INTERIM REPORT

	Accession No Contractor's Report No
Contract Program or Project Title:	Distribution Coefficients for
Radionuclides in Aquatic Environments	Laboratory of Radiation Ecology
Subject of this Document: Progress Re	eport
Type of Document: Interim Contracto	or Report
Puthor(s):	
Date of Document:November 1, 1978	8 - January 31, 1978
Responsible NRC Individual and NRC Offi	ice or Division: Phillip R. Reed
Environmental Effects Research, Livisio	on of Safeguards, Fuel Cycle and
Environmental Research, RES	

This document was prepared primarily for preliminary or internal use. It has not received full review and approval. Since there may be substantive changes, this document should not be considered final.

NRC Research and Technical Assistance Report

Prepared for U.S. Nuclear Regulatory Commission Washington, D.C. 20555

NRC FIN No. 85749

7908020 433.

INTERIM REPORT

NRC Research and Technical Assistance Report

Progress Report 1 November 1978 - 31 January

· . · E.

Distribution Coefficients for Radicnuclides in Aquatic Environments Laboratory of Radiation Ecology WH-10 University of Washington

Introduction: This project was initiated in August 1976 to obtain new and better information for predicting the fate of radionuclides in aquatic environments. This is the second progress report for the third year of the program which is progressing approximately on schedule as outlined in the research proposal for the 1978-1979 fiscal year. During the past quarter we have:

- Completed all the necessary experiments on adsorption K_d values for ⁸⁵Sr, ¹⁰⁶Ru, ¹³⁷Cs, ²³⁷Pu, and ²⁴¹Am.
- Determined the desorption K_d values for ⁸⁵Sr, ¹³⁷Cs, ²³⁷Pu and ²⁴¹Am for several different sediment-water systems.
- Analyzed experiments on the effect of sediment concentration on K_d values of ⁶⁰Co, ¹⁰⁶Ru, ¹³⁷Cs, and ²³⁷Pu in Lake Michigan sediment-water systems.
- 4. Conducted experiments on the effect of pH on K_d values.
- Completed the analysis of the Lake Michigan dialysis experiment with ^{B5}Sr and ²³⁷Pu.
- Begun experiments to investigate the effects of organic ligands on K_d values.
- Developed a technique to obtain distribution coefficients for ²⁴⁴Cm by measuring the characteristic L_R x-rays.

We have also begun a series of investigations to better characterize the proporties of sediments and waters that have been used in our experiments. This includes analyses for carbon, hydrogen, and nitrogen in sediments and water, x-ray diffraction studies on sediments to determine which clay minerals are present, determination of sediment-surface area and ion exchange capacity. Annual reports that were submitted for 1976-1977 and 1977-1978 fiscal years have been revised in the appropriate format for publication as NRC topical reports and will be submitted under a separate cover. Separate topical reports describing the marine dialysis experiments and the determination of distribution coefficients in marine sediment-water systems are also being prepared for publication as topical reports.

During the next quarter our experimental program will continue but our major effort will be the preparation of the 1978-1979 Annual Report cummarizing our results for FY1979 and a proposal for 1979-1980 to complete this project.

Adsorption K_d Values: Constant shaking experiments have been completed to determine the adsorption K_d values of ⁸⁵Sr, ¹⁰⁶Ru, ¹³⁷Cs, ²³⁷Pu and ²⁴¹Am in sediment-water systems from Lake Michigan, Clinch River, Cattaraugus Creek and the Hudson River Estuary. A summary of the adsorption κ_d values is presented in Table 1. Many of

446 323

these values have been presented in previous reports but they have not been summarized in a single table. Data are presented in Table 1 so that K_d values of different radionuclides can be easily compared within a given system; K_d values of selected radionuclides can also be compared among the different sediment-water systems.

For all of the sediment-water systems 85 Sr has the lowest K_d value, generally less than 100, and 241 Am has the highest value, greater than 10^{5d} . The order of increasing K_d values is 85 Sr < 137 Cs [106 Ru or 237 Pu] < 241 Am. The radionuclides, 106 Ru and 237 Pu, are coupled in this sequence because the K_d value of 106 Ru is higher than 237 Pu for sediment-water systems from the Clinch River and Hudson River Estuary systems but in the other systems K_d values for 237 Pu are higher than for 106 Ru. The K_d values for 85 Sr and 137 Cs are greater in the freshwater systems than in the marine sediment-water systems but no similar trends were obse ved for 106 Ru, 137 Cs or 241 Am. For all three of these latter radionuclides both the greatest and the lowest K_d values were found in sediment-freshwater systems.

Desorption K_d Values: Experiments have been completed to determine the desorption K_d values 85 Sr, 106 Ru, 137 Cs, 237 Pu and 241 Am in sediment-water systems from Lake Michigan, Clinch River, 3 locations in the Hudson River estuary and Sinclair Inlet in Puget Sound. Desorption studies were conducted by sorbing radionuclides to sediments, centrifuging and then resuspending the sediments in unspiked water from the same sampling location. Results of these experiments are shown in Table 2 and compared to adsorption K_d values for the same sediment-water systems in Table 3. For all radionuclides the K_d values for desorption, were higher than the adsorption K_d values for desorption, compared to adsorption, was observed for some radionuclides. These results suggest that under these experimental conditions sorption is not completely reversible. Radionuclides are strongly bound to the sediments and may be unavailable for release. This suggests that K_d values of sediments may not be applicable to modeling the release of sediments from suspended or bed sediments.

Effect of pH on K_d Values: The adsorption of radionuclides to suspended particulates is dependent upon the physico-chemical species of radionuclides and the surface characteristics of the sed ments. Both of these may change as a function of pH. Thus, the K_d value of some radionuclides may be affected by changes in pH. Previous experiments in our laboratory have shown some effects of pH variation for both freshwater and anoxic systems [1977-1978 Annual Report, June 1978] for ²⁴¹Am. We are currently conducting experiments on the effect of pH on sediment-water systems from the Cattaraugus Creek watershed in western New York and from the Hudson River Estuary. The results presented below are from experiments with water and sediments from Clinch River, Tennessee.

