REPURT OX

VGLTAUE TKOP 3TVDI

POR $20 \mathrm{~B} / 120$ wMIT SAFPTY RET ATPD $10 A D 5$
FOR
CAIKLINA PCKNT G ZYGHT COMPANY
BRUNSHICK STEAM EIECTRIC PLANI
texT: No, 2

BY

MEITED ENGANERS \& CONSTPUCTORS INC.

Q/a Review By: Aecticiman

Approved By: $\frac{e \ominus \int \text { Suman }}{1 \mathrm{sc} \cdot \text { Supu. Engr. }}$
Page N2.
1.0 FURFOSE 1
2.0 SUMMARY OF RESIITS 2
2. 1 Operating Voltag Limi:s 2
2.2 Summary of Volzage Requiremencs 3 3 4
2.3 Tap settings 4
3.0 CRITERIA 5
4.6 DISCISSICN 6
4.1 Tap Seitings 6
4.2 Allowable Load Voltage Range 6) \& 3
4.3 Method of Are3 sis 788
5.9 DATA 9
3.? 463 §ystam
2 Diftrabution Trans former:
5.3 Distribution fransformers 9
5.4 Relay Coils 9
5.5 Solenoide 10
6.0 ASSUMPTIONS 11
7.0 REFERENCES 12
Appendix A1 to A38
1.1 This study is to review the voltages on varicus 209/120V Auxiliary Distribution Fancls and the equimment connected to these panels to assure proper coltage at the ferminals of each satety related load. The distribution transformer tap settings wele, ssen to assure propes operation of the safet 'ated equipment under candfeions of an acrident we one unit and a false accident signal on the otier unit (28 LOCA)

DEFINITION

```
* 2X tocA: Case\varepsilon are t ase initiated by a Loss of Coolant
    Accident on Unit }2\mathrm{ and a false LOCA signal from
        Unit 1, resulting in the runaing vi bath Units ESS
    luads.
2. SAT light Load. This represents the binimum auziliary load
        with he piant skutfown and al1 acws', %r:
        loads fed from the SAT
```

en to ensure that arelay coils and					
solenoids would pick up. The voltage limit would be above 90% of the					
It is recur ended for the operating conditions shown, the souzce voltage					
2.	QEERATING VOLTAGE LIMITS (Ref, 7.3)				
	CASE	BUS	BASE VOLTAGE	PER UNIT VOLTACE	
	SAT Light Load	SWYD	230,000	1.009	
		E7	480	1.0813	
		E8	480	1.0765	
	2X LOCA kun	SWYD	230,000	. 9351	
		£	400	.8870	
		E8	480	. 8803	
*This operating voltage limit does not supersede the minimum					
recommended voltage of 0.9550 per , in t3 $(219.655$ volts) listed in					
Section 2.1.3 of Voltage Drop Study (Ref. 7.3 2x LOCA Run,					
Reactor Building closed cooling water pumps 2 A and 2 C stars)					

PESULTS

WORST CASE VOLTAGE

COIL OR SOLENOTD TERMSNALS

	UNIT SUB, E7		UNIT SUB. E8	
	P. U. Vcltage	$\begin{aligned} & \text { Actual } \\ & \text { Voltage } \end{aligned}$	P. U. Voltage	$\begin{aligned} & \text { Actual } \\ & \text { Voltage } \end{aligned}$
Minimum Voltage	0.9235	106.2V	0.9026	103.80
Maximum Voltage	1.1478	132 V	1.1492	132.16 p

2.3 TAP SETTINGS

Recommended transformer high voltage tap settings are as follows:

TRANSFORMEK	NOL	TAP SETTINGS
$150 \mathrm{KVA}, 39$	GF\%	(-2.5%)
$480-208 / 120 \mathrm{~V}$	GFO	(-2.5%)
$3 . \mathrm{KVA}, 10$	GE8	(-2.5%)
$80-2 \wedge 8 / 120 \mathrm{~V}$	F.17	(-2.5%)
	GE7	(-2.5%)
	RJ6	(-2.5%)

Voltage at the load terminals should be maintained at 90% of the rated
voltage during " 2λ LOCA Run" condition and voltage at the load terminals
should not exceed 110% of rated voltage during "SAT Light Load" condition.

TAP SETTINGS
The criteria used to choose transformer tap settings was to determine, for each set of tap settings, the voltage to fall in the limits of safe operation of all safety related equipment. To accomplish this, for each tip setting combination, voltoge drop calculations were performed at SAT Light Load and 2 X LoCA Run. The tap settings chosen are those most closely approach the desired voltege requirement. For the recomended tap settings, see Article 2.3.

4.2 ALLOWABLE LCAD VOLTAGE RANGE

Unit substations were specified for 480 V , power distribution panels for 280 V and operating voltage for relay coils and solenoids are 90% 110% of rated voltage (115 V). The minimum pick up voltage 103.5 V . 4.2.1 For 2 X LOCA Run, the voltage drop between the Unit Substation and the power distilbution panels is significant. The voltage drop between the distribution panel buses and terminals of relay coils, solenoids were determined for three parameters a. Longest length of cable run in 1 - \emptyset circuit
b. Maximum load in 1 - circuit
c. Cable length 50 , wore than "a," and load above 50% of "b.". The voltage drop for SAT Light Load was determined for shortest length of cable run from the distribution panel buses to the terminals of relay coils and solenoids. It was found that if the voltages at Unit Substation E 7 is above $.8876 \mathrm{p}, \mathrm{u}$.
(426 Volts) and E8 is above .8803 p.u. (423 Volts), then all
relay coils, solenoid and instrumentation voltagen will be above 90% of the rated Voltages.

Operation at voltages higher than the rated Voltage of coils would probably result in abnormal heating of coils and shorten their life span. The over voltage case could accur when a unit is shutdown.

When units are tripped the switchyard voltage is expected to drop to $98 \%(225,400$ Volts) (Ref. 7.5). This in turn improves the case of over voltage condition since this study was based on switchyard voltage of 100.9% (232.070 Volts) when the unit is shutdown - SAT Light Load (Ref. 7.3).
4.2.2 Rurning loads on 480 V system were taken from 480 V Load Study (Ref. 7.2). Kunning loads on $208 / 120 \mathrm{~V}$ system were calculated based on actual loads from the drawings (Ref. 7.9).
4.3 METHOD OE ANALYS IS
4.3.1 The UE $6 C$ Computer Program 'VOLTS' was used to calcu?ace bus voltages. This program performs a GAUSS - SIEDAL load flow calculation, up to 25 buses can be modeled. Transformer with tap changes can be represented. Bus voltages are computed by the program to a tolerance of $\pm .0001$.
4.3.2 Per Unit Values
Calculations were performed using a per unit scheme with base values as follows:

SYSTEM	BASE VOLTS	BASE MVA
480 V	480 V	100
208 V	208 V	100

4.3.3 ImpedancesThe transformer impedances are assumed. Cable impedanceswere calculated based on actual length of cable run andcable size. Impedance from 480 V Unft Substation to 2ngySystem were taken from report on Voltage Drop Study (Ref, 7.3).Transformer impedances were combined with cable impedancebetween two buses.

```
5.1 480V SYSTEM
    480V Unit Substation Ner Unit Voltages
    E7 2X LOCA Run . }8876\mathrm{ p.u. P.F. - . }8
    SAT Light Load 1.0813 p.u. P.F. - . }8
    E8 2X LOCA Run . 8803 p.u. P.F. - . }8
    SAT Light Load 1.0765 p.u. P.F. - . }8
The above data was taken from the report on Voltage Drop Study
(Ref, 7.3).
5.2 DISTRIBUTION TRANSFORMER
    Rated KVA - 150 KVA
    Nominal Impedance - 3.3* 士 7.5% tolerance
X/R Ratio - 2.5
Voltage Retio - 480 - 208/120V
5.3 DISTRIBUTION TRANSFORMER
Rated KVA - 10 KVA
Nominal Impedance - 1.95% 士 7.5% tolerance
X/R Ratio - 2
Voltage Ratio - 480 - 208/120V
5.4 RELAY COILS
Type: CR2810 G.E.
Rated Voltage - 115V
Prequency - 60 17z
VA - 130
Wette - 4.18
```


5.5 SOLENOIDS

Rated Voltage - 115 V
Wattage - 30 Watts
Frequency - 80 Hz

```
6.0 ASSUNPTIONS
6.1 The nominal impedance and X/R ratio of distribution transformer
    150 KVA is 3.3% and 2.5.
6.2 The nominal impedance and X/R ratio of 10-10 KVA transformer is
    1.95% and 2.
6.3 The power factor of power distribution panels is 0.85.
6.4 The wattage of solenoids is }30\mathrm{ watts.
```


APPENDIX

VOLTAGE DROP STUDY
 FOR
 GAROLINA PONER \& LIGITT COMPANY BRUNSWICK STEAM PIECTRTC PLANT UNIT NO. 2

BY

UNTTED ENGINEERS \& CONSTRUCTORS INC.

VOLTAGES
AND

IMPEDANCE DIAGRAMS

APPENDIX

2X LOCA RUN

SAT LIGHT LQAD

VOLTAGE DROP STUDY

VOLTAGE DROP STUDY
(1) "ET" UNIT SUB STATION 480 V

VOLTAGE DROP STUDY
(1) "ET" UNIT SUBSTATION 480 V

[^0]
VOLTAGE DROP STUDY
(1) EB UNIT SUBSTATION 480 V

APPCNDIX

TOTAL RUNNING LOAD M* AND MVAR

```
UNIT SUBSTATION E7 POWER FACTOR - . 85
```



```
*Refer (7.2)
    Unit Substation E7, Shutdown Condition and LOCA Condition
```


TOTAL RINNING LOAD MN AND MVAR

$$
\text { UNIT SUBSTATION E8 POWER EACTOR - . } 85
$$

*Refer (7.2)
Unit Substation E8, Shutdown Condition and LOCA Condition

> $511 \forall M$ \&\& $: ~ व \forall O 7$
$8500 \cdot 06+29 \cdot 0=Z$

STUDY APPENDIX A
UNIT SUBSTATION ET"
VOLTAGE DROP IN I- \varnothing GIRCUITS
$2 \times$ LOCA RUN

aYO7 111917 1VS

UNIT SUBSTATION 57

VOLTAGE DROP IN 1 - 0 CIRCUITS

A

2X LOCA RUN

UNIT SUBSTATION EB

VOLTAGE DROP IN 1 - 0 CIRCUITS

YOTAGE DROP STUDY
 APPENDTX

UNIT SLBSTATIG: : 7

IN. EDANCES

VOLTAGE DROP STUDY
 APPENDIX

UNIT SUBSTATION E8

IMPEDANCES

AYPENDIX

IMPELLANCE CALCILATIONS

AlIXILIARY TRANSFORMERS

BASE: 100 MVA

2X LOCA RUN

	PERCENTAGE TMPEDANCE	TOLERANCE $\pm 75 \%$		R TER INTT	X PYR INTT
KVA	IMPEDANCE	$\pm 7.5 \%$	$\underline{X / R ~ R A T 10 ~}$	PER UNIT	PER UNIT
150	3. 3%	3.54	2.5	8.76	21.9
20	1. 95%	2.1	2	93.91	187.82

SAT LIGHT LOAD

150	3.3%	3.0525	2.5	$7.5 \% 03$	18.8986
10	1.95%	2.8038	2	82.73	165.46

CALCULATIONS: $\quad z^{2}=R^{2}+x^{2}$

$$
\text { R. } P, U,=\text { Ohms } \times \frac{\text { New }}{\text { Old }} \frac{\text { KVA }}{\text { KVA }}
$$

APPENDIX
CABLE IMPEDANCES

BASE MVA - 100

P.U. $z 480 \mathrm{~V}$ Cable $-z$ Ohms $\times \frac{100}{48^{2}}-z$ Ohms $\times 434.02$
P.U. i 208V Cable $=z$ Ohms $\times \frac{100}{208^{2}}=z$ Ohms $\times 2311$

Resistance at $900 \mathrm{C}=$ Resistance at $75^{\circ} \mathrm{C} \times \frac{234.5+90}{(234.5}=\mathrm{Rx} 1.048$

UNIT SUBSTATION E7

FROM	T0	SIZE OF CABLE	LENGTH (FEET)	$\begin{gathered} \mathrm{R} / 1000 \mathrm{Ft} . \\ \text { in } \Omega \\ (7.4) \end{gathered}$	$\begin{gathered} \mathrm{X} / 1000 \mathrm{Ft} . \\ \text { in } \Omega . \\ (7,4) \end{gathered}$	R iti Ω.	$\begin{aligned} & x \text { in } \\ & \boldsymbol{n} \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{P} . \mathrm{U} . \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \text { P. U. } \end{aligned}$
Unit Sub E7	Power Dist. PNL 2E7							7.8950	7.6345
PNL 2E7	PNL 2A	$\begin{gathered} 1-3 / \mathrm{c} 500 \\ \mathrm{MCM} \end{gathered}$	30	. 0306	. 0295	. 0009	. 0089	2.079	2.0567
PNL 2E7	PNL 2C	$\begin{gathered} 1-3 / c \quad 250 \\ M C M \end{gathered}$	23	. 0573	.03?	. 0013	. 00074	3.0043	1.710
PNL 2E7	PNL 32AB	$\begin{gathered} 1-3 / \mathrm{c} \quad 250 \\ M C M \end{gathered}$	125	. 0573	. 0322	. 00716	. 004	16.54	9.244
E7	2CA							3.2882	3.3229
2CA	Transf.	$1-4 / \mathrm{c}$ / 6 AWG	45	. 516	.0391	. 0232	.00175	10.06	. 7595

mon	To	$\begin{gathered} \text { size } \\ \text { comer } \\ \text { cusu } \end{gathered}$		$\underset{\substack{\text { n/ion or } \\ \text { In } \Omega}}{ }$		${ }_{\sim}^{\text {R }}$ f	${ }_{\Omega}^{\text {tan }}$	\%..v.	
Tremar.	mu1. 32A	1.466	150	.206	.034	.0103	. 017	23,80	3.928
${ }_{\text {a }}$	mec							.992	
scc	Tramat.		109	. 206	. 336	.0224	. 037	9.722	
trames.	${ }^{24-60}$	$11.4 / \mathrm{Cos}$ anc	${ }^{21}$. 206	. 134	.0063	.00072	9.937	

*P. U. Resistance and Reactances for E7-2E7, E7-2CA, E7-DGC were taken from the report on Voltage Drop Study

FROM	T0	SIZE OF CABLE	LENGTH (FEET)	$\begin{gathered} \mathrm{R} / 1000 \mathrm{ft} . \\ \text { in } \mathrm{r} . \\ (7.4) \end{gathered}$	$\begin{gathered} \mathrm{x} / 1000 \mathrm{Ft} \\ \operatorname{in} \mathrm{R} \\ (7.4) \end{gathered}$	R in n	X in Ω	$\begin{aligned} & \mathrm{R} \\ & \mathrm{P}, \mathrm{U} . \end{aligned}$	$\begin{aligned} & X \\ & \mathrm{P}, \mathrm{U} . \end{aligned}$
Transf.	PNL 2B-DG	1-4/c \#2	21	. 206	. 0344	.00432	. 00072	9.983	1.663

*P.U. Resistance and Reactance for F3-2E8, E8-2CB, E8-DGD were taken from the report on Voltage Drop Study,

VOLTAGE DROP STUDY

AFPENDTX

UNIT SUBSTATION E7

PRNL. 2C (HY()

$$
\text { TWG. } 9527-\mathrm{F}-9331
$$

LOAD
WATTS

CKI^{2}
$\mathrm{NO} \mathrm{O}_{2}$

1
3
5
7
9
11
13
15
17
19
21
23
25
108
25
25
116
116
116
116
200
50
150
150
150
150
$27 \quad 25$
29 224
2100
4.50

6 150
8 150
10 150
12 200
14
16 200
18 25
$20 \quad 25$
$22 \quad 25$
$24 \quad 150$
26 150
26 A 36
28

Total KW | $\frac{25}{3.157}$ |
| :--- |

VOLTAGE DROP STUDY

APPENDIX

UNIT SUBSTATION E7

> PNL, 2A-DG

TWG. 9527-F-9331
LOAD
NO_{4}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
WATTS
25
50
-
100
100
250
100
250
-
50
250
250
50
50
50
18
50
50
0
20
21
22
23
24

APPENDIX

INIT SUBSTATION EZ

PNL 32AB (HXO)

DWG. 9527-F-9331

CKT
NO_{2}
1
3
5

7

9
11
13
15

17
19
21
23
2
4
6

8
10
12
14
16
18

LOAD
WATTS
100
107
238
238
58
108
116
18.5
18.5
-
-
108
82
279
108
238 58 58 32

32
32
Total KW
2.029

VOLTAGE DROP STUDY
APPENDIX
THUIT SUBSTAMTON E2
PNL. 2A. (HO6)
DWG. 9527 -F-9331
LOAD
WATTS
100
30
120
240
240
600
100
5250
100
1200
2000
120
100
2000
50
30
50
150
0
50
125
50
23
60
80
60
60
27
30
29
30
31
30
30
Total KW 13.055

VOLTAGE DROP STUDY

APPENDIX

UNIT SUBSTATION E?

PNL. 32A (MW8)

DWG. 9527-F-9331

CKI
NO.
1
5

6

8
9
10
12
13
14
16
18
20
22

LOAL WATTS

30
560
30
30
30
30
30
30
30
30
30
30
30
Total KW
99
:

APPEINDX
UNIT SUBSTATION E7

$$
\begin{aligned}
& \text { PNL, } \quad 2 \mathrm{~A}-\mathrm{RX} \quad(\mathrm{HD} 9) \\
& \text { DNG, } 9527-\mathrm{F}-9331
\end{aligned}
$$

LOAD

WATTS
-
360
-
100
100
100 100
-
-
-
-
-
-
700
100
100
100
75
24 100
25 75
26 100
27 100
28
29
30
100
50
175
50
100
100
240
100
Total KW
3.125

VOLTAGE DROP STUDY

APPENDIX
UNIT SUBSTATION E7
PNL. 2AB-RX (H11)
DWGG. 9527-F-9331
LOAD
WATTS
1
-
240 100
1000
1000 -

100
240
240
240
-
-
-
-
-
100
100
240
1000
-
$-$
-
100
-
-
-
-
-
100
Total KW $\quad 4.800$

APPENDTX
UNIT SUBSTATION E7
PNL. 2AB (HD8)
TWG. 9527-F-9331
LOAD

CKT
NO.

WATTS
2
100
5
100
100
$-$
360
10
100
11
240
240
100
1600
-
600
600
240
240 360 100
33
1200
34
36
42

	VOLTAGE DROP STUDY
	APPENDIX
UNIT SUBSTATION E7	
PNL. 2AB (HD8)	
TWG. 9527-F-9331	
	LOAD
	WATTS
	100
	100
	100
	360
	100
	240
	240
	100
	1600
	-
	600
	600
	240
	240
	360
	100
	1200
	-
	700
Total KW	- 6.980
	-

VOLTAGE DROP STUDY

APPENDIX

UNIT SUBSTATION E8

PNL, 2AB-TB (H14)

DNG, 9527-F-9331
LOAD

$\begin{aligned} & \mathrm{CKT} \\ & \mathrm{NO} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { LOAD } \\ & \text { WATTS } \end{aligned}$
1		390
2		100
3		200
7		240
8		240
9		240
10		240
11		240
12		100
1.4		100
	Total KW	2.090

APPENDIX
UNIT SUBSTATION E8

$$
\mathrm{NO}_{2}
$$

$$
\frac{\frac{\text { PNL, } 2 B-\mathrm{RX}(H 1(\phi)}{\text { DWG. } 9527-F-9331}}{\text { LOAD }}=\frac{\text { WATTS }}{\text { LOA }}
$$

$$
100
$$

VOLTAGE DROP SI IDY

APPENDIX

UNIT SUBSTATION E8

PNL. $2 \mathrm{~B}-\mathrm{TB} \quad(\mathrm{H1} 3)$
DWG. $9527-\mathrm{F}-9331$
$\frac{\text { LOAD }}{\text { WATTS }}$
1270
100
3400
390
75
100
100
100
5.535 memem

VOLTAGE DROP STUDY

APPENDIX

UNIT SUBSTATION E8

```
PNL. 32B (HW9)
DWG. 9527-F-9331
        LOAD
        WATTS
        100
        30
        5 0
        100
        *
        30
        -
        -
        -
        -
        100
        100
        100
        100
        100
        100
        100
        100
        200
        100
    -
```


Total $\mathrm{KW} \quad 1.410$

VOLTAGE DROP STUDY

APPEND1X

UNIT SUBSTATION E8

PNL. 2B-DG

DWG. 9527-E-9331

APPENDTX

UNIT SUBSTATION E8

PNL. 2D (HY1)

DWG. 9527 -F-9331
LOAD
WATTS

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
30
30
30
30
30
30
30
30
-
100
100
30
Total KW 2.070

APPENDIX
UNIT SUBSTATION E8
PNL. 2B (H1 7
TWG. 9527-F-9331
LOAD
CKT
NO_{2}
1
WATTS
150
30
600
240
240
600
-
100
0
125
2000
2000
30
100
100
-
275
100
100
100
100
100
120
120
120
100
Total Ka
7.55

REPORT ON

VOLTAGE DROP STUDY

FOR

CAROLINA POWER δ LIGHT COMPANY
BRUNSWICK STEAM ELECTRIC PLANT
UNIT NO, 2

BY

UNITED ENGINEERS \& CONSTRUCTORS INC.

Date: December 2, 1974
Rev. 1: February 6, 1978
Rev. 2: December 15, 1980

UE 6K J. O. No. 9527.018
Prepared by: $\frac{\text { Kevin } 9 \text { Sm us }}{\text { Kevin } 5 \text { Sou ra } \mathrm{Kt}}$
Reviewed by: \qquad
Approved by:

Approved by:

Page No.
1.0 PIRPOSE 1
2.0 SUMMARY OE RESULTS 2
2.1 Source Voltage Restrictions 2
2.2 Tap Settings 5
3.0 DISCUSSION 6
3.1 Bases for Comperison 6
3.2 Criteria 7 to 17
3.3 Method of Analysis 18
4.0 ANALYSIS OF ALTERNATES 20
5.0 REFERENCES 22
6.0 APPENDICIES 25
Appendix A A2
Appendix B B1
Appendix C C1

1.0 PURPOSE

1.1 This study is an analysis of the voltage regulation performance of the Brunswick Steam Electric Plant auxiliary distribution system. Pirst, the optimum transformer tap settings were determined for the various auxiliary transformers. Second, using these tap settings, the voltage ranges at the various auxiliary load terminals were determined, for the expected generator and 230 KV switchyard voltage variations, and for postulated variations in load conditions. Third, limitations on generator and 230 KV switchyard voltage variations were determined. These limitations were established such that under expected normal operating conditions equipment design lifetimes would not be de:reased. Under emergency operating conditions the limits were set to provide proper operation of all safety-related equipment.

2.0 SUMMARY OF RESUITS

2.1 SOURCE VOITAGE RESTRICTIONS

2.1.1 Criteria

Abstract

For those operating conditions which are expected to continue for long periods of time, the voltage criteria at the load buses were chosen to maximize motor life (90% to 110% of the motor rated voltage), and the source voltage restrictions for these cases were based on such criteria. (See Article 3.2.1). For the emergency operating conditions, the voltage criteria were chosen to ensure that all safety-related equipment would function, (85% to 110% of the motor control center voltage), with the possibility that motor life might be adversely affected if operation beyond either voltage limit continued for a long period of time. (See Article 3.2.1). For all motor starting cases, both accident-related and normal operation, the voltage criteria were chosen to ensure that the motors in question would start (70% or 75% for 4000 -volt safety-related motors, 85% for all 460 -volt motors and 4000 -volt BOP motors), and that the $480-$ volt starters would not drop out (70\%).

It is recommended, for the operating conditions shown, that the source volrages be held within the restrictions tabulated in 2.1.2 and 2.1.3.

```
2.1.2
GENEKATOR AND SWITCHYARD VOLTAGES
BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. }
VOLTAGE DROF STMTY (4160 VOLT BUSES COMMON B & COMMON A TIE BREAKER OPEN)
OPERATING VOIS*T LIMITS
\begin{tabular}{llll} 
& BASE & PER-UNIT & ACTUAL. \\
CASE & VOL:U.E & VOLTAGE & VC:.
\end{tabular}
WAT, LIGH& LOAD
```

GEN
24000.

1. 0365
2. Max.
```
UAT, SCREF : WASH PUMP 2 A STARIING (FULL LOAD)
```

GEN
24000.
0.9665
23198. Min.

```
SAT, SHUTDOWN (LIGHT LOAD)
SKYD 2306ФØ 1.0099 232068. Max.
SAT, UNIT LOADS TED FROM UAT
SWYD - 230001
1.0138 233185. Max,
SAT, SCREEN WASH PUMP 2A STAR ING (FULI LOAD)
```

SWYD
230000
0.9727
223711. Min.

```
SAT, 2 X LOCA START (FULI LOAD)
```

snan
230000
0.9593
220639. Min.

```
2.1.3
GENERATOR AND SWITCHYARD VOLTAGES
BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO, 2
VOLTAGE DROP STUDY (416) VOLT BUSES COMMON B & COMMON A TIE BREAKER CLOSED)
OPERATING VOLTAGE LTMTTS
```


2.2 TAP SETTINGS

UAI	1.00	(base)
SAT	. 975	(-2.5\%)
Unit Substations		
2E	. 95	(-5\%)
2F	. 05	(-5\%)
E7	. 95	(-5\%)
± 8	. 95	(-5\%)
28 Y	975	(-2.5\%)
Common D	. 975	(-2.5\%)
21	1.00	(base)
41	. 975	(-2.5\%)

The above tap settings will provide adequate voltage at the equipment terminals under the operating conditions evaluated and were used in calculating the source voltage limits govern in Table 2.1 .2 and 2.1 .3 .
3.1 BASES FOR COMPARISON

3.1.1 Tap Settings

```
The criterion used to choose transformer tap settings was
to determine, for each set of tap settings, the maximum
230 KV switchyard voltage required to meet the load voltage
requirements. To accomplish this, for each tap setting
combination, voltage drop calculations were performed for
the SAT Shutdown (Light Load) case to d:termine the maximum
switchyard voltage. The tap settings chosen are those which
most closely approach the desired switchyard operating voltage
range of 96.0 to 102%%(5.1) The tap settings chosen must also
provide proper load voltages over the entire range of generbtor
voltages from light load to full load. (See Article 3.2.1).
The recommended tap settings do this. (See Article 2.2),
```


3.2

CRITERIA

3.2.1 Allowable Load Voltage Ranges

3.2.1.1 Motor voltage criteria vary with the class of the motor, as well as the voltage rating. For 4000 -volt motors, non-Class-IE, the requirements are: $(5.2)(5.3)$

Running continuous $\quad 4000-\mathrm{V}$ base $90 \%-110 \% \quad 3600-4400 \mathrm{~V}$
Starting $\quad 4000-\mathrm{V}$ base $85 \%-110 \% \quad 3400-4400 \mathrm{~V}$
Running transient $\quad 4000-\mathrm{V}$ base $85 \%-110 \% \quad 3400-4400 \mathrm{~V}$

For 4000 volt motors, Class IE, specified and supplied by G.E., the requirements are: $(5.4)(5.5)$

Running continuous $4000-\mathrm{V}$ base $\quad 90 \%-110 \% \quad 3600 \sim 4400 \mathrm{~V}$
Starting $\quad 4000-\mathrm{V}$ base $70 \%=110 \% \quad 2800-4400 \mathrm{~V}$
Running transient $\quad 4000-\mathrm{V}$ base $70 \%-110 \% \quad 2800-4400 \mathrm{~V}$

For 4000 -volt motors, Clase IE, specified by UE\&C, the
requirements are: (5.6)

Running continuous	$4000-\mathrm{V}$ base	$90 \%-110 \%$	$3600-4400 \mathrm{~V}$
Starting	$4000-\mathrm{V}$ base	$75 \%-110 \%$	$3000-4400 \mathrm{~V}$
Running transient	$4000-\mathrm{V}$ base	$75 \%-110 \%$	$3000-4400 \mathrm{~V}$

For 460 -volt motors, the requirements for normal motor life are:
Running continuous $460-\mathrm{V}$ base $90 \%=110 \% \quad 414-506 \mathrm{~V}$
Starting $\quad 460-\mathrm{V}$ base $\quad 85 \%-110 \% \quad 391-506 \mathrm{~V}$
Running transient $\quad 460-\mathrm{V}$ base $* 70.7 \% \times 110 \% \quad 325-506 \mathrm{~V}$
*Based on 200% torque at rated voltage for NEMA design moturs. (5.8)

Motor control centers were specified for 480 volts, and the minimum hold-in voltage requirement for the starters is 70% of 480 volts, or 336 volts. The minimum pickup voltage requirement for starters is 85% of 480 volts, or 408 volts.

3.2 CRITERTA (Cont ${ }^{\text {d }}$)

3.2.1 Allowable Load Voltage Ranges (Cont 'd)

3.2.1.2 For the normal operation cases, that is, for the UAT Full Load, SAT Tull Load, UAT Light Load, and SAT Shutdown cases, the load voltage restrictions are based on the rated continuous running voltages of motors to achieve normal lifetimes (90% to 110% of rated voltage, 4000 V or 460 V). (See Articles 3.2.3 for definitions of these cases).
3.2.1.3 Operation at voltages higher than those given would probably result in abnormal heating of motors due to saturation. This heating would shorten the Mean Time Between Failures for the motors so exposed. The MrBF could be expected to decrease with increased time at nigh voltages, and to decrease rapidly with increased voltage levels above the voltage where saturation begins. At the other extreme, because the speed of an induction motor varies greatly with changes in frequency and only slightly on voltage, the load speed remains essentially constant with decreasing voltage. Therefore, the load power and electrical voltampere requirements remain essentially constant for decreasing motor voltage, and the current increases. Below the 1 imiting values shown in Article 3.2.1.1, the $I^{2} R$ losses due to this increased current could be expected to produce abnormal heating and again result in reduced MTBF's. Both of these effects are long-term results of high- or low-voltage operation, hence these limiting values apply only to

3.2 CRITERIA (Cont'd)

3.2.1 Allowable Ioad Voltage Ranges (Cont'd)

3.2.1.3 operating conditions expected to occur for a substantial portiun of the forty-year plant lifetime. Since high voltages would occur with most motors stopped, while low voltages would occur with most motors running and therefore more motors would be exposed to the potentially damaging condition. Thus the decrease in reliability due to extended low-voltage operation would be much more severe than that due to extended high-voltage operation.
3.2.1.4 For 4000 volt motor starting cases, the criteria are simpler. At the 4160 -volt level, the limitation 15 maintaining the minimum motor voltages cited in Article 3.2.1.1. Since motors can, without stalling, ride through a transient voltage dip at a voltage sufficient to start them, the limiting condition for the 4160 -volt level is to maintain sufficient voltage to start the motors. At the 480 -volt level, the limitation is that the starters of motors already running must not drop out when a 4000 -volt motor starts. Starters are not guaranteed to hold in at voltages below 70\% of their reted coil voltage, or in the case of BSEP, $70 \% \times 480 \mathrm{~V}$ or 336 V . For 460 volt motor starting cases, the criterion is simply that the 460 volt motor must have no less than rated starting voltage (85% of 460 V).
2.2.1 Allowable Load Voltage Ranges (Cont'd)
3.2.1.5 For the running LOCA and 2 X LOCA cases, the postulated
combination of depressed 230 KV system voltage and heavy
auxiliary load would not be expected to continue
indefinitely. Because these are temporay conditions,
and because such an accident could affect the operating
Iffe of the plant, reduction in motor MTBF becomes a
secondary consideration. The important voltage limitation
in these accident conditions is imposed by the requirement
of $85 \% \times 480 V$ or $408 V$ at the motor control centers to
ensure that a starter will pick up.
3.2.1.6 Using the above values, voltage criteria were developed for buses and unit substations. At the 4160 -volt level, the voltage drops due to cable impedances are negligible. Hence, the bus voltages are considered to be the same as the motor voltages. At the 480 volt level, the voltage drops between the unit substations and motor control centers, and between the motor control centers and the motor terminels are significant. VOLTS runs were made to determine the exact 480 Volt unit substation voltage required to maintain the required voltages at all motor control centers. It was found that if the voltage at Unit Substation E7 is above . 8718, and that at Unit Substation E8 is above . 8803 , then all MCC voltages will be at least 85%. VOLTS runs were also made

3.2 CRITERIA (Cont 'd)

3.2.1 Allowable Load Voltage Ranges (Cont 'd)
3.2.1.6 to determine the minimum unit substation voltages to
ensure that all MCC's will see not less than 70%
voltage when 4000 volt motors start. It was founc
that if the Unit Substation E8 voltage is $.7368 \times 480 \mathrm{~V}$
or more, all MCC's will see not less than 70% voltage.
Note that specifying a single unit substation's
voltage essentially specifies all unit substations '
voltages, because unit substation voltages are
determined by the 4 KV system voltage.
3.2.1.7 Summary of Voltage Requirements

$4160-\mathrm{Volt}$ Buses	Minimum	Maximum
Running Voltage	3600	4400
Starting Voltage (non-Class IE)	3400	4400
Starting Voltage (Class IE Spec. by G.E.)	2800	4400
Starting Voltage (Class IE Spec. by UEaC)	3000	4400

460-Volt Motors
Starting voltage at motor teminals 391

```
3.2.1.7 SUMMNARY OF VOLTAGE RECUIREMENTS
4SC vOLT TNIT SUDSmATION vOLTACES
CPEL BRUNSWICK STEA: ELECTRIC PLANT, UNIT NO. 2
VOLTAGE DROP STUDY
OPERATING VOLTAGE LIMITS
```

CASE BUS VOLTAGE PER-UNIT ACTUAL
LOCA RUNNING LOADS, UNIT SUESTATION E7 MOTOR CONTROL CENTERS
2CA 480 . 0.8500 4D8.
E7 480 . 0.8718 418.
LOCA RUNNING LOADS, UNIT SUBSTATION EB MOTOR CONTROL CENTERS

$2 C B$	480.	0.8500	428.
28	480.	0.8803	423.

LOCA STARTING, UNIT SUBSTATION ET MOTOR CONTROL CENTERS

2 CA	480.	0.7000	336.
$E 7$	480.	0.7265	349.

LOCA STARTING, UNIT SUBSTATION EB MOTOR CONTROL CENTERS
2 CB 480 . 0.7000336.
E8 480 . 0.7368 354.

FULL LOAD, UNIT SUBSTATION E7 MOTOR CONTROL CENTERS

$2 C A$	460.	0.9000	414.
$E 7$	480.	0.8797	422.

FULI LOAD, UNIT SUBSTATION ES MOTOR CONTROL CENTERS $2 C B 460$. 0.9000 414. E8 480 ©.8864 425.

FULL LOAD, UNIT SUBSTATION 2E MOTOR CONTROL CENTERS 2 TK 460 . 0.908 C 414. 2E 480. 0.8715 418.

FULL LOAD, UNIT SUBSTATION 2F MOTOR CONTROL CENTERS

276	468.	2.9000	414.
$2 F$	485.	0.8730	419.

FULL LOAD, UNIT SUBSTATION COMMON D MOTOR CONTROL CENTERS FWD 460. 0.9000 414. COM $\quad 480 . \quad 0.8753 \quad 420$.

Note: First line represents the MCC having the lowest bus volt'ge for the operating condition. The second line represents the ur it substation to which the MCC is comected and the corresponding veltage on its bus.

3.2.2 Loads

4000 Volt motor loads were based on the load brake horsepower, using the motors' actual efficiencies and power factors to detemine the electrical loads. The starting admittance values for both 4000 Welt and large 460 Volt motors were derived from the motors' actual inrush currents and power factors. Rumning loads on the 480 Volt system were taken from the 480 Volt Load Study ${ }^{(5.9)}$

3.2.3 Postulated Events and Plant Operating Conditions

3.2.3.1 "Normal Operation", as used in this study, includes the entire range of steady-state non-accident conditions from cold shutdown to full wower operation. Any of the conditions included in this concept could be expected to continue for weeks or months at a time, and therefore the load voltage range for these conditions is that described in Article 3.2.1.2. The load conditions for normel operation are:

UAT Full Load
SAT Full Load
UAT Light Load
SA: Shutdown (Light Load)
3.2.3.2 "Motor Starting" cases refer to those motors which would be started at various times during nomal plant operation. On each 4160 volt bus and each 480 volt unit substation, the largest motor was selected for study. It was assumed that the motor was starting while all other loads required for full power operation were running. If the largest motors

3.2 CRITERTA (Cont'd)

3.2 .3 Postulated Events and Plant Operating Conditions (Cont'd)

3.2.3.2 on each bus can be started under this condition, it is reasonable to assume that all motors can be started under all "Normal Operation" conditions. These motor starting runs were made for both the UAT and SAT.

The following motors were studied:

3.2.3 Postulated Events and Plant Operating Conditions (Cont 'd)
3.2.3.3 "LOCA" cases are those initiated by a loss of Coolant Accident on Cnit 2. Both starting ceses and running cases were studied, For detailed descriptions of the load conditions, see Article 3.2.4. The voltage criteria for these cases are described in Article 3.2.1.4 (starting) and 3.2.1.5 (running).
3.2.3.4 " $2 \times$ LOCA" cases are those initiated by a Loss of Coolant Accident on Thit 2 and a false LOCA sigmal from Unit 1 , resulting in the starting and running of both units' ESS loads. Again, both starting and running cases were studied. The voltage criteria for these cases are described in Article 3.2.1.4 (starting) and 3.2.1.5 (running).
3.2.3.5 "LOCA Motor Starting" and "2X LOCA. Motor Starting" fre the cases which address the problem of starting 460 volt motors after an accident, while the emergency motors are still running. The largest 460 volt motors fed from the emergency power system are the screen wash pumps, and starting and running of the screen wash pumps is blocked under LOCA conditions. The next largest motors on the 480 volt emergency system, which could start unfer LOCA conditions, are the 75 horsepower Reactor Building Closed Cooling Water Pumps. The worst case is a postulated simultameous start of Reactor
3.2.3 Postulated Events and Plant Operating Conditions (Cont'd)

> 3.2.3.5 Building Closed cooling Water Pumps 2 A and 2 C on loss of closed cooling water header pressure.

3.2.4 Load Conditions

The various load conditions studied are defined below:
3.2.4.1 UAT Full Load: This is the nomal plant operating condition, with the generating unit at full power and with auxiliary loads fed as follows:

Source UAT SAT
4160V Bus 2B X
4160 V Bus $2 \mathrm{C} \quad \mathrm{X}$
4160 V Bus 2D X
4160 V Bus Common B X
480 V Bus 2E X
480V Bus 2F X
480 V Bus E7 X
480V Bus E8 X
480 V Bus 2SY X
480 V Bus Cominon D X
480 V Bus 2 L X
480 V Bus 4L X
3.2.4.2 SAT Full Load: This is the normal plant operating condition with the generating unit at full power and auxiliary loads fed from the SAT. The plant is in operation with the UAT out of service.
3.2.4.3 UAT Light Load: This represents the estimated minimum auxiliary load that would exist with the generator connected to the system. Load buses are fed from the same sources as cited under "UAI Full Load".
3.2.4.4 SAT Shutdown: This represents the minimum auxiliary load, with the plant shut down and all auxiliary loads fed from the SAT.
3.2.4 Load Conditions (Cont'd)

3.2.4.5	LOCA Start:	This represents the inrush condition at the start of an accident, with 2 RHR pumps and 2 Core Spray pumps simultaneous ly starting, with all other loads running as in the SAT Full load condition except that the Turbine Building Air Conditioning Compressors are tripped.
3.2.4.6	LOCA Run:	This represents the steady-state condition during an accident, with 2 RHR pumps and 2 Core Spray pumps running in addition to the running loads cited in the LOCA Start case above.
3.2.4.7	2X LOCA Start:	This represents the simultaneous starting of all RHR pumps and Core Spray pumps, with all the other loads running as in the SAT Full load condition except that the Turbine Building Air Conditioning Compressors are tripped.
3.2.4.8	2X LOCA Run:	This represents the steady-state condition following $2 X$ LOCA Start with all RHR pumps, all Core Spray pumps and all other loads (except Turbine Building Air Conditioning Compressors) running. It should be noted thet this condition applies during a LOCA on Unit 2 and simultaneous shutdown cooling of Unit 1 .

3.3 METHOD OF ANALYSIS

3.3.1 Prozram

The VEGC computer program "volTS" was used to calculate bus voltages.
This program performs a Gauss-Seidel laad flow calculation, with provision for constant MVA loads to model runing motors, and constant admittance loads to model starting motors. Up to 25 buses can be modeled. Transformers with tap changers can be represented. Bus voltages are computed by the program to a tolerance of $\pm .0001 \pm j .0001$ per unit.
3.3.2 Per Unit Values

Calculations were performed using a per-unit scheme with base values as follows:

System Base Volts Base MVA
$230-\mathrm{KV} \quad 230 \mathrm{KV} \quad 100$
$24-\mathrm{KV} \quad 23.5 \mathrm{KV*} 100$
$4160-\mathrm{V} \quad 4160-\mathrm{V} \quad 100$
$480-\mathrm{V} \quad 480-\mathrm{V} \quad 100$
*23.5 KV is the base value for computer calculations only. Where generator voltages are expressed in in, the base value is the rated generator voltage, i.e., 24 KV .

3.3 METHOD OF ANALYSIS (Cont'd)

3.3.3. Impedances

The transformer impedances in the study are the actual impedances taken from the test reports. 9.10) Cable impedances were calculated from the manufacturer's data. In order to stay within the computer progrem's 25 -bus limitation, cable impedances were combined with transformer impedances as required.

4.1 ALTERNATIVES

Two alternative operating conditions have been reviewed. One operating condition is with the 4160 Volt Buses Common B and Common A Tie Breaker Open. This is a normal operating condition. The other operating condition is with this Tie Breaker closed. This condition could occur when the linit No. I startup transformer is out of service.
4.24160 VOLT BUSES COMMCN B \& COMMON A TIE BRE AKER OPEN

Review of the verious VOLTS computer runs (Appendix A) determined six operating voltage limits. These limits are tabulated in 2.1 .2 . The minimum expected switchyard voltage of $100 \%^{(5.1)}$ is above the 97.27% required for normal plant operation and the minimum post turbine generator trip switchyard of $96 \%(5,1)$ is above the 95.93% required for operating the ESS equipment. The meximum switchyard voltage of $102 \%(5.1)$ would normally occur when the unit was operating and the Startup Auxiliary Transformer was feeding both 4160 Volt Bus Common B and 4160 Volt Bus 2B. The additional load imposed by Bus 2 B would allow the Switchyard voltage to exceed the 101.38% limit. It is expected that with Unit No. 2 shutdow, the switchyard voltage would not exceed the 100.9% limit. In addition, any loads which might be operating during shutdown (i.e. circulating water pumps; service water pumps, etc.) would allow an increase of switchyard voltage beyond the 100.9%.
4.34160 VOLI BUSES COMMON B $\&$ COMMON A TIE BREAKER CLOSED

Review of the various VOLTS computer runs (Appendix B) determined two operating voltage limits. These limits are tabulated in 2.2.3. The minimum expected switchyard voltage of $100 \%(5.1)$ is above the 98.09% required for normal plant operation. The minimum post turbine trip

```
voltage of }96%(5.1) is below the 97.20% required for operation of th
ESS equipment. This problem can be resolved in one of two ways:
    a. Provide a minimum Switchard Voltage of 101. 2% when tie
    breaker is closed
    b. Reduce auxiliary load (UAT and SAT) to 31.5 MW and 18.8 MVAR
    when tie breaker is closed
The addition of the 4160 Volt Bus Common A loads will permit an increase
in Switchyard Voltage above the limits of 100.9% and 101.38% noted in
4.2 and therefore camnot be considered an operating limit. For thi
reason the vOLTS runs were not performed.
```


5.0 REFERENCES

5.1 CPGL. letter to NRC NC-80-;093 dated July 24, 1980.
5.2 United Engineers and Constructors, Miscellaneous Induction Motors 100 HP and Larger, Specification Number 9527-01-128-2, Revision 6, dated June 4, 1976.
5.3 United Enganeers and Constructors, Synchronous Motors 100 HP and Larger, Specification Number 9527-01-128-3, Revision 4, dated July 11, 1975 ,
5.4 General Electric Company letter GU-894 to United Engineers and Constructors, dated April 21, 1971.
5.5 General Electric Company, Electric Motor List, GE Specification Number 22A827, Revision 1, dated November 23, 1970.
5.6 United Engineers and Constructors, Class I Induction Motors 100 HP and Larget, Specification Number 9527-01-128-4, Revision 4, dated June 9, 1976.
5.7 United Engineers and Constructors, Non-Special Alternating Current Induction Motors less than 100 HP in size, Specification Number 9527-01-128-1, Revision 4, dated December 23, 1974.
5.8 United Engineers and Constructors, 480 Volt Motor Control Centers, Specification Number 9527-01-143-1, Revision 4, dated August 9, 1976.
5.9 United Engineers and Constructors, 480 Volt Load Study for Carolina Power and Light Company, Brunswick Steam Electric Plant, Init 2, Revision 1, dated March 31, 1978
5.10 Transformer Test Report

Trans former

Main

Unit Auxiliary
Start up Auxiliary
Unit Substations:
F.P. 9527-30131
F.P. 9527-3873
F.P. 9527-3821
F.P. 9527-30073
F.P. 9527-30072
P.P. 9527-30069
P.P. 9527-30071
F.P. 9527-30075
F.P. 9527-30075
F.P. 9527-30076
P.P. 9527-30073

5.11 Key Single Iine Diagrams

9527-F-3043
$9527-F-3044$
Single Line Diagrams

$9527-\mathrm{F}-3002$	4160v System SWGR 2B, 2C, 2D and Common " B "
$9527-\mathrm{F}-3003$	4160v Emergency System Buses E3 and E4
9527-F-3004	41600 Emergency S.istem Buses E1 and E2
$9527-\mathrm{F}-3005$	480V System Unit Substations 2E, 2F, E7, E8 and Common " D "
$9527-\mathrm{F}-3045$	480 V Motor Control Centers $2 \mathrm{TA}, 2 \mathrm{~TB}, 2 \mathrm{TC}, 2 \mathrm{TF}, 2 \mathrm{JJ}$
$9527-\mathrm{F}-3047$	```480V Motor Control Centers 2TD, 2TE, 2TG, 2TH```
$9527-\mathrm{F}-3048$	480 V Motor Control Centers 2TK, 2TL, $2 \mathrm{TM}, 2 \mathrm{TN}$
9527-F-3049	480 V Motor Control Centers $2 \mathrm{XA}, 2 \mathrm{XC}, 2 \mathrm{XE}, 2 \mathrm{XG}, 2 \mathrm{XJ}, 2 \mathrm{XI}$
9527-F-3050	480 V Motor Control Centers $2 \mathrm{XB}, 2 \mathrm{XD}, 2 \mathrm{XF}, 2 \mathrm{XH}, 2 \mathrm{XK}, 2 \mathrm{XM}$
9597-F-3051	480V Motor Control Centers RWA, RWB, RWC, RWD
952i-F-3052	480 V Motor Control Centers BHA, SBA, WIA and WHA
9527-F-3053	. 880 v Motor Control Centers $2 \mathrm{CA}, 2 \mathrm{CB}, 2 \mathrm{PA}, 2 \mathrm{~PB}, 2 \mathrm{SA}$
9527-F-3055	48.W Motor Control Centers SYA, SYB, SYC and SYD
9527-F-3057	480 V Motor Control Centers $D G A, D G B, D G C$ and $D G D$

APPENDIX A

VOLTAGE DROP STUDY
POR
CAROLTNA POWER 6 LIGHT COMPANY BRTUSNICK STEAM ELECTRTC PLANT UNIT NO, 2 BY INITED ENGINEERS \& CONSTRUCTORS INC.

VOLTAGES

AND

IMPEDANCE DIAGRAMS

4160. VOLT BTISES COMMON B \&

COMMON A TIE BREAKER OPEN

APPCNDIX A

GENERAI NOTES

1. The choice of source voltages to be studied was made as follows:

An initial VOLTS run was made at the appropriate limiting value determined by the source in question. For the full load, motor starting, and LOCA cases, the initial runs were made at 95% of 24 KV for the UAT cases, and 95% of 230 KV for the SAT cases. For t\%ic light load cases, the initial runs aere made at 110% of 24 KV for the UKT cases aud 105% of 230KV for the SAT cases. If the voltages which resulted from a given initial run were satisfactory for all loads, then no further runs were made for that particular operating case. If the voltages were not satisfactory, then a second run was made at a voltage chosen so that the two voltages would bracket the limiting voltage. After load voltages were available for two source voltages, a linear interpolation calculation was done to determine the limiting voltage. The VOLTS run was then performed using the limiting source voltage, and these are the runs which are presented in those cases where the limiting voltage would be determined by the loads. In the accident cases a minimum voltage limited by the loads was determined in every case, even when this voltage was below the expected minimum 230 KV switchyard voltage.

VOLTAGE DROP STUDY
 APPHOIT A
 UAT
 11GMT 10AD
 (Fig. No. Al)

MAXIMUM VOLTAGE

BUS NAMES

PER UNIT VOLTAGE ACTUAL VOLTAGE

GENERATOR (24 KV BASE)	1.0365	24,876
4160 VOIT BUS 2B	1.1	4,576
4160 VOLT BUS 2C, 2D, E3 \& E4	1.059	4,405
480 VOLT UNIT SUBSTATION E7	1.0648	511
480 VOLT UNIT SUBSTATION 2E	1.0721	515
480 VOLT UNIT SUBSTATION 2F	1.0685	513
480 VOLT UNIT SUBSTATICN E8	1.0631	510

NOTE: ALI VOLTAGES, EXCEPT GENERATOR, ARE ON 4000 VOLI OR 460 VOLT BASE AS APPROPRIATE.

APPENDIX $\&$

UAT

FIIT: TLAD
(Fig. No. A2)

MINIMIM VOLTAGE

BUS NAMES
GENERATOR (24 KV BASE)
4160 VOLI BUS $2 B$
4160 VOLT BUS 2C, 2D, E3 5 EL
480 VOLT UNIT SUBSTATION E7
480 VOLT UNIT SUBSTATIOX $2 E$
480 VOLT UNIT SUBSTATION $2 F$
480 VOLT INTI SUBSTATION EE

PER UNIT VOLPAGE ACTHAL POLTATE

$$
22,800
$$

3,930

$$
3,823
$$437440438436

NOTE: ALI VOLTAGES ARE EXPRESSED IN PER UNIT ON THE BASE VOLTAGE SHOWN IN THE LEFT-HAND COLUME

APPENDIX A

UAT

REACTOR RECIRC. PUMP MG SET $2 B$ MOTOR STARTING (Fig. No. A3)

MINTMIM VOLTAGE

BUS NAMES	PER UNIT VOLTAGE	ACTUAL VOLTAGE
GENERATOR (24 KV BASE)	.95	22,800
4160 VOLT BUS 2B	.8093	3,367
4160 VOLT BUS 2C, 2D, E3 \&E4	.9374	3,900
480 VOLT URIT SUBSTATION E7	.93	446
480 VOLT UNIT SUBSIATION 2E	.9378	450
480 VOLT UNIT SUBSTATION 2F	.934	448
480 VOLT UNIT SUBSTATION E8	.9282	446
$4000 V$ REACTOR RECIRC. MG SET	.8307	3,322

NOTE: ALL VOLTAGES ARE ON THE BASE SHOWN IN THE LEFT-HAND COLUMN.

APPENDIX A
DAT
CIRCULATING WATTP PINP STARTING
(Fig. No, A4)

MINIMIM VOLTAGE

VOLTAGE D.OP STIDY

APPENDIX A
UAT

SCREEN WASH PUMP 2A STARTING
(Fig. No. A5)

	MINIMTM VCLTAGE	
BUS NAMES	PER UNIT VOT TAGE	ACTUAL VOL:AGE
GENERATOR (24 KV BASE)	. 9665	23,198
4160 VOLT BUS 2B	. 9628	4,005
4160 VOLT BUS 2C, 2D, E3 \& E4	. 9321	3,878
480 VOLT UTIT SUBSIATION E7	. 8807	423
480 VOLT UNIT SUBSTATION 2E	. 932	447
480 VOLT UNIT SUBSTATTION 2F	.9281	445
480 VOLT UNIT SUBSTATION E8	. 9222	443
$\angle 80$ VOLT MOTOR COITROL CEIMER 2PA	. 8298	398
460 v SCREEN WASH PUMP 2A MOTOR IERMINALS	. 8501	391

NOTE: ADL VOITAGES ARE ON THE BASE VOLTAGE SHOWH IN THE LEFT HAND COLDMN.

VOLTAGE DROP STUDY

APPENDIZ: A
UAT
TURBINE BUILDING CLOSED COOLTNQ WATER PUMP $2 A$ STARTING (Fig. No. A6)

MINIMUM VOLTAGE

BUS NAMES	PER UNIT VOITAGE	ACTUAT VOLTAGE
GENERATOR (24 KV BASE)	. 95	22,800
4160 VOLT BUS 2B	. 9455	3,933
4160 vCLT BUS 2C, 2D, E3 \& E4	. 9135	3,800
480 VOLT UNIT SUBSTATION E7	. 9031	433
480 VOLT UNIT SUBSTATION 2 E	. 8655	415
480 VOLT UNIT SUBSTATION 2 F	. 9072	435
480 VOLT UNIT SUBSTATION E8	. 9012	433
480 VOLT MOTOR CONTROL CENTER 2 TJ	. 8338	\cdots
460 V TURBINE BUILDING CLOSED COOLING WATER PUMP 2A	. 8573	394

NOTE: ALI vOLTAGS, KE ON THE BASE VOLTAGE SHOWN IN THE LEFT HAND COLIMMN.

APPENDIX A
UAT
TURBINE BUILDING CLOSED COOITNG WATER PINP 2B STARTING (Fig. No. A7)

APPENDIX A

UAT

$\frac{\text { SCREEN WASH MINP 2B STARTING }}{(\text { Fig. No. AB) }}$

MINTMUM VOLTAGE

BUS NAMES

PER UNIT VOLTAGE ACTUAL. VOLTAGE

GENERATOR (24 KV BASE)	.9576	2,298
4160 VOLT BUS 2B	.9535	3,967
4160 OLT BUS 2C, 2D, E3 \& E4	.9223	3,837
480 VOLT INIT SUBSTATION E7	.913	438
480 VOLT UNIT SUBSTATION 2E	.929	442
480 VOLT UNIT SUBSTATION 2F	.9171	440
480 VOLT UNIT SUBSTATION E8	.8681	417
480 VOLT MOTOR CONTROL CENTER 2PB	.832	399
$460 V ~ S C F E E N ~ W A S H ~ P U M P ~ 2 B ~ M O T O R ~ T E I M I N A L S ~$.8502	391

NOTE: ALI VOLTAGES ARE ON THE BASE VOLTAGE SHOWN IN THE LEFT HAND COLTDMN.

NOTE: ALI VOLTAGES, EXCEPI SWITCHYARD, ARE ON 4000 VOLT OR 460 VOLT BASE AS APPROPRIATE.

SAT
$\frac{\text { INIT LOADS TED TROM UAT }}{(\mathrm{Fig} \cdot \text { No. A10) }}$

NOTE: ALI VOLTAGES, EXCEPT SWITCHYARD, ARE ON 4000 VOLT OR 460 VOLT BASE AS APPROPRIATE.

VOLTAGE DROP STUDY

APPENDIX A
SAT
$\left(F 1 \frac{\text { KULL } 10 A D}{\mathrm{~g} \cdot \mathrm{NO} \cdot \mathrm{AII})}\right.$
MINIMIM VOLTAGE

BUS NAMES

PER UNII VOLTAGE ACTUAL VOLTAGE

| 230 KV SWITCHYARD | .95 | 218,500 |
| :--- | :--- | :---: | :---: |
| 4160 VOLT BUS 2B | .9384 | 3,904 |
| 4160 VOLT BUS 2C, 2D, E3, 54 \& COMMON B | .9119 | 3,794 |
| 480 VOLT UNIT SUBSTATION E7 | .9013 | 433 |
| 480 VOLT UNIT SUBSTATION 2E | .9095 | 437 |
| 480 VOLT UNIT SUBSTATION 2F | .9055 | 435 |
| 480 VOLT UNIT SUBSTATION E8 | .8994 | 432 |
| 480 VOLT UNII SUBSTATION 2SY | .9243 | 444 |
| 480 VOLT UNIT SUBSTATION COMMON D | .9167 | 440 |
| 480 VOLT UNIT SUBSTATION 21. | .9027 | 433 |

NOTE: ALL VOLTAGES ARE EXPRESSED IN PER LNIT ON THE BASE VOLTAGE SHOWN IN THE LEPT HAND COLUMN.

VOLTAGE DROP STUDY

APPENDIX A
SAT
REACIOR RECINC. PINP MO CET $2 B$ MOTOR STARTING
(Fig. No. A12)

NOTE: ALL VOLTAGES ARE ON THE BASE VOLTAGE SHOWN IN THE LEFT HAND COLIMN.

APPENDIX A
SATT
CIRCULATING WATER PUNP 2 2B MOTOR STARTING (Fig. No. N13)

BUS NAMES

230 KV SWITCEYARD	. 95	218,500
4160 VOLT BUS 2B	.9348	3,889
416 U VOLT BUS $2 \mathrm{C}, 2 \mathrm{D}$, COMMON B, E3 $5: 54$.8642	3,595
480 VOLT UNIT SUBSTATION E7	. 847	407
480 VOLT UNTT SUBSTATION 2E	. 8559	411
480 VOLI UNIT SUBSTATION 2F	. 8515	409
480 VOLT UNIT SUBSTATION E8	. 845	406
480 VOLT UNII SUBSTATION 25 Y	. 8747	420
480 VOLT ITNIT SUBSTATION COMMON D	. 8657	416
480 VOLT UNIT SUBSTATION 21	. 8544	419
480 VOLT UNIT SUBSTATION 41	.8656	415
4000 V CIRCULATING WATER PUMP MOTOR 2B	. 8721	3,488

NOTE: ALI VOLTAGES ARE ON THE BASE VOLTAGE SHOWN IN THE LETI HAND COLIMN.

APPENDIX A
SAT
SCREEN WASH PMMP $2 A$ STARTING
(Fig. No. Al4)

	MINIMUM VOLTAGE	
BUS NAMES	PER UNIT VOLTAGE	ACTUAL VOLTAGE
250 KV SWITCHYARD	. 9727	223,711
4.60 VOLT BUS 2D	. 9623	4,003
4160 VLIT BUS 2C, 2D, E3, E4 \& COMNON B	. 9319	3,877
480 VOLI UNIT SUBSTATION E7	. 8807	423
480 VOLT UNIT SUBSTATION 2 E	. 8318	399
480 VOLT UNII SITBSTATIOK 2E	. 9279	445
480 VOLT UNIT SUBSTATION E8	.9~22	443
480 VOLT UNIT STBSTATION 2SY	. 94.51	454
480 VOLT UNIT STBSTATION COMMON D	. 9377	450
480 VOLT UNIT SUBSTATION 21	. 9229	443
480 VOLT UNIT SUBSTATION 41	. 9367	$4: 0$
480 VOLT MOTOR CONTROL CENTER 2PA	. 8299	398
460 V SCREEN WASH PUMP 2 A	. 8502	391

NOTE: BASE VOLTAGES ARE SHOWN IN THE LEFT HAND COLTMN.

