall.

Figure 83-7. The Fuel-Clad Interaction Force, the Gap Thickness, and the Plenum Pressure in Each Axial Section.
(Case B3)

Figure B3 - 3. The Net Rate of the Hoop Stress, the Stress Rate Dua to the Creep, the Clad Swelling, and the Pressure at the Clad Outer Wall. (Case B3)

Figure B3 - 5. The Distribution of the Hoop Stress across the Clad Wall. (Case B3)

733207

Figure B3-7. The Hoop Strain and the Creep Strain Across the Clad Wall (Case B-3)

$9 \mathrm{~kW} / \mathrm{ft}$ Cases
 Case B4

Figure $84-1$. The Temperature Dependence of the Irradiated Swelling, and the Temperature Range Across the Clad Wall

Figure B4-3.
The liet Hoop Stress Rate and the Stress Rate, Duse to
Creep, Swelling, and Pressure at the Outer Wall of the Clad.

$$
733 \quad 212
$$

1: $\mathrm{t}=0 \mathrm{hrs} \mathrm{Bu}=0 \%$ (peak)
2: $\mathrm{t}=1250 \mathrm{hrs} \mathrm{Bu}=0.9 \%$ (peak)
3: $\mathrm{t}=4020 \mathrm{hrs} \mathrm{Bu}=3.0 \%$ (peak)
4: $\mathrm{t}=8050 \mathrm{hrs} \mathrm{Bu}=6.0 \%$ (peak)
$5: \mathrm{t}=11700 \mathrm{hrs} \mathrm{Bu}=8.6 \%$ (peak)

Figure B4-5. The Hoop Stress Distribution Across the Clad.

Figure B4 - 7. The Distribution of the Hoop Strisin and the Creep Strain Across the Clad Wall. (Case 34)
(土) $7 / 7 \mathrm{~V}$ ре1ว

$6 \mathrm{~kW} / \mathrm{ft}$ Cases
Case NO
(5114) de9

168

- Net Hoop Stress Rate
- Stress Rate due to Swelling
- Stress Rate due to Creep
Stress Rate due to Pressure

Figure NO - 2. The Net Hoop Stress Rate, and the Jtress Rates Due to the Swelling, the Creep and the Pressure at the Oucer wall of the Clad

POOR ORIGINAL

— $T=0$ Hours $B u=0 \%$ (Peak)
— $\quad \mathrm{T}=\mathrm{X}, 900$ Hours $\mathrm{Bu}=1.4$ \% (Peak)

- $\quad T=6,000$ Hours $B u=2.98$ (Peak)
$\cdots \quad T=15,300$ Hours $B u=7.1 \%$ (Peak)

Fig. No. 4 The Distribution of the Hoop Stress Across the Clad Wall (Case N0)

Figure NO - 6. The Total Strain and the Creep Strain Across the Clad Wall (Case NO)

Figure N1 - 1. The Temperature of the Irradiated Swelling, and the Temperature Range Across the Clad Wall
(S 1 I m) dz9

—— $T=0$ Hour

- \times - $T=1314$ Hours
-० $T=3868$ Hours
-. $-T=8040$ Hours
$---T=10140$ Hours

$k=1$

$k=2$
$k=3$

Figure N1 - 4. The Distribution of the Hoop Stress Across the Clad Wall (Case N1)

POOR ORIGINAL

Fig. N1.6 The Distribution of the Hoop Strain (-) and the Creep Strain (--) Across the Clad Wall. (Case N1)
$6 \mathrm{~kW} / \mathrm{ft}$ Cases
Case N3

Figure N3 - 1. The Temperature of the Irradiated Swelling, and the Temperature Range Across the Clad Wall
(s (1)w) de9

Fig. N3. 3 The Maximum Hoop Stress in the Clad (Case N3).

Figure N3 - 4. The Distribu' ion of the Hoop Stress Across the Clad Wall (Case N3)

Figure N3 - 5. The Hoop Strain in the Clad (Case N3)

$\begin{array}{lll}R_{I} & 7,500 & R_{0}\end{array}$

Time (Hours)

Figure N3 - 6. The Distribution of the Hoop Strain and the Creep Strain Across the Clad Wall (Case N3)
$6 \mathrm{~kW} / \mathrm{ft}$ Cases
Case 14

Figure N4 - 1. The Temperature Dependence of the Irradiated Swelling, and the Temperature Range Across the Clad

733240

Figure N4 - 6. The Distribution of the Hoop Strain and the Creep Strain Across the Clad Wall (Case N4)

CONCEPTUAL LMFBR CALCULATIONS
$15 \mathrm{~kW} / \mathrm{ft}$ Cases
Case HO
($51 / 10$) dep

POOR ORIGINAL

Figure HO - 2. Fuel Outer Boundary Displace.ent (FUB), Clad Inner Wall Displacenent (CUB) and Gap Thickness of $2^{\text {nd }}$ Axial Section in Case H0

Fig. H0. 4 The Rate of the Irradiated Swelling Strain Across the Clad Wall. (Case HO)

Fig. $140-5$ The Nat Hoop Rate, and the Hoop Stress Rate Due to the Creep and the Swelling at the Outer Nal of the Clad (Case mot

Fig. HO-7 The Distribution of Hoop Stress Across the Clad Wall (Case HO).

Figure HO - 9. The Distribution of the Hoop Strain and the Swelling Strain Across the Clad Wall (Case Ho)

Fig. H1. 1 The Temperature Dependance of the Irradiated Swelling, and the Temperature Range Across the Clad Wall.

(159) xeut (30)
$733 \quad 256$

Figure H1 - 4. The Radial Distribution of the Hoon Stress Across the Clad Wall (Case H1)

Fiqure H1 5. The Hoop Strain in the Clad (Case H1)
733258

Fig. H1.6 The Distribution of the Hoop Strain and the Irradiated Swelling Strain Across the Clad Wall. (Case H1)

Figure H5 - 1. The Gap Thickness, the Fuel Clad Interaction Force and the Gas Pressure (Case HS).

Fig. H5.3 The Hoop Strain in the Clad. (Case H5)

Figure M0 - 1. The Fue)-Clad Gap Closure, the Fuel-Clad Interaction Force, and the Plenum Pressure. (Case Mo)
a: Inner Node in the Clad
b: Central Node in 'ie Clad
2 [5 Onter Node in t'e wlad
$K=1$
a
1

Figure MO - 2. The Rate of Irradiated Swelling on Radial Nodes of the Clad

Fig. M0. 3 The Net Hoop Rate and the Stress Rate Due to the Creep, the Swelling, and the Pressure at the Outer Wall of the clad.

Figure MO - 5. The Distribution of the Hood Stress Across the Clad Wall

$733 \quad 269$

Figure MO - 7. The Distribution of the Hoop Strain and the Creep Strain Across the Clad Wall

$9 \mathrm{~kW} / \mathrm{ft}$ Cases
 Case $\mathrm{M1}$

(s16w) dey

($55 x$) $\quad \mathrm{xPw}\left(\frac{5}{5} \mathrm{D}\right)$

$15 x$

Hoop Strain

- Creep Strain

se $1 \prod_{0}^{2}$

Fig. M1-5 The Distribution of the Hoop Strain and the Creep Strain Across the Clad Wall (Case M-1).

POOR ORIGINAL

POOR ORIGINAL

POOR ORIGINAL

Figure SA - 8. The Maxinum Hoop Stress in the Clad

Fig. SA-9 The Total Strain in the Clad.

POOR ORIGINAL

POOR ORIIGINAL

Fig. SA-12 The Total Hoop Strain in the Clad.

Fig. SB-1 The Fuel-Clad interaction Force.

POOR ORIGINAL

POOR ORIGINAL

POOR ORIGINAL

POOR ORIGINAL

POOR ORIGINAL

Fig. 5N-1 The Fuel-Clad Interaction Force.

POOR ORIGINAL

Fig. SN-3 The Total Strair in the Clad.

POOR ORIGINAL

POOR ORIGINAL

POOR ORIGINAL

POOR ORIGINAL

POOR ORIGIMAL

THERE IS NO TEXT ON THIS PAGE

REFERENCES

1. V. Z. Jankus and R. W. Weeks, "LIFE-I, a Fortran-IV Computer Code for the Prediction of Fast Reactor Fuel Element Behavior," ANL-7736, 1970.
2. T. H. Lin, "Theory of Inelastic Structures," John Wiley and Sons, Inc., 1968.
3. J. T. A. Roberts and B. J. Wrona, "Deformation and Fracture of $\mathrm{UO}_{2}-20 \% \mathrm{PuO}_{2}, "$ ANL-7945, June 1972.
4. Timoshenko and Goodier, "Theory of Elasticity," McGraw-Hill Book Co.
5. George Sines, "Elasticity and Strength," a UCLA Engineering Syllabus.
6. Nuclear System Handhook, Vol. 1, Design Data, June 19, 1974 Revision.
7. P. Soo, et al., "Type 304 and Type 316 Stainless Steel Data for High Temperature Design," WARD-3045T2C-3, Nov. 1972.
8. Private communication with ANL.
9. W. Chubb, V. W. Storhok, and D. L. Keller, "Factors Affecting the Swelling of Nuclear Fuels at High Temperatures," Nuc1. Tech., Vol. 18, p. 231, June 1973.
10. D. S. Dutt, et al., "A Correlated Fission Gas Release Model for Fast Reactor Fuels," ANS Trans. 15, No. 1, p. 198, 1972.
11. J. H. Scott, et al., "Post Irradiation Examination of Fuel Pins PNL-10-23 and PNL-10-63," HEDO-TME-74-23, May 1974.

