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QUANTILE ESTIMATION WITH MORE OR LESS FLOOD-LIKE DISTRI-
BUTIONS
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N. C. Matalas

Us. G » :al Survey
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Reston, Virginia 22092

J. R. Wallis

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Abstract:  The desirable prope-ties of an estimator relative to an hypothetical population may
be irrelevent in practice unless the population at issue more or less resembles the hypothetical
population. Ewvidence that floods are distributed with long, stretched upper tails suggests that
use of the more common distributions results in a rather precise underestimation of the
extreme quantiles and thereby in the underdesign of flood protection measures.




Introduction

Various distribution functions have been proposed for flood frequency analysis. The
most recent distribution, introduced by Houghton [1977,1978], is Thomas' Wakeby distribu-

tion,

xamasafi-0-P°] - cf1-ii -7 (n

where £ = Flx) = P|Y<x] The Wakeby distiibution is defined by five parameters and so a
reasonably good fit to a sample might be expected. On the other hand, the more familar

Gumbel distribution,
X = m=a iln(=InF) (2)

is defined by only two parameters. And in contrast to Wakeby and other ‘flood distributions’,

the Gumbel distribution has a unique value of skewness, vy = 1.14. and of kurtosis, A = 54.

Whatever other appeal tae Gumbel and Wakeby distributions may have. they serve as
paradigms of simplicity and complexity, respectively, of flood distributions. There are several
distrbutions of intermediate complexity; one in particular is the much-used Log-Normal

distribuuon,

{03 R p— exp{ "[ - a)-m]3} (3)
v 2eb(x = a) - b

where f(x) = o

. For the Log-i+ormal distribution, values of y 20 and A 2 3 are
admussible, but such that v and A are related by virtue of both being functions of a single

parameter. namel; b (see ¢.z., Wallis er a/.. 1974).

Empirical evideace, in relation to the condition of separation (see Mataias er al.. 1975).
suggests that the distnibuiions of floods are more nearly Wakeby-iitke with » > | and 4 > 0

(L., long stretcrned upper tails) than like any of the other more commomiy suggested flood




distributions (see Houghton: 1977 and Landwehr er a/.: 1978). That the Wakeby distribution
can sausfy the condition of separation does not imply that indeed floods are distributed as
Wakeby. However, the Wakeby distribution provides a plausible description of flood se-
quences, and it also provides a means for representing the seemingly long, stretched upper tail
structures of flood distributions, as well as the tail structures of the distnbutions of other
hydrologic phenomena. Thus the Wakeby distribution provides a convenient analytical and a
reasonable hydrologic basis for assessing the relative performances of aiternative techmiques of

estimating the unknown quantiles of the distribution of hydrologic phenomena.

For the specific Wakeby populations considered by Landwehr er al. [1979a.2], the
Wakeby. Leg-normal. and Gumbel distributions, with alternative methods of fitting, were used
to determine the biases and mean square errors of the esumates of the upper quantiles for each
of the populations. Also, the expected underdesign losses associated with the estimaies were
assessed under the assumptions of linear and quadratic loss functions. The resuits provide an
assessment of i) the relative performance of alternative techniques (i.e., choice of distribution
and method of fitting) for estimating the quantiles of Wakeby distributions, and ii) the reiative
performance of the more common disiributions (i.e., Log-Normal, and Gumbel) in estimating

the unknown quantiles of flood distnibutions in hydrologic environments that are Wakeby-like.

Experimental Design

Landwehr er al. [1979a.b] considered six specific Wakeby distributions, each with lower
bound m = (. Values of the parameters (a. b, ¢, d) and of the statistical characteristics,
mean, standard deviation, and coefficients of variation, skewness, and kurtesis, (u, o, C,, v, A)
for each of the distributions are given in Table 1. The distributions are depicted in Fig. |,
emphasizing differences in the left tails, and in Fig. 2, emphasizing differences in the right

tails.
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the Log-Normal conditioned quantile estimates by solution (numerical integration) of

s n(y=-a,)-m, |2
F = 1 f" 1 exp{-l[ g : dy (5)
e A A 2 A
Yy Z'bq gl B Gq) b‘l

and the Gumbe! conditioned quantile estimates

ﬁq - Aq-ﬁqln(-lnF) (6)

were determined for specific values of F in the range (0.5, 0.999).

