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International Business Machines Corporation Thomas J. Watson Research Center
P.0. Box 218
Yorktown Heights, New York 10598
914/945-3000
May 18, 1979

Joseph M. Hendrie

Director

Nuclear Regulatory Commission
Malomic Building

1717 H Street NW

Washington, D.C. 20555

Dear Mr. Hendrie:

While watching the Three Mile Island, 3MI, debacle on
television I was struck with the appearance of the island.
It appears that 3MI is a comparatively flat, low-lying
island situated in the middle of a large river, and probably
comprised of alluvial sands and gravels. The geomorphology
literature attests to the fact that this is the sort of
topography that gets redistributed during the really
extreme, say 1/1,000 or 1/10,000 year flood events. This
raises two obvious questions, first what “appens to a
nuclear power plant when it is submerged in flood waters,
and second what is the flood risk at the 3MI site?

To evaluate the second of the above questions I have
investigated the Susquehanna river data base, and asked a
few questions here and there. There are 87 years of
streamflow measurements for the Susquehanna river at
Harrisburg, a fortunate circumstance as this is only a
little upstream of the 3MI site. The highest instantaneous
flow fc- each year can be obtained from the published
records, ranked, and plotted on cumulative probability paper
(see Figure 1). A log. Pearson III curve following the
official U.S. Water Resources Council guidelines (Bulletin
17a) has also been shown on the figure. One might feel
happier with this flood risk estimate (the fitted curve) if
the procedures were not known to be totally fallacious.

The original design for the 3MI site estimated that "the
maximum possible flood", MPF, for the site was 1.1 million
cfs (cubic feet per second). In 1972 hurricane Agnes
arrived and subsequently a new MPF of 1.6 million cfs. Will
the next big event raise the MPF another 45%? Do you know
the mechanics of how such estimates are made? From the name
it sounds like the procedure developed in the thirties that
has little to do with science, nothing to do with
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probability theory, and with uncertainties at every step of
the calculation, The cumulative error is unknowable.

The use of MPF does not appear to be the sort of decision
theoretic approach to estimating geophysical hazards that
one might have expected of an NRC. It is to be hoped that
by now the NRC has a sufficiently large competent in-house
staff that thev do not have to rely upon the log. Pearson
III or similarly technically unsound and hap-hazard flood
risk appraisals that may be generated by the more
tradition-bound Federal agencies.

The risk of flooding does seem to be rather high for the 3MI
site. One can't help but wonder why 3MI was selected, when
the use of Hill Island would have removed this
consideration. It is understood that a levee has been
constructed that is meant to maintain the integrity of the
3MI site from an event the size of the latest estimated

MPF, All well and good, but levees have been known to fail,
and MPF's are not decreed by God, but estimated by fallible
man. Are the geophysical hazards at other nuclear plants of
similar magnitude, and are risk evaluations, as at 3MI,
always based upon a single number?

A

J. R. Wallis
President-elect

Section of Hydrology
American Geophysical Union

enc.



ANNUAL INSTANTANEOUS FLOOD PEAK IN THOUSANDS OF cfs

SUSQUEHANNA RIVER AT HARRISBURG, PA.
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January, 1979

Dr Leo Eisel, Director

United States Water Resources Council
2120 L street. N.W

Washington, D.C. 20037

Dear Leo,

It was great to see you and Vicki once again, and to be broucht up to ‘date on your respective
careers and other doings. Shall we make it an annual event, or just continue 0 have it just

once every hydrologic decade ?

Since meeting with you a coupie of papers have been pubiished (reprints enclosed) that
have implications for flood frequency estimates made using the WRC's flood frequency
guidelines (Bulleun 17-A). In the WRR paper it is pointed out (figure 7. and appendix C)
that if {lood sequences were distributed as Weibuil and positively skewed in real space, vg .
then infinite samples would always yield estimates of skew in log space, vy . of -1.14. Of
course, small finite samples, n , would in expectation have other values of v , but these
estimates would not be primary functions of yg, but rather of n . and of the means, a . and
standard deviations, o . of the individual records in real space. In view of this it would seem
necessary that we be absolutely sure that none of the recornds used to estumate regonal vy be

Weibull distributed m real spave. Further, of one proceeds aithout such an assurance then

there appears o be no possibie statistical justification for attempung to had 3 new regional v,

or for that matter Lo use any pre-cxisting vy
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In real space it is casy to see that flood hazard is, other things being equal. a function of
Yr - However, we have yet to identify a distribution for which y. # [(n.u,0). Hence, it
new becomes ditficult if not impossible to justify any flood estimating procedure that depends
upon y; . and ail past estimates made using such techmiques must automatically be suspect. In
particular, because log Pearson [l with widely different v, 's can lead to identical y4 (see

figure 9, and table Al g pap oTidIpD earson [l flood fregency

analyseS would be the most suspect of all.

These are hardly new ideas. They were dicussed at the December, 1977 AGU symposium
dedicated to the foibles of using the WRC flood freqency procedures. At that meeting there
was an interesting spit displayed between representatives of the Federal bureaucracy and those
in the private sector. The latter group were mostly afraid that if they used WRC procedures
for engineering consuiting work, that they would be making themseives liable for civil suits
charging professional incompetence. They have a point, the gull between the scientific

literature and the concepts of Bulletin 17-A does seem o be getting excessively large.

R ¢ wLhave had several invitations to lecture on the statistics of-Ho6d frequency

analysis, and how current knowledge reiates to WRC procedures. Presumably your hydrology
committee is concerned with such matters. Please keep me posted on all late breaking

developments because it would be nice if my lectures could end on an up-beat note.

Hope to see you aqon one of these days

Sincerely,

g.m Dellis
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Some Comparisons of F.ood Statistics in Real and Log Space

J. Maciunas LANDWEHR axD N. C Mararas

LU S Geological Surcey. National Center. Reston. Virgimia 22092

J. R. WaLLis

[8M Corporation, Watson Research Laboratory, Yorkiown Heights, New York 10598

Some staustics of histoncal and simuiated flood sequences were examined in real and log space. [t was
found that several statstical properties of floods in real space could not be inferred from those in log space
without extensive knowledge of the distnbution of floods in real space as well as information about their
sanpling charactenistics. It 1s shown that the construction and use of regional skew maps in log space are

most likely counterproductive.

What 1s reasonable is real; that which is real s reasonabie. —George
Hegel, 182]

INTRODUCTION

The L' .S Warer Resources Council [1976] recently issued
guidelines for flood frequency analysis stating that ‘the Pear-
son Tvpe [l distribution with log transformation of the flood
data (log-Pearson Type [11) 1s recommended as the basic dis-
tribution for defining the annual flood series.” The guidelines,
however, are not strictly binding inasmuch as “in those cases
where the procedures of this guide are not followed. deviations
must be supported by appropriate study and accompanied by
a comparison of results using the recommended procedures.”
In this work we show that such cases are more likely t0 be the
rule than the exception

Previously, Matalas et al. [1975] investigated several distn-
bution functions. noting that samples derived from these dis-
tributions vielded estimates of skewness whose statistical prop-
erties did not accord with those denved from histoncal flood
sequences. In this earlier work the statistical comparisons were
conducted entirely in real space. This work has been extended
into log space. and in addition 1o the distributions formeriy
treated. two further distributions have been added. One 15 the
log Pearson type 111 distribution, recommended by the Water
Resources Council, and the other is the Wakebyv distribution,
defined by 4 A. Thomas (personal communication, 1976) and
examined by Houghton [1977].

The extent 10 which skewness in log space 1s affected by the
lower bound of the distribution of floods is examined. The
imphcation of these results in the construction of regionai
skew maps in log space as advocated by the Water Resources
Council s detailed

More mathematical aspects of this work are included in
ippendices

Froop Starnistics

Floods are dénoted as X 1n real space (RS)and Z = In Y in
log space (LS As random va ‘ables the distributions of X and
Z may be characterized. though not necessaniv uniquely. by
the coetficients of ~anation, C.[ 1 skewness, ¥| 4nd kur-
tasis. Al | To ussess some sampling sroperties of estimates of
C[ Lol LandA| ] RSand LS. sequences of lengthn =
i0. 20, and 30 derived from 1351 historical flood records ware
considered In Figure | the area of the Unnted States s par-

This paper s not subject to U S, copyright. Published in 1978 by
the American Geophysical Union
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titioned into 14 regions, and in Tabie | the distribution of the
historical lood records over the regions is given, as weil as the
number k(n) of nonoverlapping sequences of length n.

Let Y denote any of the parameters C,[ 1, y[ J.andA[ |,
and let y denote a moment estimate of Y derived from a
sequence of length n. Given the k(n) values of v, the mean v
and standard deviation #(y) were calculated and are given in
Tables 2 (RS) and 3 (LS).

Mataias et 2{ [1975] noted that the increase in #{y) in RS
with n suggests that floods are characterized by high vaiues of
¥ (>2). The values of C, and A, as well as y, presented in
Tables 2 and 3. will serve as a guide for further analvsis.
Brieflv, it is noted that the variations of ¥ and aiy)withnin LS
are somewhat inconsistent with those mn RS. “or ¥ = C,. ¢
and #{y) are not very sensitive to n in either ¢S or LS. In the
case ¥ = v, i decreases with n, and #(v) tends o decrease with
n in LS, though not in such a consistent manne,: in RS, both
¥ and #(y) tend to increase with n. For ¥ = A, ¥ anJ #(y) tend
t0 increase with » 1n both RS and LS.