THERE IS NO TEXT ON THIS PAGE

OCK2501 UCL CARD ENCOUNTERED->BNLG211LL.L ISTALEL

C****** CREEP AND SWFLLINS
$C * * * *$ BAOLEE $=1$ GAP UPH N
$C * * * * ~ B A O L E E=2, G * P$ CLUSE?

2. VOLM, VOLU, VOL. AVETK, GAS.AC(13) , BL (15), AF (15), GF ($1 \leq$) , FL (15)

1 FSTSR(Si,FSTSZ(S), C-2 (S.13), CDR (3, 1)) CSTSH
CSTSZ(S),NN2,NR, MFR, WD, BA OLEE, MTLST, FLUX(15)

2 CUABUU. CADEAZ. CHDHAC

FUAS, FUAO, FTF $(5,1$,$) , TOFA , TDF 3, FDLE , FUU(15)$ oF AA , FUU , H HMA
2 FBA22, FAB26,FUABUU. Ui.UI:FAUSAZ.FOUCAZ, FALU

3 CSH(S), CSNR 3), CSZ

CUSWA(15), CUSWB(15), CT5a(s), CSwa(5, is)
COMMON/UIXI/FDHE (S). FDAK (S3, FOLL(SI, FOCPD,UCPA(15),UCPE(15);

, FCPR $(5,15)+C P H(5,15), C P H(5,15)$, $(C(P N(5,15)+C C P<(5,15)$,

- CTRZ(S). NHH(S), CENR (S), CERZ(S)

1
2 FDSWUH , FOS AHCS
2
$32 J 00360$
aK $000 \rightarrow 00$

3 FTS：（5，15）
OIMENSION FGR（5，15），VV（5，15），FGVD1 $(3,15), F G V D 2(5,15), V 1(5)$,

5 FFLUXi15）
CALL R ADICIR．DTIMCL ODPFCK，M．YC．CIPFC．$J M X$ ，NECKL ，HCL．

FE＝（3．292E）
$F E=(3,292 E 7) *(1,-2,35 * P$ 1Nu）

$C P=0.3$＊C＊+0.0407
$C E=2-Q E 7$
36101320
CALL WINP
$J=j+1$
$4 F M$
4
MFM $M=1=R-1$
$M F M 2=M F R-2$
$\mathrm{V} \angle 1=N Z-1$
$0060 \quad k=1$ ．N Z i
OO $60 \quad 1=1$ ，MFR

SR $3(1, K)=F S T S R 甘(1, K)$－PN $(1, K)$
SO（1，K）＝FSTSLE（1，K）－PNi（ $1, K$ ）
OU $61 \quad 1=1$ ．MR

$615 \angle C B(1, k)=C S+5 Z B(1, k)=O C+(1, K)$
$C A A=1.32 E$ ，
FDPA $=(1,+F D) *(1,-2, \times F D)$
FAMASFD＊FBノFDPA
FAASFP＊FEFDRA
$F A 1 U=F A A+F U U$
$F A 2 U=F A A+2, * F U U$
FUAI＝A＊＊（FUU＊＊ 2 ）F A LU
FUA $2=F A A / F A Z U$
FUA $3=2$ ：＊FUL＊FAA／FAZU
$F U 2=2$ ．＊FUU
FUA5＝FAA／CFAA＋FUU）
FUAGAZFUAS FFUA
F UA 3 UUZ $=($ FUA $3+F$ FUU）$* 2.13$ ．
AI $U=C A A+C U U$
2 $U=(A A+2 * * C U U$
$U A 1=4 * *$ CUU＊＊2）
UA $1=4 .+i$ CUU
UA $2=C, 4 A / A 2 U$
UA $3=2$ ．＊CUU＊CAA／AZU
UA $=2 \circ^{*}$ C．UU
UNG＝UAS＊UAI

3＋wiv：\rightarrow Bu
36iniaud
bevis20
时に1000
3ndulyso
9＋291509
2． 5016 －
Javi01540
DRUN1406
muvingo

CUA 3 UUG $=(U A 3+C U U) * 2,15$
$G F=(F A A+2 * * F U U / 3 *) *(1++F U U / F A 1 U) * 0+1 /(2 * *+A 2 U)$ $4, ~ \triangle P L=0$ ．

IF(EORE(K), EO. 2n) GAP $(K)=0$

207 GO TO 208
NBOLE $(K)=2$
TCLOSE $=T 1$ NE
GC TO 200
206 CONTINUE
TTS=61.-1. (FSQQ) *TIME/TFSQI

1F(TIME.GT- TFSQI) CRLM=CTM
IFABOLESK) *EO.Z.) GO TO 202
IFABOLE (K)
CONTINUE
CONTINUE
202 TI= (TIAE-TCLOSE)/TFSQ2
T2=CTA/SS2
$C R(M=T 1+(C T R-T 2)+T 2$
203
CRL MAT1* $(C T A-T 2)+T 2$
CONTSNUE
NZDZ 2 NZ
IF CPRK(1,NZD2) - T. 1, F-10) CPRK(1,NZO2) =1, F-10

IFGOTIME.GT *DTIMELI OTIMF=OT INCL
IF (TIME -LT. 5.) DTI ME = = . 5

$\mathrm{NZZ}=\mathrm{N} Z-2$
$G \mathrm{O}=\mathrm{OF} \mathrm{C}$
1

DO $75 \mathrm{~K}=1$, N22
K $1=$ K
75 GP=AMAXI(GP,PFC(K1))
APFC= (1. $/ S P O-1$,$) OOTI MEL / (FPFFC-SPFC)$
BPFC=OTIMEL-APFCESPFC
IF (GP, GT* SPFC) DT TME =APFC *GP + BPFC TI $\mathbf{W E}=\mathrm{T}$ I $\mathrm{WE}+\mathrm{CT}$ I ME
$V C V=0$.
$Y G A D=0$.
$\vee G A P=0$.
$70 \mathrm{FL}(K)=\mathrm{YFL}(\mathrm{B} / \mathrm{NZ})$

$V C V=V C Y+3+1416 *(\quad A V C V * * 2) * F((K)$
71 VGAP=VGAP+3-1416*FL(K)*(ACB(K)**2-BFD(K)**2)
$\triangle P L=3.1416 *(T C L B-T F L A) *(A C B(N Z) * * 2)$
$v O L=v C V+V G A F+V P L$
$\forall a \quad N=0$.
OO $72 \quad \mathrm{~K}=1$, N21

DTCK
DTFK
OO.
BUAV=(2.56567E-6) W $\sim V P L=T 1$ NE/3.1416/AVBF 2
FI=0.66427*BUAV

IF (RUF OT, O.) RUF $=0$.

TGRMNXGFF MA TIWE (VOLVAVOL M)
OGRWNTGRNM-TGRN
IGRMAIGRMN

AVBF $=0$

oo $73 \quad K=1$, N21
73 A VBF=AYBF + BFB(K)
AVBF2=A VBF ** 2
GAS = (6-1474E11)*AVPL, ...1410*AVBF C)
T GR $M=0$.
$F V G=R F 2+\left(R F_{1}-R F 2\right) / 4$
CVO=RV $2+($ RVI $-R V 2$) $/ 4$.
GO TO 23
***** ITERATION FOH G EEEP PRECISLMA
350 IF (MF EEQ: 1$)$ if is 351
TIME=TIME-CT, MF 1 M . 35
FM: $1 \times \mathrm{FMX}$
OT $-A E I=D T T M E$
DT $I M E=D T I M E$ NVOCF UK

$5.4 \times 2=F=\pi$
CT IME2=0 I IME

FM K $1=F M \times 2$
OTIMEI =OTINEZ
CONTINUE
$\mathrm{CSCPD}=0$.
FSCPD $=0$.
(0) $58 \quad \mathrm{~K}=1, \mathrm{Nz}$

SS(FSTSRU(1,K) FSTS

FTR=FTF\{ $1, k)+459,6$
YS=SEK $(1, K)$ ** 5
EXP $1=E X P((-1+1963 E S) / F T R)$
EXP2 =EXP($1-8,1566 E 4$)/FFTQ)

FPDENI =FPDEN
IF(FPDEN $=1 T, 0.72)$ FPDEN $1=0.22$
FCPA $1=(9+72 \in E)(1-40.5+100 * F P$ (2EN1)

1 *FLUX(K)) © SEK ($1, K$)
CONT INUE

CONTIN
 $P P P=0$.
 DO $205 \quad K=1, N 21$

$B C E(K)=2$.
GAF (K)=ACB(K)-BFH(K)

IF (REOPEN(K),EQ.2:) GU TC 355
GO TO 35 e
BOL $E(K)=1, \quad, \quad G D(K)=0$
IFIGAPSK
IF (BOLE (K) *EQ. 2.) ppp=ppp+1.

0n001700 3
0×002520
3RU02020
3N302040
9k002060
MKUO 2000
SNuOL120
3 H002140
गr $30<160$
DRGO2180
Die Ju<200
prou 2220
2F30 2240
गRJO<200
jrjue ju0
Jn00<2040

ORO 10440

PERGR $=($ TGRMN $/$ TGGM $) * 100$.
AVETK $=(C T F(1, N 2)-32 *) * 5.550+27\}$.