APPENDIX A

SAT

TURBI'装 BUTLDING CLOSED COOLING WATER PUMP 2A MOTOR STARTING (Fig. No. Al5)

MINTMIM VOLTAGE

BUS NAMES
 PER UNII VOLTAGE ACTUAL VOLTAGE

```
230 KV SWITCHYARD
```

4160 VOLT BUS $2 B$
4160 VOLT BUS $2 \mathrm{C}, 2 \mathrm{D}, \mathrm{E} 3, \mathrm{E} 4$
\& COMMON B
480 VOLT UNIT SUBSTATION E7 8947
.95
.9379
218,500
3,902
.9061
3,769429

480 VOLT UNIT SUBSTATIUN $2 E$
480 VOLT UNIT SUBSTATIUN $2 E$ 8579 412

480 VOLT UNIT SUBSTATION 2F 8989
480 VOLT UNIT SUBSTATION $2 F$.8989 431

480 VOLT UNIT SUBSTATION E8 8928
480 VOLT UNIT SUBSTATION E8 .8928 429

480 VOLT UNIT SUBSTATION 2SY . 9182
480 VOLT UNII SUBSTATION $25 Y$ 9182 441

480 VOLT UNIT SUBSTATION COMMON D .9106
480 VOLT UNIT SUBSTATION COMMON D 9106 437

480 VOLT UNIT SUBSTATION 21 . 8968
480 VOLT UNIT SUBSTATION 21 .8968 430

480 VOLT UNIT SUBSTATION 42.9096
480 VOLT UNIT SUBSTATION 41 .9096 437

.8265

397

480 VOLT MOTOR CONTROL CENTER 2 TJ
480 VOLT MOTOR CONTROL CENTER $2 T J$.8265 397
460 T TURBINE BUILDING CLOSED COOLING WATER PUMP 2A 8498 391

NOTE: ALI VOLTAGES ARE ON THE BASE VOLTAGE SHOWN IN THE IEFT HAND COLUMN.

APPENDIX A
SAT

TURBINE BUILDING CLOSED COOITNG WATER PUNP 2B START (Fig. No. Al6)

BUS NAMES	NTNIMTM VOLTAGE	
	PER UNII VOLTAGE	ACTUAL VOLTAGE
230 KV SWITCHYARD	. 9623	221,329
4160 VOLI BUS 2B	. 9511	3,957
4160 VOLM BUS $2 \mathrm{C}, 2 \mathrm{D}, \mathrm{E} 3, \mathrm{E} 4$ \& COMMON B	. 92	3,827
480 VOLT UNIT SUBSTATIO: E7	. 9104	437
480 VOLT UNIT SUBSTATION 2E	. 9185	441
480 VOLT UNIT SUBSTATION 2 E	. 8684	417
480 VOLT UNIT SUBSTATION E8	. 9085	436
480 VOLT UNIT SUBSTATION $25 Y$.9326	448
480 VOLI UNIT SUBSTATION COMMON D	. 9252	440
480 VOLT UNIT SUBSTATION 21.	. 9108	437
480 VOLI UNIT SUBSTATION 41	. 9242	444
480 VOLT MOTOR CONTROL CENTER 2TH	. 8382	402
460 V TURBINE BUILDING CLOSED COOLING WATER PUMP $2 B$. 8501	391
NOTE: ALI VOLTAGES ARE ON THE BASE HAND COLUMN.	SHOWN IN THE LE	

VOLTAGE DROP STUDY

APPENDIX A
SAT
SCREEN WASE PUMP 2B STARTING
(Fig. No. A17)

BUS NAMES	MINIMUM VOLTAGE	
	PIR UNII VOLTAGE	ACTUAL VTITAGE
230 KV SWITCHYARD	. 9638	221,674
4160 VOLZ BUS 2B	. 9527	3,963
4160 VOLT BUS $2 \mathrm{C}, 2 \mathrm{D}, \mathrm{E} 3, \mathrm{E} 4$ \& COMMON B	. 9222	3,836
480 VOLI UNIT SUBSTATION E7	.9126	438
480 VOLT UNIT SUBSTATION 2E	. 9207	442
480 VOLT UNIT SUBSTATION 2 F	. 9167	440
480 VOLT UNII SUBSTATION 2SY	. 8679	417
480 VOLT UNIT SUBSTATION COMMON D	. 9347	449
480 VOLT UNIT SUBSIATION 21	.9273	445
480 voLT UNIT SUBSTATION 42	. 9263	445
480 VOLT MOTOR CONTROL CENTER 2PB	. 8319	399
460 V SCREEN WASH PUMP 2B	.8501	391

NOTE: ALI VOLTAGES ARE ON THE BASE VOLTAGE SHOWN IN THE LEFT HAND COLUMN.

VOLTAGE DROP STUDY

APPENDIX A
SAT

LOCA START

(Fig. No, A18)

BUS NAMES	MINTMUM VOLTAGE	
	PER UNIT VOLTAGE	ACTUAL VOLTAGE
230 KV SWITCHYARD	. 9115	209,645
4160 VOL ${ }^{\text {a }}$ BUS 2 B	. 9218	3,835
4160 VOLT BUS 2C, $2 \mathrm{D}, \mathrm{E} 3, \mathrm{E} 4 \&$ COMMON B	. 7577	3,152
480 VOLT UNIT SUBSTATION E7	. 7457	358
480 VOLT UNIT SUBSTATION 2E	. 7151	343
480 VOLT UNIT SUBSTATION 2F	. 7079	340
480 VOLT UNIT SUBSTATION E8	.7366	354
480 VOLT UNIT SUBSTATION 25 Y	. 7603	365
480 VOLT UNIT SUBSTATION COMMON D	. 7485	359
480 VOLT UNIT SUBSTATION 21	. 7419	356
480 VOLT UNIT SUBSTATION 41	. 7468	358
4000 VOLT CORE SPRAY PUMP 2A	.7735	3,094
4000 VOLI RHR PUMP 2A	.7807	3,123
4000 VOLT CORE SPRAY PUMP 2B	. 7705	3,082
4000 VOLT RHR PUMP 2 B	. 7777	3,111

NOTE: BASE VOLTAGES FOR ALI LOATS ARE THE RATED VOLTAGES SHOWN IN THE LEFT HAND COLUMN.

```
VOLTAGE DROP STUDY
    APPENDIX A
SAT
(Fig.NO.NA19)
```

BUS NAMES	MINIMIM VOLTAGE	
	PER UNIT VOLTAGE	ACTUAL VOLTAGE
230 KV SWITCHYARD	. 9291	213,693
4160 VOLT BUS 28	. 9478	3,943
4160 VOLT BUS $2 \mathrm{C}, 2 \mathrm{D}, ~ E 3, ~ E 4$ \& COMMON B	. 8843	3,679
4.80 VOLT UNIT SUBSTATION E7	. 8876	4.26
480 VOLT UNIT SUBSTATION 2 E	. 8637	415
480 VOLT UNIT SUBSTATION 2F	. 8582	412
480 VOLT UNIT SUBSTATION E8	. 8804	423
480 VOLT UNIT SUBSTATION 2 SY	. 8927	428
480 VOLI UNIT SUBSTATION COMMON D	. 8828	424
480 VOLT UNIT SUBSTATION 21	. 8711	418
480 VOLT UNIT SUBSTATION 41	. 8814	423

NOTE: ALI VOLTAGES ARE ON THE BASE VOLTAGE SHOWN IN THE LEFT HAND COLUMN.

> VOLTAGE DROP STUDY $\frac{\text { APPENDTX A }}{\text { SAI }}$ $\frac{2 \mathrm{X} \text { LOCA START }}{(\text { FIg. NO.AR1) }}$

MINTMIM VOLTACE

BUS NAMES
230 सT SWITCHYARD
4160 VOLT BUS 2 B
4160 VOLT BUS $2 \mathrm{C}, 2 \mathrm{D}, \mathrm{E} 3, E 4, \mathrm{E}$ COMMON B
480 VOLI UNIT SUBSTATION E7
480 VCLT UNIT SUBSTATION 2 E
480 VOLT UNIT SUBSTATION 2 E
4BO VOLT UNIT SUBSTATIOR EB
480 VOLT UNIT SUBSTATION $25 Y$
480 VOLT UNIT SUBSTATION COMMON D
480 VOLT UNII SUBSTATION 21
480 VOLT UNIT SUBSIATION 41
$\angle 000$ VOLI CORE SPRAY PUNP $2 A$
4000 VOLT RHR PINP IA
4000 VOLT PHR PUNP $2 A$
4000 VOLT CORE SPRAY PUMP $2 B$
4000 VOLT RHR PINP $1 B$
4000 VOLT RHR PUMP 2 B

PER UNIT VOLTAGE ACTUAL VOLTAGE
.9593
$.9673 \quad 4,024$
$.758 \quad 3,153$
$.7459 \quad 358$
$.7154 \quad 343$
$.7082 \quad 340$
$.7368 \quad 354$
.7605365
$.7487 \quad 359$
.7421356
.7471359
$.7737 \quad 3,095$
$.7798 \quad 3,119$
$.7809 \quad 3,124$
.7708
3,083
.7811
3,124
.7709
3,084

NOTE: ALI VOLTAGES ARE ON THE BASE VOLTAGE SHOWN IN THE LEIT HAND COLUMN.
$\frac{\text { APPENDIX A }}{\text { SAT }}$
$\frac{2 \mathrm{XI} \text { LOCA RUN }}{(\text { Pig. No. A22) }}$

BUS NAMES	MINTMUM VOLTAGE	
	PER UNTT VOLTAGE	ACTUAL VOLTAGE
230 KV SWITCHYARD	. 9351	215,073
4160 VOLT BUS 2 B	. 9534	3,966
4160 VOLT BUS $2 C, 2 \mathrm{D}, \mathrm{E} 3, \mathrm{E} 4$ \& COMMON B	. 8843	3,679
480 VOLT UNIT SUBSTATION E7	. 8876	426
480 VOLT UNIT SUBSTATION 2E	8636	415
480 VUTS UNIT SULSTATION 2F	. 8581	412
480 VOLT UNIT SUBSTATION E8	. 8803	423
480 VOLI UNIT SUBSTATION 2SY	. 8926	428
480 VOLT UNIT SUBSTATION COMMON D	. 8827	424
480 VOLT UNIT SUBSTATION 21	. 871	418
480 VOLT UNIT SUBSTATION 41.	8814	423

NOTE: AII VOLTAGES ARE ON THE BASE VOLTAGE SHOWN IN THE LEFT HAND COLIMN.

SAT

2X LOCA
REACIOR BUILDING CLOSED COOLING WATER PUNPS 2A AND 2C START (Iig. No. A23)

BUVS NAMES	MINIMUM VOLTAGE	
	PER UNIT VOLTAGE	ACTURL VOLTAGE
230 KV SWITCHYARD	. 955	219,650
4160 VOLT BUS 2B	. 9739	4.051
4160 VOLT BUS 2C, 2D, E3, E4 \& COMMON B	.9048	3,764
480 VOLT UNIT SUBSTATION E7	. 8775	421
480 VOLT UNIT SUBSTATION 2E	. 8872	426
480 VOLT UNIT SUBSTATION 2F	. 8819	423
480 VOLT UNIT SUBSTATION E8	. 9033	434
480 VOLT UNIT SUBSTATION 25 Y	. 9141	439
480 VOLT UNIT SUBSTATION COMMON D	. 9044	434
480 VOLI UNIT SUBSTATION 21.	. 892	428
480 VOLT UNIT SUBSTATION 41	. 9031	433
480 VOLT MOTOR CONTROL CENTER 2 XE	. 8266	397
460V REACTOR BUILDING CLOSED COOLING WATER PUMP $2 A$. 85	391
460 V REACTOR BUILDING CLOSED COOLING WATER PUMP 2 C	. 8534	393

NOTE: ALI LOAD VOLTAGES ARE ON THE BASE VOLTAGE SHOWN IN THE LEFT HAND COLIMN.

$$
\begin{aligned}
& \text { FLIGHTU } \\
& \text { CAROLINA POWER. } \\
& \text { \& LIGHT COMNANY } \\
& \text { FRUNSWIEK STEAM } \\
& \text { ELECTAIE PLANT } \\
& \text { UNIT NO, 2. } \\
& \text { FIG. AI }
\end{aligned}
$$

UAT IMPEDANCE DIAGRAM

$$
\text { UNIT NO. } 2
$$

$$
\begin{aligned}
& \text { FIG. A } \\
& \text { UNIT NO. }
\end{aligned}
$$

GENERATOR (1)

UAT IMPEDANCE DIAGRAM CIRCULATING WATER FUMP SIARTING

ARELINA TOWER wVais xatmsivnas
INVAWaつ thsil

2

UNITNO,
FIG AG

UAT IMPEDANCE DIAGRAM
TURBINE BLDG. CLOSED COOLING
WATER PUMP 2A STARTING
LAROLINA TOWER
R LIGHT COMARAY
FRUNSWIEK STEAA
ELECTRTE PLANT
UNITNO, 2
FIG. AT

POOR
ORPMAR

DIAGRAM
$\stackrel{r}{c}$

SAT IMPEDANCE DIAGRAM
REACTOR RECIRC. PUMP MG SET ZB

SAT IMPEDANCE IIAGRAM
CIRCULATINE WATER PUMP ZB MOTOR STARTING
(1)

$$
\rightarrow \frac{3}{i}
$$

$$
\begin{aligned}
& = \\
& 5 \\
& 5 \\
& 0
\end{aligned}
$$

$$
5 b 1 i=z \quad \begin{gathered}
5756=z \\
\hline
\end{gathered}
$$

2C, 20, E3, E4, COMMON B

vuals خakmonts
1 NVIT 31813373
FIG Ald

PCOR
ORPR Nan

GAT IMPEDANCE DIAGRAM
TUREINE BLDG, CLOSED COOLING
WATER PUMP 2B STARTING
PTCNBSQZ
CAROLINA TOWER
\& LIGHT COMPANY FRUNSWICK STEAM ELECTRIC PLANT UNIT NO, Z
FIG. A1G

FIG. AlT
RDOR LRIEMNAL
${ }^{\circ}$

SAT IMPEDANCE DIAGRAM
COCA RUN
(1)

$$
x C, 2 v, E 3, E 4, \text { COMMON B }
$$

$$
\text { (11) } \begin{gathered}
z=.7778 \\
+j 4.869 \\
\text { comMoN } \\
5=0.6267 \\
+j 0.7264
\end{gathered}
$$

POOR

ORENARL
230 kr sYD

$$
\begin{array}{r}
\text { NO. } \\
\text { A }
\end{array}
$$

$$
\begin{array}{ll}
917 \\
\text { y Linn }
\end{array}
$$

APPENDIX 3

VOLTAGE DROP STUDY
FOR
CAROLINA POWER \& LICHT COMPANY BRTNSWICK STEAM ELICTRTC PLANT UNIT NO. 2
BY
UNITED ENGINEERS \& CONSTRUCTORS INC.

VOLTAGES
AND
IMPEDANCE DIAGRAMS
4160 VOLI BUSES COMMON B 6
COMMON A TIE BRE AKER CLOSED

GENERAL NOTES

1. The choice of source volcages to be studied was made as follows: The vOLTS runs of 4160 V Buses Common A \& Common B Tie Breaker Closed were made for the worst cases of minimum Switchyard Voltage based on the previous studies with the tie breaker open (Appendix A). Brth the normal operating conditions and accident conditions were considered for the VOLTS runs. The worst case Switchyard Voltage for the normal operating condition is SAI, Screen Wash Pump 2A Starting (Full Load). The worst case Switchyard Voltage for the accident condition is SAT, $2 \times$ LOCA Start (Full Load).
2. Impedance input data for the voLTS runs duplicated the input data utilized in Appendix A VOLTS runs. Load input data for the VOLTS runs was the same as input data in Appendix. A with the exception of the 4160 Volt Bus Loads. These loads were increased to reflect the additional loads from 4160 Volt Bus Common A.
3. The Switchyard input voltage to the VOLTS run was then increased to compensete for the additional load. The resu. ting Switchyard Volteges meet the criteria esteblished in 3.2.
$\frac{\text { SCREEN WASH PUMP } 2 A \text { STARTING }}{(\text { Fig. No } \cdot B 1)}$

NOTE: P. U. VOLTAGES ARE BASED ON BASE VOLTAGE SHOWN IN LEFT-HAND COLIMN

APPENDIX B
SAT

2X. LOCA START
(Fig. No. B2)

NOTE: P. U. VOLTAGES ARE BASED ON BASE VOLTAGES SHONN IN LEFY-HAND COLIMMN

VOLTAGE DROP STUDY

APPENDIX B

SAT
$\frac{2 \mathrm{X} \text { LOCA RUN }}{(\text { Fig No. B3) }}$

NOTE: P. U, VOLTAGES ARE BASED ON BASE VOLTAGES SHOWN IN LEFT-HAND COLUMN
$\frac{\text { APPENDIX B }}{\left(\text { P1 } \frac{2 \mathrm{~B} \cdot \frac{5 A T}{10 C A}}{1 N O \cdot B 4)}\right.}$

REACTOR BUILDING CLOSED COOLING WATER PIPPS 2A AND $2 C$ START
MINTMTM VOLTAGE

BUS NAMES

P. U. VOLTAGE ACTUAL VOLTAGE
$0.9670 \quad 222,410$
$0.9852 \quad 4,090$
$0.9050 \quad 3,765$
$0.8775 \quad 421$
$0.8875 \quad 426$
$0.8821 \quad 423$
$0.9036 \quad 434$
$0.9143 \quad 439$
$0.9047 \quad 434$
$0.8922 \quad 428$
$0.9033 \quad 434$
$0.8265 \quad 397$
$0.8499 \quad 391$
$0.8533 \quad 393$

NOTE: P. U. VOLTAGES ARE BASED ON BASE VOLTAGES SHOWN IN LEFT-HAND COLUNN

$z=$
an
$0=$
$n=$
$5=1.3773$
t) 0.8536

$$
\begin{aligned}
& 5=0.1550 \\
& +10.0961
\end{aligned}
$$

 (12) $\begin{aligned} & 21 \\ & 5=0.3250\end{aligned} \frac{(13)}{\substack{5 \\ \\ \\+j 0.2807 \\+j 0.1360}}$

RR
Re
Ela
N
20 Ω

$$
\begin{aligned}
& \begin{array}{c}
r=00239 \\
-j .0117
\end{array}
\end{aligned}
$$

DSCUZ
\&AROTINA POWES FIGGT COMPANY tIGHT COMPANY PRUNSWICK 5 TEAM
ELECTRIC PLANT UNHT NO. 2
FlGB2

APPENDIX C

VOLTAGE DROP STUDYPOR
CAROLINA POWER \& LIGHT COMPANY
BRUNSWICK STEAM ELECTRTC PLAMT
[WNIT NO, 2
BY
UNITED ENGINEERS \& CONSTRUCTORS INC.
LOADS NAME OF COMPANY CFIL BRUNSWICK
SUBJECT VOLTAGE DROP STUDY
4160 V RUNNING LOADS

NOTE: UNIT SUBSTATION LOADS ARE NOT INCLVDED IN THE BUS LOADS

LOAD							COMMON	
CONDITION		23	$2 C$	22	E3	E4	B	TETAL
LIGHT	MW	0	0	0	0	,446	0	. 446
(SAT)	MVAR	0	0	0	0	. 276	0	.276
$\begin{aligned} & \text { LIGHT } \\ & \text { (UAT) } \end{aligned}$	HW	.f6	2.889	5.815	. 599	. 6	0	9.903
	MVAR	1.14	. 691	2.067	. 356	. 355	0	3.379
FULL	ASW	10.208	5.462	7.976	. 599	. 6	0	4,637
	MVAR	5.23	1.075	2.373	. 356	. 355	0	4.159
LOCAS	MW'	0	4.166	6.68	. 599	. 6	0	12.045
	MVAR	0	. 474	1.772	. 356	. 355	0	2.957
LOCAR	MW	0	4,166	6.68	2,238	2.615	0	15.699
	MVAR	0	. 474	1.772	1.151	1.368	0	4.765
2LOCAS	mV	0	4.166	6. 68	. 599	. 6	D	12,045
	MVAR	0	. 474	1.772	. 356	. 355	0	2,957
2LOCAR	MW	0	4.166	6.68	3.036	3.413	0	17.295
	MVAR	0	. 474	1.772	1.538	1.755	0	5,539

 $\frac{\text { BOP MOTOR STARTING CASES }}{4160 \mathrm{~V} \text { RUNNING } \angle O A D S}$

NAME OF COMPANY CD ELL BRUNSWICK \qquad units. $/ \& 2$ SUBLET VOLTAGE DROP STUDY

P CHARACTERISTICS FROM TOLTEC DATA SHEET TY\% LEVERSEACTATION

CAL. SET NO		
PRELIM	$9527-232 \cdot 5 E-1$	
FINAL		
VOID		
SHEET C. 5 OF		
JO. $9527-032$		
R_{E}	COMP BY	CHK'D BY
O		
DATE	DATE	

$$
\begin{aligned}
& \text { LOCKED ROTOR CODE LETTER } \\
& F: 5.0-5.59 \mathrm{KVA} / \mathrm{HP} . \\
& \text { USING } 5.59 \mathrm{KVA} / \mathrm{HP}, \\
& I_{L R}=\frac{5.59 \cdot 75 \cdot 1000}{\sqrt{3} \cdot 460}=526 \mathrm{~A}
\end{aligned}
$$

NAME OF COMPANY CPAL BRUNSWICK UNITIS 2 SUENECT VOLTACE DROP STUDY
AGOV MOTOR STARTING PATA

LARCEST NOTOR

SUNT MOSTATION MOTOR HD CABLEHO LENGTH TVPE
2E 2TJ TCC-2A 200 MFI-NGO $\quad 73 \quad 3 / C 350 \mathrm{MCM}$
E6 2fB \quad SUW:ZB $200 \quad E 42-N K 7 \quad 109 \quad 3 / \mathrm{C} 350 \mathrm{MCM}$

CONMON D RWB
2-CFD-D0.7 150 B65-P42
77
$3 / C \neq 40$

NAME OF COMPANY CFLL BRUNSWICK \quad UNIT/S............ 2 subuect VOLTAEE PROP STUDY

| UNIT | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SUESTATION | MEC MOTOR | HP | | CABLENO | LENOTH | LYPE |
| E7 | $2 X E$ | RBCCWP-2A | 75 | EAI-NF6 | 118 | $4 / C \# 1 / 0$ |
| E7 | $2 \times E$ | RBCCWP-2C | 75 | EAT-NFB | 86 | $4 / C \# 1 / 0$ |
| E8 | $2 \times F$ | RBCCWP-2B | 75 | EDT-NF7 | 356 | $4 / C \# 1 / 0$ |

CAROLINA POWER RWD LIGHT CONPANY
BRUNSWICK STEAK ELECTRIC PLANI, UNIT NO. 2
UNIT SUBSTATION ET MOTOR CONTROL CENTERS

FRON BUS	$\begin{aligned} & \text { TO } \\ & \text { BUS } \end{aligned}$	CABIE RESISTANCE	IMPEDANCES REACTANCE
E7	2XA	3.3854	2.4783
E7	2XC	3.3854	2.4783
E7	2XE	5.1654	5.2213
E7	2XG	2.0178	2.1753
E7	2 KL	4.9349	4.3954
E7	1 $\times 2 \mathrm{R}-2$	6.7665	7.2312
E.7	1XJ	7. 5868	7.6693
E7	2 CA	3.2882	3.3229
E7	2PA	5.1875	3.8008
E7	DGC	0.9792	0.5347
E7	2A	7.6950	7.6345

BRUNEWICK STEAM		ELECTRIC	PLANT, UNIT	NO. 2
UNIT	SUBSTATION	2E MOTOR	CONTROL CENT	
FROM	TO		CABL	I IMPEDANCES
RUS	BUS		RESISTANCE	REACTANCE
2E	2 TA		3.7934	3.8235
2E	$27 B$		2.6432	2.6736
2 E	2 TC		2.6432	2.6736
2 E	2 TE		2.7908	2.8212
2 E	2 TJ		2.3134	2.3351
2 E	2TR		1.6580	2.4088
2E	2 TL		1.8403	2.6736
2 E	2ETB		6.9314	c. 2135

CAROLINA POWER RND LIGHI CONPANY
BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2
UNIT SUBSTATION 2F MOTOR CONTROL CENTERS
FRON
BUS

c

CPGL BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2					
VOLTFGE \triangle ROP STUDY					
BUS $2 C$ LOADS, FULL LOAD CONDITION					
	RATED HP	$\begin{array}{r} \text { POWER } \\ \text { PACTOR } \\ \hline \end{array}$	EFF	MW	MVAR
CIRCULATING WATER PUMP 2A206. $2250.0 .0000 ~ 0.9645 ~ 1.5933 ~ 0 . ~$					
CONDENSATE BOOSTER PUMP 2C					
HE:TER DRAIN PUMP 2B					
CONDENSATE PUMP 2B 0. 1000. 0.880 z \% 0.9260 0. 0.					
CHILLER $2 \mathrm{E}-\mathrm{RM}-\mathrm{TB}$					
TOTAL				5.4628	1.0765

MOTOR LIST
CPEL BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2
VOLTAGE DROP STUDY
BUS $2 C$ LOADS, UAT LIGHT LOAD CONDITION

	BRAKE	RATED	POWER	EFE	MW
MQTOR	HP	HP	FACTOR		

CIRCULATING WATER PUMP 2 C

$$
\text { 2060. 2250. } 1.0000 \quad 0.9645 \quad 1.5933 \quad 0 .
$$

CONDENSATE BOOSTER PUMP 2A
B. 1250

CONDENSATE BOOSTER PUMP 2 C
0. 1250. 0. 3000
0.9460
0.
0.

HEATER DRAIN PUMP $2 B$

CONDENSATE PUMP 2B Q. 1000. D.8800 0.9260 D. 0.

CHILLER 2B-RM-TB 1650. 1650. 0.9070
0.9500
1.2957
0.6016

TOTAL
2.8890
0.6016

CPGL BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2VOLTAGE DROP STUDY					
BUS $2 C$ LOADS, ACCIDENT (LOCA AND 2X:OCA) CONDITION					
MOTOR BRAKE	RATED HP	$\begin{array}{r} \text { POWER } \\ \text { EACTOR } \\ \hline \end{array}$	EFF	MW	MVAR
CIRCULATING WATER PUMP 2A$2060 . \quad 2250 . \quad 1.0000 \quad 0.9645 \quad 1.5933 \quad 0 .$					
CONDENSATE BOOSTER PUMP 2C 0.1250.		0.9000	D. 9460	0.	0.
HEATER DRAIN PUMP 2 B	1000.	0.8950	0.9260	0.	0.
CONDENSATE PUMP 2B	1000.	0.8800	0.9260	0.	0.
CHILLER 2B-RM-TB 0 .	1650.	0.9070	0.9500	0.	0.
TOTAL				4.1671	0.4749

MOTOR LIST
CPEL BRUNSWICK STEAV ELECTRIC PLANT, UNIT NO. 2
VOLTAGE DROP STUDY
BUS 2D LOADS, FULL LOAD CONDITION

MOTOR	BR ARE HP	$\begin{array}{r} \text { RATED } \\ \mathrm{HP} \\ \hline \end{array}$	$\begin{array}{r} \text { POWER } \\ \text { EACTOR } \\ \hline \end{array}$	EFF	MW	MVAR
CIRCULATING	$\begin{aligned} & \text { WATER PUMP } \\ & 2060 . \end{aligned}$	${ }^{2 B}$	2.0000	0.9645	1.5933	6.
CIRCULATING	WATER PUMP 2060.	${ }^{2 \mathrm{D}} 2250 .$	1.0000	0.9645	1.5933	B.
CONDENS ATE B	$\begin{gathered} \text { BOOSTER PUMP } \\ 2243 . \end{gathered}$	$\begin{aligned} & 2 \mathrm{~B} \\ & 1250 . \end{aligned}$	8.9000	0.9460	0.9804	0.4749

HEATER DRAIN PUMP 2A 855. 2000. $0.8950 \quad 0.9260 \quad 6.6888 \quad 0.3433$

HEATER DRAIN PUMP 2C 855. 2000. 0.8950 0.9260 0.6888 0.3433

CONDENSATE PUMP 2A 705. 2000. $0.8800 \quad 0.9260 \quad 0.5680 \quad 0.3066$

CONDENSATE PUMP 2 C 705. 1000. $0.8800 \quad 0.9260 \quad 0.5680 \quad 0.3066$

CHILLER 2A-RM~TB 2650. 2650. 0.9070 0.9500 $2.2957 \quad 0.6016$

TOTAL
$7.9763 \quad 2.3762$

CPGL BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2					
VOLTAGE DROP STUDY					
BUS 2D LOADS, ACCIDENT (LOCA AND 2XLOCA) CONDITION					
$\begin{array}{lr} & \text { BR AKE } \\ \text { MOTOR } & \text { HP } \\ \hline \end{array}$	$\begin{array}{r} \text { R ATED } \\ \mathrm{HP} \end{array}$	$\begin{array}{r} \text { POWER } \\ \text { FACTOR } \end{array}$	EFE	MW	MVAR
CIRCULATING WATER PUMP 2 D$2666 . \quad 2250.0000 \quad 0.9645 \quad 2.5933$					
CONDEISATE BOOSTER PUMP 1243.	$\begin{aligned} & 2 \mathrm{~B} \\ & 2250 . \end{aligned}$	0.9038	0.9460	0.9804	B. 4749
HEATER DRAIN PUVP 2A$855 \text {. } 1000 . \quad 0.8950 \quad 0.9260 \quad 0.6888 \quad 0.3433$					
HEATER DRAIN PUMP 2C 850.000 .0 .8950 0.9260 0.6888 0.3433					
CONDENSATE PUMP 2A 705.	2000.	0.8800	D. 9260	0.5680	2. 3066
CONDENS ATE PUMP ${ }^{2 C} 705$.	2000.	0.8800	0.9260	0.5680	0.3066
CHILLER 2A-RM-TB 0. 1650. 0.9070 0.9500 0. 0.					
TOTAL				6.6806	1.7745

NOTOR LIST
CPSI BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2
VOLTAGE DROP STUDY
4160 VOLT EUS E3 LOADS, SHUTDOWN CONDITION
MOTOR ERAKE RATED POWER
CORE SPRAY PUMP 2A
0. 1250. 0.9000 B.9400 B. O.
RHR SERVICE VATER PUNP 2A
0. 800. 0.9200 0.9350 0. Q.
RHR PUNP 1 A
B. B00. 0.9000 0.9350 ©. ©.
RHR SERVICE WATER PUNP IA
0. 800.
0.9000
0.9350
B.
θ.
RHR PUMP 2A
©. 800. $0.9000 \quad 0.9350$ 0. 0.
CONTROL ROD DRIVE HYD, PUMP
Q. 250. $0.8860 \quad 0.9270$ B. O.
NUCLEAR SERVICE PUMP 2A
275. 30B. 0.8500 Q.9200 亿.2230 0.1382
CONVENTIONAL SERVICE PUMP 2A
275. 300. 0.8500 0.9200 0.2230 R. 1382
TOTAL
0.44 i8 0.2764

MOTOR LIST

CPEL BRUNSWICK STEAV ELECTRIC PLANT, UNIT NO. 2
VOLTAGE DROP STUDY
4160 VOLT BUS E4 LOADS, FULi LOAD CONDITION
BRAKE RATED POKER

CORE SPRAY PUMP 2B
B. 1250. 0.9000 0.9400 0. B.

RHR SERVICE WATER PIMY 2B
B. 800. 0.9000 0.9350 Ø. ©.

RHR PUMP 1B
B. 2000. 0.9000 0.9350 0.

RHR SERVICE WRTER PUMP 1B
0 BOD 0.9000 B. 0.9350 B.
RHR PUMP 2 B
0. 100日. 0.9000 0. 0. 0.9350 O.

CONTROL ROD DRIVE HYD. PUMP
D. 250
$0.8860 \quad 0.9270$.
0.

NUCLEAR SERVICE PUMP 2B
0. 300
$0.8500 \quad 0.9200$
0.
0.

CONVENTIONAL SERVICE PUMP 2B
275. 300. $0.8500 \quad 0.9200$ 0.2230 0.1382

CONVENTIONAL SERVICE PUMP 1A
275 308.
$0.8500 \quad 0.9200$
0.2230
0.1382

FIRE PUMP
190. 250. $0.8890 \quad 0.9200 \quad 0.2542 \quad 0.0794$

TOTAL

```
MOTOR LIST
CPSL BRUNSWICK STEAV ELECTRIC PLANT, UNII NO. 2
VOLTAGE DROP STUDY
4160 VOLT BUS E4 LOADS, UAT LIGHT LOAD CONDITION
BR AKE RATED POWER
    HP HP EACTOR EFE
    3. 1250. 0.9000 0.9400 B.
    8.
RHR SERVICE WATER PUMP 2B
    B. B0B. 0.9000 0.9358 B.
    B.
RHR PUMP 1B
    B. 1000. 0.9008 0.9350 0.
    Q.
RHR SERVICE WATER PUMP IB
    B. 800. 0.9000 0.9350 0. 0.
RHR PUMP 2B
    0. 1000. 0.9008 0.9350 0. 0.
CONTROL ROD DRIVE HYD. PUMP
    0. 250. 0.8860 0.9270 3. B.
NUCLEAR SERVICE PUMP 2B
    D. 
                            320.
                    0.8500
                    0.9200 0.
0.
CONVENTIONAL SERVICE PUMP 2B
    275. 300
                            0.850B
                            0.9200
                            0.22300.2382
CONVENTIONAL SERVICE PUMP \(1 A\)
275.300
\(0.8500 \quad 0.9200 \quad 0.2238\)
EIRE PUMP
0. 250. 0.8890 0.9200 B.
TOTAL

MOTOR LIST
CPEL BRUNSWICK STEAY ELECTRIC PLANT, UNIT NO. 2
VOLTAGE DROP STUDY
4260 VOLT BUS E 4 LOADS, LOCA CONDITION
BRAKE RATED POWER
MOTOR
HP
HP
FACTOR
EFE MW
MVAR
\(\begin{array}{rrrrrr}\text { CORE SPRAL PUMP 2B } & 2060.0 .9000 & 0.9400 & 0.8422 & 0.4074\end{array}\)
RHR SERVICE WATER PUMP 2B
D. BeB. \(0.900 B\) B. 9350 B.

RHR PUMP 1B
0.1000 . 0.9000 O. 0.9350 O.

RHR SERVICE WATER PTVP IB 8. 800. 0.9000 0.9350 3. 0.

RHR PUMP 2B
\[
\text { 1000. 1000. } \quad 0.9000 \quad 0.9350 \quad 0.7979 \quad 0.3864
\]

CONTROL ROD DRIVE HYD. PUMP 190. \(\quad 250\). \(0.8868 \quad\) e. \(9270 \quad 0.1529 \quad 0.0808\)

NUCLEAR SERVICE PUMP \(2 B\) 275. 300. \(0.8500 \quad 0.9280 \quad 0.2230 \quad 0.2382\)

CONVENTIONAL SERVICE PUMP 2B
275.300.
\(0.8500 \quad 0.9200 \quad 0.2230\)
0.1382

CONVENTIONAL SERVICE PUMP 1 A
275.300.
\(0.8500 \quad 0.9200\)
B. 2230
0.1382

FIRE PUMP
198. 250.
\(0.8890 \quad 0.9200\)
0.1541
0.0794

TOTAL
\(2.6250 \quad 2.3678\)

MOTOR LIST
CP\&L BRUNSWICK STEAA ELECTRIC PLANT, UNIT NO. 2
VOLTAGE DROP STUDY
4260 VOLT BUS E4 LOADS, 2XLOCA CONDITION
BRAKE RATED POWER
MOTOR HP EP EACTOR
EFE \(\quad \mathrm{MW}\)
MVAR
CORE SPR AY PUMP 2B 1060. 1250. 0.9000 0.9400 0.8412 0.4074

RHR SERVICE WATER PUMP 2B B. 800. 0.9000 0.9350 0. 0.

RHR PUMP 19
1000. 2000. 0.9000 0.9350 0.7979 0.3864

RHR SERVICE WATER PUUP IB B. \(\quad 800.0 .9000 \quad 0.9350\) 0.

RHR PUMP 2 B
2000. 2000. \(0.9000 \quad 0.9350 \quad 0.797 \Rightarrow \quad 0.3864\)

CONTROL ROD DRIVE RYD. PUMP
190. 250. \(0.8860 \quad 0.9270 \quad 0.1529 \quad 0.0800\)

NUCLEAR SERVICE PUMP 2B 275. \(300.0 .8500 \quad 0.9201 \quad 0.2230 \quad 0.1382\)

CONVENTIONAL SERVICE PUMP 2B
275. 300 . \(0.8500 \quad 0.9200 \quad 0.2230 \quad 0.1382\)

CONVENTIONAL SERVICE PTUP 1 A 275. \(300.0 .8500 \quad 0.9200 \quad 0.2230 \quad 0.1382\)

FIRE PUMP
290. 250. 0.8890 0.9200 0.1541 0.0794

TOTAL
3.4129
1.7542
```

CARDLINA POWER AND LIGHT CONPANY, ERUNSNICK STEAN ELECTRIC PLANT
UNITS NOS. ' AND 2, \angleBU VOLT LOND STUDV
UNIT SUBSTATIONE?, FULL LOAD CONDITION
LOAD FACTOR = 0.80 POWER FACTOR = 0.85.

```

```

$2 \times A$	36.19	0.0290	0.0245	0.0153
$2 \times C$	85.63	0.0685	0.0582	0.0361
$2 \times E$	193.45	0.1548	0.1315	0.0815
2×6	503.67	0.4029	0.3425	0.2123
$2 \times L$	159.42	0.1275	0.1086	0.0672
$1 \times A-2$	25.63	0.0205	0.0174	0.0108
$1 \times J$	81.67	0.0653	0.0555	0.0346
$2 C A$	28.70	0.3270	0.2779	0.1722
$2 P A$	243.05	0.1997	0.1657	0.1027
$D 6 C$	150.92	0.1207	0.1026	0.0636
$2 A$	75.00	0.0600	0.0510	0.0316

TOTAL $1964 \quad 1.5711 \quad 1.3355 \quad 0.8277$

```

Note:
Load MVA is given bar,ed on horsef wer times load factor expressed in P. U. on 100 MVA base.
cAROLINA POWER AND LIGHT CONPANY, BRUNSWICK STEAM ELECTRIC PLANT
UNITS NOS. 1 AND \(2, ~ \angle B O\) VOLT LOAD STUDY
UNIT SUBSTATION ET, SIMP RA START, FULL LOAD CONDITION
LOAD FACTOR \(=0.80\) POWER FACTOR \(=0.85\).


TOTAL

CAROLINA PONER AND LIGHT CONPANY, ERUNS DICK STEAN ELECTRIC TLANT UNITS NOS. \(I\) AND \(2, ~ 4 B O\) VOLT LOAD STUDY

UNIT SUZSTATIONET, SHUTDOWN CONDITION LDAD FACTOR \(=0.80\) POAER FACTOR \(=0.85\).
\begin{tabular}{|c|c|c|c|c|}
\hline MCt & HORSEPDWER & MVA & MW & MV: R \\
\hline -.. & -...-....... & --- & -- & -- \\
\hline \(2 \times 4\) & 14.50 & 0.0116 & 0.0099 & 0.0069 \\
\hline 2xc & 81.55 & D. 0652 & 0.0555 & 0.0346 \\
\hline 2×E & 155.50 & D. 1244 & 0.1057 & 0.0655 \\
\hline 2×6 & 503.50 & \(0.40 \div 8\) & 0.3424 & 0. 2122 \\
\hline \(2 \times 1\) & 153.55 & 0.1228 & 0.1046 & 0.0047 \\
\hline \(1 \times \mathrm{A}-2\) & 0. & 0. & 0. & 0. \\
\hline \(1 \times \mathrm{J}\) & 41.50 & 0.0332 & 0.0282 & 0.0175 \\
\hline 2 CA & 264.45 & 0.2116 & 0.1798 & 0.1114 \\
\hline 2PA & 43.00 & 0.0344 & 0. \(0292 ?\) & 0.0181 \\
\hline DGC & 94.00 & 0.0752 & D. 0039 & 0.0396 \\
\hline 2 A & 75.00 & 0.0000 & 0.0510 & 0.0315 \\
\hline TOTAL & 1427. & 1. 1412 & 0.9701 & 0.6012 \\
\hline
\end{tabular}

CRROLINA POWER AND LIGHT CONPANY GRUNSNICK STEAM ELECTRIC PLANT UNITS NOS. 1 AND \(2, \angle B O\) VOLT LOAD STUDY
```

UNDT SUBSTATIONET, LDCA CONDITION

```
LOAD FACTOR \(=1.00\) PONER FACTOR \(=0.85\).
\begin{tabular}{ccccc} 
MCT & HORSEPOAER & NVA & NW & MVAR \\
\(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2x4 & 30.19 & 2.0352 & 0.0308 & 0.0191 \\
\hline 2xt & 36.78 & -. 0368 & 0.0313 & 0.0192 \\
\hline 2×E & 158.65 & 0. 1585 & 0.1347 & 0.0835 \\
\hline \(2 \times 6\) & 122.17 & 0.1222 & 0.1038 & 0.0646 \\
\hline 2xL & 23.77 & 0.0240 & 0.0204 & 0.0126 \\
\hline \(1 \times 4-2\) & 25.63 & 0.0256 & 0.0218 & 0.0135 \\
\hline \(1 \times \mathrm{J}\) & 1.67 & 0.0017 & 0.00112 & 0.0007 \\
\hline 2 CA & 408.70 & 0.4087 & 0. 2674 & D. 2153 \\
\hline 2PA & 43.40 & 0.0436 & \(0.03 \leqslant 9\) & 0.0229 \\
\hline DGC & 217.42 & 0.2176 & 0.184 .3 & 0.1145 \\
\hline 2 A & 75.00 & 0.0750 & 0.0630 & 0.0395 \\
\hline TOTAL & 9169. & 1. 1692 & 0.9770 & 0.6055 \\
\hline
\end{tabular}
```

CAROLINA PONER AND LIGHT CONPANY, BRUNSWICK STEAM ELEGTRIL PLANT
UNITS NOS. 1 AND 2. 480 VDLT LOAD STUDY
UNIT SUESTATIONET. RBCCWP ZA AND ZC START, LOCA CONDITION
LOAD FACTOF=1.DO POWER FA:TOF = 0.85.

MCC	HDRSEPO\#ER	N. VA	Mn	MVAR
				-mar

$2 \times A$	36.19	0.0362	0.0308	0.0191
$2 \times C$	36.78	0.0368	0.0313	0.0196
2×6	122.17	0.1222	0.1038	0.0644
$2 \times L$	23.97	0.0240	0.0204	0.0120
$1 \times A-2$	25.63	0.0256	0.0218	0.0135
$1 \times J$	1.07	0.0017	0.0014	0.0019
$2 C A$	408.70	0.4037	0.3474	0.2153
$2 P A$	43.40	0.0434	0.0369	0.0229
DGC	217.42	0.2174	0.1848	0.1165
$2 A$	75.00	0.0750	0.0638	0.0395

TOTAL 991. 0.9909 0.8423 0.52?0

```

CAROLINA POWER AND LIGHT CONPANY, BRUNSWIGK STEAN ELECTRIC PLANT UNITS NOS. 1 AND \(2, ~ \angle B O\) VPLT LOAD STUDY UNIT SUZSTATION ZE, FULLLOAD CONDITION LOAD FACTOR \(=0.80\) POWER FACTOR \(=0.85\).
\begin{tabular}{|c|c|c|c|c|}
\hline MCC & HDRSEPONER & NVA & NW & MVAR \\
\hline -.. & -...-....- & - - & -- & - - - \\
\hline \(2 T A\) & 116.41 & 0.0931 & 0.0792 & 0.0491 \\
\hline 2TB & 149.75 & 0.1198 & 0.1018 & 0.0631 \\
\hline \(2 T \mathrm{C}\) & 225.57 & D. 1805 & 0.1535 & 0.0551 \\
\hline 2TF & 250.69 & 0.2006 & 0.1705 & 0.1056 \\
\hline 2 TJ & 292.49 & 0.2340 & 0.1759 & 0.1233 \\
\hline 2TK & 362.69 & 0.2902 & 0.2466 & 0.1520 \\
\hline 2 LL & 280.39 & 0. 2247 & 0.1910 & 0.1184 \\
\hline 2ETB & 75.07 & 0.0600 & 0.0510 & 0.0316 \\
\hline TOTAL & 1754. & 1. 4029 & 1.1924 & 0.7390 \\
\hline
\end{tabular}

CARDLINA POWER AND LTGHT CONDANT, BRUNSWICK STEANELECTRAG PLANT UNITS NOS. 1 AND ? , \(\angle 80\) VOLT LDAD STUDT

LOAD FACTOF \(=0.50\) POWER FACTOR \(=0.85\).
\begin{tabular}{|c|c|c|c|c|}
\hline NCL & HORSEPOKE & NVA & N. & MVAR \\
\hline -.. & -............ & - - - & -- & -- \\
\hline 214 & 116.41 & 0.931 & Q. \(078 ?\) & 9.0489 \\
\hline 278 & 149.75 & 0.1198 & 0.1018 & 0.0031 \\
\hline 2TC & 225.67 & 0.1805 & 0. 1535 & 0.0951 \\
\hline \(27 \%\) & 250.69 & 0.2006 & 0.1705 & C. 1056 \\
\hline 27K & 362.59 & 2.2902 & 0.2400 & 0.1528 \\
\hline 2TL & 280.59 & 2. 2247 & \(0 \cdot 1710\) & 0.1134 \\
\hline 2ETB & 75.20 & D. 0000 & 0.0510 & 0.0313 \\
\hline TOTAL & 16.61. & 1. 1689 & 0.9935 & 0.6157 \\
\hline
\end{tabular}
```

CAROLINA POWER AND LIGHT CONPANY, BRUNSWICK STEAN ELECTRIC PLANT
UNITS NOS. 1 AND 2. LBO VOLT LOAD STUSY
JNIT SUESTATION ZE, SHUTDDOWN CONDITION
LOAD FACTOR = 0.80 POWER FACTOR = 0.85.
MCT HORSEPONER NVN

2TA	57.63	0.0461	0.0392	0.0243
2TB	69.50	0.0556	0.0473	0.0293
2TG	179.50	0.1436	0.1221	0.0756
2TF	72.00	0.0576	0.0490	0.0303
2TA	29.50	0.0236	0.0201	0.0124
2TK	284.50	0.2276	0.1935	0.1199
2TL	274.50	0.2196	0.1867	0.1157
2ETB	75.00	0.0000	0.0510	0.0316

TOTAL 1042. 0.8337 0.7086 0.4392

```
CARDLINA POWER AND LIGHT COMPANY, BRUNSWICK STEAM ELECTRIC PLANT
UNITS NOS. 1 AND \(2=480\) VOLT LQLD STUDY
UNIT SUSSTATION ZE, LOCA CONDITION
LORD FACTOR \(=1.00\) POWER FACTDR \(=0.85\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & MCC & HORSEPOWER & Mva & Mu & MVAR \\
\hline & & -...........- & & -- & \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\(2 T A\) & 116.49 & 0.1164 & 0.0989 & 0.0613 \\
278 & 149.75 & 0.1498 & 0.1273 & 0.0789 \\
\(2 T C\) & 225.67 & 0.2257 & 0.1918 & 0.1189 \\
\(2 T F\) & 250.69 & 0.2507 & 0.2131 & 0.1321 \\
\(2 T 1\) & 292.49 & 3.2925 & 0.2186 & 0.1541 \\
\(27 K\) & 362.69 & 2.3627 & 0.3083 & 0.1919 \\
\(27 L\) & 280.89 & 0.2809 & 0.2380 & 0.1480 \\
2ETB & 75.00 & 0.0750 & 0.0038 & 0.0395
\end{tabular}
```

total.
1754. $1.7536 \quad 1.4906 \quad 0.9238$

```
```

CAROLINA PONER AND LIGHT COMPANY, BRUNSWICK STEAN ELECTRIC PLANT
UNITS NOS. 1 AND 2, \angleBO VOLT LOAD STUDY
UNIT SUBSTATION ZF, FULL LOAD CONDITION
LOAD FACTOR = 0.80 PONER FACTOR = 0.85.

```

```

$2 T D$	255.51	0.2052	0.1746	0.1081
$2 T E$	325.94	0.2608	0.2216	0.1374
$2 T 6$	546.94	0.6376	0.3799	0.2305
$2 T H$	335.98	0.2688	0.2285	0.1416
$2 T M$	228.32	0.1827	0.1553	0.0462
$2 T N$	59.70	0.0678	0.0406	0.0252
$2 F T B$	75.00	0.0600	0.0510	0.0316

TOTAL 1825. $\quad .4627$ 9.2433 0.7705

```

CAROLINA POWER AND LIGHT CONPANY, BRUNSWICK STEAN ELECTRIC PLANT UNITS NOS. 1 AND ?, \(\angle 30\) VDLT LOAD STUDY UNIT SUBSTATION 2F, TBCCMP 2B START, FULL LOAD CONDIT:ON LOLD FACTOR \(=0.80\) POWER FACTOR \(=0.85\).
\begin{tabular}{ccccc} 
MCC HORSEPOWER & NVA & MVAR & MVAR
\end{tabular}
\begin{tabular}{lllll} 
2TD & 256.51 & 0.2052 & 0.1744 & 0.1081 \\
2TE & 325.74 & 0.2603 & 0.2216 & 0.1374 \\
2TG & 546.74 & 0.2376 & 0.3719 & 0.2305 \\
2TM & 228.32 & 0.1827 & 0.1553 & 0.0762 \\
\(2 T N\) & 59.70 & 0.0478 & 0.0406 & 0.0252 \\
2FT3 & 75.00 & 0.0600 & 0.0510 & 0.0310 \\
TOTAL & 1492 & 1.1939 & 1.0148 & 0.6287
\end{tabular}

CAROLINA POWER AND LIGHT COMPANY, BRUNSWICK STEAM ELECTRIC PLANT UNITS NOS. 1 AND Z, \(\angle 80\) VOLT LOAD STUDY

UNIT SUBSTATION ZF, SHUTOONN CONDITION LOAD FACTOR \(=0.50\) POWER FACTOR \(=0.85\).
\begin{tabular}{|c|c|c|c|c|}
\hline MCC & HORSEPOWER & MVA & Mw & MVAR \\
\hline - & ---..------- & -.. & - & - - \\
\hline \(2 T 0\) & 90.50 & 0.0724 & 0.0615 & 0.0381 \\
\hline 2TE & 29.88 & D. 0239 & 0.0203 & 0.0126 \\
\hline \(2 T G\) & 364.50 & 0.2756 & 0.2343 & 0.1452 \\
\hline 27H & 129.50 & 0.1036 & 0.0881 & 0.0546 \\
\hline 27 M & 4.50 & 0.0036 & 0.0031 & 0.0019 \\
\hline \(2 T \mathrm{~N}\) & 67.00 & 0.0536 & 0.0456 & 0.0282 \\
\hline 2FTB & 75.00 & 0.0600 & 0.0510 & 0.0316 \\
\hline TOTAL & 741. & 0.5927 & 0.5038 & 0.3122 \\
\hline
\end{tabular}
```

CAROLINA PONER AND LIGHT CONPANY, SPUNSWICK STEAN ELECTRIC PLANT
UNITS NDS. ? AND 2, GBO VOLT LOFD STUD*
UNIT SUBSTATION 2F, LOGA CONDITION
LOAD FACTOR = 1.OD PDNER FACTOR = 0.85.

```

```

2TD
256.51
2TG 546.94 0.5469 0.4649 0.2889
2TH
2TN 59.70 0.0597 0.0507 0.0316
ZFTB 75.00 0.0750 0.0538 0.0395
TOTA1 1828. 1.8284 1.5541 0.9632

```

CAROLINA POWER AND LIGHT CONPANY, BRUNSWICK STEAN ELECTRIC PLANT UNITS NDS. 1 AND 2.180 VOLT LOAD STUDY

UNIT SUESTATIONEB, FULLLOAD CONDITION
LOAD FACTOR \(=0.80\) PONER FACTOR \(=0.85\).
\begin{tabular}{|c|c|c|c|c|}
\hline MCT & HORSEPOWER & N V \(/\) & N/4 & MVAR \\
\hline - & --.-.---...- & --- & -- & --* \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(2 \times 8\) & 45.56 & 0.0362 & 0.0310 & . 0102 \\
\hline \(2 \times 0\) & 81.13 & 0. 0669 & 0.055 ? & 0.0342 \\
\hline \(2 \times F\) & 164.33 & 0.1315 & 0.1117 & 0.0093 \\
\hline 2 XH & 508.50 & 0.4058 & 0.3458 & 0.2163 \\
\hline 2XM & 170.97 & 0.0008 & 0.0523 & 0.0510 \\
\hline \(1 \times \mathrm{E}-2\) & 25.03 & 0.0205 & 0.0176 & 0.0108 \\
\hline \(1 \times \mathrm{K}\) & 81.67 & 2.0.653 & 0.0555 & \(0.036 \%\) \\
\hline 2PE & 271.50 & D. 2172 & 0.1546 & 9. 1142 \\
\hline 2CB & 396.90 & 0.3175 & 0.2699 & 0.1673 \\
\hline DGD & 151.92 & 0.1215 & 0.1033 & 0.0640 \\
\hline E11 & 70.67 & 0.0565 & 0.0481 & 0.0298 \\
\hline £ 1 ? & 31.34 & 0. 0253 & 2.0215 & 0.0133 \\
\hline 2 B & 75.00 & 2.0600 & 0.0510 & 0.0316 \\
\hline TOTAL & 2025. & 1.6203 & 1.3773 & 0.8536 \\
\hline
\end{tabular}

CAROLINA POWER AND LIGHT COMPANY, ERUNSWICK STEAM ELECTRIC PLANT UNITS NOS. 1 AND 2, \(\angle B O\) VOLT LDAD STUDY

UNIT SUBSTATION EB, SCWP 2B START, FULL LOAD CONDITION
LOAD FACTOR \(=0.80\) POWER FACTOR \(=0.85\).
\begin{tabular}{|c|c|c|c|c|}
\hline MCC & HORSEPONER & NVA & MW & MVAR \\
\hline - & --.........- & -.. & -- & ---- \\
\hline \(2 \times 8\) & 45.54 & 0.0364 & 0.0310 & 0.0172 \\
\hline \(2 \times 0\) & 81.13 & 3. 0649 & 0.0552 & 0.0342 \\
\hline \(2 x F\) & 164.33 & 0.1315 & 0.1117 & 0.0693 \\
\hline 2 XH & 308.50 & 0.4068 & 0.3458 & 0.2143 \\
\hline \(2 \times \mathrm{M}\) & 120.97 & 0.0968 & 0.0823 & 0.0510 \\
\hline \(1 \times \mathrm{e}-2\) & 25.03 & 0.0205 & 0.0174 & 0.0108 \\
\hline \(1 \times \mathrm{K}\) & 81.57 & 0.0653 & 0.0555 & 0.0344 \\
\hline 2CB & 396.90 & 0.3175 & 0.2097 & 0.1673 \\
\hline DGD & 151.92 & 0. 1215 & 0.033 & 0.0640 \\
\hline E 11 & 70.57 & 0.0555 & 0.0481 & 0.0278 \\
\hline E12 & 31.64 & 0.0253 & 0.0215 & 0.0133 \\
\hline 2B & 75.00 & 0.0600 & 0.0510 & 0.0316 \\
\hline TOTAL & 1754. & 1.4031 & 1.1927 & 0. \(2: 21\) \\
\hline
\end{tabular}

CAROLINA POWER AND LIGHT COMPANY, BRUNSWICK STEAM ELECTRIC PLANT
UNITS NOS. 1 AND ? , \(\angle B\) V VOLT LOAD STUDY
UNIT SUESTATIONE8, SHUTDOWN CONDITION
LOAD FACTOR \(=0.30\) POWER FACTOR \(=0.85\).

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

CARDLINA POWER AND LJGHT CONPANY, BRUNSWICK STEAM ELELTRIG PLANT UNITS NOS. 1 AND 2,480 VOLT LOFD STUDY

UNIT SUBSTATION EB. LOCA CONDITION
LOAD FACTOF \(=1.00\) FOWER FACTOR \(=0.85\).
\begin{tabular}{cccccc} 
MCC & HORSEPOWER & MVA & MW & MVAR
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(2 \times 8\) & 45.56 & 0.0455 & 0.0387 & 0.0260 \\
\hline \(2 \times 0\) & 37.73 & 0.0377 & 0.0327 & 0.0199 \\
\hline \(2 \times F\) & 179.33 & 0.1793 & 0.1524 & 0.0965 \\
\hline 2 XH & 138.50 & 0.1385 & 0.1177 & 0.0730 \\
\hline 2xM & 15.97 & 0.0160 & 0.0136 & 0.0066 \\
\hline \(1 \times 8-2\) & 25.63 & 0.0256 & 0.0218 & 0.0135 \\
\hline \(1 \times \mathrm{K}\) & 1.67 & 2.001? & 0.0014 & 0.0007 \\
\hline 2PE & 71.25 & 0.0713 & 0.0606 & 0.0375 \\
\hline \(2 C 8\) & 396.90 & 0. 3969 & 0.3374 & 0.2097 \\
\hline DGD & 238.92 & 0.2389 & 0.2031 & 0.1259 \\
\hline E11 & 70.67 & 0.0707 & 0.0601 & 0.0372 \\
\hline E12 & 31.64 & 0.0316 & \[
0.0269
\] & 0.0167 \\
\hline 28 & 75.00 & 0.0750 & 0.0538 & 0.0395 \\
\hline TOTAL & 1329. & 1.3238 & 1.1294 & 0.7000 \\
\hline
\end{tabular}

CARDLINA PONER AND LIGHT CONPANV, QRUNSWICK STEAM ELECTRIG PLANT UNITS NOS. 1 FND Z. \(\angle B O\) VDLT LOAD STUDY
```

UNIT SUBSTATION EB, RBCCNP ZZ START, LOCA CONDITION

```
LOAD FACTOR \(=1.00\) POWER FACTOK \(=0.85\).
\begin{tabular}{ccccc} 
MCC & HORSEPOWER & MVA & NV & NVAR \\
\(\cdots\) & \(\ldots-\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(2 \times \mathrm{B}\) & 65.54 & 0.0655 & 0.0387 & 0.0240 \\
\hline 2×0 & 37.73 & 0.037 ? & 0.0321 & 0.0199 \\
\hline 2 XH & 138.50 & 0.1385 & 0.1177 & 0.0730 \\
\hline \(2 \times \mathrm{M}\) & 15.97 & 0.0160 & 0.0136 & 0.0084 \\
\hline 1 \(\times \mathrm{E}-\) ? & 25.63 & D. 0256 & 0.0218 & 0.0135 \\
\hline 1×K & 1.67 & 2.0017 & 0.0016 & 0.0009 \\
\hline 2PA & 71.25 & 0.0713 & 0.0606 & 0.0375 \\
\hline 2 CB & 390.70 & 0.3969 & 0.3374 & 0.2097 \\
\hline DGD & 235.92 & 0. 2389 & 0.2031 & 0.1259 \\
\hline E11 & 70.67 & 0. 0707 & 0.0601 & 0.0372 \\
\hline E12 & 31.54 & 0.0316 & 0.0269 & 0.0167 \\
\hline ? B & 75.00 & 0.0750 & 0.0638 & 0.0305 \\
\hline TOTAL & 1149. & 9.14.96 & 0.9770 & 0.6055 \\
\hline
\end{tabular}
```

