SAND76-0597 NUREG-0231 Unlimited Release

Distribution Category NRC-13

POOR Concentral

Sandia Laboratories

7908220658

278

847 275

Nuclear Fuel Cycle Programs

ی . چ

EASI ON THE HP-25, HP-65, AND HP-67

Dallas W. Sasser

5. 1 A

Prepared by Sandia Laboratories, Albuquerque, New Mexico 87115 and Livermore, California 94500 for the United States Nuclear Regulatory Commission under ERDA Contract AT(29-1)-789.

Printed May 1977

Issued by Sandia Laboratories, operated for the United States Energy Research and Development Administration by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor the United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

1 276

Unlimited Release SAND76-0597 NUREG-0231 Printed May 1977

NRC-13

EASI ON THE HP-25, HP-65, AND HP-67

Dallas W. Sasser Systems Analysis Division 5741 Sandia Laboratories Albuquerque, NM 87115

ABSTRACT

EASI (Estimate of Adversary Sequence Interruption) is an effective, simple method which has been developed for use in evaluating physical security systems. The usefulness of the method is enhanced by the fact that it can be implemented on a programmable pocket calculator. A program for the Texas Instruments SR-52 programmable pocket calculator has been developed and reported upon elsewhere. The purpose of this report is to provide programs for the Hewlett-Packard programmable pocket calculators.

> PREPARED FOR THE U.S. NUCLEAR REGULATORY COMMISSION OFFICE OF NUCLEAR REGULATORY RESEARCH UNDER ERDA CONTRACT NO. AT(29-1)-789

3-4

Table of Contents

	Page
Introduction and Summary	7
The EASI Method	8
Test Problem and Programs for Hewlett-Packard Calculators	10
Conclusions	12
Appendix I	15
Calculation Procedure and Program Listings for the HP-65, HP-67, and HP-97	
Appendix II	19
Calculation Procedure and Program Listing for the HP-25, HP-25C	

847 281

INTRODUCTION AND SUMMARY

In references [1 and 2], a method called Estimate of Adversary Sequence Interruption (EASI) has been proposed for measuring the effectiveness of physical security systems. Physical security systems may be characterized by five primary functions: detection, assessment, communications, delay, and neutralization. EASI provides a measure of the effectiveness of the first four of these functions. Neutralization (the use of force to preclude the achievement of the adversary's objective) seems to be difficult to analyze even with very complex models. The argument is made in [1] that neutralization can be separated from the other security functions and evaluated independently. Whether or not this is valid, it is probably impossible to include neutralization in a method having the simplicity of EASI. In any event, more detailed analysis of the neutralization function appears to be necessary.

In addition to its simplicity, EASI can be programmed on a programmable pocket calculator. These two facets of EASI make the method a useful tool for quick, "first cut," evaluation of physical security systems. In references [1 and 2] a program is presented for the EASI method which can be used on a Texas Instruments SR-52 programmable pocket calculator. The program is written on a magnetic card which is read into the calculator. Data on barrier delays, transit times, alarm probabilities, communication probabilities, and response force times are then entered as input to the model, and the probability of the response force interrupting the adversary along a specified path is calculated. The usefulness of this interruption probability is based on the assumption that when the response force arrives, it is sufficient either to neutralize the adversary or to delay the adversary until additional forces, which can neutralize the adversary, arrive.

The use of the EASI method on available programmable calculators is desirable. The main purpose of this report is to present programs implementing EASI on the Hewlett-Packard programmable pocket calculators HP-25, HP-25C, HP-65, and HP-67. The program for the HP-67 with a few modifications could also be used on the HP-97 which is a small desk model version of the HP-67 with printing capability.