$\rho G A S=P G A S+O P G A S$

FK $R X=0$.
SFT $R Z K=0$.
SFTR $K K=0$.
SCTRZK
CTVTK
$1 F(K, E Q \cdot N Z)$ GO Ta or
$C A=A C B(K)$
$C B=B C B(K)$
$\mathrm{CB}=\mathrm{BCB}(\mathrm{K})$
FA=AFBik
F'i= $\mathrm{CFB}(\mathrm{K})$
$0066 \quad I=1, N$ NR
CPR (I) $=\operatorname{CPRK}(1, k)$
SE (1) = SEK ($1, K$ K)
DU $5 \quad 1=1$, MFM2
AI = $1-1$
$A I=I-1$
$F D R(I, K)=(F Q-F A) / M F \cup 1$
$F R(I, K)=F A+F D R(I, K) *(A,+0 . j)$

FON $(M F M I, K)=F U R(M F M ?, K) / 2$.
FDR $(M F M, K)=F D R(N F M), K)$
FRR(MFM K K K) = FOR $(M F M 2, K)$

FGR $(1, K)$ EFA
$M P R I=M F R+1$
DO $6 \geqslant 1=2$, MPR 1
$11=1-$
FGR $(1, K)=F G R(11, K)+F D+2(11, K)$
OO 400 i $=1$, NFR
$11=1+1$
FGVPI $(I, K)=(F H(I, K)=* ?-F G R(1, K) * *$ ($) / 2$.
FGVP2f(1,K)=(FGR(11,K)**2-FG-(1,K)**
400 CONTINUE
990 CONTINUE
CONTINUE
FA $2=F A * * 2$
FBL
FBA $2=F B Z=A Z-F A$
A $2=C A * * 2$
$A 2=C A$
$B 2=C B * * Z$
$B A 2=A 2-A 2$
FBBA2=FB2/FEA
$\mathrm{FBA} 22=\mathrm{FBUA} 2 / 2$.
FBE 26 =FUAS *FBEAZ
FADBA $2=F A 2 / \mathrm{FBA}$?
FBDBA $2=F=2 / F B$
CADBA $=A 2 / B A 2$
$C B O B A 2=B 2 / B A Z$
$U 1=F A 2 * F B /(2, * F 3 A 2) / F A 11$

＊ELASTIC PRESSURE EFFECTS
CALL FPEIFGVPZ UPFCK，MDFC

＊＊＊＊＊＊＊BOUNOARY CONOITIONS IN AXIAL UINECIIUN
FC3 $=0$
＝1．MFR
FDTS $(t)=F$ DTS $2(1)+F D S W \angle(1)+F D \angle E, ~$
$74 \quad$ F 3 ＝FC $3+F O T S(1) * F G V P Z(11, k) * 2$.
TF（BOLE（K），EQ．1．）GO TO 70
QP＝1．
IFIOFL－GT ：DCL）$Q P=-1$
 GO TO 77
76 DFR $2=0 *-C$ CGAS＊（FBAZ
17）FC3＝ 1 DFRZ－F（3）／FBA．
OOT 78 ＝＝．MFR
FOTS（1）＝FOTS（1）＋FC3
78 FSTSZ（1）＝FSTS28（1，K）＋FD： 5 （1）
TFKLDTEK＋FC
FMX $=0$
$P P G S=1$
DO $83 \mathrm{I}=\mathrm{i}$ ，MF

1＋6FSTSR（1）－FSTSZ（1））＊＊
SEF $C=(S S / 2 \cdot) * * 0.5$
IF SEE（I）ALI．PDGS）GO T）＋4
偪F（I）＝ABS（1．－SEFC／SE（1）
GOF（I）$=0$.
85 PEF TIN＝0．
FMX＝FMX \＆PEF（1）
83 CONTINUE
FMX＝FMX／MFR
IF GO GT ．JF）GO TO 354 CONTINUE
354 CONTINUE 1$)$ GOTO 5
IF（FMX．EQ：O．）GO TO 353
IF（FMX ．GT：RFI）GO TO 350
IF（FNX \＆T．RFZ）GO TO 350
353 CONTINUE
CH3 QFUEL GOUNDARY DISPLACEMNT
CALL FUBCWPIFSIB，FS2日，FS3B，SI
65 CONTINUE
OI $6 \quad I=1$ ．NR
$A N R=N R$
$\operatorname{CDR}(1, K)=(C B-C A) / A N-$
6 CR（I，K）＝CA＋CDR（i＊K）＊（AI＋0．3）
C＊＊＊＊a ADDING CREEP EFFFCT
CAL CCREP（S18．528．53日
$W G=1$
C＊＊＊＊＊FALL PRESSURE EFFEST
C＊CAL CGPIDPFCK

$C P 3=0$ ．

JntuO334．
3 k .163860
JHOO 3860
Jnaus 3200
018 $20+120$
Dnu02da
mejozabu
$3 h u 02200$
$0+6504120$
OWij04120 DKUU4140
jusumpad
jejus auo
2RJJO4 740
$11=1+1=1$ ，NR
Cors（i）＝CSw2（i）+ CDT $2(1)+$ cocze（i）
CP3：CP3＋CDTS（i）＊CR（L，K）＊CDR（ $1, K) * 2 *$
CP3＝（DCRZ－CF3）／BA2
DO $82 \quad 1=1$ ，NA
COTS $(1)=\operatorname{COTS}(1) * C P S$
DTCK＝01CK＋C尺3（I，K）＋CDTS（I）
CAL CACE CO

```

```

IF（BOLE（K）－EQ．1．），O TO 10 I
BOO＝TOCA－TDFE
BDC＝ $8 D O /$ TOCA
ABDD＝ABS（BCD）
IF（ABDO AT T．CIPFC）GU T） 101
CALL PPRCI IDPFCK，MPFC
IF IMP＊GT．20）GO TU 1000
CONTINUE
$M P=1$
IF（ κ ，EQ．Nz）GO TO 30
BF $(\kappa)=\mathrm{BE} j(\kappa)+\mathrm{TOFB}$
DO $8 \quad 1=1$ ，MFMZ
FDR $(1, K)=(E F(K)-F A) / W F M$
FR $(1, K)=F A \quad+F D R(I, K) *(A 1+0, S)$
F DR $(M F M 1, K)=F D R(M F M 2, K) / 2$ ．
FDR $(M F R, K)=F D R(M F M 1, K)$
FR（MFR，K）＝FR（MFM2，K）
$F G R(1, K)=F M(M F M 1, K)+F D R(M F M 1, K) / 2+++D K(M+R, K) / 2$
FGR $(1, K)=F A$
DO $12 \quad 1=2$ ，MFR
FGR1
，K）＝F GR（ $11, \mathrm{~K})+\mathrm{FDR}(11, \mathrm{~K})$
$\left.\begin{array}{l}A C(K)=A C B(K)+T O C A \\ B C \\ B\end{array}\right)=B C B(K)+T O C B$
DO $9 \mathrm{I}=1$ ，NR
$\begin{array}{ll}A_{4}=1-1 \\ A N K & =N R\end{array}$
$A N K=N R$
$\operatorname{CDR}(I, K)=(B C(K)-A C(K)) / A N-$
CR $(1, K)=A C(K)+\operatorname{CDH}(1, K)+(A 1+0 * 5)$

```