CAROLINA POWER AND LIGHT CONPANY, ERUNSNIGK STEAN ELEGTRIC PLANT
UNITS NOS. 1 AND 2, \angleSO VOLT LDAD STUDY
UNIT SUBSTATION 2SY, FULL LOAD CONDITION
LDAD FACTOR = 0.8D PONERFACTOR=0.85.
MCC HORSEPOWER
SYB
227.96 0.1824 0.1550
0.0967
TOTAL 228. 0.1324 0.1550 0.0961

```
*

CAROLINA PONER AND LIGMT COMFANY, BRUNSWICK STEAM ELECTRIG PLANT UNITS NOS. 1 AND Z. \(\angle 30\) VOLT LOAD STUDY

UNIT SUSSTATION 25\%, SHUTDOnN COND:T1ON
LOLD FACTOR \(=0.80\) PO.ER FACTOF \(=0.85\).
VCC HORSEPOWER MVA MVAR
\(5 \times 8\)
217.76
\(2.1744 \quad 0.1682\)
0.0919
TOTAL 213. D.1744 0.1482 0.0919

CAROLINA POWER AND LIGHT COMPANY, BRUNSWICK STEAM ELECTRIC PLANT UNITS NOS. 1 AND ? , 480 VOLT LOAD STUDY

UNIT SUBSTATION 25Y ROCA CONDITION
LOAD FACTOR \(=1.00\) POWER FACTOR \(=0.85\).
MCC
HORSEPOWER
NV A
\(\stackrel{N n}{ }\)
aVAR

SYR
\(? 27.96\)
0.2280
\(0.1935 \quad 0.1201\)
TOTAL
223.
0.2230
0.1938
0.1201
CAROLINA PONER AND LIGHT CONPANY, BRUNSWICK STEAN ELECTRIG PLANT
UNITS NOS. 1 AND ? , \(\angle B D\) VOLT LOAD STUDY
UNIT SUBSTATION COMMON DF FULL LOAD CONDITION
LOAD FACTOR \(=0,80\) PONE \(F=\angle, O R=0 . B 5\).

\(\begin{array}{lrrrr}\text { RWA } & 267.36 & 0.2139 & 0.1818 & 0.1127 \\ \text { RWD } & 209.33 & 0.1675 & 0.1423 & 0.0882 \\ \text { 25A } & 77.90 & 0.0623 & 0.0530 & 0.0325 \\ \text { CRANE } & 65.00 & 0.0520 & 0.0442 & 0.0274\end{array}\)
TOTAL 620 . \(0.4957 \quad 0.4213 \quad 0.2611\)

CAROLINA POWER AND LIGHT COMPANY. BRUNSWICK STEAM ELECTRIC PLANT UNITS NDS. 1 AND 2. 280 VOLT LOAD STUDV
UNIT SUZSTATION COMNON D, BACKNASH AIR ELR START, FULLLOAD CONDITIDN LOAD FACTOR \(=0.8 D\) POWER FACTOR \(=0.35\).
\begin{tabular}{|c|c|c|c|c|}
\hline MCL & HORSEPONER & NV: & M & MVAR \\
\hline --- & -........... & -.. & - & - - - \\
\hline RWD & 209.33 & 0.1075 & 0.1423 & D.0882 \\
\hline 25 A & 77.90 & D. 0623 & 0.0530 & 0.0323 \\
\hline SRANE & 65.00 & 0.0520 & 0.0442 & 0.0274 \\
\hline TOTAL & 352. & 0.2818 & 0.2395 & 0.1486 \\
\hline
\end{tabular}

CAROLINA PONER AND LIGHT CONPANY, BRUNSWICK STEAM ELECTRIC PLANT UNITS NOS. A AND Z. 480 YOLT LOAD STUDF

UNIT SUBSTATION CONMON D. SHUTDOWN CONDIT:ION
LOAD FACTOR \(=0.80 \mathrm{POWERFACTOF=0.85}\).
\begin{tabular}{|c|c|c|c|c|}
\hline MC [ & HORSEPDWER & NVA & Nw & NVAR \\
\hline --- & -.......- & --- & -- & \(\cdots\) \\
\hline \(R \sim B\) & 80.28 & 0. 0642 & 0.0546 & 0.0338 \\
\hline RWD & 132.80 & 0.1052 & 0.0703 & 0.0560 \\
\hline 2SA & 65.50 & 0.0526 & 0.0425 & 0.0276 \\
\hline CRANE & 65.00 & 0.0520 & 0.04L? & 0.0274 \\
\hline TOTAL & 344. & 2.2749 & 0.3336 & 0.1448 \\
\hline
\end{tabular}
```

CARDLINA PONER AND LIGNT COMPANY, ERUNSWICK STEAN ELECTRIC PLANT
UNITS NQS. 1 AND 2e 4SO VOLT LOAD STUDY
UNIT SUSSTATION COMMON D, LOCA CONDITION
LOAD FACTDR = 1,OO PONER FACTDR = 0.85.
MCC HORSEPOWER NVA
RW3
RwD 209.33 0.2093 0.1779 0.1103
254 77.90 0.0779 0.0662
CRANE 65.00 0.0650 0.0553 0.0342
TOTAL t20. 0.0196 0.5207 0.3264

```
```

GAROLINA PDWER AND LIGHT COMPANY, BRUNSNIGK STEAN ELECTRIC PLANT

```
UNITS NOS. 1 AND 2 . \(\angle B C\) VOLT LOAD STUDY
JNIT SUESTATION 2L, FULL LOAD AT.D SHUTDONIV CONDITIONS
LOAD FACTOR \(=0.00\) PONER FACTOR \(=1.00\).
\begin{tabular}{|c|c|c|c|c|}
\hline MC C & HORSEPOAER & N V 4 & \(N \sim\) & MVAR \\
\hline - & -.. & --- & -- & ---* \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
2A & 133.62 & 2.1109 & 0.1109 & 0. \\
2B & 169.08 & 0.1353 & 0.1353 & 0. \\
2D & 132.25 & 0.1058 & 0.1058 & 0. \\
& & & & \\
TOTAL & & 0.3520 & 0.3520 & 0.
\end{tabular}
```

CAROLINA POWER GND LIGHT CONPANY, BRUNSWICK STEAM ELECTRIC PLANT
UNITS NOS. }1\mathrm{ RND 2, 48O VDLT LORD STUD*
UNIT SUSSTATION 2L, LOCA CONDITION
LOAD FACTOR=1.CD PONER FACTOR= %.OO.
NCG HORSEPOWER N
2A
TOTAL 4LO. 0.4\angleDD 0.,400 0.

```


CARDLINA POWER AND LIGHT CONPANY, BRUNSWICK STEAM ELECTRIC PLANT UNITS NOS. 1 AND 2,480 VOLT LOAD STUDY

UNIT SUESTATION GL, FULL LOAD ANO SHUTDOWN CONDITIONS
LDAD FACTOK \(=0.50\) DONEK FACTOR \(=0.90\).
\begin{tabular}{|c|c|c|c|c|}
\hline MCC & HORSEPONER & M.A & Mn & MVAR \\
\hline --- & -..--*---- & --- & -- & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline HR8 & 89.00 & 0.0712 & 0.0041 & 0.0310 \\
\hline 209 & 35.29 & 0.0252 & 0.0254 & 0.0123 \\
\hline 202 & 18.95 & 0.0152 & 0.0136 & 0.0066 \\
\hline 203 & 2.71 & 0.0022 & 0.0020 & 0.0009 \\
\hline 204 & 7.50 & 0.0060 & 0.0054 & 0.0025 \\
\hline 25? & 16.02 & 0.0128 & 0.0115 & 0.0056 \\
\hline 5日A & 220.42 & 0.1763 & 0.1587 & 0.0769 \\
\hline TOTAL & 390. & 0.3119 & 0.2807 & 0.1360 \\
\hline
\end{tabular}
```

CAROLINA PONER AND LIGHT COMPANY, BRUNSNICK STEAM ELELTRIG PLANT
UNITS NOS. }1\mathrm{ AND?. 48O VOLT LORD STUDY
UNIT SUBSTATION KL, LDCA CONDITION
LOAD FACTOF= 1.00 PONER FACTOR= ?.90.
MCC
HDRSEPOWER
MVA
MW MVAR
...
HR8
89.00 0.0590
201
35.29 0.0353 0.0318 0.0154
202
18.95 0.0190 0.0171 0.0083
lllll
252 10.02 0.0160 0.0146 0.0070
SBA 220.42 0.2204 0.1984 0.0961
TOTAL 390. 0.3899 0.3509 0.1099

```

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{CAROLINA PONEK AND LIGHI COMPANY, BRUNSWI UNITS NOS. 1 AND 2, 480 VOLT LOAD STUDY} \\
\hline \multicolumn{5}{|l|}{UNII SUBSTATTON COMMON \(C\), FULL LOAD CONDITION} \\
\hline \multicolumn{5}{|l|}{TOAD FACTOR \(=0.80\) POWER FACTOR \(=0.85\)} \\
\hline MCS & HRRSEPQUES & MVA & MW & MVAR \\
\hline RWA & 283.54 & 0.2268 & 0.1928 & 0.1195 \\
\hline RHC & 251.73 & 0.2014 & 0.1712 & 0.1061 \\
\hline BHA & 615.65 & 0.4925 & 0.4186 & 0.2595 \\
\hline WTA & 621.77 & 0.4974 & 0.4228 & 0.2620 \\
\hline 15A & 77.90 & 0.0623 & 0.0530 & 0.0328 \\
\hline \multicolumn{5}{|l|}{} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{UNITS NOS, 1 AND 2, 480 VOLT LOAD STUDY} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { UNIT SUBSTATION ISY, LOCA CONDITION } \\
& \text { LOAD FACTOR }=1.00 \text { POWER FACTOR }=0.85
\end{aligned}
\]}} \\
\hline & & & & \\
\hline MES & HQRSERQWER & MS & M 4 & MVAR \\
\hline SYA & 295.89 & 0.2959 & 0.2515 & 0.1559 \\
\hline TOTAL & 296. & 0.2959 & 0.2515 & 0.1559 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{UNIZ \({ }^{\text {NOS }} 1\) AND 2, 480 VOLI LOAD STUDY} \\
\hline \multicolumn{5}{|l|}{TMIT SUBSTATION 11, FITL LOAD AND SHITDONN CONDITIONS} \\
\hline \multicolumn{5}{|l|}{LOAD FACTOR \(=0.80\) POWER FACTOR \(=1.00\)} \\
\hline MCC & HORSEPOWER & MVA & MW & MVAR \\
\hline 1. & 112.48 & 0.0900 & 0.0900 & 0 \\
\hline 1B & 161.64 & 0.1293 & 0.1293 & 0 \\
\hline \(1 D\) & 126.51 & 0.1012 & 0.1012 & 0 \\
\hline TOTAL & 401. & 0.3205 & 0.3205 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{UNITS NOS, 1 AND 2, 480 VOLT LOAD STUDY} \\
\hline \multicolumn{5}{|l|}{UNII SUBSTATION 11, LOCA CONDITION} \\
\hline \multicolumn{5}{|l|}{LOAD FACTOR \(=1.00\) POWER FACTOR \(=1.00\)} \\
\hline MCC & HORSEPOWER & MVA & MW & MVAR \\
\hline 1 A & 112.48 & 0.1125 & 0.1125 & 0 \\
\hline 1 B & 161.64 & 0.1616 & 0.1616 & 0 \\
\hline 1D & 126.51 & 0.1265 & 0.1265 & 0 \\
\hline \multicolumn{5}{|l|}{TOTAL} \\
\hline
\end{tabular}
CAROLINA POWER AND LIGHT COMPANY, BRINSWICK STEAM ELECTRIC PLANT
UNITS NOS. 1 AND 2, 480 VOLI LOAD STUDY
UNIT SUBSTATION 3L, FILLL LOAD AND SHUTDOWN CONDITIONS
LOAD FACTOR \(=0.80\) POWER FACTOR -0.90
MCC
HORSEPOWER


\title{
CALLAWAY PLANT UNITS 1 and 2
}

\section*{ENVIRONMENTAL BASELINE INVENTORY}

\section*{ANNUAL SUMMARY}
(Twnow Tizecrave Compamy

TABLE OF CONTENTS

SECTION
1.
2.
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.8.1
2.2.8.1.1
2.2.8.1.2
2.2.8.2
2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.2
2.3.2.1
2.3.2.2
2.3.3
2.3.3.1
2.3.3.2
2.3.4
2.3.4.1
2.3.4. 2
2.3.5
2.3.5.1
2.3.5.2
2.3.6
2.3.6.1
2.3.6.1.1
2.3.6.1.2
2.3.6.1.3
2.3.6.2
2.3.6.2.1
2.3.6.2.2
2.3.6.2.3
2.3.7
2.5

INTRODUCTION

\section*{AQUATIC ECOLOGY}

\section*{INTRODUCTION}

METHODS AND MATERIALS
DESCRIPTION OF SAMPLING LOCATIONS
WATER QUALITY
PHYTOPLANKTON
ZOOPLANKTON
VASCULAR HYDROPHYTES
BENTHIC MACROINVERTEBRATES
FISH
STATISTICAL METHODS
\(\frac{\text { Wilcoxan's Test }}{\text { Application to Water Quality Data }}\)
Application to Plankton Data
Kruskal-Wallis Test

RESULTS AND DISCUSSION
WATER QUALITY
Missouri River
Logan Creek
PHYTOPLANKTON
Missouri River
Logan Creek
ZOOPLANKTON
Missouri River
Logan Creek
VASCULAR HYDROPHYTES
Missouri River
Logan Creek
BENTHIC MACROINVERTEBRATES
Missouri River
Logan Creek
FISH
Missouri River \(\frac{\text { Life Histories }}{\text { Spes }}\) Species Composition, Age, Growth, and Condition Factor Food Habit Studies
Logan Creek Life Histories Species Composition, Age, and Growth Food Habit Studies
ECOLOGICAL SUMMARY
2.4

CONCLUSIONS AND RECOMMENDATION

SECTION
3.0
3.1
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.4
3.2.4.1
3.2.4.2
3.2.5
3.3
3. 3.1
3.3.1.1
3.3.1.2
3.3.1. 3
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.3.4
3.3. 4
3.3.4.1
3.3.4.2
3.3.5
3.3. 6
3.4
3. 5

\section*{TITLE}

\section*{TERRESTRIAL ECOLOGY}

\section*{INTRODUCTION}

\section*{METHODS}

SOILS
VEGETATION
Forest Survey
Pasture and Old Field
Miscellaneous Observations of Vegetation
MAMMALS
Small Mammals
Large Mammals
Evening Automobile Survey

\section*{BIRDS}

Avian Automobile Survey
Evening Automobile Survey
AMPHIBIANS AND REPTILES

\section*{RESULTS AND DISCUSSION}

SOILS AND VEGETATION
Forest
Pasture and Old Field
Miscellaneous Observations of Vegetation
MAMMALS
Small Mammals
Large Mammals
Evening Automobile Survey
Miscellaneous observations of Wildife
BIRDS
Avian Automobile Survey
Avian Strip Survey
Evening Automobile Survey
Miscellaneous observations of Birds
AMPHIBIANS AND REPTILES
Evening Automobile Survey
Miscellaneous Observations of Amphibians
and Reptiles
RARE AND ENDANGERED SPECIES
ECOLOGICAL SUMMARY
CONCLUSION AND RECOMMENDATION
REFERENCES
\begin{tabular}{|c|c|}
\hline NUMBER & TITLE \\
\hline 2.3.1-1 & Aissouri River Water Quality Data \\
\hline 2.3.1-2 & Historical Data on Missouri River Water Quality \\
\hline 2. 3.1-3 & Kruskal-Wailis One-Way Analysis of Variance Values for Differences Among Stations and Seasons in Water Quality Parameters \\
\hline 2.3.1-4 & Wilcoxan's Two Sample Test Results for Differences Between Stations in Water Quality Parameters \\
\hline 2.3.1-5 & Logan Creek Water Quality Data \\
\hline 2.3.2-1 & Phytoplankton Collected from the Missouri River and Logan Creek in July (J), September (S), and December (D), 1973, and February (F), 1974 \\
\hline 2.3.2-2 & Wilzoxan's Test Values for Differences Between Sampling Dates in Occurrence of Green Algae, Blue-Green Algae, Diatoms, and Total Phytoplankton per Liter \\
\hline \(2 \cdot 3 \cdot 2-3\) & Chlorophyll Levels in Missouri River Phytoplankton in July, September, and December, 1973, and February, 1974 \\
\hline 2.3.2-4 & Average Densities (cells per liter) of Phytoplankton Collected in Logan Creek in July, September, and December, 1973, and February, 1974 \\
\hline 2.3.2-5 & Chlorophyll Levels in Logan Creek Phytoplankton in July, September, and December, 1973, and February, 1974 \\
\hline 2.3.3-1 & Zooplankton Collected from the Missouri River and Logan Creek in July (J), September (S), and December (D) 1973, and February (F), 1974 \\
\hline 2.3.3-2 & Wilcoxan's Test Values for Differences Between Sampling Dates in Occurrence of Rotifers, Copepods, and Total Zooplankton per Liter \\
\hline 2.3.3-3 & Average Densities (organisms per liter) of Zooplankton Collected in Logan Creek in July, September, and December 1973, and February 1974 \\
\hline 2.3. 5-1 & Benthic Macroinvertebrates Collected from the Missouri River and Logan Creek during July (J), September (S), December (D) 1973, and February (F), 1974 \\
\hline
\end{tabular}

\section*{LIST OF TABLES (continued)}
\begin{tabular}{|c|c|}
\hline NUMBER & TITLE \\
\hline 2.3.5-2 & Macrobenthic Invertebrates Collected from the Missouri River during July, September, December and February \\
\hline 2.3.5-3 & Macrobenthic Species Diversity Indices for Stations on the Missouri River and Logan Creek \\
\hline 2.3.5-4 & Wet-Weight Biomass--Missouri River and Logan Creek \\
\hline 2.3.5-5 & Macrobenthic Invertebrates collected from Logan Creek during July, September, December, and February \\
\hline 2.3.6-1 & Thermal Tolerances of Certain Freshwater Fishes as Determined by Laboratory Experiments \\
\hline 2.3.6-2 & Species of Fish Collected in the Missouri River and Logan Creek \\
\hline 2.3.6-3 & Numbers and Size Ranges (total length in mm) of Fish Taken from the Missouri River during each Sampling Period \\
\hline 2.3.6-4 & Age, Growth and Condition of Gizzard Shad taken from Missouri River during September and December, 1973 \\
\hline 2.3.6-5 & Summary Table of all Food Items Found in the Stomachs of Fish Collected from the Missouri River during July, September and December, 1973 (numbers represent \(\mathrm{F}^{-r c e n t ~ o f ~ t o t a l ~ w e i g h t) ~}\) \\
\hline 2.3.6-6 & Numbers and Size Ranges (total length in mm) of Fish taken from Logan Creek during each Sampling Period \\
\hline 2.3.6-7 & Items Aralysis of Stomach Contents of Fish from Logan Creek Collected during July and September, 1973 (numbers represent percent of weight) \\
\hline 3.3.1-1 & Characteristics of Soils Fo nd Within the Intensive Study Area, Callaway County, Missouri \\
\hline 3.3.1-2 & Summary of Importance Values for Vegetation Identified Within Four Oak Forest Types \\
\hline 3.3.1-3 & Impertant Vegetation Identified in Two Oak-Maple Forest Types \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 3.3.1-4 & Important Vegetation Identified in an Oak-Hickory Forest Type ( \(\mathrm{FT}_{1}\) ) \\
\hline 3.3.1-5 & Important Vegetation Identified Along a Wooded Ravine Bottom ( \(\mathrm{FT}_{8}\) ) \\
\hline 3.3.1-6 & Herbaceous Vegetation Analysis of a Pasture, Callaway County, Miesouri \\
\hline 3.3.1-7 & Herbaceous Vegetation Analysis in a Pasture Transect \(G_{1}+G_{2}\), Callaway County, Missouri \\
\hline 3.3.1-8 & Herbaceous Vegetation Analysis of an Old Field, Callaway County, Missouri \\
\hline 3.3.2-1 & Summary of Mammals Identified During the Five Sampling Periods, Callaway County, Missouri \\
\hline 3.3.2-2 & Small and Large Mammals Trapped in Callaway County, Missouri \\
\hline 3.3.2-3 & Opossum (Didelphis marsupialis) Trapped During Four Sampling Periods, Callaway County, Missouri \\
\hline 3.3.2-4 & Raccoon (Procyon loton) Trapped During Four Sampling Periods, Callaway Countv, Missouri \\
\hline 3.3.2-5 & Mammals (Other Than Opossum and Raccoon) Trapped During Four Sampling Periods, Callaway County, Missouri \\
\hline 3.3.2-6 & Mammals Identified During the Evening Automobile Survey, Callaway County, Missouri \\
\hline 3.3.2-7 & Mammals Identified During Five Sampling P ,iods, Callaway County, Missouri \\
\hline 3.3.3-1 & Seasonal Abundances of Birds Identified Along the Avian Survey Route \\
\hline 3.3.3-2 & Seasonal Abunáance and Relative Abundance of Birds Identified Along the Avian Automobile and Evening Automobile Survey Route by General Habitat Type, Callaway County, Missouri \\
\hline 3.3.3-3 & Seasonal Abundances of Birds Identified Along the Avian Survey Route ( \(\mathrm{SS}_{2}\) ) \\
\hline
\end{tabular}
3.3.3-4 Seasonal Abundance and Relative Abundance of Birds Identified Along Avian Strip Survey Route \(\mathrm{SS}_{2}\) by General Habitat Type, Callaway County, Missotri
3.3.3-5 Seasonal Abundances of Birds Identified Along the Avian Survey Route ( \(\mathrm{SS}_{3}\) )
3.3.3-6
3.3.3-7
3.3.3-8
3.3.4-1 Amphibians Identified During the Early Summer Evening
3.3.4-2

Seasonal Abundance and Relative Abundance of Birds Identified Along the Avian Strip Survey Route SS by General Habitat Type, Callaway County, Missoulti

Birds Identified During the Evening Automobile Survey, Callaway County, Missouri

Miscellaneous Observations of Birds During Five Sampling Periods, Callaway County, Missouri Automobile Survey, Callaway County, Missouri

Miscellaneous Observations of Amphibians and Reptiles During Five Sampling Periods, Callaway County, Missouri
\begin{tabular}{|c|c|}
\hline 2.2.1-1 & Location of Aquatic Sampling Stations \\
\hline 2.3.1-1 & Sampling Stations on the Missouri River and Logan Creek \\
\hline 2.3.1-2 & Water Quality Parameters Related to Discharge \\
\hline 2.3.1-3 & Oxygen and Temperature Relationships \\
\hline 2.3.2-1 & Phytoplankton Densities at Missouri River Stations \\
\hline 2.3.2-2 & Phytoplankton at Logan Creek Stations \\
\hline 2.3.3-1 & Zooplankton Densities at Missouri River Stations \\
\hline 2.3.3-2 & Zooplankton at Logan Creek Stations \\
\hline 3.1-1 & Terrestrial Ecology General Study Area, Callaway County, Missouri \\
\hline 3.2.1-1 & Resource Areas, Intensive Study Area \\
\hline 3.2.2-1 & Vegetation Sampling Sites, Intensive Study Area \\
\hline 3.2.3-1 & Avian Strip Survey Small Mammal Traplines and Large Mammal Traps in the Intensive Study Area \\
\hline 3.2.3-2 & Evening and Avian Automohile Survey Route, Callaway County, Missouri \\
\hline 3.3.3-1 & Total Number of Species and Families of Birds for the Five Sampling Periods, Callaway County, Missouri \\
\hline 3.3.3-2 & Bird Species Along the Avian Automobile and Evening Survey Route by Habitat Type and Feeding Habit \\
\hline 3.3.3-3 & Seasonal Abundance (3-Day Mean) of Bird Species Along the Avian Automobile and Evening Survey Route by Habitat Type and Feeding Habit \\
\hline 3.3.3-4 & Bird Species Along Avian Strip Survey \(\mathrm{SS}_{2}\) by Sampling Period, Habitat Type and Feeding Habit \\
\hline 3.3.3-5 & Bird Species Along Strip Survey \(\mathrm{SS}_{3}\) by Sampling Period, General Habitat Type and Feeding Habbit \\
\hline 3.3.3-6 & Seasonal Abundance (3-Day Mean) of Bird Species Along Avian Strip Survey \(\mathrm{SS}_{2}\) by Habitat Type and Feeding Habit \\
\hline 3.3.3-7 & Seasonal Abundance (3-Day Mean) of Bird Species Along Avian Strip Survey \(\mathrm{SS}_{3}\) by Habitat Type and Feeding Habit \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

This report summarizes results of a 1 -year ecological baseline survey of the site of the Union Electric Company Callaway Plant, Units 1 and 2, Callaway County, Missouri.

Part of the data contained in this report was used to prepare chapters of the Union Electric Company's Environmental Report. The remainder is reported here for the first time. These data give a quantitative and qualitative overview of plant site biotic and abiotic seasonal variation; the data have been extensively summarized for the convenience of the reader.

The report consists of two major parts, Aquatic Ecology and Terrestrial Ecology. Each is an entity, with its own introduction, arrangement, supplemental data, summary, and conclusion. The subsections are the standard divisions found in most environmental reports, with the possible exception of the last. In this subsection, Conclusion and Recommendation, an attempt is made to relate survey data to potential environmental impact from plant construction and operation. Tables and figures are placed in the text following the three-digit subsection in which they are mentioned. There are appendices to both the aquatic and terrestrial parts of this report.

\section*{2. AQUATIC ECOLOGY}

\subsection*{2.1 INTRODUCTION}

This report presents results of the aquatic baseline survey of the proposed Callaway Nuclear Power Plant Site near Fulton, Missouri, for Union Electric Company. The study consisted of five sampling periods between April, 1973, and February, 1974. The purpose of our study was to establish the baseline characteristics of the aquatic ecosystems present in the study area. This baseline information will provide the basis for validating predictions regarding environmental impact anticipated to result from the construction and operation of the proposed nuclear project.

As outlined in the proposal dated 6 March 1973, the scope of this study is the description and delineation of the major components of the aquatic ecosystems within the immediate areas of the proposed plant. The specific components of each aquatic system considered in this investigation are:

> Phytoplankton
> Zooplankton
> Benthic Macroinvertebrates
> Vascular Hydrophytes
> Fish
> Water Quality.

Aquatic sampling stations were established on the Missouri River and on Logan Creek, a small tributary to the Missouri River. Locations and descriptions of the stations are discussed in Section 2.2.1 and are shown in Figure 2.2-1. Originally, six locations were sampled in the Missouri and one in Logan Creek. Following Sverdrup of Parcel's feasibility study evaluating alternate intake and discharge locations, five additional stations were established to accommodate potential alternatives. Samples from these stations were collected during September and December, 1973, and February, 1974. To minimize total project costs, however, laboratory analyses of the February samples were not performed for four of the extra stations ( \(F-1, F-2, C-1\), and G-2). Since only September and December samples were analyzed, the data from these extra stations are presented in the Appendix instead of the text. Information obtalned from these stations are included in the fisheries section, however, because the limited numbers of fish collected from all stations would have made data interpretation extretely speculative.

The report is divided into four major subsections. Subsection 2.1 outlines the purpose and scope of the study and discusses format. Subsection 2.2 describes the sampling stations and the methods and materials utilized to analyze the various aquatic
parameters. Subsection 2.3 contains the results and discussion of the sampling and a literature review, and Subsection 2.4 presents conclusions and recommendations. The Missouri River and Logan Creek data are treated and discussed separately. An ecological summary presented in Subsection 2.3 .7 provides a description of the physical, chemical, and biological interrelationships of the two project area aquatic systems.

\subsection*{2.2 METHODS AND MATERIALS}

\subsection*{2.2.1 DESCRIPTION OF' SAMPLING LOCATIONS}

Two primary areas were selected for aquatic sampling: the Missouri River and Logan Creek, a tributary to the Missouri River. The stations were chosen to define the baseline conditions in the site vicinity; they are representative of the area that may be affected by the operation of the plant. The locations of the aquatic sampling stations are shown by figure 2.2.1-1.

Five stations located in the main channel of the Missouri River \((A-1, B-1, C-1, F-1\), and \(G-1)\) were sampled for water quality, benthos, and plankton. Five stations located approximately 10 meters from the north bank of the Missouri River \((A-2, B-2, C-2\), \(F-2\), and \(G-2\) ) were sampled for larval fish, as well as for the parameters listed for the mid-channel stations. Two stations (A-1 and \(A-2\) ) constituted a transect. Fish collection iocations were largely determined by water level and flow rate; therefore, individual sampling stations were not delineated. Instead, fish were collected from each general transect area.

Transect A was located at River Mile 116. Transect B was located 0.4 miles east of Transect A at Mile 115.6. Transect C was immediately downstream from the confluence of Logan Creek and the Missouri River. It was marked by the opening between two groins adjacent to the mouth of Logan Creek. Transect \(G\) was approximately 0.5 miles west of Transect \(A\) on a line due north of the first groin east of the power plant at Chamois, Missouri. Transect \(F\) was the uppermost sampling area on the river and was marked by the confluence of a small, unnamed stream on the south side of the river, approximately 2.0 miles west of Transect \(G\).

The substrate texture alony Transects \(A, B, C, F\), and \(G\) was characterized as sandy at the main channel stations. The shoreline stations along Transects \(A, B\), and \(C\) were silty, while Stations \(F-2\) and \(G-2\) were sandy, with some small gravel.

Two aquatic sampling stations were established on Logan Creek (Figure 2.2.1-1). Station D-1 was marl 3 by the Missouri Highway 94 bridge crossing. Station \(\mathbb{E}-1\) was located 0.9 miles upstream from the confluence of Mud Creek. The substrate of Logan Creek varied from rubble and coarse sand at Station E-1 to fine sand and silt at \(D-1\). The banks along Logan Creek were well vegetated by willow, poplar, sycamore, and various shrubs. Near D-1, the creek had a wide bed and was typically slow moving. Fallen logs were numerous in the area and blocked the stream during periods of low flow. In the upper reaches, near \(E-1\), the stream was typically free flowing, with many riffle areas and pools up t:o 5 feet in depth during normal flow.

\subsection*{2.2.2 WATER QUALITY}

Water quality samples were collected from each station during April, July, September, and De-omber, 1973, and February, 2974. Samples were collected 1 meter bedow the surface with a Van Dorn PVC water sampler and placed in po.yethylene bottles containing a premeasured amount of preservat \({ }^{*}\) ve, as appropriate. Preservatives used were those recommended by the U.S. Environmental Protection Agency (1971). San.rits for fecal and total coliform analyses were collected in sterfiized glass bottles. Following collection, all samples were pariked in ice for imnediate transport to the laboratory. Fiel determinations were made for dissolved oxygen (YSI Model 54), conductivity (YSI Model 33), temperature (YSI Model 54), turbiaity (Hach Model 2100A), and pH (Fisher Acumet).

At the laboratory, gas chromatography was used for pesticide analyses. Analytical techniques for ali other physical and chemical parameters were taken from Standard Methods (A.P.H.A. , 1971). Coliform bacteria were enumerated by the membrane filter technique.

\subsection*{2.2.3 PHYTOPLANKTON}

Phytoplankton samples were collected at all river and creek stations during September and December, 1973, and February, 1974. All stations were sampled during July, 1973, except for river Stations \(\mathrm{F}-1, \mathrm{~F}-2, \mathrm{G}-1\), and \(\mathrm{G}-2\). Duplicate quantitative plankton samples were collected from all river stations with a ClarkeBumpus plankton sampler with a No. 20 mesh nylon net (aperture size \(76 \mu\) ). Subsurface tows ( \(<0.25\) meters deep) were made for 30 seconds against the direction is streamflow at each station parallel to the shoreline. Meter readings for calculating sample volumes were taken before and after each tow. Duplicate quantitative samples were obtained at Logan Creek stations by passing 40 liters of water through a Wisconsin plankton net (No. 20 mesh nylon). Sample concentrates from ali stations were preserved in 5 -percent buffered formalin solution for trisport to the laboratory.

In the laboratory, phytoplankters were identified to the lowest possible taxon from wet mount slide preparations viewed at 1000x. Taxonomic source authorities for phytoplankton identifications were Palmer (1962), Prescott (1962, 1970), Smith (1950), Whitford and Schumacher (1969), and U.S. Department of the Interior (1966). Algal enumerations made from Sedgwick-Rafter preparations were scanned at 200 x with a Whipple grid. Counts were extrapolated to organisms per liter.

Chlorophyll \(\frac{a}{}, \underline{b}\), and \(\frac{c}{r}\) measurements were made by filtering whole water samples through membrane filters ( 0.45 u porosity) and extracting the pigments in \(\mathrm{MgCO}_{3}\) saturated 90 -percent aqueous acetone solution in the dark at \(4^{\circ} \mathrm{C}\). Determinations were made colorimetrically following procedures outlined in Standard Methods (A.P.H.A., 1971).

Zooplankton composition and densities were cotermined for July, September, and December, 1973, and February, 1974. Population estimates for Missouri River stations were made from samples collected with a Clarke-Bumpus plankton sampler, as described in Section 2.2.3. Similarly, population estimates for Logan Creek stations were made from samples concentrated through a Wisconsin plankton net, as previously described.

In the laboratory, a \(1-\mathrm{ml}\) subsample from each sample was pipetted into a Sedgwick-Rafter counting chamber for analysis at 200 X . Zooplankters were identified to the lowest possible taxon, following Ahlstrom ( 1940,1943 ), Edmondson (1959), Pennak (1953), and Brooks (1957). Counts were extrapolated to organisms per iiter.

\subsection*{2.2.5 VASCULAR HYDROPHYTES}

Qualitative sampling of rooted aquatic vegetation included visual observations and identilication to genus of all hydrophytes encountered in the field. Taxonomic sources consulted were Fassett (1972) and Prescott (1969).

\subsection*{2.2.6 BENTHIC MACROINVERTEBRATES}

Triplicate grab samples were taken at each Missouri River station with a \(520-\mathrm{cm}^{2}\) Ponar bottom sampler. Samples were screened in the field with a U.S. No. 30 standard sieve ( 0.59 mm ). All material not passing through the sieve was washed into plastic bags and preserved in 10 -percent buffered formalin solution containing a small amount of rose bengal to stain the biota.

In the laboratory, each sample was washed in a No. 30 sieve and placed in a white tray for sorting invertebrates from detritus. Worm and midge larvae were permanently mounted on glass slides for identification and enumeration. Other macroinvertebrates were preserved in 90 -percent ethyl alcohol after analysis. Wetweight biomass was determined for all species except chironomids and oligochaetes, which were weighed in their respective groups. Each species or group was blotted dry and immediately weighed to the nearest 0.1 mg in a tared dish. All samples were retained as legal voucher specimens. The following taxonomic references were used: Beck (1968), Brinkhurst (1964, 1965), Brown (1972), Burks (1953), Curry (1958), Eddy and Hodson (1961), Edmondson (1959), Hamilton, Saether and Oliver (1969), Hilsenhoff and Narf (1968), Hiltunen (1973), Hols inger (1972), Kennedy (1969), Mason (1973), Roback (1957), Ross (1944), Usinger and Day (1968), and Williams (1972).

Field and laboratory techniques for the Logan Creek macrobenthos were identical to those described for the Missouri River benthos, with the exception of the type of bottom sampler used. A. standard \(230-\mathrm{cm}^{2}\) Ekman dredge was employed at Stations D-1 and E-1 for benthos samples.

Species diversity was calculated according to the Shannon-wiener Diversity Index. The general form for this index is:
\(D=-I p_{i} \log _{2} p_{i} ;\) where \(p_{i}\) is a decimal fraction of total individuals belonging to the \(i^{\text {th }}\) species.

This function describes the average degree of uncertainty of predicting the species of a given individual picked at random from a community. A high species diversity index is indicative of a quality environment while a low index indicates eutrophic or polluted conditions.

The following guide for interpreting species diversity indices was adopted from Wilhm and Dorris (1968):
```

1 = grossly polluted
2 = moderately polluted
3 = unpolluted

```

\subsection*{2.2.7 FISH}

The fish community of the Missouri River was sampled in July, September, and December, 1973, by netting and electroshocking. Because the placement of nets and locations of shocking areas were largely determined by the water level and flow rate of the Missouri River, individual sampling stations were not established for fisheries studies. General transect areas were sampled instead. High water levels prevented sampling fish in the Missouri River during February, 1974.

Experimental gill nets, utilized along all transects, were rigged for bottom sets and checked every 12 hours for a maximum of 48 hours. These nets were 80 feet long and 6 feet deep with 10 -foot long panels of graduated mesh sizes ranging from 0.5 to 40 inches. In September, standard wingless fyke nets (with 0.5 -inch mesh and \(3 \times 6\)-foot openings) were utilized along some transects in conjunction with the gill nets.

The electroshocker was a Solid State Electro-Fisher manufactured by Power Control Corporation in Pittsburgh, Pennsylvania. The electrical specifications were as follows:
```

Input Power
240 volts AC, }50\mathrm{ cycle, single phase
Output Voltage
Adjustable 0 to }350\mathrm{ volts, DC, or 0
to }280\mathrm{ volts, AC
Pulse Frequency and Shape
Adjustable 18 CPS to 205 CPS
Rectangular Shape
Output Power
3 KW maximum
Pulse Width (Duty Cycle)
Adjustable 0 to }50\mathrm{ percent
Current Types
Selective for DC pulsing, DC direct,
or AC 60 Cycle
Step-up Transformer
3-7 amps

```

The shocker was a portable unit, constructed of alumin: \(n\), and had an all solid state design. It was mounted on a \(16-\mathrm{foot}\) flat-bottomed boat powered by a \(20-h p\) outboard motor.

In the field, captured fish were weighed to the nearest gram and measured to the nearest mm (total length: measured from tip of snout to end of compressed caudal fin). Scale samples were taken from all fish for age and growth studies. Stomachs were dissected from a representative sample of shocked fish for food habit analyses and preserved in lo-percent formalin. Specimens comprising the subsamples represented an age gradient of the most abundant species collected. In the laboratory, stomachs were opened and the contents washed into a dish for sorting and identification to the lowest taxon possible, following Edmondson (1959), Pennak (1953), and Usinger and Day (1968). Taxonomic references consulted for fish identification included Eddy (1969), Hubbs and Lagler (1967), Cross (1967), and Pflieger (1971).

Condition factor \(\left(\mathrm{K}_{\mathrm{TL}}\right)\) was computed for gizzard shad collected during the September and December Missouri River samplings. Condition factor describes the relative plumpness or well-being of a fish and is defined as:
\[
\mathrm{K}_{\mathrm{TL}}=\frac{\mathrm{w} \times 10^{5}}{\mathrm{~L}^{3}}
\]
where:
\[
\begin{aligned}
& K_{r L}=\text { condition factor } \\
& W=\text { weight (grams) } \\
& L=\text { total length (mm). }
\end{aligned}
\]

Larval fish were sampled at all Missouri River stations during July, September, and December, 1973. A conical larval fish net, with a 2 -foot diameter hoop and an 1/32-inch mesh size, was used.

The net was equipped with an interocean flow meter; this allows the guantity of water passing through the net to be measured. Duplicate 1 -minute tows were made against the current at all river stations.

The fish community of Logan Creek was sampled in July, September, and December, 1973, and February, 1974. A battery-powered back-pack electroshocker delivering pulsed Ac current was used during all sampling periods. A 50 -foot minnow seine was also utiliz-d Juring the July and September surveys. Field and laboratory techniques were similar to those described for Missouri River fish. Scale samples did not include the cyprinids.

No attempt was made to sample larval fish in Logan Creek; rather, observations of newly hatched fish were made at several locations along the stream bank.

\subsection*{2.2.8 STATISTICAL METHODS}

\subsection*{2.2.8.1 Wilcoxan's Test}

A statistical analysis of the water quality data was conducted utilizing Wilcoxan's test. Wilcoxan's test is utilized to evaluate two independent samples on the basis of the null hypothesis (Conover, 1971, Hollander and wolfe, 1973, and Siege1, 1956). The nuli hypothesis is employed in instances where it is important to ascertain whether or not two independent samples are identical. Wilcoran's test is used to rank the independent samples from smallest to largest, regardless of the population from which the samples originated. Statistical evaluation is then used to sum the assigned ranks for both samples. If the summation reveals no difference in the rank sums between the two independent samples, the null hypothesis (identical nature of the two independent samples) is proven. However, if there is a difference in the ranked sums, the null hypothesis must be rejected and the independent samples are proven to be significantly distinct. The statistical procedures follow:
2. If \(T\) is between \(W a / 2\) and \(W_{1} \alpha / 2\) accept \(H_{q}\)
2. Reject \(H_{\phi}\) at the level of significance \(\alpha\), if \(T\) exceeds \(w_{2}-a / 2\) or if \(T\) is less than \(w a / 2\) (after Conover, 1971)
\(H_{\phi}=\) Nuli hypothesis
\(W_{1}=\) Individual rank sum
\(T=\) Total rank sum
\(a=\) Level of significance
Statistically, Wilcoxan's test is a very powerful test, having a power efficiency of \(3 / \pi=95.5\) percent as the population increases
(Mood, 1954). The power efficiency remains close to 95 percent for moderate sample sizes (Conover, 1971).

\subsection*{2.2.8.1.1 Application to Water Quality Data}

The water quality data was taken during five seasonal sampling periods from 6 distinct sampling transects, for 28 distinct chemical parameters. To test the null hypothesis applied to these samples, it was necessary to analyze the seasonal differences in the data. This was accomplished by comparing all samples for each individual water quality parameter taken during each sampling period with all samples taken during each other sampling period and comparing these data monthly by employing the following groups:
\begin{tabular}{lll} 
April - July & July - September & September - December \\
April - September & July - December & September - Februery \\
April - December & July - February & December - February \\
April - February & &
\end{tabular}

The analysis was continued for the water quality parameters including: pH, turbidity, dissolved oxygen, chemical oxygen demand, total suspended solids, total dissolved solids, temperature, and conductivity. Two levels of significance were utilized: \(p=.005\) indicated significant differences in the two sets of data compared and \(p=.025\) indicated that the difference was insignificant. Using this method, 90 data set comparisons were conducted.

Wilcoxan's test was also used to test the null hypothesis for sample station variance. Data collected for each of 6 distinct sampling locations were analyzed for each water quality parameter previously mentioned. Specifically, the comparisons which were made included:
\begin{tabular}{llllllll}
\(A_{1}\) & \(A_{2}\) & \(A_{2}\) & \(B_{1}\) & \(B_{1}\) & \(B_{2}\) & \(B_{2}\) & \(C_{1}\)
\end{tabular}\(\quad C_{1} C_{2}\)

This analysis involved 135 separate subsets of the data base. The levels of significance used were \(p=.025\) (insignificant difference). The power efficiency of Wilcoxan's test remains close to 95 percent for this analysis (Conover, 1971).

\subsection*{2.2.8.1.2 Application to Plankton Data}

Phytoplankton and zooplankton populations were sampled at six Missouri River stations during July, September, and December, 1973, and February, 1974. Seasonal differences in the data were statistically analyzed to test the null hypothesis. Wilcoxan's

\title{
two-sample test was used to test for differences between sampling dates in frequency of green algae, blue-green algae, diatoms, and total phytoplankton per liter and in frequency of rotifers, copepods, and total zooplankton per liter. Comparisons were made between the following sets of data:
}

\author{
July and September \\ July and December \\ July and February \\ September and December \\ September and February \\ December and February
}

Significant differences in two sets of data compared were indicated by \(p \leq 0.025\), while \(p>0.025\) indicated differences were not significant.

\subsection*{2.2.8.2 Kruskal-Wallis Test}

The Kruskal-Wallis one-way analysis of variance by ranks (Siegel, 1956) was employed to determine the overall station and seasonal variance in water quality data. The Kruskal-Wallis test is an analysis of variance which is employed in determining the ranking of the data from the lowest to the highest data point. This tent ascertains whether the sums of the assigned ranks are sufficiently distinct to have come from samples drawn from separate populations. The Kruskal-Wallis test employs the null hypothesis as outlined in Wilcoxan's test covered previously.

The probability limits wei? extended and are listed along with the degrees of freedom (df) for the individual analysis. The null hypothesis was ritilized to indicate whether there was a significant or insignificant variance vithin the subset of data analyzed. Nine different water quality parameters were tested using the Kruskal-Wallis analysis of variance. The power efficiency of this test approaches 95 percent for moderate population sizes; therefore, it is one of the most powerful of the nonparametric tests (Siegel, 1956).
2.3.1 WATER QUALITY

\subsection*{2.3.1.1 Missouri River}

Missouri River discharge data were obtained frci the U.S.G.S. at Hermann, Missouri, approximately 20 river miles (R.M.) downstream from the project area. The following discharges were recorded on ez zh sampling date: 18 April 1973 - 280,000 cfs; 12 July 1973 67,000 cfs; 7 September 1973 - 58,500 cfs; 18 December 197386,300 cfs; and 22 February \(10-4-136,000 \mathrm{cfs}\). The discharge in this section of the Missouri River is partly regulatec by numerous upstream reservoirs. The 75 - ear average discharge at Hermann is
78,370 cfs. The maximun discharge of 676,000 efs occurred in 1903, d. the minimum of about 4,200 cfs was recorded in 1940 before flow control was initiated by the Corpn of Engineers (U.S. Geological Survey, 1972).

The physical characteristics of the Missouri River near the project vicinity have been drastically altered by chamielization (Figure 2.3.1-1). The Federal River and Harboi Act of March 2, 1945, authorized the River and Harbor Project to improve the Nissouri River's navigation and channel stabilization from Sioux City, Iowa, to its mouth. The project provides for develcpment of one mixed navigable channel, 300 feet wide and 9 feet deep, from the numerous, small, shallow channels of tle natural river. The refinement and control of \(i\) is channel were obtained by shaping the flow into smosth, easy bends through a system of stone and/or wood pile clump dikes (Un: versity of Missouri-Rolla, 1972).

Rapid changes in its erosional and depositional properties may vary the river's morphological characteristics. Substrate texture in particular areas ray aiso be changed by alternating erosional and depositional effucts. Cenerally, the texture of the main channel sedimentis rear the site area varies from gravel to sand. Shorelines, where current: are much reduced, usuaily have a silt-clay (mud) bottom. Shifting sand bars are quite common to the area.

Depth profiles of sampling transects are shown by Figure 2.3.1-1. Soundings were taken by the Crops of Engineers during October 17 and 18, 1972, when the gage reading at Hermann was 9.2, :ith a discharge of 62,000 cubic feet per second (cf's) (U.S. Dept. of the Army, Corps of Engineers, 1972 a ). At this river stage, the maximum river channel depth is approximately 30 feet.

Water quality data from Transects A, B, and C for five sampling periods are presented in Table 2.3.1-1. These recent data from near the site generally correspond to historical records from Hermann (Table 2.3.1-2).

The April, 1973, water quality data significantly exceed the recorded maximum historical values for chemical oxygen demand (COD), zurbidity, total dissolved solids (TDS), and total iron. These
data were collected and analyzed d'ring a near-record flood, when runoff was extremely high, which wuuld account for their unusually high values. Normally, TDS values would be expected to decrease during flood conditions. But whenever, as during the April survey, the discharge suddenly increases, the fir't water is usually mort highly mineralized than the dilute runoft in iter. Also, increased concentrations of TDS occur when this first sater picks up salt left by evaporation in the channel (Hem, 1959).

The pH values did fall below the state water quality standard of 6.5 (Missouri Clean Water Commission, 1973) at Statio A-1 during April, 1973. All stations exhibited low pH readings during this time. These low pH values were probably the result of acid mine runoff above the site area. Extended periods of low pH could be detrimental to aquatic biota.

The only other parameter found to exceed the state water quality standards was fecal coliform bacteria. The standard of \(2,000 / 100\) m1 (Missouri Clean Water Commission, 1973) was exceeded at Stations \(\mathrm{A}-1, \mathrm{~B}-1, \mathrm{~B}-2\), and \(\mathrm{C}-1\) during the April survey, all six stations during the July collections, Station C-2 during the September survey, and all six stations during the December surve \({ }_{1}\). Fecal coliform bacteria are indicators of relatively recent feca+ pollution.

Of all the heavy metals analyzed (historically and during the present survey), only copper and cadnium were found in concentrations that may be toxic to aquatic organisms The usual range for copper toxicity is from several hundred to a thousand parts-per-biliion (ppb); toxic effects have, however, been noted as low as 20 ppb and cadmium has been found to be toxic at 10 ppb (Battelle's Columbus Laboratories, 1971). The effect on the Missouri River biota depends on the duration of recorded high concentrations, as well as the presence of other stresses (toxic metals, temperature, dissolved oxygen, etc.).

Presumptive pesticide tests for total chlorinated hydrocarbons were run on the April water samples. Chlorinated pesticires were present, but only in low concentrations (19-31 \(\mu \mathrm{g} / \mathrm{l}\) ). Analysis for specific pesticides were conducted on the July, September, and December samples, and all concentrations were below detectable limits. Acute biocide toxicity to aquatic organisms, therefore, does not ap. zar to be a problem; chronic effects cannot presently be ruled out, however.

Nutrients such as phosphorus and nitrogen appear to be in sufficient concentrations to support dense populations of algae (see Section 2.3 .2 ). The heavy silt load and associated reduced river system transparency appear to be a major factor limiting phytoplankton populations.

Discharge appears to be the major influence on Missouri River water quality. Turbidity and suspended solids were directly related to river discharge, while total dissolved solids and conductivity were inversely related (Figure 2.3.1-2). An exception to this
relationshis was noted during July, when laboratory analyses indicated that suspenced solids increased and TDS decreased as discharge decreased. A comparison of these data with related turbidity and conductivity data indicated the laboratory analyses to be off by a factor of 2 (low for TDS and high for suspended solids). Therefore, these new projected values were utilized for comparative purposes.

From these discharge-related data, general water quality tren s can be predictred. Soluble chemicals will normally vary inversely with the flow, while suspended materials will usually vary directly. Fluctuations in this trend depend on municipal and industrial effluent discharyes, as well as the precipitation in the particular area from which runoff occurs. These conditions also determine the existing concentration of the c.emical constituent at any particular point in time.

Dissolved oxygen and temperature are two related water quality parameters affecting aquatic organisms. Dissolved oxygen concentration was inversely proportional to temperature (Figure 2.3.1-3) but was also affected by biological activity and oxygen demarding materials. Compared to oxygen demanding materials and biota, percentage oxygen saturation (Figure 2.3.1-3) indicate low primary production. The figure shows an inverse relationship between oxygen saturation and chemical oxygen demand; lowest oxygen saturation occurred during April, when flooded conditions caused the highest oxygen demand.

Statistical analyses of major water quality parameters zere conducted to ietermine seasonal or inter-station variations. As antic: +rd, the Kruskal-Wallis one-way analysis of variance indicack significant seasonal differences but not significant inter-scatik differences (Tarle 2.3.1-3).

Water quality values were then compared by Wilcoxan's two sample test to determine differences between specific stations (Table 2.3.1-4). The majority of the water quality parameters did not vary significantly at the .025 level; the following differences, however, were noted at the . 005 1.vel:
a) Total suspended solids from Station C-1 were significantly different from those at Stations \(\mathrm{A}-1\) and \(\mathrm{B}-1\).
b) Chemical Oxygen Demand yalues at C-2 differed from \(A-1\).
c) Dissolved oxygen at C-2 differed from A-1.
d) Conductivity values at \(B-2\) were different from values at \(\mathrm{C}-1\) and \(\mathrm{C}-2\).

It should be noted that all differences involved either Stations \(\mathrm{C}-1\) or \(\mathrm{C}-2\). These differences could be real, and water quality values at Transect \(C\) could be iniluenced somewhat by Logan Creek,
or they may be ine result of high variability and small sample size.

The direct and indirect activities of man have modified the Missouri River water quality. Strip-mining, poor soil conservation practices, and dredging contribute to excessive turbidities. Acid mine drainage lowers the river's pH and increases trace meta? concentrations, while agricultural runoff and municipal and industrial effluents increase the concertration of oxygen-demanding materials, nutrients and other dissolved chemicalz, including heavy metals and pesticides. Accidental spills of hazardous materials from pipeline breaks, truck accidents, and railway wrecks have been occurring with increased frequency within the Missouri River drainage system. Thus, numerous human activities have resulted in a highly stressed aquatic ecosystem. A more complete treatment of pre-existing environmental stresses can be found in Section 2.7 of the Environmental Report.

\subsection*{2.3.1.2 Logan Creek}

Logan Creek is a small, perennial tributary stream of the Missouri River (see Figure 2.2.1-1). The upper portion drains most of the site area and flows in a southerly direction until it reaches the flood plain. From its confluence with Mud Creek, it procesds eastward until it empties into the Missouri River at River Mile 115.2 .

No gaging station is located on Logan Creek and, therefore, discharges have not been recorded. Flows are generally very low to non-existent, except for periods of local precipitation.

The banks along Logan Creek are well vegetated with willow, poplar, sycamore, and various shrubs. Fallen logs are numerous and serve to block the stream during periods of low flow.

The upper section has a normal width of approximately 18 feet, while the depth varies from 1-5 feet in pools. The bottom substrate consists of rocks and gravel. The lower portion is about 35 feet wide, with an average depth of 3-4 feet; however, rippths of 20-25 feet were observed during the April survey. The bottom consi ts of fine mud and organic debris.

Historical water quality data for Logan Creek are lacking. Data from the present survey (Table 2.3.1-5) indicate that the general water quality is higher than that of the Missouri River; during local precipitation, however, various concentrations approach or exceed those of the Missouri.

Chemical concentrations in Logan Creek can be expected to follow the same general trends established for the Missouri River. They would be influenced to a much greater extent, however, during local precipitation. Chemical concentrations were less in the upper reaches of the creek ( \(\mathrm{E}-1\) ) than in the lower section ( \(D-1\) ). The lower section is subjected to more runoff, which increases chemical concentrations. Coliform bacteria counts, however, are greater in the upper section, reflecting man's influence.

Low pH and dissolved oyygen values recorded for the lower section of the creek could adversely affect certain aquatic biota (see following sections). iesticides and trace metals were not present ir concentrations consiatred harmful to aquatic organisms.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
u{ }_{u}^{N}
\] &  & \[
\begin{aligned}
& 6 m 00 N N \\
& 0 \infty \infty N N
\end{aligned}
\] & \[
\begin{aligned}
& 0 \text { in } 00 \mathrm{~m} \\
& 0 \mathrm{~N} \\
& \mathrm{~m} \pi \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& 00900 \\
& 80 y \mathrm{~m} \\
& 6 \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& 000 \infty N \\
& \text { m } m N N
\end{aligned}
\] \\
\hline +
0
0
0
E & & & & & \\
\hline \[
\begin{array}{rr}
20 \\
\text { F- } \\
1 \\
\vdots
\end{array}
\] & \[
\begin{aligned}
& 00 \ln 0 \\
& -i \dot{N} N+ \\
& m N
\end{aligned}
\] & \[
\begin{aligned}
& \text { M-am } \\
& \dot{6} \infty+\infty+N
\end{aligned}
\] & \[
\begin{aligned}
& 00000 \\
& 6080 \\
& \text { N } 464 n
\end{aligned}
\] & \[
\begin{aligned}
& \text { in } n N 00 \\
& \text { in } n=t i n
\end{aligned}
\] &  \\
\hline
\end{tabular}

TABLE 2.3.1-1
MISSOURI RIVER WATER QUALITY DATA

\begin{tabular}{|c|c|}
\hline Sample Date & \\
\hline April & . 73 \\
\hline July & -73 \\
\hline Sept. & \(\cdot 73\) \\
\hline Dec. & \(\cdot 73\) \\
\hline Feb. & \(\cdot 74\) \\
\hline April & . 73 \\
\hline July & :73 \\
\hline Sept. & . 73 \\
\hline Dec. & \(\cdot 73\) \\
\hline Feb. & 174 \\
\hline April & 173 \\
\hline July & 173 \\
\hline Sept. & \(\cdot 73\) \\
\hline Dec. & :73 \\
\hline Feb. & -74 \\
\hline April & -73 \\
\hline July & -73 \\
\hline Sept. & +73 \\
\hline Dec. & \(\cdot 73\) \\
\hline Feb. & +74 \\
\hline April & \(\cdot 73\) \\
\hline July & -73 \\
\hline Sept. & * 73 \\
\hline Dec. & , 73 \\
\hline Feb. & '74 \\
\hline
\end{tabular}
Parameter
Temperature
\({ }^{\circ} \mathrm{C}\) pli \(_{\text {Standard Units }}\)\begin{tabular}{l} 
Conductivity \\
Lmhos/cm \\
Turbidity \\
FTU \\
Chloride \\
mq/1
\end{tabular}

\section*{TABLE 2.3.1-1 (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sample Date}} & \multicolumn{2}{|r|}{Transect \(A\)} & & ct B & \multicolumn{3}{|c|}{Transect \(C\)} \\
\hline & & & A-1 & A-2 & B-1 & B-2 & \(\mathrm{C}-1\) & \(\mathrm{C}-2\) & Average \\
\hline \multirow[t]{5}{*}{Nitrate \(\mathrm{mg} / 1 \mathrm{~N}\)} & April & 173 & 3.0 & 4.5 & 4.3 & 3.3 & 2.5 & 3.8 & 3.6 \\
\hline & July & '73 & 2.9 & 3.0 & 2.5 & 3.2 & 2.5 & 2.2 & 2.7 \\
\hline & Sept. & -73 & 0.3 & 0.4 & 0.6 & 0.7 & 0.4 & 0.4 & 0.5 \\
\hline & Dec. & '73 & 1. 3 & 1. 3 & 1. 3 & 1. 2 & 1. 3 & 1. 3 & 1.3 \\
\hline & Feb. & -74 & 1.5 & 1.9 & 1. 3 & 1.7 & 1.4 & 2.0 & 1.6 \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { Organic Nitrogen } \\
& \mathrm{mg} / 1
\end{aligned}
\]} & April & +73 & - & - & - & - & - & - & - \\
\hline & July & '73 & 3.6 & 3.2 & 3.2 & 3.9 & 2.5 & 1.4 & 3.0 \\
\hline & Sept. & '73 & C. 7 & 0.7 & 0.6 & 0.6 & 0.6 & 0.6 & 0.6 \\
\hline & Dec. & '73 & 0.9 & 0.9 & 1.0 & 1.1 & 0.9 & 0.8 & 0.9 \\
\hline & Eeb. & '74 & 1. 2 & 1.4 & 1.3 & 1.4 & 1. 3 & 1.8 & 1. 4 \\
\hline \multirow[t]{5}{*}{Total Organic Carbon mg/1} & April & +73 & 44 & 62 & 39 & 44 & 48 & 113 & 58 \\
\hline & July & -73 & - & - & - & - & - & - & - \\
\hline & Sept. & :73 & - & - & - & - & - & - & - \\
\hline & Dec. & .73 & - & - & - & - & - & - & - \\
\hline & Feb. & '74 & - & - & - & - & - & - & - \\
\hline \multirow[t]{5}{*}{Orthophosphate \(\mathrm{mg} / 1 \mathrm{p}\)} & April & \(: 73\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & \(<0.01\) \\
\hline & July & :73 & 0.01 & 0.06 & 0.01 & 0.01 & 0.01 & 0.01 & \(<0.02\) \\
\hline & Sept. & :73 & 0.19 & 0.19 & 0.18 & 0.16 & 0.13 & 0.16 & 0.17 \\
\hline & Dec. & :73 & 0.18 & 0.18 & 0.16 & 0.17 & 0.17 & 0.14 & 0.17 \\
\hline & Feb. & 174 & 0.11 & 0.13 & 0.09 & 0.13 & 0.07 & 0.12 & 0.11 \\
\hline \multirow[t]{5}{*}{Total Phosphorus \(\mathrm{mg} / 1 \mathrm{p}\)} & April & . 73 & 0.53 & 0.57 & 0.56 & 0.57 & 0.41 & 0.50 & 0.52 \\
\hline & July & +73 & 0.69 & 0.66 & 0.66 & 0.69 & 0.65 & 0.33 & 0.61 \\
\hline & Sept. & :73 & 0.24 & 0.22 & 0.21 & 0.19 & 0.17 & 0.18 & 0.20 \\
\hline & Dec. & :73 & 0.27 & 0.28 & 0.26 & 0.25 & 0.25 & 0.21 & 0.25 \\
\hline & Feb. & -74 & 0.19 & 0.23 & 0.15 & 0.23 & 0.15 & 0.23 & 0.20 \\
\hline
\end{tabular}


TABLE 2.3.1-1 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Sample } \\
\text { Date } \\
\hline
\end{gathered}
\]} & & \multicolumn{2}{|l|}{Transect A} & \multicolumn{2}{|l|}{Transect \(B\)} & \multicolumn{2}{|l|}{Transect \(C\)} & \multirow[t]{2}{*}{Average} \\
\hline & & A - 1 & A-2 & B-1 & B-2 & \(\mathrm{C}-1\) & \(C-2\) & \\
\hline April & -73 & - & - & - & - & - & - & - \\
\hline July & +73 & - & - & - & - & - & - & - \\
\hline Sept. & +73 & 235 & 228 & 217 & 229 & 200 & 226 & 223 \\
\hline Dec. & \(\cdot 73\) & 246 & 246 & 234 & 240 & 232 & 237 & 239 \\
\hline Feb. & +74 & 186 & 208 & 160 & 214 & 162 & 198 & 188 \\
\hline April & * 73 & \(<0.01\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & <0.01 & \(<0.01\) & <0.01 \\
\hline July & -73 & 0.012 & 0.009 & 0.014 & 0.008 & 0.010 & 0.008 & 0.010 \\
\hline Sept. & .73 & 0.004 & 0.004 & 0.004 & 0.006 & 0.004 & 0.005 & 0.905 \\
\hline Dec. & -73 & 0.002 & 0.003 & 0.003 & 0.003 & 0.002 & 0.002 & 0.003 \\
\hline Feb. & '74 & 0.002 & 0.003 & 0.002 & 0.003 & 0.002 & 0.003 & 0.003 \\
\hline April & . 73 & \(<0.02\) & \(<0.02\) & \(<0.02\) & \(<0.02\) & \(<0.02\) & \(<0.02\) & \(<0.02\) \\
\hline July & :73 & 0.006 & 0.005 & 0.005 & 0.007 & 0.005 & 0.006 & 0.006 \\
\hline Sept. & :73 & 0.006 & 0.008 & 0.003 & 0.003 & 0.001 & \(<0.001\) & \(<0.004\) \\
\hline Dec. & +73 & 0.008 & 0.001 & 0.001 & 0.002 & 0.002 & 0.006 & 0.003 \\
\hline Feb. & 174 & 0.027 & 0.014 & 0.015 & 0.016 & 0.015 & 0.018 & 0.018 \\
\hline April & -73 & 11.6 & 11.0 & 12.4 & 12.0 & 11.2 & 12.4 & 11. 8 \\
\hline July & 173 & 5.4 & 5.5 & 0.1 & 5.6 & 0.9 & 3.1 & 3.4 \\
\hline Sept. & +73 & 1.4 & 1. 3 & 1.4 & 1. 3 & 1. 3 & 0.7 & 1.2 \\
\hline Dec. & 173 & 2.4 & 1.4 & 1. 3 & 2.0 & 1. 3 & 1.3 & 1.6 \\
\hline Feb. & '74 & 2.5 & 2.5 & 1.1 & 1. 6 & 1.1 & 1.7 & 1.8 \\
\hline April & 173 & \(<0.02\) & \(0.66^{\text {a }}\) & \(<0.02\) & <0.02 & \(<0.02\) & \(<0.02\) & \(<0.13\) \\
\hline July & :73 & 0.029 & 0.027 & 0.028 & 0.029 & 0.031 & 0.016 & 0.027 \\
\hline Sept. & , 73 & 0.021 & 0.012 & 0.013 & 0.012 & 0.007 & 0.004 & 0.012 \\
\hline Dec. & :73 & 0.003 & 0.002 & 0.004 & 0.003 & 0.003 & 0.004 & 0.003 \\
\hline Feb. & \(\cdot 74\) & 0.017 & 0.019 & 0.014 & 0.019 & 0.018 & 0.020 & 0.018 \\
\hline
\end{tabular}
Parameter
Hardness
mg/1 CaC0
Arsenic
mg/1
Aadmium
mg/1
Copper
mg/1
Iron (total)
Coll
TABLE \(2.3 .1-1\) (Continued)


\section*{\(\begin{array}{lll}-\infty & 0 & 0 \\ 0 & 0 & \pi\end{array}\)}
in \(m m\) in -1
in \(n=\infty\)
\(m=1\) \(m n-m\)
\(0 \pi\)
0 in 0 No in \(\begin{array}{lll}\infty \\ n & 0 & 0 \\ n & \infty \\ m\end{array}\)
\(0 \pm 10 \% \mathrm{~m}\)
\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Parameter

\section*{1/bur \\ -}

Mercury
\(\omega \mathrm{g} / 1\)
Chromium
mg/1
Selenium
\(\mathrm{mg} / 1\)
Sulfate
\(\mathrm{mg} / 1\)



(рənuтquoD) \(T-I * \varepsilon * 2\) 马TB甘L

TABLE 2.3.1-2
HISTORICAL DATA ON MISSOURI RIVER WATER QLALITY (From EPA STORET System)

Sampling Site: Hermann, Missouri Longitude: 38-42-36 N Latitude: 91-26-21 W

Time of Record: \(7 / 31 / 69\) to \(4 / 18 / 72\) (Based on flow data)
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter S & ```
    Number
    of
Samples
``` & \begin{tabular}{l}
Mean \\
Value
\end{tabular} & Maximum Value & Minimum Value \\
\hline Water Temperature, \({ }^{\circ} \mathrm{C}\) & 18 & 12.9 & 27 & 0 \\
\hline Dissolved Oxygen, mg/l & 18 & 8.9 & 13 & 5.6 \\
\hline Turbidity, JTU & 11 & 132 & 380 & 19 \\
\hline Flow, cfs. entire & 18 & 80,500 & 230,000 & 19,000 \\
\hline pH , units & 18 & 7.9 & 8.3 & 7.7 \\
\hline Dissolved Solids, mg/l & 18 & 375 & 499 & 253 \\
\hline Specific Conductance, micromhos/cm & 18 & 577 & 770 & 359 \\
\hline Total Hardness, \(\mathrm{mg} / 1\) as \(\mathrm{CaCO}_{3}\) & 18 & 213 & 260 & 140 \\
\hline Calcium, mg/l & 11 & 56 & 70 & 38 \\
\hline Magnesium, mg/l & 11 & 17 & 21 & 11 \\
\hline Alkalinity, mg/l as \(\mathrm{CaCO}_{3}\) & 18 & 157 & 197 & 112 \\
\hline Ammonia Nitrogen, mg/l & 18 & 0.06 & 0.49 & 0 \\
\hline Organic Nitrogen, mg/l & 10 & 0.71 & 1.20 & 0.44 \\
\hline Total Phosphorous, mg/1 & 18 & 0.39 & 1.70 & 0.03 \\
\hline Chemical Oxygen Demand, mg/1 & 18 & 12.3 & 28 & 5.6 \\
\hline Sulfate, mg/l & 18 & 120 & 186 & 56 \\
\hline Chloride, mg/l & 12 & 16 & 25 & 8 \\
\hline Iron, \(\mu \mathrm{g} / 1\) & 11 & 182 & 900 & 0 \\
\hline Cadmium, \(\mu \mathrm{g} / 1\) & 11 & 1 & 5 & 0 \\
\hline Chromium, 1 g/l & 11 & 3.2 & 16 & 0 \\
\hline Copper, ug/1 & 11 & 38.5 & 180 & 0 \\
\hline Lead, \(\mu \mathrm{g} / 1\) & 10 & 7.3 & 15 & 0 \\
\hline Manganese, \(\mu \mathrm{g} / 1\) & 15 & 31 & 221 & 0 \\
\hline Mercury, \(\mu \mathrm{g} / 1\) & 1 & 0.5 & 0.5 & 0.5 \\
\hline Zinc, \(\mu \mathrm{g} / 1\) & 11 & 67.4 & 210 & 14 \\
\hline
\end{tabular}
KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE VALUES FOR DIFEERENCES AMONG STATIONS AND SEASONS IN WATER QUALITY PARAMETERS
ns
\(\frac{\text { Seasonal Variance }{ }^{\text {b }}}{\text { H Value Significance }}\)
27.8408
27.1733
27.8407
26.9677
27.6712
23.5880
23.7195
16.0878
\[
\stackrel{\text { un }}{5}
\]
su
su