[t is of particular ‘mportance to notethatin RS for ¥ = 4, ¢
> 0 for n < 30 in all regions. However. in LS the tendency is
for i < 0. except in regions |, 2. and 14. For a given region,
Qf ). the proportion of seguences vielding estimates of ¥ in
RS and LS of like or opposite signs. 's given in Table 4 It is
noted that Qf+ =) tends to decrease with 2 for all regions
except | and 4. For regions 3=11. Q(=+) < 0. 50 forall n. Q1 =
+ ) = 0 for all regons and n. That 15, no sequence vielded 2
negative estimate of ¥ in RS and a positive estimate in LS
Except for region I. Q(+~—) tends to increase with a, and in
general for n 2 20, Q(+~) > 0.50. For ail regions, [Q(——) +
@1 +—)] tends to increase with n. For all regions. [Q(++) =
Qf +—)] tends to increase with n, where forn ~ 30, [ =+) +
Q+—=1] = 0.9 Thus as n becomes large, flood sequences
vield dominantly positive estimates of ¥ in RS and negative
esumates in LS. Rurely do flood sequences vield negative
estimates of ¥ in both RS and LS. and even more rarely.
seeminglv never. do they vield negative esuimates of v in RS
and positive estimates .n LS

CONDITION OF SEPARATION

Previously. Mataigs et al. [1973] investigated some samp.ing

properties of 1, where ¥ = 5 in RS and noted that the relation
hetween i and #11 ) dertved from the historical flood sequences
was not in accord with that derived frem Monte Carlo experi-
ments for several well-known distnbution functions. For the
Monte Cario results, iet w denote an estimate of ¥ Based on
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Fig |

100,000 generated ‘flood’ sequences cf length . the mean d{w)
and standard deviation (w) were determined for feasible val-
ues of ¥ in the range [0. i00). The discordance between the
historical Aoods and the generated floods was defined by what
was called the condition of separation: that is, for § = Ziw).
#(y) > #lw) for each element of the distribution set . where
the elements of & were the uniform (U), normal (N). log
normal (LN), Gumbel extreme value type | (G), Pearson type
I (PUI1), Weibull (W), and Pareto (P) distributions. The
separation is a function of n and tends to become more pro-
nounced as 7 increases.

The separation cannot be explained by the small number
k(n) of hustorical flood sequences relative to the 100,000 gener-
ated flood sequences, by autocorrelation [ Matalas et al., 1975],
or by cross correlation [Wallis et al, 1977]. Adowever, the

TABLE | Dwistnbution of Historical Records and Sequences
of Length n
No. of Sequences. k(n)
No. of
Region Records n= il n=20 n=30
| 193 691 286 184
2 <5 291 16 %0
} 164 382 237 154
4 SO 82 72 <6
S 130 418 160 104
6 lid 168 147 N4
7 o0 114 12 R
3 ) 267 s 0
9 %0 274 Il 0
10 Lh) 133 55 i
8 L3 321 13§ 73
12 9% it 128 0
12 4] |48 61 4
4 RL] 356 145 91

Regional hydrologic division of the United States

separation can be accounted for by spatial mixing of values of
v within a region and by nonstationarity in y [Wallis et al.,
1977]. There is. of course, the possibility that a distribution
which is not an element of & may explain the separation.

Some insight into the naure of such a distribution may be
gained by reference to Figure 2, depicting the condition of
separation for n = 10 for the distribution set . From Figure 2
it is seen that the points (¥, a{y)) for all regions lie above the
curves formed by the points (i(w), #(w)) for each element of $
The upper bound on the curves is LN except for y greater than
about 1.3 (corresponding to ¥ 2 |5). where the upper bound is
seemingly formed bv the curve for P. It has previously heen
observed [ Maralas et al., 197%] that the condition of separation
becomes more pronounced as n increases.

In reference to Table 3, giving the refation between skewness
v and kurtosis A for the distribution set ®. it is noted that the
relative positions of the curves for given values of ¥ can be
explamned as functions of A. Given two elements of $, say. 9,
and ¢, the curve for ¢, will be apove that for ¢, over that
range of values for which A of @, is larger than A of ¢,. Thus it
seems that a necessary but perhaps not sufficient condition for
minimizing the separation s that floods foilow a distribution
with A larger than that for LN for ¥ < 15 and larger than that
for P for ¥ IS, Two distributions, log Pearson [II and
Wakeby. not previously in the set ®. are considered beiow as
possibie explanations of the condition of separation.

Log Pearson Distribution

The random vanabie Y (flood in RS) s said to be log
Pearson type [ll (LP) distributed if Z = In (X = ») (flood in
LS) is distributed as Pearson tvpe [I1 (PIII). where the con-

stant » < x. The density furction of X is
fix) = [1/(x = »)]f(2) (n
where 1), the density function of Z, is

/
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TABLE 2. Flood Statistics in RS

a=10 n=20 n=30
Cs ki A C, Y A C, Y A

Region |

¥ 0.53 094 jd0 0.60 1.43 529 0.62 1.67 6.60

aiy) 24 0.73 1.61 0.27 088 3.36 027 096 463
Region 2

v 0.58 0.86 324 0.65 §.38 508 0.69 1.56 6.32

aiy) 0.23 0.74 1.60 0.22 0.90 345 0.22 100 469
Region 3

v 049 0.76 39 0.53 1.10 451 0.54 128 541

() 0.21 071 1 46 0.22 0.87 309 0.21 091 4.06
Region 3

¥y 0.41 0.59 2m 044 0.86 )75 045 108 470

a(y) 0.16 0.66 124 0.16 0.72 2.26 0.15 088 17
Region §

v 0.62 0.78 314 0.70 1.26 496 0.70 141 592

) 027 0.75 1.5 0.31 093 144 29 104 495
Region 6

y 063 034 KA ¥ 0.7 124 468 0.78 1.50 624

aiy) 034 0.7 1.54 040 089 32 043 114 5.51
Region 7

v 0.67 084 122 077 1.29 489 079 147 59

a(y) 0.32 077 1.59 0.39 094 342 0.36 .07 S.18
Region 8§

¥V 081 |00 345 094 1.54 5.76 098 1.97 807

a(y) 038 0.78 1.79 0.50 1.04 411 0.40 1.12 5%
Repron 9

v 046 0.53 bR 7] 0.5 0.713 3166 051 0.95 438

aiy) 024 076 1.28 0.25 0.86 234 .26 086 19
Reg:on 10

¥ 0.56 0.68 30 0.61 091 4.4 0.60 1.02 473

aiy) 034 0.78 1.38 042 099 3 043 1.01 419
Region 11

¥ 0.85 12 3ol 095 161 5.78 099 1.95 7.70

(¥} 0.35 0.76 1.78 039 094 164 043 1.06 40
Region 12

v 039 0.59 b3 | 042 088 369 042 0.93 397

aiy) 0.15 0.64 114 0.14 0.58 369 0.12 064 2.10
Region 13

V 041 057 .76 043 082 152 047 094 453

aiy) 0.21 0on 1.30 0.17 0.70 2.13 0.19 093 351
Region 14

V 04, 081 3.13 48 104 409 047 1.11 45

aiy) 020 069 142 0.16 072 241 0.15 0.69 2.56

i\ | :—c)"‘ [_(:—.-)] -
(z) m')( Saiuie exp - (2)

The density functions (x) and (z) are defined fora # Oand b
>0 Wa>MNthencs:<s» andm<x <= andifa<0,
then ~® € : S c.and0 < x <m wherem =y +¢ Thusifa
< 0. there is a ‘maximum certain flood’ of value m. The
moments and some properties of the distributions of X and Z
are given in Appendix A. It is noted that if @ > 0, then ¥ in
both RS and LS is positive: if @ < 0, then y in LS is negative,
but ¥ in RS may be positive or negative.

In Appendix A, tables of C,. v. and A in RS and LS are
given as functions of @ and b conditioned on ¢ =Oandm = 0,
for which v = = 1. Values of y and A in RS and LS depend only
upon @ and 5. In RS, as g becomes large. there are some vaiues
of y v th associated values of A larger than those for LN. For
example, witha = 0.15and b = 2.5. vy = 2.99(Table AS). and
A =2803(Table A7) Inthecaseof LN. XA x> 22 4fory = 2.99
‘Tabie 2). This is further illustrated in Table 6. Thus LP may
potentially minimize the condition of separation

In Figure 3 a portion of the curve defined by the points
(@lw). #w)), for PHI and N 1s shown. The volues of dtw) and

dlw) were onginaily interpreted as being in RS [Matalas et al..
1975]. However, they also can be interpreted as being in LS,
where in LS the distibution is PIII. Supenmposed in Figure 3
are the points (| !, #(y}) in LS for each of the regions for n =
10. All but one of the regional points (region 12) lie above the
N-PII curve. indicating that in LS. historical floods do not
accord well with PIII or N.

Values of dfw) and #(w) in RS derived from 30,000 LP
sequences for each of several vaiues of v are given in Table 7
The algorithm for generating LP sequences. involving ex-
ponentiation of the aigorithm for generating PIII sequences
[Johnk. 1964: Berman, 1971]. is described in Appendix A. The
points (glw), #Mw)) are shown in Figure 4 in relation to the LN
curve. From Figure 4 1t is seen that most of the LP points lie
very near the LN curve, [n the case where the LP ) is less than
the LN A for given values of ¥ the points lie below the LN
curve. Of those points for which the LP A is greater than the
LN A for qiven values of ¥. 6 lie on or slightlv above the LN
curve. and 2 somewhat below it. Thus LP offers a1 best only
marginal improvement over LN with respect to lessening the
condition of separation. Large kurtosis may be necessary. but
it 18 not sufficient for explaiming the conditon of separation.

-
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TABLE 3. Flood Statistics in LS

n=10 n=2 n =30
C, Y A Ce ¥ A ¥ Y A

Region |

¥y 0.06 0.19 260 007 031 ol 0.07 030 322

a(y) 0.02 0.63 0%4 0.02 0.57 1.10 002 0.53 1 .06
Region 2

V 0.07 ~0.01 154 0.07 0.07 288 008 0.01 29

aiv) 0.02 064 086 0.02 0.56 0.89 002 049 078
Region 3

v 006 -001 .59 006 =009 33 006 -0.11 3.28

aly) 004 0.66 090 0.04 0.66 1.13 0.04 0.58 1.08
Region 4

v 0.05 -0.08 255 006 ~-0.14 298 006 ~003 36

a(y) 0.02 064 084 0.02 0.60 1.19 0.02 062 1.33
Region §

¥ 009 =019 157 0.09 -0.23 316 0o -029 kR

aiy) 0.0§ 0.65 093 0.08 0.68 144 0.0 069 184
Region 6

V 010 -0.06 p A3 010 -008 294 0.11 -0.09 106

aiy) 0.07 069 0.87 0.0 0.6% 094 0.08 0.66 0.90
Region 7

v 009 —0lie 260 0.10 -017 297 0.10 =021 i

aiy) 0.10 09 094 0.07 0.63 1.08 0.10 0.66 1.38
Region §

v 0.12 =017 249 0.13 -0.18 284 0.13 -0.18 302

aiy) 0086 w0l 07 008 0.56 0.97 0.08 0.51 0.9%
Region 9

¥ 007 =0.16 2.50 007 =029 298 0.07 -0.24 34

aiy) 0.03 0.63 0.8 0.03 0.62 116 003 0.59 1.23
Region 10

¥ .10 -0.14 247 0.10 =034 109 0.10 -040 138

aiy) 0.06 0.62 0.89 0.06 067 1.21 0.0 0.57 1.35
Region |1

¥ 013 0.01 2.53 0.13 -0.04 286 013 =004 im

aly) 0.08 0.68 097 0.07 064 098 0.07 0.57 1.28
Region 12

¥ 0.05 =002 144 0.05 0.04 2.65 008 =004 281

) 0.02 0.57 78 0.02 0.47 0.6S 0.02 0.57 069
Region 13

v -006 -00I 240 L =002 263 0.07 -0.14 pivg)