For F specified, the quantile value x is, in practise, the design flood; i.e.. the flond
magnitude upon which protective measures (structural or nonstructural) are sized. Thus the
measure is underdesigned if (X =x) <Oandis overdesigned if (x = x) >0 The expected

over- and underdesign losses, L* and L™, are defined as
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where. a” and a~ = | - a” denote the probabilities of over- and underdesign, k* > 0 and
k= 2 0, weighting factors reflecting the scale of over- and underdesign costs and » > 0, a
factor defining the analytical shape of the loss functions (see Slack er a/.- 1975). Hence the

expected design loss is given by

L = LY +« L~ (9)

If k¥ = k= = k (ie.. the loss functions are symmetric), the bias, ®. in the estimates

~iJ
-~



Table | -~ Wakeby distributions

Distribution Parameters Statistical Characteristics

m a b ¢ d u o o Y A
WA <1 0 1 160 4 02 154 1.34 0.69 414 6374
Wa-2 0 1 1.8 s 012 1.56 090 058 2.01 14 08
Wq-13 0 1 1.0 5 012 1.18 1.03 087 1.91 10.73
Wa-4 0 1 16.0 10 008 1.3 0.5] 0.38 1.10 7.69
Wq-5 0 1 1.0 10 004 092 070 076 111 473
Wa-6 0 H 2.5 10 0.02 092 046 050 0.00 2.65

Relative to y = 1.14 for the Gumbel distribution, three of the six distributions may be
regarded as having high skews (WA4-1, WA4-2, W4-3), two moderate skews (W4-4, W4-5), and
one low skew (W4-6). The distributions W4-5 and W4-6 are less kurtotic and the other
Wakeby distributions are more kurtotic than the Gumbel distribution for which A = 54. In
contrast to the distributions W4-3, WA-5, WA-6, the distributions W4-1, W4-2, and W4-4 are
more kurtotic than the Log-Norma! distribution for comparable values of y and satisfy the

condition of separation.

With respect to each Wakeby distribution, n sequencec, each of length n = 31 were
generated in the manner described by Landwehr er ai. [1978]. For the g-th sequence
conditioned on a particular Wakeby distribution the Wakeby, Log-Normal, and Gumbel

A A A A

parameter estimates im,. a, b, © :l) (m, a, b,. and (m 3) respectively, were
e B T e T e “q "9 S I

obtained and hence the Wakeby conditioned quantiie estimates

A A A :v A -:«
.(4-m4+UJ[I-(I-F)4]-LJ[|-(l—F) ] i4)



of x is given by

+ -
5 & i._'_"_l (10)

where » = 1 (i.e., linear loss functions), and the mean square error, ®, of the e.timates is

given by
+ -
.._Lk_ . L‘.;_.'-_’. (1

where » = 2 (i.e., quadratic loss functions). Thus the statistical measures of goodness of
estimation, © and ®. are directly related to the economic measures of goodness of design, L*
and L7, if the loss functions are symmetric. The use of ® as a criterion upon which to
choose among alternative estimates of x implies that i) the economic loss functions are

symmetric and quadratic, and ii) one is indifferent to an over- or an underdesign loss.

Given the n sequences, where n was at least 20,000, conditioned upon a particular
Wakeby distribution, the estimates of x, for specific values in the range (0.5, 0.999), were
identified as being greater or less than x The probabilities of over- and underdesign were

approximated by

o o ’IA -
a —" ‘l.)
~_ 1,°

- s (13)

where n* denotes the number of estimates that were greater than x, and n~, the number less
r
than x. Given the set of estimates ¢ > x, the value £ |x = x| forr = 1,2 was approximat-

ed by

-x| /7 (14)
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Similarly, the value £ | % - x| was approximated given the set of estimates X

The expected over- and underdesign losses were taken to be

-~

Lt = ;’k'z‘lf-xl’;f—x>0

~

L~ = a“k"E|2 -x|";2-x>0
whereby

~

Z-Z’-FL'

For k™ = k= = | (i.e.. symmetric. unscaled loss functions), the bias, 8. and the mean

square error, ®, where approximated by

A

(15)

(16)

(17)

(18)

(19)



The Log-Normal. (LN), conditioned quantile estimates were obtained by the method of
(conventional) moments, M. o, (see e.g., Johnson and Kotz: 1970). The method of maximum
likelihood, MxL, a method which in principle 1s more efficient than Mo M when the population
is distributed as Log-Normal was cot considered. On the basis of some exploratoy work, it
was noted that for a non-neglible perceniage of sequences, the iterative solutions in the course
of estimating m showed little ii any tendency towards convergence, a drawback to the use of
MxL as noted in the statistical literature (see Aitcheson and Brown: 1957 and Johnson and

Kotz: 1970).

Three methods for obtaining the Gumbel conditioned guantile estimates were considered:
1) MoM, i) MxL, and iii) probability weighted moments, PW M. These methods were consid-
ered previously by Landwehr er a/. [1979¢] in the case of sampling from Gumbel populations.

The probability we.ghted moment, M . is defined as

X
M, = EIX(1 =F)] (osd)

where k is a real number (see Greenwood er al.: 1979). In the case where k is a non-negative

integer, an unbiased estimate of M, ,,, here denoted as M:k,. is given by

& =k
M, = NZx,(";’)/(n(";')) . k=01, (21)
j=

where ¥, € x, € .. <x,_, (see Landwehr er al.: 1979 ).

