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Abstract: The desirable prope*ies of an estimator relative to an hypothetical population may
be irrelevent in practice unless the population at issue more or less resembles the hypothetical
population. Evidence that floods are distributed with long, stretched upper tails suggests that
use of the more common distributions r'esults in a rather precise underestimation of the
extreme quantiles and thereby in the underdesign of flood protection measures.
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Introduction

Various distribution functions have been proposed for flood frequency analysis. The

most recent distribution, introduced by Houghton [1977,1978], is Thomas' Wakeby distribu-

tion,

x = m + a(1-(1 - F) ) - c(1-(1 - F) } (1)

where F = F(x) = PlXsx]. The Wakeby distribution is defined by fise parameters and so a

reasonably good fit to a sample might be expected. On the other hand, the more familar

Gumoel distribution,

x = m-a in (- In F) (2)

is defined by only two parameters. And in contrast to Wakeby and other ' flood distributions',

the Gumbel distribution has a unique value of skewness, y 1.14, and of kurtosis A 5.4.= =

Whatever other appeal the Gumbel and Wakeby distributions may have, they serve as

paradigms of simplicity and complexity, respectively, of flood distributions. There are several

distributions of intermediate complexity; one in particular is the much-used Log-Normal

distribuuon,

1 -1 ~ In (x - a) - m 2
f(x ) = exp (3)6b(x - a) 2 . b .

dF(x )
where f(x) For the Log +ormal distribution, values of y 2 0 and A 2 3 are=

dx

admissibic, but such that y and A are related by virtue of both being functions of a single

parameter, narr. elf b (see e.g., Wallis et al.: 1974).

Empirical evidence, in relation to the condition of separation (see Ntataias er al.: 1975),

suggests that the distriba: ions of floods are more nearly Wakeby-like with b > 1 and d > 0

t i.e. long stretened upper tails) than like any of the other more commomiy suggested flood
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distributions (see Houghton: 1977 and Landwehr er al.: 1978). That the Wakeby distribution

can satisfy the condition of separation does not imply that indeed floods are distnbuted as

Wakeby. However, the Wakeby distribution provides a plausible description of flood se-

quences, and it also provides a means for representing the seemingly long, stretched upper tail

structures of flood distributions, as well as the tail structures of the distnbutions of other

hydrologic phenomena. Thus the Wakeby distribution provides a convenient analytical and a

reasonable hydrologic basis for assessing the relative performances of alternative techniques of

estimating the unknown quantiles of the distribution of hydrologic phenomena.

For the specific Wakeby populations considered by Landwehr er al. [1979a i;], the

Wakeby, Leg-normal, and Gumbel distributions, with alternative methods of fitting, were used

to determine the biases and mean square errors of the estimates of the upper quantiles for each

of the populations. Also, the expected underdesign losses associated with the estimates were

assessed under the assumptions of linear and quadratic loss functions. The results provide an

assessment of i) the relative performance of alternative techniques (i.e., choice of distribution

and method of fitting) for estimating the quantiles of Wakeby distributions, and ii) the relative

performance of the more common distributions (i.e., Log-Normal, and Gumbel) in estimating

the unknown quantiles of flood distnbutions in hydrologic environments that are Wakeby-like.

Experimental Design

Landwehr er al. [1979a,b] considered six specific Wakeby distributions, each with lower

0. Values of the parameters (a, b, c, d) and of the statistical characteristics,bound m =

mean, standard deviation, and coefficients of variation, skewness, and kurtesis, (g, o, C,, y, A)

for each of :he distributions are given in Table 1. The distributions are depicted in Fig.1,

emphasizing differences in the left tails, and in Fig. 2, emphasizing differences in the right

tails.

O f*
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Figure y ~~ Cumulat5'' distribution functions IV 4. g . IVg.6

1.0 ~~-~.~.
-

, ,W
.

' .'
j /

/A
,

0.8 ~ ,/ ./ / ' '
.

/
./
7/

E p)?'i
'

'9 !"- 0.6 ~',
I/
El

/} l'
0.4 - /.j i' '

/
// 9

i

$'/?
''%/0.2 '

fo
'

i
,/

'

i I0.0 '
0 1 2 3 A 5 g I 8

X-

d. C : e O c~
.

hG)~''1



.i
.

Figure 2 -- Cumulatise distribution functions : 5 5 '.4 - 1, 15'.4 - 6
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the Log-Normal conditioned quantile estimates by solution (numerical integration) of

.

j
- A Ar

exp < --

in (y - a ) - m, -^
2g i i y'F= dr (5)

A A 7 A

/2sb - * (y - a ) L - b
'

-

4 q 4

and the Gumbel conditioned quantile estimates

$, St, - a, in (- In F) (6)

were determined for specific values of f in the range (0.5,0.999).

