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1.0 INTRODUCTION AND SUMMARY

In order to assess the thermal margin of high power density boiling
water reactor (BWR) fuel, Exxon Nuclear Company (ENC) has developed the
XN-3 Critical Power Correlation. The XN-3 Correlation extends and may be
used to supersede the XN-2 Corre]ation;(z) which is an NRC-approved corre-
lation (Ref. 9) for determination of critical power margins in BWRs. The
data base of the XN-3 Correlation has been expanded from that supporting
the XN-2 Correlation to include boiling transition data acauired by ENC on
full-length (12 ft) test assemblies. Although the updates made in deriving
XN-3 from the XN-2 Correlation are minor, the XN-3 Correlation is more accu-
rate in predicting the trends of the data. This report presents the XN-3
Correlation and the data base that is used for its verification.

The XN-3 Correlation is comprised of a base correlation with correctors
for pressure, local rod power peaking, grid spacer type, and nonuniform axial
power distribution effects. For a given axial and local peaking distribution,
the XN-3 Correlation predicts, from the independent variables of assembly
average fluid flow, enthalpy, and pressure, the minimum heat flux required to
prcduce boiling transition. The XN-3 Correlation is applied iteratively to
determine the critical assembly power, which is de.ined as the minimum power
required to produce boiling transition.

The XN-3 Correlation data base is comprised of 896 data points taken with
20 different test assemblies. The test assemblies include both partial and
full-length rods, both uniform and nonuniform axial heat flux profiles, grid

spacers that are prototypic of BWR fuel designs (typical grids) as well as

1. /q(
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Table 1.1

Test Conditions

Pressure 590 - 1515 psia

2

Mass velocity 0.25 - 2.0 Mib/hr-ft

Inlet subcooling 0 - 485 Btu/1bm

Bundle average quality at
boiling transition 0 - 0.80

Maximum local power peaking 5B ~ 1.5
Secondary local power peaking 1.0 - 1.09
Axial power peaking Uniform - 1.5

skewed to exit

Geometry iest
Length h - 12 ft
Rod-to-rod spacing 0.152 - 0.178 in.
Rod-to-channel spacing 0.123 - 0.153 in.
Rod diameter 0.484 - 0.591 in.
Bundle hydraulic diameter 0.472 - 0.531 in.
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Table 1.2

Statistical Summary of AnN-3 Data Comparison

Typical Grid Data

—— CPR
Test Group N X S
\ | | I ]
ENC-1 , | . : ‘ !
| | | | | |
] | | l ]
ENC-11 ; 1 , | :
ENC-111 | | |
ENC-1V ; : ! I f
Overall 126 1.002 0.043
Minimum Grid Data
_CPR
Test Group N X S
ENC-1 3 | | ] |
CISE t |
Overall 170 1.002 0.033
CPR - Predjcpeg critical power
Measured critical power
N Number of data points
X = Mean
S = Standarc deviation
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2.5 PROCEDURE FOR USING THE XN-3 CORRELATION TO PREDICT
CRITICAL POWER

The following steps are required to predict th. cxperimental
critical power to reach boiling transition for either a nonuriforms or
uniform axial heat flux distribution:

(i) Calculate the local bundle av.rage cross sectional

values of coolant 1ow and enthalpy at each node,
and from these and the operating pressure calculate
the critical neat flux qy, . from the XN-3 Correla-
tion.

(ii) The F-factor is calculated using Eq. (8)  d (9).






(v)
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If qiN-B > q}c or if dYN-3 qic at any node then the

bundle power is increased for the case of Un-3 > 9

¢
and decreased for qQN_3 < q” until the criteria for

critical power (Statement (iv)) are satisfied. Both
local enthalpy and q;ocal are allowed to increase or
decrease with bundle power and the qiN_3 is calculated
using bundle-averaged enthalpy corresponding to the
modified power.