Water Quality Parameter

pH
Turbidity
Temperature
Conductivity
Dissolved oxygen pueurp uaб太xo โeวtuəuว Total suspended solids Total dissolved solids
——— significant
H Value Significance
\[
0.2799
\]
\[
0.3160
\]
\[
0.0270
\]
\[
\begin{aligned}
& 1.1932 \\
& 0.3109 \\
& 1.4718 \\
& 1.6885 \\
& 0.8887
\end{aligned}
\]
\[
\mathrm{ns}
\]
ns
\[
\mathrm{ns}
\]
\[
\mathrm{ns}
\]
\[
e^{a}
\]
\[
\angle 888^{\circ} 0
\]
\(a_{\text {Tests }}\) for differences among stations for all sampling periods.
bests for seasonal differences in data from the same station.
\(c_{n s}=\) nonsignificant \(p>0.05\)
(A11 significant \(p\) values in these analyses were \(\leq 0.001\))

TALLE 2.3.1-4
WILCOXAN'S TWO SAMPLE TEST RESULTS FOR DIFFERENCES BETWEEN STATIONS IN

WATER QUALITY PARAMETERS \({ }^{\text {a }}\)
Stations
Compared
\begin{tabular}{ll}
\(\mathrm{A} 1, \mathrm{~A} 2\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~A} 1, \mathrm{~B} 1\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~A} 1, \mathrm{~B} 2\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~A} 1, \mathrm{C} 1\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~A}, \mathrm{C} 2\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~A} 2, \mathrm{~B} 1\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~A} 2, \mathrm{~B} 2\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~A} 2, \mathrm{C} 1\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~A} 2, \mathrm{C} 2\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~B} 1, \mathrm{~B} 2\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~B} 1, \mathrm{C} 1\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~B} 1, \mathrm{C} 2\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~B} 2, \mathrm{C} 1\) & \(\mathrm{p}=.025\) \\
\(\mathrm{~B} 2, \mathrm{C} 2\) & \(\mathrm{p}=.025\) \\
\(\mathrm{C} 1, \mathrm{C} 2\) & \(\mathrm{p}=.025\)
\end{tabular}
\begin{tabular}{cc}
Conductivity & \begin{tabular}{l}
Dissolved \\
Oxygen
\end{tabular} \\
\cline { 2 - 2 } \(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.005\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.005\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.005\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\)
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{c}
Chemical \\
Oxygen \\
Demand
\end{tabular} \\
\hline \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) \\
\(\mathrm{p}=.005\) \\
\(\mathrm{p}=.025\) \\
\(\mathrm{p}=.005\) \\
\(\mathrm{p}=.025\)
\end{tabular}

Total
Suspended
Total
Solids
\begin{tabular}{ll}
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.005\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.005\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.025\) \\
\(\mathrm{p}=.025\) & \(\mathrm{p}=.(25\) \\
\(\mathrm{p}=.025\)
\end{tabular}

Dissolved Solids
\(\mathrm{p}=.02\)
\(p=.325\)
\(\mathrm{p}=.025\)
\(\mathrm{p}=.025\)
\(\mathrm{p}=.025\)
\(\mathrm{p}=.025\)
\(p=.005\)
\(p=.025\)
\(p=.025\)
\(p=.025\)
\(p=.025\)
\(p=.025\)

\footnotetext{
\(a_{p=.} 005\) is significant
\(p=.025\) is nonsignificant
}

Missouri River

Average
TABLE 2．3．1－5（Continued）

\begin{tabular}{|c|c|c|c|c|c|}
\hline & Mmmmy & mmmmp & mmmmさ & mmmmy & mmm
\(n N\) \\
\hline & & & & & \\
\hline －1 & \(\underline{-1}\) & － & － & － & \\
\hline Ero & －20．0 & \(=000\) & \(=D_{1} \cup\) & － 12 & － 2 \\
\hline \％ 0 & 0.000 & \(0 \pm 000\) & 23000 & \(\bigcirc 300\) & 23000 \\
\hline （t） & & \(<\) cos ts & ＜「以边 & く万以边 & ＜ 500 \\
\hline
\end{tabular}

TABLE \(2 \cdot 3 \cdot 1-5\) (Continued)
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { Station } \\
\quad D-1 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Station } \\
\quad \mathrm{E}-1 \\
\hline
\end{gathered}
\] & Missouri River Average \\
\hline 9.4 & - & 7.6 \\
\hline 5.6 & 5.8 & 6.1 \\
\hline 3.4 & 6.4 & 7.4 \\
\hline 9.8 & 10.2 & 12.8 \\
\hline 11.8 & 12.3 & 11.8 \\
\hline 127 & - & 96 \\
\hline 22 & 4 & 52 \\
\hline 20 & 8 & 14 \\
\hline 8 & 5 & 18 \\
\hline 32 & 23 & 24 \\
\hline 384 & - & 631 \\
\hline 76 & 1 & 33 \\
\hline 118 & 18 & 100 \\
\hline 18 & 5 & 120 \\
\hline 98 & 34 & 179 \\
\hline 117 & - & 508 \\
\hline 364 & 210 & 274 \\
\hline 476 & 320 & 511 \\
\hline 394 & 496 & 498 \\
\hline 270 & 318 & 462 \\
\hline 501 & - & 1139 \\
\hline 440 & 211 & \(100^{-}\) \\
\hline 594 & 338 & 6. \\
\hline 412 & 501 & 618 \\
\hline 368 & 352 & 641 \\
\hline
\end{tabular}

TABLE 2.3.1-5 (Continued)
\begin{tabular}{|c|c|c|}
\hline Parameter & \[
\begin{aligned}
& \text { Sample } \\
& \text { Date }
\end{aligned}
\] & \\
\hline \multirow[t]{5}{*}{Hardness \(\mathrm{mg} / 1 \mathrm{CaCO}_{3}\)} & April & 173 \\
\hline & July & . 73 \\
\hline & Sept. & :73 \\
\hline & Dec. & \(\cdots 7\) \\
\hline & Feb. & '74 \\
\hline \multirow[t]{5}{*}{\[
\begin{gathered}
\text { Arsenic } \\
\mathrm{mg} / 1
\end{gathered}
\]} & April & \(: 73\) \\
\hline & July & :73 \\
\hline & Sept. & . 73 \\
\hline & Dec. & . 73 \\
\hline & Feb. & -74 \\
\hline \multirow[t]{5}{*}{\[
\begin{gathered}
\text { Cadmium } \\
\mathrm{mg} / 1
\end{gathered}
\]} & April & :73 \\
\hline & July & : 73 \\
\hline & Sept. & :73 \\
\hline & Dec. & '73 \\
\hline & Feb. & -74 \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { Iron (total) } \\
& \mathrm{mg} / 1
\end{aligned}
\]} & April & :73 \\
\hline & July & . 73 \\
\hline & Sept. & : 73 \\
\hline & Dec. & '73 \\
\hline & Feb. & '74 \\
\hline \multirow[t]{5}{*}{\[
\begin{gathered}
\text { Copper } \\
\mathrm{mg} / 1
\end{gathered}
\]} & April & . 73 \\
\hline & July & : 73 \\
\hline & Sept. & :73 \\
\hline & Dec. & :73 \\
\hline & Feb. & - 74 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { Station } \\
\quad \mathrm{D}-1 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Station } \\
& \quad \mathrm{E}-1 \\
& \hline
\end{aligned}
\] & Missouri River Average \\
\hline - & - & - \\
\hline - & - & - \\
\hline 351 & 247 & 223 \\
\hline 340 & 264 & 239 \\
\hline 92 & 102 & 188 \\
\hline \(<0.01\) & - & \(<0.01\) \\
\hline 0.006 & \(<0.001\) & 0.010 \\
\hline 0.004 & \(<0.001\) & 0.005 \\
\hline 0.004 & \(<0.001\) & 0.003 \\
\hline \(<0.001\) & <0.001 & 0.003 \\
\hline \(<0.02\) & - & \(<0.02\) \\
\hline 0.005 & 0.005 & 0.006 \\
\hline 0.008 & 0.005 & \(<0.004\) \\
\hline 0.002 & 0.001 & 0.003 \\
\hline 0.009 & 0.009 & 0.018 \\
\hline 3.0 & - & 11.8 \\
\hline 5.6 & 5.2 & 3.4 \\
\hline 1.8 & 0.1 & 1.2 \\
\hline 1.2 & 0.3 & 1.6 \\
\hline 3.1 & 0.7 & 1.8 \\
\hline \(<0.02\) & - & \(<0.13\) \\
\hline 0.010 & 0.008 & 0.027 \\
\hline 0.015 & 0.005 & 0.012 \\
\hline \(<0.002\) & 0.003 & 0.003 \\
\hline 0.014 & 0.016 & 0.018 \\
\hline
\end{tabular}
əБедanv
panty finosstw \(15 \pi N m N\)
00000
00000
\(v i\)〔'I>
 \(500^{\circ} 0\)
\(£ 00^{\circ} 0>\)
\(800^{\circ} 0>\)
\(900^{\circ} 0\)
\(20^{\circ} 0>\)

\(\begin{array}{lll}\cos & \text { or } \\ 6 & \text { in } \\ -1 & n\end{array}\)
(Continued)

\begin{tabular}{c}
Station \\
\(D-1\) \\
\hline
\end{tabular}
\(12-N N\)
0000
00000

\(100^{\circ} 0>\)
\(100^{\circ} 0>\)
\(100^{\circ} 0>\)
\(100^{\circ} 0>\)
\(1.0>\)
\(900^{\circ} 0\)
\(800^{\circ} 0>\)
\(800^{\circ} 0\)
\(100^{\circ} 0\)
\(20^{\circ} 0>\)
66
30
17
29
15
\begin{tabular}{ll}
April & \(: 73\) \\
July & \(: 73\) \\
Sept. & 773 \\
Dec. & \(: 73\) \\
Feb. & \(: 74\)
\end{tabular}
\begin{tabular}{ll}
April & \(: 73\) \\
July & \(: 73\) \\
Sept. & 73 \\
Dec. & 73 \\
Feb. & 74
\end{tabular}
\(\nabla L\)
\(\varepsilon L\)
\(\varepsilon L\)
\(E L\)
\(\varepsilon L\) aeq
aldures
 \(\begin{array}{ll}\text { April } & : 73 \\ \text { July } & : 73 \\ \text { Sept. } & : 73 \\ \text { Dec. } & : 73 \\ \text { Feb. } & : 74\end{array}\) \(\begin{array}{ll}\text { April } & : 73 \\ \text { July } & : 73 \\ \text { Sept. } & 73 \\ \text { Dec. } & 73 \\ \text { Feb. } & 744\end{array}\)
April
July
Sept.
Dec.
Feb.

Parameter

트․
씅
를
U
E

TABLE 2.3.1-5 (Continued)
Parameter
\begin{tabular}{c}
Hexane Solubles \\
\(\mathrm{mg} / 1\)
\end{tabular}
\begin{tabular}{c}
Fecal Coliforms \\
number \(/ 100 \mathrm{ml}\)
\end{tabular}
Total Coliforms
number \(/ 100 \mathrm{ml}\)
\begin{tabular}{|c|c|c|}
\hline Sample Date & & Station D-1 \\
\hline April & -73 & 8 \\
\hline July & -73 & 1 \\
\hline Sept. & '73 & 4 \\
\hline Dec. & '73 & 7 \\
\hline Feb. & \(\cdot 74\) & 4 \\
\hline April & '73 & 1000 \\
\hline July & -73 & 120 \\
\hline Sept. & -73 & 20 \\
\hline Dec. & '73 & 210 \\
\hline Feb. & '74 & 1100 \\
\hline April & '73 & 10,000 \\
\hline July & : 73 & 120 \\
\hline Sept. & '73 & 110 \\
\hline Dec. & :73 & 260 \\
\hline Feb & -74 & 1600 \\
\hline
\end{tabular}
\begin{tabular}{cc}
\begin{tabular}{c}
Station \\
\(E-1\)
\end{tabular} & \begin{tabular}{c}
Missouri River \\
Average
\end{tabular} \\
\cline { 1 - 1 }- & 12 \\
2 & 3 \\
1 & 5 \\
6 & 8 \\
6 & 6 \\
- & 4167 \\
130 & 4717 \\
380 & 1490 \\
90 & 4400 \\
440 & 862 \\
& 14,800 \\
2,200 & 14,700 \\
13,000 & 13,800 \\
200 & 21,100 \\
830 & 4100
\end{tabular}

\section*{LEGEND}

\section*{ \\ sweenconaswe flit D4CI w/RCICK H1L \\ \\ PILE DIKE OE RIVETMENT BuRIES \\ \(\rightarrow \rightarrow+\rightarrow\) Pils kEvflmfor w/kOCE Fill \\ - - - IFVEES}
-....on-...- EARTH FILL

UNION ELECTRIC CO.

UNITS 182

\subsection*{2.3.2 PHYTOPLANKTON}

\subsection*{2.3.2.1 Missouri River}

Phytoplankton samples collected in the Missouri River near the site in July, September, and December, 1973, and February, 1974 included 118 algal taxa, almost half of which were diatoms (Table 2.3.2-1). Except in July, when green algae were dominant, diatoms were the dominant group numerically and included the greatest number of taxa. According to Hynes (1972), diatoms typically dominate the plankton of large temperate rivers.

The highest number of taxa occurred in the December samples, which contained 70 taxa, including 45 diatoms. The average phytoplankton density of the six Missouri River stations was 241 organisms per liter (range: 193-290 per liter). Sixty-one taxa were observed in September samples; these samples were characterized by the highest densities (an average of 587 orqanisms per liter; range: 179-776 per liter). February samples had 53 taxa but the lowest average density (168 per liter; range: 125-286 per liter). The lowest number of taxa, 24, occurred in July samples, which had an average of 276 organisms per liter (range: 143-625 per liter).

The relatively low plankton densities characterizing the Missouri River near the site were similar to those previously recorded for the lower Missouri River (University of Missouri-Rolla, 1972; Berner, 1951; Williams, 1966). Although phytoplankton levels recorded in the present study were somewhat higher than those from net plankton collected by Berner (1947), they were 3 orders of magnitude lower than those of total plankton collected by Damann (1951). However, Damann's collections included nannoplankton organisms and these cannot be collected in nets because of their small size. Phytoplankton levels during July and September of the present study were also substantially lower than Logan Creek densities recorded during that time (see Figures 2.3.2-1 and 2.3.2-2). Damann (1951) likewise found that Missouri River populations, which averaged \(4.6 \times 105\) plankters per liter, were lower than those of 19 Missouri River tributaries, which averaged \(7.9 \times 10^{6}\) plankters per liter.

The paucity of phytoplankton in the Missouri River apparently is related to excessive turbidities, high current velocities, and the lack of adjoining lentic waters (Berner, 1951). Turbidity is probably the major factor limiting plankton populations because it inhibits photosynthesis, respiration, and other physiological processes by decreasing light penetration and dissolved oxygen levels (Berner, 1951). During the present study, the lowest turbidities occurred in September and probably accounted in part for the maximum phytoplankton populations then observed. September turbidity values ranged from 16-22 Formazin Turbidity Units (FTU: equivalent to Jackson Turbidity Units [JTU]); they were thus well within the 50 JTU maximum recommended by the Federal Water Pollution Control Administration (1968) as satisfactory for the aquatic life of warm water streams. With the exception of Station \(\mathrm{C}-1\) in February, all other turbidity values exceeded the

\section*{recommended maximum.}

Channelization of the river has increased current velocities and removed the standing water chutes, sloughs, and backwaters where plankton typically proliferates (Whitley and Campbell, 1972). Several studies have shown that plankton numbers generally are inversely proportional to stream flow (Hynes, 1972). This inverse relationship was demonstrated throughout the present study, although a complex of seasonal and physicochemical factors affected populations. The relationship between discharge and several water quality parameters is illustrated in Figure 2.3.1-2.

Algae are likely to suffer a nutrient deficiency when nitrogen concentration is below \(0.2 \mathrm{mg} / 1\) and phosphorus below \(0.05 \mathrm{mg} / 1\) (Chu, 1942). Nitrogen levels exceeded \(0.2 \mathrm{mg} / 1\) at all river stations throughout the study, and phosphorus exceeded \(0.05 \mathrm{mg} / 1 \mathrm{at}\) all stations during all sampling periods except July, 1973. The deficiency of phosphorus during July in combination with the excessive turbidity (average, 194 FTU) and high water levels may have inhibited phytoplankton.

Figure 2.3.2-1 illustrates the component breakdown of phytoplankton numbers for each station and sampling period. The seasonal fluctuations illustrated are typical of large temperate rivers, where plankton populations almost always show a summer maximum and winter minimum (Hynes, 1972). However, seasonal variations were statistically significant only in the comparison of February populations with those of September and December (Table 2.3.2-2).

The composition of Missouri River phytoplankton is also characteristic of large temperate streams and reflects seasonal variation in temperature and light. In temperate climates during winter, phytoplankton communities largely consist of diatoms (Williams, 1966), but increasing temperatures encourage the development of Chlorophyta (green algae) and Cyanophyta (blue-green algae), which attain maximum cievelopment in warmer waters. Green algae were significantly more abundant in July and September samples than in December and February samples (Table 2.3.2-2). Similarly, numbers of blue-green algae were significantly higher in summer than winter, although they were also statistically higher in December than in February, when they were nearly absent. Diatom numbers were similar for September, December, and February, but were significantly lower during July, when green algae dominated all stations.

Principal taxa are those composing at least 5 percent of the phytoplankters in a sample. The green filamentous alga, Ulothrix cylindricum, was the most abundant taxa in July, comprising as much as 60 percent of one sample. Another green alga, Pediastrum, ranked second in abundance and was numerically dominant at one station, comprising 24 percent of the sample. The diatoms Fragilaria brevistriata, Asterionella formosa, and Synedra ulna also were relatively abundant, but seldom did any of these species
exceed 10 percent of a sample. In September, diatoms were dominant at all stations. The centric diatom, Cyclotella, was the most abundant genus, comprising as much as 31 percent of one sample. The green alga Scenedesmus ranked second in abundance, numerically dominating Stations \(\mathrm{A}-1\) an \(\mathrm{B}-1\) by comprising 15 and 18 percent of the totals, respectivelv. Other principal qenera in September included witzschia, a pennaic diatom, and Ulothrix. All the principal algae in December were diatoms except for the blue-green species, Aphanizomenon flos-aquae. As in September, Cyclotella was the dominant genus. The other principal taxa included Melosira granulata, Fragilaria construens, and Synedra ulna. Most of the principal taxa collected during the July, September, and December surveys wern classified as true plankters, independent of a substrate. These nclude the following genera: Pediastrum, Scenedesmus, Aphanizomenon, Cyclotella, Synedra, Fragilaria, Melosira, and Asterionella (Hynes, 1972; Blum, 1956). According to Hynes, numbers of benthic species increase disproportionately to true plankters during periods of high discharge. The scouring effect of the high February discharge is reflected in the principal taxa Navicula, Nitrschia, and Gomphonema olivaceum, all benthic diatoms. However, the most abundant species in February was a planktonic diatom, Asterionella formosa.

Missouri River levels of chlorcphyll \(\frac{a}{5}, \underline{b}\), and \(\underline{c}\) are presented in Table 2.3.2-3. According to Odum (1959), chlorōphyll content appears to be a better measure of productivity than of relative abundance. Chlorophyll levels determined during the present stui'Y do not correlate with phytoplankton densities as chlorophyll concentrations may vary among different species and with select environmental parameters. In addition, nannoplankton population densities were not reported during the study and no doubt would considerably affect chlorophyll concentration values and pigment content ratios. Total chlorophyll ranged from 0 at Station C-1 in July to \(1.3 \mathrm{mg} / 1\) at Station A-1 in September. High chlorophyll values during September are the result of more favorable environmental conditions, i.e., warm temperatures, reduced turbidity, and sufficient nutrients.

\subsection*{2.3.2.2 Logan Creek}

Phytoplankton populations of Logan Creek during July and September 1973, averaged \(8.76 \times 10^{5}\) and \(5.97 \times 10^{3}\) phytoplankters per liter, respectively. These populations were 1 to 4 orders of magnitude higher than those characterizing the Missouri kiver near the site. Similarly, Damann's (1951) collections during the summer of 1950 showed an average of \(7.88 \times 106\) plankters per liter for 19 Missouri River tributaries, in contrast to an average of \(4.60 \times 10^{5}\) organisms per liter for the Missouri River. These higher plankton populations in Logan Creek relative to the Missouri River may be related to its more stable substrates, lower current velocities, and lower tubidity levels. July turbidity levels at the two Logan Creek stations were 70 and 90 FTU's, respectively, in contrast to the range of 100-215 units for Missouri River stations. September levels at the Logar Creek stations were only 23 and 3 units, respectively, but the levels for Missouri River stations also were low. Minimum plankton populations occurred in December, 1973, and February, 1974, and averaged 319 and 142 per liter,
respectively. Winter minima are typical of phytoplankton communities of temperate climates (Hynes, 1972). Winter levels near the site were similar for both Logan Creek and the Missouri River.

During the present study, 76 phytoplankton taxa from Logan Creek were identified, including 39 diatom taxa (Table 2.3.2-1). Figure 2.3.2-2 illustrates the average densities and Table 2.3.2-4 includes the component breakdown of phytoplankton numbers for each station and sampling perind. Seasonal variations in the composition of Logan Creek phytoplankton are typical of temperate strears, where green and euglenoid species attain maximum development during the warmest months but are almost absent during winter, when diatoms predominate (Williams, 1966; Hynes, 1972).

During all sampling periods, phyto lankton was more abundant upstream at Station E than downstream at Station D. This does not appear to reflect differences in. nutrient levels or flow characteristics, but may be related to diffurences in substrates. The bottom at Station \(E\) is gravel and rock, which undoubtedly provides a more favcrable habitat for benthic algae than the bottom at Station D, which is composed of several inches of fine mud and organic debris.

Most of the principal taxa in Logan Creek samples were benthic diatoms, although the unicellular euglenoid phacus was extremely abundant in July at Station \(D\), comprising 81 percent of the phytoplankters. According to Smith (1950), this genus is rarely abundant. The factors stimulating its extremely high abindance in this case are undetermined. Dominant benthic forms in the remaining samples included the genera Cymbella, Navicula, Nitzschia, and Gomphonema. The predominance of benthic forms in Logan Creek is in contrast to the dominance of planktonic taxa in the Missouri River. Williams (196) found the number of detached plankters to be proportionally higher in creek and very shallow river plankton populations than in large river plankton populations.

Clorophylla, b, and \(c\) levels in Logar Creek are presented in Table \(2 \cdot 3 \cdot 2=5\). Total chlorophyll levels varied widely, ranging from 0.1 to \(7.6 \mathrm{mg} / 1\) at Station \(D\) and from 0.1 to \(1.3 \mathrm{mg} / 1\) at Station E. The chlorophyll value of \(7.5 \mathrm{mg} / 1 \mathrm{at}\) Station \(D\) was obtained during July as the result of a euglenoid bloom (Phacus sp.).

TABLE 2.3.2-1
PHYTOPLANKTON COLLECTED FRCM THE MISSOURI RIVER AND LOGAN CREEK IN JULY (J), SEPTEMBER (S), AND DECEMBER (D), 197 , AND FEBRUARY (F), 1974
niv*sion
Class

3cientific Name
Occurrence in
Missouri River
\(\mathrm{J} \underset{\mathrm{S}}{\mathrm{S}}\)

Artinastrum hantzschii Ākistrodesmus falcatus Ankistrodesmus spp.
characium sp.
Chlamyćomonas sp.
Cladophoza pacta
Clostericium sp.
Closteriopsis sp.
Closterium gracilis
Closterium setaceum
Closterium spp.
Cosmarium SD.
Trucigeria crucifera Crucigenia tetrapedia Crucigenia sp. Elakatothrix gelatinosa Golenkinia radiata Kirchnerielia sp. Micractinium pusillum Microspora \(\ddagger\) loccosa woystis sp. Pediastrum buryanum Pediastrum duplex Pediastrum integrum
x

Occurrence In

Division
BuEN DTIT7UЗTDS
\(\frac{\text { Pediastrum }}{\text { Sediastrum }}\)
\(\frac{\text { Scenedesmus }}{5}\)
\(\frac{\text { Scenedesmus }}{\text { Scenedesmus }}\)
Scenedesmus
Scenedesmus
\(\frac{\text { Scenedesmus }}{\text { Spirogyra sp }}\)
\(\frac{\text { Staurastrum }}{\text { Staurastrum }}\)
Tetradesmus sp.

Scenedesmus bijuca
Scenedesmus dimorphus
Scenedesmus quadricauda
-dds
Scenedesmus acuminatus
\(\frac{\text { Scenedesmus }}{\text { Scenedesmus }} \frac{\text { acuminatus }}{\text { anomalus }}\)
Staurastrum paradoxum
Staurastrum pentacerum

Treubaria setigerum
ylindricum

Chrysophyta
Bacillariophyceae

Caloneis sp.

TABLE 2.3.2-1 (Continuer)

\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Occurrence in} \\
\hline \multicolumn{4}{|l|}{Missouri River} \\
\hline J & S & D & \(F\) \\
\hline & & X & \\
\hline & x & x & x \\
\hline & x & x & x \\
\hline & X & X & x \\
\hline & \(\times\) & & \\
\hline & & x & X \\
\hline & & X & \\
\hline & & K & \\
\hline & & X & \(x\) \\
\hline x & & & \\
\hline & & x & X \\
\hline & & x & X \\
\hline \(\mathbf{x}\) & x & & \\
\hline & & x & x \\
\hline & K & & \\
\hline & & \(x\) & x \\
\hline & & & x \\
\hline & & x & x \\
\hline & & \(x\) & X \\
\hline & X & & \\
\hline & x & x & x \\
\hline & x & & \\
\hline & & x & x \\
\hline & & X & X \\
\hline & x & X & x \\
\hline & & & x \\
\hline & & x & x \\
\hline
\end{tabular}
Division
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Cocconeis placentula} \\
\hline \multicolumn{2}{|l|}{Cocconels sp.} \\
\hline Cyclotella & la spp. \\
\hline \multicolumn{2}{|l|}{Cymbella spp.} \\
\hline Diatoma hie & hiemale \\
\hline Diatoma vul & vulgare \\
\hline Eunotia mai & maior \\
\hline Eunotia pra & praerupta \\
\hline Eunotia sp. & sp. \\
\hline Fragilaria & ia brevistriata \\
\hline Fragilaria & ia capucina \\
\hline Fragilaria & ia construens \\
\hline Fragilaria & ia crotonensis \\
\hline Fragilaria & ia intermedia \\
\hline Fragilaria & ia sp. \\
\hline Gomphonema & ema acuminatum \\
\hline Gomphonema & ma angustatum \\
\hline Gomphonema & ma constrictum \\
\hline Gomphonema & ma olivaceum \\
\hline Gomphonema & ma sp. \\
\hline \multicolumn{2}{|l|}{Gyrosigma sp.} \\
\hline \multicolumn{2}{|l|}{Mastoqloia braunii} \\
\hline Melosira gra & granulata \\
\hline Melosira var & varians \\
\hline Melosira sp & sp. \\
\hline Meridion cir & circulare \\
\hline Navicula ex & exig'a \\
\hline
\end{tabular}

TABLE 2.3.2-1 (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Class} \\
\hline \multicolumn{2}{|l|}{Scientific Name} \\
\hline \multicolumn{2}{|l|}{Navicula pupula} \\
\hline \multicolumn{2}{|l|}{Navicula rhynchocephala} \\
\hline \multicolumn{2}{|l|}{Navicula sp.} \\
\hline \multicolumn{2}{|l|}{Nitzschia acicularis} \\
\hline Nitzschia & filiformis \\
\hline \multicolumn{2}{|l|}{Nitzschia hungarica} \\
\hline \multicolumn{2}{|l|}{Nitzschia linearis} \\
\hline \multicolumn{2}{|l|}{Nitzschia Iorenziana} \\
\hline \multicolumn{2}{|l|}{Nitzschia parvula} \\
\hline \multicolumn{2}{|l|}{Nitzschia sigmoidea} \\
\hline \multicolumn{2}{|l|}{Nitzschia spp.} \\
\hline \multicolumn{2}{|l|}{Pinnularia sp.} \\
\hline \multicolumn{2}{|l|}{Rhoicosphenia curvata} \\
\hline \multicolumn{2}{|l|}{Stauroneis anceps} \\
\hline \multicolumn{2}{|l|}{Stauroneis phoenicenteron} \\
\hline \multicolumn{2}{|l|}{Stauroneis sp.} \\
\hline \multicolumn{2}{|l|}{Stephanodiscus spp.} \\
\hline \multicolumn{2}{|l|}{Surirella angustata} \\
\hline \multicolumn{2}{|l|}{Surirella ovata} \\
\hline \multicolumn{2}{|l|}{Surirella sp.} \\
\hline \multicolumn{2}{|l|}{Synedra actinastroides} \\
\hline \multicolumn{2}{|l|}{Synedra acus} \\
\hline \multicolumn{2}{|l|}{Synedra ulna} \\
\hline \multicolumn{2}{|l|}{Synedra sp.} \\
\hline \multicolumn{2}{|l|}{Tabellaria fenestrata} \\
\hline Tabellaria & flocculosa \\
\hline Tabellaria & sp. \\
\hline
\end{tabular}

Occurrence in
\(\frac{\text { Missouri River }}{\mathrm{J} \quad \mathrm{S}}\)
\begin{tabular}{c}
Occurrence in \\
Logan Creek
\end{tabular}
\(\frac{\mathrm{J}}{\mathrm{S}} \mathrm{D} \quad \mathrm{F}\)
\(x \quad x \quad x\)
\(\mathrm{x} \mathrm{x} x\)
X X
X
X X
X
X
\(x \quad x\)
X X X
\(\times\)
\(x\)
X
X
K
X
x
\(\mathrm{x} \quad \mathrm{x}\)

X
\(\mathrm{X} \quad \mathrm{X}\)
\(\begin{array}{lllllll}\mathrm{x} & \mathrm{x} & \mathrm{x} & \mathrm{x} & \mathrm{x} & \mathrm{x} & \\ \mathrm{x} & \mathrm{x} & \mathrm{x} & & \mathrm{x} & \mathrm{x} & \mathrm{x}\end{array}\)
\(x \quad x \quad x \quad x\)
\(x\)

X
X
X
X x
\(\begin{array}{lll}x & x & x \\ x\end{array}\)
\(\boldsymbol{K}\)
x
X x x
\(x \quad x\)
\(x\)

X K
\(x\)

X
\(\mathbf{x}\)
Class
Occurrence in
Missouri River
\(\frac{\mathrm{J}}{\mathrm{M}} \mathrm{D} \quad \stackrel{F}{F}\)
K
\(x\)
\(x \times x \times\)
\(x\)
\(x\)
\(\times\)
\(x\)
\(x\)
\(x \times\) \(x\)

\section*{TABLE 2.3.2-1 (Continued)}

\section*{Division}

Class
Scientific Name
Microcystis aeruginosa Microcystis sp. Oscillatoria sp. Spirulina sp.

Euglenophyta
Euglenophyceae
Euglena spirogyra
Euglena sp.
Phacus sp.
Trachelomonas sp.
Pyrrhophyta
Dinophyceae
Ceratium hirundinella
Glenodinium 30 .

X
\(x\)
\(x \quad \mathrm{x}\)
X X X X

\section*{Occurrence in Logan Creek \\ \(\bar{J} \quad \mathrm{~S}\) D F}

X
\(x \quad x\)

K
\(\begin{array}{ll}x & x \\ x & x\end{array}\)
x

X
 TABLE \(2 \cdot 3 \cdot 2-2\)
\({ }_{n s}=\) nonsignificant, \(p>9.025\) \(\begin{array}{lc}\frac{2}{\text { gmaliest algae/liter }} \begin{array}{l}\text { Rank }\end{array} & \text { Significancea } \\ 32 & n s \\ 21 & * * \\ 21 & * * \\ 21 & * * \\ 21 & * * \\ 27.5 & n s\end{array}\)
\(\frac{\text { blue-green algae/liter }}{\text { Smallest }}\)
Rank Significance
\(\begin{array}{lllll}\# & n & m & m & N \\ N & m & m & N\end{array}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{diatoms/liter} \\
\hline Smallest & \\
\hline Rank & Significance \\
\hline 24 & * \\
\hline 21 & ** \\
\hline 25 & * \\
\hline 33 & n 5 \\
\hline 37 & 175 \\
\hline 29 & ns \\
\hline
\end{tabular}
WILCOXAN'S TEST VALUES FOR DTFEERENCES BETWEEN SAMPLENG DATES
 AND T~゙AAL PHYTOPLANKTON PER LITER ᄃ * * \(\begin{aligned} & \text { 世 } \\ & \stackrel{*}{*} \\ & *\end{aligned}\)
Months Compared
\(\begin{aligned} & 7 / 73 \\ & 6 \\ & 7 / 73 \\ & \text { \& } \\ & 7 / 2 / 73 \\ & 7 / 73 \\ & \text { \& } \\ & 9 / 73 \\ & 9 / 74 \\ & 9 / 73\end{aligned} 6 \quad 12 / 738174\)
\[
\star *=P \leq 0.005
\]

TABLE \(2.3 .2-3\)
```

CHLOROPHYLL LEVELS IN MISSOURI RIVER PHYTOPLANKTON
IN JULY, SEPTEMBER, AND DECEMBER, 1973,
AND FEBRUARY, 1974

```
 JULY 1973
Station Chl \(\underline{a}(\mathrm{mg} / 1) \quad\) Chl \(\underline{\mathrm{b}}(\mathrm{mg} / 1) \quad \mathrm{Chl} \underset{\mathrm{e}}{\mathrm{E}}(\mathrm{mg} / 1)\) Total Chl
\(\mathrm{A}-1\)
\(\mathrm{~A}-2\)
\(\mathrm{~B}-1\)
\(\mathrm{~B}-2\)
\(\mathrm{C}-1\)
\(\mathrm{C}-2\)

\section*{0.1 \\ 0.1 \\ 0.1 \\ 0 \\ 0 \\ 0.2 \\ Chl a (mg/1)}

Chl b (mg/1)

0
0
0
0
0
0
\begin{tabular}{lr}
0 & 0.1 \\
0 & 0.1 \\
0 & 0.1 \\
0 & 0 \\
0 & 0 \\
0 & 0.2
\end{tabular}

SEPTEMBER 1973

\section*{A-1 \\ \(\mathrm{A}-2\) \\ B-1 \\ B-2 \\ C-1 \\ C-2}

0
0
0
0
0
0
0.2
0
0
0
0.2
0
1.3
1.0
1.1
1.1

DECEMBER 1973
\begin{tabular}{rrrrr}
\(\mathrm{A}-1\) & 0.2 & 0 & 0 & 0.2 \\
\(\mathrm{~A}-2\) & 0.1 & 0 & 0.1 & 0.2 \\
\(\mathrm{~B}-1\) & 0.1 & 0 & 0 & 0.1 \\
\(\mathrm{~B}-2\) & 0.1 & 0 & 0 & 0.1 \\
\(\mathrm{C}-1\) & 0.2 & 0 & 0.1 & 0.3 \\
\(\mathrm{C}-2\) & 0.2 & 0 & 0.1 & 0.3
\end{tabular}

FEBRUARY 1974
\begin{tabular}{lllll}
\(\mathrm{A}-1\) & 0.2 & 0 & 0 & 0.2 \\
\(\mathrm{~A}-2\) & 0.2 & 0 & 0 & 0.2 \\
\(\mathrm{~B}-1\) & 0.2 & 0 & 0 & 0.2 \\
\(\mathrm{~B}-2\) & 0.2 & 0 & 0 & 0.2 \\
\(\mathrm{C}-1\) & 0.1 & 0 & 0 & 0.1 \\
\(\mathrm{C}-2\) & 0.2 & 0 & 0 & 0.2
\end{tabular}

\[
\begin{aligned}
& \begin{array}{l}
\text { Sampling } \\
\text { Pexiods }
\end{array} \\
& \text { July } 1973 \\
& \text { Septembex } 1973 \\
& \text { December } 1973 \\
& \text { February } 1974
\end{aligned}
\]
\

TABLE 2.3.2-5
CHLOROPHYLL LEVELS IN LOGAN CREEK PHYTOPLANKTON IN JULY, SEPTEMBER, AND DECEMBER, 1973, AND FEBRUARY, 1974

\section*{JULY 1973}

Station Chl a (\(\mathrm{mg} / 1)\) Chl \(\underline{\mathrm{b}}(\mathrm{mg} / 1) \mathrm{Ch}\) C \((\mathrm{mg} / 1)\) Total Chl

\section*{D}

E
4.0
0.1
1.8
0
1.8
7.6
0.1

SEPTEMBER 1973
D
1.1
1.1
0
0
0
C. 2
1.1

DE, TR TR 1973
D
0.1

0
0
0.1
0.1
0.2

0
0.1

FEBRUARY 1974
D
0.1
0.1
0
0
0.1
0.1

\subsection*{2.3.3.1 Missouri River}

Zooplankton populations sampled near the site in July, September, and December, 1973, and February, 1974, included 52 taxa. Thirtysix of these taxa were rotifers, while most remaining taxa were cladoceran and copepod crustaceans (Table 2.3.3-1). The maximum density per liter and the greatest array of taxa occurred in the September samples. They contained a mean of 49.5 organisms per liter (range: 36.4-74.8 per liter) and consisted of 33 taxa, including 25 rotifers. Populations of zooplankters were statistically lower during the remaining sampling periods than in September (Table 2.3.3-2). Average densities for July and December, 1973, and February, 1974, were \(7.6,8.2\), and 4.2 zooplankters per liter, respectively. Of these, the largest number of taxa, is, occurred in December. The July samples included 16 taxa and the February samples, 17 taxa.

Figure 2.3.3-1 illustrates the compnnent breakdown of zooplankton numbers for each station and sampli, period. The summer maximum of rotifers is typical of large temperate rivers. Rotifers per liter were significantly higher in September samples than in other samples (Table 2.3.3-2). According to Williams (1966), higher rotifer densities are usually associated with warm water of high clarity and low turbidity, conditions prevailing during the September sampling period. This maximum may also be related to relative increases in diatom numbers. Hynes (1972) reports that when diatom numbers increase, rotifers become more common. This may indicate either a trophic effect or that similar conditions favor both types of organisms (Hynes, 1972). Rotifers were significantly less abundant in February than in other sampling periods. Williams (1966) found that most rotifers disappear during winter and during periods of high stream flow, such as occurred in February.

Copepod crustaceans persisted in similar numbers throughout the study (range: 1.0-10.2 per liter). They were the most numerous group occurring in December and February (Figure 2.3.3-1). Anderson (1969), studying a North Dakota prairie lake, found that copepods were the only plankters commonly occurring in winter and suggested that temperature was not a controlling factor in their distribution.

The principal taxa (those comprising at least five percent of a sample) were primarily planktonic zooplankters. Principal taxa in July included the rotifers Monostyla, Brachionus calyciflorus, and Brachionus caudatus and copepod nauplii and copepodites, but no single taxon dominated. However, the rotifers Brachionus and Keratella ranked first and second in abundance, respectively, at all stations during September. Together they comprised 61 to 92 percent of the total zooplankters in the sample. Brachionus calyciflorus and Keratella cochlearis were particularly abundant. Brachionus was the dominant rotifer collected during the Missouri River Environmental Inventory (University of Missouri-Rolla, 1972).

Brachionus calyciflorus was the most abundant species at stations near Hermann and also a major species at other stations. Keratella cochlearis was the most abundant species collected in the Missouri River by Williams (1966), but it was not reported among net plankton of the Missouri River Environmental Inventory. No single species comprised a large percentage of zooplankton samples in December or February, although cyclopoid copepods were the dominant group. Of 14 rotifer species collected in December, principal taxa were Asplanchna priodonta, Brachionus calyciflorus, and Brachionus variabilis.

Specific zooplankters in these collections have not been discussed as trophic indicators becauie present knowledge of their ecology is inadequate to classify them by this criterion (Gannon, 1972). The indicator organism concept is not supported among dominant rotifers in a sample because dominant species apparently are determined by edaphic factors within a watershed (Williams, 1966).

Zooplankton populations during this study were generally quite low. Zooplankton was also sparse in the Missouri River Environmental Inventory collections (University of Missouri-Rolla, 1972). Figure 2.3.3-1 shows that rotifers comprised high percentages of total zooplankters in September, but their numbers were still low compared to other aquatic ecosystems. Most plankton communities average 40 to 500 rotifers per liter (Pennak, 1953). The highest rotifer density recorded at any station was 54.6 per liter. Rotifer populations during July were similar to those Williams (1966) reported from samples collected near St. Joseph, Kansas City, and St. Louis. He concluded that the Missouri Basin is generally rotifer poor. As with phytoplankion, excessive turbidity appears to be the limiting factor.

\subsection*{2.3.3.2 Logan Creek}

Zooplankton collections in Logan Creek contained 26 taxa, ncluding 18 rotifers (Table \(2 \cdot 3 \cdot 3-1\)). With the exception of Lepadella, all rotifer genera collected in Logan Creek also occurred in Missouri River samples. Maximum densities, averaging 1,100 per liter, occurred in July and included 13 taxa. Seventeen taxa were included in the September samples, but the average density was much lower: 124 per liter. The December and February samples were extremely low, both averaging less than two organisms per liter. These samples included four and six zooplankton taxa, respectively.

Figure 2.3.3-2 illustrates the average densities and Table 2.3.3-3 includes the component breakdown of zooplankton numbers for each station and sampling period. The abundance of rotifers during summer is in sharp contrast to their winter occurrence. According to Williams (1966), must rotifers are associated with warm water of high clarity, while in winter they almost disappear.

In contrast to the situation at the Missouri River stations near the site, rotifers were more prevalent in July than in September in spite of the higher turbidity levels occurring in July. The

July sample from Station \(D\) had an extremely high population, 2,133 zooplankters per liter, and contained more than 90 percent rotifers. According to Pennak (1953), most plankton populations average 40 to 500 rotifers per liter. Brachionus calycifiorus and Keratella cochlearis comprised 50 and 34 percent of this sample, respectively. These were also the most abundant rotifers at Missouri River stations. A possible explanation for this extremely high number of rotifers is that logs and debris deposited by spring floods had formed pools in the vicinity of Station \(D\), perhaps lavoring the proliferation of rotifers. These pools no longer existed in September, when zooplankton numbers were much lower and similar to those for Station E upstream. Also, rotifer proliferation may have been in response to the phacus bloom occurring at that time.

In addition to Brachionus and Keratella, principal zooplankton taxa in summer collections included the rotifers Trichotria, Lepadella, Lecane, and copepod nauplii. Because zooplankters were so sparse in winter collections, identification of principal species was not considered meaningful.

TABLE 2.3.3-1
ZOOPLANKTON COLLECTED FROM THE MISSOURI RIVER AND LOGAN CREEK IN JULY (J), SEPTEMBER (S), AND DECEMBER (D), 1973 , AND FEBRUARY (F), 1974

\begin{tabular}{|c|c|}
\hline & \multirow[t]{3}{*}{Occurrence in \(\begin{array}{cc}\text { Logan Creek } \\ \text { S } & \text { D }\end{array}\)} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Rotatoria
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ascomorpha sp. & & x & & & & & \\
\hline Asplanchna priodonta & & x & x & x & & \(\times\) & x \\
\hline Asplanchne sp. & * & & & & \(\mathbf{x}\) & & \\
\hline Brachionus anquiaris & & x & x & & & \(x\) & \\
\hline Brachionus bicentata & & X & & & & \(x\) & \\
\hline Brachionus calyciflorus & x & X & x & x & \(x\) & x & \\
\hline Brachionus caudatus & x & & & & \(\times\) & & \\
\hline Brachionus havanaensis & x & x & & & & & \\
\hline Brachionus plicatilis & x & x & & & & \(x\) & \\
\hline Brachionus quadridentata & & X & & & & \(\times\) & \\
\hline Brachionus variabilis & & & x & x & & & x \\
\hline Brachionus sp. & & x & & & & & \\
\hline Chromogaster sp. & & * & & & & & \\
\hline Collotheca sp. & & x & & & & & \\
\hline Colurella sp. & & & & x & & & \\
\hline Filinia longiseta & & x & x & & & & \\
\hline Filinia opoliensis & x & & & & x & & \\
\hline Kellicottia bostoniensis & & & x & x & & & \\
\hline Kellicottia longispina & & x & & & & & \\
\hline Kellicottia sp. & & x & & & & & \\
\hline Keratella cochlearis & * & \(\times\) & * & & x & * & \\
\hline Keratella earlinae & & & x & & & & \\
\hline Keratella quadrata & x & x & X & & & & \\
\hline Keratella sp. & & x & & & & & \\
\hline Lecane sp. & & x & & & & x & \\
\hline
\end{tabular}
-

TABLE 2.3.3-1 (Continued)

Lepadella ovalis
Monostyla sp.
Notholca sp.
Platyias patulus
Platyias quadricornis
Platyias sp.
Ploesoma sp.
Polyarthra sp.
Synchaeta sp.
Testudinella sp.
Trichotria tetrades
Trichotria sp.
Vanogella sp.
Cladocera
Bosmina coregon
Ceriodaphnia reticulata
Chydorus sphaericus
Daphnia longiremis
Daphnia pulex
Daphnia sp.
Diaphanosoma brachyurum Holopedium gibberum Latonopsis sp. Immature cladoceran

TABLE 2.3.3-1 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Occurrence in} & \multicolumn{4}{|c|}{Occurrence in} \\
\hline & Missou & Riv & & & Loga & - & \\
\hline \(\bar{J}\) & S & D & F & J & S & D & \(\overline{\mathrm{F}}\) \\
\hline
\end{tabular}

Copepoua
Cyclopa bicuspidatus
Cyclops vernalis
Diaptomus forbesi
Diaptomus siciloides Calanoid copepodite
Cyclopoid copepodite
Harpacticoid copepod Nauplii
\begin{tabular}{ccc}
x & x & x \\
x & & \\
& & x \\
& & x \\
x & & x \\
x & x \\
x & x & x \\
x & x
\end{tabular}

Unidentified sp.
Tardigrada
Unidentified sp.

TABLE 2.3.3-2
WILCOXAN'S TEST VALUES FOR DIFFERENCES BETWEEN SAMPLING DATES
IN OCCURENCE OF ROTIFERS, COPEPODS, AND TOTAL ZOOPLANKTON PER LITER
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Months Compared} & \multicolumn{2}{|r|}{rotifers/liter} & \multicolumn{2}{|r|}{copepods/liter} & \multicolumn{2}{|l|}{zooplankton/1iter} \\
\hline & Smallest Rank & Significance \({ }^{\text {a }}\) & \[
\begin{aligned}
& \text { Smallest } \\
& \text { Rank } \\
& \hline
\end{aligned}
\] & Significance & Smallest Rank & Significance \\
\hline 7/73 \& 9/73 & 21 & ** & 36.5 & ns & 21 & ** \\
\hline \(7 / 73 \& 12 / 73\) & 30.5 & ns & 31.5 & ns & 35 & ns \\
\hline 7/73 8 8 2/74 & 21 & ** & 38.5 & ns & 27 & ns \\
\hline \(9 / 73 \& 12 / 73\) & 21 & ** & 27 & ns & 21 & ** \\
\hline 9/73 \& 2/74 & 21 & ** & 32 & ns & 21 & ** \\
\hline \(12 / 73 \& 2 / 74\) & 21 & ** & 23 & ** & 21 & ** \\
\hline
\end{tabular}

\footnotetext{
\(\overline{a_{n s}=\text { nonsignificant }}, p>0.025\)
** \(=p \leq 0.005\)
}

TABLE 2.3.3-3
AVERAGE DENSITIES (ORGANISMS PER LITER) OF ZOOPLANKTON COLLECTED IN LOGAN CREEK IN JULY, SEPTEMBER, AND DECEMBER 1973, AND FEBRUARY 1974
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Station D} & \multicolumn{4}{|c|}{Station E} \\
\hline Periods & Rotifers & Cladocerans & Copepods & Total & Rotifers & Cladocerans & Copepods & Total \\
\hline July 1973 & \(1,992.1\) & 44.6 & 95.9 & 2,132.6 & 62.5 & 0 & 5.0 & 67.5 \\
\hline September 1973 & 79 & 11 & 13 & 103 & 60.6 & 1 & 82.6 & 144.2 \\
\hline December 1973 & 0 & 0.35 & 1.35 & 1.7 & 0 & 0.35 & 1.35 & 1.7 \\
\hline February 1974 & 0.8 & 0.4 & 0.6 & 1.8 & 0.4 & 0 & 0.8 & 1.2 \\
\hline
\end{tabular}

\subsection*{2.3.4 VASCULAR HYDROPHYTES}

\subsection*{2.3.4.1 Missouri River}

During the present study, no vascular hydrophytes were observed in the Missouri River near the site. Berner (1947) also reported a complete absence of rooted aquatic plants in the channels, chutes, and backwaters of the Missouri River. He attributed their absence to turbidity, water level fluctuations, and the instability of the fine river substrates. Excessive turbidities creatc shading effects, decreasing light penetration essential for phytosynthesis in submergent species characterized by completely immersed foilage. The distribution of these plants also may be inversely related to stream flow (Dames \& Moore, 1974). Hynes (1972) notes that very turbid tropical rivers, such as the Amazon and rivers in Africa, are also devoid of higher plants.

\subsection*{2.3.4.2 Logan Creek}

In contrast to the Missouri River near the site, vascular hydrophytes were observed in Logan Creek during July and September of the present study, although they were sparse. None were observed during the December and February sampling period.

During July, small populations of water primrose (Jussiaea), water willow (Dianthera), and duckweed (Lemna) were observed upstre - at station E. Water primrose and sedges (Carex) occurred there in September. No vascular hydrophytes were observed downstream at Station D in July or September. This absence is probably related to the soft silty substrates at D. Station E is characterized by coarser sand and rocky substrates; these probably provide greater stability for plant colonization.

The presence of vascular hydrophytes in Logan Creek, in contrast to the Missouri River, is explained in part by its more suitable substrate and lower turbidities. However, as in the Missouri River, water levels in Logan Creek fluctuate considerably, probably limiting the abundance of higher aquatic plants.

\subsection*{2.3.5 BENTHIC MACROINVERTEBRATES}

\subsection*{2.3.5.1 Missouri River}

Benthic macroinvertebrates collected from the Missouri River near Fulton, Missouri, are listed in Table 2.3.5-1 (Trarsects A, B, and C) and Appendix Table 2A-3 (Transects \(F\) and G). Approximately 65 different species of benthic organisms were collected. Dipteran larvae, aquatic oligochaetes, and mayfly nymphs were usually numerically dominant in the collections, with coleopterans, trichopterans, odonates, and pelecypods also present in smaller numbers. Dipteran populations were dominated by midge larvae, while tubificids were the dominant oligochaetes. The only other numerically important organisms near the site were mayflies.

Predominant oligochaete populations consisted of Iimnodrilus spp. and Branchiura sowerbyi; both species are pollution-tolerant (Weber, 1973). The majority of midge larvae collected are considered facultative, with the remaining species being nearly equally divided between tolerant and intolerant species. The most common mayfly was a burrowing mayfly (pentagenia vittigera), which is listed as being intolerant to pollution.

Pentagenia vittigera is similar to Hexagenia limbata, another relatively common burrowing mayfly in the Missouri River, but Pentagenia apparently live in faster waters (Winona State College, 1970). In contrast to other mayfly nymphs, burrowing mayfly gills are held over their bodies and cause an axial current down the length of the body (Hynes, 1972). These mayflies are markedly hairy; the long hairs apparently keep the body free of fine particles and prevent smothering. Ephemerella sp., Stenonema sp., and other mayfly nymphs found near the site slso are well adapted to live in fast, turbid waters. These species are flattened dorso-ventrally for less resistance to water flow. They niso have dorsally placed gills that can maintain a respiratory current without becoming clogged with silt. The mayfiy, Caenis sp., a fourth species of mayfly nymph collected near the site, has dorsal gills covered by an operculum, which allows the species to inhabit silty substrata.

Results of the quantitative sampling are presented in Table 2.3.5-2. Mid-channel stations (\(\mathrm{A}-1, \mathrm{~B}-1\), and \(\mathrm{C}-1\)) were almost completely dominated by dipteran larvae. Only one mayfly nymph, one caddis fly larva, and two oligochaetes were collected at the mid-channel stations during the four surveys. The benthic density for these three stations averaged \(42 / \mathrm{m}^{2}\) and \(187 / \mathrm{m}^{2}\) during the \(J u l y\) and September surveys, respectively. Samples were not collected from mid-channel Station \(\mathrm{A}-1\) in December nor \(\mathrm{A}-1\) and \(\mathrm{B}-1\) in February because high waters scoured the bottom and prevented dredge samples from being taken. Stations \(\mathrm{B}-1\) and \(\mathrm{C}-1\) had an average density of 11 benthic organisms \(/ \mathrm{m}^{2}\) during December, and no organisms were found at Station \(\mathrm{C}-1\) during February.