The K_d values obtained, for ¹⁰⁶Ru and ¹³⁷Cs in the Clinch River sedimentwater system are shown in Figures 1 and 2, respectively. The K_d value of ¹⁰⁶Ru increases by a factor of approximately 5 between pH 4 and 6. At pH values above 6 there is considerable scatter in the data with no obvious trends. The apparent decrease in K_d values between pH 8 and 10 is believed to be an experimental artifact but will be evaluated in future experiments. Unlike ¹⁰⁶Ru which exhibits an increase in K_d values at relatively low pH, there appears to be no effect on the K_d values of ¹³⁷Cs at pH < 9. There is,

446 324

POOR ORIGINAL

however, a slight increase in K_d between pH 9 and 10. Consideration of the Clinch River sediment-water suggests that the K_d values of 106 Ru and 137 Cs are not affected by pH changes that are commonly observed in natural waters.

Another radionuclide that was included in the Clinch River experiments was 60 Co. Although we do not generally report on 60 Co, these results are presented here (Fig. 3) to indicate the effect that changes in pH may have on some radionuclides. Between pH 6.0 and 7.5 the K_d value of 60 Co increases more than two orders of magnitude. Not only is this a signific ntly larger effect than was noted for 106 Ru or 137 Cs, it also concurs within the pH range of most natural waters. Thus, hydrologic models for 60 Co must be much more pH dependent than models for 106 Ru or 137 Cs.

Effect of Sediment Concentration: As for pH, some experiments have been reported previously [1976-1977 Annual Report] on the effects of sediment concentration on the K_d values of ²⁴¹Am in sterile and unsterilized systems from Lake Washington. More recently we have completed and analyzed an experiment on the effects of sediment concentration in the Lake Michigan sediment-water system. The sediment concentrations ranged from 16 mg/l to 340 mg/l and the radionuclides ²³⁷Pu, ¹³⁷Cs, ¹⁰⁶Ru and ⁶⁰Co were included. Results of this experiment are shown in Figure 4. For all of these radio-nuclides there is a significant increase in K_d value at lower sediment concentrations. This corresponds to the data reported previously for ²⁴¹Am. The apparently sharp increase in K_d values of ¹⁰⁶Ru and ¹³⁷Cs at sediment concentrations below = 50 mg/l is thought to be an experimental artic. The resulting from sorption of these radionuclides to the filters. Additional experiments are needed at these lowest sediment concentrations.

Effect of Organ c Ligands: Dissolved organic ligands could significantly alter the K_d values of radionuclides in our experiments by forming organometallic complexes, and thus increasing the concentration of radionuclides in solution. There is, however, very little information on the complexation of radionuclides by organic ligands. This study was initiated to evalute the effects of selected ligands on the K_d values of ¹⁰⁶Ru, ¹³⁷Cs and ²⁴¹Am. Initially, a variety of organic ligands will be tested at a relatively high concentration, approximately 10⁻⁴M, to identify organic molecules which affect the K_d values. In order to be compared with our previous results, experiments will be conducted at pH = 8.0 and a sediment concentration of 200 mg/l. For those ligands which alter the K_d values, additional experiments will be conducted at lower ligand concentrations to determine the minimum concentration that produces any significant effect.

Preliminary experiments with EDTA, a strong chelator of transition metals, suggest that EDTA can significantly lower the K_d value of ²⁴¹Am. However, no measurable effects were observed for ¹⁰⁶Ru or ¹³⁷Cs.

Lake Michigan Dialysis Experiment: In our last progress report we presented the results from a Lake Hichigan dialysis experiment with the radionuclides ¹⁰⁶Ru, ¹³⁷Cs and ²⁴¹Am. A second experiment investigated the behavior of ⁸⁵Sr and ²³⁷Pu during a 15-day dialysis experiment. Those results are reported here.

POOR ORIGINAL 446 325

Strontium-85 occurs almost entirely in the soluble phase a d raridly, within 10 hours, reaches equilibrium among all the dialysis chambers (F gure 5). This is very similar to the behavior observed previously for ¹³⁷Cs in marine dialysis experiments. There was no significant uptake of ⁸⁵Sr by any of the particulates in this experiment.

Both detrital particles and the suspended sediments take up significant amounts of ²³⁷Pu, but there is no apparent accumulation by phytoplankton [Figure 6]. In constant shaking experiments phytoplankton have accumulated large concentrations of ²³⁷Pu. We cannot be certain what causes the differences between the constant shaking experiments and the dialysis experiment. One possible explanation, however, is that phytoplankton in the dialysis experiments produced an exometabolite which effectively complexed ²³⁷Pu to keep it in the coluble phase. This interpretation is supported by the high concentrations of soluble ²³⁷Pu in the phytoplankton chamber after 1 day [Figure 7]. The decreased values of particulate ²³⁷Pu in the detritus and sediment chambers after 8 and 15 days could also result from exometabolites. As these compounds diffuse from the phytoplankton chamber into the other chambers it may solubilize some ²³⁷Pu that had been adsorbed. The experiments we have started on the effects of organic ligands should provide valuable information on the feasibility of the above explanation. When ²³⁷Pu is again available it will be interesting to conduct dialysis experiments for additional systems.

<u>Curium-244</u>: Analysis of ²⁴⁴Cm by alpha spectroscopy requires a considerable arount of chemical separation. We have developed a method for determining distribution coefficients by counting the characteristic L_B x-rays [18.3 Kev] with an intrinsic germanium detector and pulse height analyzer. Particulate ²⁴⁴Cm is counted directly while soluble ²⁴⁴Cm is coprecipitated with Fe₂C₃. xH₂D and ²⁴⁴Cm in the precipitate is measured. The preliminary data that have been obtained to date indicate that the K_d's for ²⁴⁴Cm is the freshwater-sediment systems are approximately 10⁵.