The CPR is calculated as the bundle power causing gy, -

to just equal q: divided by the operating bundle power.
C
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{ ] for the total of [ ]data points. The values of the mean CPRs and
standard deviation for the ENC-II and ENC-III test groups indicate that
the XN-3 Critical Power Correlation predicts the effects of nonuniform
axial power distribution on boiling transition.

The salient features of the bundle geometry and the test results

are given in Appendix B.
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an overall standard deviation of 0.0427 for typical grid data (726 data

points) and a mean of 1.0025 and standard deviation of 0.0331 for minimum

grid data (164 data points).*

A statistical summary of the CPR predictions for each data set is
provided i~ Table 4.1.

Histograms of the CPR predictions are shown in Figures 4.1 and 4.2
for the typical and minimum grid data, respectively. Superimposed on the
histograms are normal distributions with means and st.ndard deviations
equal to those determined by statistical analysis. The histograms of the
XN-3 test predictions are seen to be more sharply peaked than the fitted
normal distributions. Thai is, there are a larger number of observations
close to CPR equal to 1.0 than predicted by the fitted normal distribution
and a fewer number of observations in the tails than predicted by the

fitted normal distributions. [

]

The overprediction of the probability of boiling transition is further
demonstrated by predicting the number of rods in boiling transition. For

each test point in the typical grid uniform axial data base, the number of

*
The ENC I, C2 data (6 points) was not used in the :;tatistical data reduction
because ot the nonprototypic gecmetry of the test ¢ssembly.




28 XN-NF-512(NP)

Table 4.1
Statistical Summary of XN-3 Data Predictions

Test Standard

Test Group Section N __CPR Deviation
ENC-1 HB
Al
A2
B1
B2

Cl*

C2*

ENC-11 -

ENC-111 -

ENC-1V JP/1
JP/2
JP/3

CISE FELCO 2+
PELCO C*
PELCO D*
PELCO E*
PELCO F*
PELCO G*

o

* Minimum grid base correlation. 'qa‘i
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rods in boiling transition was predicted and compared to the number observed.

The ratic of the number of irous predicted to the number of rods observed in
boiling transition (MBTR) was determined for each test point. The average
MBTR was [ Jindicating that use of the XN-3 Correlation overestimates the

number of rods in boiling transition by [ ]

12
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5.0 REFERENCES

1.

"XN-1 Critical Heat Flux Correlation for Boiling Water Reactor
Fuel," JN-72-18, Rev. 1, August 1973.

K. P. Galbraith, et al., "The XN-2 Critical Power Correlation,"
XN-75-34, Rev. 1, August 1975.

"The XN-2 Critical Power Correlation Supplement 1: Test Data _
for Cosine Axial Distribution," XN-75-34, Supplement 1. ENC Proprietary,

"The XN-2 Critical Power Correlation Supplement 2: Test Data
for Upskew Axial Distribution," XN-75-34, Supplement 2. ENC Proprietary.

V. Marinelli, et al., "Dryout Experiments in a 16-Rod BWR
Geometry with Six Different Radial Heat Flux Distributions,"
ASME Paper - 75-HT-24, 1975.

L. S. Tong, et al., "Influence of Axially Nonuniform Heat Flux
on DNB," Chemical Engineering Progress Symposium Series, No. 64,
Vol. 62, 1966.

F. E. Satterthwaite, "An Approximate Distribution of Estimates of
Variance Components," Biometrics Bulletin 2, 1946.

D. B. Owen, "Factors for One-Sided Tolerance Limits and for
Variables Sampling Plans," SCR-607, Sandia Corporation Monograph,
March 1963.

Safety Evaluation Report by the office of Nuclear Reactor Regula-
tion regarding review of Exxon Nuclear Topical Report XN-75-34,
Revision 1, "The XN-2 Critical Power Correlation," August 1, 1975.



Appendices A - D are deleted.

XN-NF-512 (NP)



XN-3 CRITTC4L POWER CORVELATION

DISTRIBUTION

G. J. Busselman
G. F. Owsley/NRC - 40

Document Control - 10

XN-NF-512 (NP)

Issue Date: 07/20/79