The Wakeby, ( WA4), conditioned quantile estimates were obtained with the algorithm
given by Landwehr er al. [19795], as M_,, wita path order [¥ m: m = 0], where M. a

biased estimate of M, . is given by

-

{‘ & il
M, = 2xlin=j + a)/n] 'n (22)

where a = 035and x; € x, €

- -

A
-



Experimental Results: Skewness

For a given population, samples of size n reflect, on tie average, skewness less than that
characterizing the population. Moment estimates cf y, denoted as ; are algebraically
bounded (see Kirby: 1974) .nd biased downward (see Wallis er a/.. 1974 and Landwehr er al.:
1978) Based on the n sequences (i.e., samples) of length n = 31, the means (¥, and
standard deviations, ;t;). of the moment estimates of y were determined and are given in

Table 2.

Table I -~ Vaiues of 4(7) and 2(7) conditioned on W 4

Distribution (¥ a(%)

Wa -1 414 1.69 093
W42 2.01 1.06 0.82
W4q-13 1.91 1.24 0.66
Wi-4 1.16 0.66 0.82
W4q-5 i.11 0.87 0.48
Wa -6 0.00 -0.06 0.37

On the average, the samples reflect populations with moderate to low skews. The
reflection is particularly prenounced in the case of W4-1. in addition. had n been smaller, the
downward bias in the estimates of vy would have been even more pronounced. The results for
i when ) is large are even more striking than for 3. for instance ; = 7.02 for WA-1 with n =
31 compared to the true value of 63.74. [t would appear almost impossible to obtain reasona-

hble moment estimates of y or A, at least from samples of normal hydrologic length. and if one

' ’
Q2
1 J\e
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admits the hypothesis that floods may be distributed in a Wakeby-iike manner with relatively
high v and A, then 5 and 2 estimated by the method of moments are likely to be severely
underestin.a’~d, and fitting procedures that use Y or i are likely to give results that do not
distinguish between different values of vy or A. The high skew. high kurtosis hypothesis for
flood sequences can be used to explain the apparent lack of success shown by those reseacch
studies that have attempted to develop either physically based regional maps of Y. or regres-
sion equaticns for ¥ in real space Note, this is a new and separate difficuity from those that
have have already been shown to exist for the estimate of skew in log space (see, Landwehr er

al.. 1978)

Experimental Results: Quantiles

For each of the six Wakeby populations, the estimates of the upper quantiles, for
which 0.5 € F € 0.999, as given by the five estimating techniques, were assessed according
to bias, ®, mean square errors, ®, and expected underdesign loss, L™, where k=~ = |.

Tables 3 througth 8 present the approximate values 6 ; and Z‘. as well as a ., for WA-1
through W4-6. Table 9 presents an aggregate assessment of the results. From the values

given, the values of E* where A* = 1 and the values of a* may be determined. Also, the

values of Z’. L™, and Z may be determined for any arbitrary values of ¥ ¥ and k™.
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Bias -- &

For ' ae upper quantiles, the WA- PWM™" estimates generally display the smallest bias.
The LN - MoM techniques underestimates the quantiles fer all six populations. The G-
technigues underestimate the quantiles for the populations with high values of skewness. For
populations of moderate skew (i.e.. y ~ 1.14, the skew of the Gumbel distnbution) the biases
may be positive or negative For low values of skewness the G- techniques overestimate the

quantiles.
Mean square error -- &

The mean square error associated with the »stimates provided by the W4 - pwm””
technique were larger or a\ least as large as those given by the other techmiques over all
populations. For sampies from low skew distributions, i.e., un-floodlike distributions (e.g.,
WA-6), the LN = MoM estimates had the smallest ® values. However, for WA-1 through
W4-5, the estimates given by the three G- techniques gave varying values of @, but in all cases
the values were smaller than those given by the other techniques. It is notec that for the high

and low skew populations, ® = 53,

Also it is noted that among the G- the MxL estimates tended to yield the larger values of
® relative to the high and low skew populations. Thus amongst the G-iechniques the MxL
may lead to minimal values of ® when the population is distributed with near Gumbel skew.

but it is not likely to do so if the population is characterized by y substantially different from
YG