446 326

POOR ORGNAL

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sediment-Water System	* U	* K.**	¢	n V 10-Ku 137Cs 237Pu			137CS		237Pu		241Am
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			p		nt v Pu		e	Kd × 10		Kd × 10-4	u ,	Kd x 13-5
6 124.4 (7.5) 12 6.72 (0.52) 9 13.6 (0.40) 6 4.71(0.40) 8 7 52.3 (6.2) 9 1.40 1 7 2.09(6.65) 12 6 7 52.3 (6.2) 9 1.40 1 7 2.09(6.65) 12 6 7 5.3 (6.2) 9 1.40 1 4 2.09(6.65) 12 6 7 5.92 (0.40) 9 4.01 (0.20) 6 0.93(0.14) 9 6 3.48 (5.3) 11 5.15 (1.03) 9 4.01 (0.20) 6 0.93(0.14) 9 7 3.48 (5.3) 11 5.15 (1.03) 9 4.01 (0.20) 6 0.93(0.14) 6 7 11 4.53 (0.37) 8 3.56 (0.21) 4 3.87(6.11) 6 9 7 21 3.61 (0.65) 5 2.42 (0.07) 4 3.87(6.11) 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	ske Michigan	2	82.2 (7.0)	12	5.23 (1.68)		2	5.09 (0.31	1 1	14.1 (1.8)	12	5 40 12 73
cek 7 52.3 (6.2) 9 1.40 # 7 2.09 (0.65) 12 6 7.7 (10.5) 12 3.92 (0.40) 9 4.01 (0.20) 6 0.93 (0.14) 9 6 54.8 (5.3) 11 5.15 (1.03) 9 4.01 (0.20) 6 0.93 (0.14) 9 6 54.8 (5.3) 11 5.15 (1.03) 9 4.01 (0.20) 6 3.12 (0.22) 9 7 11 5.15 (1.03) 9 4.01 (0.20) 6 3.12 (0.22) 9 7 11 4.53 (0.37) 8 3.56 (0.21) 4 3.87 (0.11) 6 7 2.1 3.61 (0.63) 9 1.87 (0.15) 9 10.3 (0.8) 15 7 12 4.51 (0.76) 5 2.42 (0.07) 9 10.3 (0.8) 15 7 12 4.51 (0.55) 5 2.42 (0.07) 9 10.3 (0.8) 15 7 12 5.2 27 (0.43) 5 2.42 (0.07) 9 10.3 (0.8) 10	inch River	9	124.4 (7.5)	12	6.72 (0.52)		6	13.6 (0.40	9 ()	4.71(0.40)	e a	K1.6/ 07.0
6 7:.7(10.5) 12 3.92 (0.40) 9 4.01 (0.20) 6 0.93(0.14) 9 6 34.8 (5.3) 11 5.15 (1.03) 9 4.01 (0.20) 6 0.93(0.14) 9 6 34.8 (5.3) 11 5.15 (1.03) 9 4.01 (0.20) 6 0.93(0.14) 9 7 11 5.15 (1.03) 9 0.071) 6 3.12(0.22) 9 7 11 4.53 (0.37) 8 3.56 (0.21) 4 3.87(6.11) 6 7 11 4.53 (0.37) 9 1.87 (0.15) 9 10.3 (0.8) 15 7 12 4.51 (0.76) 5 2.42 (0.07) 9 10.3 (0.8) 15 7 12 4.44. (0.52) 5 2.42 (0.07) 9 10.3 (0.8) 16	ttaraugus Creek	2	62.3 (6.2)	6	1.40				1	2.09(0.65)	32	2.26 (1 47)
5 7:.7(10.5) 12 3.92 (0.40) 9 4.01 (0.20) 6 0.93(0.14) 9 6 .34.8 (5.3) 11 5.15 (1.03) 9 4.01 (0.20) 6 0.93(0.14) 9 6 .34.8 (5.3) 11 5.15 (1.03) 9 4.01 0.20) 6 3.12(0.22) 9 ## 11 4.53 (0.37) 8 3.56 (0.21) 4 3.87(0.11) 6 ## 21 3.61 (0.63) 9 1.87 (0.15) 9 10.3 15 *# 21 3.61 (0.55) 5 2.42 (0.07) 9 10.3 16 * 12 4.51 (0.76) 5 2.42 (0.07) - 10 * 12 4.44. (0.52) 5 2.42 (0.07) - 10 10	dson River										e j	11.11 0000
6 34.8 (5.3) 11 5.15 (1.03) 9	mp 43	9	72.7(10.5)	12	3.92 (0.40)		6	4.01 10.20	9	181 0/60 0	ć	
## 11 4.53 (0.37) 8 3.56 (0.21) 4 3.87(6.11) 6 ## 21 3.61 (0.63) 9 1.87 (0.15) 9 10.3 (0.8) 15 ## 21 3.61 (0.63) 9 1.87 (0.15) 9 10.3 (0.8) 15 ## 21 3.61 (0.63) 5 2.42 (0.07) 9 10.3 (0.8) 15 ## 12 4.51 (0.76) 5 2.42 (0.07) 9 10.3 (0.8) 15 ## 12 4.44 (0.52) 5 2.42 (0.07) 9 10.3 (0.8) 16	Rp 18	9	54.8 (5.3)	11	5.15 (1.03)		6	. 10 (0.7)	9	- 120 U/20 5	סת	(E1.0) d1
## 21 3.61 (0.63) 9 1.87 (0.15) 9 10.3 0.8) 15 - 12 4.51 (0.76) 5 2.42 (0.07) - 10 - 17 4.4. (0.52) 5 2.42 (0.07) - 10	c du			Ξ	4.53 (0.37)	-	8	3.56 (0.21	4	3.87(6.11)	6	2.96 (0.88)
## 21 3.61 (0.63) 9 1.87 (0.15) 9 10.3 (0.8) 15 - 12 4.51 (0.76) 5 2.42 (0.07) 9 10.3 (0.8) 15 - 17 4.4. (0.52) 5 2.42 (0.07) - 10 - 17 4.4. (0.52) 5 2.42 (0.07) - 14	igit Estuary											
- 17 4.4. (0.52) - 1 # 12 5.42 (0.43) - 14	Core #1 Core #4			21 12	3.61 (0.63) 4.51 (0.76)		6 10	1.87 (0.15 2.42 (0.07)	6	10.3 (0.8) -	15	2.68 (0.74)
V. 76 10.431 4 1 20 10 001 A 4 1.1.1	nich Inlet clair Inlet			17 12	4.4. (0.52) 5.42 (0.43)	a		100 01 40 1			14	3.71 (0.8;)

 \star n is the total number of K_d calculations made for a radioniclide in a given sec went-water system.