847 282 7

Any method of evaluation which could be utilized "in the field" should have at least the following two characteristics: (1) simplicity of operation, and (2) minimum potential for human error. The EASI method as used on the SR-52, HP-65, or HP-67, all with magnetic card read/write capability, appears to satisfy these two requirements. The HP-25 does not have a magnetic card read/write capability and the program must be entered each time the calculator is turned on. This is not only an inconvenience but could be a significant source of error; however, one could provide a test problem with the check the program after it has been entered. The HP-25C does not have a magnetic card read/write capability, and once a program is entered, it remains in memory until a different program is entered.

THE EASI METHOD

The discussion in this section is distilled from references [1 and 2]. It is included in order to make this report "self contained". Although a reader of this report : ald not be required to refer to reference [1], it would be advantageous for the user to have access to the EASI User's Manual [2].

The EASI method calculates the probability of interruption of an adversary action sequence aimed at theft or sabotage. This is the probability that the response force will be notified when there is sufficient time remaining in the sequence for the force to respond. The notification of the response force is called an alarm and the probability of alarm is

$$P(A) = P(D)P(C)$$

where P(D) = probability of detection

P(C) = probability of communication to the response force.

In the case of only one detection device, the probability of an adversary action sequence interruption is given by

$$P(I) = P(R|A)P(A)$$

(1)

(2)

where P(R|A) = probability of response force arrival prior to the adversary's action sequence, given an alarm.

An adversary action sequence is defined in terms of a starting point (which can be taken as the location of the first detection device along the adversary's path since adversary activities prior to this point have no effect on the probability of interruption), a sequence of detection devices, transit delays, barrier delays, and a terminal point. The transits and barriers can be thought of as tasks the adversary must perform. It is assumed that detection devices are located only at the beginnings of tasks.

If t_a is the time remaining for the adversary to reach the terminal point when an alarm occurs, and t_r is the response time of the security force, then for alversary interruption it is necessary that

$$t_a - t_r \ge 0. \tag{3}$$

The random variables t_a and t_r are assumed to be independent and normally distributed and thus the random variable

$$x = t_a - t_r$$

is normally distributed with mean

$$\mu_{x} = E(t_{a} - t_{r}) = E(t_{a}) - E(t_{r})$$
,

variance

$$\sigma_x^2 = var(t_a - t_r) = var(t_a) + var(t_r)$$
 847 284

and

$$P(R|A) = P(x \ge 0) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} \exp\left[-\frac{(x - \mu_{x})^{2}}{2\sigma_{x}^{2}}\right] dx.$$
(4)

In EASI P(R A) is approximated by

$$P(R|A) \simeq \frac{\exp(1.7\mu_{x}/\sigma_{x})}{1 + \exp(1.7\mu_{x}/\sigma_{x})} .$$
 (5)

In the case of several detection devices, the barrier delays and transit times are assumed to be mutually independent random variables. The expected time from a p int p to the terminal point n is

$$E(t_{p} + t_{p+1} + ... + t_{n}) = \sum_{i=p}^{n} E(t_{i})$$

where E(t,) = expected time to perform task i, and the variance is

$$\operatorname{var}(t_p + \ldots + t_n) = \sum_{i=p}^n \operatorname{var}(t_i)$$

The probability P(R|A) is calculated at each detection device and the probability of sequence interruption is

$$P(I) = P(R|A_1)P(A_1) + \sum_{i=2}^{n} P(R|A_i)P(A_i) \prod_{j=1}^{i-1} (1 - P(A_j)) .$$
(6)

P(I) is the probability calculated by EASI.

TEST PROBLEM AND PROGRAMS FOR HEWLETT-PACKARD CALCULATORS

Table I contains a complete set of data for a test problem. This test problem can be used to verify that the program has been entered correctly and that the procedure for entering data has been properly interpreted. The adversary action sequence for this example is briefly described as follows. The adversary's mission is sabotage. The adversary penetrates the boundary fence, crosses the area between the fence and the facility's main building, and reaches a locked exterior door.