Expected underd *sign loss = L~

As noted above, the mean square error. ®. is proportional to the expected design loss if
the loss functions aie symmetric. If such loss functions attain, and if one is indifferent to

over-or underdesign, then ® s a convenient and meaningful measure upon whici to base the
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choice of quantile estimate. However, if underdesign losses are of greater concern, then i

more meaningful measure is the expected underdesign loss, L™,

In the case of the high v and high A distributions (i.e., WA-1, WA-2), the WA - PWM
estimates gave the smaller Z' values, inspite of having larger ; values. For the other less
flood-like distzibutions, the estimates based on one of the G- techniques gave the smaller Z -
values. To reiterate, the use of only a mean square error criterion could lead to some poten-
tially dangerous rnderdesign, and should only be advocated if one is indifferent to over- or

underdesign losses.
Aggregate assessment

If the six Wakeby distributions are considered to attain at different sites in a region, the
aggregate (i.e. regional) performance of the quantile estimating techniques may be assessed by
the cumulative mean square error.lZ‘.'.'Oz( i). With respect to the techniques from smallest to
largest cumulative mean square errors is: G — PWM* < G — MoM < G - MxL

< LN - MoM < WA — PWM'  Itis noted, however, that the magnitudes of the differ-
ences are not large, except with respect to WA - PWM™" The assessment masks bias effects,

hence the over- or under-design aspects of flood protection measures, but it does provide scme

appraisal of the total regional error in estimating the quantiles for all sites in a region.

6 .
A similar statistic, cumulative squared biases, Sle‘m. yields a ranking for the five
=
techniques of WA~1 < LN-MoM < G-MoM < G-PWM < G-MxL, an almost
perfect reversal of the results for cumulative mean square error. Overail, the WA biases are far

smaller than those for any of the other techniques.
Anticipating caveats

It might be said that If you fit Wakeby's 10 Wakeby's the resuits shouid be 200d so let us

add that this was nct the “e purpose of the study Rather the interest was upon the hypothe-
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sis that annuai flood sequences are distributed with high skew and high kurtosis and what
effect, if any, such an hypothesis would have upon the quantile estimates of interest in flood
frequency analysis. However, fitting the Wakeby distribution with the algorithm identfied by
Landwehr er al. [19798] as M ** and path [V m. m = 0], performs fairly creditably with other
high skew but more conveationally kurtotic worlds. For instance, it is possible to generate Log
Normal "floods” (see eq. 3), that have u, o , and y identical to those of W4-1 "floods" (see

Table 1). and to repeat the analysis. The results, given in Table 10, are quite similar to those
given in Table 3. Thus whether the distribution is WA-1 or LN -1, the WA- PWM " techni-

que yields estimates that are statistically similar.

There are many other distributions and fitting procedures that might have been selected
for inclusion in this study. It appears improbabie that any of the more conventional choices
would have resulted in at-site extreme quantile estimates that were both less biased and more
precise. Without some probability of success in finding a method for which L™ and '; would

both be minimal the incentive to test other methods becomes somewhat marginal.

However, the possibility exists that if there were sufficient data available in a region to
show a separation effect, that there would also be sufficient data to allow for a statistical
regionalization, in which the quantile estimates for each site could be made on the basis of the
data for the site in question in combination with the data from all other sites in the region. It
is believed that such an approach may result in more precise estimates for each site, while

showing minimal overail bias, (see Landwehr er al.: 1979d).
Conclusions

The biases, O, mean square errors, ®, and expected underdesign losses, L™, were
determined for five quantile estimating techniques relative to the upper quantiles, where

0.5 < F < 0999, for six specific Wakeby distributions. Aithough the Wakeby populations

had widely varving values of skewness, the samples from the populations refiected populations

] ¥
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of more moderate to lower skewness. From an assessment of 8, ®, and L™, the following

conclusions were drawn.

1.

L

Over all populations considered, the smallest bias quantile estimates were obtained with the
WA - PWM techniques.

if the population skew is much different from the Gumbel skow of about 1.14, either larger
or smaller, then the Gumbel techniques give precise (small variability) but inaccurate
estimates of the quantile values as shown by ® = ®° conditioned upon WA4-1, W4-2,
WA4-3, W4-4, and WA4-6.

No one of the three Gumbel techniques performed consistently better than the other with
respect to 8, ®, and L~ for all populations. Thus if the population is not known to be
Gumbel, one can be rather indifferent to the choice of Gumbel technique, and it does
not follow that MxL is preferred.

The Gumbel and Log-Normal techniques consistently underestimate the quantiles of high
skew populations. To the extent that fioods are highly skewed, contrary to the view
provided by esuimated values of skewness, the use of these techniques lead, on the
average, to the underdesign of flood protection measures.

If indeed flood distributions are highiy skewed, then among the techniques investigated for
estimating the upper quantiles, the expected underdesign losses are the smaller when
the WA - PWM technique is used, even though the mean square errors tend to be
larger.

When considered on an aggregate basis, the Gumbel techniques lead to the smaller values

of cumulated mean square errors. However, the value masks the biases which differ

considerably among the five techniques.
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Bias. @, and mean square error, ®. probability of underdesign, a expected linear under

design loss, L. expected quadratic underdesign loss, L7, of quantle estimates given by five

fitting procedures conditioned on distribution W4-1.