** X_d is average value for all determinations. Number in parentheses is one standard deviation from mean of replicate determinations. # Did not reach equilibrium.

446

Concentration in particulate phase was below detection limits.

POGR

327

Lake Michigan ${}^{65}r$ 10 (1.41 ± 0.51) × 10 ³ (0.57 ± 0.13) × 10 ³ to (5.23 ± 0.46) × 10^3 to (5.47 ± 1.95) × 10^3 to (5.47 \pm 0.31) × 10^3 to (5.43 \pm 4.64) × 10^3 to (7.23 \pm 12.00)	Sediment-Nater System	Radionuclides	*	Average K _d ** Di	Distribution Coefficient. Range in P	k. m1/5 K.	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Lake Michigan	85Sr	10	.41 ± 0.51) × 10	± 0.13) × 10	(2.33 ± 0.46)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		237pu	10	x (91.1 ± 97.	± 0.35) x	(6.47 ± 1.95)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		~	9	67 ± 0.53) x	± 0.48) x	(4.27 ± 0.38) ×	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(B)#	*7	50 ± 0.51) ×	.98 ± 0.75; x	(6.17 ± 0.81)	
Clinch River SLOSH III 237 hu (A) (C) (C) (C) (C) (C) (C) (C) (C		Sec.	9	62 ± 0.73) ×	.56 ± 0.61) x	(6.73 ± 0.91)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Sec.			C: ± 0.77) x	(12.20 ± 1.93) ×	
(C)# (C)# (7.94 ± 5.2) × 10 ⁵ (0 (2.34 ± 12.00) × 10 ⁵ (2.34 ± 12.00) × 10 ⁵ (1.66 ± 0.15) × 10 ⁵ (1.20 ± 2.28) × 10 ³ (1.20 ± 2.41) × 10 ³ (1.20 ± 2.28) × 10 ³ (1.20 ± 2.41) × 10 ³ (1.21 ± 2.41) × 10 ³		(8)#			.66 ± 2.23) ×	to (15.34 ± 4.64) x	
Clitich River SLOSH III $\begin{array}{cccccccccccccccccccccccccccccccccccc$		#(C)#			94 ± 5.22) ×	to (22.34 ±12.00) x	
$^{237}P_{10}$ 9 (1.54 ± 0.09) × 10 ⁵ (1.38 ± 6.11) × 10 ⁵ (1.66 ± 0.15) × 10 ⁵ Hudson River SLOSH III $^{237}P_{10}$ 9 (1.56 ± 0.03) × 10 ⁵ (1.02 ± 2.89) × Indson River SLOSH III 85 9 (1.56 ± 0.03) × 10 ⁵ (1.02 ± 2.89) × Indson River SLOSH II 85 (1.56 ± 0.52) × 10 ³ (1.307 ± 2.65) × 10 ³ (1.02 ± 2.89) × Iudson River SLOSH II 85 (1.56 ± 0.52) × 10 ³ (1.307 ± 2.65) × 10 ³ (1.43 ± 0.73) × 10 ³ (1.43 ± 0.73) × 10 ³ (1.43 ± 0.73) × 10 ³ Iudson River SLOSH II 85 (1.59 ± 0.63) × 10 ³ (1.69 ± 0.43) × 10 ³ (1.61 ± 2.41) × Iudson River SLOSE 2 ³⁷ Pu 9 (2.69 ± 0.35) × 10 ⁵ (1.61 ± 2.41) × 10 ³ Iudson River SLOSE 2 ³⁷ Pu 2 ³⁷ Pu (1.20 ± 2.46) × 10 ³ (1.02 ± 2.46) × 10 ³ Iudson River SLOSE 3 <th colspa="5<</td"><td>Clinch River</td><td>85Sr</td><td>8</td><td>.55 ± 0.89) x</td><td>57 ± 3.34) x</td><td>(6.38 + 3.30)</td></th>	<td>Clinch River</td> <td>85Sr</td> <td>8</td> <td>.55 ± 0.89) x</td> <td>57 ± 3.34) x</td> <td>(6.38 + 3.30)</td>	Clinch River	85Sr	8	.55 ± 0.89) x	57 ± 3.34) x	(6.38 + 3.30)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		237Pu	6	± 0.09) ±	± 0,11) ×	(1.66 : 0.15) x	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Hudson River SLOSH III	855r	6	± 1.35) x	±	(7.02 + 2.89) x	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	mp 43	237Pu	9	60 ± 0.37) ×	± 0.56) x	x (60.0 ± 10.6)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 37Cs	5	± 0.52) ×	± 0.37) x	(4.43 ± 0.78) x	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		24 1 Am	4	39 ± 0.84) ×	± 1,48) x	(6.21 ± 2.4;) x	
mp 18 $237p_{10}$ 9 $(2.98 \pm 0.22) \times 10^5$ $(2.69 \pm 0.35) \times 10^5$ to $(3.39 \pm 0.51) \times 10^5$ 137Cs 2 $(3.34 \pm 0.69) \times 10^3$ $(2.69 \pm 0.19) \times 10^3$ to $(3.32 \pm 0.41) \times 10^5$ Hudson River SLOSEN 3^5_{Sr} 2 $(3.34 \pm 0.69) \times 10^5$ $(6.52 \pm 0.61) \times 10^5$ to $(3.32 \pm 0.41) \times 10^5$ Hudson River SLOSEN 3^5_{Sr} 2 $(3.21 \pm 1.52) \times 10^5$ $(1.09 \pm 0.09) \times 10^5$ to $(10.20 \pm 2.46) \times 10^3$ to mpc $2^{37}p_{10}$ 12 $(3.21 \pm 1.52) \times 10^5$ $(1.09 \pm 0.09) \times 10^5$ to $(5.26 \pm 0.97) \times 10^5$ to $(2.48 \pm 0.39) \times 10^5$	Hudson River SLOSH II	855r					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a np 13	237pu	6	98 ± 0.22) x	69 ± 0.35) x	(3.39 ± 0.51)	
$\begin{array}{lclcrcl} & & & & & & & & & & & & & & & & & & &$		137Cs	61	± 0.69) ×	± 0,19) ×	(3.82 ± 0.41) ×	
Hudson River SLOSELX ${}^{95}Sr$ - ${}^{95}Sr$ - ${}^{237}Pu$ 12 (3.21 ± 1.35) × 10 ⁵ (1.09 ± 0.09) × 10 ⁵ to (5.26 ± 0.97) × 137 cs 5 (1.79 ± 0.47) × 10 ³ (1.29 ± 0.19) × 10 ³ tu (2.48 ± 0.39) × 137 cs 5 (1.79 ± 0.47) × 10 ³ (1.29 ± 0.19) × 10 ³ tu (2.646 ± 12.83) × 10 ⁵ Sinclair Inlet \bigcirc ${}^{85}Sr$ - ${}^{241}Am$ 4 (21.73 ± 5.12) × 10 ⁵ (16.78 ± 5.71) × 10 ⁵ to (26.46 ± 12.83) × 10 ⁵ Sinclair Inlet \bigcirc ${}^{85}Sr$ - ${}^{237}Pu$ 9 (3.59 ± 1.32) × 10 ⁵ (1.87 ± 0.19) × 10 ⁵ to (5.53 ± 0.48) × 10 ⁵ to (5.56 ± 0.48) × 10 ⁵ to (5.53 ± 0.48) × 10 ⁵ to (5.54 \pm 0.48) × 10 ⁵ to (5.54 \pm 0.48) × 10 ⁵ to	4	241 Aut	S	.47 ± 1.52) x	52 ± 0.61) x	(10.20 ± 2.46) ×	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hudson River SLOSEN	⁸⁵ Sr	Ŧ				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	odu	227Pu	12	± 1.35) x	± 0,09) ×	(5.26 ± 0.97) ×	
Sinclair Inlet $\bigcirc 2^{31}$ Au 4 (27.73 ± 5.12) x 10 ⁵ (16.78 ± 5.71) x 10 ⁵ to (26.46 ± 12.83) x sinclair Inlet $\bigcirc 8^{5}$ 8 ⁵ Sr = 2^{37} 9 (3.59 ± 1.32) x 10 ⁵ (1.87 ± 0.19) x 10 ⁵ to (5.63 ± 0.48) x x sinclair Inlet $\bigcirc 5^{12}$ 8 ¹ Pu = 9 (3.59 ± 1.32) x 10 ⁵ (1.87 ± 0.19) x 10 ⁵ to (5.63 ± 0.48) x sinclair 1 = 0.48) x sinclair 1 = 0.48		137 _{CS}	5	± 0.47) x	± 0,19) ×	(2.48 ± 0.39) ×	
Sinclair Inlet CO ⁸⁵ Sr - ⁸⁵ Sr - ²³⁷ Pu 9 (3.59 ± 1.32) × 10 ⁵ (1.87 ± 0.19) × 10 ⁵ to (5.63 ± 0.48) ×		241 Am	4	± 5,12) x	± 5,71) x	(26.46 ±12.83) x	
9 (3.59 ± 1.32) × 10 ⁵ (1.87 ± 0.19) × 10 ⁵ to (5.63 ±	Sinclair Inlet	85Sr					
		237 _{Pu}	6	± 1.32)	± 0,19) ×		