) 0.04 0.63 083 003 0.51 0 003 0.46 0.70
Region 14

¥ 0.06 012 2.52 0.06 0.06 178 0.06 0.01 283

Fiy) 0.03 0.62 %6 002 G.56 002 049 0.67

TABLE 4 Proportion Q ) of Estimates of ¥y in RS and _S of Like and Op)osite Signs

Value Region

of -

n 1 2 3 4 s 6 4 N 9 10 | 12 3 14

0 0 NS 048 048 037 045 041 038 036 044 048 050 052 0.9

0 071 047 041 043 031 043 034 034 036 026 046 052 048 0352

0 074 030 03F 049 028 043 028 037 033 027 040 043 038 0353

10 010 014 042 01° i3 012 014 009 024 019 006 018 049 0912

0 002 002 004 0411 007 005 006 002 021 044 002 007 007 008

0 001 001 a0 001 002 0064 003 001 000 007 000 006 006 003

10 030 035 040 036 050 043 04% 053 040 0237 nNas o7 °29 029

0 02T 032 035 046 062 032 060 064 043 0K 0352 041 045 043

0 025 049 06l 050 OO0 D55 069 062 057 G686 0A0 051 056 044

For ¢J (= =1 no cases were observed, 0 ," nao

. ~ )



906 LANDWEHR ET AL.. FLOOD STATISTICS

2
H
&
<
oak
i
,L L 1 L 1 I 1 i 1 L
9 02 04 06 08 10 12 14 18 1.8 20

Mean Skew. y n RS

Fig. 2. Mean skew v versus standard deviation of skew, diy), for 2 = 10: histor:zal and simulated data in RS [see Matalas

et al.,

Although they are not shown. similar results in LS and RS
were obtained for n = 20 and 30.

W Leby Distribution

Following H. A. Thomas (personal communication, 1976),
the random variabie X is said to be distributed as Wakeby
(WA of

x=m+a[! =(1=FP]-cll -1 =F)9 3)

where £ = Fix) = P[X < x] and x 2 m. The moments and
some properties of X are given in Appendix B. Also in Appen-
dix B. tables are given for values of the coefficients of skewness
and kurtosis for various values of (c/a). b. and 4, as well as
values of the coeffictent of variaiion conditioned on m = 0.
(Note that the ratio (¢ @) 1s used rather than individual vaiues
of ¢ and a. to allow for concise tabular presentation.)
Houghton [1977] has developed a techmique for fitting WA
to observed seyuences and has shown that WA can account for
the condition of separation. Thus WA offers an alternatve to
accounting for the condition of separation by the mixing of
values of y within a region as suggested by 'Vallis er al. [1977).
However, all WA's do not account for the condition of separa-
tion evei, «f for a given value of v, A is larger than that for LN.
Exploratory work has indicated that for given values of .
where A for WA s larger than that for LN, the condition of

1975).

separation may be accounted for by WA with b > | but not
with & < L. In Appendix B it is shown thar ifa, ¢, andd > 0
and 0 < b < |, then the density function of WA monotonicaily
decreases with .

In Table 8 the values of 4(w) and #(w) for estimates of y in
RS based on 10,000 WA sequences of length n = 10 are given
for selected values of b and 4 and for (¢c/a) = Switha = |. The
algorithm for generating WA sequznces is given in Appendix
B. Also in Table 8 the values of ¥ and A corresponding to those
of (¢/a), b, and 4 are given. For each value of y. A is larger
than that for LN. From F.gure 5, showing the points (i{w),
#w)) relative to the LN curve, it is noted that those points
conditioned on & = 8 lie above the LN curve, whereas those
conditioned on b = 0.4 lie below it. Thus for a given value of ¥,
A larger than that .or LN s not sufficient to account for the
condition of separation.

A WA witha = 1.b=16.c=5 andd = 0.19 can be
transformed so that 4[X1 = It “ana ofX] = 660, i.e. C,[X] =
0.66. Estimates of C,|X] derived from 10,000 sequences of
length n = 10 have nean 0.55 and standard deviation 0.20,
which agree closciy with the mean and standard deviation of
estimates ui ¢ [X] for region | (see Table 2). Furthermore. in
RS for n = 10 this WA yields estimates of y with @(w) = 0.95
and #w) = 0.75, which are in close agreement with y = |, 94
and a{y) = 0.73 for region |. The corresponding WA values of

TABLE 5. Values of Skewness y ans Kurtosis A for Elements of $

Value of A
Value
of ¥ 8] N G LN Pl w P
0 'R 3 2.7
t 3 1.00 27T
L 345 338 3.03
e 190 3,73 140
| 453 450 416
14 54 5.9 49¢ 462
pAsl .78 6.00 573
2 10.86 900 900
3 2240 16 .30 176 20.72
4 410 2700 30 60 44 67
5 68 26 40 .50 48 28 9% 40
10 187 7% 153.00 2IR4] 4
15 1139.73 140 .50 4673 .

* Here A does not exist
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TABLE 4 Selected Values for y and A for LP in RS and LS and LN n RS

LP
Parameter Vaiues LS RS LN inRS
a b ¥ A ¥ A Y A

-0.10 18 ~0.52 340 0.5% 321 0.%0 345
~0.15 Is -0.52 340 1 04 441 1.00 4583

0.0 B 100 430 1.08 482

0.09 10 063 160 1.93 11.06 200 10 86
-0.08 4 -1.00 430 204 796

0.0i 1 200 900 206 950

0.14 5 039 420 284 23.60 100 240

0.12 20 045 330 3n 43142 400 41.00

0.1% 3 .18 500 181 S0.19

0.16 10 063 180 35§ 8241 500 68 26

0.20 | .00 900 465 7180

0.24 1 200 900 619 46713 1000 8778

Q.16 20 045 3130 82 S09 47

Note that if X is distributed as LN, then log X 15 descributed as N with y = Oand A = 3

vy and A are 395 and 31 94, respecuively. From Tabie 5 it is
noted that A = 51.94 is larger than A = 41 for LN withy = 4
and hence may satisfy the condition of separation. For region
| the ¥ mixing algorithm [Wallis et al.. 1977) provided a
regionai value of y = 4.5, which is sinular to that of the
aforementioned WA. Thus both the WA and the mixing ai-
gorithm suggest that for floods, ¥ is large. at least for region |.

ymRSand LS

It was noted above that historical lood sequences vieided
estimates of ¥ which tended to be positive in RS and negative
in LS. It was further noted that if X 1s distributed as LP, then ¥
may be positive in RS and negative 1 LS. But if y in LS is
negative, then Y distributed as LP is bounded above. Other
distributions, which are unbounded above. may be character-
ized by positive ¥ in RS and negative ¥ in LS. This point is
illustrated below.

Consider the case where X s distributed as Weibull. The
density function of X is

v |
- 8- - b
f'(xb=£(" M) exp[-(" M)J 4)
a a a

wherep > 0. 1fa - V(< 0), then mn RS, y > 0(< 0), an m
denotes the lower {upper) bound. From the moments of Y,
given in Appendix , with @ > 0. m is defined as

|
o.7r . o

o X1 + 1/ b)
[T+ 2/6) - TX1 = LB ®

= ulX)] ~ o{XHb) (5)

m = uiX] -

where u[X] and #[X) denote the mean and standard deviation
of X If C,[X] = =[X] w[X] = #"'(b). thenm = 0. and if C,[X]
< #-'{b), then n* > 0. It is mathemaucally possible, but not
physically reasonable, to have m < 0, in whic. case C.[X] > #~*
(b).

To examine the effect of sample size # on the relation be-
tween the skews in RS and LS as a funcuion of the lower bound
m in RS, Monte Carlo experiments were conducted. To gener-
ate W sequences with @ > 0 (y > 0 in RS). the vanate x was
expressed as

x=m+ ag[=u.. 1= u)* (6}

where u = Fix) = [.*flx) dx is distributed umiformly on the
interval [0, |]. For convemence, u(x ) wos “2t equal to i1000. As
previously defined. d(w) represents the mean of estimates of
skew denived from simulated scquences. Values of diw) for
estimates of y[Z], where Z = |6 (X), are given in Tables 9 ard
10 for y[X] = $tb = 2.77)and y{X] = 2(k = 1), respectively.
The values of d(w) were obtained from 10,000 sequences of
length n = 10, 20, and 30 and from |') sequences i length n =

-
; .
> .
HEE o pe
3 . .
3 L Y »0 Ll
a 0.8+
é “‘T eIz \91
3 N
l L 1 i
°”o 2.08 0.1 0.118 0.2

Meon Skew |7, n LS

Fig. 3. Mean skew 7 versus standard deviation of skew, #(3 ). for n = [0: histonical and simulated PlIl data in LS
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TABLE 7. Mean uiw) and Standard Dewiation #w) of Estimates
of v in RS for 5000 Sequences of Length n = 10 Generated as LP
With Parameters g and b

+TABLE 8. Values of y, A. alw), and #w). w ® 5. in RS for WA
: Sequences of Length n = 10 and (c'a) = §

Value of 4
0.16 0.24 0.32
b= 040
5 299 5.52 3543
A 2378 346,28 .
W) 1.08 117 1.24
#w) 064 0.67 0.69
bh=4

¥ 291 578 3770
A 2449 404 46 .
pw) 0.7% 098 1.13
#Hw) 0.7 078 0.74

*Here A is not defined: see Appendix B.

a b wlw) )
LP Characterized by Smaller \ Than LN*®
-0.80 4 I.18 0.6!
~0.15 15 0.56 058
-0.10 15 0.30 0.5
001 4 0.54 060
0.01 I 098 067
LP Charactenized by Larger A Than LN*
009 10 0.7 0.66
014 s 0.88 0.68
0.12 20 097 069
018 3 0.9% 068
020 ] 1.01 0.69
0.16 10 1.18 0.67
016 20 116 0.7
0.24 1 1.22 0.67

*For given values of y

10,000. From Tables 9 and 10 1t is noted that for m = 0, 4(w)is
negative for all n, ana as . increases, in which case C,[x]
decreases, 4w ) increases and becomes positive. Moreover, it is
noted that form = 0, d{«:/n = 10,000) = — .14 for both values
of ¥{X]. In Appendix C it is shown that if X is distributed as W
with ¥[X] > 0and m = 0, then Z = In X is distributed as G
with y[Z] = =1.139 - -« for ail ¥[X] > 0. and thus i(w|2) —
-1.139 - asn—®

To assess the effect of A[X] on estimates of y(Z], where Z =
in X, with X unbounded above and distributed with y[X] > 0,
X was assumed to be distributed as WA Consider five random
variabies X,, - -+, X,, each distributed as WA with y[X] = 2
such that ALY,] < -+ < ALX,). The values of the WA parame-
tersa, b, ¢c,andd for X,, i = [, -+, 5, and the corresponding
values of y[X,] and A[X,] are given in Table || (see Appendix
B). Note that X, has y[X,] = 191 and A[X,] = 10.73 and
therefore X', is distributed approximately as LN (see Table 3).