F S00 900 950 980 990 995 999
Quantile 1.59 3.34 128 575 708 %.54 12.92
Method of
Esumaton
-
wi-pPwM" 0.02 =005 -0.11 =0.16 014 =000 1.26
G- PWM 0.16 0.07 -024 -0D389 -1.58 -2.46 - 5.48%
G - MxL 0.14 =012 =050 =123 -199 =293 -6.05
G - MoM 0.14 0.21 -050 =062 -125 -2.08 -49]
LN = MoM 0.09 012 =007 =048 -0.93 -1.53 -3.60
®
Wa-pPwM 0.03 0.31 0.76 2.43 5.90 14.4 110.7
G- PWM' 0.07 0.38 0.67 182 3188 ) 32.5
G - MxL 0.08 22 0.56 2.02 4.62 95 8.1
G - MoM 0.06 0.74 1.23 2.53 454 8.3 31.0
LN - MoM 0.04 0.53 1.21 3.17 6.10 11.0 36.7




Table 3, Continued
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;-
W4 - PWM 0.47 0.58 0.60 0.61 0.61 0.60 059
G- PWM 0.21 0.51 0.68 084 0.91 0.95 0.99
G -~ MxL 0.22 0.65 0.83 0.95 0.9% 099 1.00
G - MoM 0.23 047 0.61 0.76 0.83 0.89 0.96
LN - MoM 0.33 0.50 0.61 0.71 0.76 0.79 0.85
Ly
Wa-PWwM 0.05 0.25 0.40 0.69 0.99 1.38 2.69
G- PWM' 0.02 0.20 0.45 1.02 1.66 2.52 5 45
G - MxL 0.02 025 0.58 1.26 2.00 2.91 6.05
G - MoM 0.02 0.19 0.42 0.93 1.52 2.30 5.05
LN = MoM 0.04 0.20 0.43 091 1.43 2.10 4135
Ly
Wa-PWM 0.01 0.28 0.38 1.09 2.19 4.23 159
G -PWM' 0.00 0.11 0.41 . 3.70 1.74 324
G - MxL 0.00 0.14 0.52 1.20 4.62 9 35 381
G - MoM 0.00 0.11 0.39 1.49 3.43 7.11 298
LN - MoM 0.01 0.12 0.43 1.56 3.21 6.86 26.7

# indicates .;4.(1() used to estimate PWM

A ss
a% indicates M (k) used to estimate PWM

p—

J
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Table 4
Bias, ®, and mean square error, ¥, probability of underdesign, a”. expected linear under
design loss, L[, expected quadratic underdesign loss. L3, of quantile estimates given by five

fitting procedures conditioned on distribution W4-2.

F 500 900 950 980 990 995 999
Quantile 1.43 259 316 4.00 469 5.44 7.48
Method of
Estimauon
P
Wd4-PWM 000 =003 -006 =007 -0.01 0.13 1.04
G- PwM 0.00 0.07 -003 =025 -0.48 -0.78 - 1,33
G - MxL 0.00 008 =002 =024 -0.48 -077 =173
G - MoM 0.00 0.08 -001 =022 -0.45 -074 —168
LN = MoM 0.01 0.06 -005 =027 -050 =078 -164
®
WA -PWM 0.02 0.13 0.28 0.77 1.69 31.80 25.0
G -PWM' 0.02 0.13 0.19 0.38 0.67 1.17 3.9
G - MxL 0.02 0.08 0.12 0.25 0.48 0.92 35
G - MoM 0.02 0.18 0.29 0.55 088 1.46 44

LN - MoM 0.02 0.15 0.32 0.83 1.56 2.76 8.2

-—
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Table 4, Continued

‘:"-
W4 -PWM 0.51 0.57 0.59 0.59 0.57 0.56 0.53
G~ PWM 0.52 0.46 0.57 0.71 0.79 0.%6 0.95
G - MxL 0.51 0.42 0.55 0.73 0.84 0.91 0.98
G - MoM 0.52 0.47 0.57 0.69 0.77 0.83 0.91
LN = MoM 0.49 0.48 0.59 0.69 0.74 0.77 0.82
Ly
WA -PWM 0.05 0.16 0.24 0.38 0.50 065 1.13
G- PWM 0.06 0.10 0.19 0.38 0.58 0.86 1.77
G - MxL 0.06 0.08 0.15 0.33 053 0.80 1.73
G - MoM 0.06 0.11 0.21 0.40 0.61 0.88
LN - MoM 0.05 0.12 0.24 0.50 0.76 1.08 2.03
iy
Wi-PWM 0.01 0.07 0.15 035 0.62 1.06 3.20
G-PWM' 0.01 0.03 0.09 0.28 0.57 1.10 3.91
G - MxL 0.01 0.02 0.06 0.20 0.45 0.90 3.50
G - MoM 0.01 0.04 0.10 0.32 0.65 1.20 412
LN - MoM 0.01 0.04 014 0.49 1.03 1.91 6.16

N e
# indicates M (k) used to estimate PWM

A e
#» indicates M (k) used to estimate PWM
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Bias. ©, and mean square error. ®, probability of underdesign, a”, expected linear under

design loss, L7, expected quadratic underdesign loss, L5, of quantile esumates given by five

fiting procedures conditioned on distribution WA4-3.