Table 2. Desorption distribution coefficients for 85Sr, 137Cs, 237Pu and 241Am in different sediment-water systems

 \star n is the total number of K_d values obtained for each radionuclide.

Average K_d represents the average value and one standard deviation from this average for the n number of K_d measurements. *

Range in K_d represents the lowest and the highest values of the distribution toefficient obtained in the experiments. The error term represents 20 propagated counting error for each isotope. ***

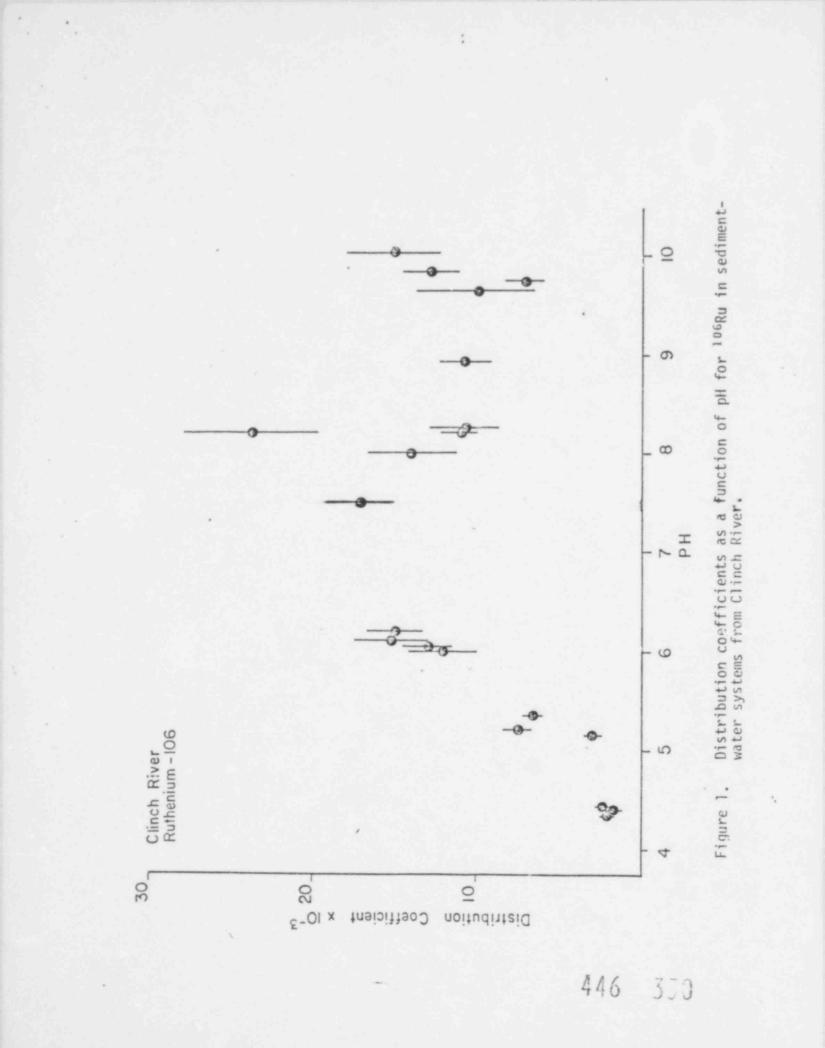
For ¹³⁷Cs and ^{24,1}Am in Lake Michinan, three sets of experiments were performed. The details of these three experiments will be discussed in a later report. -

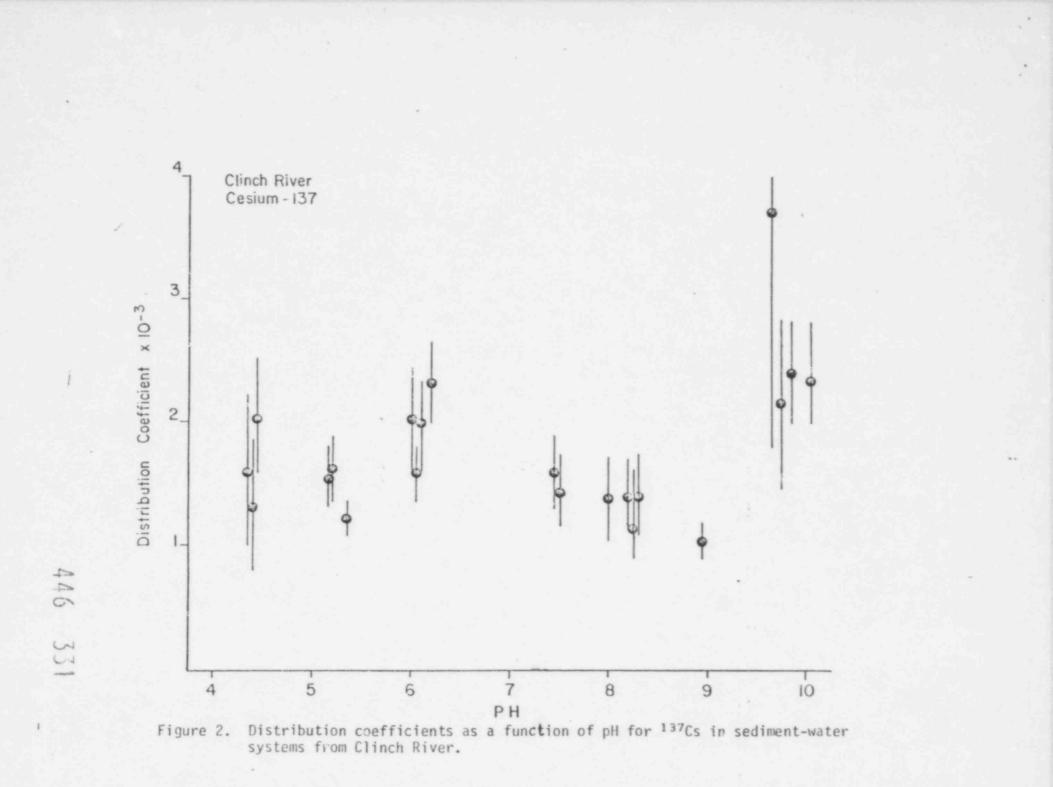
Table 3. Comparison of adsorption and desorption distribution coefficients in selected sediment-water systems