Each X, was transformed to X" = o[X,']X, + u(X,’]. where
u[X,'] = 1000 for all i. Note that ¥[X,] = y[X.'] and A[X] =
ALX]. For %(Z], where Z,' = In X,". values of d(w) were

P
T

=]
@

determined for each X' based on 10,000 WA sequences of
lengths » = 10, 20, and 30 and 10 WA sequences of length n =
10,000. The values of d(w) are given in Tables [2-16 for X',
*-, Xy, respectively.

From Tabies 12 and 16 it is noted that for X," with m = 0,
alw) is negative for all /, and as m inceases and C,[X'] de-
creams. gfw) increases and becomes posiuve. To this extent,
X' distributed as WA behaves as though it were distributed as
W. The effect of increasing A[X,'] is that for given values of
wlX,'], C.[X/], and y[X)'], 4(w) decreases and becomes nega-
uve. The tables illustrate that although ¥[Z,'], approximated
by alw) with # = 0,000, may be positive, Z(w) with n smail
may be negative but will bscome positive and approach ¥(Z,')
a8 4 - ®,

If X 1s unbounded above and distributed with y[X] > 0, then
Z = In X distributed with ¥[Z) < 0 is realizable. It does not
follow that this is so for all such Y. If X is distributed as LN
with ¥[X] > 0, then Z = In x is distributed with y[Z] 2 0 form
2 0. Thus if X distributed as WA is distributed approximately
@ ', asinthe case of X', the sampling properties of Z = In
X do not accord with those where Y is indeed distributed as
LN. In general, the value of y[Z] depends upon C.[X]. y[X].

and A[X]. Estimates of y[Z] are in expectation dependent upon

o
-
= e

sid Dev of Shew & {w). »n RS
)
o
T
\

- L7

O= = LP characterzad by smaller A
than LN for given voives of Y

X~ = (P characterized by larger A

02
than (N for given values of Y
[ | - . 0 ! o i ! . ] - | 1 !
0 0.2 04 0s 0.8 1.0 1.2 14 16 18 20

Mean Skew 4 (@) n RS

Fig. 4 Meun skew dlw) versus standard deviauon of skew, dfw), for n = 10: simulated LN and LP sequence in RS
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Meon Shew iy n RS

Fig. 5. Mean skew diw) versus standard deviation of skew, #{w). for
n = |0 simulated LN and WA data in RS.

n as well as C.[X], ¥[X]. and ¥[X]. Thus X bounded above 15
not a necessary condition for y[Z] < 0 to be realized.

REGIONAL SKEW Maps

The biases and large sampling errors inherent in estimates of
y[X] from historical flood sequences have led the U.S Water
Resources Council [1976] 1o suggest that if n < 100, the use of
regional skew maps is preferable to the esumate of y[X] ob-
tainabie from using oniy the specific record. In parucular, the
Counvil suggested the construction of regional skew maps in
LS. However, since historical records in the United States are
almost always less than 100 years, the Water Resources Coun-
cil is effectively advocaung the use of regional skew maps at all
sites.

The above discussions indicate that the usefulness of re-
gional skew maps in LS is questionable. It was noted that y(Z)]
is not simpiy related to y{X] but depends upon C,[X], A(X],
and the distnibution of X as well. Thus it s difficult to infer
properties of X from those of Z without considerable know!-
edge about the distribution of X and its sampling character-
1SLCs.

A regional skew map consists of a set of contours of equi-
skew, smoothing out the vanability ir the esumates of skew at
a large number of sites in the region. Quite similar regional
maps in LS may be realized whether y{X] is a constant for all
sites it @ region or varies among the sites, Bui even if distinctly
different LS maps were realized. 1t would be difficuit to deter-
mine if a particular LS map was generated by constant or
varying values of ¥{X']. Given only the estimates of ¥{Z] at the
various sites, little can be said with confidence about y[{X] or

TABLE 9. Values of giw) for Estimates of y(Z!

;‘d‘

C, X LS n=10 a=20 n=3 a= 0000
0.39 0 -0.5i -0.73 -0 83 -1.14
0 130 ~0.41 ~-0.%6 =061 =0.75
0.29 260 -0.31 ~0.42 ~0.4% -0 53
0.24 390 -0.23 =010 ~).33 -0.37
0.19 510 ~Q.15 -0.1% -0.20 =0.23
014 a0 -0.07 -0.09 -{.10 -0.08
0.09 0 0.01 0.0l 0.02 0.04

X 15 disiributed as W with a{X| = 100 and v{X] = 1 ¢h = 27T

TABLE 10. Vaiues of giw) for Estimates of y(Z)

-

slw)

C. (X} m n=10 n=20 a=30 a=10000
! 0 -0.52 -0.74 -083 =114
09 100 ~0.10 -0 11 =011 =011
08 200 0.09 013 014 017
07 00 028 0.3 033 018
06 400 0.37 0.46 049 058
0s S00 048 0% 0.63 073
04 600 0.58 073 078 090
03 00 0.66 088 092 1.07
0.2 800 0.7 1.00 1.08 1.29

X is distributed as W with «[X] = 1000 and ¥[X] = 2 (b = |),

v{Z)., however smooth o1 rugged the contours of the estimates
of %{Z] may be.

Constder the case where X s distributed as W with y[X] > 0
and m = 0. For a hypothetical region, depicted in Figure 6,
there is a north 10 south flowing stream fed by first-order
tributaries flowing east to west. One of three hydrologies 1s
assumed to exist, where the hyvdrologies are as follows Fou
hydrology | (HJ, y{X] = 2.5 at all sites. For hydrology 2 (H,),
v[X] decreases from 4 to | in a north to south direction butis a
constant along any tributary. For hydriodogy 3 (H, ), y[X] does
not vary {rom one tributary to another, but along any tn-
butary, y[X] decreases from 4 to | in the downstream direc-
tion. Thus for each hydrology the mean regional skew in RS 1s
2.5

The regional skew maps in RS and LS for the three hydrol-
ogies are depicted in Figure 7. It is noted that aithough the
skew contours in RS are disunctly different for the three
hydrologies. the contours in LS are idenucal. Thus given the
LS regional skew map. the RS contours cannot be uniquely
specified. Even if it 1s known that ¥ s distributed as W and a
perfect regional skew map in LS is available, the contours in
RS still cannot be uniquely inferred.

For the hypothetical region, consider a fourth hydrology
which is defined as follows. For hydrology 4 (H,), X s distrib-
uted as WA with y[X] = 2 and o{X] = 61 at all sites, where X
= X, in the above WA discussions. Along anv tributary, m
increases in the downstream direction from 0 to 100. Con-
sequently, «[X] increases in the downstream: direchon from
100 to 680.

In Figure 8 the regional skew map in RS is shown in relation
to LS maps based on expected values of estimates of ¥[Z] for
three cases: (1) # = 10 at ail sites, (2) # increases along each
tributary in the downstream direction from 10 to 30.and (3)n
= = 4t all sies. Expected values of estimates of y[Z] foran = =
are approximated by those for 2 = 10.000.

From Figure 5 it is noted that the skew contours are dis-

TABLE 1. Charactenstics of ¥, Distributed as WA

i a h g d yiX,] ALY
I I ! b 0.12 1.91 073
: | i.5 P 0.7 196 15.14
3 i 4 2.5 0.17 200 18.45
4 i 55 .28 o 202 3377
5 1 3 083 023 2,08 6778

- -~
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TABLE 12, Values of a(w) for Estimates of v[Z,']

TABLE 14 Values of i(w) for Estimates of y(Z,']

wlw) ulw)

Ce Xy} m n=10 n=20 a=3 n= 10000 C. X)) m =10 n=20 n=30 a=10000
087 0 ~0.61 -087 -0.9% -1.32 0.61 0 -0.7 ~1.16 -1.36 =200
07 15 -023 =026 ~0.26 -0.27 0.51 164 ~0.44 -0.57 ~0.61 -0 66
067 236 -0.03 -0.01 000 0.03 041 328 -0.24 -0.26 -0.26 ~0.21
057 345 0.13 018 0.20 0.28 0.31 491 -0.06 ~0.01 0.02 016
047 460 .26 0314 037 0,45 021 657 0.10 0.22 028 0.50
037 578 0.37 048 054 0.66 0.11 821 0.2s n44 0.58 1.03
027 690 049 0.64 070 088 0.09 985 0.40 0.68 086 199
017 ROS 0.38 078 088 L1l
0 920 0.70 096 107 | 4% Ay s distributed as WA with u[X,’) = 1000 and y[X,'] = 2.06.

X' is distributed as WA with »(X,'] = 1000 and y[X'] = 191

unctly different in RS and LS. Moreover, in LS the contours
vary considerably with a, though their general structures are
the same. Thus # fimte and vanable from site to site adds
confusion to the already confusing task of inferring the RS
skews from the LS skews or for that matter inferring the LS
contour that would apply with n = ®

For the same hypotheucal region, consider a fifth and a
sixth hydrology defined as follows. For hydrology 5 (H,), X
with lower bound equal 0 zero is distributed as LP with a =
=1 and b = 13 such that at all sites, y[X] = 0.55 and v[Z] =
=0.52. For hydrology 6 (H,), X with lower bound equal to | 1s
distributed as LP with @ = 0,01 and b = 25 such that at all
sites, ¥[X'] = 0.56 and ¥(Z] = 0.40.