847 285

TABLE I

TEST EXAMPLE

Response Time

Mean: 4.0 Min S.D.: 0.16

Communication Probability

P(C) = 0.9

Event Time

	Mean	<u>s.D.</u>	Device	P(D)
At Vital Component	0.1 Min	0.02 Min	3	0.97
Penetrated Locked Door	3.0	0.33		0
Crossed Second Corridor	0.07	0.01		0
Penetrated Unlocked Door	0.5	0.1		0
Along First Corridor	0.52	0.1	2	0,97
Penetrated Locked Exterior Door	3.0	0.33	1	0.3

P(I) = 0.7124797745

847 286

While outside the building, the adversary may be detected by CCTV surveillance (Sensor 1). After penetrating the exterior door which is alarmed (Sensor 2), the adversary continues along a corridor to an u. locked door leading to another corridor. The adversary crosses this corridor, penetrates a locked door which is alarmed (Sensor 3) and enters a room containing the vital equipment.

Appendix I contains the calculation procedure and program listings for the Hewlett-Packard programmable calculators HP-65, HP-67, and HP-97. Appendix II contains the calculation procedure and program listing for the HP-25 and HP-25C.

CONCLUSIONS

Programs for EASI have been documented for the Hewlett-Packard (HP) programmable pocket calculators in this paper. If an HP user were to apply EASI for any physical protection evaluation, then he should refer to the EASI User's Manual [2] for more illustrative examples in the application of this technique. It was not the intent of this report to provide a series of illustrative examples on how to use EASI, but solely to provide and document EASI programs for the HP series calculators.

847 287

The HP-67 and HP-97 are designed so that although the coding is different for the two machines, a card written on either machine can be read on the other.

REFERENCE

- Bennett, H. A., "The EASI Approach to Physical Security Evaluation," Sandia Laboratories, Albuquerque, New Mexico, SAND76-0050, 1976.
- Bennett, H. A., "Preliminary User's Guide for Evaluating Physical Security Capabilities of Nuclear Facilities by the 'Estimate of Adversary Sequence Interruption' (EASI) Method", Working Paper Sandia Laboratories, Albuquerque, New Mexico, SAND77-0082, 1977.

APPENDIX I

Calculation Procedure and Program Listings for HP-65, HP-67, HP-97

Calculation Procedure on HP-65, HP-67, HP-97

		Enter	Press	Display
1.	Read in Program			
2.	Enter Expected Response Time	E(t)	Enter	$E(t_r)$
3.	Later S.D. of tr	σ(t_)	Enter	σ(t_)
4.	Enter Probability of Communication	P (C)	А	-E(t_)
5.	Enter expected time for task i (begin with task nearest terminal point)	E(t _i)	Enter	E(t _i)
6.	Enter S.D. of Task i	σ(t _i)	Enter	σ(t;)
7.	If there is a detection device at beginning of task i, enter P(D); otherwise enter 0	P(D) or 0	В	P(I)

8. Repeat 5, 6, 7

847 289

Program Listing for HP-65

Key	Dis	play	Key	Dis	play	Key	Dis	play	
f		31	3		03	+		61	
REG		43	gR↑	35	09	RCL5	34	05	
STO1	33	01	gR↑	35	09	gx⊷ y	35	07	
gR↓	35	08	gx=y	35	23	÷		81	
f ⁻¹		32	RCL2	34	02	gx++y	35	07	
$\sqrt{-}$		09	RTN		24	x		71	
STO3	33	03	gR∔	35	08	gLSTx	35	00	
gR↓	35	08	RCL1	34	01	1		01	
CHS		42	х		71			51	
STO4	33	04	RCL3	34	03	RCL2	34	02	
RTN		24	f		31	x		71	
LBL		23	$\sqrt{-}$		09	-		51	
В		12	RCL4	34	04	STO2	33	02	
0		00	gx⊷y	35	07	RTN		24	
gR†	35	09	÷		81				
STO		33	1		01				
+		61	· •		83				
4		04	7		07				
gR†	35	09	х		71				
f ⁻¹		32	f ⁻¹		32				
$\sqrt{-}$		09	LN		07				
STO		33	STO5	33	05				
+		61	1		01				