F 500 900 950 980 950 995 999
Quantile 093 2.49 3.11 398 468 5.44 7.45
Method of
Estimation
-
wa-pwMm® 000 =001 -002 =007 -0.12 -0.14 0.10
G-PWM' 009 =003 -0,10 =026 -0.43 -0.65 ~-1.44
G - MxL 0.07 -0.21 -034 =058 -0.81 -1.09 =202
G - MoM 009 =003 =010 =024 -0.41 -064 -1.42
LN = MoM 0.08 005 -=0.11 =024 -038 =056 -1.16
®
W4 - PWM 0.03 0.18 0.35 0.90 1 88 388 21.4
G-prPwM 0.03 0.17 0.27 0.48 0.72 1.12 32
G - MxL 0.03 017 0.30 0.62 1.02 1.66 480
G - MoM 0.03 0.21 0.35 0.62 0.94 1.42 7
LN = MoM 0.04 0.18% 0.37 0.63 1.44 2.37 6.6
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Table S, Continued

;-
W4 - PWM 0.54 053 0.55 0.59 0.60 0.62 0.63
G- PWM 031 0.56 061 0.68 0.74 0.80 0.91
G = MxL 0.34 0.74 0.80 0.86 0.90 0.94 0.98
G - MoM 0.31 0.57 0.61 0.68 0.73 0.78 0.88
LN = MoM 0.34 0.58 0.63 0.67 0.70 0.73 0.78
Ly
WA - PWA 0.08 0.17 0.24 0.41 0.59 0.82 155
G- PWM' 0.03 0.17 0.26 0.40 0.57 0.77 1.51
G - MxL 0.03 0.27 0.40 0.62 0.84 1 2.02
G - MoM 0.03 0.1% 0.28 0.44 0.60 0.81 1.55
LN = MoM 0.03 0.19 0.29 0.48 0.66 0.9 1.63
Ly
W4q-PWM 0.02 0.08 0.16 0.41 0.81 | 46 493
G -PWM' 0.00 0.08 0.16 034 0.59 100 3.14
G - MxL 0.01 0.14 0.27 0.65 100 1 64 4.80
G ~ MoM 0.00 0.09 0.18 0.39 0.67 1.12 3.40
LN - MoM 0.01 0.09 0.19 0.46 0.84 1.44 430

A e
# indicates M (k) used to estimate PWM

#% indicates M (k) used to estimate PWM

g ; i I
) I 52 i £2.J
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Table 6

Bias, ®. and mean square error, ®, probability of underdesizn, a, expected linear under
design loss, L,. expected quadratic underdesign loss, L. of quantiie estimates given by five

fitting procedures conditioned on distribution W4-4,

F 500 900 950 980 990 995 999
Quantile 1.28 1.96 2.27 2.69 3.02 3.36 a.18
Method of
Estimation
-
Wa-pPwM 0.01 -002  -0.01 0.03 0.10 021 0.75
G-PWM 0.00 0.03 0.00 -0.07 -0.13 0,20 -0.41
G - MxL 0.00 0.15 0.17 0.16 0.15 0.12 0.02
G - MoM 0.00 0.03 000 =006 -0.12 -0.i9 -0.40
LN - MoM 0.03 002 =005 =017 -0.:8 -0.40 -0.71
®
Wi-PWM 0.00 0.04 0.07 0.40 0.40 0.86 497
G-PWM' 0.01 0.04 0.05 0.10 0.14 0.20 0.44
G - MxL 0.01 0.06 0.10 0.15 0.20 0.26 0.44
G - MoM 0.01 0.04 0.06 0.12 0.17 0.23 0.49

LN - MoM 0.01 0.04 0.08 0.20 0.37 0.62 1.61
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Table 6, Continued

;-
W4 - PWM 048 0.57 0.55 0.52 0.49 0.47 0.44
G- PWM 0.53 0.46 0.53 0.62 0.67 0.71 0.78
G - MxL 0.52 0.21 0.26 0.32 0.36 0.40 0.480
G - MoM 0.53 0.47 0.54 0.62 0.67 0.71 0.78
IN = MoM 0.37 0.48 0.61 0.70 0.74 0.77 0.80
i
WA -pPwMm 0.02 0.08 0.12 0.16 0.19 0.24 0.38
G- PWM 0.04 0.06 0.09 0.15 0.21 0.29 0.48
G - MxL 0.04 0.02 0.04 0.07 0.10 0.14 0.25
G - MoM 0.04 0.06 0.10 0.16 0.23 0.30 0.49
LN~ MoM 0.02 0.07 0.14 0.27 0.39 0.53 0.90
L3
W4 -PWM 0.00 0.02 0.04 0.07 0.11 0.18 0.45
G- PWM 0.00 0.01 0.02 0.06 0.10 0.16 0.39
G - MxL 0.00 0.00 0.01 0.02 0.04 0.07 019
G - MoM 0.00 0.01 0.02 0.06 0.11 0.17 0.42
LN - MoM 0.00 0.01 0.05 0.14 0.27 048 1.26