In contrast to the dipteran-dominated mid-channel stations, oligochaetes and mayflies numerically dominated the benthic community at most of the north shore stations. Average benthic densities for the three north shore stations (\(\mathrm{A}-2, \mathrm{~B}-2\), and \(\mathrm{C}-2\)) were \(72 / \mathrm{m}^{2}, 506 / \mathrm{m}^{2}, 1090 / \mathrm{m}^{2}\), and \(278 / \mathrm{m}^{2}\) during July, September, December, and February, respectively.

Major factors affecting the benthic density and distribution among the Missouri River stations appear to be river velocity and bottom substrates. High current velocities scour the bottom, removing silt, clay, and organic matter deposited during low flow conditions. Organisms inhabiting this soft substrate may be swept along with the current, migrate to more favorable habitat, or be killed by the grinding action of moving sand and gravel. These conditions were readily apparent at the normally sandy-bottomed mid-channel stations \((A-1, B-1\), and \(C-1)\), where benthic density was found to be low.

Improved conditions, slower currents, and a more silty substrata were noted at the north shore stations; however, species composition and density of benthic macroinvertebrates were still low.

Rivers, like the Missouri, liable to floods are known to have less abundant and less varied faunas than others (Hynes, 1972). Burrowing animals, such as tubificids, midge larvae, and burrowing mayfly nymphs, are better able to survive the rapidly changing river conditions resulting from floods.

Species diversity indices of the benthic community also reflect differences between mid-channel and north shore stations (Table 2.3.5-3). The average species diversity indices for the midchannel and north shore stations were 0.60 and 1.86 , respectively. Wilhm and Dorris (1968) indicated that systems possessing indices of approximately 1.00 were grossly polluted, 2.00 mocerately polluted, and 3.00 unpolluted. This would suggest that the Missouri River mid-channel stations were grossly polluted and north shore stations were moderately polluted. Poliution, in this sense, refers to physical stresses consisting of high river velocities, high turbidity, and lack of favorable substrates. Although chemical stresses do occur in the Missouri River, their effects on the benthos in the study area appear to be only minor.

Wet-weight biomass data for each major benthic group are presented in Table 2.3.5-4. Oligochaetes and dipterans (precominately chironomids) generally dominated standing crop biomass of each station; however, mayflies (ephemeropterans) were important at north shore stations \((\mathrm{A}-2, \mathrm{~B}-2\), and \(\mathrm{C}-2)\). Biomass for north shore and mid-channel (\(\mathrm{A}-1, \mathrm{~B}-1\), and \(\mathrm{C}-1\)) stations during the four surveys averaged \(1141.8 \mathrm{mg} / \mathrm{m}^{2}(10.3 \mathrm{lb} /\) acre \()\) and \(19.3 \mathrm{mg} / \mathrm{m}^{2}\) (\(0.17 \mathrm{lb} /\) acre), respectively. Berner (1951) studied the average wet-weight benthic biomass in the lower Missouri River from April through October, 1945. He determined that the benthic biomass averaged \(0.01 \mathrm{lb} /\) acre near the middle of the river and \(2.17 \mathrm{lb} /\) acre
near a steep bank. Although biomass values from the present survey were considerably higher than Berner's, benthic biomass near the site would still be considered low when compared to other systems. Investigations of unchannelized portions of the Illinois River between Chillicothe and Grafton, for example, yielded average biomass values of 261 lb/acre (Berner, 1951).

Berner (1951) sampled the river at 11 different sites between Watson and St. Charles, Missouri, including one station at Hermann (approximately 20 river miles downstream from the site). Very few organisms were found in any of the four different ecological habitats sampled (middle of channel, near a steep bank, near a sand bar, and the downstream side of a pile dike). The most productive area appeared to be near the steep bank; no organisms appeared to be produced in mid-channel.

Numerically, Berner's collections were dominated by midge larvae (35 percent) and aquatic oligochaetes (20 percent); however, immature stages of other dipterans, plecopterans, ephemeropterans, odonates, and trichopterans were also found. Clams, snails, and crayfish were absent from the dredged samples. Berner attributed the low benthic productivity (\(0.4 \mathrm{lb} / a c r e\)) to siltation, shifting substrates, fluctuating water levels, swift currents, and the absence of aquatic vegetation. He indicated that such factors were also probably responsible for the presence of "syrton," or drift organisms, which are similur in species composition to the benthos and average almost 0.07 pounds per surface acre.

During the Missouri River Environmental Inventory (University of Missouri-Rolla, 1972), three benthic dredge samples were taken near Hermann on 29 September 1972. Aquatic oligochaetes comprised at least 98 percent of the total number of organisms in all three samples. Other benthic species included midge larvae (Polypedilum sp. and Cryptochironomus sp.), mayfly nymphs (Hexagenia limbata) and clams (Corbicula sp.). Total densities ranged from \(1000 / \mathrm{m}^{2}\) in sand to \(4940 / \mathrm{m}^{2}\) in clay sediments. Ballentine et al. (1970) collected benthos from pile dikes and adjacent backwater areas between St. Joseph and Hermann during the fall of 1968. Tubificid worms accounted for more than 70 percent of the total benthos from dredge samples, although midge larvae and mayfly nymphs also occurred. Qualitative samples from rock dikes yielded several amphipods, flatworms, clams, snails, and leeches. They found that immediately downstream from major metropolitan areas, the number of pollution-sensitive organisms decreased while pollution-tolerant organisms increased.

Channelization appears to have had quite an adverse effect on the benthic biota in the Missouri River (Whitley and Campbell, 1972). Studies by Langemeier compared the standing crop of benthos in channelized and unchannelized portions of the river (Whitley and Campbell, 1972); channelization appeared to result in a substantial decrease in benthic standing crop. Standing crops were generally higher in areas with a silt substrate and little or no water movement, areas which are generally absent in channelized portions of

\section*{the river.}

Benthic organisms from the Missouri River near the site have low
 Major factors contributing to this condition appear to be channelization and reduction of favorable habitats, flooding and high water velocities, turbidity, and shifting substrates. Stresses are also imposed by water quality reduction that has resulted from municipal wastes, acid mine areas, industrial effluents, increased siltation, and chemical runoff from farming activities (see Section 2.3.1). Major benthic organisms in the Missouri River are midge larvae, tubificids, and burrowing mayflies, which are adapted to withstand these existing environmental conditions.

\subsection*{2.3.5.2 Logan Creek}

Speries composition of the benthic communit? in Logan Creek is similar to the Missouri River. Although densities were higher in Logan Creek than the Missouri, they would still be considered low when compared to other systems. Major species collected during July and September, 1973, were oligochaetes and dipterans (Table 2.3.5-1).

Logan Creek Station D was located on the Missouri River floodplain below the confluence of Mud and Logan Creeks. Oligochaete populations numerically dominated the benthic fauna, comprising 71 percent of the total benthos in July, 91 percent in September, 85 percent in December, ant 86 percent in February (Table 2.3.5-5). Dipterans, mainly chiron mids, were the second most abundant benthic group collected at this station and comprised from 9 to : 9 percent of the total community. Total densities for Station I samples averaged \(103 / \mathrm{m}^{2}\) in July, \(1248 / \mathrm{m}^{2}\) in September, \(2059 / \mathrm{m}^{2}\) i. December, and \(2861 / \mathrm{m}^{2}\) in February.

Station \(E\) was located in the upper reaches of Logan Creek and, although species composition was similar to Station D during the four sampling periods, the dominant forms changed (Table 2.3.5-5). Dipterans were numerically dominant during July and September, and represented 91 and 88 percent, respectively, of the total benthos collection. Oligochaetes became numerically dominant during December and February, when they comprised 65 and 60 percent, respectively, of the total benthos. Mayflies, clams, nematodes, and springtails were also collected. Total Station E densities averaged \(1093 / \mathrm{m}^{2}\) in July, \(4033 / \mathrm{m}^{2}\) in September, \(882 / \mathrm{m}^{2}\) in December, and \(736 / \mathrm{m}^{2}\) in February.

Species diversity indices averaged 2.05 and 3.00 at Stations \(D\) and \(E\), respectively (Table \(2 \cdot 3 \cdot 5-3\)). This indicates that Station \(D\) is moderately polluted and Station \(E\) is unpolluted. The lower species diversity at Station D probably reflects its location in the Missouri River floodplain. During periods of high flow, Missouri River water backs up into Logan Creek and influences the species inhabiting these waters. The higher species diversity at Station \(E\) corresponds to the higher water quality at
```

this station.

```

Water quality and seasonal variations appear to have major influences on benthic development in Logan Creek. Water quality is better upstream at Station E (Section 2.3.1), and this station was generaliy found to support a more diverse and dense macrobenthic community. High temperatures, lower dissolved oxygen, greater turbidities, and more pronounced water level fluctuations are associated with Station D during the summer and would tend to limit benthic production. Although the majority of organic matter is probably allochthonous (produced outside the creek), Station E does have a rocky substrate that supports penthic algae and is utilized by invertebrates for food and shelter.

During December and February, benthic densities at Station \(\mathbb{E}\) decreased, while densities at Station D increased. During the winter, reduced flows and shallower waters at Station E appear to result in lower temperatures that subsecuently stress benthic populations.

\section*{TABI.E 2.3.5-1}
UENSHIC

TABLE 2.3.5-1 (Constinued)

TABLE \(2.3 .5-2\)
Station C-2

MACROBENTHIC INVERTEBRATES COLLECTED FROM THE MISSOURI RIVER DURING JULY, SEPTEMBER, DECEMBER, AND FEBRUARY Station \(B-2\)
\(\begin{array}{lll}n & m m \\ N & m\end{array}\)
\(\underset{\infty}{m} \quad 6-m\) \(\frac{0}{6} \rightarrow m \quad 1\) 8
0
-
\(\begin{array}{lll}\infty & \text { on m } 1 \\ 0 & \text { rv }\end{array}\) 8
0
-1
जgNNm \(\mathrm{No} / \mathrm{m}^{2}\) of Total N 0 m -
 T15

 \begin{tabular}{c}
Station \(\mathrm{A}-1\) \\
\(\mathrm{No} / \mathrm{m}^{2} \quad\) \% Total \\
\hline
\end{tabular} \begin{tabular}{llllll|lllll|l}
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
in & in & & & 0 & & 0 \\
-1 & & \(m\) & & & \\
\hline
\end{tabular}
 0
0
4
0
0
4
\(=\)
0
0
0
0
0
4
0
2 4
4
3
3
\(\frac{c}{6}\)
\(\frac{2}{2}\)
2
2 \(-\underset{-}{-}\)

\footnotetext{
\(\begin{array}{ll}2 & 8 \\ 4 & 3 \\ 4 & 0 \\ 0 & 0 \\ 0 & 10 \\ 0 & E \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 2 & m\end{array}\)
4
0
\(\frac{\pi}{3}\)
3
\(\frac{c}{6}\)
\(=\)
2
0
}
ToTAL
-
Date

\[
\begin{aligned}
& \dot{4} \\
& 0 \\
& \frac{8}{E} \\
& 0 \\
& \sim \\
& 0 \\
& 2 \\
& 0 \\
& \text { un }
\end{aligned}
\]

\footnotetext{
 N
0
0
}

TABLE 2.3.5-3
MACROBENTHIC SPECTES DIVERSITY INDICES FOR STATIONS ON THE MISSOURI RIVER AND LOGAN CREEK
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Date & A-1 & A-2 & B-1 & B-2 & C-1 & C-2 & D & E \\
\hline July 1973 & 1.00 & 2,42 & 0.75 & 1.30 & 0.00 & 0.00 & 1.16 & 3.44 \\
\hline September 1973 & 0.00 & 1.66 & 0.00 & 0.74 & 2.66 & 1.00 & 1.43 & 2.76 \\
\hline December 1973 & N.C. \({ }^{\text {a }}\) & 1.59 & 0.00 & 3.36 & 1.59 & 3.57 & 2.75 & 3.12 \\
\hline February 1974 & N.C. \({ }^{\text {a }}\) & 0.92 & N.C. \({ }^{\text {a }}\) & 3.58 & 0.00 & 2.16 & 2.85 & 2.70 \\
\hline Average & 0.50 & 1.65 & 0.25 & 2.25 & 1.06 & 1.69 & 2.05 & 3.00 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Not collected - bottom scoured by high water.
}

TABLE 2.3,5-4 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Station} & \multirow[b]{2}{*}{Oligochaeta} & \multirow[b]{2}{*}{Diptera} & \multicolumn{4}{|l|}{(Number of Organisms) Wet-Weight in mg/m \({ }^{2}\)} & \multirow[b]{2}{*}{Coleoptera} & \multirow[b]{2}{*}{Other} & \multirow[b]{2}{*}{\begin{tabular}{l}
Total \\
Wet-Wt
\end{tabular}} \\
\hline & & & & Ephemeroptera & Trichoptera & Pelecypoda & Odonata & & & \\
\hline February & A-1 & & & & Collected & & & & & \\
\hline 1974 & A-2 & - & \(\checkmark\) & - & (14)186.2 & - & - & - & - & 186.2 \\
\hline & \(\mathrm{B}-1\) & & & & Collected & & & & & \\
\hline & B-2 & (525)525.0 & (224)107.1 & - & (14)9.8 & - & (14)487.9 & (7) 2.4 & - & 1132.2 \\
\hline & C-1 & - & - & - & - & - & - & - & - & - \\
\hline & c-2 & (21) 12.6 & (14)1.4 & - & - & - & - & - & - & 14.0 \\
\hline & D 124 & 84) \(18,795.6\) & (382) 636.7 & - & - & (15) 57.0 & - & - & - 1 & 19,489.3 \\
\hline & E & (441)1367.1 & (221) 839.8 & - & - & (74) 532.8 & - & - & - & 2739.7 \\
\hline
\end{tabular}
\[
S-S^{\circ} \varepsilon \cdot \tau \text { a'tavц }
\]

AND FEBRUARY
\begin{tabular}{|c|c|c|c|c|c|}
\hline Date & Organisms & \[
\mathrm{NO} / \mathrm{m}^{\mathrm{S}}
\] & D & \[
\text { No } / \mathrm{m}^{\mathrm{S}}
\] & \[
E_{\text {otal }}
\] \\
\hline July & Oligochaeta & 73 & 71 & 73 & 7 \\
\hline \multirow[t]{2}{*}{1973} & Diptera & 30 & 29 & 991 & 91 \\
\hline & Other & 0 & - & 29 & 3 \\
\hline \multicolumn{2}{|l|}{TOTAL} & 103 & 100 & 1093 & 101 \\
\hline September & Oligochaeta & 1130 & 91 & 205 & 5 \\
\hline \multirow[t]{3}{*}{1973} & Diptera & 118 & 9 & 3549 & 88 \\
\hline & Ephemeroptera & 0 & - & 206 & 5 \\
\hline & Other & 0 & - & 73 & 2 \\
\hline \multicolumn{2}{|l|}{TOTAL} & 1248 & 100 & 4033 & 100 \\
\hline \multicolumn{6}{|l|}{December} \\
\hline \multirow[t]{4}{*}{1973} & Oligochaeta & 1750 & 85 & 573 & 55 \\
\hline & Diptera & 235 & 11 & 309 & 35 \\
\hline & Ephemeroptera & 15 & 1 & 0 & - \\
\hline & Other & 59 & 3 & 0 & - \\
\hline \multicolumn{2}{|l|}{TOTAL} & 2059 & 100 & 882 & 100 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { February } \\
& 1974
\end{aligned}
\]} & Oligochaeta & 2484 & 86 & 441 & 60 \\
\hline & Diptera & 382 & 13 & 221 & 30 \\
\hline & Pelecypoda & 15 & 1 & 74 & 10 \\
\hline TOTAL & & 2881 & 100 & 736 & 100 \\
\hline
\end{tabular}

\subsection*{2.3.6 FISH}

\subsection*{2.3.6.1 Missouri River}

The high turbidity, swift currents, and unstable sand and silt bottom characterizing the Missouri River are the principal factors controlling and limiting the distribution of fish in this waterway. Generally, in streams and rivers receiving a heavy inorganic sediment load, fish populations have a reduced standing crop and individual fish a slower growth rate (Gammon, 1970). The fisheries of the lower two-thirds of the Missouri River are not very productive, not only because of the high turbidity, but also because of the lack of fioh food organisms (University of Missouri-Rolla, 1972), which are also limited by the ecological factors influencing fish.

Stream channelization has directly affected fishes by eliminating quiet water habitats, with their associated brush and log substrates favorable to aquatic insects and other fish food organisms. Because of these habitat changes, small rivers and streams entering the Missouri have become increasingly prominent as spawning and nursery areas for fish. Before channelization of the river, there were extensive side channels and backwater areas that served as spawning sites. Because spawning and nursery sites and fish food organisms have been reduced, the ecosystem cannot support large and diverse fish populations. Those fish found in the Missouri River are specialized for this particular habitat.

The discussion of Missouri River fish is divided into two parts: a presentation of the life histories data gathered during the literature review and a presentation of data obtained from the sampling stations during the sampling program.

Thermal tolerances of representative fish species are presented in Table 2.3.6-1.
2.3.6.1.1 Life Histories

Important species of game fish collected in the Missouri near the site during the present study were white crappie, catfish (blue, channel, and flathead), and freshwater drum.

The white crappie is common in ponds, lakes, rivers, and streams east of the Rocky Mountains. Ti \(2 y\) generally prefer quiet water where cover is provided by aquatic plants, submerged trees, or brush. Spawning usually occurs from May through June, when water temperatures are from \(63.5^{\circ}\) to \(68^{\circ} \mathrm{F}\) (Calhoun, 1966). White crappies spawn under a variety of conditions of bottom, water depth, and proximity to embankments, vegetation and wooden structures, but they prefer to deposit their eggs on plant material in quiet water (Hansen, 1951). The number of eggs produced per female in a season ranges from 22,800 to 194,000 , according to a sample of 24 fish examined by Siefert (1969). The maximum length
recorded for the species is 381 mm (Goodson, 1966).
Channel catfish have been widely introduced in this country, but their original range was from Montana, southern Manitoba to southern Quebec, south and west of the Appalachians, Florida, and Niexico. Young channel catfish feed primarily on aquatic insects or other arthropods; as they mature, they feed on other fish and crayfish. Channel catfish prefer moderate to swiftly flowing streams. They often inhabit deep pools in the main channel of the river and wait for food to be carried to them by the current. Spawning occurs from late May to early July at optimal temperatures of \(80^{\circ} \mathrm{F}\) (Miller, 1906). Adult channel catfish appear to be highly migratory, often ascending streams to spawn. They prefer to nest in a dark cavity or crevice along a stream bank or beneath debris lodged in the channel. Berner (1947) found that debris associated with pile dikes in the Missouri River provided suitable spawning habitat for channel catfish. Females have been estimated to produce 3,000 to 4,000 eggs per pound of body weight per year (Miller, 1966).

The flathead catfish occurs in Lake Erie and in the large rivers of the Mississippi Valley south to Mexico. Larval catfish feed primarily on insect larvae, while adults feed primarily on other fish. Spawning occurs from May to late June. The average number of eggs produced per female is 9,000 (Carlander, 1969).

The blue catfish occurs in large rivers from South Dakota to Ohio and south into Mexico, preferring to live in streams with moderately to swiftly flowing water. Larvae and fingerlings feed primarily on zooplankton and larval aquatic insects, while adults feed mainly on crayfish and other fish. There is very little information in the literature on the spawning habits of this fish; however, they are thought to migrate long distances during the spawning season (Pflieger, 1971). Blue catfish up to 1194 mm long and 10 years old have been captured (Carlander, 1969).

The freshwater drum are found southward from Canada throughout the Mississippi River system and eastern Mexico to Guatemala. They spawn from May to August at water temperatures of \(64^{\circ}\) to \(76^{\circ} \mathrm{F}\) (Swedberg and Walburg, 1970). They lay pelagic eggs in lakes and probably in rivers. Spawning usually occurs when the discharge of the river is increasing, thus carrying the eggs out to the channel and onto flooded land. This tends to minimize losses downstream and enables hatching to occur in suitable nursery areas. The eggs of the freshwater drum are very clear, making them difficult to see and therefore less subject to predation. Approximately 13,800 eggs are produced per female per season (Swedberg and Walburg, 1970).

During the present study, one paddlefish specimen was observed, although none were collected. Though edible, the paddlefish is not considered a game species because it cannot be captured by ordinary game fishing methods. It occurs in the large rivers
of the Mississippi drainage system. The major food of the paddlefish is plankton; however, they also eat insects and small fish. They spawn in schools, preferably over large gravel bars or over sand and pebbles in a strong current at a water temperature of \(61^{\circ} \mathrm{F}\) (Purkett, 1963). Spawning usually occurs from March to June. Before fertilization, a coating forms on the eggs, making them very adhesive and allowing them to attach to the first object they contact, usually a rock or pebble (Purkett, 1963). The most favorable location for hatching is over a clear gravel bar, where the eggs will not be subject to siltation, and aeration is good, enhancing the possibility of development. Eggs hatch within 7 days at water temperatures of \(64^{\circ}\) to \(68^{\circ} \mathrm{F}\). Carlander (1969) reports that two female paddlefish examined had 137,247 and 141,531 eggs.

Important rough species collected near the site include carp, river carpsucker, longnose and shortnose gar, and smallmouth and largemouth buffalo.

Carp have been introduced into most of the United States and southern Canada. It is generally considered a rough species, but it is also sought as a game species in Callaway county. Carp are successful because they are highly adaptable and able to survive in a variety of habitats, from clear to grossly polluted waters. Because of their tolerance to high turbidity and their specialized feeding habits, they have adapted well to the Missouri River. They are primarily bottom feeders, sucking mud and silt from the bottom and straining out food particles. They thrive in the Missouri River by living along the banks out of the main channel and foraging on detrital matter deposited by the current. Spawning occurs from March to August, and two spawns in one season are not uncommon. Spawning usually begins when the water temperature reaches \(58^{\circ} \mathrm{F}\) and greatest activity occurs at temperatures of \(65^{\circ}\) to \(68^{\circ} \mathrm{F}\). The fecundity of the carp is high. The number of eggs per female ranges from 100,000 to 700,000 , depending on the size of the fish (Carlander, 1969). Over 2 million eggs have been reported to occur in one female. Carp are generally less than 750 mm long, but specimens up to 1219 mm have been reported (Carlander, 1969).

The river carpsucker occurs from Montana to Pennsylvania and south to Tennessee and Texas. Habitats preferred by river carpsucker are calm pools, backwaters, or gentle eddies, where sediments accumulate, rather than the turbulent main channels of streams. Like the carp, they thrive in the Missouri River by living along the banks and foraging on detritus. Their feeding habits and diet are very similar to carp. Spawning occurs from April to August at water temperatures of \(65^{\circ}\) to \(75^{\circ} \mathrm{F}\) (Jester, 1972). The peak of spawning activity occurs near the beginning of June at around \(70^{\circ} \mathrm{F}\). River carpsuckers prefer to deposit their eggs along the banks of streams near roots and fallen \(10 g s\). Eggs produced per female averaged 28,305 in Age Group II to 273,000 in Age Group X (Jester, 1972). River carpsuckers have been known
to live up to 11 years and attain a length of 643 mm (Carlander, 1969).

The longnose gar occurs from Montana to Quebec and south to the Gulf of Mexico and the Rio Grande. It is found frequently in brackish water. Larval and fingerling gar feed primarily on insect larvae, but adults feed almost exclusively on fish. Spawning occurs from late April to June in quiet backwaters of smaller streams. Approximately 30,000 eggs are produced per female (Carlander, 1969). Longnose gar up to 1600 mm long have been reported by Carlander.

The shortnose gar occurs in silty rivers in the Mississippi and Ohio River drainage from southern Minnesota and Ohio to northern Louisiana and Texas. Larval and fingerling specimens feed on mosquito larvae and other fish. The spawning season and average fecundity are the same as the longnose gar (Carlander, 1969). Spawning usually occurs in quiet backwaters and pools of the rivers.

The smallmouth buffalo occurs mainly in larger streams, preferring shallow water areas with a firm bottom. Smallmouth buffalo are bottom feeders; their diet consists largely of crustaceans, insect larvae, and small mollusks. Spawning occurs in May; the eggs are deposited randomly over the bottom or in vegetation.

The largemouth buffalo is usually found in calm areas of rivers or lakes. It is both a bottom and pelagic feeder, consuming small crustaceans, insect larvae, algae, other vegetation, and, occasionally, small fish and fish eggs. Spawning occurs when water temperatures reach \(60^{\circ}\) to \(65^{\circ} \mathrm{F}\); eggs are deposited randomly over mud bottoms or in submerged vegetation (Herlan and Speaker, 1969). As many as 400,000 eggs have been found in 10 lb . females (Harlan and Speaker, 1969). Specimens 20 years old have been reported, but most do not attain 6 years (Carlander, 1969).

Forage species are those fish that, at some stage of their life cycle, serve as food for other fish. The gizzard shad was the principal forage species collected near the site; it was also the most numerous species collected. The gizzard shad occurs from Minnesota to the St. Lawrence River and New Jersey, south to the Gulf and into Mexico. It is a valuable forage fish, forming an important link in the food chain of game fish and other piscivores. Because it has a high reproductive potential and rapid growth rate, this species tends to overpopulate some waters to the detriment of other fish populations. It is highly successful in the Missouri River because of its tolerance to excessive turbidity and waters supporting little or no vegetation and sparse benthic fauna. However, gizzard shad may quickly succumb to abrupt temperature changes or reduction in water oxygen levels (Jester and Jensen, 1972). Food preferences of
the gizzard shad also favor its success in ti \(=\) Missouri River, since adults feed primarily on detritus (Hynes, 1972). Spawning occurs during May and \(J\) ne at temperatures from \(64^{\circ}\) to \(75^{\circ} \mathrm{F}\) (Jester and Jensen, 1972). A second spawning may occur in late summer. Spawning is offshore, preferably in shallow water, but shad have been observed spawning at the surface over deep water. The eggs are scattered; there is no preparation of a nest site. The average number of eggs produced per female is 40,500 , but a decline in fecundity with increasing size and age has been noted (Jester and Jensen, 1972).

Five chestnut lamprey were collected from the Missouri. This species cannot be classified as a game, rough, or forage species, but is parasitic on such fish as carp, buffalo, redhorse, paddlefish, and the larger sunfish. They attach themselves to the sides of large fish by their funnellike mouths and then use their toothed tongue to create a shallow wound, from which they draw their host's body fluids. When satiated, they detach themselves. Many of these hosts survive, because some fish captured commercially in the Missouri bear scars of lamprey wounds (Cross, 1967). After an undeter ined period of parasitic existence, lamprey mature and move upstream in the spring to spawn. Preferred spawning sites are swift, shallow riffles where the bottom is composed of clear gravel. Upon hatching, the young move downstream to slack-water areas. Here they burrow into the soft: sediment and feed on minute organisms. After one to several years, the larvae emerge and assume the parasitic habit. Commercial fishermen reported a decline in lamprey and scarred fish in the \(1950^{\prime}\) s (Cross, 1967). Cross postulates that former spawning habitats have been modified by watershed cultivation and the resulting siltation and instability of flow.

\subsection*{2.3.6.1.2 Species Composition, Age, Growth, and Condition Factor}

Sixty-seven fish species representing 16 families have been reported from the Missouri segment of the Missouri River (Pflieger, 1971). In 1971, during the Missouri River Environmental Inventory, 19 species representing 12 families were collected at Hermann, Missouri, approximately 20 river miles downstream from the site (University of Missouri-Rolla, 1972). During the present study, 28 fish species representing 13 families were collected at the north shore transects on the Missouri River. Table 2.3.6-2 compares the known species composition of fish in the Missouri River with those known to occur near the site and provides a checklist of the common and scientific names of the species discussed below. Table \(2 \cdot 3 \cdot 6-3\) summarizes the number of fish captured per sampling period, their size range, and the percentage of the total catch (all periods) comprised by each species. Because of the relatively low numbers of fish captured during the survey, data from Transects \(F\) and \(G\) collected during September and December have been included in the analyses (this data is not utilized in analyses of other aquatic biota; see Section 2.1).

Nineteen fish representing 11 species were collected in July, while 217 fish representing 14 species were collected in September, and 399 fish representing 21 species were collected in December (Table 2.3.6-3). The higher numbers of fish collected in September and December relative to July not only reflect the increased number of sampling transects (\(F\) and G), but also the increased use of fyke nets.

The gizzard shad, a forage species, was the most abundant species collected from the Missouri River near the site. It comprised approximately 66 percent of all fish collected during the study. (It was similarly the most abundant species in the collections of the Missouri River Environmental Inventory [University of Missouri-Rolla, 1972]). The gizzard shad also occurs in every principal stream in the state and inhabits lowland lakes, ponds, and man-made impondments (Pflieger, 1967). Near the site, it was especially abundant along the river banks in quieter waters, where large schools were observed. Because the gizzard shad was more abundant than any other species, it was possible to calculate the mean length, weight, and condition factor for each age group taken in the September and December samples (Table \(2.3 \cdot 6-4)\). Generally, these values were low in comparison with other studies. This may be related to the high turbidities and unstable bottom characteristic of the Missouri, since these conditions restrict the production of fish food organisms. The condition factor for comparable age groups were generally lower in December than in September, probably the result of sample size variations or decreased availability of food organisms in winter.

The carp was the second most abundant species collected, comprising approximately 7.9 percent of the total. It was the most abundant species in commercial catches in the Missouri River from 1965 to 1971 (Robinson, 1973a). Although the carp is commonly known as a rcugh fish, local fishermen take this species by hook and line, as well as with trotline sets. A creel survey taken by Dames \& Moore aquatir biologists in July and September at the Mokane access ramp (approximately 8 miles upstream from the site area) indicated that about 80 percent of the catch consisted of carp. Size and age of carp are highly variable, depending on environmental conditions. According to Carlander (1969), most individuals of natural populations do not attain 7 year.
Most specimens captured in the present study were 6 years old or under, with one individual 12 years nld. Captured carp ranged from 277 to 668 mm total length. Carp collected near Hermann during the Missouri River Environmental Inventory ranged from 379 to 836 mm total length and were 2 to 6 years old (University of Missouri-Rolla, 1972).

Other rongh fish collected near the site were the river carpsucker, longnose and shortnose gar, smallmouth and largemouth buffalo, the goldeye, and mooneye. Only a few specimens of each species were captured.

The river carpsucker was the fourth most abundant species collected in the Missouri near the site. The 29 specimens collected
during the study ranged from 2 to 7 years old and 132 to 445 mm total length. Longnose and shortnose gar were collected in similar numbers. The largest longnose gar specimen collected near the site was 932 mm total length. Shortnose gar collected during the Missouri River Environmental Inventory ranged from 422 to 740 mm long (University of Missouri-Rolla, 1972). Specimens collected during the present study were within this range.

Although buffalo were the second most abundant fish in commercial catches in the Missouri River from 1965 to 1971 (Robinson, 1973a), only one smallmouth and three largemouth buffalo were collected near the site during the study. The largemouth buffalo collected during the program ranged from 426 to 512 mm total length and from 4 to 8 years old.

Game fish collected were the white crappie, freshwater drum, largemouth bass, bluegill, catfish, sauger, and northern pike. With the exception of the white crappie, most of these species were represented by only a few specimens (Table 2.3.6-3).

The white crappie was the most abundant sport fish captured in the Missouri during the survey; it was the third most abundant of all species captured, comprising 5.4 percent of the total. The white crappie was also found during the Missouri River Environmental Inventory to be the most abundant sport fish in the Missouri River at \(f\) ve stations between Rulo, Nebraska, and St. Louis (University of Missouri-Rolla, 1972). During the present study, white crappies up to 286 mm total length and 4 years old were collected. Specimens ranging from 155 to 250 mm long were taken in the Missouri River near Hermann during the Missouri River Environmental Inventory.

The freshwater drum was the second most abundant sport fish taken near the site. Large numbers of freshwater drum fry and fingerlings were observed in the backwaters of the downstream sides of groins. Twenty-two freshwater drum 92 to 363 mm total length and in to 5 years old were collected. During the Missouri River Environmental Inventory (University of Missouri-Rolla, 1972), 9 specimens 112 to 352 mm long and up to 3 years old were collected near Hermann.

A field survey of fishermen's catches during July and September of the survey found that catfish are the game fish most frequently sought near the site. They are commonly captured with trotline sets. The three species captured during the present study were the channel, blue, and flathead. Channel catfish are important commercial as well as game fish in Callaway County, but only one specimen was captured during the present study. Five specimens of the blue catfish were captured; these ringed from 418 to 818 mm total length. Only a few flathead catfish were captured.

One paddlefish was observed, but none were collected. Sport fish collected during the Missouri River Environmental Inventory but not captured during the present study were the smallmouth bass and black crappie.

Five chestnut lamprey ranging from 315 to 325 mm total length were collected during the December sampling period.

Of the 33 species of native fish considered threatened or endangered in Missouri (Miller, 1972), the only one reported from the Missouri River bordering Callaway County is the sicklefin chub (Pflieger, 1971). No specimens of this species were collected during the present study.

No larval forms were collected in the larval fish tows. Apparently sampling periods and/or depths did not coincide with their seasonal or diurnal distributions

\subsection*{2.3.6.1.3 Food Habit Studies}

Food studies provide details of the ecological relationships among organisms and help to explain the condition and growth rate of fish. Food habits of the more important fish were studied to determine what items were being utilized as forage. These findings may be compared to later studies to determine if feeding habits have changed. Extensive environmental changes in an area can lead directly or indirectly to changes in the feeding habits of fishes. However, changes in feeding habits are not necessarily detrimental, unless the organisms' feeding habits are very specialized.

Food habits of fish vary with seasons, food availability, and life cycle stages. For example, the diet of most young fishes probably consists of microscopic plants and animals, including algae, pzotozoans, and crustaceans found on plants, in bottom material, or floating in the water column. As fish develop and attain sexual maturity, feeding adaptations develop, and the diets of some species become very restricted according to the niche that they occupy in the aquatic habitat. For example, some fish, such as gizzard shad and paddlefish, become plankton feeders at an early stage and remain so throughout their life. Some fish are herbivorous, including most of the smaller cyprinids. Others are strictly carnivorous, such as pike, gar, bass. Most of the sunfishes and others such as carp are omnivorous.

Aquatic insects are an important food source for most fishes at some stage of their development. The groups utilized include the mayflies, stoneflies, dragonflies, damselflies, water striders, back swimmers, fish flies, helgrammites, caddisflies, beetles, midges, mosquitos.

As indicated previously, most fishes prefor to feed on certain groups of organisms, depending on whether they are herbivores, omnivores, or carnivores. However, they also are opportunistic to a certain extent and will crop off organisms that are available. This has led to the concept of the availability factor of individual prey species (Hynes, 1972), a ratio of the percentage of that species in the food of the fish to its percentage in the
fauna. When there is only one prey species, obviously there is no selection, but if there are more prey species than fish, the prey can be preferentially selezted or rejected.

The stomach content data collected in this study identified at least eight food item taxa, and possibly more could be accounted for in the category of "unidentified organic material." Thus, Missouri River fish can be somewhat selective in their feeding habits; depending on the niche they occupy in the aquatic ecosystem.

All of the major groups of macroinvertebrates collected (listed in Section 2.3 .5) were uti ized by most fish, with the exception of the piscivores (includ g longnose and shortnose gar and flathead catfish), which did not ingest any macroinvertebrates (Table 2.3.6-5). Dipterans and ephemeropterans were the most numerous organisms collected in the Missouri River and were found in some of the fish stomachs during each collecting period. They comprised 25 percent of the diet of all noncarnivorous species selected for stomach analysis. Trichopterans were also important as a food source, being utilized by some of the fish during each collecting period.

There were very few empty stomachs in the fish captured during September. This may be related to conclusion of the spawning activities. Zweiacker (1972) found that there was an increase in feeding rate after spawning, indicated by a lower percentage of empty stomachs than before and during spawning. The small percentage of empty stomachs during the months of July and September also may be related to higher summer water temperatures. During these months, feeding and digestion rates are assumed to be highest, especially in a flowing body of water, such as the Missouri River, where the water is well mixed and does not stratify, as in a lake or reservoir.

When water temperatures decline during winter, fish do not grow; their only bodily functions are for maintenance. The food ingested normally requires a long period for digestion and may be difficult to identify in excised stomachs. When water temperatures averaged \(2.8^{\circ} \mathrm{C}\) during December, approximately 44 percent of the stomachs examined were empty.

Table 2.3.6-5 summarizes stomach analysis data for Missouri River species for all sampling periods. A total of 158 fish stomachs were taken from 14 fish species collected in Transects A, B, and C during July, September, and December. Data from major species are discussed in greater detail below. Food habit data collected during September from Transects \(F\) and \(G\) are summarized in Appendix Table \(2 A-4\). The stomachs taken from fish collected in Transects \(F\) and \(G\) during December contained no food items.

Eighty-six stomachs were examined from gizzard shad, the most abundant species collected in the Missouri River near the site. Gizzard shad are specialized in their feeding habits, having
long gill rakers enabling them to sieve organisms from the water. Jude (1973) found that gizzard shad in the Missouri River fed on some bottom materials and also filtered suspended material from the water. The most important food items in the gizzard shad stomachs collected in September were diatoms (45 percent of the mech contents) and green algae (6 percent of the stomach contents). Ephemeropterans were also found, but they comprised only 1 percent of the stomach contents. The remaining food items couid not be identified. Of the 44 gizzard shad captured in December, 20 had empty stomachs. Stomach content organisms of the remaining fish were broken apart and partially digested and could not be identified.

The stomachs of twenty-five carp, the second most abundant species collected in the river near the site, were also examined. The carp is typically a bottom feeder, sucking up organic mud and detritus indiscriminately. Thus, organic material that has settled to the bottom may be ingested by the carp. Fly larvae comprised 40 percent of the contents taken from stomachs collected in September. No other food items were identifiable. Of 18 stomachs taken in December, seven were empty. The remaining stomachs contained unidentifiable organic matter.

A total of 18 river carpsuckers collected from the Missouri River were chosen for stomach analysis. Jester (1972) reports that food studies of the river carpsucker taken from the Des Moines River showed the major food items to be algae and microcrustacea. The carpsucker usually feeds near the bottom and sucks up material contalning organic deposits; it is very difficult to identify the stomach contents. Seven of the stomachs examined contained no food, and the only identifiable food item found in the other stomachs was the dipteran larvae, which comprised a very small percentage of the total weight of the stomach contents: 10 and 20 percent for September and December, respectively.
According to Goodson (1966), larval white crappies feed primarily on zooplankton, while crustaceans, insects, and fish largely constitute the diets of adults. Five white crappie stomachs were taken during the survey; the principal food item was found to be fish. July sample stomachs were found to contain the fry of freshwater drum; aquatic insects comprised the remainder of the diet.

Swedberg and Walburg (1970) determined that freshwater drum young of the year feed mainly on microcrustaceans (Daphnia sp. and Cy 10 p s sp.); as they mature, they feed on aquatic insect larvae. Of the 12 freshwater drum stomachs analyzed, three were empty, while the remainder contained immature forms of aquatic insects and anidentifiable organic material.

\subsection*{2.3.6.2 Logan Creek}

The discussion of Logan Creek fish is in two parts. The first presents the life histories data from the literature review; the second presents the sampling data obtained during the sampling program.

\subsection*{2.3.6.2.1 Life Histories}

The following discussion of the life histories of important Logan Creek fish species does not include information on those species - gizzard shad, carp, river carpsucker, white crappie - found in greater abundance in the Missouri River. Life histories of these species can be found in Section 2.3.6.1.1.

Sunfish (bluegill, green, and longear), largemouth bass, bullhead, and white crappie are the game species found in Logan Creek.
Although there has been some sport fishing in the creek in past years, creel census data are not available. According to the local game warden, bullhead, largemouth bass, and white crappie are the species most commonly caught in Logan Creek (Wilson, 1973).

The bluegill originally ranged from southern ontario through the Great Lakes and Mississippi drainages to Georgia, Texas, and northeastern Mexico, but widespread introductions have greatly extended the range. Only two specimens were collected in the Missouri River. This concurs with their preference for protected areas with clear, quiet water, scattered beds of vegetation, and substrates of sand or gravel. Bluegills feed mainly on zooplankton and aquatic insects, but other foods ingested include small fish, fish eggs, snails, small crayfish, and amphipods. Because of differential maturity of fish or of eggs within a single fish, bluegills spawn over an extended time period, beginning when water temperatures reach \(70^{\circ} \mathrm{F}\) and continuing until fall (Emig, 1966 a). However, the peak of spawning activity is usually in May or early June. The fecundity averages approximately 18,000 eggs per female (Emig, 1966a). Emig (1966a) reports that bluegills can attain a length of 253 mm .

The green sunfish is widely distributed and is rery successful in surviving drought in residual pools of streams. Its di?t is mainly comprised of insects, both aquatic and terrestrial, but fish are also eaten. Green sunfish usually reproduce during May and June. Males construct and guard nests located in shallow water areas where the bottom is smooth and clean.

The longear sunfish is usually found in streams having numerous pools with permanent or semi-permanent flow of clear water over unsilted bottoms of stone or firm clay. The reproductive period is often extended from May to July. The longear sunfish feeds mainly on aquatic and terrestrial insects but also consumes other invertebrates and small fish. Longear sunfish up to 203 mm long have been reported (Eddy, 1969).

The largemouth bass is an important, widely introduced game species which originally ranged from southeastern Canada throughout the Great Lakes region, southward through the Mississippi Valley to Mexico and Florida and on the Atlantic Coast as far north as Virginia. During the present study, most specimens were collected in Logan Creek, reflecting their preference for a habitat characterized by clear water and aquatic vegetation, although vegetacion is sparse in Logan Creek. High turbidities, typical of the Missouri River, are considered detrimental to reproduction and growth of largemouth bass (Emig, 1966c). Young specimens feed primarily on zooplankton and small crustaceans, but as they mature they eat more aquatic insect larvae. The adult diet consists mainly of fish, but also includes worms, mussels, frogs, crayfish and snails. Spawning usually occurs at water temperatures of \(61^{\circ}\) to \(65^{\circ} \mathrm{F}\), beginning in late spring and continuing until early July (Emig, 1966c). Largemouth bas will not spawn on silt bottoms but utilize a substrate of sand, gravel, roots, or aquatic vegetation. Normally about 5,000 eggs are produced per female (Emig, 1966c).

The brown bullhead originally ranged from Saskatchewan to Nova Scotia, south to Mississippi and Florida, but it has also been introduced extensively in western North. America. It is considered by Miller (1972) as a rare Missouri species. In the Missouri River system, the species has been reported previously only in tributaries to the Missouri near Rocheport, approximately 60 miles upstream from the site (Fisher, 1962). Pflieger (1971) reports that the species has also been collected in two areas in southwestern Missouri and has been stocked in a few ponds in the state. Young brown bullheads have been reported to feed chiefly on chironomid larvae and zooplankton, but the adults are omnivorous. In large rivers, brown bullheads are most common in sloughs or backwaters. They prefer to inhabit deep, weedy waters with a sand, gravel or muck substrate. The species is hardy, able to tolerate relatively high temperatures, high carbon dioxide levels and low oxygen levels. Spawning usually begins in late April or in May when water temperatures approach \(70^{\circ} \mathrm{F}\) (Emig, 1966b) and may continue through September, sometimes occurring more than once a year. Females from 8 to 13 inches long may lay from 2,000 to 13,000 eggs per season (Emig, 1966b).
Forage species abundant in Logan Creek included the gizzard shad, mosquitofish, blackstripe topminnow, bluntnose minnow and stoneroller.

The mosquitofish occurs from southern Indiana and Illinois, south to Mexico and Florida and north to New Jersey and has been widely introduced in warm parts of the world for mosquito control. It prefers calm, shallow waters where it feeds principally on mosquito larvae, pupae, algae, and small fish. Overwintering mortality of mosquitofish is high because they have limited tolerance to cold weather. The species is a livebearer, spawning from May to September at temperatures of \(72^{\circ}\) to \(75^{\circ} \mathrm{F}\). Average
number of eggs produced by females is 40 (Carlander, 1969).
The blackstripe topminnow occurs from Iowa to Ohio, south to Mississippi and east Texas. The species feeds primarily on surface-dwelling insects and on crustaceans. Spawning occurs from May to mid-August, and the fish tend to remain paired (Carlander, 1969).

The bluntnose minnow occurs from southern Manitoba to Quebec, south to North Carolina, Alabama, Louisiana, and Oklahoma. Small organisms and debris constitute the diet of the bluntnose minnow. It spawns from late May to late August at water temperatures above \(70^{\circ} \mathrm{F}\). Females are estimated to produce about 2,500 eggs (Carlander, 1969).

The stoneroller occurs from southern North Dakota to Texas, east to the Appalachians and north to western New York. During the present study it was collected only at Station E in Logan Creek, where it was abundant. Permanent flow is not an essential habitat requirement for stonerollers because they live in pools throuchout much of the year. Their diet consists of diatoms, blue-gr: \({ }^{2}\) a algae, and larvae of aquatic insects, which they obtain by scraping the thin film of organic material from the substrate. Spawning occurs from late March to May, with maximum activity occurring when the water temperature reaches \(65^{\circ} \mathrm{F}\) (Carlander, 1969).

\subsection*{2.3.6.2.2 Species Composition, Age, and Growth}

During the present study, the fish fauna of Logan Creek was almost as diverse as that of the Missouri River near the site. Compared to the Missouri, Logan Creek generally has lower turbidity, slower waters, more varied substrates, a greater abundance of plantonic and benthic fish food organisms, and at least some vegetation, which, though sparse, could provide fish with food and protection. These conditions are more favorable for certain species and provide more diverse habitats than are found in the Missouri River near the site.

Logan Creek's flow characteristics create its varied habitats. The creek is subject to frequent water level fluctuations; these are caused by surface runoff in the immediate area or by water backing up into the creek from an increased discharge in the Missouri River. During periods of low flow, isolated pools of water may be created in the stream's upper reaches. These pools may have high water temperatures and depleted oxygen in warm weather.

Certain species, such as bluegills, longear sunfish, white crappie, creek chubs, and bullheads, are better able than other species to tolerate the type of habitat conditions found in Logan Creek (Hynes, 1972). In the upper reaches of Logan Creek, where the stream is free flowing, with riffles and small pools,
typical riffle habitat species - Johnny darter, logperch, and redbelly dace - are also found. These fish have certain features that help them adapt to this type of habitat: negative buoyancy, created by the absence of swim bladders, or modified fins, which allow the fish to stay in the riffle current.

There were two sampling stations, \(D\) and \(E\), on Logan Creek.
Station D was located on the Missouri River floodplain, downstream from the confluence of Logan and Mud Creeks. The most abundan species at this station were the bluegill sunfish, a sport speries, and the gizzard shad and mosquitofish, both forage species. Other sport species found at Station D were the white crappie, largemouth bass, and one fingerling freshwater drum. Other forage species collected were the blackstripe topminnow and the brook silverside.

Station E was located in the creek's upper reaches, which are freeflowing, with riffles and small pools. Three forage species, the stoneroller, bluntnose minnow, and blackstripe topminnow, were the most abundant species. Other forage species collected at this station were the redfin shiner, southern redbelly dace, logperch, sand shiner, and Johnny darter. Game species captured were the bluegill, green, and longear sunfish, the bluegillgreen sunfish hybrids, and the brown bullhead (classified in Missouri as rare: Miller, 1972).

Mosquitofish were the most abundant species found in Logan Creek, comprising over 20 percent of the total number collected, although it was found only at Station \(D\). The cecond most abundant species was the bluegill sunfish, which comprised over 16 percent of the total. Captured bluegills ranged from \(98-174 \mathrm{~mm}\) total length. The blackstripe topminnow, comprising over 12 percent of the total, was the third most abundant species. The gizzard shad, bluntnose minnow, and the stoneroller were also among the more abundant species. The bluntnose minnow was found only at Station E. Green sunfish comprised about 4 percent of all fish collected. About 3 percent of captured fish were longear sunfish; these ranged from 92 to 139 mm total length and were 1 to 2 years old. The largemouth, the brown bullhead, the carp, and the river carpsucker comprised the remaining species collected. The carp and river carpsuckers were present in very low numbers (Table 2.3.6-6).

Altogether, 27 species from 11 families were collected from the two Logan Creek stations during July, September, and December, 1973, and February, 1974 (Table 2.3.6-2). Larger numbers of fish, as well as more species, were collected in July than in the other sampling periods (Table \(2.3 .6-6\)); this may nave reflected recent spawning activities, because many specimens collected were young of the year. By September, spawning had ended for most species; fish that had migrated to tributaries like Logan Creek to spawn had probably returned downstream.

\subsection*{2.3.6.2.3 Food Habit Studies}

A total of 11 stomachs from fish captured in Logan Creek during July and September were analyzed for stomach contents. The results are summarized in Table \(2 \cdot 3 \cdot 6-7\). No stomach samples were taken in December or February.

Two of the 11 stomachs were empty, but the remaining nine primarily contained beetle larvae, crustaceans, and dipterans. Only seven different types of organisms were identified. This low number of fish food organisms in Logan Creek samples relative to Missouri River samples probably reflects the difference in numbers of stomachs examined.

THERMAL TOLERANCES OF CERTAIN FRESIWATER FISIILS AS DETERMINED BY LABORATORY EXPERIMENIS

Acclimation
Temperature \({ }^{\circ} \mathrm{F}\)

Final Lethal
Temperature \({ }^{\circ} \mathrm{F}\)
\begin{tabular}{|c|c|c|}
\hline Shovelnose sturgeon & - & \(82.4-86.0\) \\
\hline Paddlefish & - & \(82.4-86.0\) \\
\hline Longnose gar & - & \(96.8-100.4^{\text {b }}\) \\
\hline Shortnose gar & - & \(96.8-100.4{ }^{\text {b }}\) \\
\hline Gizzard shad & 86.0 & \(96.6{ }^{\text {c }}\) \\
\hline Skipjack herring & - & \(89.6-93.2\) \\
\hline Carp & - & \(96.8-100.4\) \\
\hline Sicklefin chub & - & \(86.0-89.6^{\text {L }}\) \\
\hline Stoneroller & - & \(89.6-93.2\) \\
\hline River carpsucker & - & \(86.0-89.6\) \\
\hline Largemouth buffalo & - & \(89.6-93.2\) \\
\hline Smallmouth buffalo & - & \(89.6-93.2\) \\
\hline Blue catfish & - & \(93.2-96.8{ }^{\text {b }}\) \\
\hline Black bullhead & - & \(93.2-26.8\) \\
\hline Yellow bullhead & - & \(93.2-96.8\) \\
\hline Channel catfish & 77.0 & \(93.2{ }^{\text {d }}\) \\
\hline Flathead catfish & - & \(93.2-96.8\) \\
\hline Mosquitofish & 95.0 & 98.6 \\
\hline White bass & - & \(86.0-89.6\) \\
\hline Largemouth bass & 86.0 & \(101.5^{\text {c }}\) \\
\hline Green sunfish & - & 93.2-96.8 \\
\hline Longear sunfish & - & \(93.2-96.8^{\text {b }}\) \\
\hline Bluegill & 86.0 & \(93.2{ }^{\text {d }}\) \\
\hline White crappie & - & \(93.2-96.8\) \\
\hline Freshwater drum & - & \(93.2-96.8^{\text {b }}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {All }}\) temperatures from Bush et al. (1972), except those otherwise noted.
\({ }^{b}\) Estimated from data on nearest related species.
"Battelle's Columbus Laboratories (1971).
\(\mathrm{d}_{\text {Wurtz }}\) and Renn (1965).
}

\(x \times x \times x\) \(x>x\) X \(x\) \(x\)
FAMILY CYPRINIDAE (continued) Hybopsis yracilis Phenacobius mirabilis Notropis atherinoides Notropis rubellus Notropis umbratilis Notropis shumardi Notropis zonatus
Notropis lutrensis Notropis stramineus
Notropis topeka
Notropis heterolepis \(\frac{\text { Notropis }}{\text { Notropis }}\) buchacellus
Phoxinus erythrogaster Hybognathus argyritis Hybognathus placitus Pimephales notatus CATOSTOMIDAE
Carpiodes carpio
Carpiodes cyprinus
Carpiodes velifer
Catostomus commersoni
 Hypentilium nigricans

TABLE 2.3.6-2 (Continued)

\section*{FAMILY}

Species
CATOSTOMIDAE (Continued)
Tctiobus cyprinellus
Ictiobus bubalus
Moxostoma duquesnei
Moxostoma erythrurum
Moxostoma macrolepidotum
ICTALURIDAE
Ictalurus furcatus
Ictalurus melas
Ictalurus natalis
Ictalurus nebulosus
Ictalurus punctatus
plyodictis olivaris
Noturus exilis
Notorus Flavus
CYPRINODONTIDAE
Fundulus catenatus
Fundulus olivaceus
Fundulus notatus
POECILIIDAE
Gambusia affinis
ATHERINIDAE
Labidesthes sicculus

PERCICHTHYIDAE
Morone chrysops

\section*{Common Name}

Largemouth buffalo
Smallmouth buffalo
Black redhorse
Golden redhorse
Northern redhorse

Blue catfish X
\begin{tabular}{cl}
\(\frac{\text { Missouri River }}{}\) & \begin{tabular}{l}
Logan \\
Pflieger \\
\\
Creek \(^{\text {d }}\)
\end{tabular}
\end{tabular}

X
X X
X

X
Black bullhead
Yellow bullhead
X
X
Brown bullhead
Channel catfish
Flathead catfish
Slender madtom
X
X
X
X
X
Stonecat
X

Northern studfish X
Black spotted topminnow X
Blackstripe topminnow X

Mosquitofish X

Brook silverside X

X

X

X
x

X

X

White bass
X
X
X
\(x \times\)
\(x \times x \times x\)
\(x \times x\)

PERCIDAE
Stizosteidon canadense
\(\frac{\text { Percina phoxocephala }}{\text { Percina }} \begin{aligned} & \text { Etheostoma } \\ & \frac{\text { Etheostoma }}{\text { Etheostoma }} \frac{\text { nigrum }}{\text { Spectabile }} \frac{\text { Elabellare }}{\text { Eunctulatum }} \\ & \frac{\text { Etheostoma }}{\text { Etheostoma }} \text { exile } \\ & \text { SCIAENIDAE } \\ & \text { Aplodinotus grunniens }\end{aligned}\).
\[
\begin{aligned}
& \text { Sauger } \\
& \text { Slenderhead darter } \\
& \text { Logperch }
\end{aligned}
\]
Sauger

TABLE 2.3.6-3
NUMBERS AND SIZE RANGES (TOTAL LENGTH IN MM) OF FISH TAKEN FROM THE MISSCURI RIVER DURING EACH SAMPLING PERIOD
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & Julx. & September & December & Total Al1 Surveys & Percent of Total Catch \\
\hline Chestnut lamprey & & & \(5(31,-325)^{\text {a }}\) & 5 & 0.8 \\
\hline Shovelnose sturgeon & & 1 (618) & 5 (347-642) & 6 & 0.9 \\
\hline Longnose gar & 1 & \(10(562-93\) ?) & 1 (653) & 12 & 1.9 \\
\hline Shortnose gar & \(2(542)\) & \(9(4.5-608)\) & & 11 & 1.7 \\
\hline Gizzard shad & 5(129-325) & 116 (78-398) & 297(72-329) & 418 & 65.8 \\
\hline Skipjack herring & & \(2(302,346)\) & \(13(134-375)\) & 15 & 2.4 \\
\hline Goldeye & & \(3(9 \bar{z}-248)\) & & 3 & 0.5 \\
\hline Mooneye & & & 3(211-296) & 3 & 0.5 \\
\hline Northern pike & & & \(1(670)\) & 1 & 0.2 \\
\hline Carp & & \(23(205-545)\) & \(27(277-668)\) & 50 & 7.9 \\
\hline Emerald shiner & & & qualitative \({ }^{\text {b }}\) & & - \\
\hline Reafin shiner & & & qualitative & & \\
\hline River carpsucker & 1 (445) & 23 (168-427) & 5(132-443) & 29 & 4.6 \\
\hline Quillback & 1(3.0) & & \(3(390-476)\) & 4 & 0.6 \\
\hline Highfin carpsucker & & & 1 & 1 & 0.2 \\
\hline Longnose sucker & & & 1 (494) & 1 & 0.2 \\
\hline White sucker & & & 1 & 1 & 0.2 \\
\hline Largemouth bu£falo & & & \(3(426-512)\) & 3 & 0.5 \\
\hline Smallmouth buffalo & & & 1:165) & 1 & 0.2 \\
\hline Blue catfish & 11 & \(4(418-540)\) & & 5 & 0.8 \\
\hline Channel catfish & \(1(2) \cdots)\) & & & 1 & 0.2 \\
\hline Flathead catfish & \(2(3, .336)\) & 1 (204) & & 3 & 0.5 \\
\hline White bass & 1 & & & 1 & 0.2 \\
\hline Largemouth bass & & \(2(233,510)\) & & 2 & 0.3 \\
\hline Bluegill & & 1 (104) & 1 (64) & 2 & 0.3 \\
\hline
\end{tabular}

TABLE 2.3,6-3 (Continued)
\begin{tabular}{lllllll}
\multicolumn{1}{c}{ Species } & July & & & & September & \\
Total All \\
Surveys
\end{tabular}\(\quad\)\begin{tabular}{c}
Percent of \\
Total Catch
\end{tabular}

\footnotetext{
\({ }^{a}\) All length data available is included in parentheses.
b.to numerical data were recorced.
}

> TABLE \(2 \cdot 3 \cdot 6-4\)
> AGE, GROWTH AND CONDITION OF GIZZARD SHAD TAKEN FROM MISSOURI RIVER DURING SEPTEMBER AND D:CEMBER, 1973

SEPTEMBER
Mean Condition Factor (\(\mathrm{K}_{\mathrm{TL}}\))
\(\begin{array}{ll}\text { on } & \text { in } \\ 0 & 0\end{array}\) \begin{tabular}{l}
\(\infty\) \\
0 \\
\hline
\end{tabular} Nू
ת.
0 10
\(\infty\)
0 \(\begin{array}{lll}\text { a } & 0 \\ 0 & 0 \\ 0 & -1\end{array}\) \(\begin{array}{lllll}0 & 0 & - & \infty & \infty \\ \dot{n} & \vdots & + & \infty \\ 0 & 0 & 0 & 0\end{array}\)
\[
08 \varepsilon-2 \nabla
\]
\[
88 z-b z
\]
\[
\begin{aligned}
& \tilde{o} \\
& \stackrel{1}{+} \\
& 1 \\
& \infty \\
& \underset{-1}{\infty}
\end{aligned}
\]
\[
\begin{aligned}
& \underset{\sim}{N} \\
& \underset{\sim}{1} \\
& \vdots \\
& 0 \\
& \hline
\end{aligned}
\]
\[
\infty \text { へิ }
\]
\[
6 \angle T
\]
\[
\stackrel{\sim}{\sim}
\]
\[

\]
Sample

DECEMBER

\[
\frac{\text { Truai }}{\text { Mean }} \frac{\text { Length }(\mathrm{mm})}{\text { Range }}
\]
\[
267
\]
\[
\frac{\text { Weight }(\mathrm{gm})}{\text { Mean }} \quad \text { Range }
\]
\[
\begin{array}{r}
2-22 \\
12-42
\end{array}
\]
\[
5-9: c: 3 \text { उग्रुए }
\] - -
\[
\text { TABLE } 2,3,6-5
\]

\[
\begin{gathered}
\text { Organic Inorgani } \\
\text { Matorial Matorial }
\end{gathered}
\]
\[
\begin{aligned}
& \text { Unidentified } \\
& \text { Organic Inorganie }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Inorganie } \\
& \text { Matex ial } \\
& \hline
\end{aligned}
\]

UUNEERS AND SIZE RANGES (TOTAL LENGTH IN MM) OF F'SH TAKEN FROM LOGAN CREEK DURING EACH SAMPLING PERIOD
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & July & September & December & February & Total A11 Surveys & Fescent of Total Catch \\
\hline Goldeye & & & & \(3(138-156)\) & 3 & 0.9 \\
\hline Gizzard shad & \(17(40-162)^{\text {a }}\) & 10 & & & 27 & 7.8 \\
\hline Carp & \[
5(109-157)
\] & & & & 5 & 1.4 \\
\hline Redfin shiner & \[
5
\] & & & & 5 & 1.4 \\
\hline sand shiner & & & 1 & & 1 & 0.3 \\
\hline Red shiner & & & 1 & & 1 & 0.3 \\
\hline Southern redbelly dace & 4 & & & & 4 & 1. 2 \\
\hline Bluntnose minnow & 12 & & & 12 & 24 & 6.9 \\
\hline Stoneroller & 15 & & & 1 & 16 & 4.6 \\
\hline River caspsucker & \(6(59-119)\) & & & & 6 & 1.7 \\
\hline Quil1back & qualitative & & & & & \\
\hline Yellow bullhead & & 8 & & \(2(143,214)\) & 10 & 2.9 \\
\hline Brown bullhead & \(2(114,1 i 8)\) & 8 & & & 10 & 2.9 \\
\hline Blackstripe topminnow & 5) & 15 & & 23 & 43 & 12.4 \\
\hline Mosquitofish & 20 & 25 & 25 & & 70 & 20.2 \\
\hline Erook silverside & 5 & & & & 5 & 1.4 \\
\hline Largemouth bass & \(6(55-220)\) & \(2(147,149)\) & & 1 (266) & 9 & 2.6 \\
\hline Green sunfish & 2 & & \(5(111-178)\) & \(7(74-198)\) & 14 & 4.0 \\
\hline Longear sunfish & 1 (1.25) & & \(4(92-127)\) & \(6(96-139)\) & 11 & 3.2 \\
\hline Bluegil1 & 28 & \(10(139-174)\) & \(3(98-103)\) & \(16\left(8^{9}-155\right)\) & 57 & 16.5 \\
\hline - & & & & & & \\
\hline Bluegill-green sunfish & & & & & & \\
\hline hybrid & \(2(101,110)\) & & & & 2 & 0.6 \\
\hline White crapple & \(8(116-173)\) & & & \(3(65-1 \mathrm{EO})\) & 11 & 3.2 \\
\hline Logperch & 3 & 1 & & & 4 & 1.2 \\
\hline Stippled Garter & 1 & & & & 1 & 0. 3 \\
\hline Johnny darter & 2 & 4 & & & 6 & 1.7 \\
\hline Lowa darter & qualitative & & & & & \\
\hline creshwater dxum & 1 & & & & 1 & 0.3 \\
\hline TOTAL ALE SPECIES & 150 & 63 & 39 & 74 & 346 & \\
\hline
\end{tabular}

\footnotetext{
all length cata availaile is inclucied in parentleses.
bao numerical data were recorded.
}

TABLE 2.3,6-7
ITEM ANALYSIS OE STOMACH CONTENTS OF PISH FROM LOGAN CREEK COLLECTED DURING JULY AND SEPTEMHER, 1973 (NUMBERS REPRESENT PERCENT OF WEIGHT)

\section*{July}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fish Species & Number of Stomachs Examined & Number of Empty Stomachs & Odonata & Ephemeroptera & Hemiptera & Coleoptera & Diptera & Crustacea & Fish & Unidentified Organic Material & Mean Weight/ Stomach & Total Weight \\
\hline Largemout Bass & 2 & 1 & 21 & & & 79 & & & & & 0.14 & 0,14 \\
\hline White Crappie & 4 & 0 & & 14 & 31 & & 41 & & 14 & & 0.07 & 0.29 \\
\hline \[
\begin{aligned}
& \text { Hybrid } \\
& \text { Sunfish }
\end{aligned}
\] & 3 & 1 & 21 & & & & & 79 & & & 0,55 & 1.11 \\
\hline & & & & & Septomber & & & & & & & \\
\hline Logperch & 2 & 0 & & & & & 60 & & & 40 & 0.17 & 0.35 \\
\hline TOTALS & 11 & 2 & & & & & & & & & & \\
\hline
\end{tabular}

\subsection*{2.3.7 ECOLOGICAL SUMMARY}

The abundance and diversity of aquatic biota near the site have been limited by naturally occurring excessive turbidities and fluctuating water levels. Low primary productivity has resulted from heavy silt loads, which reduce the amount of light available for photosynthesis by phytoplankton organisms. Because these small organisms represent an important aspect of the aquatic food web, their low productivity is similarly reflected in higher trophic levels. As with plankton, fish and macroinvertebrate productivity near the site is relatively low compared to other large river systems, although nutrient levels are sufficiently high to support larger aquatic populations. Most of the nutrients apparently are obtained from allochthonous materiais transported to the aquatic system.