В

Storage Registers

1	P(c)
2	P(I)
3	$\sum \sigma^2(t_i) + \sigma^2(t_j)$
4	$\Sigma_{E(t_i)} - E(t_i)$
5	Working Storage

Labels

- A Store response force data
 - Store task data and calculate

847 287

Program	Listing	for	HP-67
---------	---------	-----	-------

Key	D	isp	lay		Key	Dis	play		Key		Dis	play	2
fLBL A	001	31	25	11	f√x	024	31	54	STO2	047		33	02
fCLREG	002		31	43	RCL4	025	34	04	fLBLC	048	31	25	13
ST01	003		33	01	hx⊷y	026	35	52	RCL2	049		34	02
hR↓	004		35	53	÷	027		81	hRTN	050		35	22
gx ²	005		32	54	1	028		01					
STO3	006		33	03		029		83					
hR↓	007		35	53	7	030		07					
CHS	008			42	x	031		71					
STO4	009		33	04	ge ^x	032	32	52					
hRTN	010		35	22	STO5	033	33	05					
flblb	011	31	25	12	1	034		01					
hR†	012		35	54	+	035		61					
hRt	013		35	54	RCL5	036	34	05					
STO+4	014	33	61	04	hx⊷ y	037	35	52					
hRt	015		35	54	÷	038		81					
gx ²	016		32	54	hx↔y	039	35	52					
STO+3	017	33	61	03	х	040		71					
hRt	018		35	54	hLSTx	041	35	82					
f x=o	019		31	51	1	042		01					
GTO C	020		22	13	-	043		51					
RCL 1	021		34	01	RCL2	044	34	02					
x	022			71	x	045		71					
RCL3	023		34	03	- 1	046		51					

А

В

С

Storage Registers

1	P(c)
2	P(I)
3	$\sum \sigma^2(t_i) + \sigma^2(t_r)$
4	$\sum E(t_i) - E(t_r)$
5	Working Storage

Labels

Store response force data Store task data and calculate Return if P(D_i) = 0

847 -289

Program Listing for HP-97

Key	Dis	play	Key	Disp	lay	Key	Dis	play
LBLA	001	21 11	√x [−]	024	54	STO2	047	35 02
fCLREG	002	16 -53	RCL4	025	36 04	LBLC	048	21 13
STO1	003	35 01	х⊷у	026	-41	RCL1	049	36 02
R↓	004	-31	÷	027	-24	RTN	050	24
x	005	53	1	028	01			
STO3	006	35 03	•	029	-62			
R↓	007	-31	7	030	07			
CHS	008	-22	x	031	-35			
ST04	009	35 04	e ^x	032	33			
RTN	010	24	STO5	033	35 05			
LBLB	011	21 12	1	034	01			
fR†	012	16 -31	+	035	55			
fR†	013	16 -31	RCL5	036	36 05			
STO+4	014 35	-55 04	х⊶у	037	-41			
fR†	015	16 -31	÷	038	-24			
x ²	016	53	х⊷у	039	-41			
STO+3	017 35	-55 03	х	040	-35			
fR†	018	16 -31	fLASTx	041	16 -63			
f x=o	019	16 -31	1	042	01			
GTOC	020	22 13	-	043	-45			
RCL1	021	36 01	RCL2	044	36 02			
х	022	-35	x	045	-35			
RCL3	023	36 03		046	045			

В

Storage Registers

1	P(c)	
2	P(I)	
3	$\sum \sigma^2(t_i) + \sigma^2(t_r)$	
4	$\sum E(t_i) - E(t_j)$	
5	Working Storage	

an h

Labels

A Store response force data Store task data and calculate C Return if $P(D_i) = 0$