A
# indicates .\!‘(k) used to estimate PWW

A -
o indicates M (k) used to estimate PWM
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Bias, ®, and mean square error, ®. probability of underdesign, ., expected linear under

design loss, Z,. expected quadratic underdesign loss, L,. of quantile estimates given by five

fitting procedures conditioned on distribution WA4-5,

F 500 900 950 980 990 995 999
Quantile 0.78 1.86 2.22 2.67 3.01 3.36 418
Method of
Estimaton
e
Wa - PWM -0.01 0.00 000 =001 -002 =001 0.17
G-pPwM' 0.02 -0.03 0.00 0.06 0.10 0.14 0.20
G - MxL 002 =011 =010 =008 -007 -005 =006
G - MoM 002 =007 =005 =001 0.02 0.05 0.07
LN = MoM 005 =007 =008 =009 010 =013 =020
®
Wi -PWM 0.02 0.07 0.12 0.24 0.45 0.85 4.16
G-PWM" 0.01 0.06 0.08 0.14 0.19 0.25 0.41
G - MxL 0.01 0.07 0.09 0.12 0.16 0.19 0.26
G - MoM 0.01 0.06 0.09 0.14 0.19 0.25 0.41
LN = MoM 0.02 0.06 0.10 0.19 0.30 0.45 1.02




Table 7, Continued
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;_
WA~ PWM 0.55 0.52 052 0.55 0.56 0.57 0.59
G- PWM 045 0.57 0.51 0.45 0.41 0.40 0.38
G - MxL 0.46 0.69 0.65 0.60 0.57 0.56 0.55
G - MoM 0.43 063 0.58 0.53 0.50 0.49 0.48
LN = MoM 0.37 0.62 0.62 0.62 0.63 0.63 0.66
Ly
WA -PWM 0.06 0.10 014 0.20 0.27 0.36 0.64
G- PWM 0.04 0.11 0.12 0.12 0.12 0.13 015
G - MxL 0.04 0.16 0.17 0.18 0.19 0.21 0.26
G - MoM 0.03 0.13 0.15 0.15 0.16 0.17 0.22
LN = MoM 0.03 0.13 0.17 0.22 0.27 0.32 0.49
£
WA - PWM 0.01 0.03 0.05 0.11 0.19 0.32 0.92
G -PWM 0.00 0.03 0.04 0.05 0.05 0.06 0.10
G - MxL 0.00 0.05 0.07 0.08 0.09 0.11 0.17
G - Mo 0.00 0.04 0.07 0.08 0.09 0.09 0.15
LN = MoM 0.00 0.04 0.07 0.11 0.16 0.23 0.51

A e
# indicates M (k) used to estimate PWM

A -
% indicates M (k) used to estimate PWM
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Bias, ®, and mean square errcr, @, probability of underdesign, &, expected linear under

design loss, L, expected quadratic underdesign loss, L,, of quantile estimates given by five

fitting procedures conditioned on distrioution W 4-6.

F 500 900 950 980 990 995 999
Quantile 0.96 1.47 1.62 181 1.96 2.12 2.48
Method of
“stimation
o
WA -PWM T ~003 0.01 0.01 0.00 0.00 0.03 0.31
G-PWM -0.12 0.08 0.21 0.36 0.47 0.58 083
G - MxL ~0.11 0.18 0.34 0.54 0.69 0.83 1.15
G - MoM -0.12 0.04 0.14 4.2 0.37 0.46 0.66
LN — MoM -004 =002 0.03 0.02 -0.01 -0.05 -0.18
®
WA - PWM 0.01 0.01 0.02 0.05 0.10 019 1.32
G-pPwM 0.02 002 0.06 0.16 0.26 0.38 0.77
G - MxL 0.02 005 0.14 0.32 0.52 0.74 1.42
G - MoM 0.02 0.02 0.04 0.10 0.17 0.25 0.50
LN = MoM 0.01 0.02 0.02 0.03 0.05 0.07 0.16
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;-
WA -PWM 0.58 0.46 0.49 0.54 0.54 0.53 0.50
G- PWM 0.93 0.22 0.05 001 0.00 0.00 0.00
G - MxL 0.91 0.08 0.01 0.00 0.00 0.00 0.00
G - MoM 0.92 0.37 0.13 0.03 0.02 0.01 0.00
LN - MoM 0.67 0.44 0.43 0.51 0.58 0.65 0.76
Ly
Wia-pwMm 0.06 0.04 0.05 0.09 0.12 315 0.26
G- PWM 0.13 0.01 0.00 0.00 0.00 0.00 0.00
G - MxL 0.12 0.00 0.00 0.00 0.00 0.00 0.00
G - MoM 0.12 0.03 0.01 0.00 0.00 0.00 0.00
LN - MoM 0.06 0.03 0.03 0.06 0.09 0.13 0.25
Ly
WAe—-PWM 0.01 0.00 0.01 0.02 0.04 0.06 018
G-PWM' 0.02 0.00 0.00 0.00 0.00 0.00 0.00
G - MxL 0.02 0.00 0.00 0.00 0.00 0.00 0.00
G - MoM 0.02 0.01 0.00 0.00 0.00 0.00 0.00
LN - MoM 0.01 0.00 0.00 0.01 0.02 0.04 0.11