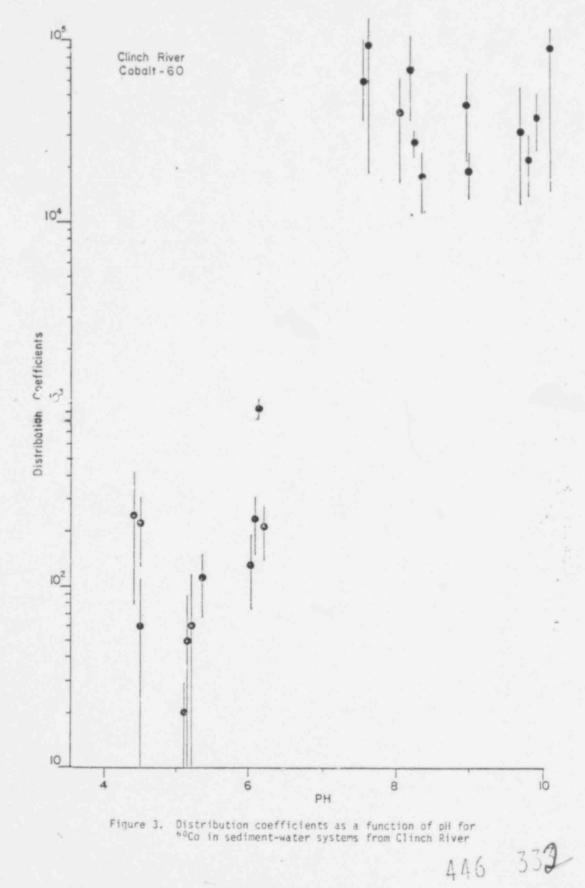
		Str	ontium-	-85			P	lutoni	.m-237	
Sediment-Water System	Adsorr n*	tion K _d **	n		x 10 ⁻³	n	Adsorption $K_d \times 10^{-4}$	n		orption x 10 ⁻⁵
Lake Michigan	7 82	2.2 (7.0)	10	1.41	(0.51)	7	14.1 (1.8)	10	4.79	(1.19)
Clinch River	6 124	4.4 (7.5)	8	0.46	(0.09)	6	4.71 (.40)	9	1.54	(0.09)
Hudson River Estuary SLOSH III	6 73	8.7 (10.5)	n	0.48	(0.14)	6	0.93 (0.14)	6	3.60	(0.37)
SLOSH II	6 34	.8 (5.3)		#		6	3.12 (0.22)	9	2.98	(0.22)
SLOSH V	1	£		#		4	3.87 (0.11)	12	3.21	(1.35)
Sinclair Inlet		ŧ		#		9	7.40 (1.21)	9	3.59	(1.32)

1		Cesium-137										
		n	Adsorption K _d x 10 ⁻²	n		x 10 ⁻³	n	ĸ _d x	10-5	n	К _d	x 10 ⁻⁵
	Lake Michigan	17	5.09 (0.31)	16	5.57	(0.64)	12	5.48	(3.73)			# #
	Hudson River Estuary SLOSH III	9	4.01 (0.20)	5	3.65	(0.52)	9	1.26	(0.13)	4	5.39	(0,84)
	SLOSH II	9	8.78 (0 71)	2	3.34	(0.69)	9	2.37	(0.88)	5	8.47	(1.52)
	SLOSH V	8	3.56 (0.21)	5	1.79	(0.47)	6	2.96	(0.88)	4	21.73	(5.12)