Human activities have modified the aquatic ecology by further increasing the turbidity, channelization of the Missouri River, acid mine and agricultural runoffs, and municipal and industrial effluents. Channelization has resulted in the elimination of backwaters and marshy areas valuable as aquatic habitats. Because of this, relatively unpolluted tributaries, such as Logan Creek, have become increasingly important as aquatic habitats, especially if they provide spawning and nursery sites for fish.

Discharge appears to be the major influence on Missouri River water quality. During the present survey, turbidity and suspended solids generally varied directly with river discharge, while total dissolved solids and conductivity varied inversely. Recorded maximum historical values for chemical oxygen demand (COD), turbidity, total dissolved solids (TDS), and total iron were exceeded in the river during April, 1973. These values were extremely high because the data were collected during a near-record flood, when runoff was unusually high. Although, as mentioned previously, TDS values generally decrease during flood conditions, sudden increases in discharge, such as occurred during April, produce first water higher in mineral content than the dilute runoff water. Low pH values were recorded during April; they fell below the state standard of 6.5 at one station. These low values probably resulted from acid mine runoff upstream from the site.

The state standard for fecal coliform bacteria (\(2000 / 100 \mathrm{ml}\)) was exceeded at four stations 1. April, one station in September, and all six river stations in July and December. Fecal coliform bacteria are indicative of relatively recent pollution. Historically, and during the survey, the heavy metals, copper and cadmium, were found in concentrations that may be toxic to aquatic chyanisms. Whether and to what extent this will effect the Missouri River biota depends upon the extent of their exposure to high concentrations and the presence of other stresses. Chlorinated pesticides were present in Apriil, but only in low concentrations. Analyses for specific pesticides in July, September, and December samples showed all concentrations to be below detectable limits.

Data from the present study indicate that water quality is generally higher in Logan Creek than in the Missouri River. Chemical concentrations are generally lower in the upper reaches of the creek than nearer the river, but fecal coliform counts are higher in the upper section, reflecting human influence. Low pH and dissolved oxygen values were recorded for the lower section of the creek; thie condition may limit aquatic productivity.

Relatively low phytoplankton and zooplankton levels in the Missouri Ri:er near the site apparently are related to high current velocities, excessive turbidities, and a lack of adjoining lentic waters. Seasonal fluctuations in plankton populations during the present study are typical of large temperate rivers in which populations almost always show a summer maximum and winter minimum. An inverse relationship between plankton numbers and flow was also found throughout the present study. The plankton composition of the Missouri River is also typical of temperate stream and reflects seasonal variations in temperature and light. Green and blue-green algae attained their maximum development during the warmer months, while the phytoplankton communities in winter were largely composed of diatoms. Most of the principal taxa collected during the July, September, and December surveys are classified as true plankters. However, the principal taxa collected in F'ebruary were all benthic diatoms, reflecting the scouring effect of the high discharge. Rotifers attained their maximum densities in the warmer months and were particularly abundant in September zooplankton samples. Higher rotifer densities are usually associated with warm water of high clarity and low turbidity, conditions prevailing during the Sevtember sampling period. Copepod crustaceans were the most numerous zooplankters in December and February; apparently temperature is not a controlling factor in their distribution. The principal zooplankton taxa were primarily planktonic.

Plankton populations in Logan Creek during July and September were substantially higher than in the Missouri River. The more stable substrate, lower current velocities, and lower turbidities of Logan Creek appear to be more favorable for plankton. Winter phytoplankton populations in the creek were similar to those in the Missouri River, while winter zooplankton populations were slightly lower. Phytoplankton was consistently more abundant upstream than downstream, probably reflecting the more favorable rock and gravel substrate upstream.

Vascular hydrophytes are completely absent in the Missouri River, their absence being caused by excessive turbidity, fluctuating water levels, and the instability of fine substrates. Hydrophytes have been found in Logan Creek, although they are sparse. Their presence here can probably be attributed to the creek's more stable substrates and lower turbidities, since these factors favor plant colonization.

The species composition, diversity, abundance, and standing crop of benthic organisms in the Missouri River are low. Major factors
limiting benthos appear to be channelization and reduction of favorable habitats, flooding and high water velocities, excessive turbidity and shifting substrates. The effects of some of these factors were apparent at the sandy-bottomed, mid-channel benthos stations, which had a lower species diversity and biomass than the north shore benthos stations. Although improved conditions, lower currents, and more silty substrates characterized north shore stations, species composition and densities were still low. Species diversity indices suggest that the Missouri River mid-channel stations were grossly polluted, while north shore stations were moderately polluted. Pollution, in this context, refers to physical stresses such as high current velocities, excessive turbidity, and unsuitable substrates. Chemical stresses occur in the river, but their effects on the benthos in the study area appear to be minor. Burrowing dipteran larvae, oligachaete, and mayfly nymphs, which are adapted to survive turbid high flow, conditions, were generally numerically dominant in the samples, but coleopterans, trichopterans, odonates, and pelecypods were also collected.

Benthic densities in Logan Creek were higher than in the Missouri River, but their numbers were still low compared to other systems. The downstream station was numerically dominated during all sampling periods by oligochaetes, while dipterans, mainly chironomids, were the second most abundant group. The upstream station was dominated by dipterans during July and September, while oligochaetes became dominant in December and February. Species diversity indices suggest that the downstream station is moderately polluted and the upstream station is unpolluted. The lower species diversity at the downstream station probably reflects its location in the Missouri River floodplain, where hothos are subject to high temperatures, lower dissolved oxygen, grepter turbidities, and more pronounced water level fluctuations than benthos upstream in Logan Creek, where water quality is higher.

The fisheries of the Missouri River near the site are limited by high turbidities, swift currents, and unstable sand and silt substrates. These adverse factors act not only directly, but also indirectly by limiting the production of planktonic and benthic fish food organisms as previously discussed. During the present study, 28 fish species representing 13 families were collected. The gizzard shad was the most abundant species collected in the river near the site and comprised about 66 percent of all fish collected. Condition factor analyses of gizzard shad revealed low values (compared with other studies). These low condition factors were probably related to the conditions restricting production of fish food organisms. Carp was the second most abundant species, though it comprised only about 9 percent of the total catch. From 1965 to 1971, carp was the most abundant species in commercial catches from the Missouri River. The white crappie 'va" ho most abundant sport fish collected during the survey and t. a nost abundant of all species captured, comprising about 3 par nt of the total. Catfish are the sport fish most frequently _ . \(i+1\) in the river near the site, but only a few were collected

\section*{during the survey.}

Because of habitat changes in the Missouri River, small streams like Logan Creek have become increasingly prominent as spawning and nursery areas for fish. During the present study the fish fauna of Logan Creek was almost as diverse as that of the Missouri River near the site. Twenty-seven fish species from 11 families were collected. Compared to the Missouri, Logan Creek generally has lower turbidity, slower waters, more varied substrates, a greater abundance of fish food organisms, and at least some vegetation that could provide fish with food and protection. Mosquitofish and bluegills were the most abundant species collected in Logan Creek, comprising over 20 and 16 percent of the total, respectively. Species collected included the brown bullhead, classified in Missouri as rare.

\section*{2.4}

The Missouri River is in an early stage of maturity, as indicated by meandering channels, eroding banks, channel scour, and high sediment content. This river has been called "Big Muddy" and "Muddy Mo" because of its high turbidity. The river near the site exhibits many existing stresses, the majority of which have resulted from human activities. The prime stresses affecting the aguatic ecology near the site include excessive turbidity, channelization of the Missouri River, acid mine and agricultural run-offs, and municipal and industrial effluents. These factors have all directly or indirectly contributed to the reduced production and low biotic abundance and diversity within the Missouri River.

Major factors influencing the aquatic system near the site apnear to be channelization, turbidity, and surface run-off. Turbidity and water quality changes from surface run-off are directly related to channelization. Channelization results in a more immediate transport of run-off water downstream and prevents normal modification of water quality. Channelized water, having a greater velocity, reduces the possibility of suspended particles settling out of the water column and increases the erosional potential that results in higher turbidities. Channelization also has resulted in elimination of productive backwaters and marshy habitats. Because of this, tributaries to the Missouri River have become increasingly important as aquatic habitats, especially if they provide spawning and nursery sites for fish.

The plant intake and discharge structures were located so as to minimize any of the Callaway Plant's adverse ecological effects, especially with regard to Logan Creek. The intake structure was designed to reduce impingement of fish and the discharge effluent to meet water quality standards. Because of these construction and operational considerations, and the already limited biota production in this section of the Missouri River, no major impacts are anticipated.

It is recommended, however, that aquatic monitoring be continued during the construction and operation phases of the project to determine their effects, if any, on the aquatic ecosystem. Monitoring will provide a basis for mitigation measures should adverse impacts occur.

Ahlstrom, E. H. 1940. A review of the Rotatorian genera Brachionus and Platyias with descriptions of one new species and two new varieties. Bull. Amer. Museum Natural History 77 (3) \(: 143-184\).
1943. A revision of the Rotatorian genus Keratella with descriptions of three new species and five new varieties. Bull. Amer. Museum Natural History 80 (12):411-457.

American Public Health Association. 1971. Standard methods for the examination of water and wastewater. 13th ed. Vashington, D. C. 874 pp .

Anderson, D. W. 1969. Factors affecting phytoplankton development and autotrophism in a highly mineralized, holomictic northern prairie lake. Ph. D. Thesis, University of North vakota. 166 pp .

Ballentine, R. K. et al. 1970. Water quality of the Missouri River Gavins Point Dam to Hermann, Missouri. Federal Water Quality Administration, Cincinnati.

Battelle's Columbus Laboratories. 1971. Water quality criteria data book. Effect of chemicals on aquatic life. U. S. Environmental Protection Agency, Washington, D. C.

Beck, W. M. 1968. Chironomidae. Chapter 5 in keys to the water quality indicative orqanisms, Southeastern U. S. Fred Parrish, ed. Federal Water Pollution Control Administration.

Berner, L. M. 1947. A limnological survey of the Missouri River from its mouth to the Iowa state line during summer of 1945 . Masters Thesis, University of Missouri.
1951. Limnology of the lower Missouri River, ECology 32:1-12.

Blum, J. L. 1956. The ecology of river algae. Bot. Rev. 22:291-341.
Brinkhurst, R. 0. 1964. Studies on the North American aquatic Oligochaeta l:Naididae and Opistocystidae. Proc. Acad. Nat. Sci. philadelphia. 118:1-33.
1956. Studies of the North American aguatic Oligochaeta 1. Tubificidae. Proc. Acad. Nat. Sci. Philadelphia. 117:117-172.

Brooks, J. L. 1957. The systematics of North American Daphnia. Conn. Acad. of Arts and Sci., Vol. XIII. Yale University Press, New Haven.

Brown, H. P. 1972. Aquatic dryopoid beetles (Coleoptera) of the United States. Biota of freshwater ecosystems manual no. 6 . U. S. Environmental Protection Agency. 82 pp .

Burks, B. D. 1953. Mayflies or Ephemeroptera of Illinois. Illinois Nat. Hist. Survey Bull. 26. 216pp.

Calhoun, A. (ed.). 1966. Inland fisheries management. State of California, Resources Agency, Dept. of Fish and Game.

Carlander, Y. D. 1969. Handbook of freshwater fishery biology. Vol. 1. Iowa State University Press, Ames.

Chu, S. P. 1942. The influence of the mineral composition of the medium on growth of planktonic algae. Part 1. Methods and culture media. Jour. of Ecology 31 (2):284-325.

Conover, W. J. 1971. Practical nonparametric statistics. John Tiley and Sons, Inc., New York. 462 pp .

Cross, F. B. 1967. Handbook of the fishes of Kansas. Museum of Natural History Miscellaneous Publication No. 45, University of Kansas, Lawrence. 357 pp.

Curry, L. L. 1958. Larvae and pupae of the species Cryptochironomus (Diptera) in Michigan. Limnol. and Oceanogr. 3:4 \(\overline{27-442}\).

Damann, K. E. 1951. Missouri River Basin plankton study. Federal Security Agency, Public Health Service, Environmental Health Center, Cincinnati.

Dames \(\%\) Moore. 1974. Callaway Plant, units 1 and 2, environmental report. Prepared by Dames of Moore, Cincinnati, Ohio.

Eddy, S. 1969. The freshwater fishes. Wm. C. Brown Co., Dubuque, Iowa. 977 pp .

Eddy, S. and A. C. Hodson. 1961. Taxonomic keys to the common animals of the North Central states. Burgess Publishing Co., Minneapolis. 162pp.

Edmonson, W. T. (ed.). 1959. Ward and Whipple's fresh-water biology, 2nd ed. Wiley, New York. 1248pp.

Emig, J. W. 1966a. Bluegill sunfish. Pages 375-391 in Inland fisheries management. A. Calhoun, ed. State of California, Resources Agency, Dept. of Fish and Game.

1966b. Brown bullhead. In Inland fisheries management. A. Calhoun ed. State of California, Resources Agency, Dept. of Fish and Game.
. 1966c. Largemouth bass. Pages 332-353 in Inland
fisheries management. A. Calhoun, ed. State of California, Resources Agency, Dept. of Fish and Game.

Fassett, N. C. 1972. A manual of aquatic plants. (Revision appendix by E. C. Ogden) . University of Wisconsin Press, Madison. 405pp.

Pederal Water Pollution Control Administration. 1968. Water quality criteria. Report of the National Technical Advisory Committee to the Secretary of the Interior, Washington, D. C. 234 pp .

Fisher, H. J. 1962. Some fishes of the lower Missouri River. Amer. Midland Naturalist 68 (2):424-429.

Gammon, J. R. 1970. The effect of inorganic sediment on stream bjota. Water Quality Office, U. S. Environmental Protection Agency.

Gannon, J. E. 1972. Effects of eutrophication and fish predation on recent changes in zooplankton Crustacea species composition in Lake Michigan. Trans. Amer. Microscopic Soc. 91 (1):82-84.

Goodson, L. F., Jr. 1966. Crappie. Pages 312-331 in Inland fisheries management. A. Calhoun, ed. State of California, Resources Agency, Dept. of Fish and Game.

Hamilton, A. L., O. A. Saether, and D. R. Oliver. 1969. A classification of the Nearctic Chironomidae. Technical Report 124, Fisheries Research Board of Canada. Winnipeg, Manitoba.

Hansen, D. F. 1951. Biology of the white crappie in Illinois. Illinois Natural History Survey Bull. 25 (4):209-265.

Harlan, J. R. and E. B. Speaker. 1969. Iowa fish and fishing. Iowa Conservation Commission, Des Moines, Iowa. 365 pp .

Hem, J. D. 1959. Study and interpretation of the chemical characteristics of natural water. Geological Survey Water Supply Paper 1473. U. S. Government Printing Office, Washington, D. C. 269pp.

Hilsenhoff, W. L. and R. P. Narf. 1968. Ecoln \(g\) of Chironomidae, Chaoboridae and other benthos in 14 Wiscons.n Lakes. Ann. Of Ent. Soc. Amer. 61 (5):1173-1181.

Hiltunen, J. K. 1973. Keys to the tubificid and naidid Oligochaeta of the Great Lakes region. Great Lakes Fishery Laboratory Lab Guice. Unpublished.

Hollander, M. and D. A. Wolfe. 1973. Nonparametric statistical methods. John Wiley and Sons, Inc., New York. 503pp.

Holsinger, J. R. 1972. Freshwater amphipod Crustacea (Gammaridae) of North America. Biota of freshwater ecosystems manual no. 5 U. S. Environmental Protection Agency. 89 pp .

Hubbs, C. L. and K. F. Lagler. 1967. Fishes of the Great Lakes Region. University of Michigan Press, Ann Arbor. 213pp.

Hynes, H. B. N. 1972. The ecology of running waters. University of Toronto Press, Toronto. 555pp.

Jester, D. B. 1972. Iife history, ecology and management of the river carpsucker. Carpiodes carpio (Rafinesque), with reference to Elephant Butte Lake. Agricultural Experiment Station Research Report 243, New Mexico State University, Las Cruces.

Jester, D. B. and B. F. Jensen. 1972. Life history and ecology of the gizzard shad, Dorosoma cepedianum (Le Sueur), with reference to Elephant Butte Lake. Agricultural Experiment Station Research Report 218. University of New Mexico, Las Cruces.

Jude, D. J. 1973. Food and feeding habits of gizzard shad in Pool 19, Mississippi River. Trans. Amer. Fish Soc. 102 (2):378-383.

Kennedy, C. R. 1969. Variability of some characters used for species recognition in the genus Limnodrilus and Claparedeanus (Oligochaeta: Tubificidae). J. Nat. Hist. 3:53-60.

Mason, W. T. 1973. An introduction to the identification of chironmid larvae. Revised edition. U. S. Environmental Protectior Agency, Cincinnati, Ohio.

Miller, E. E. 1966. Channel catfish. Pages 440-462 in Inland fisheries management. A. Calhoun, ed. State of California Resources Agency, Dept. of Fish and Game.

Miller, R. R. 1972. Threatened freshwater fishes of the United States. Trans. Amer. Fish Soc. 101 (2):239-252.

Missouri Clean Water Commission. 1973. Water quality standards. Jefferson City, Missouri.

Mood, A. M. 1954. On the asymptotic efficiency of certain nonparametric two sample tests. Ann. Math. Statist. 25:512-522.

Odum, E. P. 1959. Fundamentals of ecology. W. B. Saunders Co., Philadelphia. 546 pp .

Palmer, C. M. 1962. Algae in water supplies. Public Health Service Publication No. 657. 88pp.

Pennak, R. W. 1953. Fresh-water invertebrates of the United States. Ronald Press, New York. 769pp.

Pflieger, W. L. 1971. A distr,butional study of Missouri fishes. Museum of Natural History, University of Kansas.

Prescott, G. W. 1962. Algae of the western Great Lakes area. Wm. C. Brown Co., Dubuque, Iowa. 799 pp .
1969. How to know the aquatic plants. Wm. C. Brown Co., Dubuque, Iowa. 181pp.
1970. The fresh water algae of the United States. MCGraw-Hill, New York. 719pp.

Purkett, C. A., Jr. 1963. The paddlefish fishery of the Osage River and the Lake of the Ozarks, Missouri. Trans. Amer. Fish Soc. 92 (3):239-244.

Roback, S. S. 1957. The immature Tendipedids of the Philadelphia area (Diptera: Tendipedidae). Proc. Acad. Nat. Sci. Philadelphia. Monogr. No. 9:1-152.

Robinson, J. W. 1973a. Collection and compilation of commercial fisheries harvest data in Missouri, 1965-1971. Final report, Investigations Projects, State of Missouri.

Ross, H. H. 1944. Caddisflies or Trichoptera of Illinois. Illinois Nat. Hist. Survey Bull. 23.

Siefert, R. E. 1969. Biology of the white crappie in Lewis and Clark Lake. Paper no. 22 in Technical papers of the Bureau of Sport Fisheries and Mildife. Bureau of Sport Pisheries and Wildife, U.S. Dept. of the Interior, vashington, D.C.
Siegel, S. 1956. Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York. 312pp.
Smith, G. M. 1950. Fresh-water algae of the United States. McGrawHill, New York. 719 pp .
Swedberg, D. J. and C. H. Walburg. 1970. Spawning and early life history of the freshwater drum in Lewis and Clark Lake, Missouri River. Trans. Amer. Fish Soc. 99 (3):560-570.
U. S. Department of the Army, Corps of Engineers. 1972a. Hydrographic survey, Rulo, Nebraska, to the mouth. Kansas City, Missouri.
U. S. Department of the Interior. 1966. A guide to the common diatoms at Water Pollution Surveillance System stations. Federal Water Quality Administration, Water Pollution Surveillance, Cincinnati, ohio. 101 pp .
U. S. Environmental Protection Agency. 1971. Methods for chemical analysis of water and wastes. EPA Analytical Quality Control Lab., Cincinnati, Ohio. 312 pp .
U. S. Geological Survey. 1972. Water resources data for Missouri. Parts I and II. University of Missouri-Rolla.

University of Missouri-Rolla. 1972. Missouri River environmental inventory: Rulo, Nebraska to mouth near St. Louis, Missouri. Vol. I and II. Report to the U. S. Department of the Army, Kansas

City District.
Usinger, R. L. and W. C. Day. 1968. Aquatic insects of California, University of California Press, Los Angeles. 508pp.

Weber, C. I. (ed.). 1973. Biological field and laboratory methods for measuring the quality of surface water and effluents. Office of Research and Development, National Environmental Research Center, Environmental Protection Agency, Cincinnati, Ohio.

Whitford, L. A. and G. J. Shumacher. 1969. A manual of the fresh water algae in North Carolina. North Carolina Agri. Experimental Station Tech. Bull. No. 188. 313pp.

Whitley, J. R. and R. S. Campbell. 1972. Water quality and biology of the Missouri River. Paper presented at the Annual Missouri Water Resources Resparch Center Conference, University of Missouri.

Wilhm, J. L. and T. C. Dorris. 1968. Biological parameters for water quality criteria. Bioscience 18:477-481.

Williams, L. G. 1964. I ble relationship between planktondiatom species numbers water quality estimates. Ecology 45:809-823.
1966. Dominant planktonic rotifers of major waterways of the United States. Limnol. Oceanogr. 11 (1):83-91.

Williams, W. D. 1972. Freshwater isopods (Asellidae) of North America. Biota of freshweter ecosystems Manual No. 7. U. S. Environmental Protection Agency. 45 pp .

Winona State College. 1970. Mayfly distribution as a water quality index. Water Quality Office, Environmental Protection Agency, U.S. Government Printing Office, Vashington, D.C.

Wilson, Clyde. Game Warden, Callaway County, Missouri. Personal Communication of 1 November 1973.

Wurtz, C. B. and C. E. Renn. 1965. Water temperatures and aguatic life. Cooling water studies for Edison Electric Institute. Johns Hopkins University, Baltimore.

Zweiacher, P. L. 1972. Population dynamics of largemouth bass in an 808-hectare Oklahoma reservoir. Ph. D. Dissertation. Oklahoma State University, Stillwater. 126pp.

\subsection*{3.1 INTRODUCTION}

Terrestrial bioloqical sampling of the Callaway Plant site, located in central Missouri, was conducted for the Union Electric Company, St. Louis, Missouri, between April 15, 1973, and February 15, 1974.

The Callaway Plant site is located in Auxvasse Township (T46N-R8W) in the southeast corner of Callaway county. The small town of Reform, \(5-3 / 4\) miles north of and 350 feet above the Missouri River on Coates Plateau, is located within the site boundary. The General Study Area, shown on Figure 3.1-1, included approximately 10 square miles of plateau and forested slopes. Within these two habitat types is a wide variety of terrain; this helps to produce the great diversity of flora and fauna found in this area of Missouri. A smaller area located with the General Study Area and designated the Intensive Study Area was the focus of the sampling program intensive field studies. Most surveys and all trapping were performed within the Intensive Study Area boundaries. Sampling was conducted during the spring (April 15-21), early summer (June 18-27), late summer (August 28-September 6), and fall (November 5-14) of 1973 and the winter (February 11-18) of 1974.

Cash cropping and beef production are principal land uses on the plateau, and beef production is the primary enterprise on forested slopes. Soils on the plateau, although well-structured, are generally poor for production of most agricultural crops. Soils on slopes are not used for cash crops because they are rocky, and the terrain is too steep for farm machinery. Drainage from the plateau is north into Cow and Auxvasse Creeks, west into Mud Creek, a . \(\frac{\text { I }}{}\) east-southeast into Logan Creek.

The 1-year ecological study conducted during 1973-74 on the Callaway Plant site served three major purposes: 1) to record and describe "important" species of flora and fauna utilizing the site area during the four seasons of the year; 2) to provide baseline data that could be used to develop a nonitoring program for detecting the effects of plant construction and operation on the environment; and 3) to offer recommendations to the Union Electric Power Company concerning the effect of construction on any "unique" or unusual habitats, animals, or combination of these two life forms found within zones of direct impact.

The results obtained from the initial spring and summer field surveys were not fully adequate and this precluded a thorough analysis of wildife populations (diversity and abundances) utilizing the site area, particularly areas within the zone of direct impact. There were two reasons why the initial data were not fully adequate. First, the spring sampling was restricted to an area about 2 miles from the geographic center of the site. Subsequently, after access to the actual site had been obtained, sampling points for plants
and animals were shifted to areas within the actual site environs. Data collected from these new points showed that much of the previously collected data were of limited value. Second, since the investigators had been instructed not to mention the site location, they did not contact any of the local residents who might have been of help in the overall sampling program. This and the restricted land access limited the amount of information gathered about the specific site area.

But in spite of these circumstances, the vegetation and wildife sampling was able to provide an overview of the ecology of the area, including species abundance and general habitat types. This information enabled a preliminary assessment of the site to be made and contributed baseline information necessary for development of a monitoring program.

This portion of the report is divided into five major sections: Introduction, Methods, Results and Discussion, Conclusion and Recommendation, and References. Most major sections are divided into subsections, the number of which depends on the complexity of the subject matter. The Methods and the Results and Discussion sections are subdivided by broad terrestrial parameters (Soils, Vegetation, Mammals, Birds, and Amphibians and Reptiles). The Results and Discussion section concludes with an Ecological Summary of the material in that section. The text then ends with a Conclusion and Recommendation section that offers a description of the anticipated effects of plant construction on the environment.

\subsection*{3.2 METHODS}

\subsection*{3.2.1 SOILS}

Basic information about the physical resource areas and soil series for the Intensive Study Area was obtained from the Soil Conservation Service, (1972c). This information has been transformed to show the relationship of resource areas to the Intensive Study Area (Figure 3.2.1-1).

\subsection*{3.2.2 VEGETATION}

Vegetation sampling in the Intensive Study Area was conducted from April to September, 1973. Sampling locations were selected following field reconnaissance and aerial photograph interpretation. Overstory, understory, and herbaceous vegetation was sampled in the forests, while herbaceous vegetation alone was sampled in the old field and pasture. Taxonomic identifications were made by the Dames \& Moore staff and verified at the Missouri Botanical Garden. Nomenclature follows Fernald (1970). Voucher specimens of plants found on the site were collected and placed on file at Dames 5 Moore, Chicago.

\subsection*{3.2.2.1 Forest}

Forest vegetation was sampled along eight transects (Figure 3.2.2-1). The number of sampling points established along each transect varied according to the number of samples required to sample each community adequately; species-area curves were developed to establish the number of samples necessary.

The number of sampling points and the distance between the points for each transect are as follows: \(\mathrm{FT}_{1}\) - 21 points, 100 feet apart; \(\mathrm{FT}_{2}\) - 19 points, 100 feet apart; \(\mathrm{FT}_{3}\) - 10 points, 150 feet apart; \(\mathrm{FT}_{3}\) b - 10 points, 100 feet apart; \(\mathrm{FT}_{4}\) - 15 points, 100 feet apart; \(\mathrm{FT}_{5}-15\) points, 100 feet apart; \({ }^{4} \mathrm{FT}_{6}-10\) points, 100 feet apart; FT, - 15 points, 100 feet apart; and \(E T\) - 10 points, 250 feet apart.

The forest overstory was sampled by the point-center quadrat method of Cottam and Curtis (1956). Density, dominance, and frequency were measured for each woody species greater than 1 inch in diameter at breast height (d.b.h.). These three parameters were then converted into their respective relative values and combined to yield an Importance Value (IV) for each of the species encountered. The Importance Value was used to assess the relative importance of each tree species in each forest community type.

The forest understory along transects \(\mathrm{FT}_{2}\) to FT , was measured by nested quadrats (Cox, 1967) at randomiy selected points along each forest transect. The density and frequency of woody understory species less than 1 inch d.b.h. but greater than 18 inches in height were recorded in \(13.1 \times 19.7\)-foot quadrats. Woody groundlayer species less than 18 inches in height were recorded in \(6.6 \times 16.4\)-foot quadrats.

The forest understory along transect \(E T_{8}\) was sampled differently to better quantify the diverse and abundant small woody and herbaceous species. All woody species greater than 24 inches in height but less than 1 inch in d.b.h. were recorded in \(16.4 \times 16.4-\) foot quadrats and woody species less than 24 inches in height and all herbaceous species were recorded in \(3.3 \times 3.3-\) foot quadrats.

Herbaceous vegetation along these forest transects (\(\mathrm{FT}_{1}\) to \(\mathrm{FT}_{\mathrm{g}}\)) was measured by a modified line intercept method of Oosting (1956). At randomly selected points along the forest transects, a 49.2-foot tape, subdivided into 30 equal intervals, was used to measure the frequency of herbaceous vegetation occurrence. Relative frequency was calculated from the frequency of plant occurrence.

\subsection*{3.2.2.2 Pasture and Old Field}

Two pastures and one old field were sampled (Figure 3.2.2-1). (An old field is a field where vegetation has been disturbed by man, then abandoned, and is now reverting to its natural state.) Sampling techniques were quadrats (sample location GQ, Figure 3.2.2-1) and a modified line intercept method (sample location G). Four \(3.3 \times 3.3\)-foot quadrats 100 feet apart were measured in the pasture \(\left(G Q_{1}\right)\), and two \(3.3 \times 3.3\)-foot, randomly selected quadrats were measured in the old field \(\left(G Q_{2}\right)\). Vegetative measurement was of frequency and density.

\subsection*{3.2.2.3 Miscellaneous Observations of Vegetation}

Voucher specimens of plant species encountered and identified during the wildife and general surveys but not collected during the quantitative vegetation surveys were collected by the terrestrial ecology field crew. Location, species, and date of collection were recorded.

\subsection*{3.2.3 MAMMALS}

Mammals were sampled by the three techniques described below. A record of all mammals observed during other phases of field work throughout the Intensive Study Area was kept by the investigators. Recorded information includes species, number of individuals and/or sign observed, date, habitat, and location.

\subsection*{3.2.3.1 Small Mammals}

Eight small mammal traplines (method of Kaufman et al, (1971), each having 15 stations 49.2 feet apart, yielding a total of 4,320 trap-nights, were permanently established during the early summer sampling period for use during successive sampling periods (Figure 3.2.3-1). Two Sherman collapsible live traps (\(9 \times 3 \times 3\) inches) and one Sherman non-collapsible live trap (\(12 \times 3 \frac{1}{2} \times 3\) inches) were set at each station along seven of these lines. The eighth trapline was set within a pasture; one rat snap-trap and two mouse snap-traps were used per station to minimize interference by cattle, which are attracted to metal traps. Traplines were established within several habitat types and along ecotones. All traps were baited with a mixture of peanut butter and rolled oats. Cotton balls were placed in each trap to provide bedding for captured individuals.

Traplines were checked each morning for 3 consecutive days. All mammals collected were identified to species (Burt and Grossenheider, 1964), weighed (100 g O'Haus spring scale), measured (total length, tail length, hind foot length, and ear length), sexed, and examined to determine breeding conditions. The measurements were used for species identification. Occasionally, individuals were found dead in the traps. These were removed, weighed (Dial-o-gram balance), and measured as described above. Individuals collected alive and those found dead constituted the voucher collections.

During the spring sampling period, several other traplines were temporarily established for preliminary sampling of the site's small mammal population. During the early summer sampling period, one trapline was established along a drainageway to determine whether the low number of captures along permanent traplines should be attributed to sampling metnods or to low population densities.

\subsection*{3.2.3.2 Large Mammals}

A rectangular grid pattern (Figure 3.2.3-1) enclosing approximately 1.5 square miles was established during the early summer sampling period for trapping large mamals. The actual placement of traps during any given survey at the theoretical field location was governed by the number of properties to which field investigators had access. Single-door wire mesh traps (\(32 \times 11\) x 13 inches) were used. Twenty-five traps were used during the
early summer; 34 were used during the remaining sampling periods.
During all sampling periods, all traps were baited with apples and bologna, left in position for 3 nights, and checked each morning, yielding a total of 420 trap-nights. Bait eaten by captured individuals was replenished.

Each individual captured was identified to species (Burt and Grossenheider, 1964), tajged in both ears with metal ear tags, weighed (Chatillon spring scale), measured, sexed, examined to determine breeding condition, and released. Recaptures had their tag numbers recorded or replaced if missing, and physical condition noted. The Schnabel method of population estimation (Smith, 1966) was used to determine population densities for species having one or more individual recaptures.

\subsection*{3.2.3.3 Evening Automobile Survey}

The evening automobile survey was conducted for 3 evenings during early summer, late summer, fall, and winter sampling periods. The survey began 1 hour before sunset on the first evening, at sunset on the second evening, and 1 hour after sunset on the third evening.

The survey route in relation to the Intensive Study Area is shown in Figure 3.2.3-2. Travel speed was 20 to 30 miles per hour. The car was stopped only when positive identification of a species needed to be made. Spotlighting was used to illuminate fields, ditches, culverts, and creeks. Two investigators recorded the species, notable activity, and number of individuals observed for all mammalian species.

\subsection*{3.2.4 BIRDS}

Avifauna was sampled by the three methods described below. A record was kept of all birds not expected to be commonly observed (gamebirds and those birds considered uncommon sightings) during the aviar surveys. Recorded information included the number of individuals and/or signs observed and location of each observation.

\subsection*{3.2.4.1 Avian Automobile Survey}

During the five sampling periods, an avian automobile survey was conducted to determine the variety and relative abundance of bird species on the Callaway Plant site and adjacent areas. The survey also was designed to establish the relationship between bird activity and the various habitat types found along the automobile survey route.
The following habitat types were identified aiong the automobile survey route:

Forest - Stands of mixed hardwoods or oaks with their associated understory species.

Second Growth Porest - A recently cut-over forest or an advanced sapling-shrub field.

Hedgerow - A strip of shrubs and/or trees, enclosing or separating agricultural fields.

Pasture-Shrub - Those lands used for the grazing of livestock where shrubby vegetation was in evidence throughout.

Old Field - A field disturbed by man's activities which has been left to revert to its natural vegetation, including cropland which has been idle for more than 1 year \(a^{3}\) on which uncultivated grasses, forbs, and shrubs have become established.

Pasture - Thuse lands dominated by grasses and forhs where grazing was apparent.

Creek Bottom - Intermittent creek and stream bottomassociated vegetation.

Agricultural Crops - Agricultural fields containing farm crops other than hay. During the spring, early summer, fall, and winter surveys these same fields may have been classed as "Agricultural Stubble." Crops were primarily wheat, soybeans, and corn.

Agricultural Stubble - Agricultural fields containing the crop residue.

Farm Dwellings - A general term for farm houses, outbuildings and small dwellings on farm land, whether abandoned or occupied.

Roadway - The road surface, fences, telephone poles and lines, transmission lines, and ground cover found within the right-of-way.

Hayfield - Cultivated fields where grasses and legumes are periodically harvested as feed.

The avian automobile survey (method of Robbins and Van Velzer, 1967) was conaucted by driving along 19 , mile-long seqments on county and state roads (Figure 3.2.3-2). The method outlined by Robbins and Van Velzer was modified by conducting the survey 3 days instead of 1 day, establishing more than one stop point per segment, and daily changing the segment sequence of the route and directics of travel through each segment. Three stop points, app.oximately \(1 / 4\)-mile apart, were established within each of the 19 segments. These modifications were made to obtain a more accurate index of bird activity within each segment. Investigators stopped for 3 minutes at a different stop point each day. During each stop, the investigators got out of the automobile and stood by the roadside to listen for and observe birds in the area. All bird species observed or identified by call while driving or at a stop were recorded by habitat type and segment. Travel speed was 15 to 20 miles per hour. The survey began at sunrise and lasted for 3 to 4 hours. Length of time required to complete the survey depended upon the amount of time necessary for species identification, number of species observed, amount of automobile traffic along the survey fute, and weather.

Equipment used included \(7 \times 35,7 \times 50\), and \(10 \times 50\) binoculars and field guides by Peterson (1947) and Robbins et al, (1966). Taxonomic nomenclature follows the American Ornithologists, Union Check-1ist (1961).

\subsection*{3.2.4.2 Avian Strip Survey}

Two avian strip surveys (Figure 3.2.3-1) were conducted to determine the variety and relative abundance of bird species using selected habitats at the site. A modification of the strip census (Pettingill 1970), the surveys were used to obtain an index of activity for the more elusive woodland and openfield bird species in order to supplement the avian automobile survey data. The census method was modified to yield only relative abundance data by discounting the unit area sampled. Each survey route was designed to be near the small mammal traplines and to cross one or more major habitats on the site.

The survey began at sunrise and lasted approximately 2 hours on each of 3 days. Birds encountered were recorded by species, number and habitat type. Habitat types identified along these survey routes have been previously described in Section 3.2.4.1, with the following additions:

Forest Edge - The abrupt ecotone between a forest and another habitat where only a very narrow stri? of vegetation exists between the two habitats.

Fallow Field - An agricultural field which is normally planted to crops but which has been left untilled this year, generally devoid of stlbble and sparsely populated with herbaceous plants.

Plowed Field - An agricultural field which is planted in soybeans.
Wheat Fiold - An agricultural field which is planted in wheat.

Harvested Hayfield - A hayfield which has been recently harvested.

Several of the classifications listed above are not necessarily riw habitat types, but the result of continuing agricultural practices which changed the character of the habitats between sampling period.

Equipment used included the previously mentioned binoculars and field guides. Taxonomic nomenclature follows the American Ornithologists' Union Check-1ist (1961).

\subsection*{3.2.4.3 Evening Automobile Survey}

An evening automobile survey, consisting of driving along 19 segments on county and state roads throughout the general study areas was conducted during early summer, late summer, fall, and winter sampling periods. The survey ran for 3 consecutive evenings and began 1 hour before sunset the first evening, at sunset on the second evening, and 1 hour after sunset on the third evening. The route was identical to the evening automobile survey route described in Section 3.2.3.3. Avifauna data were recorded and handled like the mammalian and amphibian data collected at the same time.

\subsection*{3.2.5 AMPHIBIANS AND REPTILES}

Amphibians ana reptiles were sampled during the Evening Automobile Survey, described in Section 3.2.3.3. Species activity, anj number of individuals were recorded. A record was kept of all amphibians and reptiles observed or identified during all other phases of field studies. Field identification and scientific nomenclature follow Conant (1958).

\subsection*{3.3.1 SOIL.S AND VEGETATION}

Northern Missouri is covered with glacial drift deposited during the last glaclal period (Krusekopf, 1962). The southern edge of this drift is roughly delineated by the Missouri River. The terrestrial Intensive Stuay Area is located on soils derived from glacial drift parent material. Characteristics of these soils are given in Table 3.3.1-1.

A major portion of the Union Electric Company Callaway Plant will be constructed on a Flat Prairie (Figure 3.2.1-1). This physical resource area is composed of two r.ajor soil types, the Mexico and Putnam series. The Mexico series has a brown silt loam surface, a silt loam subsurface, and a solum thickness of 20 to 40 inches. The Putnam soil has a silt loam surface, a heavy silty clay subsurface, and a solum thickness ranging from 36 to 50 or more inches (Soil Conservation Service, 1972b, 1972d). Both soils have a claypan about 17 inches below the soil surface (Krusekopf, 1962) ; this restricts leaching of rainwater to lower depths. During periods of heavy rainfall, water accumulates in the upper 17 inches. The relatively shallow claypan, which restricts both moisture and root growth to the upper soil horizon, is one of the principle factors favoring development of tall prairie grassland. Agriculture, however, is quite prominent in the area; very little native prairie vegetation exists as a result.

Two other resource areas Iound within the plant site boundary are Rough Stony Land and River Hills. Goss series is the major soil series of the Rough Stony Land resource area. It has a solum depth of 60 to 90 inches and gradients ranging from 8 to 45 percent (Soil Conservation Services, 1972 a). Menfro is the major soil series of the River Hills. It has a solum depth of about 50 to 7 C or more inches and gradients ranging from 3 to 30 percent (Soil Conservation Service, 1971). Both of these soils series have a moderate permeability that permits water permeation throughout the soil horizons. Consequently, forests have developed as the native vegetation on these soils. Because both the Rough Stony Land and River Hills resources areas have steep gradients, cultivation is limited, and upland forests are the most common vegetation found on these two resource areas. Both resource areas have a potential productivity site index of 60. (The site inder is an expression of forest site quality based on the height of a free-grrwing dominant or codominant tree at age 50 (Spenser and Thorne, 1972]).
The terrestrial Intensive Study Area (Figure 3.2.1-1) is composed of about 50 percent prairie and 50 percent forest. A species list of all plants identified in the Intensive Study Area is given in Appendix 3A-1.

\subsection*{3.3.1.1 Forest}

Forest communities of the site have been classified in accordance with the Society \(f\) American Foresters (1967) and have been divided into four forest vegetation types within the OakHickory Association: oak forest, oak-hickory forest, oak-maple forest, and black walnut-red cedar forest.

\section*{Oak Forests}

The most abundant forest community found o the site was oak forest; four of the ight forest transects \(\left(\mathrm{FT}_{2}, \mathrm{FT}_{3}, \mathrm{FT}_{4}\right.\), and \(\mathrm{FT}_{7}\); see Figure \(3.2 .2-1\)) were situated in forests dominated by oaks. White oak was the most important overstory tree species, as indicated by an average Importance Value (IV) of 34 among the four stands (Table 3.3.1-2). To compare different stands and different layers within each stand, the IV has been adjusted to 100 (the highest attained value). Only the most dominant plants are given in Table 3.3.1-2. Some species were not found in all four oak stands but were impertant within the stand in which they were found: red oak, white ash, sugar maple, and redbud. Fragrant sumac (average IV=20) was the only species found in the upper and lower woody understory of all oak stands (Table 3.3.1-2). Virginia creeper was also common in the lower understory of three stands, with IV's of \(30.9,4.3\), and 52.5 . Other species of importance in the woody lower understory of oak forests were Carolina rose, green ash, white oak, and sugar maple.

The variety of herbaceous vegetation differed in oak forest. Two stands had five species, and one stand had 18 species. Oak forest herbs were mostly unidentified grasses, globose cyperus, and hor-peanut, with average relative frequencies of 36,27 , and 25 , respectively.

The four oak forest stands vary in their value for wildlife. They all hal relatively little green, seed-producing vegetation and lacked the cover required by small mammals for survival. Value of a forest type for wildife was determined by species composition and stand density. Forest sampled by transects FT3 and ET4 were of low value due to the low number of plants in the understory. In the zero to 18 -inch size class (vegetation utilized by whitetailed deer and cottoncail), only 3,700 and 3,500 stems per acre were found. This lack of cover and food sources discourages mice, ground squirrels, and voles. Forest understory along FTr 2 had a greater number of stems per arre than the two transects mentioned above; however, it was low in herbaceous plant diversity, with only five species present. Forest along FT? w:s high in value for wildlife; the understory was very dense,
with 130,000 stems in the zero to 18 -inch class. White-tailed deer, cottontail, small mammals and their predators would be favored by this last forest type.

Oak forests, besides producing seedlings and small grains for wildife, also produce numerous acorns; these are favored by white-tailed deer, fox squirrel, gray squirrel, and "wild" turkey (Martin et al, 1961; Murphy and Crawford, 1970; Bent, 1963c; Smith and Follmer, 1972; Korschgen, 1954). Wildife have been found to respond directly to the availability of acorns (Goodrum et al, 1971). Availability of acorns influences reproductive success, survival, population size, and condition of squirrel (Allen, 1943) and deer (Duvendeck, 1962).

Murphy and Crawford (1970) found that white oak forests produced a mean of \(34 \pm 6\) pounds per acre of preferred deer foods during spring and summer and \(24 \pm 4\) pounds per acre during fall and winter. White oak forests also produce \(15 \pm 3\) pounds per acre of grasses and \(19 \pm 3\) pounds per acre of forbs, foods preferred by turkey. A few of the preferred deer foods within the Intensive Study Area are sumacs, sugar maple, sassafras, red cedar, coral berry, grape, poison ivy, tick trefoil, goldenrod, and aster. Preferred turkey foods include foxtail, panic grass, sedge, avens, bedstraw, clover, goldenrod, wood sorre1, smartweed, and ragweed (Murphy and Crawford, 1970).

Basing their calculations on pounds of deer food available during each season, Murphy and Crawford (1970) estimated that \(16 \pm 3\) deer per square mile could be supported within the white oak forest type during summer months and \(4 \pm 1\) deer per square mile during winter months. The difference in carrying capacity between the two seasons is attributable to die-back of succulent green vegetation during winter.

\section*{Oak-Maple Forest}

Two forest stands sampled (FT \({ }_{5}\) and \(\mathrm{FT}_{6}\)) were of the oak-maple type (Figure \(3 \cdot 2 \cdot 3-1\)). Although both stands were dominated by oak and maple, they differed in species composition. In one stand, \(\mathrm{FT}_{5}\), sugar maple and red oak were the two most important species in the overstory, with Importance Values of 28 and 22 , respectively (Table \(3.3 .1-3\)). Other trees of importance within this stand were white oak (IV=16) and hop-hornbeam (IV=9). The other cak-maple stand, \(\mathrm{FT}_{6}\), was dominated by a mixture of white oak (IV=14) and sugar maple (IV-23). Of less community importance in this second stand were white ash (IV=8) and bitternut hickory (IV=8).

Woody understory in oak-maple forest stands contained many sugar maple saplings (Table 3.3.1-3). Relative density of these maple saplings in both stands represented approximately 56 percent of the total number of stems counted. Green ash was also an important upper understory component in both stands, having

Importance Values of 14 and 26 , respectively. Other important species were slippery elm (IV=14) and fragrant sumac (IV=9 and 12).

Woody ground layer in the two oak-maple stands was dominated by fragrant sumac and sugar maple, with Importance Values of 15.3 and 12.9 , respectively (Table 3.3.1-3). Fragrant sumac was present in the sugar maple-red oak stand (IV=15) but was not present in the stand of sugar maple-white oak.

Herhaceous vegetation in oak-maple forest stands was sparse. liog-peanut and Bowman's root were the most important species in the sugar maple-red oak stand, while grass was dominant in the other stand (Table 3.3.1-3). These two forest stands have been affected by logging, as indicated by numerous stumps, felled trees, and sack of a developed overstory. The two forests had 3,200 and 6,900 stems per acre in the zero to 18 -inch class and six and four species, respectively, in the herbaceous layer. Forest along transect FTs has a higher value for wildlife than that along transect \(\mathrm{FT}_{1}\) because of its greater density of understory species.

Mast produced by oaks and sugar maple provides food for larger forest animals during fall, winter, and early spring, while thick and diverse undergrowth along \(\mathrm{FT}_{5}\) can maintain high populations of small mammals and birds during summer months.

Murphy and Crawford (1970) found that \(62 \pm 11\) pounds per acre of preferred deer foods were produced during spring and summer in mixed hardwood forests and \(32 \pm 5\) pounds per acre were produced in fall and winter. The same forest type produced preferrred turkey foods at the rate of \(41 \pm 6\) pounds per acre of grasses and \(45 \pm 6\) pounds per acre of forbs.

\section*{Oak-Hickory Forest}

Only one forest transect \(\left(\mathrm{FT}_{1}\right)\) was in an oak-hickory forest type (Figure 3.2.2-1). Black and white oak were the most important species, having Importance Values of 25 and 18 , respectively (Table 3.3.1-4). However, shagbark hickory (IV=13) was also important within the community. Canopy closure in this forest was 50 to 80 percent, resulting in a sparse understory.

Woody understory was dominated by coral berry (IV=47). Species of less importance in the understory included shagbark hickory, hop-hornbeam, and white oak (IV's of 12,7 , and 9 , respectively). Oak-hickory forest woody ground layer was dominated by white oak and coral berry seedlings (IV's of 28 and 23 , respectively). Unlike the oak forest, the oak-hickory forest contained no fragrant sumac or Virginia creeper. The herbaceous vegetation in the oakhickory forest was dominated by a grass with a 46 percent relative frequency. Globose cyperus was also present, as was pale plantain, Canada goldenrod, violets, rough bedstraw, and rough avens.

This climax forest has a relatively high value for white-tailed deer, gray and fox squirrel, and "wild" turkey because of the acorns and nuts produced by the dominant trees. Murphy and Crawford (1970) estimated a summer deer population density of \(29 \pm 5\) deer per square mile and a winter population of \(5 \pm 1\) deer per square mile for this forest type. Sinall mammals, however, are not favored in the oak-hickory forest because it has a relatively thin understory and lacks seed-producing plants.

\section*{Black Walnut-Red Cedar Forest}

The black walnut-red cedar forested ravine bottom (\(\mathrm{FT} \mathrm{F}_{8}\)) was found along a drainage (Figure 3.2.2-1). The most important overstory species in this forest were black walnut and red cedar, with IV's of 29 and 27 , respectively (Table 3.3.1-5). Also present, but of lesser importance, were honeylocust (IV=8) and American elm \((I V=9)\). The canopy closure was small, permitting high productivity in the lower layers.

The understory was dominated by coral berry (IV=42) but also contained diverse and high-density vegetation in the zero to 18-inch class. Two species not previously encountered in other forest types were found here: common persimmon (IV=16, a pioneer woody species) and black walnut (IV=11). The diverse herbaceous vegetation in the understory included grasses, elmleaved goldenrod, daisy fleabane, hog-peanut, wild carrot, and mad-dog skullcap.

The black walnut-red cedar forest is suitable for a wide range of wildife, including whate-tailed deer, cottontail, coyote, cuckoo, and wood pewee. Black walnut and common persimmon are important food sources for white-tailed deer (Murphy and Crawford, 1970) and squirrels (Smith and Follmer, 1972). Murphy and rrawford estimated a deer population of \(16 \pm 3\) deer per square aile during summer months and \(73 \pm 29\) deer per square mile during winter. The increased carrying capacity in wincer is directly related to the density and diversity of fruit and seed-producing vegetation.

Of the four forest types found in the direct impact zones on the Callaway Plant site, the black walnut-red cedar was ecologically the youngest in terms of succession. It also had the greatest percent of open canopy, the greatest variety and density of herbaccous vegetation, and the highest value for wildlife.

\subsection*{3.3.1.2 Pasture and old Field}

The site-area non-forest vegetation is classified primarily as agricultural cropland, pastures, and old fields. The two pas* tures sampled had different compositions. The pasture on the Menfro soil (Table \(3 \cdot 3 \cdot 1-6\)) was dominated by buffalo clover (IV=64), Canada goldenrod (\(I V=59\)), and grass (\(I V=48\)). These plants are
early seral species in disturbed areas and persist in pastures. The second pasture (Table 3.3.1-7) was on Mexico-Putnam soil and was dominated by inland rush, white clover, Canada goldenrod, and elm-leaved goldenrod.

Abandoned cropland is ecologically classified as an old field, a very early sere (stage) in plant suggession (see Section 3.2.2.2). Drew (1942), in his classic paper describing plant succession on abandoned cropland in Boone and Callaway counties, showed that a single pattern of plant succession occurs immediately following abandonment, regardless of the last crop grown. The year following abandonment, however, annual weeds do vary in composition and abundance according to the last crop grown. In old cornfields, fall panic grass, large crab grass, and common ragweed are the most abundant \(1 s t\)-year weeds. In small-grain fields, the most important are common ragweed, fall panic grass, trailing wild bean, bracted plantain, and horseweed.

The 2nd year following abandonment produces a number of perennials. There is an increase in the two principal old-field dominants, gray goldenrod and white heath aster. The 3rd year after abandonment, the annual dominants of the first 2 years decrease. while the absolute number of species and perennials increases. After 5 or 6 years, the herbaceous vegetation remains relatively homogeneous, with only local changes, until approximately 20 years after abandunment. Chief oid-field dominants then increase in importance until the old-field reaches 30 years.

Many abandoned fields 20 years old or more support a considerable woody vegetation. Development of woody vegetation begins with the establishment of shrubs and woody vines 5 to 6 years after cultivation ceases. Smooth and winged sumac are the most common shrubs invading cropland undergoing natural revegetation; they become established after perennial old-field dominants are established. Borders of abandoned fields are invaded by trees, where contiguous patches of forest exist. The establishment of woody vegetation in old fields is accelerated by the close proximity of a seed source. The old-field (Table 3.3.1-8) sampled during the present study, knotweed, white-oat grass, twicetoothed ragweed, roundseed paspalum, and yellow foxtail were important species, with IV's ranging from 17 to 55.

\subsection*{3.3.1.3 Miscellaneous Observations of Vegetation}

Thirty-eight plant species not collected during regular sampling were collected for voucher specimens. Eastern white pine, loblolly pine, scrub pine, and scotch pine were found on the only pine plantation within the Intensive Study Area. Bullace plum, sassafras, poison ivy, and hawthorn were shrubby-woody species found along hedgerows created by local farmers, who allow fencelines and drainages to develop into weedy and/or woody vegetation. Anierican ipecac, naked flowering scape trefoil, four-leaved milkweed, and hairy ruellia were found in forest herbaceous layers. The old-field habitat yielded clammy ground cherry, common milkweed, large-bracted tick-trefoil, and field garlic. A cumulative list of collected and/or identified plants appears in Appendix 3A.