For F specified, the quantile value x is, in practisc, the design flood; i.e., the flood

magnitude upon which protective measures (structural or nonstructural) are sized. Thus the

measure is underdesigned if (S - x) < 0 and is overdesigned if ($ - x) > 0. The expected

over- and underdesign losses, L+ and L , are defined as

<} a+k+El $ - x l' , $ - x > 0
L+

i (7)=

LO ,$-xs0

k El x - x l' . $ - x > 0
<{j

a

L= (8)
LO ,$-xs0

where. a+ and a- 1 - a+ denote the probabilities of over- and underdesign, k+ 2 0 and=

k 2 0, weighting factors reflecting the scale of over- and underdesign costs and r 2 0, a

factor defining the analytical shape of the loss functions (see Slack et al. 1975). Hence the

expected design loss is given by

L= L+ + L- (9)

If k+ k- k (i.e. the loss functions are symmetric), the bias, e, in the estimates= =

. O ', 1. 7Ij ,/ ; { L' I
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Table 1 -- Wakeby distributions

Distribution Parameters Statistical Characteristics

C, y Am a b c d a

IVA ~ l 0 1 16 0 4 0.20 1.94 1.34 0.69 4.14 63.74

IVA - 2 0 1 7.5 5 0.12 1.56 0.90 0.58 2.01 14.08

It'.i - 3 0 1 1.0 5 0.12 1.18 1.03 0.87 1.91 10.73

IVA - 4 0 1 16.0 10 0.04 1.36 0.51 0.38 1.10 7.69

IVA - 5 0 1 1.0 10 0.04 0.92 0.70 0.76 1.11 4.73

IV.i - 6 0 1 2.5 to 0.02 0.92 0.46 0.50 0.00 2.65

Relatise to y = 1.14 for the Gumbel distribution, three of the six distnbutions may be

regarded as having high skews (IVA-1, EVA-2, IVA-3), two moderate skews (IVA-4, IVA-5), and

one low skew (IVA-6). The distributions IPA-5 and IVA-6 are less kurtotic and the other

Wakeby distributions are more kurtotic than the Gumbel distribution for which A = 5.4. In

contrast to the distributions IVA-3, IVA-5, IVA-6, the distnbutions IVA-1, IVA-2, and IVA-4 are

more kurtotic than the Log-Normal distribution for comparable values of y and satisfy the

condition of separation.

With respect to each Wakeby distribution, y sequences, each of length n = 31 were

generated in the manner described by Landwehr et af. [1978]. For the q-th sequence

conditioned on a particular Wakeby distribution the Wakeby, Log-Normal, and Gumbel

parameter estimates, ( A , S $ , 2 , d ), ( A , 3 , b ), and (m , S ). respectively, were
q q 7 7 q q 7 q q q

obtained and hence the Wakeby ecnditioned quantile estimates

. ,. . ,.

q q y ,1 - (1 - F)\ 0; _1 - t 1 - F) "\.E A= +a (4)

O k ,-/ 5.T.)
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ef x is given by

(L+ - L-)0 (10)=
k

where r 1 (i.e., linear loss functions), and the mean square error, 4, of the estirr.ates is=

given by

4aL (L* + L-)
(11)=

k k

where r 2 (i.e., quadratic loss functions). Thus the statistical measures of goodness of=

estimation, O and 'D, are directly related to the economic measures of goodness of design, L+

and L , if the loss functions are symmetric. The use of <> as a criterion upon which to

choose among alternative estimates of x implies that i) the economic loss functions are

symmetric and quadratic, and ii) one is indifferent to an over- or an underdesign loss.

Given the n sequences, where n was at least 20,000, conditioned upon a particular

Wakeby distribution, the estimates of x, for specific values in the range (0.5, 0.999), were

identified as being greater or less than x The probabilities of over- and underdesign were

approximated by

.

$* = h (12)

~- y-
a = - (13)

rl

where r;+ denotes the number of estimates that were greater than x, and 3, the number less

than x. Given the set of estimates $ > x, the value E l$ - x | for r 1,2 was approximat-=

ed by

*
=~ r r

El$ - xi = 2 l x, - x l J n (14)
*

4-1

(: '~) D \ e > 'l
r < r

..
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Similarly, the value E| 2 - xl' was approximated gisen the set of estimates E s v.

The expected oser- and underdesign losses were taken to be

L+ '+k+ E l $ - x l ' - x-x>0 (15)=

~ ~

~ ~ k E | x - x | , . x, - x > 0 (16)
4

L- =a

whereby

~ ~ ~

L+ + L- (17)L =

For k * 1 (i.e., symmetric, unsealed loss functions), the bias. 8. and the meank-= =

square error. 4, where approximated by

~ ~ ~

L* - L- (18)8 =

~ ~

& =L (19)

4 7'
bI i <4r
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The Log Normal, ( LN), conditioned quantile estimates were obtained by the method of

(conventional) moments, .E 31, tsee e.g., Johnson and Kotz: 1970). The method of maximum

likelihood VxL, a method which in principle is more efficient than Afo3f when the population

is distributed as Log-Normal was not considered. On the basis of some explorato y work, it

was noted that for a non-neglible percentage cf sequences, the iterative solutions in the course

of estimating m showed little ii any tendency towards convergence; a drawback to the use of

AfrL as noted in the statistical literature (see Aitcheson and Brown: 1957 and Johnson and

Kotz: 1970).

Three methods for obtaining the Gumbel conditioned qt.antile estimates were considered:

i) 3fo3f, ii) AfxL, and iii) probability weighted moments, PW31. These methods were consid-

ered previously by Landwehr et al. [1979c] in the case of sampling from Gumbel populations.