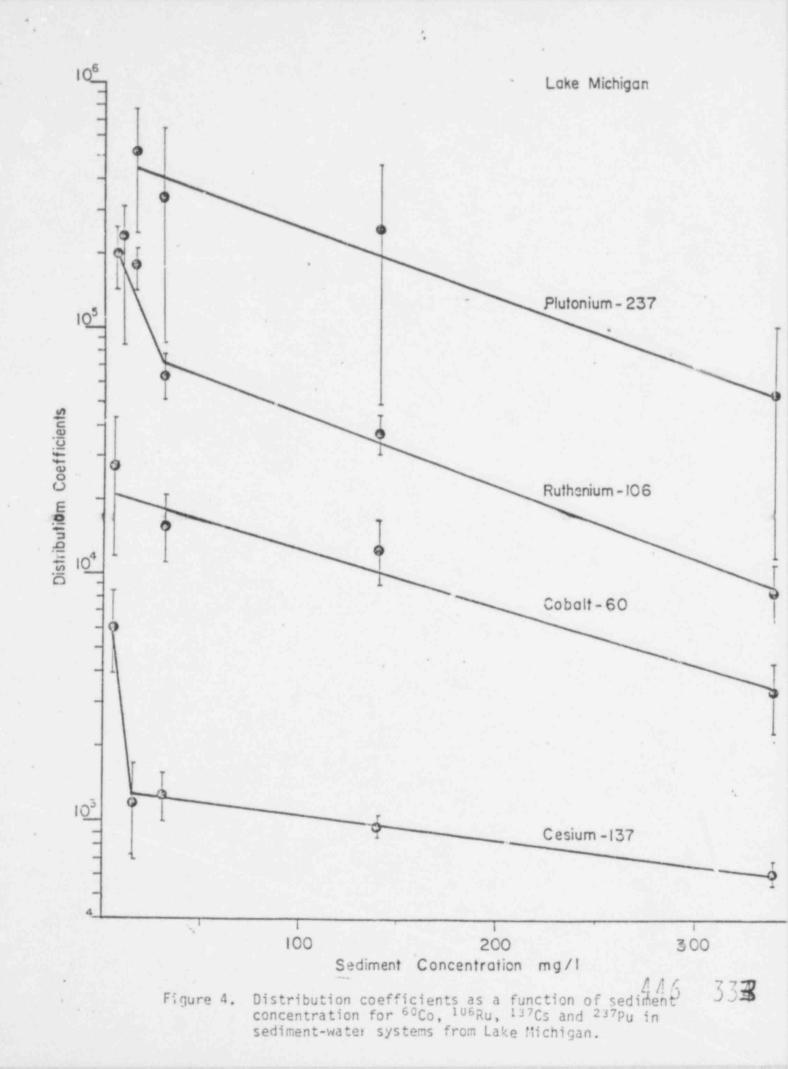
446

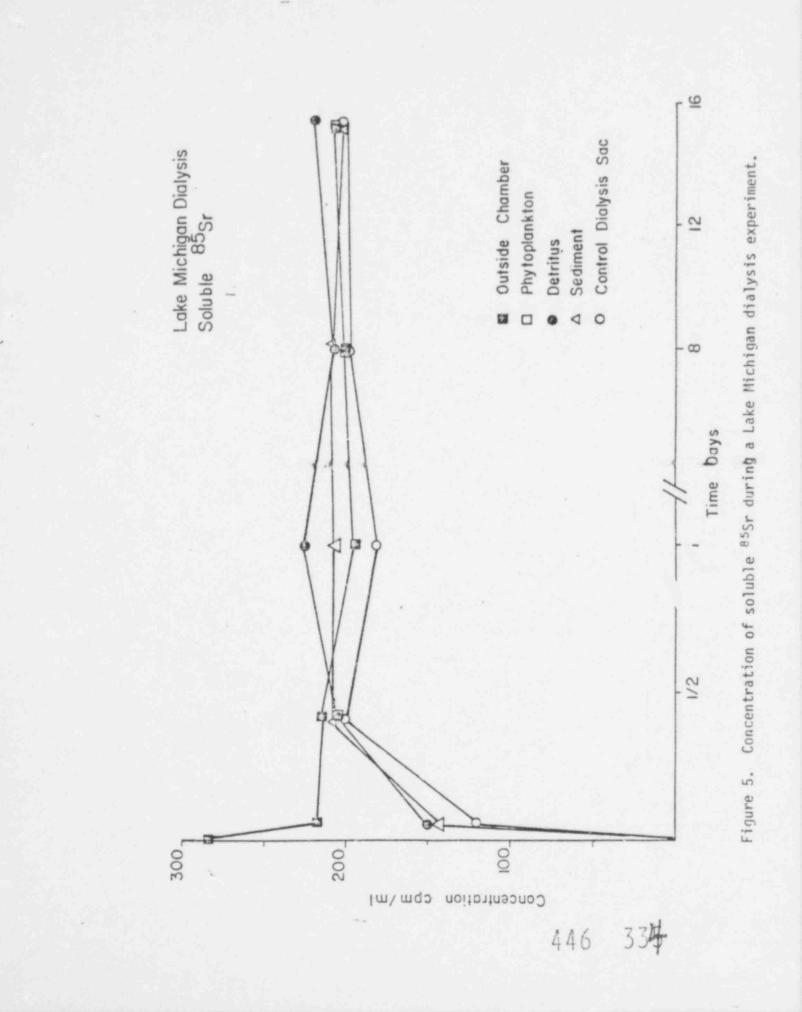

* n is the total number of K_d calculations made for a radionuclide in a given sediment-water system.

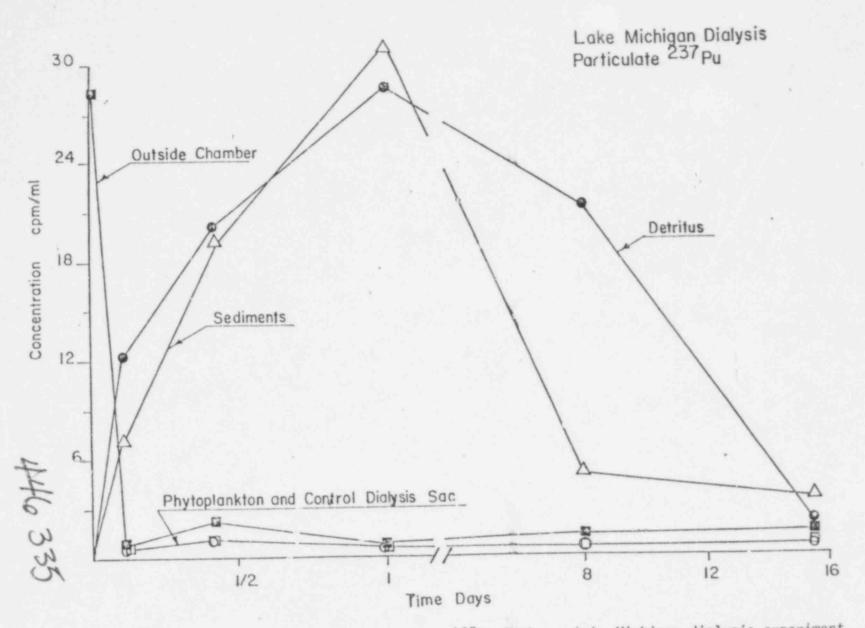

329

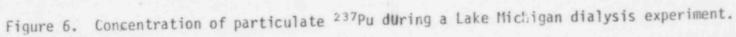