For H, and H, the regional skew maps in RS are very nearly
.denuical, but in LS they are distinctly different (see Figure 9).
Thus with X distributed as LP, inference problems are no less
confusing than gy are with X distributed differentiy.

Summary anp CoNCLISIONS

Flood statistics in both real space, Y, and log space. Z = In
X . were assessed with respect to specific distribution functions.
Based on a partitioning of the United States into 14 regiors,
the mean ¥ and standard deviation #(y) of estimates of y[X]
derived from available lood sequences of length n witan a
region were compared with the mean g(w) and standard devia-
ton #lw) of esuimates of y(X] derived from Monte Carlo
experi.aents conditioned on specific distribution functions.
For several well-known distribution functions defined by three
or fewer parameters, Matalas et al. [1975] showed that in real
space there exists, for each region, what was called a condition
of separation; that is, for ¥ = a(w), #(y) > #(w). Among the
distribution functions the condition of separation was less
pronounced for the log normal distribution LN and for the
Pareto distribution P at the higher values of y[X].

TABLE 13, Values of aiw) for Estimates of y{Z/]

A.NA})

C. X3 m n=10 n=20 n=130 a=10000
0.78% 0 ~0.69 ~-0.99 =) 12 =1.52
068 128 -0.33 ~-0.39 ~0.40 -0.4]
0.58 37 ~0.13 -0.12 -0.11 -0.09
048 388 R 008 0.10 0.17
0.38% $13 047 0.26 029 038
028 ha? 0.29 0.4l 047 065
0.i% 770 048 0.58 0.67 0.9%
008 499 0.52 0.7% 0 %6 1.33

By means of Monte Cario experiments, Matalas et al [1975)
showed that the condition of separation can be explained
neither by the small number of historical fluod sequences
relative to the very large number of generated sequences condi-
tioned on the specific distnibution functions nor by autocorre-
lation. Wallis et al. [1977] noted that cross correlation cannot
explain the condition of separation but that separation can be
accounted for both by spatal mixing of values of y[X] within a
ragion and by nonstationanty in y[X).

Analysis of historical flood data in addition to further
Monte Carlo experiments in real space (RS) and log space
(LS) led to the following conclusions.

1. In RS, esumates of y[X] derived from flood sequences
are dominantly positive and hecome more so as n increases,
whereas in LS. esumates of y(Z] are dominantly negative and
become more 5o as n increases for most of the U.S. regions.

2. The log Pearson type Il distribution (LP), recom-
mended by the LS. Water Resources Council [1976] for use by
all federa! agencies in conducting flood frequency studies, can
accommodate ¥(X] > 0 and ¥(Z] < 0. However, if ¥[(Z] <0, X
is bounded above regardless of the sign of y[X].

3 The LP distribution is unlikely to explain the condition
of separation, since it fails to do so for representative parame-
ter values of the distribution.

4. In LS, all but one of the 14 regional points (y, a(y)) lie
above the dlw) versus #(w) curve for the Pearson type Ill
distribution (PLI1), indics ing that the condition of separation
cannot be accounted for by LP.

3. For a distiibution to yield a less pronounced condition
of separation relative to LN it is apparently necessary but not
sufficient that for a given value of ¥[X] the distnibution should
have a value of A[X'] larger than that for LN.

6. Although for certaun LP. A[X] ic larger than that for u N
for a given value of y[X], the condition of separation s only
marginally less pronounced than that for LN,

7. Houghton [1977] has shown that the Wakeby distribu-
tion (WA), defined as

X = ¥ ol = {1 =] = o) ~ (I -~ F)")

TABLE [£  Values of aiw) for Estimates of v{Z,']

A-Mu')

C.[XJ] m n=10 n=20 =30 a=10000
.49 0 ~0.83 -{.35 ~1.61 -~ 261
0.39 20 -0 .55 ~0.76 -0 .82 -093
0.29 )8 ~0.18 ~0 4} -0.42 -0.36
0.19 a7 -016 -9.12 ~00% 614
009 5810 0.01 013 024 016

Xy s distnbuted s WA with «(X,'] = 1000 and v{X,] = 1.96

X s distributed as WA with u (X, ] = 1000 and (X, ] = 2. 2.4
! r \!
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TABLE 16, Values of aiw) for Estimates of v[Z,']

wlw)

(X)) m n =10 n=20 n=30 n=10000
0.40 0 -0.82 -1 a4 -1.78 ~3.28
030 248 -0 §7 -0.8% =097 el 16
0.20 495 -0.36 -0 48 -0.51 041
010 743 -0.17 -0.18 -0.10 0on
004 990 0.00 0.7 0.%0 134

X, is distributed as WA with u[X,] = 1000 and y[X," = 2.08.

where F = Flx) = PIX < x|, can explain the condition of
separation. Among those WA's where A[X] is larger than that
for LN for a given value of y(X] it seems that the condition of
separation can be explained with 5 > | but not with b < |
when g, b, ¢, and d > 0.

8. WA offers an aiternative to spatial mixing of values of
vlX] within a region as an explanation for the condition of
separation. A particular WA yielding values of giw) and #(w)
in close agreement with ¥ and a(y) for region | has y[X] =3 95,
This 1s ciose to the value 4.5 obtained by Wailis et al. [1977) by
spatial miung of vaiues of y[X] within region | conditioned on
LN, Whether WA and spaual mixing of y[X] would yield
results in close agreement for the other regions remains to be
determined.

9. Monte Cario zv~.nments with WA indicate that for a
given vaiue of ¥{X] > 0. ¥[{Z] < 0 is realizable. For given
values of u[X], C.[X], and ¥[X] the expected value diw) of
estimates of y[Z] decreases as ALY] increases.

10. If X is unbounded above and distributed with y{X] >
0, then y(Z) may be negative, particularly if m, the lower
bound on X, i1s small. If ¥[Z] < 0 with m small, then ¥(Z] will
ncrease and become positive as m increases. Thus the property
of ¥[X] > 0 but y[Z] < 0 is realizable with X unbounded
above. However, X would be bounded above if it were distnb-
uted as LP.

I1. From values of ¥[Z] it is difficult to infer y[X]. Dis-
tnctly different y(X] contours may give nise to identical v(Z]
contours and vice versa. Thus, in general, the skew map in RS
cannot be uniquely inferred from that in LS

12, With small sampies it 15 difficult to infer v{X] from
estimates of y[.X], and these difficulties are only compounded
by attempting inference from estumates of y{Z].

FR—
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Fig &
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13, The construction ead use of regional skew naps are
most likely to be counterproductive.

APPENDIX A: COMMENTS ON THE LOG PEARSON
Tyee i1l DisTRIBUTION
Defimition

Let v be aconstant and X > » a “andom vanable distributed
as log Pearson type U1 (LP), such that Z, defined as

Z=IniX -»)

is a random variable distributed as Pearson type 11 (Pill). The
probability density function of X can be written as

(Al)

fix) = [Vix = »]flz) (A2)
where
1) al T(h) a - a (A3
laj >0
The ranges of variauon of X and Z are
a>( Erpsxs >
a<0 pSxSE vy (Ad)
a> 0 cs 28 =
a<0 - 28¢

When g > 0, there exists a lower bound m on the values of x

such that
ma ¢ +y (AS)

and x = m when z = ¢. Conversely, when a < 0, m 1s an upper
bound on x; again, x = mwhenz = ¢. [fe =0, thenm = | +»,
and ifboth¢ = Qand v = 0, thenm = |,

Moments

Consider only the case where @ > 0. By defimition, the kth-
order moment E[X™"] is
E[X*] =f x*fix)dx (A6)

50 that

fx = 3 ( l:)u"‘t“ (1 - iay

(-8

(A7)

where(1 = ig) > Ofori = 0,1, -, k. Thusthekth moment of
X exists only if @ < 1/k. For Z.

E(Z*) -f 2f(z) dz (AS)
50 that
E[z* '—l- i(k)c‘a‘"rlk'h-n (A9)
b)) S\ ¢ g

exists for all @ # 0. The mean [ |, the standard deviation
#l |, and the coefficients of skewness, v( |, kurtosis, A[ |,
and variation. C,[ |, for X and Z are defined in Tabie A !

It 1s noted that if 2 2 [, ke, then the moments of order & 2 &,
are not defined for X, although the moments of order k exist
for Z 7 k. Thus ifa 2 §. ALX) is not defined: ifa 2 §, ¥[X] s not
detined: if @ 2 4 #[X] 15 not defined: and if @ 2 |, u[X] 15 not
defined.
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Fig. 9 Skew maps in RS and LS for hypothetical region: X distnib-

uted as LP

Consider the case where g < 0. The equations for the mo-
ments of X and Z are the same as those (or the case wherea
0. However, sincek 2 0,(1 = ka) 2 1 fora < 0. Therefore il a
< 0, then all moments, for both X and Z, are defined.

Tables: Coefficients of Variation,
Skew. and Kurtosis

Tables A2-A7 present vaiues for the coetficients of vana-
tion. skew, and kurtosis foraand bwithc = Dandm = 0. The
following observations are made from Tables A2 and A3 with
respect to C,[ | (1) As b increases, C.[Z] approaches 0. (2)
For agiven value of b. C, [X] increases as @/ increases () For
a given value of a, C,[X] increases as v(Z]| decreases

The following observations are made from Tables Ad and
AS with respect to yi . (1) As b increases. ¥(Z] approaches
0. (2, For a given value of b, that is, for a given ¥(Z], y[X]
increases as a! increases. (3)If @ > 0, then y[X] > 0.Givena
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increases (b* decreases). (4) If @ < 0, then y[X] may be either
positive or negative. However, given b = b*. e for ¥[Z] =+*.
there exists an @ = a* < O such that ¥[X] = 0. if a = a*
and b < 5%, re., for y[Z] < ¥*. then y[X] < 0: conversely, if
v{Z]) > ¥*. then ¥[X] > 0. Furthermore. as ¥* decreases in
value, the associated @® < 0 also decreases.

Thus suppose that floods X are distributed as LP If ¥ has
no upper bound, then @ must be positive, so that the skews of
both X and Z are positive. Alternatively, if there is a "maxi-
mum certain Aood,” so that X is bounded above, then a and
v[Z] are negative, aithough y[X] may be posiiive or negative.
Conversely, if ¥1Z] > 0. then ¥[X] > 0. and floods are un-
bounded above in real space. However, if y{z] < 0. then (Y]
may be positive, zero. or negative, but there s 4 maximum
certain flood in both log and real space.