TABLE 3.3.1-1
CHARACTERISTICS OF SOILS FOUND WITHIN THL INTENSIVE STUDY AREA, CALIAWAY COUNTY, MTSSOURI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Slope Gradient (percent)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Permeability }{ }^{e} \\
& (i n / h r)
\end{aligned}
\]} & \multirow[b]{2}{*}{Shrink/Swell Potential} & \multirow[b]{2}{*}{Saitability as Topsoil} & \multicolumn{2}{|l|}{Potential Yield} & \multirow[b]{2}{*}{Important Trees} & \multirow[b]{2}{*}{\begin{tabular}{l}
Site \\
Index
\end{tabular}} \\
\hline Series & & & & & Corn (bu.) & \[
\begin{gathered}
\text { Soybean } \\
\text { (bu.) }
\end{gathered}
\] & & \\
\hline Mexico \({ }^{\text {a }}\) & 1 to 5 & \(<0.05\) & Moderate & Fair & 90 & 40 & Upland Oak & 54 \\
\hline Putnam \({ }^{\text {b }}\) & 0 to 2 & <0.05 & Low & Poor & 80 & 30 & Upland Oak & 40 \\
\hline Menfro \({ }^{\text {c }}\) & 3 to 30 & \(<0.80\) to 2.50 & Low-Moderate & Fair-Good & 80-100 & 30-40 & Upland Oak & 60 \\
\hline Goss \({ }^{\text {a }}\) & 8 to 45 & \(<0.80\) to 2.50 & Low & Poor & -- & - & Upland Oak & 60 \\
\hline
\end{tabular}
a Soil Conservation Service, 19726 .
b Soil Conservation Service, 1972d.
c Soil Conservation Service, 1971.
d Soll Conservation Service, 1972a.
e Soil Survey Staff. 1951. Soil Survey mar... U.S. Dept. of Agriculture Handbook No. 18, p. 168.
\[
\begin{array}{ll}
m & r \\
m & \infty \\
m
\end{array}
\]
\[
\begin{aligned}
& \infty \quad m \text { m } \\
& \text { m an m m }
\end{aligned}
\]
\[
\begin{array}{ll}
0 & n \\
0 & \infty \\
0 & w
\end{array}
\]
TABLE \(3.3 .1-2\)
\[
\begin{gathered}
\text { Species } \\
\hline \text { White oak } \\
\text { Black oak } \\
\text { Post-oak } \\
\text { Flowering } \\
\text { dogwood } \\
\text { Shagbark } \\
\text { hickory } \\
\text { Sugar maple } \\
\text { White ash } \\
\text { Red oak } \\
\text { Bitternut } \\
\text { hickory } \\
\text { Basket-oak } \\
\text { Redbud } \\
\text { Fragrant sumac } \\
\text { Round-leaved } \\
\text { dogwood } \\
\text { Virginia } \\
\text { creeper } \\
\text { Green ash } \\
\text { Bristly } \\
\text { greenbrier } \\
\text { Frost grape } \\
\text { Rough-leaved } \\
\text { dogwood } \\
\text { Carolina rose } \\
\text { Grass } \\
\text { Plantain-leaf } \\
\text { everlasting } \\
\text { Hog-peanut } \\
\text { Globose } \\
\text { eyperus } \\
\text { Pale plantain } \\
\text { Wild bergamot } \\
\text { Florida lettuce } \\
\text { White kild } \\
\text { licorice } \\
\text { Crown-beard } \\
\text { Fis }
\end{gathered}
\]
 relative frequency and relative dominance divided by 3 .
\[
\begin{aligned}
& \text { dogwood } \\
& \text { Virqinia } \\
& \text { creeper } \\
& \text { Green ash } \\
& \text { Bristly } \\
& \text { greenbrier } \\
& \text { Frost grape } \\
& \text { Rough-leaved } \\
& \text { dogwood } \\
& \text { Carolina rose } \\
& \text { Grass } \\
& \text { Plantain-leaf } \\
& \text { everlasting } \\
& \text { Hog-peanut } \\
& \text { Globose } \\
& \text { cyperus } \\
& \text { Pale plantain } \\
& \text { Wild bergamot } \\
& \text { Florida lettuce } \\
& \text { White wild } \\
& \text { Licorice } \\
& \text { Crown-beard }
\end{aligned}
\]

\footnotetext{
Woody vegetation between 18 inches in height and 1 inch d.b.h. Importance value based on the sumation of the
relative density and relative frequency divided by 2 .
Woody vegetation less than 18 inches in heigit. Importance value based on the summation of the relative
density and telative frequency divided by 2 .
- Kכuanbax antietax uo paseq antea voyzezaban र́poom-uon p
}
\[
\begin{aligned}
& \text { SUMMARY OF IMPORTANCE VALUES FOR VEGETATION IDENTIFIED WITHIN FOUR OAK FOREST TYPES }
\end{aligned}
\]

\section*{IMPORTANT VEGETATION IDENTIFIED IN TWO OAK-MAPLE FOREST TYPES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{2}{|l|}{Overstory \({ }^{\text {a }}\)} & \multicolumn{2}{|l|}{Upper Understoryb} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Lower \\
Understory \({ }^{\text {C }}\)
\end{tabular}} & \multicolumn{2}{|l|}{Herbaceous Layer} \\
\hline Sugar maple & 27.5 & 22.6 & 34.2 & 45.6 & 4.0 & 12.9 & & \\
\hline Red oak & 22.3 & 3.2 & - & - & -- & -- & & \\
\hline White oak & 15.5 & 41.3 & -- & -- & 6.6 & 9.1 & & \\
\hline Hop-hornbeam & 8.8 & - & -- & -- & -- & -. & & \\
\hline Basket-oak & 5.8 & -- & -- & -- & -- & -- & & \\
\hline Slippery elm & 3.8 & -- & 14.1 & -- & 14.4 & --- & & \\
\hline Redbud & 3.7 & -- & 8. 2 & 8.4 & 5.3 & 11.0 & & \\
\hline Black oak & 3.9 & -- & -- & -- & -- & 9.1 & & \\
\hline White ash & & 7.9 & -- & -- & -- & -- & & \\
\hline Bitternut & & & & & & & & \\
\hline hickory & & 7.8 & -- & -- & -- & -- & & \\
\hline Red cedar & & 6.8 & 7.4 & -- & 4.0 & -- & & \\
\hline Shagbark hickory & & 5.1 & 3.7 & -- & 4.9 & & & \\
\hline Round-leaved & & & & - & 4.9 & & & \\
\hline dogwood & & 2.2 & -- & -- & 4.9 & 9.1 & & \\
\hline Green ash & & & 14.1 & 25.6 & 4.9 & 11.0 & & \\
\hline Fragrant sumac & & & 8.9 & 12.2 & 15.3 & 11.0 & & \\
\hline Frost grape & & & & 8.4 & 4.9 & -- & & \\
\hline Hog-peanut & & & & & & & 45.4 & 6.9 \\
\hline Bowman's root & & & & & & & 22.7 & \\
\hline Rough bedstraw & & & & & & & 15.9 & \\
\hline Broad-leaved panic-grass & & & & & & & 6.8 & \\
\hline Grass & & & & & & & 4.6 & 79.3 \\
\hline Common mullein & & & & & & & & 6.9 \\
\hline White avens & & & & & & & 2.3 & 6.9 \\
\hline
\end{tabular}
a Woody vegetation greater than 1 inch d.b.h. Importance valup is based on the summation of relative density, relative frecfuency and relative dominance divided by 3 .
ib Woody vegetation between 1.8 inches in height and 1 inch a.b.h. Importance Value is based on summation of relative density and relative frequency divided by 2.
c Woody vegetation less than 18 inches in height. Importance Value is based on summation of relative density and relative frequency divided by 2 .
d Non-woody vegetation. Value is based on relative frequency.

IMPORTANT VEGETATION IDENTIFIED IN AN OAK-HICKORY FOREST TYPE (FT \({ }_{1}\))
\begin{tabular}{cccc}
& Upper & Lower & Herbaceous \({ }^{\text {d }}\) \\
Species & Uverstory & Understory & Understoryc
\end{tabular}
Black oak 25.4
--White oak17.79.027.7
Shagbark
hickory13.112.09.010.42.74.6
Red cedar 7.4Pignut
hickory 6.3
Hop-hornbeam 1.4Coral berry7.247.42.75. 34.6
Black gum
8.423.112.7GrassGlobose cyperus
46.2
13.5
5.8

Pale plantain
5.8

Canada goldenrod 5.8
a Woody vegetation greater than 1 inch d.b.h. Importance Value is based on summation of relative density, relative frequency and relative dominance divided by 3 .
b woody vegetation between 18 inches in height and 1 inch d.b.h. Importance Value is based on summation of relative density and relative frequency divided by 2 .
c Woody vegetation less than 18 inches in height. Importance Value is based on summation of relative density and relative frequency divided by 2.
d Non-woody vegetation. Value is based on relative frequency.

IMPORTANT VEGETATION IDENTIFIED ALONG A WOODED RAVINE BOTTOM (ET8)
\begin{tabular}{|c|c|c|c|}
\hline Species & Overstory \({ }^{\text {a }}\) & Understory \({ }^{\text {b }}\) & \begin{tabular}{l}
Herbaceous \({ }^{c}\) \\
Layer
\end{tabular} \\
\hline Black walnut & 29.2 & 11.2 & \\
\hline Red cedar & 27.2 & 7.1 & \\
\hline American elm & 8.6 & & \\
\hline Honey-locust. & 7.6 & 7.5 & \\
\hline Red oak & 6.3 & & \\
\hline Slippery elm & 5.9 & & \\
\hline Redbud & 5.5 & & \\
\hline Common persimmon & 5.0 & 15.9 & \\
\hline Coral berry & & 41.7 & \\
\hline Round-leaved dogwood & & 5.7 & \\
\hline Grass & & & 20.0 \\
\hline White oat-grass & & & 10.1 \\
\hline Elm-leaved goldenrod & & & 8.2 \\
\hline Broad-leaved spike grass & & & 7.9 \\
\hline Daisy fleabane & & & 7.6 \\
\hline Hog-peanut & & & 7.3 \\
\hline Witchgrass & & & 7.2 \\
\hline Wild carrot & & & 5.1 \\
\hline Mad-dog skullcap & & & 5.1 \\
\hline
\end{tabular}
a Woody vegetation greater than 1 inch d.b.h. Importance Value is based on summation of relative density, relative frequency and relative dominance divided by 3 .
b Woody vegetation between 24 inches in height and 1 inch d.b.h. Importance Value is based on summation of relative density, relative frequency and relative dominance divided by 3 .
c All vegetation less than 24 inches in height. Importance Value is based on summation of relative density, relative frequency and relative dominance divided by 3 .

TABLE 3.3.1-6
HERBACEOUS VEGETATION \({ }^{a}\) ANALYSIS
OF A PASTURE, CALLAWAY COUNTY, MISSOURI
\begin{tabular}{lcccc}
\multicolumn{1}{c}{ Species } & \begin{tabular}{l}
Relative \\
Frequency
\end{tabular} & \begin{tabular}{c}
Relative \\
Density
\end{tabular} & \begin{tabular}{l}
Relative \\
Dominance
\end{tabular} & \begin{tabular}{c}
Importance \\
Value
\end{tabular} \\
\hline Buffalo clover & 10.00 & 12.15 & 41.44 & 63.59 \\
Canada goldenrod & 10.00 & 38.46 & 10.88 & 59.34 \\
Grass & 10.00 & 12.15 & 25.90 & 48.05 \\
Yarrow & 10.00 & 9.31 & 11.27 & 30.58 \\
Twice-toothed ragweed & 10.00 & 6.48 & 2.08 & 18.56 \\
Baldwin's ironweed & 5.00 & 6.07 & 1.04 & 12.11 \\
Blue vervain & 5.00 & 4.86 & 1.43 & 11.29 \\
Pale plantain & 5.00 & 2.02 & 1.94 & 8.96 \\
Pilose Aster & 5.00 & 2.02 & .78 & 7.80 \\
Common cinquefoil & 5.00 & 1.21 & 1.55 & 7.76 \\
Partridge pea & 5.00 & 2.02 & .26 & 7.28 \\
Little bluestem & 5.00 & 1.21 & .39 & 6.60 \\
Wild carrot & 5.00 & .81 & .65 & 6.46 \\
Hogwort & 5.00 & 5.00 & .81 & .26
\end{tabular}
a Sampled by quadrats along \(\mathrm{GQ}_{2}\), Figure \(3.2 .2-1\).

HERBACEOUS VEGETATION ANALYSIS IN A PASTURE TRANSECT \(G_{1}+G_{2}\), CALLAWAY COUNTY, MISSOURI
\begin{tabular}{lcc}
& \begin{tabular}{c}
Zrequency \\
of \\
Occurrence
\end{tabular} & \begin{tabular}{c}
Relative \\
Frequency
\end{tabular} \\
\hline Inland rush & .96 & 30.1 \\
White clover & .47 & 14.7 \\
Canada goldenrod & .39 & 12.2 \\
Elm-leaved goldenrod & .37 & 11.6 \\
Clover & .30 & 9.4 \\
Globose cyperus & .22 & 6.9 \\
Red clover & .20 & 6.3 \\
Low hop-clover & .08 & 2.5 \\
Horse nettle & .07 & 2.2 \\
Yellow wood sorrel & .04 & 1.3 \\
Common ragweed & .03 & .9 \\
Tall ironweed & .03 & .9 \\
Yarrow & .02 & 99.9
\end{tabular}

\footnotetext{
a Number of quarter-meter intervals within which a species occurred along two 15-meter tapes.
b Percent.
}

HERBACEOUS VEGETATION \({ }^{a}\) ANALYSIS OF AN OLD FIELD, CALLAWAY COUNTY, MISSOURI
\begin{tabular}{ll}
Species & \begin{tabular}{l}
Relative Relative Relative \\
Frequency Density Dominance
\end{tabular} \\
Smportance \\
Srelue
\end{tabular}
\begin{tabular}{lrrrr}
Knotweed & 6.56 & 12.31 & 36.25 & 55.12 \\
White oat-grass & 3.28 & 30.28 & 14.24 & 47.80 \\
Twice-toothed ragweed & 6.56 & 11.31 & 14.24 & 32.11 \\
Roundseed Faspalum & 6.56 & 12.79 & 4.66 & 24.01 \\
Yellow foxtail & 4.92 & 8.35 & 3.88 & 17.15 \\
Rough buttonweed & 6.56 & 4.38 & 4.08 & 15.02 \\
Hogwort & 6.56 & 2.83 & 5.57 & 14.96 \\
Western ironweed & 3.28 & 2.69 & 4.14 & 10.11 \\
Globose cyperus & 6.56 & 1.08 & 1.36 & 9.00 \\
Mad-dog skullcap & 6.56 & 1.21 & 1.10 & 8.87 \\
Spotted spurge & 4.92 & 1.08 & 2.27 & 8.27 \\
Florida lettuce & 3.28 & 2.76 & 1.42 & 7.46 \\
Crabgrass & 3.28 & 2.02 & .91 & 6.21 \\
Horse nettle & 4.92 & .40 & .91 & 6.23 \\
Slender rush & 3.28 & 2.08 & .58 & 5.94 \\
Pink wild bean & 3.28 & 1.01 & 1.17 & 5.46 \\
Witchgrass & 3.28 & 1.41 & .52 & 5.21 \\
Little bluestem & 3.28 & 1.08 & .78 & 5.14 \\
Pilose aster & 3.28 & .20 & .71 & 4.19 \\
Daisy fleabane & 3.28 & .13 & .32 & 3.73 \\
Three-sided mercury & 1.64 & .27 & .65 & 2.56 \\
Yarrow & 1.64 & .20 & .13 & 1.97 \\
Common cinquefoil & 1.64 & .20 & .06 & 1.77 \\
Yellow wood sorrel & 1.64 & .07 & .06 & 1.77
\end{tabular}
a Sampled by quadrats along \(\mathrm{GQ}_{1}\), Figure 3.2.2-1.

\subsection*{3.3.2 MAMMALS}

A list of all species identified on the site is presented in Table 3.3.2-1. Species are listed by ecological habitat, feeding habit, and number of identifications. The number and species of mammals trapped in the spring, early summer, and fall sampling periods are shown in Table 3.3.2-2.

The greatest number and diversity of captures occurred in early summer. Of eight species captured, the white-footed mouse and the opossum had the highest number of recaptures-eight and seven, respectively. Deer mice and opossum were captured during each of the three remaining sample periods. Raccoons were captured only during late summer and winter.

\subsection*{3.3.2.1 Small Mammals}

A total of only seven white-footed and 17 deer mice were captured during 4,320 trap nights in four seasons. All captures of the white-footed mouse were along hedgerows (Traplines 4, 8, and 9). Four males, ranging in weight from 15.5 to 25.5 grams, were captured. The weight of the three females captured had a smaller range: 17.2 to 24.1 grams. Deer mice, captured in greater number than white-footed mice, were found in a variety of habitats. Four females and 13 males were trapped in hedgerows, old fields, and wheat fields. Female deer mice ranged in weight from 10.2 to 36.0 grams, with a mean of 19.5 grams; males had a range of 12 to 27 grams, with a mean of 1.9 grams.

In Missouri, north of the Missouri River, the pine vole, meadow jumping mouse, ground squirrel, and hispid cotton rat normally have low population levels (Elder, 1974); they were not captured in the Intensive Study Area during any of the four trapping periods.

Small mammal populations found in the Intensive Study Area are, compared to previous population studies, very low. During 4,320 trap-nights, a total of 25 individuals and two species were captured. These results are far below those found during a less intensive study conducted by Elder (1974) in the Tucker Prairie (C'allaway County, Missouri) preceding the fall of 1972. Elder's conclusion, based on yearly trapping, indicates the existence of a highly significant, regional small mammal population decline. An increase in the affected mammal populations is expected in 1974-1975.

Cyclic fluctuations in small mammal populations have been attributed to changes in the variety and amounts of food
(Jameson, 1955), competition (Christian, 1971), habitat disturbance (LoBue and Darnell, 1959), and habitat changes through succession (odum et al, 1962). Prairie voles (not captured, but expected to occur on the site), white-footed mice, and deer mice are subject to significant population declines about every 4 years (Godfrey, 1955; Elder, 1974; Christian, 1971).

\subsection*{3.3.2.2 Large Mammals}

The opossum (Table 3.3.2-3) was the species most often captured during the large mammal sampling program. Twenty different individuals were captured at least once. Total population was estimated at 35 individuals during the late summer sampling period; however, the estimate at 95 percent confidence limits (Giles, 1971) was not statistically valid because the estimated population was between 5 and 201 animals. A lack of recaptures precluded a population size estimate during the remaining trapping periods.

One opossum (No. 1332/1333) was recaptured twice. During approximately 69 days between sampling periods, this individual, recaptured \(1 / 2 \mathrm{mile}\) and 1 mile from its origional point of capture, added 1.4 kg to its weight. Five other opossum were recaptured; each exibited increased weight and movement up to \(1 / 2\) mile from the initial capture point.

The opossum is a wandering solitary mammal whose susceptibility to extremely cold winter weather causes fluctuations in abundance throughout its range and within local populations (Schwartz and Schwartz, 1971). Jackson (1961) estimated a population density of one opossum per square mile in Wisconsin. Schwartz and Schwartz (1.971) state that an individual opossum may move up to 2 miles during a night in search of food. Considering these two findings, it can be assumed that the population around the Callaway County site was very high during early summer, when 14 opossum were captured within a 1.5 -square mile grid.

Opossum are omnivorous, feeding on insects, carrion, birds, eggs, fruit, and corn (Martin et al, 1961). Stomach analysis by Reynolds (1945) showed that in total volume and frequency of occurrence, insects are the most important food item.

Seven raccoons (Table 3.3.2-4) were captured during early summer, late summer, and winter sampling periods. Males ranged in weight from 4.5 to 5.9 kg and in total length from 580 to 770 mm . Two captured female raccoon weighed 4.9 and 4.5 kg and had a total length of 750 and 500 mm , respectively.

Seven different raccoon were captured during the 420 trapnights; the greatest number captured during any one period was four. This occurred in both early and late summer sampling periods.

Raccoon population density in the Intensive Study Area could not be determined because of a lack of recaptures. The values obtained per period will be considered minimum densities. Urban (1970) estimated raccoon population density in Ohio at 45 raccoons per square mile. In a Michigan Study, Stuewer (1943) estimated 20 raccoons per square mile during spring. Compared to these estimates, our estimated minimum population densities are low even when natural variance by season is assumed.

Both plant and animal matter make up the raccoon's diet, including fruits (persimmon, grape, plum, osage orange, corn, acorns, blackberries), crayfish, fish, clams, eggs, and the young of various aquatic wildife (Korschgen, 1952). Martin et al (1961) stated that oaks, corn, persimmon, pokeweed, and grape were common winter foods. These foods are scattered throughout the Intensive Study Area.

Four uther mammals were trapped only once or twice during the 1973-74 baseline study period (Table 3.3.2-5). A woodchuck, two cott ontail, and a long-tailed weasel were trapped once, and a st-iped skunk was captured twice. The low number of captures and recaptures for these species eliminated any attempt to estimate their population size.

The wildife captured by trapping exhibit preferences for specific habitats. The raccoon preferred wooded drainageways located in the northeast and southern portions of the Intensive Study Area. The opossum sought interspersed habitat type, such as the flat prairie, where farming practices have produced a network of hedgerows, old fields and croplands traversed by drainageways, random scattered farm buildings, and ponds. The cottontail preferred an interface of brushy fields and forest edges (ecotones) where cover and food were readily available. The woodchuck, a burrowing animal, favored rocky or sandy sloping land for its burrow. It feeds almost entirely on veqetative matter. The long-tailed weasel, a rare species in Missouri, inhabited thickets, woodlands, and fencerows. A nearby source of drinking water is a prerequisite in its choice of habitat.

\subsection*{3.3.2.3 Evening Automobile Survey}

Six mammals, the cottontail, coyote, opossum, raccoon, skunk, and white-tailed deer, were identified during the evening automobile survey (Table \(3 \cdot 3 \cdot 2-6\)). Two speries, the coyote and white-tailed deer, were not sampled by trapping. Cottontail were usually observed along roadways at dusk and had 3 -day means of four, one, and two individuals during early summer, late summer, and winter sampling periods. Eleven, three, and five individuals per 19 miles of road were observed during the above mentioned sampling periods (an average of \(0.6,0.2\), and 0.3 cottontail per mile.) A similar survey was conducted by the Missouri Department of Conservation (1973) along 6,406 miles of survey route. They estimated 1.01 rabbits per mile. Comparison of these two values
indicates that the Intensive Study Area supported a smaller cottontail population than is average for the State of Missouri.

White-tailed deer were observed only during early summer and fall sampling periods. The number of deer (7) observed in the fall is lower than the densities expected for the forest types described in Section 3.3.1.1; white oak, mixed hardwood, and red cedarhardwood forest types can support 16,29 , and 17 deer per square mile in the summer. It is therefore assumed that the upward trend in deer numbers described by Nagel (1970) will continue, and that the maximum Intensive Etudy Area carrying capacity for this species has not been reached.

\subsection*{3.3.2.4 Miscellaneous Observations of Wildlife}

Species inhabiting the site but not observed during the more intensive mammal surveys include bat, eastern mole, fox squirrel, gray squirrel, and muskrat (Talle 3.3.2.7). The bat was observed during the fall sampling period at a forest edge; its species could not be determined due to poor lighting. Eastern mole tunnels were observed at the interface between a hedgerowdrainageway and pasture.

Fox and gray squirrels were usually observed in hedgerows, along the forest edge, and within forests. Squirrel populations normally fluctuate from year to year. For example, during a 6 -year period in Ohio, Nixon and McClain (1969) recorded squirrel populations of \(47,54,85,77,128\), and 22 individuals per 100 acres. Burkalow et al, (1970) found similar fluctuations within the gray squirrel population in North Carolina. Six continuous spring estimates for 100 acres were \(34,100,36,41,26\), and 60 . The number of squirrels noted during the field work cannot be directly compared to these estimates -ecause of differences in sampling technique. Miscellaneous observation is a qualitative technique, whereas trapping is a quantitative one.
\[
\tau-z^{\circ} \varepsilon \cdot \varepsilon \text { आTgษル }
\]

Community Type
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{FEEDING HABIT \(\qquad\)} & \multicolumn{3}{|l|}{Forest Types} & \multirow[t]{2}{*}{Roadway} & \multicolumn{5}{|l|}{Agricultural Types} \\
\hline & Forest & Creek Bottom & Forest Edge & & Pasture and Cropland & \[
\begin{gathered}
\text { old } \\
\text { Field } \\
\hline
\end{gathered}
\] & Farmstead & Hedgerow & Pond \\
\hline \multicolumn{10}{|l|}{HERBIVORES-GRANIVORES} \\
\hline White-footed mouse & & & & & & & & \(7^{\text {b }}\) & \\
\hline Deer mouse & \(1^{\text {b }}\) & & & & \(5^{\text {b }}\) & \(5^{\text {b }}\) & & \(8^{\text {b }}\) & \\
\hline Woodchuck & & & & & & & & \(1^{\text {b }}\) & \\
\hline Muskrat & & & & & & & & & \(1^{a}\) \\
\hline Cottontail & & & \(3^{\text {a }}\) & \(44^{\text {a }}\) & \(4^{a b}\) & \(7^{\text {a }}\) & \(1^{a}\) & \(4^{a b}\) & \\
\hline Fox squirrel & \(1^{a}\) & \(1^{a}\) & \(2^{\text {a }}\) & & & & & \(5^{\text {a }}\) & \\
\hline Gray squirrel & \(4^{\text {a }}\) & & & & & & & \(2^{\text {a }}\) & \\
\hline White-tailed deer & \(3^{\text {a }}\) & \(2^{a}\) & \(4^{a}\) & \(8^{\text {a }}\) & & \(1^{a}\) & & \(3^{\text {a }}\) & \\
\hline \multicolumn{10}{|l|}{INSECT} \\
\hline Eastern mole & & & & & \(1^{a}\) & & & & \\
\hline Bat & & & \(1^{a}\) & & & & & & \\
\hline
\end{tabular}

TABLE 3.3.2-1 (continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline FEEDING \&, RIT
\(\qquad\) & Forest & Creek Muttom & Forest Edge & \[
50
\] & \[
\begin{gathered}
\text { and } \\
\text { Cicpiard }
\end{gathered}
\] & \[
\begin{gathered}
\text { old } \\
\text { Figld } \\
\hline
\end{gathered}
\] & Farmstead & Hedgerow & Pond \\
\hline \multicolumn{10}{|l|}{OMNIVORES} \\
\hline Striped skank & \(1{ }^{\text {c }}\) & & \(1{ }^{\text {c }}\) & \(4^{\text {c }}\) & & \(2^{b}\) & & & \\
\hline Opossum & \(1^{\text {b }}\) & \(4^{3}\) & & \(3^{3}\) & \(1^{a}\) & & & \(; j^{\text {b }}\) & \\
\hline Raccoon & \(1^{a}\) & \(3_{3}^{\text {Le }}\) & & \(2^{5}\) & \(1^{a}\) & \(2^{a \dot{x}}\) & & \(6^{\text {b }}\) & \\
\hline \multicolumn{10}{|l|}{CARNIVORES} \\
\hline songtail weasel & & & & & & & & \(1^{\text {b }}\) & \\
\hline Corote & \(4^{c}\) & \(1^{\circ}\) & & \(?^{a}\) & & \(1^{\text {a }}\) & & & \\
\hline
\end{tabular}
a Sighting, sign.
b Ircuping.
c Call, odor.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TALLE 3.3.2-2} \\
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
SMALL RND LAFGE MAMMALS \\
TRAPPEL IN CALLLAWAY COUNTY, MISSOURI
\end{tabular}} \\
\hline & \multicolumn{4}{|r|}{Number of Individuals/PEriod} \\
\hline \[
\begin{gathered}
\text { Common } \\
\text { Name } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Early } \\
& \text { Sum }
\end{aligned}
\] & Laive Summer & Eal1 & Winter \\
\hline White-fouted mouse & \(\geqslant\) & - & - & \(\cdots\) \\
\hline Deer mcuse & 5 & ? & 7 & 4 \\
\hline Longtail weasel & 1 & - & - & - \\
\hline Woodchuek: & 1 & - & " & - \\
\hline Cottontail & 2 & - & - & - \\
\hline Striped skunk & 2 & - & - & - \\
\hline Opossum & \% & 17 & 3 & 2 \\
\hline Raccoon & 4 & \& & - & 1 \\
\hline IOTAL & 29 & 22. & & 7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{OEOSSUM (Didelphis marsupialis) TRAPPED} & \\
\hline \[
\begin{gathered}
\text { Taq } \\
\text { Number }
\end{gathered}
\] & Sex & \[
\begin{gathered}
\text { Weight } \\
\text { ('ig) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Toきal } \\
\text { Length } \\
(\mathrm{mm})
\end{gathered}
\] & \[
\begin{gathered}
\text { Date } \\
\text { Irapped }
\end{gathered}
\] & Station & chitat Descrintion \\
\hline 1328/:329 & M & 3.5 & 720 & \(6 /<1\) & 36 & Fencerow adjoining pasture \\
\hline 1332:1333 & F & 1.5 & 650 & \(6 / 21\) & 31. & Hedgexow between pasture and soybean field \\
\hline a & & 1.5 & 650 & 6/23 & 19 & Hedgerow betw en an oid field and hay field \\
\hline a & & 2.9 & 670 & \(8 / 31\) & 35 & Hedgerov between two old fields \\
\hline 1334/1335 & F & 2.6 & 690 & 6/21 & 35 & Hedgerow vetween to old fields \\
\hline a & & 3.9 & 720 & 11/9 & 28 & Fencerow between pasture and drainage \\
\hline 1338/1339 & F & 2.1 & 610 & 6/22 & 19 & Hedgerow between an old field and hayfield \\
\hline a & & 2.5 & 610 & \(3 / 30\) & 30 & Hedgerow between pasture and so bean field \\
\hline \(1340 / 1341\) & M & 2.6 & 720 & \(6 / 22\) & 14 & Hudgerow between old field and hayfield \\
\hline a & & 1 5 & 760 & \(8 / 31\) & 28 & Fencerow between pasture and drainage \\
\hline
\end{tabular}

TABIE 3.3.2-3 (continued)
\begin{tabular}{cccccc}
\begin{tabular}{c}
Tag \\
Numbr
\end{tabular} & Sex & \begin{tabular}{c}
Total \\
(kg)
\end{tabular} & \begin{tabular}{c}
Length \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{c}
Date \\
Trapped
\end{tabular} & Station
\end{tabular}

TABLE \(3.3 .2-3\) (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tag \\
Number
\end{tabular} & Sex & \[
\begin{gathered}
\text { Weight } \\
\text { (kJ }
\end{gathered}
\] & \[
\begin{gathered}
\text { Total } \\
\text { Length } \\
(\mathrm{mm})
\end{gathered}
\] & Date Trapped & Station & Habitat Description \\
\hline \(1423 / 1424\) & F & 2.9 & 730 & 8/31 & 15 & Forest \\
\hline a & & 2.9 & 730 & 9/1 & 18 & Hedgerow between a hayield and old fiel. \\
\hline 1425/1426 & M & 4.2 & 800 & 8/31 & 32 & Fencerow between pasture and drainage \\
\hline 1428/1429 & \(F\) & 2.8 & 710 & 9/1 & 2 & Erainage in frrest \\
\hline 1430/1431 & F & 3.0 & 740 & \(9 / 1\) & 13 & Hedgerow between hayfield and old field \\
\hline \(1432 / 1433^{\text {c }}\) & F & 2.9 & 730 & 9/1 & 5 & Fencerow within pasture \\
\hline 1434/1435 & M & 1.9 & 690 & 9/1 & 25 & Hedgerow between a hayfield and soybean field \\
\hline 1437/1438 & F & 1.9 & 600 & 11/8 & 7 & Hedgerow between an old field, hayfield and pasture \\
\hline 1441/1442 & F & 2.4 & 710 & 11/10 & 33 & Fencerow between hayfield and crainageway \\
\hline
\end{tabular}
\[
\begin{array}{lccccc}
\begin{array}{c}
\text { Tag } \\
\text { Number }
\end{array} & \text { Sex } & \begin{array}{c}
\text { Weight } \\
(\mathrm{kg})
\end{array} & \begin{array}{c}
\text { Total } \\
\text { Length } \\
(\mathrm{mm})
\end{array} & \begin{array}{c}
\text { (continued) } \\
\text { Trapped }
\end{array} & \text { Station }
\end{array} \quad \text { Habitat Description }
\]

TABL.E \(3 \cdot 3 \cdot 2-4\)
RABCOON (Procyon lotor) TRAPPED DURING
FOUR SAMPLING PERIODS, CALLAWAY COUNTY, MISSOURI
\begin{tabular}{cccccc}
\begin{tabular}{c}
Tag \\
Number
\end{tabular} & Sex & \begin{tabular}{c}
Weight \\
\((\mathrm{Kg})\)
\end{tabular} & \begin{tabular}{c}
Total \\
Length \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{c}
Date \\
Trapped
\end{tabular} & Station
\end{tabular}\(\quad\)\begin{tabular}{c}
Habitat Description
\end{tabular}
\[
\mathrm{S}-2 \cdot \varepsilon \cdot \varepsilon \text { अTGVะ }
\]

\section*{TABLE 3.3.2-6 \\ MAMMALS IDENTIEIED DURING THE} EVENING AUTOMOBILE SURVEY, CALIAAWAY COUNTY, MISSOURI
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{4}{|c|}{Sampling Period} \\
\hline & \begin{tabular}{l}
Early \\
Summer
\end{tabular} & Late Summer & Fall & Winter \\
\hline Cottontail & 12 & 3 & -- & 5 \\
\hline Coyote & -- & -- & 4 & 1 \\
\hline Opossum & -- & -- & -- & 1 \\
\hline Raccoon & 4 & -- & -- & 2 \\
\hline Skunk & 1 & -- & -- & -- \\
\hline White-tailed deer & 1 & -- & 7 & -- \\
\hline TOTAL & 18 & 3 & 11 & 9 \\
\hline
\end{tabular}

MAMHALS IDENTIFIED
DURING FIVE SAMPLING PERIODS, CALLAWAY COUNTY, MISSOURI
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{5}{|c|}{Sampling Period} \\
\hline & Spring & \[
\begin{aligned}
& \text { Early } \\
& \text { Summer } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Late } \\
& \text { Summer }
\end{aligned}
\] & Fall & Winter \\
\hline Bat & -- & -- & -- & 1 & -- \\
\hline Cottontail & 3 & 24 & 2 & 6 & 6 \\
\hline Coyote & -- & -- & 1 & 1 & -- \\
\hline Eastern mole & -- & -- & -- & -- & 1 \\
\hline Fox squirrel & 4 & -- & 4 & 1 & -- \\
\hline Gray squirrel & 1 & -- & - & 2 & 3 \\
\hline Muskrat & -- & 1 & -- & -- & -- \\
\hline Skunk & -- & 1 & -- & -- & 1 \\
\hline White--aile deer & 1 & 4 & 3 & 5 & -- \\
\hline TOTAL & 9 & 30 & 10 & 16 & 11 \\
\hline
\end{tabular}

\subsection*{3.3.3 BIRDS}

Avifauna was sampled to determine species utilizing the site. The total number of species and families identified during the five sampling periods is shown on Figure 3.3.3-1. The number of families was relatively constant (range of 8) ccmpared to the number of species. These ranged from 34 in spring to 58 in early summer and 38 in winter.

Common and scientific names of all species identified are listed in Appendix \(3 C-2\). A summary of findings of each sampling period follows. In the discussion of data, "1-day high" refers to the greatest number observed on any 1 day of the 3-day survey; "3-day mean" refers to the average number of individuals identified per day during the 3 -day sampling period.

\subsection*{3.3.3.1 Avian Automobile Survey}

\section*{Spring}

Twenty-five species representing 17 families were observed during spring sampling perio: (Table 3.3.3-1). The red-winged blackbird, with a l-day hig.. of 317 individuals and a 3 -day mean of 218 individuals was the most trequently observed (Table 3.3.3-2). Red-winged blackbirds were observed in agricultural habitats (agriculcural stubble, farr dwelling, pasture-shrub and old field). Other 1-day highs were 238 and 90 for the common grackle and meadowlark, respectively. The common grackle had a 3 -day mean of 128 ; 54 percent of these individuais were observed in agricultural habitats. The meadowlark had a 3 -day mean of 67; 61 of these individuals were identified within agricultural habitats.

\section*{Early Summer}

Forty-four species representing 22 families were observed during the early summer sampling period. The nouse sparrow was observed most frequently, with a l-day high of 82 individuals (Table 3.3.3-1) and a 3-day mean of 55 individuals (Table 3.3.3-2) with 41 of these observed along the roadway. The red-winged blackbird and common grackle were again among the three most numerous birds, with 1 -day highs of 50 and 71 individuals, respectively. An average of 42 red-winged blackbirds was observed during each day of this 3-day sampling period; an average of 28 birds was identified along the roadway. Twenty-two species not identified in the spring were observed during the early summer survey. Many of these new species, including woodpeckers, cuckoos, warblers, goatsuckers, and swifts, were insectivorous feeders.

Late Summer
Thirty-three species representing 18 families were observed during the late summer sampling period. The house sparrow was again most numerous, with a l-day high of 60 individuals (Table 3.3.3-1) and a 3 -day mean of 43 individuals (Table 3.3.3-2). The common grackle was the second most numerous
species observed, ath a l-day high of 44 sightings and a 3 -day mean of 16 individuals. Unlike the previous two sampling periods, no red-winged blackbirds were observed during this 3-day survey. Other species with relatively high 3-day means include the sommon crow (19), bluejay (13), and mourning dove (17).

\section*{Fall}

Thirty-two species representing 18 families were observed during the fall sampling period. The slate-colored junco, with a l-dav high of 105 individuals, was the species most commoniy observed (Table 3.3.3-1). Its 3-day mean for the fall period was 59 individuals (Table 3.3.3-2). The slate-colored junco was first sighted at the Callaway Plant site during this period. Other species with significant l-day highs include bluejay (39), common crow (32), starling (74), red-winged blackbird (50), and American goldfinch (49). Their 3-day means for this period were \(27,23,33,17\), and 30 , respectively. Agricultural habitats again supported a larger percentage of identified birds. Species not reviously observed include winter residents such as cedar waxwang, slate-colored junco, tufted titmouse, and whitecrowned and white-throated sparrows.

\section*{Winter}

Twenty-five species representing 13 families were observed during the winter sampling period. The starling was most commonly observed, with a 1 -day high of 155 individuals (Table 3.3.3-1) and a 3 -day mean of 74 individuals (: Dle 3.3.3-2). All but one of these individuals were observed in agricultural habitats. The slate-colored junco, bluejay, and common crow again were species with significant 1 -day highs: 113,63 , and 50 , respectively. The tree sparrow, common redpoll, and downy woodpecker Meie onse... fon the first time in this survey.

The results of the avian automobile survey are shown on Figures 3.3.3-2 and 3.3.3-3. Similar habitat types have been lumped together to depict more easily seasonal changes observed along the survey route. Birds have been categorized by feeding habit in order to facilitate discussion of energy flow (trophic levels) within the ecosystem. Major levels within the trophic structure are: herbivore-granivore (species feeding on plant food), omnivore (species feeding on piants and invertebrates in equal proportions), insectivore (species higher in the trophic level, feeding predominantly on invertebrates), and carnivore the highest trophic level, consuming biras from any of the three previous levels). Some species do not fall in any of the groups listed above. Therefore, other categories are used: nectivore (hummingbirds feeding on nectar from flowering plants), aquatic omnivore (species feeding on aquatic plants, and invertebrates), and carrion feeder (turkey valture, feeding on decaying animal matter).
On the Intensive Study Area, omnivorous feeders were the greatest number of species sighted during each of five sampling periods (Figure 3.3.3-2). In overall abundance (Table 3.3.3-2),
omnivorous feeders were the dominant group found along the survey route. During spring, they composed 95 percent of total identified birds. During the four remaining sampling periods, omnivorous birds had relative abundance per season of \(75,68,78\), and 89 percent (Table 3.3.3-2). Omnivorous species were most abundant during spring, early summer, and winter, when other more specialized feeders would find climate and/or food sources limiting. omnivores were least abundant during lete summer and fall sampling periods, when an inflax of insectivorous and gravivorousherbivorous birds into the site area occurred. Omnivores showed a preference for agricultural habitats (Figure 3.3.3-3).

Granivorous-herbivorous birds were present on the site during each sampling period: however, they represented only \(3,16,18\), 16 , and 4 percent of the total bird population during each successive season (Table 3.3.3-2). The number of granivorous-herbivorous species (Figure 3.3.3-2) was slightly higher during early summer, late summer, and fall because of the addition of summer residents such as the catbird, horned lark, and American goldfinch. Granivore-herbjvores were observed in equal numbers among the four habitat types, except during winter, when only hedgerow and agricultural habitat types were utilized.

Insectivores observed along the avian utomobile survey route reached their peak during the late si arier sampliny period (Table 3.3.3-2). They composed 11 percent \(c\) f the total number of birds observed. The greatest number of insectivorous species, however, was observed during the early summer sampling period, when 11 species were identified in the forest habitat (Figure 3.3.3-2). Insectivores were least abundant during spring, fall, and winter (Figure 3.3.3-3), when many of the birds that feed on flying insects were further south. Species in this category are whip-poor-will, chimney swift, common nighthawk, and purple martin. Insectivorous species sighted during the winter sampling period were the downy, hairy, pileated and red-headed woodpeckers and the yellow-shafted flicker.

Five species of carnivores - the great-horned owl, loggerhead shrike, marsh hawk, red-tailed hawk and sparrow hatvk - were identified along the avian automobile survey route (Table 3.3.3-2). Their numbers remained relatively constant throughout the study period, composing less than 3 percent of the total avian population (Figure 3.3.3-3). The highest number of carnivores whs observed during fall and winter; favored habitats during those periods were hedgerows and agricultural fields (Figure 3.3.3-2). Carnivores are important in the ecosystem as regulators of small mammal populations, which may become pests or over abundant if not controlled. For example, a relationship has been established between increases or declines in rabbit populations and increases or decreases in the number of great horned owls (which were observed on the site) (Rusch et al, 1972). The food habits of an area's avian predators can be used to determine what small rodents are present (Korschgen and Stuart, 1972). Foods used by avian predators include cottontail, meadow mouse, white-footed mouse, songbirds, gray squirrel, fox
squirrel, and mourning dove.
Aquatic omnivores observed along the avian automobile survey route were unidentified ducks, pied-billed grebe and ringnecked duck (Table 3.3.3-2). These species were most abundant during fall in the agricultural habitat (Figure 3.3.3-2). These feeders are not common to the Intensive Study Area because it lacks large bodies of water surrounded by vegetation.

Carrion feeders (Figure 3.3.3-2) sighted were the turkey vulture (Table 3.3.3-2). This species was observed during spring, early summer, and late summer sampling periods, but their numbers were relatively high only during the spring (Figure 3.3.3-3).

\subsection*{3.3.3.2 Avian Strip Survey}

One preliminary avian strip survey was conducted during the spring sampling period; thereafter, two avian strip surveys were conducted during early summer, late summer, fall, and winter sampling periods. The following is a breakdown, by period, of the most numerous species identified during the avian strip survey.

\section*{Spring}

SS: : Twenty-one species representing 11 families were observed along survey strip 1 during the spring sampling period. Bobwhites were most numerous, with a l-day high of 15 individuals and a 3 -day mean of five individuals. These individuals were observed in a hedgerow. Other l-day highs were field sparrows (11), red-winged blackbirds (10), and robins (10). Their 3-day means for this period were six, three, and three, respectively.

\section*{Early Summer}

SS \(_{2}\) : Twenty-seven species representing 16 families were observed along survey strip 2 (Table 3.3.3-3). Common grackles and redwinged blackbirds were most numerous, with 1 -day liighs of 60 and 58 individuals, respectively. These species had 3 -day means of 44 and 49, respectively (Table 3.3.3-4). Common grackles were observed most frequently in hedgerows, while red-winged blackbirds were observed only in agricultural fields. Mourning doves (23), bobwhites (15), and common crows (14) also had significant l-day highs. Three-day means for these species were 10,8 , and 6 , respectively.
\(\mathrm{SS}_{3}\) : Twenty-seven species representing 15 families were observed during early summer along survey strip 3. Red-winged blackbirds had a l-day high of 65 individuals (Table 3.3.3-5) and a 3 -day mean of 36 (Table 3.3.3-6). Bobwhites (21), field sparrows (16), and brown-headed cowbirds (12) were commonly observed. These species had 3 -day means of 12,8 , and 6 , respectively.

\section*{Late Summer}

SS \(_{2}\) : Nineteen species representing 13 families were observed along strip survey 2 in the late summer. Bobwhites (17), bluejays (10), and field sparrows (9) had significant l-day highs (Table 3.3.3-3). Bobwhites had a 3-day mean of 10 , while bluejays and field sparrows had a 3 -day mean of eight and five, respectively (Table 3.3.3-4). Bluejays were more numerous in the forest habitat type, while bobwhites and field sparrows were more numerous in agricultural fields. Four species not observed during the early summer sampling period along this route were observed: black-capped chickadee, blue grosbeak, robin, and catbird.

SS : Nineteen species representing 11 families were observed during the late summer sampling period. Roc: doves 15), meadowlarks (14), barn swallows (11), and common crows (9) had significant l-day highs (Table 3.3.3-5) ; these had 3 -day means of five, six, seven, and four, respectively (Table 3.3.3-6).

Fall
\(\mathrm{SS}_{2}\) : Twenty-six species representing 12 families were observed along strip survey 2 during the fall sampling period. The common grackle was the most numerous species along this survey route, with a l-day high of 115 individuals (Table 3.3.3-3) and a 3-day mean of \(62^{\circ}\) (Table 3.3.3-4). American goldfinches, slatecolored juncos, and white-throated sparrows were less numerous, with l-day highs of 48,22 , and 15 , respectively. Bobwhites were less numerous than during the late summer sampling period, with a l-day high of 12 and a 3-day mean of four. Of the 16 new species observed along this route, seven were winter residents.
\(S_{3}\) : Twenty-nine species representing 16 families were observed during the fall along strip survey 3. Meadowlarks had a significant 1 -day high of 76 individuals (Table 3.3.3-5) and a 3day mean of 31 (Table 3.3.3-6). Common crows (47), bobwhites (30), snow geese (30), and blue geese (30) also had significant l-day highs. Three-day means of \(18,17,12\), and 12 , respectively, were recorded for these species.

\section*{Winter}

SS \(_{2}\) : Sixteen species representing seven families were identified along this route during the winter sampling period. House sparrows (150), slate-colored funcos (58), and song sparrows (50) had significant 1-day highs (Table 3.3.3-3) and 3-day means of 55,36 , and 17 , respectively (Table \(3 \cdot 3 \cdot 3-4\)). House sparrows were generally observed in forests, while slate-colored juncos were identified in hedgerows and song sparrows in agricuitural fields. Cardinals (22) and bluejay (14) also had significant l-day highs. Many of the omnivorous and insectivorous species identified during previous periods were not observed during this peaiod.

SS 3: Twenty species representing eight families were identified along strip survey 3 during the winter sampling period. Thr meadowlark was again commonly observed, with a l-day high o: 17 (Table 3.3.3-5) and a 3-day mean of six individuals (Table 3.3.3-6). Slate-colored juncos (11), bluejays (10), easte: n bluebirds (10), and tree sparrows (10) also had high 3-day means of five, six, five, and seven, respectively.

The number of bird species identified during all periods along avian strip survey 2 and 3 is shown on Figures \(3 \cdot 3 \cdot 3-4\) and 3.3.3-5, zespectively. Threr seneral habitat types were found along \(\mathrm{SS}_{2}\) : agricultural fields, hedgerows, and forests; only two --agricultural fields and hedgerows--were found along SS.3. During the early summer, agricultural fields held the greatest numbers of birds, while forest provided most species with food and cover during the late summer. Hedgerow was most heavily ut lized during the fall and winter.

Omnivores were the most abundant species found along both \(\mathrm{SS}_{2}\) and \(S S_{3}\), dominating \(S S_{2}\) during the winter (Table \(3.3 .3-4\)) and \(S S_{3}\) during the fall (Table 3.3.3-6). They c mprised 82, 46, 70, and 96 percent by season of the total birds observed along \(\mathrm{SS}_{2}\) (Figure \(3.3 .3-6\)) and \(71,47,61\), and 80 percent along \(S_{3}\) (Figure 3.3.3-7). Species such as the bluejay, cardinal, and common crow were found along both survey routes during all four sampling periods. Other species, such as the slate-colored junco, song sparrow, and white-crowned and white-throated sparrow, were observed only during the fall and winter periods.

Granivorous-herbivorous speciss were usually the second nost numerous species identified along both transects (Figures 3.3.3-6 and \(3 \cdot 3 \cdot 3-7\)). They composed between zero and 32 percent of all birds observed along \(S_{2}\) and between 9 and 22 percent along \(S_{3}\). A total of nine granivorous-herbivorous species was identified along both transects (Tables 3.3.3-4 and 3.3.3-6). Peak abundance along SS \(_{3}\) for granivore-herbivores, came during the fall, when 23 birds of three species were obst!rved. Fall was also the period of peak abundance along \(S S_{2}\), when 20 individuals were observed in the hedgerow and 18 were obstrved in agricultural fields. The granivore-herbivores were least abundant in the winter: five individuals were observed along SSs and none were observed along \({S S_{2} . \text {. The granivore-herbivores contained two }}^{\text {. }}\) game species, the bobwhite and the mourning dove, ani one "rara" species, the ruffed grouse.

Insectivores were less important along the two strip surveys than omnivores and granivore-herbivores. Relative abundance along \(S_{2}\) (Table 3.3.3-4) fluctuated from a low of 1.5 percent in the early summer to a high 21.6 percent in the late summer and back down to 4.5 percent in the fall and winter. Along SS \(_{3}\) 偱 3.3.3-6) a greater fluctuation per season was noted; values (percent of total population) of \(12.7,28.8,3.8\), and 10.7 were recorded, respectively. In both strip surveys, it was during
the late summer that insectivores were most abundant, with nine (Figure 3.3.3-6) and 13 (Figure 3.3.3-7) individuals sighted, respectively. Insectivore use of specific habitats also varied with season. Along \(\mathrm{SS}_{2}\), the favored habitat by season was hedgerow (early summer), agricultural fields (1ate summer), hedgerow (iall), and forest (winter). Along \(S_{3}\), the favored habitats were agricultural fields (early and late summer) and hedgerow (fall and winter). Only woodpeckers and the yellowshafted \(f^{7}\).cker were permanent insectivorous residents of the Intensive Study Area. The remaining species were summer residents, migrating south in the fall in response to primary food die-off brought on by colder weather.

Carnivores along both survey routes composed only small percentages of the total population. Along \(S S_{2}\), less than 1 percent of the total number of birds were carnivores; along SS3, between 0.5 and 1.2 percent of the total were carnivores. Five species were observed along \({S S_{2} \text { during the four sampling periods (Table }}^{\text {d }}\) 3.3.3-4). Two interesting carnivore species were sighted: the belted kingfisher and the green heron, which feed on fish. Most of the other species are strictly meat-eaters, preying on small mammals and songbirds. The loggerhead shrike, sighted along \(\mathrm{SS}_{3}\), is a passerine (perching) bird that catches crickets, amphibians, and reptiles and attaches them to barb wire fences for later feeding.

One specialized feeder observed in early summer in the agricultural fields along \(\mathrm{SS}_{2}\) was the nectivorous ruby-throated hummingbird. A second group of specialized feeders was found along SS3 (Table 3.3.3-6). The blue goose and snow goose were observed in the fall during their southward migration; they may use the site only sporadically during periods of migration. Since waterfowl feed either on submerged plants and/or invertebrates, they are limited in their choice of habitat. The mallard was sighted in the late summer; the mallard is common to many areas and nests in a variety of habitats unsuitable for other waterfowl. The small ponds in the Intensive Study Area would attract this less specific feeder.

\subsection*{3.3.3.3 Evening Automobile Survey}

Five species of birds were noted during the four sampling periods (Table \(3 \cdot 3 \cdot 3-7\)) along the evening automobile survey route. Two nocturnal insectivores, the common nighthawk and the whip-poorwill, were observed only during this survey. The whip-poor-will was seen or heard repeatedly during the early summer months. An avian predator, the great horned owl, was observed on2y a few times; the great horned owl is a nocturnal hunter. The piedbilled grebe, an aquatic omnivore, was observed at dusk on a firm pond Twenty-five purple martins were observed only once along the route. Because this route was the aame as the avian automobile survey route, and the surveys were generally run during the same 3 days, these data were combined with the avian automobile survey data and analyzed as such.

\subsection*{3.3.3.4 Miscellaneous Observations of Birds}

Sixteen species of birds were classified \(2 s\) miscellaneous observations (Table \(3 \cdot 3 \cdot 3-3\)). Among the 16 species, three were aquatic, two carnivorous, three upland gamebird, two specialized feeder, and six songbird.

Bobwhite, an upland game species, was observed during four of the five periods. The peak number was observed in fall, when 49 individual sightings were made. A flock of 100 common redpoll were observed during the winter. This is an unusual sighting because this species is a winter resident further north (Robbins et al, 1966). A golden eagle, which feeds on a variety of upland animals, was observed in an old field after an unsuccessful hunting attempt. The golden eagle is uncommon to Missouri; however, because it is near a major waterway and avian flight corridor, the site area is att,active to many wide-ranging species. Mourning dove, a second upland game species considered an interesting sighting, was observed during fall, when this species is migrating.

Among the remaining miscellaneously observed species, most were sighted only infrequently. Included in the above category are American bittern, common nighthawk, grasshoppper sparrow, turkey, white-breasted nuthatch, and ruby-throated hummingbird.

TABLE 3.3.3-1
SEASONAL ABUNDANCES \({ }^{\text {a }}\) OF BIRDS IDENTIFIED
ALONG THE AVIAN AUTOMOBILE SURVEY ROUTE
\begin{tabular}{ccccc}
& \multicolumn{4}{c}{ Sampling } \\
\cline { 2 - 4 } & Early & Leriod \\
Species & Spring & Summer & Sumuner
\end{tabular}

TABLE 3.3.3-1 (continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{5}{|c|}{Sampling Period} \\
\hline & Spring & \[
\begin{aligned}
& \text { Early } \\
& \text { Summer } \\
& \hline
\end{aligned}
\] & Late Summer & Fall & Winter \\
\hline Yellow-breasted chat & & 1 & & & \\
\hline House sparrow & 13 & 82 & 60 & 7 & 11 \\
\hline Meadowlark & 90 & 28 & 5 & 24 & 33 \\
\hline Red-winged blackbird & 317 & 50 & & 50 & \\
\hline Baltimore oriole & & 3 & & & \\
\hline Common grackle & 238 & 71 & 44 & 7 & 16 \\
\hline Brown-headed cowbird & 2 & 10 & 1 & & \\
\hline Summer tanager & 1 & 1 & & & \\
\hline Cardinal & 24 & 14 & 10 & 25 & 47 \\
\hline Indigo bunting & & 23 & 3 & & \\
\hline Dickcissel & & 13 & & & \\
\hline Common redpoll & & & & & 1 \\
\hline American goldfinch & & 7 & 1 & 49 & \\
\hline Rufous-sided towhee & & 3 & 2 & & \\
\hline Slate-colored junco & & & & 105 & 113 \\
\hline Chipping sparrow & & 1 & & & \\
\hline Field sparrow & 62 & 12 & 4 & & \\
\hline Tree sparrow & & & & & 15 \\
\hline White-crowned sparrow & & & & 1 & \\
\hline White-throated sparr & & & & , & \\
\hline Song sparrow & 22 & 3 & & 4 & 12 \\
\hline TOTAL & 939 & 519 & 32.8 & 536 & 608 \\
\hline
\end{tabular}
a Abundance based on one-day high per period.

TARIE 3.3.3-

IDENTIFIED ALONG THE AVIAN AUTOMORILE AND EVENTNG AUTOHOBIL, SURVEY ROUTE BY GENEPAL, HABITAT TYPE, EALI WWAY COUNTY, MISSORIRI

\section*{TABLE 3.3.3-2 ceontinued}
\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{FEEDING RABIT Species} & \multicolumn{20}{|c|}{Abundance \({ }^{\text {a }}\)} & \multicolumn{5}{|c|}{Pelative Abundance \({ }^{\text {b }}\)} \\
\hline & \multicolumn{4}{|c|}{Spzi \({ }^{\text {cg }}\)} & \multicolumn{4}{|c|}{\[
\begin{aligned}
& \text { Early } \\
& \text { Summer }
\end{aligned}
\]} & \multicolumn{4}{|c|}{\[
\begin{aligned}
& \text { bate } \\
& \text { summer }
\end{aligned}
\]} & \multicolumn{4}{|c|}{Fall} & \multicolumn{4}{|c|}{Winter} & \multirow[b]{2}{*}{Spring} & \multirow[t]{2}{*}{Barly Summer} & \multirow[t]{2}{*}{Late Sumer} & \multirow[b]{2}{*}{Fall} & \multirow[b]{2}{*}{Winter} \\
\hline & pe & \(\mathrm{n}^{\text {a }}\) & h' & Hf & F & \(A\) & R & H & \(F\) & A & R & H & F & \(\star\) & R & 星 & \(F\) & A & R & H & & & & & \\
\hline \begin{tabular}{l}
Eastern \\
bluebi.d
\end{tabular} & \(=\) & 8.7 & - & 3 & & 1.3 & 2.3 & . 7 & - & - & 3 & - & - & 1.7 & 16.3 & 3 & - & 9.3 & - & 3 & 1.4 & 1.2 & 1.6 & 6.8 & 3.5 \\
\hline Field sparrow & 3.3 & 2.7 & 7 & 17 & 3 & 1.7 & 1 & - & 1,3 & 1.7 & - & \(\cdots\) & - & - & - & - & \(=\) & * & - & - & 5.3 & 1.6 & 1.6 & - & - \\
\hline House sparrow & - & 4. 3 & - & 1.3 & . 3 & 14 & 41 & \(=\) & 16.7 & 16.7 & 10 & - & - & 2.7 & 3 & . 3 & 2.7 & 2.3 & - & 2 & 1.0 & 15.6 & 23.1 & 3.1 & 2.0 \\
\hline thdigo bunting & \(\geqslant\) & - & \(\sim\) & - & 2.7 & 1 & 15.3 & \(\sim\) & , 7 & . 3 & - & - & * & - & & & - & - & - & - & - & 5.3 & . 5 & - & - \\
\hline Meadowlark & 1 & 61 & 1.7 & 3 & - & 16.7 & 10 & . 7 & - & 2 & 1.3 & - & * & 12 & 5.7k\% & & \(=\) & 17.7 & - & . 3 & 11.8 & 7.7 & 1. 3 & 6.6 & 5.1 \\
\hline Mookingbird & - & 1.3 & - & 1 & . 7 & . 7 & 2 & - & . 3 & , 3 & 2.3 & - & - & - & . 7 & & . 3 & 1.3 & - & . 7 & & 1.9 & 1.5 & +3 & . 7 \\
\hline Red-wi noed blackbird & \(3 \mathrm{C}\). & 154.7 & 88 & 25 & 1.3 & 12.3 & 27.7 & , 7 & - & - & - & - & - & 15.7 & 1 & - & - & - & - & - & 38.6 & 11.8 & - & 5.7 & - \\
\hline Robin & . 3 & 4 & 2 & 7 & 1.7 & 4.3 & 3.3 & 1 & \(=\) & 2.3 & 3 & 1 & 2 & . 3 & & 1.3 & \(\pm\) & \# & \(\pm\) & - & 2. 3 & 3.9 & 2.8 & 1.2 & \(=\) \\
\hline Rufous-sided towhee & - & - & * & \(\cdots\) & . 7 & . 3 & - & - & . 3 & - & . 7 & . 3 & - & - & - & - & - & - & - & - & - & . 3 & . 7 & * & * \\
\hline slate-colored junce & - & - & - & - & - & - & - & - & - & - & - & - & 6 & 4 & 15.3 & 33.7 & 3 & 23.3 & - & 56.3 & - & - & \(\sim\) & 19.0 & 23.6 \\
\hline Song spartow & 4 & - & 1.3 & 5.7 & \(=\) & . 7 & . 3 & - & = & - & \(=\) & \(=\) & - & 1.7 & - & 1 & - & 1 & - & 4.7 & 2.1 & , 3 & - & -9 & 1.6 \\
\hline
\end{tabular}
\[
\text { TABLE } 3.3 .3-2 \text { (eontinued) }
\]

I
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Relative Abundance \({ }^{\text {b }}\)} \\
\hline Spzins & Early Bummer & \[
\begin{aligned}
& \text { Late } \\
& \text { Sumfier }
\end{aligned}
\] & Fal1 & Vinter \\
\hline . 3 & \(\underline{\sim}\) & - & . 1 & \(=\) \\
\hline 2.7 & 15.7 & 18.3 & 15.9 & 3.6 \\
\hline
\end{tabular}

TARLE 3.3.3-? (eont inned)

\footnotetext{
- Hased on a three-day mean pez period.
b Pereent
c Porest.
a Agticultural fields.
- Bonaxay
\(f\) Bedgeros
a \#nidentified to apectes
}

TABLE 3.3.3-3
SEASONAL ABUNDANCES \({ }^{a}\) OF BIRDS
IDENTIFIED ALONG THE AVIAN SURVEY ROUTE \(\left(S_{2}\right)\)

Sampling Period
Species
\begin{tabular}{lccc}
& & \\
\hline Early Sampling Period & \\
Summer & Summer Fall & Winter
\end{tabular}

Green heron
Sparrow hawk
Marsh hawk
Red-tailed hawk
Ruffed grouse
Bobwhite
Rock dove
Mourning dove
Ruby-throated hummingbird
Belted kingfisher
Chimney swift
vellow-shafted 2licker 2
Red-bellied woodpecker 3
Red-headed woodpecker
Hairy woodpecker
Downy woodpecker
Horned lark
Barn swal ow
Blue jay
Common crow
Black-capped chickadee
Tufted titmouse
White-breasted nuthatch
Mockingbird
Catbird
Brown thrasher
Robin
Wood thrush
Eastern bluebird
Yellowthroat 5
yellowthroat
Starling
Meadowlark 10
Red-winged blackbird 58
Common grackle
Brown-headed cowbird 2
Summer tanager
House sparrow
Cardinal 1
Blue grosbeak
Indigo bunting
Dickcissel 2

2

2

1

2
1
15
3
23
1
1

3

2
1
3
14

2
4
1
1

5

10
58
60
1

4

\section*{2}

1
\(17 \quad 12\)
23

2
6
5
3
2
2
3
9
\(10 \quad 13 \quad 14\)

1
1
1
1

2
\(1 \quad 2 \quad 1\)

3

2
2
5
1

1
2
\begin{tabular}{|c|c|c|c|c|}
\hline Species & Early Summer & \[
\begin{aligned}
& \text { Sampling } \\
& \text { Late } \\
& \text { Summer }
\end{aligned}
\] & Fall & Winter \\
\hline Sommon redpoll & & & 1 & \\
\hline American goldfinch & & & 48 & \\
\hline Slate-colored junco & & & 22 & 58 \\
\hline Tree sparrow & & & & \\
\hline Field sparrow & 4 & 9 & & \\
\hline White-crowned sparrow & & & 4 & \\
\hline White-throated sparrow & & & 15 & \\
\hline Fox sparrow & & & & \\
\hline Song sparrow & & & 6 & 50 \\
\hline TOTAL & 220 & 76 & 289 & 324 \\
\hline
\end{tabular}
a Abundances based on one-day high per period.