The probability we.ghted moment, Afg,, is defined as

k

Afa,= E[X(1 - f) ] (.J)

where k is a real number (see Greenwood et al.: 1979). In the case where k is a non-negative

*

integer, an unbiased estimate of Afu,, here denoted as Af i,, is given by

n-k

1 x ("f/)/(n ("{I)) k = 0, 1, (21)
*

3/ g, =
,

j

joi

where t 5 x, 5 sx,_3 (see Landwehr et al.: 1979c ).i

The Wakeby, ( WA ), conditioned quantile estimates were obtained v,ith the algorithm

* **

given by Landwehr et al. [1979b], as 3f[43 witn path order [Y m m = Ol. where Af 4,, a

biased estimate of 31,g ,, is given by

Stu, = p x [(n - j 4..

a)<n) fn (22)+
m j
j=|

0.35 and xi s x, s s x ,,.where a =

3 $-

j } T'r \i



10

Experimental Results: Skenness

For a given population, samples of size n reflect, on the aserage. skewness less than that

characterizing the population. Moment estimates cf y, denoted as y, are algebraically

bounded (see Kirby: 1974) .nd biased downward (see Wallis er al.: 1974 and Landwehr er al.:

1978). Based on the n sequences (i.e., samples) of length n = 31, the means '(y), and

standard deviations,'(y), of the moment estimates of y were determined and are gisen in

Table 2.

Table ! -- Values of g'($) and o($) conditioned on IVA

~ ~3

Distribution y g( ) a(y)

IVA - 1 4.14 1.69 0.93

li'A - 2 2.01 1.06 0.82

IVA-3 1.91 1.24 0.66

IV.1 - 4 1.10 0.66 0.82

IVA-5 1.11 0.87 0.48

IVA-6 0.00 - 0.06 0.37

On the average, the samples reflect populations with moderate to low skews. The

reflection is particularly prcnounced in the case of IVA-1. In addition, had n been smaller, the

downward bias in the estimates of y would have been even more pronounced. The results for

$ when A is large are even more striking than for y, for instance 5 = 7.02 for 30.1-1 with n =
A

31 compared to the true value of 63.74 It would appear almost impossible to obtain reasona-

ble moment estimates of y or A, at least from samples of normal hydrologic lencth, and if one

n- 0: ' T '')
/:. I !,
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admits the hypothesis that floods may be distributed in a Wakeby-like manner with relatisely

high y and A, then y and $ estimated by the method of moments are likely to be severelyA

underestima'ad, and fitting procedures that use y or $ are likely to gise results that do not
A

distinguish between different values of y or A. The high skew, high kurtosis hypothesis for

flood sequences can be used to explain the apparent lack of success shown by those research

studies that hate attempted to deselop either physically based regional maps of y, or regres-

sion equaticns for y in real space. Note, this is a new and separate difficulty from those that

have hase already been shown to exist for the estimate of skew in log space (see, Landwehr er

al. 197 8 ).

Esperimental Results: Quantiles

For each of the six Wakeby populations, the estimates of the upper quantiles, for

which 0.5 s F s 0.999, as gisen by the five estimating techniques, were assessed according

to bias 8, mean square errors, 'b, and expected underdesign loss, L , where k- 1,=

~ ~ ~ ,

Tables 3 througth 8 present the approximate values 0, 'b, and L , as well as a , for WA-1

through WA-6. Table 9 presents an aggregate assessment of the results. From the values

gisen, the values of 1* where k + 1 and the values of a* may be determined. Also, the=

values of 1+, b, and 1 may be determined for any arbitrary values of k + and k-

Q **7r
.) /O : 1J
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Bias -- H

,

**
for ';te upper quantiles, the IVA- PiV3f estimites generally display the smallest bias.

The LN - Afo31 techniques underestimates the quantiles for all six populations. The G-

techniques underestimate the quantiles for the populations with high values of skewness. For

populations of moderate skew (i.e., y - 1.14, the skew of the Gumbel distribution) the biases

may be positive or negative. For low values of skewness the G- techniques overestimate the

quantiles.

Mean square error -- 4

**

The mean square error associated with the astimates provided by the IVA - PiV3f

technique were larger or at least as large as those given by the other tcchniques over all

populations. For sampics from low skew distributions, i.e., un-floodlike distributions (e.g.,

IVA-6), the LN - Afo3f estimates had the smallest & salues. However, for IVA-1 through

IVA-5, the estimates given by the three G- techniques gave varying values of 4, but in all cases

the values were smaller than those given by the other techniques. It is noted that for the high

and low skew populations, <D 2 ''

Also it is noted that among the G- the 3fxl estimates tended to yield the larger values of

@ relative to the high and low skew populations. Thus amongst the G-iechniques the Af.v.L

may lead to minimal values of + when the population is distributed with near Gumbel skew,

but it is not likely to do so if the population is characterized by y substantially different from

YG.

Expected underd uign loss - L-

As noted above, the mean square error. 4. is proportional to the e:<pected design loss if

the loss functions are symmetric. If such loss functions attain, and if one is indifferent to

over-or underdesign, then 4 is a convenient and meaningful measure upon whien to base the

q'!.} } I il
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choice of quantile estimate. However, if underdesign losses are of greater concern, then 1

more meaningful measure is the expected underdesign loss, L-

**
In the case of the high y and high A distributions (i.e., WA-1, WA-2), the WA - P43/

estimates gave the smaller L values, inspite of having larger @ values. For the other less
~

flood-like distributions, the estimates based on one of the G- techniques gave the smaller L-

values. To reiterate, the use of only a mean square error criterion could lead to some poten-

tially dangerous enderdesign, and should only be advocated if one is indifferent to over- or

underdesign losses.