The following observations are made from Tables A6 and
A7 with respect to the ¥[ ] (1} As b increases, AZ] ap-
proaches 3 (2) For agiven vaiue of a. there exisis someb = b*,
that is, some A[Z] = A®, such that A[X] is a mmimum. Further-
more, 48 @l increases, A* increases, and 4* decreases. (3} For
a < 0 and any given b, that is, A[Z], A[X] decreases as a
decreases. (4) For @ > 0 and any given b, that is, X[Z], A[X]
increases 1o mfinity as @ approaches 0.23 and decreases ¢< g
approaches 0.

From Tables AS and A7. one can choose pairs of a
and b values such that for X distnibuted as LP defined by these
parameters, A[X] > A[Y], even though ¥X] s y[¥) for ¥
distributed as log normal.

Log Peuarson Random Variables

To generate random numbers which are distributed as LP,
the following algorithm (Johnk, (964; Berman, 1971} can be
used. Let

»
X -exp“:c—a[— In H Uy - Blnu]} + (AID)
LA
where u ~ uniform (L) on [0, |]. [A] denotes the greatest
integer less than or equal to b, and 8 s defined as follows. (1)
Setr=hb—[blands= | =r= | = b+ [b].(2)Generate u,,
~ U0, N (3)Set ¢ =w'"and§ = ' * (HIT~§> 1, return
10 step 2. otherwise, proceed as follows. (5)Set B = (I + §).
If b is an integer, 8 = 0, and theretore

e
n“'_l']'” (ALL)

LA

r
X = exp nc*a'L— In

that 1s,

-

[

= g* > 0. y[X] 15 a minimum for some b = 4*, ie.. for some ¢ 3 J'\
. x=expictal~ In { =y (AL}
¥[Z] = ¥*. As a increases in value, the associated y* also P L -g: “ll
TABLE Al Stausucal Properties of X Distributed as LP and Z Distributed as Pl

Praperty Definition

ulX] sl —ay”

alX] & = 2a)* = (] - a)*pt

YN L= 303" = M1 = ay () = 2ay " = X1 - ay*le ']

X1 Ml ~dar =Ml —ar = day el = ar ™ = 2ay" - Ml -a)®le Y]

C.1X) e = 2y ~(l =a)®F e =&l ~ a1

wlZ) ¢+ ab

sl a b

¥iZ} al.aih*

A[Z) 1-6p!

C.AZ) a' b ¢ = ab]
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TABLE A2 Coefficient of Vanation in RS (X) and LS (Z) for Log Pearson Distribution With m = O and ¢ = 0

C.X]
a= a= a= a= a= a= a= a= _ a= a=

b -2.00 -1.5 ~-1.00 -0.80 -0.50 -0.30 -0.i5 ~0.10 -0.0% -0.01 C.[2!
0.05 017 0.15 0.12 011 0.08 0.08 0.03 0.02 om 000 ~4.47
010 02s 0.21 0.17 018 011 0.07 004 003 002 0.00 -316
0.28 040 034 027 024 0.17 0.12 007 005 002 0.00 =200
0.7 0.74 0.63 049 042 0.30 020 011 008 004 0.01 ~LIS
100 0.89 0.75 0.58 0.50 0.3s 0" 013 0.9 0.08 0.01 - 1.00
200 1.50 1.20 0.88 074 0,52 04 0.19 0.13 0.07 0.01 -0.71
2.50 1.83 1.43 1.03 0.86 0.59 08 0.21 014 008 0.02 ~063
100 2.20 1.68 117 097 0.65 0.42 023 0.16 008 002 ~0.5%
3.5 2.61 1.94 1.32 1.08 0.71 0.46 028 0.17 009 0.02 -0.53
400 108 223 1.47 1.19 0.78 049 0.27 0.18 010 .02 -0.50
00 423 288 1.79 142 06,90 0.56 0.30 021 0.11 002 -0.45
10.00 1887 9.26 409 283 1.50 0.85 043 029 015 003 -0.32
15.00 82.13 K40 8.59 St 220 L} 0.54 036 r'9 004 -0.26
20.00 35708 86.73 17.73 %.9% 309 141 0.64 042 Vel 004 -0.2
25 00 ' 16470 644 1562 424 1.7 073 048 024 008 -0.20

*Greater than 999 99

If & < 1, then [b] = 0, so that [=dF/dx = |a] = F)*"' + cdl]l = Fy*'}-' (B2)
x=expic+al-8lnujl +v (Al3) IfF=0,thenx =m and [ = |/(ab + cd). Note that since [ 2

Equanion (A 11} presents an algorithm which is faster compu-
tationally than (A12). However, for b large it becomes impos-
sible to use (A11) 01 & computer, since the product of the u,
rapidly becomes too small to express on the machine. This
problem is avoided by using the sam of the logarithms rather
than the logarithm of the product of the u,.

APPENDIX B: CoMMENTS O8N WAKEBY DISTRIBUTION
Definttion

The Wakeby distribution (H. A. Thomas, persona  “rmmu-
micanon, 1976) 1s defined in the following manner. L. ' be a
random vanable such that

(Bl)

where F = Flx) = PLX < x) and x 2 m. The density function
= {(x) s defined as

x=m=+afl =(1=FF]=c{l -1 - F)

0 7 x,(ab + cd) 2 0. For F = | the vaiues of x and [ depend
upon the values of the parameters of the distribution, the
upper bound on x being either + = or (m + a - ¢). Further-
more, the definition of F precludes certain parameter combina-
tions, as is shown in Table BI.

Moments

The moments are definea »s E(X*] = [,'x* dF. where x is
given by (Bl1). E[X*] cannot be computed if d 2 |’k or if
b < ~1/k. since the integral would not be defined properly.
Thus ifd 2 L'k orif & £ —1/k, then the moments of order k
and higher do not exist. That is. the mean, u[x]. exists only if
d < | and b > ~1; the standard deviation, o[x]|, exists if d <
and 5 > -4 the coefficient of skew. y[x], exists if & < § and
b > ~¢; and the coeffictent of kurtosis, A(x], exists if d <  and
b > ~¢

To allow concise tabular presentation of these properties

TABLE A3, Coefficient of Vanation in RS (X) and LS (Z) for Log Pearson Distribution With m = O and ¢ = 0

.Y
aw- a=s as ae as a= as= a= ge 2=

A 0.01 0.08 0.09 0.10 0.15 0.18 02 024 028 0.32 c.(2)
008 0.00 0.01 002 0.02 0.04 .08 006 0.07 0.09 6.1 447
0.10 0.00 0.02 0.03 0.04 .06 2.07 009 0.10 0.13 016 316
0.25 0.01 0.03 0,08 006 0.09 011 014 0.16 0.20 0.25 200
078 0.01 008 009 0.10 0.15 0.19 0.28 029 0.36 045 118
10 0.01 0.08 0.10 0.1 0.18 0.23 0.29 033 042 0.53 1.00
10 0.04 0.07 014 0.16 0.26 0.32 0.42 048 062 0.8 0.71
250 G.02 008 016 0.18 0.29 0.36 048 0.55 0.71 093 0.63
100 0.02 0.0% 0.17 0.19 032 0.40 0s3 061 0.80 1.06 0.58
350 0.02 010 0.19 0.21 0.34 0.43 058 067 058 i18 033
400 0.02 .11 0.20 0.23 0,37 047 0.63 0.72 .96 131 0.50
5.00 0.02 .12 0.2 0.25 0.41 0.53 0.72 0 %3 1.i3 1.58 .45
10.00 0.03 0.17 0.22 036 0.6 0.80 114 136 24 338 032
1500 0.04 0.21 0. 40 0.45 0.78 108 1.57 1.96 327 546 0.26
2000 003 024 0.47 0.53 094 1.30 2.06 2.68 506 12,18 0.2
2500 0.08 0.2? 053 0.60 1.10 | 45 264 158 770 o3 &) 020

‘;\
N

£

G 2

P
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TABLE A4 Coefficient of Skew in RS (X) and LS (Z) for Log Pearson Distribution

¥ X
- a= a= as= a= ae- an a= W a=
b -2.00 -1.50 -1.00 -0 80 -0.50 -0.30 -0.15 -0.10 ~-0.0% -0.01 wZ)
0.05 -381 ~4.16 -4.70 -5.02 -§73 -6.50 -740 -181 ~8.32 ~§ 81 -8 94
010 -149 -278 ~317 -3141 ~194 ~4.51 -518 -549 -5 86 -6.22 -6.32
02§ -1.17 ~-1.38 ~1.69 -1.88 -2.27 -169 -318 -140 =167 ~193 ~4 00
07s 022 -0.02 -0.34 -n %2 ~{).88 -1.24 ~].64 - (.82 =204 -225 -2.3
1.00 064 036 -0.00 -019 -0.57 -093 -1.34 -1.52 -1.73 ~194 -2.00
2.00 2.1} 1.59 097 0.69 0.19 ~0.28 -0.70 ~0.90 =112 -1.38 -1.41
25 197 219 1.39 R 0.45 ~004 -0.52 -0.73 -097 -1.20 -1.26
10 1% 186 1.80 1.37 068 0.14 -0.38 -0.9 -0.88 -1.09 -1.15
150 5.12 160 223 1.70 0.90 0.30 -0.2% ~0.48 -0.78 -~ 1.00 -1.07
400 6.5 448 168 104 1Lt 044 -0.15 -0.39 ~0.66 -093 -1.00
$00 10.55§ 6.64 | 27 1.50 070 003 -0.23 ~0.53 -0.82 ~0.89
10.00 108.33 4281 1418 859 167 .78 0.62 024 -0.16 -0.5} -0.63
15.00 e 276.41 §1.30 239 698 3. 104 0.55 008 =040 ~0.52
2000 - * 187 98 66 91 12.70 403 141 079 020 -0.31 -045
2500 " » 692 40 18913 130 $58 1.76 1.00 03 -0.25 ~n 40

*Greater than 99999

(see Tables B1-B29 of the microfiche suppiement’), the param-
eter ¢ 1s expressed as a function of g 1.e.. ¢ = rag, wherer = ¢/a.
The defimition of WA as given in (Bl ) is rewritten as

x=m+aifl =1 =F°)=rfl =1 -FH} (BY

and the aforementioned stauistical properties are given in
Table B2

From Table B2 it is seen that the staustical properues are
functions of all four parameters a. b, A¢), and 4. Property u(X]
is also a function of m. However, if m = 0, then C,[X] = o[ X}
ulX]1s only a function of 5. 4. and r. Regardless of the value of
m, v[X] and A[X] are only functions of b, 4. and r.