```

EXT＝ET
IF（TIME＊LT＊EIT）EXT＝0．
IF（K，EQ．NZ）GOTO 105
SS＝（FSTSH（1）
1 FSTSZ（1））＊＊2
PN（I）＝（FSTSH（i）＋FSSSR（1 ）＋＋STSL（i））／3．
SH（ I）＝F STSH（I）－PN（I）
SR（1）＝FSTSR（I）－PN（1）
SZ（I）＝FSTSZ（I，1－PN（I）
PNB $(1, K)=P N(1)$
DO $151 \quad I=1$ ．WFR
SHE $(1, K)=S H(1)$
SHB $(I, K)=S H(1)$

```

10pq04980 2H－05000 2n0e5920 JRU03060

3ROOS200 DHuOS220 orves 240 JRUOS280

3R205360
ancuasiog

DHUOつ440
DRUU5＊OO
anuosjua
DRU05320
かん005640

Dena0e200


\section*{}

FS i52 \(t=1\) ，wFR
FST SRB \((1, K)=\) SHA \((1, K)+P\) NB \((1, K)\)
52 FSTS2．\((i, K)=S 2\) E \((i, K)+P \mathrm{NH}(i, K)\)
FUBE（K）＝FUS \((K)\)
BFB \((K)=A F(K)\)
BFB（K）A AF（K
\(00153,=1\), WFR
FCPHB \((1, K)=F C P H \quad(1, K)\)
FCPR \((1, K)=F C P R \quad(1, K\)
\(F C P Z B(i, K)=F C P Z \quad(1, K\)
00 154 \(\mathrm{i}=1\) ， ， FFR
F Svu日e（K）＝FSWU日（K）
FCPAB（K）＝FCPB（K）
FUEBB（K）＝FUEB（K）
FERH（1）＝（FSTSHIT）－FR＊（FSTSR（1）＋FSTSL（1）））／F！
FERR（1）
DO \(156 \mathrm{I}=1\) ．MFR
FNTSW3＝FNTSW（I．K）／3
FTRH（I）＝FERH（I）ONNTS \(3+F C P H(1, K)\)
FTRR \((1)\) aFERR \((t)+F N T S W 3+F C P d\{1 * K\)
05 DO \(100 \quad \mathrm{i}=1\) ，NR

C SE（ \(11=15512\)
CN \((1)=(\) CSTSHCI \()+\operatorname{CSTSH}(1 \quad i+\operatorname{CSTSZ}(i))=3\) ．
\(\operatorname{CSh}(1)=\operatorname{CSTSt}(1 \quad)-\operatorname{CN}(1)\)
\(\operatorname{CSR}(1)=\operatorname{CSTSR}(1) \quad-\operatorname{CN}(1)\)
\(\operatorname{CSZ}(1)=\operatorname{CSTS} 2(1)-\operatorname{CN}(1)\)
PCB（ \(1, K)=C N(1)\)
SHCB（I，K）\(=\) CSH（I）
\(\operatorname{SRCB}(1, K)=\operatorname{CSR}(1)\)
110
SZCB（I，K）＝CSZ（1）
DO \(1111=1, \mathrm{NR}\)
CSm日 \((1, x)=C \leq \Phi B 2(1, k)\)
CSTSHB \((1, K)=\operatorname{SHCB}(1, K)+P C A(1, N)\)
CSTSRE（ \(1, K)=\) SRCB \((1, K)\) QPCA \((1, k)\)
CSTS2日（1，K）＝SZCB（ \(1, K\) K）＋DCB \((1, \ldots)\)
CCPHA（I，K）＝CCP
CCPR \((1, K)=C C P H \quad(1, K)\)
CCPR
\((1, K)\)
CCP2 \(8(1, k)=C C P 2(1, k)\)
OO \(113 \mathrm{I}=1\) ，NR
CERH（I）＝（CSTSH（I）－CP＊（CSTSR（I）＋CSTS2（I）））／CF CERR（I）＝（CSTSR（I）CP（CSTSH（1）＋CSTS2（1）））CCE CERZ（I）＝CSTSZ（I）－CD＊（CSTSH（I）＋CSTSk（i）i）／CF
CSW3＝C， \(\sin =10 \mathrm{MR}\)
CTRH（I）\(=\operatorname{CERF}(1)+\operatorname{CS}=3+\operatorname{CCPH}(1, K)\)
CTRR（ 1 ）＝CERR（ 1 ）+ CSE \(3+\) CCPM（ \(1, \mathrm{~K})\)
114

CUAB \((K)=\) CUA（K）
CUB \((K)=\) CUB \((K)\)
UCPAB（K）＝UCPA（K）

CUEAB(K) =CUEA (K)
CUEAB (K) =CUEB (K)
CUSWAB(K) =CUSWA (K)
CUSwAB ( \(x\) ) =CLSWB (K)
\(A C B(K)=A C \quad(K)\)
\(A C B(K)=A C \quad(K)\)


    IF (K.EQ:NZ) GO TO 200 , DHOU40dO
    CAL FWRITE FFOTS
CALL CERITE (CDTS )


        WRITE ( \(6: 370)\)
FORMATI:GAP IS CLCSED*)
WRITE 6,373\()\) PFC \(K\) K
        WRITE(6.373) PFC(K), DPFCK(K)
        GRTTE 31
        ©RITE(6.371) GAD(K)
        FORMAT : GAP IS UTEN.GAD \((K)=\), , C 1 2.4)

        FORITE \((6,378)\) AC(K), BC(K), OF (K)
        \#RITE 6.378 ) AC(K). \(6 C(K)\) OF (K)
        WRITE 6.37 (T) (CR (I.*K): \(1=1, N R)\)


        FORMAT \((\) : CR(K)=: SEI2.4)
FORMAT \((\) FR \((K)=*, 4 E 12.4, /)\)
        FORMAT (
GO TO 24
GONTINUE
        CIITINE 6.381 ) AC(K).HC(K)
        WRITE\{ 6.375 ) (CKI: \(K\),, \(1=1\), NF \()\)

        CONTINUE
IF (K -EQ. NZ) GO TO 1210
    SFTRZ 5 O.
    SCTRZ \(=0\).
    O 1219 I 1 , MER
    SFTHZ \(2=\) SFTR \(2+F \mathrm{~T} n 2(1) / 4 \mathrm{FL}\)
    SF 1218 I \(=1\). NH
SCTRZ SCTRZ CTRZ (I) /NR
    CONTINUE
IF \((K, E Q, N Z) \quad G A P(K)=1111\).

        IF \(F(B O L E(K)\) EEQ. \(1-1\) PFC
\begin{tabular}{l}
\(K=K+1\) \\
IF \((K) G T, N Z) G O ~ T U ~\) \\
\hline
\end{tabular}
            IF (K G GT . AZ) GO TU 25
            FKMX \(=F K M X+F B X \subset N<1\)
            SFTRZK=SFTRZK+SFTKZ/NZI
            SCTH2K=SCTR2K+SCTH2/N21
            GO TO 26
            CONTINCIE
    DFL =SETS R TTFLB
    DCL =SCTR2. *TFL
    TCL \(=\mathrm{TCL} \theta+0 C L\)
    \(T F L=T F L B+D F L\)
    FJMX=F J \(\quad\) M \(X+F K M\)

    MSHO=MOD (J.MCHP)
    IF (MSHD \&NE. O) GU TO \(1 d \geqslant 1\)

1891 CALL GPRINT INZI. CPHX,GAP
IF (MTEST NE, 0) GO TO 1214
HRI (E (6.374) DGAS. DPGAS
374
FORMAT: PGAS \({ }^{+}\), EI 2,4 , "
PRINT 1217, TGRM, PERGR

110 N GAS =: F F 10.31

\(1215^{1}\) EI3.4.
CONTINUE
MPUN \(=\) MOO ( \(J\), WPUNCH)
IFIMPUN NNE. GO TO 1002
1 FSOR,FSO2. IFSQ1. TFSQ2.NW SW, NCFC, C IPF ... JMx, NAOLE, HCC.

\(j=j+1\)
iF \((J, G T\). JF) GU TO 1000
IF (TIME -LT. FTINE) GU TC 23
nu0b/4u JRUVOS320
1000
1001 STOP END LEROUTINE QPRINT INZI.CPRK. GAI





DIMENSIO.


\(1980^{1}\)
FORMAT \(117, F 7,1, F 5,2, E(Y A P(2): G A D(3), G W P(4), G A H(5), G A H(0)\)
RETURN
SUBR


2 CSTSZ 25 ), NZ, NR, MFR, WP, EAOLEE, NTLST,FLUX(1)
COMMON/CONSTF/FA, FE, FAZ, FEZ, FGAZ , F F, FP, HUZ, FUA1, FUAZ, FUA S.

AA F FUU,F ELAAS.
FBA22. FB826. FUA 3 UU,U1, U3 , FADUA \(2, ~ F B D U A 2, ~ F A 1 U ~\)







CTRZU, CERH(S). CERR(S). CERZ(S)



OIMENSION FGVPI (S.15), FGVP2 \((5.15)\), FTSW3(5.15)
ris60160 rHa
\(r+00100\)
1500 risu 740 ynsoutso YHSL0700 rnsuvajo

OO \(1111^{\circ} t=1\). MFR
DO \(111 \quad I=1\) MFR
FUEL \(S\) MELL ING FROM IS THERMAL EXPERIMENT
DDI = 0.001046*FTF \((I, K)-5.08378\) \(D D=10 . * * D D 1\)
\(F S=(2.0712 E-6) * 0.1 * D 0 * P L(K) /(G F * F B * F B)\)
FDSW ( \(1, K 1 a F S * D T I M E\)
FTSES
HOT PRESSING TO COMPACT TME SUELLINU UY CREEP
TFK=(FTF (I:K)-32-)*0.550*273*
HPHP \(=\) PNE \((1, K) *(1 ; 45 E-5)\)
IF \((H P H P ~\)
IF (MPHP GGT. O.)GO TG 237
FOHP
EOHP=EXP

VRITE 6,45 E \()\) HPD , HPHP, EQHP
\(\stackrel{c}{c}+50\)

GO TO 238
237
TOHP
CONTINUE
CON
FDSE(I.K
FNTS: \((1, K)=\) TOMP \((1)+F \mathrm{FDSW}(1, K)\)
WRITE \((S, 1)\) FOSW \((1, K)\), TDHP \((1)\), FN \(T S: 1, K)\), FNT \(S=(1, K i\)
IF (FDS:(I,K) Kito DO \(101 \quad 1=1\), MFR
VV(1)=FDSE(1,K)*FGVPI \((1, K)\)
VP=0 \(100 \quad 1=1\), MFR
\(11=1+1\)
\(V: 1)=V P+V V(1)\)
\(V D=V P+F D S V(1, K) * F G V P 2(11, K)\)
100
CONTIMUE
DO \(1021=1\). MFR
SII(1) = (FUA3
)*V(1)/(FR(1,K)** \()\)
102
Si2(1)=(FUAI/3.)*V(1)/(FR(I,K)**
SIB=(FUA 3+FLA1/3.) *VD VFB2
\(D O \quad 113 \quad 1=1=M F R\)
\(R 2=F R(1, k): 02\)
R2=R(i;K)
FSEHCI)=FDSWH(1)SI2(1)-FUABUU*FUSW(1, K)

113
DSE2 (1) =FAB26 iSIB-FUABUU *FDS (1, K)
OO \(104,1=1\) \&MFR
FSTSA(I) =FSTSR(I) +FOSWR(1)
104
CONTENU
RE JRN
SURNOUTINE FCREP (DSTB XKGG, JF, CPR, FGVP1, FGVP2, FGR , FS13,FS26,FS3B) SUEROUTINE FCRESK. TIME.DTIME, FK(S.15) ,FOH(S., IS), FSTSH(S).

FSTSR(S):FSTSZ MF, MP, BAOLEE, MTEST, FLUXT IS)
COMMON/CONSTF/FA , FS,FA2, FY2, FBA2 , FE, FP, FU2 , FUA1 , FUAZ ,FUA 3 ,
1 FUAS, FUA6, FTF 5 , 15), TDFA, TDFBA FUEG OFU甘 (15) ©
2 FBA22. FAB26.FUABUU,U1, U3, FADBA2,FUDJA2 FFA1U


UNU14700
OROI4980
DHO15000
DkO15040
DHOIS140
YHS 90100
ris00180
ris
rhso0200
riso
YHSOO280
rHSOO
rHSOO 320
TH500340 YHSOO360 YHSOOSOO

3 SR(S) - SZ(5), FMx

2 UCPAB(15),UCPBE(15), CUEAB(15), CUEBB(15), CUSWAB(15), CUSWOB(15),






 \(0081=1\), MFR
LCP(1)=CPR(I) *OTIME
 GO TO
DK
\(=0\) .

FOSTRR(f)=0KOSRE(I,K)
FDSTRZ(ItaOK S S 2 B (I; K)
\(\begin{array}{cc}c & 100 \\ c & \\ c\end{array}\)


101 FORWAT (*OSTRH,DSTAR,OSTRZ', SC12.4)
\begin{tabular}{l}
81 \\
\(c\) \\
\hline
\end{tabular}
93
WRITE 6,93\()\) DT IME
FORMAT
FORMAT ( \(2 x\), , OTIMEB* . F 10.5 )

FCPH \((1, K)=F C P N B(1, K)+F U S T\) AH \((1)\)
\(F C P R(1, K)=F C P R B(1, K)\)
FCPR \((1, k)=F \operatorname{FPRB}(1, k)\) +FDSYRN(1)
FCPZ \((1, K) \times F C P Z A(1, K)+F D S T R Z(1)\)
DO \(63 i=1, M F R\)
\(V 1(1)=F O S T R R(1)\) *FGVP1 (i, K)
\(V 3(I)=(A L Q G(F R(I, K))-A L O G(F G N(1, K)))=(F D S T R R(1)\)-FDSTKH(1)) CONTINUE
VPNO.
\(D 0\)
1
\(1=54\)

FSI (I) \(=Y P+y(14\) )
YPaYP+FOST: 7R (1) *F GYP2 (11, K
CONTINIJE
FSi \(8=\forall P\).
\(\forall \rho=0\).
\(0065 I=1\), MFR
\(11=1+1\)
\(583(1)\)
ES3 (i) wVP \&V3 (3)
 CONT INUE
\(v p=0\).
0066
\(11=1+1\)
V2(1)=F\$3(1)*FGVP1( \(t, K)\)
ES24i3AVP+N26is
\(V P=V P+F S 3(I)+F G V P 2(11, K)\)
CONT INUE
R1×FR(1.K)

YHSOO4 00 YHSUOS40 \(\mathbf{r r y o 0 5 0 0}\)
r-1500500 YHSO
YHSO
ris rits 00620 Y+is 00640 \(\mathrm{Y}+\mathrm{H} 00000\) YHSO0680 YHSOO700 rH500720
\(r_{1}=(R 1 * * 2) *(0.5 * A L G(,(R 1)-0,25)\)
T \(3=0.5\)（RI＊＊2－FAZ）＊AL＊（FA）
FS2（i）a（FOSTRR（1）－FDSTRH（1）
\(\mathrm{OC} 6 \mathrm{I} \mathrm{I}=1\) ，MFR \(\quad\) H2 11420
R2＝FR（1，K1＊＊2
\(K A 2=(R 2+F A 2)\)
\(T 1=F S 1(1)+R 2)\)

\(T 2=F S 2(1) / R 2+F S 2 B \quad * R A 2 /(H 2 * F B A 2)\)

3－（FUA 3）＊（FOSTRH（1）＋FOSTH2（1）
RR \(2=R 2-F A 2\) R
D1＝－FSI（I）／R2＊FSIH


FDTSR（I \()=(F\) FUAI \()=(01+021+(F U 2)\)
\(Z:=((F U A G) /\) FAAZ \() *(F 51 B+F S 2 Q\) ．

CONTINUE
DO \(771=1\) ，WFR
FSTSHI ；＝FSTSHE（ \(1, \kappa)\)＋FOTSH（1）
FSTSR（i）＝FSTSRB（I，K）FFOTSR（i）
CONTIVUE
END
SUUROUTINE CCRED（S1日，S2R．S3日

1 FSTSR（5），FSTSZ（5），CR（5．15），CUm \((5,15), \operatorname{CSTSM}(5), C S T S+15)\) ．
2 CSTSZ（S），NL，NR ，MFN，MF，EACLEL，MTLST，FLUX（15

1

COMNONICC日EPM／CBTSA
COMMON（CCREPM（CDTSH（5），CDTSR（S），CDTjZ（s），CDSTHA（s），COSThmis）。
CSTSZB（5．i5），SHC B（ 5 ）
3 CSHCS），CSAR（5），CS2（S）






，FCPR 5.15 ），FCPH \((5.15), C(1+H(3,15), C C P R(5,15), C C H 2(5,15)\) ，

9 CTRZ（S），CERH（5），CERR（S），CERZ（S）
OIMENSION SE（ 5 ）．CPW \((5)\) ．OCP（S），F \((\supset)\) ，FF \((\supset)\)
DC \(59 \quad t=1, A R\)
R \(4=R 2 * * 2\)

\(1+(\operatorname{CSTSRA}(1, K)-\operatorname{CSTS} 2 A(4, K)) * * 2\)
SE（I）\(=(S 5 / 2) * *\).
TC＝CTF（ \(1, k 1+460\) 。
WRITE 6,1840\() \mathrm{S}, 4\)
C． 1840 FORMAT（：SROU：，2EA＋2）


34011420 Drsu11400

Dru1018
3RU10240 DROIG340
```