Aggregate assessment

If the six Wakeby distributions are considered to attain at different sites in a region, the

aggregate (i.e. regional) performance of the quantile estimating techniques may be assessed by
6 3

the cumulative mean square error, I 4-(i). With respect to the techniques from smallest to
i-1

largest cumulative mean square errors is: G - P H3f * s G - 3fo3I 5 G - AfxL

**

$ LN - 3fo3f s WA - P R3/ It is noted, however, that the magnitudes of the differ-

**
ence.; are not large, except with respect to WA - PW3f The assessment masks bias effects,

hence the over- or under-design aspects of flood protection measures, but it does provide some

appraisal of the total regional error in estimating the quantiles for all sites in a region.

6 ,

A similar statistic, cumulative squared biases, I O'(i), yields a ranking for the five
i- |

techniques of WA-1 s LN- Afo3I s G-3fo3/ s G-PW3/ $ G-3fxL, an almost

perfect reversal of the results for cumulative mean square error. Overall, the WA biases are far

smaller than those for any of the other techniques.

Anticipating caveats

It might be said that if you fit Wakeby's to Wakeby's she results should be good so let us

add that this was net th- Se purpose of the study. Rather the interest was upon the hypothe-

..-

%
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sis that annual flood sequences are distributed with high skew and high kurtosis and what

effect, if any, such an hypothesis would have upon the quantile estimates of int,erest in flood

frequency analysis. However, fitting the Wakeby distribution with the algorithm identified by

**
Landwehr et al. [1979b] as ,5f and path [Y m; m = 0], performs fairly creditably with other

high skew but more conventionally kurtotic worlds. For instance, it is possible to generate Log

Normal " floods" (see eq. 3), that have p, o , and y identical to those of WA-1 " floods" (see

Table 1), and to repeat the analysis. The results, given in Table 10, are quite similar to those

given in Table 3. Thus whether the distribution is WA-1 or LV -1, the WA- PW#* techni-

que yields estimates that are statistically similar.

There are many other distributions and fitting procedures that might have been selected

for inclusion in this study. It appears improbable that any of the more conventional choices

would have resulted in at-site extreme quantile estimates that were both less biased and more

precise. Without some probability of success in finding a method for which L and h would

both be minimal the incentive to test other methods becomes somewhat marginal.

However, the possibility exists that if there were sufficient data available in a region to

show a separation effect, that there would also be sufficient data to allow for a statistical

regionalization, in which the quantile estimates for each site could be made on the basis of the

data for the site in question in combination with the data from all other sites in the region. It

is believed that such an approach may result in more precise estimates for each site, while

showing minimal overall bias (see Landwehr er al.: 1979d).

Conclusions

The biases. O, mean square errors, $ and expected underdesign losses, L , were

determined for five quantile estimating techniques relative to the upper quantiles, where

0.5 s F s 0 999, for six specific Wakeby distributions. Although the Wakeby populations

had widely varying values of skewness, the samples from the populations reflected populations

, 1 't N

/') f\
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of more moderate to lower skewness. From an assessment of O,4, and L , the following

conclusions were drawn.

1. Over all populations considered, the smallest bios quantile estimates were obtained with the

**
IVA - PiVM techniques.

2. If the population skew is much different from the Gumbel skew of about 1.14, either larger

or smaller, then the Gumbel techniques give precise (small variability) but inaccurate

2estimates of the quan:ile values as shown by 4 a 0 conditioned upon IVA-1, IVA-2,

IVA-3, IVA-4, and IVA-6.

3. No one of the three Gumbel techniques performed consistently better than the other with

respect to 8,4, and L for all populations. Thus if the population is not known to be

Gumbel, one can be rather indifferent to the choice of Gumbel technique, and it does

not follow that MxL is preferred.

4. The Gumbel and Log-Normal techniques consistently underestimate the quantiles of high

skew populations. To the extent that floods are highly skewed, contrary to the view

provided by estimated values of skewness, the use of these techniques lead, on the

average, to the underdesign of flood protection measures.

5. If indeed flood distnbutions are highly skewed, then among the techniques investigated for

estimating the upper quantiles, the expected underdesign losses are the smaller when

**
the IVA - PIVM technique is used, even though the mean square errors tend to be

larger.

6. When considered on an aggregate basis, the Gumbel techniques lead to the smaller values

of cumulated mean square errors. However, the value masks the biases which differ

considerably among the five techniques.

3 /f ;f[t
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Table 3

Bias, h, and mean square error, b. probability of underdesign, a , expected linear under
'

~~

design loss, Li. expected quadratic underdesign loss, Lf, of quantile estimates gisen by five

fitting procedures conditioned on distribution IV.4-1.

F .500 .900 .950 .980 .990 .995 .999

Quantile 1.59 3.34 4.28 5.75 7.05 8.54 12.92

Method of
Estimation

~

O

**

IV.4 - PIV.tf 0.02 - 0.05 - 0.11 - 0.16 - 0.14 - 0.00 1.26

*

G - PIV3/ 0.16 0.07 - 0.24 - 0.S9 -1.58 - 2.46 - 5.48
G - Afx L 0.14 -0.12 -0.50 -1.23 -1.99 - 2.93 - 6.05
G - Afo.tf 0.14 0.21 - 0.50 - 0.62 - 1.25 - 2.08 - 4.91