If u[X). #[X]. and m are known, then a and b can be derived
explicitly as funcuons of ¢ and 4. Similarly, ¢ and 4 can he
derived explicitly as functions of @ and b plus u[X], #[X]. and

‘These tables are available with the enure articie on microtiche.
Order from American Geophysicai Union, 1909 K Street. N W,
Washington, D. C. 20006. Document W78-007, $1.00. Payment must
accompany order.

m a and ¢ can be ohtained as functions of b and d. given u|X],
a(X]. and m. However. given 4, ¢, a[X]. #[X], and m. explicit
expressions for b and 4 cannot be readily obtained.

The value of 7 is a function, explicitly, of m, a, b, and 4. as
well as just ¢ and @

¢ msa — [| — Fla)

e e T -1~ ()
so that if m = 0,
P d=Aal (B5)

| = [l = Fla)l*

Special Cases

Three special cases of the WA disiribution are highhighted,
ie.(l)a=0,(2)b= = and(3)c = 0. with not more than one
ol these conditions holding. C,(X], ¥[X], and A{X] for these
cases are given in Table B3.

Note that if & = 0, the distribution 1s equivalent to that of
case 1. and «f d = 0, it is ths same as case 3. If d = =, the

TABLE A% Coefficient of Skew in RS (X} and LS (2) for Log Pearson Distribution

wWX)
a= a= a= as= a= “ = a= a= a= a=

b om 0.05 009 010 0.15 0.1%8 022 024 0.28 032 W2\
0.08 309 978 0359 1083 12.3% 1369 16.25 18.15 24 86 5010 S
0.10 643 692 T4 172 %37 G 8% 11.76 1319 1825 1790 6.32
028 408 443 488 5.01 $34 6.5% 796 902 12.89 2929 400
075 b8 14 1.66 i 3 381 4.4 S A4 661 10 46 32.76 2.3
1.00 2.06 234 s 181 150 3.10 $37 A9 106l 19 60 200
200 | 4% .78 2.17 228 R 378 512 569 1356 1234 | 41
3.5 1.33 165 208 17 199 ) 553 6 ¢ 16 06 209 12} 1.26
300 1.23 1.58 | 9% 211 297 181 81 .73 1912 406.63 115
350 114 | 4% 193 207 299 3o~ 5.16 541 134 817.57 1.07
400 i.O8 1.43 1 %0 % R 401 6.58 9.2 28.95 -~ 1.00
s 0 9% 1.36 1. 86 2.02 3.12 428 T49 ) 44 90 » 039
10.00 074 1.24 1,93 2.16 108 6528 15.81 2. 562.20 o 063
15.00 064 1.24 2.12 2.42 5409 944 3608 11149 " » 0.52
2000 0.59 128 233 ikl 554 14 36 %R 33 ET » 048
25.00 0.36 .23 1.5 103 241 218 226.70 . . # 0.30

*Greater than 99999
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TABLE A6 Coefficient of Kurtosis in RS (¥) and LS (2) fur Log Pearson Distribution

AX)
a= a= a= a= a= a= a= a= a= a=

] ~-2.00 -1.50 ~-1.00 ~0.80 ~0.50 -0.30 -0.15 -0.10 ~0.08 ~-0.01 A2y
0.08 1N 2118 2740 RABL an 56.20 76.52 8741 102.12 118 16 12300
G.10 K42 0.7 13.38 1549 098 28.19 874 4490 52.08 60.47 6300
0.28 i 174 5.08 5.9 829 11.43 16.09 1861 22.06 25.85 27.00
0.78 1 66 1 66 190 218 R 414 6.09 119 873 10.46 11.00
100 214 1.87 1 8¢ 1.90 & 331 487 578 .07 8.54 9.00
200 7.56 5.06 y1s 2 218 233 14 n 459 5.66 600
2.50 135 819 4.52 146 242 128 285 in 411 508 540
100 2.76 12.87 638 462 182 23 2.68 3.09 i 470 5.00
3.50 w22 1983 888 610 334 .46 2.59 29 156 442 471
400 6358 3018 12.17 7.96 196 164 2.58 18 340 422 450
$.00 174.06 68,36 2228 13.23 $.53 310 254 2N 318 3o 420
10.00 5 * ige. M 134.66 a4 7.30 323 2 183 136 380
15.00 8 & . ¢ 94 90 15.712 44 32 282 318 340
2000 » . - 36778 32.10 598 wn 2.9 308 330
28500 . L 24 » . 6404 798 444 101 RRE ) 14

*Greater than 999 99

degenerate distribution, x = = 7 F > 0andx = mif F = 0,
resuits. However, if A = », the WA defimition: 1s aimost the
same as that in case |, except that g 1s included in the defin:tion
of the lower bound, Asa — 0, C,[X] for case 2 approaches that
of case 12 ¥(X] and ALY are always the same for (aese two
cases.

Since the C_[X], ¥[ Y], and A[X] for these three cases denote
bounds for WA statistical pioperties. they wie importzat for
tabular presentation of information about W A (see Tables B4-
B6).

Consider case | withm = 0Oand d > 0, hence ¢ > 0. The
range of X is from O (F = 0y to = (F = 1), and tne probability
density function (pdf)., 7 = JF 'dx, is

Hx) = -'-r—-i-] o (B6)
' chx ~ ¢
where
r - ia
Fix)= I-L-t—‘— (B7)
- “

for all 4 and f(x) is a monotonically decreasing function with
fl0) = | 'cd

Consider case 3 with m = 0 and b > 0. The range of x 15
irom Q(F = 0) o ¢ (F = 1), and the probability density
funcuon, [ = dF dx. 15

.f(x)-ﬁ(a-")““. (B%)

where

oo e
Flx) = | -("a") (B9)

If b = 1, then X is uniformly distributed. If 0 < 5 < |, then
flx) is a monotonically decreasing function with its maximal
value | ab at the lower bound, x = 0. However. if 5 > 1. then
f(x) 1s J shaped. approaching infinity at the upper bound of
X. Q.

Note that the definition of WA can be considered a combi-
nation of cases | and 3. Thus the value of the parameter b

TABLE A7 Coefficient of Kurtosis in RS (X) and LS (Z) for Log Pearson Distribution

ACX)

h 0.01 0.08 0.09 010

‘- a.
0.15 0.18 0.2 024 MZ)

005 12826 15467 19444 20767
010 8578 T9.62 10058 107 57
028 328 a0 4400 47 %6

078 1.5 14.62 1941 21.06
{00 940 12.13 1636 17.83
2.00 LR L) 1197 1328
250 576 1.78 1118 1247
100 34 o8 10.72 1203
380 S04 692 1043 11.79
400 482 668 16.26 11 .66
300 4.5 §. <7 10113 11.65
10060 a9 4 11.06 1345
100 L. ] 6.01 12.97 1662
2000 in0 6.2 1S an 2086
2500 353 633 1852 26.32

179 43870 90509 . 123.00

16285 23078 48429 » 63.00

7371 106.63 23530 4109 2700

495 $383 13998 41598 1100

30.50 4837 136.57 467.33 900
Ld

ay 4488 178.49 600
2503 46 90 A5 i £ a0
538 019 290 61 = 500
16 .06 491 3582 N 47
7 979 $22.10 . 450
04 BRR ) ’ ¢ 420
423 28217 > N 160
108 34 — " - 140
::‘!47 - - . _l 30
498 37 . . . o |

*Greater than 999 90
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TABLE Bl. Valid and Invalid Parameter Combinations for
Wakeby Distribution
Sign of Parameter Valid Distribution?

a b ¢ d Yes Maybe No
- . - - x

- - - - .

- - - - x
- - - - x
- - - - *

- . - - ‘

- + - - +

- - - - t

- - - > x

- - - - X
- - o - '

. = - - x
- - - -~ -

* - * = X
- - - - X

*Valiid if ab + cd > 0, 1.8, vaid pdf

+Valid if asterisked footnote holds and a > ¢

$Valid if asterisked footnote holds an either 6! < dl orc > a
when b = 4|

§Valid if asterisked footnote holds and either (81 > &l ora > ¢
when b = d|

strongly influences the shape of the distribution. fo<b< 1,
then the probability density function of X distributed as WA s
a monotonically decreasing function: if | < b, then flx) has a
mode at some value other than the lower bound.

Tabular Presentation of C.[X],
v[X], and A[X]

Tables B! -B29 of the microfiche supplem~nt present values
of C.[X] (with m = 0), y[X], and A[X] for0£d, 05 b5 =,
and 0 € r € = (¢ > 0). As was noted in the previous section,
special cases |-3 form the bounds on the values in these tables.
The following specific observations are also made.

i. Property u[X] eusts for0 s d < | and & > 0.

2. Property a[X] exists for 0 S d < 0.5 and b > 0.

3. Property y[¥] exists for0 s d < § (I)For0s b < 10,

917

4. Property A[X] exists for 0 < « < 025 and b > 0.

$ If rand 0 < 4 are heid constant and & is allowed to
increase, in general, (1) there exists a mimimum value for y[.X )
(2) there exist local minima for A[X], (3) the b value at which
the minimum skew occurs need not be the b at which the locai
minimum kurtoses occur, (4) as d increases for a given 7, the b
value at which the minimum skew occurs decreases (the same
is true if r decreases for a given &), (3) similarly. as & increases
for a given 7. the b values at which the local minimum kurtoses
occur decrease (the same is true if » decreases for a given d).
and (6) C,[X] decreases.

6. 11 r and 5 are fixed and d increases in value, in general, (1}
as 4 approaches §, y(X] approaches =, (2) A[X] increases, and
(3) C.[X] increases.

7. If b and d are fixed and r increases, (1) C,[X] increases.
(2) ¥[X] increases, and (3} A[X] decreases (0 3 mimimuin and
then increases.