 G1=(-6*G1E4(TC)+ T*ALOG(SE(1))-11.*ALOG(10;)+ALOG(2.7)
 IFGG1,LT;-170., GU TO 140
 EI=EXP(GI)
 G0 rO 14
 CONTINUE
 IFI G2 *LT*-170.) GO TO 150
 E2=EXD{G2)
 G0 FO 151
 150
E2=0.
CONTINUE
CPN(I)=E 1+EZ
GO TQ 16!
16
OCP(I)=CPR(I)*OTIME

```

```

 OK ={OCP(1)/SE(I))*1.3
 GO TO 14
 CK =0 % =DK= SHCB (I,k)
 COSTRR(t)=0K*SRCE(1;K)
 1,x)
    ```

```

 aRITE(6,101)OSTRH(1),0STNR(1),0STR26(1)
 FORMAT(:E*****,SE15.4)
 CONTINUE
OO I=1 ,NH
CCPH(1,K)=CCPH8 (I,K)+COSTRH(1)
CCPZ(I;K)=CCPZA{(i:K)+COSTAZ(i)
SF=0.
OO 58 I=1,NR
GG=(COSTRR(I)-CDSTMN(IT)*CDN(I * K)*0*כ/CN(I *K)
A I=SF+GG
SF=SF+(COSTRR(1)-CDSTRH(I))*COR(I,K)//CN(I,K)
F(I)=SF
F(1)=A (
S1 S=0.
\$2S=0.
535=0.
00 60 I=1,NA
G1=CDSTRR(I)*CR(I,K)*CCH (1, K)*0*
G2=F(1)*CR(L,*)*CDR(1,K)*0.S
411=515+G1
SiS=SIS*COSTRR(I)* CR(I,K)*CDR(I,K)
S2S=52S*FF(t)*CN(I,K)*COR(I * K)
S1(1)=A11
52(1)=4iz
6 0
S3(1)=F(1
S18=S1S
WRITE{6.115) (SI(1),I=1.S)
WRIIE{6.115) (S1(1):I=1.5)
WRIYE(6,116) (S2(1):I=1.5)
115 FORmAT (2x,*S1(1)',5E12.4)
116 FORMAT(2X.*S2(I)**SE12.4


```
            P={{:214E-2)*rCK{1;K)
            P) T(1)=EXP(-(P-6.0YO)** (2)
            D3Ti&)=EXP(-(P-H=4 पH):**
            CINTINUE
            IFONCSN EC . 1) 60 TU 20
            IFGNCSW *EU: 2) GO 10 21
            IFSNCSN:EQ: 3) 6C TO 22
    IF(NCSW .EQ: 4) GO TO 23
    IFINCSN:EO: 10)GO TO 40
    CONTINUE
***** CLAD SWEILING FHOM LIHE-
    00 60 I=1,v
    C=TCKiIt,K
    FF=4.028-(3.712F-2)*TC*(1.0142E-4)*(TC**2)-(7*.8741-8)*(16***)
```