LN - 3/o.tf 0.09 0.12 - 0.07 - 0.48 - 0.93 -1.53 - 3.60

~

'D

**

IV.4 - PIV3f 0.03 0.31 0.76 2.43 5.90 14.4 110.7

G - PIV3f' O.07 0.38 0.67 1.82 3.88 7.9 32.5

G - 3fxL 0.05 0.22 0.56 2.02 4.62 9.5 38.1

G - 3fo3f 0.06 0.74 1.23 2.53 4.54 8.3 31.0

LN - 3fo3I 0.04 0.53 1.21 3.17 6.10 11.0 36.7

Ykb'?l to
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Table 3, Continued

~

il

**

li'.4 - Pil'Af 0.47 0.58 0.60 0.61 0.61 0.60 0.59

G - PIV.t/ 0.21 0.51 0.68 0.84 0.91 0.95 0.99*

G - 3fxL 0.22 0.65 0.83 0.95 0.98 0.99 1.00

G - 3/o31 0.23 0.47 0.61 0.76 0.83 0.89 0.96

LN - 3fo3f 0.33 0.50 0.61 0.71 0.76 0.79 0.85

~

L{

**

II'.4 - Pil'31 0.05 0.25 0.40 0.69 0.99 1.38 2.69

*

G - Pil'3t 0.02 0.20 0.45 1.02 1.66 2.52 5.45

G - 3fxL 0.02 0.25 0.58 1.26 2.00 2.91 6 05

G - Afo3/ 0.02 0.19 0.42 0.93 1.52 2.30 5.05

LN - Afo3f 0.04 0.20 0.43 0.91 1.43 2.10 4.35

~

L:
.

**

15'.4 - PlV3f 0.01 0.28 0.38 1.09 2.19 4.23 15.9

*

G - Pii31 0.00 0.11 0.41 1. , 3.70 7.74 32.4

G - AfxL 0.00 0.14 0.52 1.20 4.62 9.35 38.1

G - Afo3/ 0.00 0. I 1 0.39 1.49 3.43 7.11 29.8

LN - 3/03f 0.01 0.12 0.43 1.56 3.21 6.86 26.7

s.
o indicates Af (k) used to estimate PiV3I

co indicates $f (k) used to estimate PiV3I
**

+ j ^/, .

i,' '/ r
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Table 4

Bias. O, and mean square error, b. probability of underdesign,' , expected linear under
~ ~

design loss, L[, expected quadratic underdesign loes, Li, of quantile estimates gisen by fise

fitting procedures conditioned on distribution IVA-2.

F .500 .900 .950 .980 .990 .995 .999

Quantile 1.43 2.59 3.16 4.00 4.69 5.44 7.45

Niethod of
Estimation

~

8

**

frA - Pli'M 0.00 - 0.03 - 0.06 - 0.07 - 0.01 0. I 3 1.04

G - PiVM' O.00 0.07 - 0.03 -0.25 - 0.48 - 0.78 -1.73

G - MxL 0.00 0.08 -0.02 -0.24 -0.48 - 0.77 -1.73

G - mom 0.00 0.08 - 0.01 - 0.22 - 0.45 - 0.74 - 1.68

LX - mom 0.01 0.06 - 0.05 - 0.27 - 0.50 -0.78 -1.64

~

$

**
li'A - PII'M 0.02 0.13 0.28' O.77 1.69 3.S0 25.0

G - PiVM ' O.02 0.13 0.19 0.38 0.67 1.17 39
G - MxL 0.02 0.08 0.12 0.25 0.48 0.92 3.5
G - mom 0.02 0. I 8 0.29 0.55 0.88 1.46 4.4

LN - mom 0.02 0.15 0.32 0.83 1.56 2.76 S.2

'':.
#

.. ,

I j (e
,
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Table 4, Continued

~_
a

li'.4 - PlVM" O.51 0.57 0.59 0.59 0.57 0.56 0.53

*

G - PlVM 0.52 0.46 0.57 0.71 0.79 0.86 0.95
G - MxL 0.51 0.42 0.55 0.73 0.84 0.91 0.98
G - mom 0.52 0.47 0.57 0.69 0.77 0.83 0.91

L N - mom 0.49 0.48 0.59 0.69 0.74 0.77 0.82

~

L{

IV.4 - PlVM" O.05 0.16 0.24 0.38 0.50 0.65 1.13

G - PIVM' O.06 0.10 0.19 0.38 0.58 0.86 1.77

G - MxL 0.06 0.08 0.15 0.33 0.53 0.80 1.73

G - mom 0.06 0.11 0.21 0.40 0.61 0.88 1.77

L N - mom 0.05 0.12 0.24 0.50 0.76 1.08 2.03

~

L,_

**

IV.1 - PIVM 0.01 0.07 0.15- 0.35 0.62 1.06 3.20

G - P lVM ' O.01 0.03 0.09 0.28 0.57 1.10 3.91
G - MxL 0.01 0.02 0.06 0.20 0.45 0.90 3.50
G - mom 0.01 0.04 0.10 0.32 0.65 1.20 4 12

LN - mom 0.01 0.04 0.14 0.49 1.03 1.91 6.16

4

* indicates M (k) used to estimate PIVM

on indicates $f (k) used to estimate PIVM
**

.

'
s.'|''. iI!P '; /



20
.

Table 5

Bias, b, and mean square error. D probability of underdesign 2 , expected linear under
~ ~

design loss. LJ, expected quadrati: underdesign loss, Li, of quantile estimates given by five

fitting procedures conditioned on distribution li'A-3.