% indicates M (k) used to estimate PWM

an indicates M (k) used to estimate PWM
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Tabi. 9

Aggregate outcome: cumulative squared biases, and cumulative mean square errors for the
median and right tail quantiles, considering the six populations to occur in one r< 2ion.

F 500 900 950 980 990 995

Method of
Estimation

4
%l

Wa-PwM 0.00 0.00 0.01 0.04 0.04 0.1
G-PWM' 0.05 0.02 0.12 1 .06 3.17 7.5
G - MxL 0.04 0.13 0.52 2.22 5.34 1.1
G - MoM 0.03 0.06 026 0.49 i.96 5.3
LN = MoM 0.02 003 003 0.40 1.35 35

3

W4 -PWM 0.11 0.74 1.59 480 10.43 23.9
G- PWM 0.17 0.79 1.32 3.06 586 11.0
& Mk 014 0.65 1.30 3.50 7.02 13.3
G - MoM 015 1.25 2.07 4.04 6.92 1.9
LN = MoM 0.14 0.98 2.10 524 9.80 17.3

Ae
% indicates M (k) used to estimate PWM

Ae
«% indicates M .(k) used to estimate PWM
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Bias, 9. and mean squ2ce error, ®, rnrobability of underdesign, a”, expected linear under

design loss, l,. expected quadratic underdesign loss, L,, of quantile estimates given by five

fitting procedures conditioned on distribution LN - 1.

F 500 900 950 980 990 995 999
Quantile 1.55 3.34 4.32 585 7.21 8.75 13.18
Method of
Estimation
"
WA -PWM 002 -006 -0.15 =028 =032 <0 1.08
G-PWM' 0.21 0.01 -035 -1.09 -185 =281 -587
G - MxL 018 =031 078 -166 -253 =360 =691
G - MoM 0.19 0.18 -0.11 =076 -145 ~=234 =524
LN - MoM 0.12 0.08 -0.13 =056 -103 =163 =356
®
WA - PWM 0.03 0.40 0.90 2.69 6.3 14.8 110.
G- PWM' 0.09 0.45 0.86 2.37 5.1 10.0 38.
G - MxL 0.07 0.37 1.06 3.46 7.3 14.1 50.
G - MoM 0.08 0.79 135 2.86 5.3 9.7 35.
LN = MoM 0.05 0.58 1.27 3.261 6.17 11.0 36.
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‘;_
WA -PWM 0.52 0.58 0.60 0.63 0.63 0.62 0.60
G- PWM 0.15 0.54 0.70 0.85 0.92 0.96 0.99
G - MxL 0.18 0.74 0.88 0.96 0.99 1.00 1.00
G - MoM 0.17 0.47 0.62 0.77 0.84 0.89 0.96
LN - MoM 0.31 0.51 0.61 0.72 0.76 0.80 0.84
&
W4 - PwM" 0.06 0.28 0.45 0.79 .13 1.57 2.96
G-pPwM 0.01 0.26 0.55 1.20 1.93 2.85 5.89
G - MxL 0.01 0.41 0.84 1.69 2.55 3.60 6.91
G - MoM 0.01 0.23 0.49 1.07 1.70 2.55 536
LN - MoM 0.03 0.25 0.61 0.99 1.52 218 4.34
L3
WA - PWM 0.01 0.20 0.48 1.38 2.77 5.3 18.7
G - PWM 0.00 0.18 0.60 2.18 4.89 9.9 79
G - MxL 0.00 0.30 1.01 3.45 7.35 14.1 496
G - MoM 0.00 0.16 0.54 1.95 432 8.8 33.8
LN - Mo 0.00 0.17 0.55 i.82 3.91 7.60 27.0

A e
# indicates M (k) used to estimate PWM

A an
#% indicates M (k) used to estimaie PWM
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