E xtreme Points

To find the extreme points of ‘. that is. the values of x at
which the derivative of f vanishes. 47 dx is set equal t0 0, so
that

df _ablb - IX1 =~ F)*~* + cdl~d ~ IXI - 3 g .
dx (ab(l = Y + cdl = Fy*'P

(B10)

This will occur if the numerator is zero. and the numerator will
be zero if any one of the following three conditions holds: (1)
Fix) = 1.(2)Eitherab = Oor b = |, and enther «d = Oord =
— 1.(3)abh - IN1 = FyP-t=cdd+ |1 = FY* % thatis.

cdld = 1)

bl i ablb - 1)

(BiH

Since the roots of this equation should be real and since Fix) <
|. if an extreme point 1s to occur, then

¥[X] > 0.(2)For 1.0 < b < =, y[X]% 0. and as r decreases, cdld + 1) "
: > i P el 0 |B|-)
the negative skew region increases. abib - 1)
TABLE B2 Statistical Properties of X Di<tributed as WA
Property Definition
(] rd
siX) " ‘(lob.—l‘d)
)
5 rf - rbd L
o¥ T T =) T T -l - (T=bXl —aNl = b= d)
E[V ~ JEIVIE(VR - 2E 1]
*x1 21X
E[I] - SE[V]EIV] = 6EYVIE[MT] - 3E°(V]
ALY PO
¥ x ~atl =ry=m
E[V] a‘:(""\ ~iy z
-\ ! Tk -0~
4 F 4
496 09
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j TABLE B3, C,[X], ¥[X), and A[Y] for ¥ Distributed as WA Special Cases

| Case |, Case?2, Case ),
w a=10 b= = c=0
‘ ) 1 m=l =1 =-F)Y m+a~-cll =l -F)Y m+all =(1 =Fy
/

("(n 1 e | L0 ] ’L'"ﬂ 1 e

| m = 0) ("n -'24') (a-u) (’a'v?%wxn-n \l:'zb)
“-Fr 5:-3; 51—%’ (Lt 30P2{ —(1 2 B2 41+ b2

| ¥(x] {‘ - - 3= +2} {-A——,—r, ‘033‘1—15, —2}
‘|
J (=2 (1 -d)* | - | - dy* + 1+ b) 1 +h 1 = by

aal r {(‘r-&s"i‘rf%*‘?r:m-’} u_;m:{ i Bixs ks "}

If condition (B12) s sat .ied, then

B [‘.gd‘ I!]ltod
abld - 1)

F* = (B!13)

The first condition must be treated separately, since it results
in an indeterminate form for df ‘dx. Note that £ = | when x
attans its upper bound. If the second condition occurs, either
fix) 15 improperiy defired. or X 15 uniformly distnibuted and
has no extreme point. Therefore if condition (B12) is satisfied.
theie is generally only one finite value of x at which an extreme
point can occur, and that poirt is

it “[' (abib-l)

- c[l - (2%—:—%)4 M:l (B14)

Note that if @, ¢, and 4 > 0, then it is necessary (although not
sufficient) that 5 > 1 if (B12) is to be satisfied. If0) < 4 < | and
a, ¢.and d > 0. it can be shown that f(x) will be a monotonic-
ally decreasing function such that the maximum value of flx)
occurs at x = m, where f(m) = | /(ab + od). Letm < x, < x,,
then 0 = Fim) < Fix,) € Fix;) S |.Sinced >0, then| +d >

1. and
(= Fm)) "<l -Ax)]""" 5 [I - Rxy)]" "¢
(BIS)
)
Since0 < H < |, then =1 < b~ 1 <0, and
(1 = Am)P' s [l = Fx)l* s [l = Axy)) (B16)
so that since a. b, ¢.d > 0,
ab(l = Flm)P"* + cdl = Fim)} ¢
TABLE B4  Bounds on C,[X] Values for Fixed 4. ¢ > 0, and Y

Distributed as WA

'a
5 5 -
] \ =
|
? N | ee— 3ie ! —
SR |
) ' : I
C. lease e I_, '., case i}
. '
JOR———
¥ c 1
Cplcase ——
XE Joes not exist

S abfl = Fx,)P* + od[l = F(x,)]" "+

S ab{l = Fix)lP* + cdll - Flx)l” *  (B17)

but

fiX) = {ao(l = FY " + ed() - Py * '}
so that fim) 2 f(x,) 2 f(x,) when = € x, < x,
Inflection Poiats

If f(x) has inflection points, the second derivative of fix) = f
is zero at these points. The second derivative is

d*f/(dxy = [ab(l — FY~' + cd(l = F)*-1]-*
[(ab¥¥b = 12 - INI — Fy»-+
~ abcd(b* + & + 6bd + 3b ~ 3d - 2|1 ~ Fy 4+

+ (cdd + I X2d + 1Y = ;"% (B18)

For F to be defined properiy, only F values between 0 and | are
considered. Furthermore, uniess the sign of the second deriva-
tive changes at £, the value will not denote an inflection point.
The siope of f when F = 0, thatis, x = m, is

ablb = 1)~ cdld + 1)
(ab + cdy

Ifa b c and d > 0, so that ab + cd > 0, the following
conjecture is proposed. (1) If ablb — 1) < cdld + 1), then ['(m)
< 0,and ne inflection points exist. (2) If ab(h = 1) = cdld + 1),
then 7(m) = 0. and the extreme point occurs at x* = m. (3} If
abth = 1) 2 cd(d + 1), then "(m) = 0, and there exists at least
one inflection paint. (4) If 5 < |, then ["(m) < 0, [ is *J shaped’,
and there is no extreme point x*, although the peak occurs at
x=m.

df
— . =
dx fem = flm)

(B19)

TABLE BS  Bounds on y[X)] Values for Fixed 4. ¢ > 0. and ¥
Disiributed as WA
.\\l 3 .0 N
ol I S —
A5 e . —
: |
case X wvicase 1,2
" M l
e |
28
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TABLE B6.  Bounds on A[X] Values for Fixed 4. ¢ > 0. and X
Distnibuted as WA

g 1
;h - g B+ - i
kg F— 4
| [¥] vE ——— Aicase 1,2) —— :
l U ' |
[ 4 \{cose 3) A0 ilcase 1,2)
< w. ‘ l {
| { ] i
| & NE & o L (case 1,2) - !
NE -+ does not cxist

Wakeby Random Numbers

To generate random variahles distributed as WA, let
| = Fix) = u, where u is distributed uniformly on (0, 1). Then

x=m+all =)=l —u?) (B20)

Appenpix C COMMENTS ON THE WEIBULL DISTRIBUTION

Definttion

Let X be a random vanable distributed as Wetbull (W), so
that the probability deasity function of X is

- 4(52) e[ -(52)] e

where a| > Oand b > 0.

Moments
By definition, the moment of order &, E{X*], s

E[X*) =f i) dx (C2)

so that for X distributed as W,

.
e = 3 ( f)wa"“l’(k b= (€
-
where E[X*] < = v k 2 0.

The mean, a[X], standard deviation, #[X], and coefficients of
skewness, v[X], kurtosis, A[X]. and variation, C,[X], are given
in Tabie CI.

Define #bh) = C, '{X] when m = 0. It is noted that m. the
lower bound on X, can be defined as

m = uiX) = al(l = LUb) = u[X] — o{X|Hb) (C4)
It is also noted that the sign of ¥[X'] is the same as that of a.

Weibull Random Numbers

To generate Weibuil-distributed random numbers. the fol-
lowing algorithm can be used:

x=m=+al-ntl =)' {CH

where u is distributed as uniform (U) on [0. 1]. For the special
case wherem = Oand a > 0,

nx=Ina+ (/b in[=In(l - w) (o)

Speciai Case

If a random variable Z is distributed as Gumbel (G ) with a
probability density function

o+ oo - (5%)]
wfw[-(2)]) e

then random numbers distnbuted accordingly can be gener-
ated using the algorithm

z=m +dl=In{-Inud}] (C8)

whereu = U(0, 1), It is noted that if ({)u' = | = w.(2)m" = In
a.and (3)a = =1 b, then Z. distributed as G. equals In X, for
X distributed as W with m = D and a > 0.

The distribution G has a skew equal to = 1.14, depending
upon the sign of the parameter g’ Since the parameter @’ 1s set
opposite in sign to that of parameter b > 0, Z) = =114,
Furthermore, since the sign of ¥(X) for X distributed as W is
equal to that of @ > 0, then ¥(X) > 0. Therefore if a random
variable X is distributed as W with a lower bound of 0 and 15
positively skewed, then Z = In X s distributed as G with a
skew of =1.14 7 y(X) > 0.

It 1s further noted that if the Weibull parameter b = 1, X' 15
also distributed as Pearson type 11 (P1I1) with the PLII para-
meter b = | and v(X) = 2. (Refer to Appendix A for the form
of the PII distribution.) Thus if a random variable X is
distrbuted as P with y(Y) = 2 and lower bound 0, then Z =
In X 1= distributed as G with a skew of — .14

NOTATION

RS real space.
LS log space.
random variable in RS.
vanate value of X.
logarithm to base e.
random variabie in LS.
vanate value of Z.
coefficient of var:ation.
coefficient of skewness.
coefficient of kurtosis.
length of historical or simulated flood sequence.
kin) number of historical lood sequences of length n.
¥ equivaient to C,, v, or A,
y moment estimate of ¥ derived from a sequence
length .
¥ mean value ol y
#(y) standard deviation of y.

s> DL NTx =

TABLE C1. Staustical Properties of X Distnbuted as W

Property Defimtion

wiX! m+alll =18

afX] 0+ 26 - TH1 + L/p'?

*Xx) ST = 38y = 30(1 = 2/50(1 = 1By = TH1 = 1/BYe *X]

ALY @I = 478y = 4T(1 = VBN = 3/by = 6TH1 + L/BW(1 = 2/b) = 341 + 1 bile (X}
C (Xl al [Fi1 = 276) = TH1 + LB\ ¥ m = al(1 = L/B)]™"

o
L3
B
(o
O
Q0



N

@t ) proportica of historical flood sequences yielding
estumates of ¥ of like or opposite signs in RS and
LS.
w momen: esumate of y derived from simulated
flood sequence of length n.
Wiw) mean of w.
dlw) standard deviation of w.
set of distribution functions.
element of $.
uniform distnibution
normal distnbution.
‘og normal distribution.
tiumbel extreme value type | distribution.
Pearson type L1 discribution.
Weibuil distribution.
Pareto distribution.
LP log Pearson type 11l distribution.
WA Wakeby distribution.
& vanate vaiue of U
ca. b o, d.m parameters of distribution functions.
;= f{x) probability density function.
F = Fix) cumulauve distribution function,
' ] gamma funcuon.
#ihy  reciprocal of C, for W with lower bound m = (.

QZZCes &

=
nE=

LANDWEHR £T AL FLoOD Stamistics

X' tiansform cf the random vanabie X

Z' ransform of the random variable Z.
E[X*] kth-order moment of ¥

V' random vanabie (Appendix B).
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