F .500 .900 .950 .980 .990 .995 999

Quantile 0.93 2.49 3.11 3.98 4.68 5.44 7.45

Method of
Estimation

~

O

**

II'A - Pit'3f - 0.00 - 0.01 - 0.02 - 0.07 - 0.12 - 0.14 0.10

*

G - Pit'3/ 0.09 - 0.03 - 0.10 - 0.26 - 0.43 - 0.65 -1.44

G - AfxL 0.07 - 0.21 -0.34 - 0.58 - 0.81 -1.09 - 2.02
G - Afo3/ 0.09 - 0.03 -O.10 -0.24 - 0.41 -0.64 -1.42

LN - Afo3/ 0.08 - 0.05 - 0. I 1 - 0.24 - 0.38 - 0.56 - 1. I 6

~

$

**

li'A - Fif'3/ 0.03 0.18 0.35 0.90 1.88 3.88 21.4

*

G - P it'Af 0.03 0.17 0.27 0.48 0.72 1.12 3.2
G - 3fxl 0.03 0.17 0.30 0.62 1.02 1.66 4 80
G - 3fo3f 0.03 0.21 0.35 0.62 0.94 1.42 17

LN - 3fo3f 0.04 0.18 0.37 0.63 1.44 2.37 6.6

i e i,,

j ' '. I ! !.
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.

Table 5. Continued

. ~_
a

15'.4 - PI53f " O.54 0.53 0.55 0.59 0.60 0.62 0.63

G - PI531 0.31 0.56 0.61 0.68 0.74 0.80 0.91*

G - 3fxl 0.34 0.74 0.80 0.86 0.90 0.94 0.98

G - Afo3I 0.31 0.57 0.61 0.68 0.73 0.78 0.88

LN - 3fo3f 0.34 0.58 0.63 0.67 0.70 0.73 0.78

~

L'

55'A - P W.i!'* 0.08 0.17 0.24 0.41 0.59 0.82 1.55

G - Pii3f' O.03 0.17 0.26 0.40 0.57 0.77 1.51

G - AIxL 0.03 0.27 0.40 0.62 0 84 1.12 2.02

G - Afo31 0.03 0.19 0.28 0.44 0.60 0.81 1.55

LN - Afo3f 0.03 0.19 0.29 0.48 0.66 0.89 1.63

~

L .'

15'.4 - Pif 3/ 0.02 0.08 0.16 0.41 0.81 1.46 4.93**

*

G - PII3/ 0.00 0.08 0.16 0.34 0.59 1.00 3.14

G .tixl. 0.01 0.14 0.27 0.65 1.00 1.64 4.S0

G .tfo3f 0.00 0.09 0.18 0.39 0.67 1.12 3.40

LN .ifo31 0.01 0.09 0.19 0.46 0.84 1.44 4.30

^.
o indicates 3f (k) used to estimate Pii3f

** k) used to estimate Pil'.ifoc indicates .tf t

9 |t } !bE
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Table 6

Bias, 9. and mean square error, h. probability of underdesign. ' , expected linear under
~

design loss, L . expected quadratic underdesign loss, L,. of quantile estimates given by fivet

fitting procedures conditioned on distribution 15'.4-4.

F .500 .900 .950 .980 .990 .995 .999

Quantile 1.28 1.96 2.27 2.69 3.02 3.36 4.18

Method of
Estimation

~

O

**

li'A - PlVM 0.01 -0.02 - 0.01 0.03 0.10 0 21 0.75

*

G - P 50/ 0.00 0.03 0.00 - 0.07 - O.13 -- 0. 20 - 0.41
G - MxL 0.00 0.15 0.17 0.16 0.15 0.12 0.02
G - mom 0.00 0.03 0.00 - 0.06 - O. I 2 -O.t9 -0.40

LN - mom 0.03 0.02 -0.05 - 0.17 -0.28 - 0.10 - 0.71

~

$

**

IV.4 - P il'M 0.00 0.04 0.07 0.40 0.40 0.86 4.97

*

G - P!VM 0.01 0.04 0.05 0.10 0.14 0.20 0.44
G - MxL 0.01 0.06 0.10 0.15 0.20 0.26 0.44
G - mom 0.01 0.04 0.06 0.12 0. I 7 0.23 0.49

LN - mom 0.01 0.04 0.08 0.20 0.37 0.62 1.61

IE|~> ;) ! ,
'

,
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Table 6, Continued

~_
a

**

11".4 - Pii3f 0.48 0.57 0.55 0.52 0.49 0.47 0.44

G - Pii3f' O.53 0.46 0.53 0.62 0.67 0.71 0.78
G - MxL 0.52 0.21 0.26 0.32 0.36 0.40 0.480
G .ifo M 0.53 0.47 0.54 0.62 0.67 0.71 0.78

LN - mom 0.37 0.48 0.61 0.70 0.74 0.77 0.80

~

L{

15'.4 - Pit'M " O.02 0.08 0.12 0.16 0.19 0.24 0.38

*

G - P15'.tI 0.04 0.06 0.09 0.15 0.21 0.29 0.48
G .tIxL 0.04 0.02 0.04 0.07 0.10 0.14 0.25
G - mom 0.04 0.06 0.10 0.16 0.23 0.30 0.49

LN - mom 0.02 0.07 0.14 0.27 0.39 0.53 0.90

~

L.:

**
It'.4 - Pii3f 0.00 0.02 0.04 0.07 0.11 0.18 0.45

*

G - Pll3I 0.00 0.01 0.02 0.06 0.10 0.I6 0.34
G .tixL 0 00 0.00 0.01 0.02 0.04 0.07 0.19
G - mom 0.00 0.01 0.02 0.06 0. I 1 0.I7 0.42

LN - mom 0.00 0.01 0.05 0.14 0.27 0.48 1.26

3,

o indicates M (k) used to estimate Pli3f

co indicates I'*(k) used to estimate Pii3I

,. U , | i. i~ ) E,
J/J s
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Table 7

Bias,9, and mean square error,4, probability of underdesign, ' , expected linear under

design loss, L , expected quadratic underdesign loss, Ly of quantile estimates given by fivei

fi ing procedures conditioned on distribution IVA-5.tt

F .500 .900 .950 .980 .990 .995 .999

Quantile 0.78 1.86 2.22 2.67 3.01 3.36 4.18

.\le thod of
Estimation

~

O

**
IVA - PIVM - 0.01 0.00 0.00 - 0.01 - 0.02 - 0.01 0.17

*

G - P Il M 0.02 -0.03 0.00 0.06 0.10 0.14 0.20
G - Mx L 0.02 - 0. I 1 -O.10 - 0.08 -0.07 - 0.05 -0.06

G - mom 0.02 - 0.07 - 0.05 - 0.01 0.02 0.05 0.07

LN - mom 0.05 - 0.07 - 0.08 - 0.09 -0.10 -0.13 -0.20

~

$

**

IV.4 - PlVM 0.02 0.07 0.12 0.24 0.45 0.85 4.16

*

G - PlVM 0.01 0.06 0.08 0.14 0.19 0.25 0.41
G - MxL 0.01 0.07 0.09 0.12 0.16 0.19 0.26
G - mom 0.01 0.06 0.09 0.14 0.19 0.25 0.41

LN - mom 0.02 0.06 0.10 0.19 0.30 0.45 1.02

o

j ,
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Table 7 Continued

~_
a

It'A - PlV M " O.55 0.52 0.52 0.55 0.56 0.57 0.59

G - PiVM' O.45 0.57 0.51 0.45 0.41 0.40 0.38

G - MxL 0.46 0.69 0.65 0.60 0.57 0.56 0.55

G - Mo M 0.43 0.63 0.58 0.53 0.50 0.49 0.48

LN - mom 0.37 0.62 0.62 0.62 0.63 0.63 0.66

-

L[

**
IVA - PiVM 0.06 0.10 0.14 0.20 0.27 0.36 0.64

G - PIVM' O.04 0.11 0.12 0.12 0.12 0.13 0.15

G - MxL 0.04 0.16 0.17 0.18 0.19 0.21 0.26

G - mom 0.03 0.13 0.15 0.15 0.16 0.17 0.22

LN - mom 0.03 0.13 0.17 0.22 0.27 0.32 0.49

~

L:
.

**

IVA - PiVM 0.01 0.03 0.05 0.11 0.19 0.32 0.92

*

G - PIVM 0.00 0.03 0.04 0.05 0.05 0.06 0.10
G - MxL 0.00 0.05 0.07 0.08 0.09 0. I 1 0.17

G - M o.ti 0.00 0.04 0.07 0.08 0.09 0.09 0.15

LN - mom 0.00 0.04 0.07 0. I 1 0. I 6 0.23 0.51

^.
o indicates M (k) used to estimate PlVM

co indicates $f (O used to estimate PlVM
**

I '!.- ! E $ u. |
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Table 8

Bias U, and mean square errer, h, probability of underdesign, a' , expected linear under

design loss. [i, expected quadratic underdesign loss, Lp of quantile estimates given by five

fitting procedures conditioned on distri'oution 15'.4-6.

F .500 .900 .950 .980 .990 .995 .999

Quantile 0.96 1.47 1.62 1.81 1.96 2.12 2.48

Method of
Estimation

~

H

**

85'.4 - P153/ -0.03 0.01 0.01 0.00 0.00 0.03 0.3 I

G - Pil3f' - 0.12 0.08 0.21 0.36 0.47 0.58 0. S 3
G .tfxl - 0.11 0.18 0.34 0.54 0.69 0.83 1.15
G - mom - 0.12 0.04 0.14 J.2 i 0.37 0.46 0.66

LN - mom -0.04 - 0.02 0.03 0.02 - 0.01 - 0.05 - O. I 8

~

$

**

li'.1 - PI53/ 0.01 0.01 0.02 0.05 0.10 0.19 1.32

*

G - Pil3/ 0.02 0.02 0.06 0.16 0.26 0.38 0.77
G - MxL 0.02 0 05 0.14 0.32 0.52 0.74 1.42
G - mom 0.02 0.02 0.04 0.10 0.17 0.25 0.50