** K_d is average value for all determinations. Number in paretheses is one standard deviation from mean o, replicates.

Concentration in the particulate phase was below detection limits.


Did not reach equilibrium.






POOR ORIGINAL

**

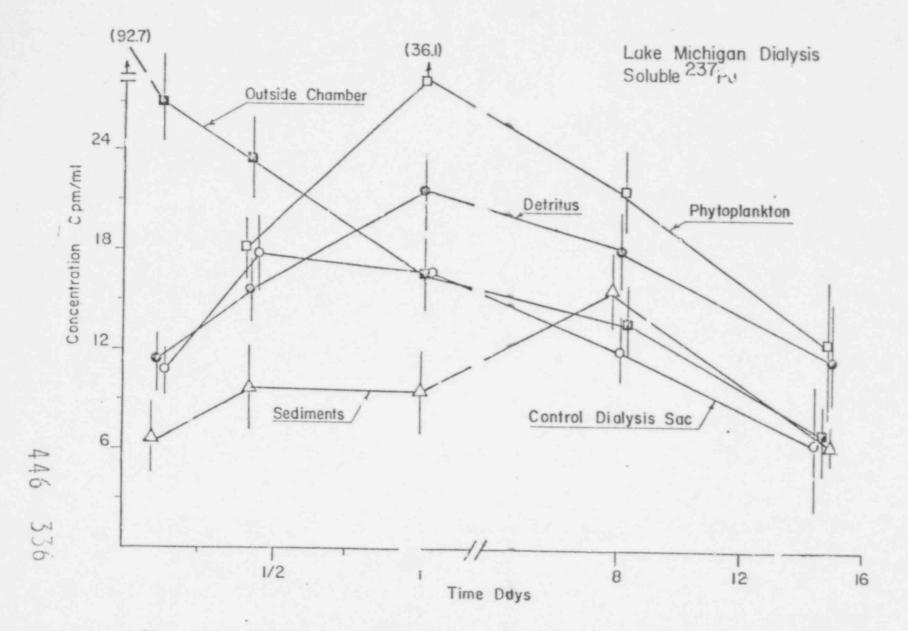


Figure 7. Concentration of soluble ²³⁷Pu during a Lake Michigan dialysis experiment.