```
    CONTINUE
    CONTINUE
21.** ANL MODOEL
    OG 61 I=1,N
    I={FLUX(K)*TIMES)= =1.0.3152
        CS##(1)=(1.200785-3y)*P1*P!T(1) =PS(4)
    CONTINUE
    CONTINUE
**** ANL
    OO C2 t=1,NR
    I=(FLUX(K)*TINES) **1,*HI7SOB
        CPP =(9.71574E-41)**I*NII(I)
            CPP*PS(1)
        CONTINUE
        CONTINUE
        ANL mODEL
    OU 63 1=1. NF
    PI= fFLUK(K)*TIMES)**1.08?7500
    CS*⿴囗十(1)=(9.71574E-41) =P1 **21(1)=pS(1)
    CONTINUE
        CONTINUE
    ANL MODEL E
    PI={FLUX(K)* ITMES)** 1,0377368
    CSW[(I)=(9.71574E-41)*ゃ1*>3T(1)=PS(1)
    CONTINNE
        GO TO 50
    4. CONTINUE
****** CLAD S* MCDEL =RON wASHINGTIN
    TC#TCK(1,N%)
    T2 = TC**2
    T3=TC**3
    T4=TC***
    TC2=-(1.24256E-3)*12
    TC 3=(1,37215E-6)*T %
    CSWP=-88.5499+0.531072*TC+TC2+TC3+TC4
    CSWP= ExP(CS*P)*0.01
```

TC $2=-(3.81081 E-4) * \mathrm{~T} 2$
$\mathrm{TC} 3=(5.51979 E-7)=\mathrm{T}$
$\mathrm{TC} 4=-(3.26491 E-10) * T 4$
$\mathrm{CSET}=-16 \cdot 7382+0.130532 * T \mathrm{C}+\mathrm{TC} 2+\mathrm{TC} 3+\mathrm{TC} 4$
CSET=ExP(CSET)
CAL=-1 $-12+(5289 E-3)$ *TC
PI=FFLUX(K)*TIMES/(1, E 2 2)
P2 =EXP FCAL OCSEITPI $)$

$P_{4}=A L O G\left(P_{4}\right)$
$C S=M(1)=C S B P=\left(P_{1}+P_{4} / C A L\right)$
CSww
GO TO 50
CONTINUE

CSwB2(I.K) $=(S W w(1)$
SI = 0 .
$0010 \quad 1=1, N A$
$22=C R(1, K)+02$
GG=CSE(I)*CR(I * K)*COR $(1, K) * 0 * 3$
$A I=5 I+6 G$
$S I=S I * C S *(1) * C R(t, K) * C C R(I, K)$
SII $(1)=U A 3 * A 1 / R 2$
S118=U43*51/82 A1/ad
Si $2.1=($ UA $1 / 3)=$.

* $51 / 32$

OO $11 \quad \mathrm{I}=1 . \times \mathrm{A}$
$R 2=C R(1, x) * * 2$
mevz0000

$C S W H(1)=S E H 2+S 1:(2)+S 12(1)-C U A B U U * C S=(1)$
$C S W R(1)=-(S 11(1)+S 12(1))+C 30 H A 2=(1,-A 2 / R 2)=S 1 H$

CSTSR(I $)=$ CSTSR $(1)+$ CSwR($)$

$S 18 C=S 18$
$S=0$
$S=0$.
$\mathrm{S}=\mathrm{S}+\mathrm{CR}(1=\mathrm{I}, \mathrm{K})+\mathrm{CS}=(1) * \operatorname{CDR}(1, K)$
$S=S+C R(1 ; K)$
$S S W G 1 i=5$
RETURN
END
SUQRGUTINE READ ICTH, DTIMEL, DNFCK, MPFC, CINFC, FJMX,NJULE , KCCC.
$\frac{1}{2}$ FSQL FFSQ2. TFSQ1. TFS 22 , NFSW, NCSW. FTSWB. SPFC, FNFC. SPO. ICLUSC

2. VOL $M, \forall O C U$, VOL, AVETK,GAS,AC(15), BC(15), AF (15) , BF (is) , FL(15)

COMMON/COMFC/J,K, TINE, OTIME, FH(5.15) , FUN(S. 15), FSTSH(S)

2 CSTSZ(S):NZ,NR, MFH, MP, HAOLEF, MTEST,FLUXGIS)

CUABUU, CADEAZ, CBDBAZ

$Y H S 005<0$
Yilsuas 40 rilsuas40
ris 00500 Yitsous 80 Yissouou Yer 500620 YHSO Co4 ressultad
YHS
Yis
ris
Y
nisu0720

020 19520
$020195<0$

```
2FBA22,FBB26,FUA3UU,U1,U3,FAOBA2,FEOBAL,FA1
    FS3(S), FDSTPH(5), FOSTHR(S), FOSTH2(%)FSS2(S),FS1(S),FS2(3)
    FS3(S), FDSTRH(5), FOSTHR(S), FOSTR2(3), FSISHB(5,15), FSTSNS(S,15)
```



```
    COMMON/CCREPM/CDTSH(5),COTSR(5),CDTSZ(5),CDSTRH(S),CDSTKR(S),
```



```
    CSTS2B(5.15).SHCB(5.15).SRC&(5.15).SZCB(5.15) ,CN(S) , (St (5),
    CSH(S), CSR(5), CSZ(5)
    COMMON/CSWLM/CSWw(5),CSwI(5),CSw(5),CSWH(S),CSWW(5),CSWC(S)
    CUSWA(15), CUSWB(15),CTS=(5),CSWB(5,15)
    Pq(15), CUEA(15), CUE-H(15), FUGA5,15), (5),FOCPD.UCPA(15),UCPB(15),
```



```
GSNUB(25),FCPB(15),FTAH(S),FTRK(S),FTK\angle65),CTNH(S),CTKF(S)
CTRZ(5).CERH(S).CENZ(5), CERZ(S)
```



```
    (FOSWUA,FDSAH(S),FDS#R(S),FDSOZ(S),FOSW(S,15), CDP1,COPU,CDCHF(S)
```



```
    FFTS#(5,15)
    DIMENSIUN DPFCK(15), MPFC(15),NHULE(15),FTSEU(S,15),WFUPEN(15).
    FFLUX(IS)
READ 51, TINE,FTIME, ET, EIT , JF, MWNINT, RH I, RFZ,HV1,NVZ,MNUNCH,
HEAD S2, NR,NZ,NFH,N,.MP, MF, UNO,CPO,COPU,PGAS.CTR,OTIMFL
    NZ1=NZ-1
    RFAD SS. NFST:NCST,CIPFC, FIMX , SPF C,FPFL,SSPC
```



```
    READ 1O. (NEOPEN(K),K=i,NZI
    READ 14. (DPFCK(K),K=1,NZ1)
    READ 12,(MPFC(K),K=I,NZi),(NBULE(K),K=1,NZ1)
    READ 13,(NRES(K), K=1,N21)
    READ 6, {AFB(K),K=1,NZ1)
    READ 6. (BFE (K), K=1,NZ1)
    READ S:(ACE(K),K=1,N2)
    READ S* TFLE,TCLB, AVCV,FPDLN, TGNM, TGGM
    READ(S*7; (PL (K),K=1,N2)
READ(5.6, (FLUX(K), K=1,NZ)
    READ 6, (FFLUX(X),K=1,NZ)
    READ(S.7) ({FTF(I,K), I=1,MFR),K=1,N(1)
    READ(5.4) (<CTF( 1,K), l=1,NR),K=1,N2)
    REAO(5,2) ((FSTSHB(I:K), I=1,NFW),K=1,(221)
    READ(5,2) ((FSTSRSS(1,K), I=1,N,N),K=1,NZ1)
    READ(5,2) ((FSTSLA (1,K), 1=1,NFA),K=1,N2:1)
READ (5.2)((FNTS#(I,K), I=1,NH*R),K=1,N21)
```



```
REAO (5.2) ((FCPHG(1,K),I=1,MFR),N=1,N\angle1)
READ (5.2) ((FCPZB(I:K) : I=1,MFR);K=,NZ1)
    READ(S5,4) (CCSTSHB(I,K),I=1,NR),K=,,NNZ)
    READ(S.4) ((CSTSRE(1,K):1=1,NR):K=1,N2)
    READ (5,4) ((CSTSZ日(1, K), 1=1,NH),K=1,NZ)
    READ(S.3) ((CSWB(I,N),N=1,NR),K=1,N2)

YH500320 \(Y+300340\) \(\mathrm{r}+500360\)
r 4500350 YHSOO300
YHSOO400 r+S00420 rMS 00440 \(Y+500460\) \(\begin{array}{r}\text { ris } \\ \text { ris } \\ \hline\end{array}\) riso r ( 0500 riso 0520
ris 00540
riso rHSOO540
ris Yris00580 riso0600 riso0620 rHS00040 riss00560 ris 0008 riso 0720 ritsou740 ris500760 \(\mathrm{YHSO0760}\)
YHSO 00800





    1 PH INT 2 (FDTS (I), \(=1\), MFRT
PRINT 4: (FDNE \((1), 1=1\), MF +2\()\), (FDRE \((!)=1=1\), MF K \()\)
PRINT S. (FOSWH(I), \(i=1\), MFN ), \(\{\) (FOSWR ( 1 ), \(i=1\), MFA


1 (FCP2 \((i, K), i=1, M F, d)\)



    1 (FTSW( \(1, K\) ) , \(1=1\), MFR)

    PWINT I3, FDCP日, COSNUB,FDES, TOF





FAE9.2












    RE TURN


1 FSTSR(S), FSTSZiSi,CN(S, 1Si, COM (S, 1s), CSTSH:

2 CSTSZ(S) \&NZ,NR, MFR - MP, EACLEE,MTEST,FLUXGIS)







I CUSUA( 15 ) CUSWB (15), CTS: (5), CS*U (S);

\begin{tabular}{l}
8 \\
9 \\
\hline
\end{tabular}
COMMON/CONSTC/CA,CB,A2.32,BAL, UAI.CAA,CUUNCE,CPNCTF(S.IS),
\(Y+1500=2\)
\(Y i s 00<4\)
Yis
ris
ris
\(\mathrm{Y}+\mathrm{HSO} 0260\)
Yrisooze
Yrisu
Y H 50420
Y 450040
r4S00400
ris
rH004
riso
riss 00500
res
Yas
ras 00520