847 289

APPENDIX II

Calculation Procedure and Program Listings for HP-25, HP-25C

Calculation Procedure on HP-25, HP-25C

		Enter	Press	Display
1.	Enter Program			
2.	Enter Expected Response Time	E(t_)	Enter	E(t_)
3.	Enter S.D. of tr	σ(t_)	Enter	$\sigma(t_{r})$
4.	Enter Communication Probability	P (C)	GTO 00, R/S	E(tr)
5.	Enter expected time for task i (begin with task nearest terminal point)	E(t _i)	Enter	E(t _i)
6.	Enter S.D. of Task i	σ(t;)	Enter	σ(t,)
7.	If there is a detection device at beginning of task i, enter probability P(D); otherwise enter 0	P(D) or 0	R/S	P(I) for Tasks Entered

8. Repeat 5, 6, 7

847 290

Program Listing for HP-25, HP-25C

Key	D	isplay	1	_Key_	Dis	play	
fREG	01	14	33	х⊷у	24		21
STO2	02	23	02	÷	25		71
R↓	03		22	1	26		01
gx ²	04	15	02	영화 전망 관람	27		73
STO4	05	23	04	7	28		07
R↓	06		22	x	29		61
S10-5	07	23 41	05	ςe ^x	30	15	07
RCL3	08	24	03	STO6	31	23	06
R/S	09		74	1	32		01
R↓	10		22	+	33		51
gx ²	11	15	02	RCL6	34	24	06
STO+4	12	23 51	04	х⊷у	35		2
R↓	13		22	÷	36		71
STO+5	14	23 51	05	х⊷у	37		21
R↓	15		22	x	38		61
R↓	16		22	flastx	39	14	73
gx=0	17	15	71	1	40		01
GTO08	18	13	08		41		41
RCL2	19	24	02	RCL	42	24	03
x	20		61	R -	43		61
RCL4	21	24	04		44		41
fv	22	14	02	STO3	45	23	03
RCL5	23	24	05	GTO08	46	13	08

S orage Registers

2	P(c)
3	P(I)
4	$\sum \sigma^2(t_i) + \sigma^2(t_r)$
5	$\sum E(t_i) - E(t_r)$
6	Working Storage

847 - 294

DJSTRIBUTION:

USNRC	Di	stribution Section
	At	tn: Robert Wade
	Wa	shington, DC 20555
	NR	C-13 (208)
1000	G.	A. Fowler
1230	W.	L. Stevens
1310	Α.	A. Lieber, Attn: W. F. Roherty, 1311
1700	0.	E. Jones
1710	v.	E. Blake
1712	J.	W. Kane
1738	J.	Jacobs
1750	J.	E. Stiegler
1751	т.	A. Sellers
1752	м.	R. Madsen
1754	J.	F. Ney
1754	D.	D. Boozer
1754	G.	A. Kinemond
1755	J.	D. Williams
1755	D.	L. Mangan
4010	с.	Winter
5000	Α.	Narath
5120	G.	J. Simmons, Attn: B. L. Hulme, 5122
5400	Α.	W. Snyder
5410	D.	J. McCloskey
5411	s.	L. Daniel
5412	J.	W. Hickman
5412	D.	E. Bennett
5412	G.	B. Varnado
5740	v.	L. Dugan
5741	L.	D. Chapman (10)
5741	к.	G. Adams
5741	н.	A. Bennett
5741	D.	Engi
5741	L.	M. Grady
574	R.	D. Jones
5741	R.	G. Roosen
5741	D.	W. Sasser (50)
5741	Α.	A. Trujillo
5742	s.	G. Varnado
8300	в.	F. Murphey
8320	Т.	S. Gold
8321	R.	L. Rinne
8266	Ε.	A. Aas (2)
3141	с.	A. Pepmeuller (Actg.) (5)
3151	W.	L. Garner (3)
	For	r ERDA/TIC (Unlimited Release)
		and and formation and standards.

847 293

21