LN - mom 0.01 0.02 0.02 0.03 0.05 0.07 0.I6

'n,

.''', j8
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Table 8, Continued

a-

IV.4 - PlV3f 0.58 0.46 0.49 0.54 0.54 0.53 0.50**

G - PlV3/ 0.93 0.22 0.05 0.01 0.00 0.00 0.00*

G - AfxL 0.91 0.08 0.01 0.00 0.00 0.00 0.00

G - 31o.iI 0.92 0.37 0.13 0.03 0.02 0.01 0.00

LN - Afo3f 0.67 0.44 0.43 0.51 0.58 0.65 0.76

-

L{

**

IV.4 - PlV31 0.06 0.04 0.05 0.09 0.12 1 15 0.26

*

G - PIV3f 0.13 0.01 0.00 0.00 0.00 0.00 0.00

G - 3fxL 0.12 0.00 0.00 0.00 0.00 0.00 0.00

G - Afo31 0. I 2 0.03 0.01 0.00 0.00 0.00 0.00

LN - Afo3f 0.06 0.03 0.03 0.06 0.09 0.13 0.25

~

L .~

**
IV.4 - PlV31 0.01 0.00 0.01 0.02 0.04 0.06 0.18

*

G - PlV3/ 0.02 0.00 0.00 0.00 0.00 0.00 0.00

G - AfxL 0.02 0.00 0.00 0.00 0.00 0.00 0.00

G - 3fo3/ 0.02 0.01 0.00 0.00 0.00 0.00 0.00

LN - 3fo3f 0.01 0.00 0.00 0.01 0.02 0.04 0. I 1

.s ,
o indicates 3f (k) used to estimate PlV3f

**

co indicates f (k) used to estimate PlV3f

5I.f f) | ') '.,)s.
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Tabis 9

Aggregate outcome: cumulative squared biases, and cumulative mean square errors for the
median and right tail quaatiles, considering the six populations to occur in one r;gion.

F .500 .900 .950 .980 .990 .995 .999

Method of
Estimation

28
i= |

**

IVA - PIV3/ 0.00 0.00 0.01 0.04 0.04 0.1 3.4

*

G - PIV3/ 0.05 0.02 0. I 2 1.06 3.I7 7.5 36.0
G .\fxL 0.04 0. I 3 0.52 2.22 5.34 11.1 45.0
G - Sto3I 0.03 0.06 0 26 0.49 1.96 5.3 29.2

LN - Afo31 0.02 0.03 0.03 0.40 1.35 3.5 17.6

?0
:.,

**

IVA - PlV3f 0.11 0.74 1.59 4.80 10.43 23.9 167.

*

G - P W3/ 0.17 0.79 1.32 3.06 5.86 11.0 41.
G - 3fxL 0.14 0.65 1.30 3.50 7.02 13.3 49.
G - Afo3/ 0.15 1.25 2.07 4.04 6.92 11.9 41.

LN - 3/o3f 0.14 0.98 2.10 5.24 9.80 17.3 54

^.
o indicates 3I (k) used to estimate PW3I

oc indicates $f'*(k) used to estimate PW3/

)).
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Table le

~ ~ ~

Bias, 9 and mean square error,4, probability of underdesign, a , expected linear under

design loss, L , expected quadratic underdesign loss, 'L,, of quantile estimates gisen by five
i

fitting procedures conditioned on distribution LN - 1.

F .500 .900 .950 .980 .990 .995 .999

Quantile 1.55 3.34 4.32 5.35 7.21 S.75 13.18

Method of
Estimation

~

8

WA-PlVM" 0.02 - 0.06 - 0.15 - 0.28 - 0.32 - 0.23 1.08

*

G-PWM 0.21 0.01 - 0.35 -1.09 -1.85 - 2.81 - 5.87
G - MxL 0.18 - 0.31 - 0.78 - 1.66 - 2.53 - 3.60 - 6.91
G - mom 0.19 0.18 - 0.11 - 0.76 - 1.45 - 2.34 -5.24

LN - mom 0.12 0.08 -0.13 - 0.56 -1.03 -1.63 - 3.56

~

'D

_

WA-PWM" 0.03 0.40 0.90 2.69 6.3 14.8 110.

*

G-PWM 0.09 0.45 0.86 2.37 5.1 10.0 38.
G - MxL 0.07 0.37 1.06 3.46 7.3 14.1 50.
G - Mo M 0.08 0.79 ' 35 2.86 5.3 9.7 35..

LN - mom 0.05 0.58 1.27 3.261 6. I 7 11.0 36.

) 'N b l l
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Table 10, Continued

.~_
a

**
IVA - PWM 0.52 0.58 0.60 0.63 0.63 0.62 0.60

*

G-PWM 0.15 0.54 0.70 0.85 0.92 0.96 0.99
G - MxL 0.18 0.74 0.88 0.96 0.99 1.00 1.00
G - mom 0.17 0.47 0.62 0.77 0.84 0.89 0.96

LN - mom 0.31 0.51 0.61 0.72 0.76 0.80 0.84

~

L{

**

WA-PWM 0.06 0.28 0.45 0.79 1.13 1.57 2.96

*

G-PWM 0.01 0.26 0.55 1.20 1.93 2.85 5.89
G - MxL 0.01 0.41 0.84 1.69 2.55 3.60 6.91
G - mom 0.01 0.23 0.49 1.07 1.70 2.55 5.36

LN - mom 0.03 0.25 0.61 0.99 1.52 2.18 4.34

,.,

L'
-

**

WA-PWM 0.01 0.20 0.48 1.38 2.77 5.3 18.7

*

G-PWM 0.00 0.18 0.60 2.18 4.89 9.9 37.9
G - MxL 0.00 0.30 1.01 3.45 7.35 14.I 49.6
G - mom 0.00 0.16 0.54 1.95 4.32 8.8 33.8

LN - mom 0.00 0.17 0.55 1.82 3.91 7.60 27.0

^.
* indicates M (k) used to estimate PWM

^ . .
** indicates M (k) used to estimate PWM

,p- <r7nyo :n
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