（CTRZ（S），CERM（5），CERQ（S），CERZ（S）
COMMON／XIX2／DPGAS．PGAS．FPG．FDP


3 FTSE（5．15）
OTMENSION COTS（S）
IF（K－EQ．AZ）GO ro
GO TO
2 PR INT
WRITE \((6.3)\)
－CONTINUE
PRINT \(10,(C N(1), 1=1, N R),(C S E(1), 1=1, N H)\)





PRINT 17，CERNI





FORMAT（ \({ }^{*} \mathrm{~K}=\boldsymbol{*}, 12,11\)



 FORMAT \(2 x_{0}\) ：CDHE \(\because 3 F 9 * 4,11 x_{2}\) ，CDHE \(\because 3 F=* 4\) ）





RE TURN END
SUBROUTINE FUBC¥P（FSIB，FS2日，FS3日．S13

I FSTSR（S）．FSTSZ（E），CH（S．2S）．CDH（S．15），STSH（S），CSTSR（د）．
CSTS2（S），NZ ，NR ，NF R ，MP，HACLEE ，NTEST＊FLUX（15）
COMAON／CONSTF／FA，FB，FA2，FB2，FBAZ，FE，FP，FUZ，TUA1，FYAZ ，FUA B，
1 FUA 5 ，FUAG ，FTF \((5,1)\) ，TOF A．TDF R，FDEU．FUU（ 15 ），F
2 FBA22，FBB26，FUABUU＊U1，U3，FADHA2，FEDUAL F FA1U


3 SR（5）．SZ（5）．FMX
ris \(>00000\) \(1+200000\)
\(H S O D 0<0\) HSODG20
HSonete ris 00000 \＄500080 1300700
y \(\mathrm{Y} H 500720\)
\(\mathrm{r}+500740\) rascurto
ras 00760 rrspou7au Fitso04a0
2.2004120 MROON140


J『NO：240
）euc +260

DNuOM100 מunce？ nम：304？？

गxU10180
Drat \(0<00\)
risuolos risuolda YHSO H 2000 HHy ras 00300 \(\mathrm{YH}>003 \mathrm{O}\) \begin{tabular}{rr} 
\\
\(H\) & \\
\(H\) & 0034 \\
\hline
\end{tabular}
 yH500400

 DI MENSION FGVP2（5．15），DPFCK（15），MPFC（15）
    IF ( \(\mathrm{FPO}=\mathrm{E}\) E (K) .EQ. 2.) GO TO 400
    \(F P I=P G A S\)
    FOPO=DPGAS
    FDPI =DPGAS

GO TO WO：
IF（TIME ，EQ．OTIME \＆AND．MP ．EU． 1 ）GO TU 402 IF（MPFC（K）QEQ． 1 AND．AN．EU． 1 I PFC \((K)=P G A S\) IF（MPFC（K）MQ：I AND：MP：EU．I）JPFCK（K）ADPGAS IF（MP－EQ，1）PFC \((K)=P F C(K)+D P F C K(K)\)
\(F P U=P F C(K)\)
    FDI=PGAS
\(F O P Q=D P F C K(K)\)
FOP \(I=D P G A 5\)

    FFCK \((K)=P G A S\)
    DPFC=PGAS
    60 TO 403
    CONTINUE
FOI = FDPI
\(D 0=23 \quad I=1\), MFR
    \(R 2=F R(1, K): N F R\)
        日R2=F82/R2
        \(A R 2=F A</ R 2\)

    FDRE \((1)=(F A D B A 2),(1,-B R 2) * F D 1-(F B D B A L)+,(1,-A R \angle)+F D C\)

    FSTSH6 II =1 MMFR
    FSTSR(I)=FSTSR(I) +FUREI
    CONTINL
    REIU
    mul 3760
    S END BRUTINE CGPIDPFCK

    COMMON/COMFC/J,K,TIME, ITT IME,FR(S, 15), FOK(S, 15), FSTSH(S) ,
    1 FSTSR(S), FSTSZ(S), CU(5,15). CDR(S.15), CSTSHC


    2 CUABUU, CADEAZ. CBJSAZ
    COMMON/MIXI/FDHE (S), FDRE (S), FOLE (S), FDCNB,UCPA(15),UCPG(15)

    2 UCPAB(IS), UCPBG(15), CUEAB(15). CUEGU(15), CUSWA S (15). CUSWAA (IS)



    7 , FCPR 5,15\(), F=C P H(5,15), C C P H(5,15), C C P R(5,15), C C P Z(5,15)\).
    B FS WUB(15), FCPB(15), FTRH(S), FTRH(5), FTHZ (5), CTRH(S), CTHR (5),
    - CTRZ(S).CERM(S), CERN (S), CERZ (S)


    3 FTSM(5.is)


JKU13140
JikU13140
ORO13160
ORU1Bi 00
\(0 R 213180\)
\(0 R 013200\)
ONO：
10R4136 \(\geq 0\)

DसO13740

COMMON／COMFC／J，K，TIME，DT IME，FR（S，15），FOK（S，15），FSTSH（S）



COMMON／MIXI／FDHE（S），FDRE（S），FOLE（S），FDCNB，UCPA（1S），U（PO（15）．
\(\mathrm{YHSOOL20}\)
\(\mathrm{YHSO} \mathrm{H}=240\)
K
\(\mathrm{rr}>00260\) Yriso0260
YHisoc540
 YHSO0560 YH500580 YHSOC600 YHSOO620 YHSOU040
YHSO rits00680 YHSO0700 rHSOO720 ressoa740 YHS00760 YHS00780
rissoosu Yisisoosuo

\(C P I=P G A S\)
CDPI \(I=O P G A S\)
GO TO AO
IF（TIME，，EC．DTIME AAND．WP \＆EU I WL TL AOL
CCPI＝OPFCK \((K\)
GO TO 401
\(C H I=P G A S\)
\(C O P I=P G A S\)
COPI＝PGAS
CONTINUE
CONTINUE
COI＝COPI
\(C D O\)
\(D O\)
\(130 \quad \mathrm{COPO}\)
C
\(=1\) ，NR
\(82=\) CHI ，\(\quad 1=1, * 2\)
\(B R 2=82\) ；
\(A R 2=A 2 n\)

COCRE（1）LADBA2＊（1．－日R2）＊CDI－CUOHAZ＊（1．－AK2）＊CD
COE（1）＝2．＊C
DO 77 I＝1，NQ
CSTSH（I）＝CSTSH（1，）CDCME（I）
）COCHE
i CDCRE
CONTINUE

\section*{RETU}

SUBROUT INE CECWFYUUFA，DUFB， \(513.5 \angle B, 53 B\) ．S 1 BC

1 FSTSK（S），FSTSZ（S），CR（S．15）．COH（S．15）．CSISH（S）．CSTSR（S），
2 CSTSZ（S），NZ，NR，MF 2, MP，HADLEE，MTEST，FLUXI IS）
CUMMON／CONETC／CA，E，W2，132，AA），UAI，CAA＊CUU＊CT，CP，CIF（S，1う）

2 CUABUU．CADEAZ．CBD3A2
COMMON／CCREPM／COTSH（S），CDTSK（3），COTS2（5），COSTHH（S），CLJTNK（S），


CSH（S），CSH（5）．CSZ（S）
COMMON／CSWLM／CSW\＃（S），CSW ifS）CSW（S），CS

PR（15），CUEA（15），CUEA（15），FULS（15），HULE（ 15 ），CUAB（15），CUBE（15），






CTRZ（S）．CERH（5）．CEQR（5）．CERZ（S）


2 ．COCRE（S）．COCZE（S）．DUEA，DUFB，TDCA1，TDCA2 ，TDFE1，TDF dZ，DP1，DP 2 ，
3 FTSWIS．15；
G＊＊＊＊＊＊＊CLADD ING ROUNDAKY DISOL ACEMENT
CREEP EFFECTS
\(D G=U A 1 / a 2\)
\(D I 2=D G * S 1 B\)

DNUE1120 0 OUC1120 URU2 1160 3wU21180 Dru＜1200 DKU 1220 Dru2 1240 Dr \(0<1260\)
DikOK 1280 jRO2 1500 DRUR152u O－K021 140 9－2021360

DRO21500 02021520
\(3 \times 221540\)

Jnucis20 Orovild4u （anc） 21760以रण21900 Ongazival
＊ 4300160 YH＞00180 \(\mathrm{Y}+\mathrm{S} 00<00\)
\(\mathrm{Y}+500220\) ris 500220 rrisou200 YHSOU420 rhsou4a0 \(Y+500460\)
\(Y H 500400\) \(\mathrm{YHSOO4} 00\)
YHSO riss
riss
ris ressu054C YHSO0500 reisoosdo Yes S00000 rris 00020 YHSOO
YHSOO
YHSO YHSOOG60 YHJU0700 res \({ }^{2} 00720\) rHS00740 rHSOO 760 YHSOO 00 YH500800

ORO18720

DI \(3=0 G * 528\)
\(0: 4=(2, * C U U) * S * B\)
F \(1=\)＝CB＊（D1 \(2+013) /(2, * C U U)\)

```

UF2=UFF1*UFF2* (012+0
OF2*UFF1*UFF2*(DI2+013-014)

```
DGPI=1 A CC \(\mathrm{CA}+\mathrm{A}+\mathrm{CU}\)
OGP2=1. 1 CUL
DUFA \(=C A * 82 *(0 G O 1+0 G P 2) *(012+013-014) /(2\) **BAZ.
UCPA \((K)=\) DUFA \&UCPAB \((K)\)
SMELIING EFFECTS
SUSEA= (CBOEA2*CA/2*)*(1./AIU+1./CUU)*SIBC
DUSW日 \(=(C B / U 2) * S I B C+(C B D B A Z / 2) *,(C U / A 1 U+A L / C U U / C U) * S 1 H\)
CUSEA \((K)=\) OUSEA + CUSWAB \((K)\)
CUSEB \((K)=\) CUSEA CUS

PRESSURE EFFECTS
COI＝COPI
\(P P I=12 *(C D I-C D O) / 2 . / 3 A 2 /(C A A+C U U)\)
 ／CA
DUEA＝（PP1－PP2）＊CBt 2 P3／CB
CUEA \((K)\) I CUE＋CUEAH（K）
CUEB（K）～CUEB＋CUEBB（K
TDCB＝OUFB＋OLSWB＋OUE
CUB \((\kappa)=C \cup B E(K)+\operatorname{TDCA}\)
RE TURN
SUSROUTINE PPRCIG＇FCK，MPFC
COMMON／COWFC／J，K，RIME，OTINE，FN（S．15），FOR（S．1S），FSTSH（S）
1 FSTSH（5）．FSTSZ（5），CH \((5.15)\), CDR \((5,15)\) ：CSTSH（S），CSTSA（S），
CSTSZ（5），NZ，NR，MFR，MP，BACLEE，MTEST ，FLUX（IS）
CUA（15），CUP（15），TOCA，（1）
2 CUABUU．CADBa2．CBCAA2
COMMON／CONSTF／FA，FB，FA2，FB2，F3AZ，FE，FP＋Y UZ，FUA1，FUAZ ，FUA 3，

2 FBA22．FBB26，FUA 3 UU，U1，U3，FADBA 2 ，FBJ日AC ot A1U
CDMMON／NIX2／OPGAS，PGAS，FPJ，FOHS，FPL，FOPI，NFC（15），DPF C，CPD，CPI，


OIMENSION DPF CK（15），MPF（（15）
DPFC＝OPFCK（K）
IF（MP＊NE．\({ }^{1}\) ）GO TO 993
PFC（K）＝PFC（K）－DPFC
DP \(1=D P F C\)
IF（TIME ．EQ．DTIME）OPI＝PGAS
TOCAT
ODP \(=D P\) is（TCCAT－TDCA）\(/ T D C A\)
\(D P \bar{\varepsilon}=D P 1+D D P\)
DPFC＝OP2
FFC（K）＝PFC（K）＋DP2
IF（TIME OEQ．DT（ME）PFC \((K)=D P 2\)

OKUI dd 20
3 2RO18840
orut 1830
prolsbe
brulat40 DRU18＊40 ONO1B才aC 06019040 2019020

21020000 DFU20620

JHUC 4 d6 OHOC4880
\(0 \times 015120\)
JKGI 714
YHSOO 160 －HSOO180 YHSOO200 YHs
YHSOU
YHSO YHSOO200 YHS002s0 Yers 00300 YHSOO320
 Yrisol 0760 Yis50078

32022200

0RO2 224 URO22260 DRO22280 गस 122320 0 KU 2234 O

DRO22380

\(\omega(P)=M P+1\)
IF（MPFC（K）＝EQ．2）GO TO 984 ORFC（K）＝mPFC（K）＋1
TOCA1＝TOCA
TDFEI＝TDF

TDC \(\ldots 2=\) TDCA
TDFB2 2 TDFB
\(\mathrm{DP} 2=\mathrm{OPFC}\)
AP＝（TDCA2－TDCA1）／（TDF \(22-\) TDFB1）
BP＝TDCA2－AD＊T DF 32
\(Y 0=8 \rho /(1 .-A P)\)
\(\begin{aligned} & x 0=Y 0 \\ & 0\end{aligned}\)
PL \(2=(x 0-\) TDFB2 \() * * 2+(Y 0-T U C A Z) * * 2\)
PL \(2=P L 2 * * 0.5\)
\(P 12=(T O F B 1-T\)
（82）＊＊2＊（TOCA1－TOCA2）＊＊2
ALPAPI \(2 / P L 2\)
IFITOFA1．CT．TDCAI＊AND．TDFHZ ．GT．TOCAZ）GU TO 10
IF（TOF B ：LT．TOCA1，AND．TOFS2 \＆T．TOCAZ）GG TO 13
\(O P F C=D P 2+(O P 1-O P 2) / A L P\)
60 TO 16

OPF \(=D P 2+(C P 2-D P 1) / A L P\)
DPFC \(=D P 2+(D P 1-D P 2) / A L P\)
GO TO 16
IF（DP2 oLT，OP1）GU TO 1
\(D P F C=D P 2+(D P 1-D P 2) / A L A\)
GO TO 16
\(D P F C=D P 2+(C P 2-D P 1) / A L P\)
CONTINUE
PF C \((K) \neq P F C(K)+D P F C\)
TDCAI＝TOCA2
TDFB1 \(=\) YOFB2
\(M P=M P+1\)
CONTINUE
OPF CK \((K)=\) DFFC
OPF CK（K
RE TURN
END

0RU22420
DHOR2440
0 P1122460
DRU22480
DRU22500
Dro22500
DHO22500
OROZ2600
MRU22620 OHO＜2640 OROL2060 DRO22680 DNO22720 0НO 22740 DRO22760 02022780
0
0 122800 DHUL2BOO DRO22820 OROR2860 0ッ022880 DRU22900 02022920 OHOL2940 0HO22900 OHO22980 ORU23000 DRO2 3040 JRO25060 DRJ23080 ORU23100 DRU231＜0 ONO23200

ENO
\(02023<20\)
OHU23240
SUBROUTINE PUNCH（CTH，DIIMEL．DPFCK，MPFC，CIPFC，FJMX，NBMLE，RCC
FSQ1，FSO2，TFSQ1，TFSコ2，NF SW，NCSW，FTSWU，SPFC，FPFC，SPC，ICLOSE，
DCL．DFL，REOPEN，MSHD，TGHM，TGGM，AVCV，FPDEN，FFLUX）

RF2．OPG．MF，MG．JF．MPRINT，RVI＊RVZ．MP UNCH，MGULE FCLG，THLE，RRES（15）
，VOLM，VOLU，VOL．AVETK，GAS，AC（15），BC（15），AF（15），BF（is），FL（is COMMON／COMFC／J，K，TIME，DTIME ，FR（ 5 ， 15\()\) ，FOR（ 5 ，IS），FSTSH（S）
1
2
FSTSR S ．FST NR HER MR，QADLEE，MTEST，FLUXC 15
COMMON／CONSTC／E二，CB，A2，H2，BAZ，UA1，CAA，CUU．CE，CQ，CTF（S，15），
CUA（IS），CUE（15），TDCA，TDCH，AIU，ALU，UA 2，UA 3．UZ，UAS，UAG，B2GAZ，
2 CUABUU．CACEA2，CBDAA2

FUAS，FUAG，FTF \((5,15)\) ，TOFA，TDFB，FUEB，FUG 15 ，F FAA，FUU，F BHA 2 ，

COMMON／FCREPM／FC3，FDTSH（5）\＆FDT SR（S），FOTS \(2(5), F 51(5), F S 2(5)\),
FS \(3(5)\) ，FCSTRH（5），FDSTRR（5），FDSTRZ（S），FSTSHB \((5,15), F S T S K A(5,15)\) ．

YHSOO100
YHSOO120
Hesoota
YHSOO160
YHSOO1 YHSOO1 YHSO rHSOO220 YHSOO240 YHSOO260 YHSOQ280 YHSOO300 YHSO0320 YHSOO34O
YHSOO


PUNCH 73 , \(\quad((C C C P Z B(1, K), 1=1, N R), K=1, N Z)\)
PUNCH 72, (FS\&UBU( \(k\) ), \(K=1, N 21\) )
PUNCH 72. ( FCPB日 \((x): K=1, N 21)\)
PUNCH 72: (FUEB甘 \((K), K=1, N 21)\)
PUNCH 72: (CUEB \((K), K=1, N 21)\)
PUNCH 72. (CUEAB(K), K=1,N2)
PUNCH72: (CUEBB(K), \(K=1\), NZ)
PUNCH 72, (CUAB(K), K=1,N2)
PUNCH 72. (CUB, \((K), K=1, N Z)\)
PUNCH 72: (UCPAB(K), K=1,N N)
PUNCH 72, (LCPBQ(k), K=1,NZ)
PUNCH 72, (CUSWAB(K), \(K=1, N 2\) )
PUNCH 72, (CUSWB3(K), K=1, NZ)
FORMAT (4FB. 1, 18. 15.4F5.2.215.12

To FORMAT (215.F: 3.3.E1S.4.3F10.2)
54 FOKMAT(EIO.3.4FS.1, F1O.2. ᄅE 2,4 )
10 FORMAT (13F4..1)
14 FOKMAT \((\) BF 10.5\()\)
11 FORMAT \((8 F 10.3)\)
12 FORMAT(2613)
is FORMAT(il3F6.4)
72 FORMAT(SEI5.7)
5 FORNAT(2F10.2:2F 5.3.2E15.E)
FORMAT (BF 10.2 )
FORMAT (SFIC:2)
FORMAM ( 6 E13.7) FORMAI LGE13.
RETURN
END
```