FEEDING HRBIT
Species

\section*{TVOnOUS}

Black-capped chickadee

Blue grosbeai
Blue jay
Erown-heated cawbird

Brown thrasher
Cardinal
Commun krow
common srackie \(\begin{array}{lll}16.7 & 27.3 & 0.2\end{array}\) \(0.3 \quad 2.3\)
\(2.6 \quad 2.8 \quad 2.6\)

Dickcissel
Eastern bluebird
FLeid mpartow
\(1.0-2.3 \quad 3.0 \quad 1.0 \quad 1.0\)
1.711 .5

House sparrow
Indigo bunting
Meadowlark
Wnckinghims
Red-winged
blackbird
42.37 .0 - \(\quad\) - 3

Robin
Slate-colored junco

Song sparrow
Statling
\(6.30 .3 \quad 3.6 .7\)

Tree sperrow
Tufted titmouse
White-breasted nuthetch

White-crowned sperrow

White-throated sparrow
Woods thrush
Group Total
\(\frac{-}{68.6 \quad 35.7 \quad 9.9}\)

\(-\frac{5}{82.4}\)
D. E
4.1
anantvonous-
HERBTVCROUS
American goldfinch
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{FEFDING HABIT specief} & \multicolumn{12}{|c|}{dhundance \({ }^{\text {z }}\)} & \multicolumn{4}{|c|}{Relative Abundance \({ }^{\text {b }}\)} \\
\hline & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { Early } \\
& \text { Sumner }
\end{aligned}
\]} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { Late } \\
& \text { Simmer }
\end{aligned}
\]} & \multicolumn{3}{|c|}{Fell} & \multicolumn{3}{|c|}{Winter} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Exy'y } \\
& S \text { ammer }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { sute } \\
& \text { Summer }
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Winter} \\
\hline & \(\chi^{\text {c }}\) & \# \({ }^{\text {d }}\) & \(F^{e}\) & A & H. & \(F\) & 1. & H & F & A & 且 & \(F\) & & & & \\
\hline Bobwhite & 2.0 & 3.7 & 2.0 & 7.0 & 0.3 & 2.7 & - & 6.0 & - & - & - & - & 5.6 & 23.1 & 2.6 & - \\
\hline Cetbird & - & - & - & - & 0.7 & 2.0 & - & - & - & - & - & - & - & 3.9 & - & = \\
\hline Coramrn reapol2 & * & \(=\) & - & - & - & * & - & 0.3 & - & - & - & \(=\) & - & - & 0.2 & - \\
\hline Fox epar.jow & \(=\) & \(=\) & \(=\) & \(=\) & \(=\) & - & 0.3 & 1.0 & - & = & = & * & - & - & 0.8 & * \\
\hline Horned lark & 0.7 & - & \(=\) & - & - & \(=\) & - & - & - & * & - & - & 0.5 & - & - & \(\checkmark\) \\
\hline Mourning dove & 9.3 & * & 0.7 & 0.7 & 0.7 & 0.7 & = & 2.8 & 0.3 & - & - & - & 6.7 & \%.8 & 0.8 & - \\
\hline Hock to e & 1.0 & - & - & - & - & - & - & - & - & - & - & - & 0.7 & - & - & - \\
\hline Ruffed grouse & - & - & - & - & - & - & - & 0.3 & - & & - & - & - & - & 0.2 & - \\
\hline Group Total & 13.0 & 3.7 & 2.7 & 7.7 & 1.7 & 4.6 & 27.6 & 29.9 & .3 & - & - & - & 13.5 & 31.8 & 24.4 & - \\
\hline \multicolumn{17}{|l|}{Insectivorous} \\
\hline Barn swallow & 0.3 & * & - & \(\because 7\) & - & - & - & - & - & - & & - & . 2 & 8.5 & - & - \\
\hline Chimney swift & - & * & - & 0.7 & - & - & - & \(=\) & - & & & - & - & 1.6 & - & \(=\) \\
\hline Downy woodpecker & - & - & - & - & - & - & - & 1.0 & - & 0.6 & 2.0 & 0.3 & - & - & 0.6 & 1.0 \\
\hline Eairy woodpecker & - & - & - & - & - & - & - & 0.7 & - & - & L. 3 & - & - & - & 0.5 & . 2 \\
\hline Re -bellied woodpecher & 0.3 & 0.7 & - & - & - & 2.3 & - & 2.0 & 0.7 & * & 1.3 & 1.3 & . 7 & 5.3 & 1.2 & 1.6 \\
\hline Red-headed woodpecker & 0.3 & - & - & 1.0 & 1.7 & - & * & - & 0.7 & - & 0.3 & - & . 2 & 6.2 & 0.5 & . 2 \\
\hline Summer tanager & - & 0.3 & - & - & - & - & - & - & - & - & - & - & . 2 & - & - & - \\
\hline Yellow-shafted flicker & - & - & - & - & - & - & 0.3 & 2.7 & - & - & - & 2.0 & - & - & 1.9 & 1.3 \\
\hline Yellow throst & \(\square\) & - & 0.3 & \(=\) & - & \(\cdots\) & - & - & - & - & - & - & 2 & - & \(=\) & - \\
\hline Group Fotal & 0.9 & 1.0 & . 3 & 5.4 & 2.7 & 2.3 & 0.3 & 5.4 & 1.4 & 0.3 & 2.9 & 3.6 & 1.5 & 21.6 & 1.6 & 4.3 \\
\hline \multicolumn{17}{|l|}{Carnsvorous} \\
\hline Beited kingfisher & - & - & 0.3 & - & - & - & - & - & - & - & - & - & 0.2 & - & - & - \\
\hline Green hercn & 0.7 & - & - & - & - & - & - & - & - & - & - & - & 0.5 & = & - & - \\
\hline Marsh Luwk & - & - & - & - & - & - & 2.0 & - & - & - & - & - & - & - & 0.6 & - \\
\hline Red-tailed hawk & 0.3 & - & - & - & 0.3 & - & - & - & - & - & - & - & 0.2 & 0.7 & - & - \\
\hline Sperrow hawk & \(\underline{ }\) & - & - & - & - & - & - & - & \(\cdots\) & 0.3 & - & \(-\) & & - & \(\pm\) & 0.2 \\
\hline Group Total & 2.0 & - & 0.3 & - & 0.3 & - & 1.0 & - & - & 0.3 & - & - & 0.4 & 0.7 & 0.6 & 0.2 \\
\hline
\end{tabular}

\title{
```

                                    ThBLE 3.3.3-4 (contimued)
    ``` \\ FELDNG H12BIT Species \\ NECTTVOROUS \\ Ruby-throated \\  \\ Total for \\ all Groups \\ Total/Period \\ \(\overline{83.8 \quad 40.4 \quad 13.2}\) \\ \(18.1 \quad 7.6 \quad 17.6\) \\ \(49.0 \quad 91.114 .3\) \\ 43.3 \\ \(\frac{}{154.4}\) \\ \(29.9 \quad 67.8 \quad 70.9\) \\ 158.6 \\ a Based on a three-day mean per period \\ b Percent \\ e Agricultural fields \\ d Eledçerow \\ Frest \\ 0.2 \\ \(\qquad\)
}

TABLE 3.3.3-5
SEASONAL ABUNDANCES \({ }^{\text {a }}\) OE BIRDS IDENTIFIED ALONG THE AVIAN SURVEY ROUTE (\(\mathrm{SS}_{3}\))

\section*{Sampling Period}

Species
\begin{tabular}{lcl}
\hline Early & Late \\
Summer & Summer Fall
\end{tabular}

\author{
Winter
}

\section*{Snow goose}

Blue goose

> Mallard

Rough-legged hawk
Sparrow hawk 3
Bobwhite
Rock dove
Mourning dove
Yellow-shafted flicker
Red-bellied woodpecker
Red-headed woodpecker
Downy woodpecker
Acadian flycatcher
Eastern wood pewee
Horned lark
Rough-winged swallow
Barn swallow
Purple martin
Blue jay
Common crow
Black-capped chickadee
White-breasted nuthatch
Mockingbird
Catbird
Brown thrasher
Rohin
Eastern bluebird
Loggerhead shrike
Starling
Yellowthroat
House sparrow
Meadowlark
Red-winged blackbird 65
Common grackle
Brown-headed cowbird 12
Summer tanager
Cardinal
Indigo bunting
DickcisselCommon redpoll

30 30
2 21

3 30 15 4 2 5 \(5 \quad 4\) 8
11 2 1 9

1 32

1 3
\(-7\)

7

3
2
1
1
11
1
814
9
47
5
1
1
\(\frac{1}{3}\)
3
1
1
4
2
111
\(14 \quad 76\)
7
2
1
4
4

Common redpoll
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{4}{|l|}{Eary Sampling Period} \\
\hline & \[
\begin{aligned}
& \text { Early } \\
& \text { Summer }
\end{aligned}
\] & \[
\begin{gathered}
\text { Late } \\
\text { Summer } \\
\hline
\end{gathered}
\] & Fall & Winter \\
\hline American goldfinch & 1 & & 19 & \\
\hline Slate-colored junco & & & 19 & 11 \\
\hline Tree sparrow & & & & 10 \\
\hline Field sparrow & 16 & & & \\
\hline Harris' sparrow & & & 2 & 1 \\
\hline White-crowned sparrow & & & 1 & \\
\hline White-throated sparrow & & & 10 & \\
\hline Fox sparrow & & & 10 & \\
\hline Swamp sparrow & & & 1 & \\
\hline Song sparrow & & & 19 & 7 \\
\hline TOTAL & 188 & 97 & 368 & 122 \\
\hline
\end{tabular}
a Abundance based on one-day high per period.

TABLE 3.3.3-6
SEASONAL ASUNLANCE AND FLLKTIVE RBUNDANVE OF BIRDS IDENTIEIED
ALONG TKE AVIAN SNRIF SUNVEY ROUTE \(55_{3}\) BY GENERAL HKBIIAT TYPE, CALLAWAY COUNTY, NISSOURI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FEEDINO HABIT
\(\qquad\) Species} & \multicolumn{8}{|c|}{Abundance \({ }^{\text {a }}\)} & \multicolumn{4}{|c|}{Reletive Abundance \({ }^{\text {b }}\)} \\
\hline & & \(\frac{n^{3}}{}\) & & \[
\begin{aligned}
& \text { ave } \\
& \text { tuner }
\end{aligned}
\] & & \(\frac{8.11}{4}\) & & \(\frac{\text { nter }}{\text { H }}\) & Eardy
5 ummer & \begin{tabular}{l}
Late \\
Summer
\end{tabular} & Fa12 & Winter \\
\hline \multicolumn{13}{|l|}{ONAKEVOROUS} \\
\hline Biack-capped chickadee & - & - & - & - & - & 2.3 & 1.3 & 2.7 & - & - & 1.4 & 5.2 \\
\hline Blue jay & 0.3 & - & - & 4.0 & 2.7 & 7.3 & 0.3 & 5.7 & 0.3 & 9.2 & 5.4 & 10.2 \\
\hline \multicolumn{13}{|l|}{Brown-headed
cowhizd} \\
\hline Erown thrasher & - & 4.0 & 0.3 & 0.3 & - & - & * & - & 4.0 & 2.6 & * & * \\
\hline Cardinal & - & 0.7 & - & 2.3 & 2.3 & 4.7 & 0.3 & 3.0 & 0.3 & 5.3 & 3.6 & 5.6 \\
\hline Common crow & 0.7 & 2.7 & 0.3 & 4.0 & 2.0 & 16. & 2.3 & 1.7 & 3.3 & 9.9 & 21.5 & 6.8 \\
\hline Common grackle & 3.0 & 2.3 & - & - & 1.3 & - & - & - & 5.3 & - & \(0 . \mathrm{E}\) & - \\
\hline Dickelssel & - & 1.7 & - & * & - & - & \(\sim\) & - & 1.7 & - & - & - \\
\hline Eastern bluekird & - & 0.7 & - & * & 1.0 & 1.0 & 1.3 & 3.3 & 0.7 & * & 1.2 & 8.0 \\
\hline Field eparrow & 5.0 & 2.7 & - & - & * & - & - & = & 7.6 & * & - & - \\
\hline House sparrow & - & 0.7 & - & - & - & - & - & - & 0.7 & - & - & - \\
\hline Indigo bunting & 1.3 & n , & - & - & * & - & - & * & 1.7 & - & - & - \\
\hline Meadowlark & 3.3 & 0.3 & 6.3 & - & 30.3 & 0.3 & 5.0 & 1.3 & 3.7 & 14.5 & 28.5 & 10.7 \\
\hline Nocrinow- \(=4\) & - & 0.3 & - & 0.3 & - & 0.3 & - & 0.7 & 0.3 & 0.7 & 0.2 & 1.2 \\
\hline Re'ーwinged blackbird & 29.0 & 18.7 & 2.3 & - & - & - & - & - & 35.4 & 5.3 & - & - \\
\hline Robin & - & - & - & * & 0.3 & - & - & - & - & * & 0.2 & - \\
\hline Siste-colored Junco & - & - & - & - & - & 9.0 & 1.0 & 3.7 & * & - & 5.4 & E. 0 \\
\hline Song eparzow & * & - & - & - & 0.3 & 9.0 & 2.0 & 2.7 & - & - & 5.6 & 6.3 \\
\hline Staring & - & 0.3 & 0.3 & - & 6.0 & - & 3.3 & - & 0.3 & 0.7 & 3.6 & 5.6 \\
\hline Swamp eparrow & - & - & - & - & - & 0.3 & - & * & - & - & 0.2 & - \\
\hline Tree eparrow & - & - & - & - & - & - & - & 7.3 & * & * & - & 12.4 \\
\hline White-breasted nuthateh & - & - & - & * & - & 0.3 & - & - & - & * & 0.2 & - \\
\hline Whate-crowned spazrow & \(\cdots\) & - & - & - & 0.3 & - & - & 0.2 & - & * & 0.2 & 0.5 \\
\hline White-throated eperyow & - & - & - & - & - & 4.7 & * & - & - & - & 2.8 & - \\
\hline Qroup Total & 35.9 & 36.2 & 9.5 & 20.9 & 44.5 & 55.2 & 1.8 & 31.4 & 72.3 & 47.2 & 60.8 & 80.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FEEDING HABIT Species} & \multicolumn{8}{|c|}{Abundance \({ }^{\text {a }}\)} & \multicolumn{4}{|c|}{Relative Abundance \({ }^{\text {b }}\)} \\
\hline & \multicolumn{2}{|l|}{Summer} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Fwite } \\
& \text { Sumer }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Fal1} & \multicolumn{2}{|l|}{Winter} & Summer & \begin{tabular}{l}
Late \\
Sumner
\end{tabular} & Fal1 & Winter \\
\hline \multicolumn{13}{|l|}{GRANIVOROJS HERBIVOROUS} \\
\hline Anerican goldfinch & h - & 0.3 & - & - & 4.7 & 4.7 & - & - & 0.3 & - & 5.6 & - \\
\hline Bobwhite & 8.0 & 3.7 & 2.0 & 0.7 & 26.7 & - & - & - & 11.6 & 3.9 & 10.1 & - \\
\hline Catbira & - & 1.0 & * & 1.3 & * & - & - & 1.0 & 2.0 & 3.0 & - & 2.7 \\
\hline Common redpoll & - & = & - & - & - & * & - & 2.3 & \(\cdots\) & - & - & 3.9 \\
\hline Fox sparrow & - & - & - & - & - & 4.2 & - & - & * & - & 2.4 & - \\
\hline harris* sparrow & - & - & - & - & - & 0.7 & - & - & - & - & 0.4 & - \\
\hline Horned lark & - & - & - & - & \(=\) & - & 1.7 & - & - & - & - & 2.9 \\
\hline Mourning dove & 2.0 & 0.7 & 1.3 & 0.3 & 1.3 & 0.7 & - & - & 2.7 & 3.9 & 1.2 & - \\
\hline Rock dove & - & - & 5.0 & - & - & - & - & - & - & 11.5 & - & - \\
\hline Group Total 10 & 10.0 & 5.7 & 7.3 & 2.3 & 22.7 & 10.1 & 1.7 & 3.3 & 25.6 & 22.3 & 19.7 & 8.5 \\
\hline \multicolumn{13}{|l|}{INSECTIVOROUS} \\
\hline Acadian Elyostcher & F - & 0.3 & - & - & - & - & - & - & 0.3 & - & - & * \\
\hline Barn swallow & 6.3 & 0.7 & 7.0 & - & - & - & - & - & 7.0 & 16.2 & - & - \\
\hline Downy woodpecker & - & - & - & - & * & - & - & 0.7 & - & - & - & * \\
\hline Eastern kingbird & 0.2 & 0.7 & 0.3 & 1.0 & - & - & - & - & 1.0 & 3.0 & - & - \\
\hline \begin{tabular}{l}
Eastern \\
wood pewee
\end{tabular} & - & - & - & - & - & 0.3 & - & - & - & - & 0.2 & - \\
\hline Purple martin & - & - & 0.3 & - & - & - & - & - & - & 0.7 & - & \(\sim\) \\
\hline Red-bellied woodpecker & - & - & - & 0.7 & - & 0.7 & - & 1.3 & - & 0.7 & 0.4 & 2.2 \\
\hline Red-headed woodpeciker & - & 1.7 & 0.7 & 2.7 & - & - & - & 2.3 & 1.7 & 7.6 & - & 2.2 \\
\hline Rough-winged swallow & - & - & 0.3 & * & - & - & - & - & * & 0.7 & - & - \\
\hline Summer tanager & - & 1.0 & - & - & * & - & - & - & 1.0 & - & - & * \\
\hline Yellow-shafted flicker & - & 0.7 & - & - & 2.3 & 3.0 & - & 3.0 & 0.7 & - & 3.2 & 5.1 \\
\hline Yellowthroat & - & 1.0 & - & - & - & - & - & - & 1.0 & * & - & - \\
\hline Group Total & 6.6 & 6.2 & 8. 6 & 4.4 & 2.3 & 4.0 & - & 6.3 & 12.7 & 28.8 & 3.8 & 10.7 \\
\hline \multicolumn{13}{|l|}{CRREIVOROUS} \\
\hline \[
\begin{gathered}
\text { Logyerhead } \\
\text { shrike }
\end{gathered}
\] & - & 0.7 & - & - & 0.7 & - & 0.3 & - & 0.7 & - & 0.4 & 0.5 \\
\hline
\end{tabular}

\section*{TRBLE 3.3-3-6 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FEEDING GAETT Species} & \multicolumn{8}{|c|}{Rhundance*} & \multicolumn{4}{|c|}{Qejative Noundance \({ }^{\text {b }}\)} \\
\hline & & & \multicolumn{2}{|r|}{\[
\begin{aligned}
& \text { Late } \\
& \text { Summer } \\
& h \frac{1}{1}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
x \xrightarrow[\mathrm{Fal1}]{\mathrm{H}}
\]} & \multicolumn{2}{|l|}{\[
\mathrm{A}^{\frac{\text { winter }}{}}
\]} & Early Sumne: & \[
\begin{aligned}
& \text { Date } \\
& \text { Summe: }
\end{aligned}
\] & Fal2 & Winter \\
\hline Kough-legryed hawk & - & * & - & - & 0.3 & - & - & - & - & = & D. 2 & - \\
\hline Sparrow hawk & * & - & - & - & 2.0 & - & \(\cdots\) & - & - & - & 0.6 & - \\
\hline Sroup Total & - & 0.7 & - & - & 2.0 & - & 0.3 & - & 0.7 & * & 1.2 & 0.5 \\
\hline \multicolumn{13}{|l|}{Aguntic ONETVOROUS} \\
\hline Blue goose & - & - & - & * & 12.3 & - & - & - & - & - & 7.1 & - \\
\hline Mallard & - & * & - & 0.7 & * & - & * & - & - & 1.6 & - & - \\
\hline Sncw goore & - & - & - & * & 22.0 & - & * & - & - & * & 7.3 & * \\
\hline Qroup Total & - & - & - & 0.7 & 23.7 & - & - & - & * & 1.6 & 14.4 & - \\
\hline \multicolumn{13}{|l|}{TOTAL FOR} \\
\hline kLL GROUPS & 52.5 & 48.6 & 2.24 & 18.3 & 95.2 & 69.3 & 22.8 & 42.0 & & & & \\
\hline TOTAL/PERIOD & & - & 4 & - & 164 & 3 & 63 & ह- & & & & \\
\hline
\end{tabular}
a. Besed on e three-day mean per perded.
b Percent.
- Agricultural fields.

A Hedgerow.

BIRDS IDENTIFIED DURING THE EVENING AUTOMOBILE SURVEY, CALLAWAY COUNTY, MISSOURI
\begin{tabular}{lcccc}
& \multicolumn{4}{c}{ Sampling Period } \\
\cline { 2 - 5 } \begin{tabular}{c}
Early \\
Species
\end{tabular} & \begin{tabular}{c}
Late \\
Summer
\end{tabular} & Summer & Fall & Winter \\
\hline Common nighthawk & 1 & - & - & - \\
Great horned owl & 1 & - & 1 & 1 \\
Pied-billed grebe & - & - & 1 & - \\
Purple martin & - & 25 & - & - \\
Whip-poor-will & 27 & 1 & - & -
\end{tabular}

TABLE 3.3.3-8
MISCELLANEOUS OBSERVATIONS OF BIRDS
DURING FIVE SAMPLING PERIODS, CAILAWAY COUNTY, MISSOURI
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{5}{|c|}{Sampling Period} \\
\hline & Spring & \[
\begin{aligned}
& \text { Early } \\
& \text { Summer }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Late } \\
& \text { Summer } \\
& \hline
\end{aligned}
\] & Fall & Winter \\
\hline American bittern & 1 & - & - & - & - \\
\hline Blue-winged teal & - & - & 4 & - & - \\
\hline Bobwhite & 12 & 7 & 31 & 49 & - \\
\hline Cedar waxwing & - & - & - & 25 & - \\
\hline Common nighthawk & - & - & 1 & - & - \\
\hline Common redpoll & - & - & - & - & 100 \\
\hline Ducks & - & - & - & 9 & - \\
\hline Golden eagle & - & - & - & - & 1 \\
\hline Grasshopper sparrow & - & 1 & - & - & - \\
\hline House wren & - & 1 & - & - & - \\
\hline Marsh hawk & - & - & - & 3 & - \\
\hline Mourning dove & - & - & - & 25 & 5 \\
\hline Ruby-throated hummingbird & - & - & 1 & - & - \\
\hline Turkey & 1 & - & - & - & - \\
\hline Turkey vulture & - & - & 2 & - & - \\
\hline White-breasted nuthatch & - & - & - & - & 1 \\
\hline
\end{tabular}

LEGEND:
F FOREST
H HEDGEROW
A AGRICULTURE
R ROADWAY

UNION ELECTRIC CO.
CALLAWAY PLANT
UNITS \(1 \& 2\)
BRRD SPECES ALONG AVIAN AUTONOBLE ANC
EVENHVG SURVEY ROUTES EY SAWPLHAG
PGBNOD, HABITAT TYPF AND FEEDNG HABIT
Figure 3.3.3-2

\section*{LEGEND}
```

F FOREST
H HEDGEROW
A AGRICULTURAL FIELDS
R ROADWAY
OMDIVOROUS
[R] GRANIVOROUS - HERBIVOROUS
INSECTIVOROUS
CARNIVOROUS
FAQUATIC OMNIVOROUS
CARRION FEEDER

```


Figure 3.3.3-5

\section*{LEGEND}

A
AGRICULTURAL FIELDS

H HEDGEROW

F
FORES TOMNIVOROUS
[us GRANIVOROUS - HERBIVOROUS
\(\cdots\) INSECTIVOROUS
CARNIVOROUS
\(\square\) NECTIVOROUS

\section*{90
\(80-1\)}

\section*{LEGEND}

A AGRICULTURAL FIELDS
H HEDGEROW
\(\square\) OMNIVOROUS
[द] GRANIVOROUS-HERBIVOROUS
0 INSECTIVOROUS
CARNIVOROUS
AQUATIC OMNIVOROUS

\subsection*{3.3.4 AMPHIBIANS AND REPTILES}

\subsection*{3.3.4.1 Evening Automobile Survey}

Although the survey was conducted during four of five sampling periods, only the early summer sampling period yielded results, primarily because this sampling period coincided with peak breeding activity of amphibians.

Treefrogs (Table 3.3.4-1) were the most common sightings along the survey route, while the chorus frog, bullfrog, cracket frog, and American toad were less common. These amphibians were noted along stretches of roadway near Logan Creek and farm ponds used for mating and egg laying.

Four of the amphibian species observed are priaominantly aquatio, while the remaining species is aquatic only during part of their life cycle. Leopard froas are usually found in marshes or ponds; bullfrogs can be found in almost any water, while green frogs prefer ditches and creeks. The American toad is usually observed in shallow bodies of water or on land; the treefrogs breed in water, but then move to a terrestrial environment.

No reptiles were sighted in the Intensive Study Area during the evening automobile survey. They are generally not easily observed. However, based on lists of reptiles whose range includes the site, the following are assumed to be present: common snapping turtle, stinkpot, map turtles, western painted turtle, red-eared turtle, and soft-shell turties, Graham's, blotched, northern, and diamond-backed water snakes, eastern and red-sided garter snakes; these species all would be found in an aquatic habitat. Also likaly to be present are the ornate box turtle, western slender glass lizard, and the sixlined racerunner. These would be found in agricultural habitats.

\subsection*{3.3.4.2 Miscellaneous Observations of Amphibians and Reptiles}

Six species (Table 3,3,4-2) not identified during the evening automobile survey were sighted in miscellaneous observations. Three of these species were reptiles. During four of the sampling periods, the three-toed box turtle was observed crossing roadways, within forests, and in old fields. A garter snake was observed in a ditch during early summer, and a snapping turtle was found in an old field. The remaining three species central newt, green frog, and leopard frog) were amphibians. The green frog and the leopard frog were observed in a ditch; the newt was found impaled on a barb-wire fence, presumable the prey of a loggerhead shrike observed in the area.

AMPHIBIANS IDENTIFIED DURING THE EARLY SUMMER EVENING AUTOMOBILE SURVEY, CALLAWAY COUNTY, MISSOURI
American toad 3
Bullfrog 2
Chorus frog 5
Cricket frog 1
Gray treefrog 2
Treefrog 12
TOTAL 25
\[
\text { TABLE } 3.3 \cdot 4-2
\]

MISCELLA. EOUS OBSERVATIONS OF AMPHIBIANS AND REPTILES DURING FIVE SAMPLING PERIODS, CALLAWAY COUNTY, MISSOURI
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{5}{|c|}{Sampling Period} \\
\hline & Spring & \[
\begin{aligned}
& \text { Early } \\
& \text { Summer }
\end{aligned}
\] & Late Summer & Fall & Winter \\
\hline Bulifrog & -- & 1 & -- & -- & -- \\
\hline Central newt & -- & -- & -- & -- & 1 \\
\hline Garter snake & -- & 1 & -- & -- & -- \\
\hline Green frog & -- & 1 & -- & -- & -- \\
\hline Leopard frog & -- & 1 & - & -- & -- \\
\hline Snapping turtle & -- & 1 & -- & -- & -- \\
\hline Three-toed box turtle & 1 & 3 & 3 & -- & 1 \\
\hline TOTAL & 1 & 8 & 3 & -- & 2 \\
\hline
\end{tabular}

Among plants and wildilife with natural ranges encompassing the Callaway Plant site, 10 are considered "endangered" and 12 "rare" by the Missouri Department of Conservation (Gale, 1973). Indiana Myotis, classified as "endangered" by the State of Missouri, is also classified as "threatened" by the USDI (1973).

Within the "endangered" category, there are two mammals (Appendix \(3 \mathrm{~B}-3\)), five birds (Appendix \(3 \mathrm{C}-2\)), and one plant (Appendix \(3 \mathrm{~A}-1\)) with ranges encompassing the site. Of these, only the plant (elm) was observed directly on the site, where it was fcund along forested ravine bottoms. Elms are considered "endangered" because of their extreme susceptibility to the Dutch Elm disease.

The "rare" category contains two mammals, nine birds, and one reptile with ranges encompassing the site. Of the two "rare" manmals, only the long-tailed weasel was observed. The classification of the long-tailed weasel as "rare" is paradoxical, since it is still part of the annual state fur harvest. Apparently the State of Missouri is aware of this mammal's population decline but has not passed legislation to protect it. Of the nine birds classified as "rare." only the bald eagle and the ruffed grouse have been observed near or on the site. Bald eagles, which feed predominantly on fish, are usually found along the nation's waterways. They have been observed south of the site along the bluffs of the Missouri River flood plain. Because of their habitat requirements, ba? \(\mathcal{C}\) eagles are not expected to be frequent visitors to the site. The ruffed grouse has been observed on the site, which lies within an area selected by the Missouri Department of Conservation for planting a ruffed grouse breeding population (Nagel, 1970). The large, ungrazed forest south, east, and northeast of the site provides this species" habitat requirements. The ruffed grouse is in the process of expanding its range to suitable habitats in adjacent areas.

\subsection*{3.3.6 ECOLOGICAL SUMMARY}

The Callaway Plant site is located within the ecotone between two historic climax vegetation types, tall grass prairie and oakhickory forest. Situated on the northern border of the Missouri River, the site lies within an area that has been influenced by glacial activity.

The soils of the site - Mexico and Putnam series in the Flat Prairie resource area and Goss series in the Rough Stony Land and River Hills resource areas - were formed from glacierdeposited parent material. These soils have been a major influence on native vegetation types. Likewise, the vegetation types have influenced soil genesis.

Presently, forests are found on approximately 50 percent of the site area, occupying terrain generally too steep for cultivation. About 70 percent of this forested area is pasture. The original prairie that occurred on the plateau above the forested slopes is now nearly all used for cultivated crops, although some areas are used for pasture.

A total of 175 plant species were identified on the site. The majority of these were found in the Oak-Hickory Forest Association and along hedgerows between cultivated fields on the plateau. The Oak-Hickory Association is comprised of four major types: 1) oak forest, which occupies about 20 percent of the forested area, 2) oak-hickory forest, 3) oak-maple forest, and 4) black walnut-red cedar forest. Ecologically, the black walnut-red cedar type is the youngest forest in terms of plant succession. The oak-hickory forest is the most mature.

Non-forest areas on the site are the old fields and pastures. Both types are relatively small in area and support plant species typical of disturbed areas. Forty-one plant species were identified in these areas.

Wildife populations on the site are typical of forested areas broken by agricultural land and grassland. Fifteen of the 47 mammal species with range and habitat requirements including the site area were identified. The majority of the species identified were game and fur-bearing mammals such as the cottontail, raccoon, and white-tailed deer. Two small mammals, the whitefooted mouse and deer mouse, were trapped on the site, and their population levels were found to be extremely low. These levels apparently reflect existing normal population patterns, since small mammal populations are currently at low levels in eastern Missouri. Population levels for the white-tailed deer, cottontail, and raccoon are estimated to be below average. The density of opossum is above average.

Approximately 208 bird species are expected to inhabit the region as either permanent residents, winter residents, summer residents, or summer visitors (does not breed locally). Ninetyone of these species were identified on the site. The number of species observed each season varied considerably, with a low
of 34 in spring and a maximum of 58 in early summer. On the basis of feeding groups, the omnivorous feeders were largest in number of species and individuals during each season in all surveys. In spring, for example, they comprised 95 percent of all birds identified in one survey. The other feeding groups, granivore-herbivores, insectivores, carnivores, aquatic-omnivores, and carrion feeders, normally display lower densities wherever a mix of agricultural land and forest occurs. The total number of birds observed each season varied only moderately. The average number of birds observed was 920 for all seasons, with a range of 500 to 1,190.

In general, wildlife habitats occurring on the site are those commonly found in central Missouri. These habitats are relatively diverse, supporting a large, intermixe3 number of plant species throughout the study area. The most favorable areas for wildife are those where two or more habitats, including agricultural land, are intermixed. The most favorable habitats are those adjacent to ravines and drainages, the old fields, the young forest (black walnut-red cedar), and forests with a moderate to dense understory. Agriculture practices conducted in the site area also create favorable conditions for some species of wildlife. Much of the area is pastured and cut for hay, and these practires favor species such as the bobwhite and cottontail by providing them with adequate cover as well as food.

Twenty-two species of "endangered" or "rare" plants and wildife are known to have natural ranges encompassing the site. Three of these wildlife species (long-tailed weasel, bald eagle, and ruffed grousel, and one plant (elm) were observed.

\subsection*{3.4 CONCLUSION AND RECOMMENDATION}

The ecology of the Callaway Plant site is not unique, and its particular ecological balance re-occurs many times throughout central and eastern Missouri. Intensive farming has produced favorable habitat for wildlife populations, but these conditions can be found in areas adjacent to the site. Since construction of the facility will remove only a small portion of the total acreage from production and since the ecology of the Callaway County Plant site is not unique, no significant impact from plant construction on the resident wildife population is anticipated.

Rare and endangered or extremely important economic species occurring near or on the site will be affected little by development of the facility. The turkey, white-tailed deer, and ruffed grouse require forested habitats broken by small fields or openings and a relatively large home range. Only a few acres of forest will be disrupted during construction, and the access road, pipelines, and railroad spur should not affect movement of these species. Other species, such as the bald eagle, are extremely mobile and are not expected to be found near or on the site very often.

Although the terrestrial ecology of the plant site area is not expected to be significantly affected by plant construction or operation, the recommended monitoring program (authorized by Union Electric Company to begin in spring, 1974) is necessary to test the validity of this conclusion. Data obtained during the present study, when combined with that gathered during preconstruction monitoring, will satisfactorily document plant site biotic and abiotic elements, and can then be used as a standard with which to compare data obtained during construction and operation impact monitoring.

\subsection*{3.5 REFERENCES}

Allen, D.L. 1943. Michigan fox squirrel management. Michigan Department of Conservation, Game Division Publication no. 100. 404 pp .

American Ornithologists' Union. 1961. Checklist of North Americarz birds. Port City Press, Inc., Baltimore, 5th ed. 691 pp .

Audubon Society of Missouri. 1971. Checklist of Missouri birds. Audubon Society of Missouri. 4 pp.

Barkalow, F.S. Jr., R.B. Hamilton, and R.F. Soots Jr. 1970. The vital statistics of an unexploited gray squirrel population. Tournal of Wildife Management. 34(3): 489-500.

Bent, A.C. 1961. Life histories of Nortin American birds of prey, parts 1 and 2. Dover Publications 4 nc. . New York. 880 pp . birds, parts 1 and 2. Dover Publications Inc., New York. 699pp. - 1962b. Life histories of North American wild fowl, parts 1 and 2. Dover Publications Inc., New York. 558 pp. - 1963a. Life histories of North American diving birds. Dover Publications Inc., New York. 239 pp.
. 1953b. Life histories of North American flycatchers, larks, swallows. Dover Publications Inc., New York. 555 pp.
\(\qquad\) - 1963c. Life histories of North American gallinaceous 之.rds. Dover Publications Inc., New York. 490 pp. - 1963d. Life histories of North American Julls and terns. Dover Publications Inc., New York. 337 pl

1963e. Life histories of North American marsh birds. Dover Publications Inc., New York. 392 pp .
\(\qquad\) - 1963f. Life histories of North American wood warblers, parts 1 and 2. Dover Publications, Inc. Isw York. 734 pp .

1964a. Life historits of North American cuckons, goatsuckers, hummingbirds, and thei, allies. Dover Publications Inc., New York. 506 pp .

19 4b. Life histories of North American jays, crows, and titmicf, parts 1 and 2 . Dover Publications Inc., New York. 495 pp
- 1964c. Life histories of North American nuthatches, wrens, thrashers, and their allies. Dover Publications Inc., New York. 475 pp.
- 1964d. Iife histories of North Amed ican petrels and pelicans and their allies. Dover Publications Inc., New York. 335 pp.
- 1964e. Life histories of the North American thrushes, kinglets, and their allies. Dover Publice ions Inc., New York. 452 pp.

1964f. Life histories of North Ameraran woodpeckers. Dover Publications Inc., New York. 334 pp.

1965a. Life histories of North American blackbirds, orioles, tanagers, and their allies. Dover Publications Inc., New York. 549 pp.
. 1965b. Life histories of North American wagtails, shrikes, vireos, and their allies. Dover Publicaticis Inc., New York. 411 pp.
1968. Life histories of North American cardinals, grosbeaks, buntings, towhees, finches, sparrows, and their allies, parts 1, 2 and 3 . Dover Publications Inc., New York. 1889 pp.

Burt, W.H. and R.P. Grossenheider. 1964. A field guide to the mammals. Houghton Mifflin Co.. Boston. 284 pp.

Christian, J.J. 1971. Fighting, maturity, and population density in Microtis pennsylvanicus. Journal of Mamalogy 52(3): 556-567.

Conant, R. 1958. A field guide to reptiles and amphibians. Houghton Mifflin Co.. Boston. 366 pp.

Cottam, G. and J.T. Curtis. 1956. The use of distance measures in phytosociological sampling. Ecology 37: 451-460.

Cox, G. . 196\%. Laboratory manual of general ecology. W.C. Brown, Publ., Dubuque. 165 pp.

Drew, W.B. 1942. The revegetation of abandoned cropland in the Cedar Creek area. Boone and Callaway Counties, Missouri. University of Missouri Agricultural Experiment Station Bulletin 344 .

Duvendeck, J.P. 1962. The value of acorns in the diet of Michigan deer. Journal of Wildlife Management. 26(4): 371-379.

Elder, W.H. Professor, School of Forestry, Fisheries, and Wildlife, University of Missouri. Written communication dated April 25, 1974.

Fernald, M.I. 1970. Gray's manual of botany. Van Nostrand Co., New York. 1632 pp.

Gale, I.R. Assistant Director, Missouri Department of Conservation. Written communication dated October 25, 1973.

Giles, R.H. 1971. Wildlife management techniques. The Wildlife Society, Washington, D.C. 623 pp.

Godfrey, G.K. 1955. Observations on the nature of the decline in numbers of two Microtus populations. Journal of Mammalogy 36(2): 209-213.

Goodrum, P.D., V.H. Reid and C.E. Boyd. 1971. Acorn yields, characteristics, and management rriteria of oaks for wildlife. Journal of Wildife Management 35(3): 520-532.

Jackson, H.H.T. 1961. Mammals of Wisconsin. University of Wisconsin Press, Madison. 504 pp .

Jameson, E.W. Jr. 1955. Some factors affecting fluctuations of Microtus and Peromyscus. Journal of Mammalogy 36(2): 206209.

Kaufman, D.W., and others. 1971. Use of assessment lines to estimate density of small mammals. Acta Theriologica 16(2): 127-147.

Korschgen, L.J. 1952. A general summar: of the food of Missouri Predatory and game animals. Missouri Conservation Commission. 16 pp . - 1954. A study of the food habits of Missouri deer. Missouri Conservation Commission. 43 pp .

Korschgen, L.J. and H.B. Stuart. 1972. Twenty years of avjan predator-small mammal relationships in Missouri. Journal of wildife Management \(36(2): \quad 269-282\).

Kortright, F.H. 1942. The ducks, geese, and swans of North America. The Stackpole Co., Harrisburg. 476 pp .

Krusekopf, H.H. 1962. Major soil areas of Missouri, 1962. University of Missouri, Agricultural Experiment Station B785. 19 pp .

LoBue, J. and R.M. Darnell. 1959. Effect of habitat disturbance on a small mammal popalation. Journal of Mammalogy \(40(3)\) : 425-437.

Martin, A.C., H.S. Zim and A.L. Nelson. 1961. American wildlife and plants - a guide to wildlife food habits. Drver Publications, Inc., New York. 500 pp.

Murphy, D. A. and H.S. Crawford. 1970. Wildife foods and understory vegetation in Missouri's national forests. Missouri Department of Conservation Technical. Bulletin no. 4. 47 pp .

Nage1, W.O. 1970. Conservation contrests. Van Hoffman Press, Inc., Jefferson City. 453 pp.

Nixon, W.M. and M.W. McClain. 1969. Squirrel population decline following a late spring frost. Journal of Wildlife Management \(33(2): 353-357\).

Odum, E.P., E.E. Connell and L.B. Davenport. 1962. Population energy flow of three primary consumer compcnents of old field ecosystems. Ecology \(43(1)\) : 88-96.

Oosting, H.J. 1956. The study of plant communities. W.H. Freeman and Co., San Francisco. 440 pp .

Peterson, R.T. 1947. A field guide to the birds, 2nd edition Houghton Mifflin Co., Boston. 230 pp.

Pettingill, O.S., Jr. 1970. Ornithology in laboratory and field. Burgess Publishing Co., Minneapolis. 524 pp .

Reynolds, H.C. 1945. Some aspects of the llfe history and ecology of the opossum in central Missouri. Journal of Mammalogy 26: 361-379.

Robbins, C.S., B. Bruun and H.S. Zim. 1966. Birds of North America. Golden Press, New York. 340 pp .

Robbins, C.S. and W.T. NanVelzer. 1967. The breeding bird survey, 1966. USDI, F1sh and Wildlife Service, Bureau of Sport Fisheries and Wildife Special Scientific Report, Wildife, no. 102, Washington, D.C. 43 pp .

Rusch, D.H., E.C. Meslow, P.D. Doerr and L.B. Keith. 1972. Response of great horned owl populations to changing prey densities. Journal of Wildife Management 36(2): 282-296.

Schwartz, C.W. and E.R. Schwartz. 1971. The wild mammals of Missouri. University of Missouri Press, Columbia. 341 pp .

Smith, R.L. 1966. Ecology and field biology. Harper and Row Publishers, New York. 686 pp.

Smith, C.C. and D. Follmer. 1972. Food preferences of squirrels. Ecology 53 (1): 82-91.

Society of american Foresters. 1967. Forest cover types of North America iociety of American Foresters, Washington, D.C. 67 pp .

Soil Conservation Service. 1971. Soil survey interpretations-Menfro series. USDA Soil Conservation Service, Fulton. 2 pp.
\(\qquad\) - 1972a. Soil survey interpretations--Goss series. USDA Soll Conservation Service, Fulton. 2 pp . . 1972b. Soil survey interpretations--Mexican Series. USDA Soil Conservation Service, Fulton. 2 pp. - 1972c. Physical resource areas of Callaway County. USDA Soil Conservation Service, Fulton. 4 pp . . 1972d. Soil survey interpretations--Putnam series. USDA Soil Conservation Service, Fulton. 2 pp.

Spencer, J.S. Jr. and H.W. Thorne. 1972. Wisconsin 1968 timber resources - a perspective. USDA Forest Service Research Bulletin NC-15. 80 pp .

Stuewer, F.W. 1943. Raccoons: their habits and management in Michigan. Ecological Monographs 13(2): 203-258.

United Etates Department of Interior. 1973. Threatened wildife of the United States. Bureau of Sport Fisheries and Wildlife Resource Publication 114, Washington, D.C. 289 FP.

Urban, D. 1970. Raccoon populations, movement patterns, and predation on a managed waterfowl marsh. Journal of Wildife Management \(34(2): 372-382\).

MISSOURI RIVER WATER QUALITY DATA (TRANSECTS F AND G)
Parameter
Temperature
pH
Standard Units
Conductivity
umhos/cm
Turbidity
FTU
Chloride
mg/1
Nitrate
mg/1 N
Organic Nitrogen
mg/1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Sample } \\
\text { Date }
\end{gathered}
\]} & & \multicolumn{2}{|l|}{Transect \(F\)} & \multicolumn{3}{|c|}{Transect \(G\)} \\
\hline & & F-1 & \(\mathrm{F}-2\) & G-1 & G-2 & Average \\
\hline Sept. & '73 & 24.6 & 24.6 & 24.8 & 24.8 & 24.7 \\
\hline Dec. & 173 & 3.5 & 2.9 & 2,8 & 3.0 & 3.1 \\
\hline Feb. & '74 & 4.0 & 4.0 & 4.0 & 4.5 & 4.1 \\
\hline Sept. & -73 & 7.8 & 7.9 & 7.9 & 8.0 & 7.9 \\
\hline Dec. & . 73 & 7.9 & 7.9 & 7.9 & 7.9 & 7.9 \\
\hline Feb. & '74 & 7.2 & 7.4 & 7.3 & 7.1 & 7. 3 \\
\hline Sept. & 173 & 700 & 625 & 710 & 710 & 686 \\
\hline Dec. & -73 & 390 & 380 & 490 & 500 & 440 \\
\hline Feb. & -74 & 210 & 370 & 340 & 350 & 318 \\
\hline Sept. & :73 & 16 & 20 & 26 & 16 & 20 \\
\hline Dec. & 173 & 40 & 40 & 42 & 42 & 41 \\
\hline Feb. & '74 & 140 & 100 & 170 & 140 & 138 \\
\hline Sept. & 173 & 21 & 25 & 26 & 26 & 25 \\
\hline Dec. & '73 & 25 & 26 & 26 & 27 & 26 \\
\hline Feb. & '74 & 10 & 26 & 22 & 23 & 20 \\
\hline Sept. & 173 & 0.5 & 0.4 & 0.7 & 0.7 & 0.6 \\
\hline Dec. & .73 & 1. 3 & 1.5 & 1.4 & 1.5 & 1. 4 \\
\hline Feb. & '74 & 1.4 & 2.0 & 1.7 & 1.6 & 1.7 \\
\hline Sept. & '73 & 0.6 & 0.6 & 0.5 & 0.5 & 0.6 \\
\hline Dec. & .73 & 0.9 & 1.0 & 1.1 & 1. 2 & 1.1 \\
\hline Feb. & -74 & 1.2 & 1.7 & 1.6 & 1.7 & 1.6 \\
\hline
\end{tabular}

APPENDIX \#ABLE 2A-1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Sample } \\
\text { Date }
\end{gathered}
\]} & & \multicolumn{2}{|l|}{Transect \(F\)} & \multicolumn{2}{|l|}{Transect G} & \multirow[b]{2}{*}{Average} \\
\hline Parameter & & & E-1 & \(\mathrm{F}-2\) & G-1 & G-2 & \\
\hline \multirow[t]{3}{*}{Orthophosphate \(\mathrm{mg} / 1 \mathrm{P}\)} & Sept. & -73 & 0.18 & 0.21 & 0.21 & 0.22 & 0.21 \\
\hline & Dec. & :73 & 0.16 & 0.18 & 0.16 & 0.18 & 0.17 \\
\hline & Feb. & \(\cdot 74\) & 0.07 & 0.11 & 0.13 & 0.14 & 0.11 \\
\hline \multirow[t]{3}{*}{T tal Phosphorus \(\mathrm{mg} / 1 \mathrm{p}\)} & Sept. & :73 & 0.19 & 0.22 & 0.21 & 0.22 & 0.21 \\
\hline & Dec. & .73 & 0.24 & 0.27 & 0.25 & 0.27 & 0.26 \\
\hline & Feb. & '74 & 0.12 & 0.24 & 0.22 & 0.24 & 0.21 \\
\hline \multirow[t]{3}{*}{```
Dissolved Oxygen
 mg/1
```} & Sept. & :73 & 7.4 & 7. 3 & 7.3 & 7.3 & 7.3 \\
\hline & Dec. & 173 & 12,8 & 13.1 & 13.1 & 12.8 & 13.0 \\
\hline & Feb. & '74 & 13.1 & 13.0 & 11.2 & 11.2 & 12.1 \\
\hline \multirow[t]{3}{*}{Chemical Oxygen Demand \(\mathrm{mg} / 1\)} & Sept. & 173
+73 & 12 & 16 & 12 & 16 & 14 \\
\hline & Dec. & .73 & 15 & 15 & 15 & 16 & 1.5 \\
\hline & Feb. & 174 & 13 & 18 & 18 & 107 & 39 \\
\hline \multirow[t]{3}{*}{Total Suspended Solid \(\mathrm{mg} / 1\)} & Sept. & 173 & 112 & 102 & 36 & 102 & 88 \\
\hline & Dec. & . 73 & 113 & 133 & 123 & 121 & 123 \\
\hline & Feb. & '74 & 92 & 184 & 138 & 332 & 187 \\
\hline \multirow[t]{3}{*}{```
Total Dissolved S
    mg/1
```} & Sept. & +73 & 446 & 518 & 508 & 506 & 495 \\
\hline & Dec. & +73 & 452 & 458 & 432 & 460 & 451 \\
\hline & Feb. & '74 & 314 & 466 & 456 & 448 & 421 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Hardness } \\
& \mathrm{mg} / 1 \mathrm{CaCO}_{3}
\end{aligned}
\]} & Sept. & :73 & 208 & 231 & 225 & 231 & 224 \\
\hline & Dec. & +73 & 232 & 246 & 245 & 244 & 242 \\
\hline & Feb. & '74 & 148 & 232 & 203 & 206 & 197 \\
\hline \multirow[t]{3}{*}{Arsenic mg/l} & Sept. & . 73 & 0.004 & 0.004 & 0.004 & 0.006 & 0.005 \\
\hline & Dec. & . 73 & 0.003 & 0.003 & 0.003 & 0.004 & 0.003 \\
\hline & Feb. & -74 & 0.002 & 0.003 & 0.003 & 0.003 & 0.003 \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Cadmium } \\
\text { mg/1 }
\end{gathered}
\]} & Sept. & :73 & 0.008 & \(<0.001\) & 0.006 & 0.001 & \(<0.004\) \\
\hline & Dec. & :73 & 0.005 & 0.007 & 0.006 & 0.007 & 0.006 \\
\hline & Feb. & -74 & 0.012 & 0.024 & 0.010 & 0.025 & 0.018 \\
\hline
\end{tabular}

APPENDIX TABLE \(2 \mathrm{~A}-1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[t]{2}{*}{Sample Date} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { Transect } & \mathrm{F} \\
\mathrm{~F}-1 & \mathrm{~F}-2 \\
\hline
\end{array}
\]}} & \multicolumn{2}{|l|}{Transect G} & \multirow[b]{2}{*}{Average} \\
\hline & & & & & G-1 & G-2 & \\
\hline \multirow[t]{3}{*}{```
Iron (total)
 mg/1
```} & Sept. & :73 & 1.4 & 1.4 & 1. 4 & 1.3 & 1.4 \\
\hline & Dec. & -73 & 2.5 & 2.4 & 2.3 & 2.4 & 2.4 \\
\hline & Feb. & '74 & 1.2 & 2.5 & 2.9 & 2.0 & 2.2 \\
\hline \multirow[t]{3}{*}{Copper \(\mathrm{mg} / 1\)} & Sept. & . 73 & 0.011 & 0.009 & 0.016 & 0.010 & 0.012 \\
\hline & Dec. & -73 & 0.002 & 0.007 & 0.005 & 0.007 & 0.005 \\
\hline & Feb. & '74 & 0.017 & 0.022 & 0.018 & 0.016 & 0.018 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Lead } \\
& \mathrm{mg} / 1
\end{aligned}
\]} & Sept. & 173 & \(<0.02\) & \(<0.02\) & \(<0.02\) & \(<0.02\) & \(<0.02\) \\
\hline & Dec. & +73 & C. 05 & 0.05 & 0.01 & 0.01 & 0.03 \\
\hline & Feb. & '74 & \(<0.02\) & \(<0.02\) & 0.03 & 0.03 & \(<0.03\) \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Mercury } \\
\mu \mathrm{g} / 1
\end{gathered}
\]} & Sept. & .73 & \(<0.1\) & \(<0.1\) & 0.1 & 0.1 & \(<0.1\) \\
\hline & Dec. & :73 & 0.4 & 0.3 & 0.0 & 0.1 & 0.2 \\
\hline & Feb. & '74 & \(<0.1\) & \(<0.1\) & \(<0.1\) & \(<0.1\) & <0.1 \\
\hline \multirow[t]{3}{*}{Chromium \(\mathrm{mg} / 1\)} & Sept. & :73 & 0.015 & 0.007 & 0.013 & 0.005 & 0.010 \\
\hline & Dec. & :73 & 0.003 & 0.003 & 0.003 & 0.003 & 0.003 \\
\hline & Feb. & , 1 & 0.011 & 0.004 & 0.006 & 0.004 & 0.006 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Selenium } \\
& \mathrm{mg} / 1
\end{aligned}
\]} & Sept. & :73 & \(<0.001\) & \(<0.001\) & \(<0.001\) & 0.001 & \(<0.001\) \\
\hline & Dec. & :73 & \(<0.001\) & <0.001 & \(<0.001\) & \(<0.001\) & \(<0.001\) \\
\hline & Feb. & \(\cdot 74\) & <0.001 & <0.001 & \(<0.001\) & \(<0.001\) & \(<0.001\) \\
\hline \multirow[t]{3}{*}{Sulfate \(\mathrm{mg} / 1\)} & Sept. & 173 & 151 & 206 & 202 & 151 & 178 \\
\hline & Dec. & -73 & 82 & 100 & 97 & 102 & 95 \\
\hline & Feb. & '74 & 45 & 106 & 86 & 95 & 83 \\
\hline \multirow[t]{3}{*}{Hexane Solubles mg/ 1} & Sept. & & 2 & & & & \\
\hline & Dec. & '73 & 8 & 9 & 7 & 10 & 9 \\
\hline & Feb. & '74 & 6 & 3 & 2 & 2 & 3 \\
\hline \multirow[t]{3}{*}{Fecai Coliforms number/100 ml} & Sept. & 173 & \(74 \hat{0}\) & 1500 & 1300 & 1200 & 1185 \\
\hline & Dec. & :73 & 1800 & 2100 & 3900 & 3400 & 2800 \\
\hline & Feb. & '74 & 680 & 970 & 880 & 1000 & 883 \\
\hline
\end{tabular}

APPENDIX TABLE 2A-1

Total Coliforms number/ 100 ml
\begin{tabular}{l} 
Sample \\
Date
\end{tabular}
Sept. \(\quad 773\)
Dec. \(\quad 73\)
Feb. \(\quad 74\)
\begin{tabular}{cc}
\multicolumn{2}{c}{ Transect } \\
\(\mathrm{F}-1\) & F \\
\hline & \(\mathrm{~F}-2\) \\
3700 & 12,000 \\
3100 & 4600 \\
1900 & 1700
\end{tabular}
\begin{tabular}{rr}
\multicolumn{2}{c}{ Transect } \\
G-1 & \(\mathrm{G}-2\) \\
\hline 12,000 & 16,000 \\
3900 & 4600 \\
1400 & 1600
\end{tabular}

Average
10,925 4050 1650

\section*{APPFNDIX TABLE 2A-2}

AVERAGE DENSITIES OF PLANKTON COLLECTED IN THE MISSOURI RIVER AT TRANSECTS F AND G IN SEPTEMBER, \(19733^{a}\)

\section*{PHYTOPLANKTON (cells per liter)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stations & Greens & Diatoms & Blue-greens & Others & Total \\
\hline \(\mathrm{F}-1\) & 89 & 153 & 12 & 34 & ? 88 \\
\hline \(\mathrm{F}-2\) & 149.5 & 212.5 & 27 & 32.5 & 421.5 \\
\hline G-1 & 86 & 207.5 & 16 & 25 & 334.5 \\
\hline G-2 & 85 & 108 & 14 & 13 & 220 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Stations & Rotifers & Cladocerans & Copepods & Total \\
\hline F-1 & 44.1 & 0 & 5.3 & 49.4 \\
\hline \(\mathrm{F}-2\) & 42.5 & 0.2 & 3.0 & 45.7 \\
\hline G-1 & 49.4 & 0.2 & 1.8 & 51.4 \\
\hline \(\mathrm{G}-2\) & 16.2 & 0 & 1.6 & 17.8 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a Plankton was also collected from Transects } F \text { and } G \text { in }}\) December, 1973, and February, 1974, but these samples were not analyzed.
}
\begin{tabular}{|c|c|c|c|}
\hline Date & Station & Organism & No. \(/ \mathrm{m}^{2}\) \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { September } \\
& 1973
\end{aligned}
\]} & \(\mathrm{F}-1\) & \[
\begin{aligned}
& \text { Diptera } \\
& \text { Tendipedini sp. C } \\
& \text { Unidentified }
\end{aligned}
\] & \[
\begin{array}{r}
14 \\
7
\end{array}
\] \\
\hline & G-1 & Diptera Tendipedini sp. C & 21 \\
\hline & & \begin{tabular}{l}
Crustacea \\
Hyalella azteca
\end{tabular} & 7 \\
\hline & G-2 & ```
Diptera
    Tendipedini sp. C
    Tendipedini sp. C-1
    Trichocladius sp.
``` & \[
\begin{aligned}
& 14 \\
& 42 \\
& 21
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { December } \\
& 1973
\end{aligned}
\]} & F-2 & \begin{tabular}{l}
Diptera \\
Ceratopogonidae (unidentified)
\end{tabular} & 7 \\
\hline & & \begin{tabular}{l}
Odonata \\
Argia sp.
\end{tabular} & 7 \\
\hline & & Trichoptera Hydropsyche orris & 7 \\
\hline & G-2 & \begin{tabular}{l}
Diptera \\
Ceratopogonidae (unidentified)
\end{tabular} & 98 \\
\hline & & Annelida Oligochaeta (unidentified) & 7 \\
\hline
\end{tabular}

\section*{APPENDIX TABLE 2A-4}
Fish
Species
Gizzard Shad
Carp

River Carpsucker
Goldeye
Blue Catfish
Largemouth Bass
White Crappie
Bluegill
Freshwater Drum
1
30

ITEM ANALYSIS OF STOMACH CONTENTS OF EISH FROM TRANSECTS F AND G, MISSOURI RIVER COLLECTED DURING SEPTEMEER, 1973 (NUMBEES REPRESENT PERCENT OF WEIGHT)
Number of Number of
Stomachs Empty
\(\square\) FJOD ITEEAS
\begin{tabular}{lll}
Green & Other & Onidentifled \\
Algae & Diptera & Insecta \\
Organic \\
Material
\end{tabular}

\footnotetext{
Mean Weight/ Total Stomach Weigh:
} Empt Stomachs Algae Diptera Insecta Pelecypoda Fish Material
\begin{tabular}{rrr}
100 & 3.59 & 0.59 \\
40 & 1.01 & 11.14 \\
90 & 0.43 & 2.99 \\
100 & 0.36 & 0.36 \\
1 & 6.20 & 0.20 \\
12 & 0.161 & 32.43 \\
& 0.11 & 0.19 \\
\hline 95 & 0.25 & 0.25
\end{tabular}

0

0
1
0
0
0

0
0
0

1
\begin{tabular}{ccc}
10 & 4 & 100 \\
10 & & 40 \\
100 & 98 & 90 \\
1 & & 100 \\
62 & & 12 \\
29 & & 95
\end{tabular}

\section*{Fish Species}

\section*{Gizzard shad} Carp

Smallmouth buffalo
Skipjack herring
White crappie
Freshwater drum

TOMALS

Number of Stomachs Examined

21
5
1
2

1

2

32

Number of Empty
Stomachs

21

5

1
2
1
2

32
\begin{tabular}{|c|c|}
\hline Common Name & Scientific Name \({ }^{\text {a }}\) \\
\hline American elmb & Ulmus americana \\
\hline American hornbeam & Carpinus caroliniana \\
\hline American ipecac \({ }^{\text {c }}\) & Gillenia stipulata \\
\hline Anomalous aster & Aster anomalous \\
\hline Baldwin's ironweed & Vernonia baldwini \\
\hline Basket-oak & Quercus michauxii \\
\hline Basswood & Tilia americana \\
\hline Bitternut hickory & Carya cordiformis \\
\hline Black cherry & Prunus serotina \\
\hline Black gum & Nyssa sylvatica \\
\hline Black jack oak & Quercus marilandica \\
\hline Black locust & Robinia pseudoacacia \\
\hline Black oak & Quercus velutina \\
\hline Black walnut & Juglans nigra \\
\hline Blue vervain & Verbena hastata \\
\hline Blunt-lobed woodsiac & Woodsia obtusa \\
\hline Bowman's root & Gillenia trifoliata \\
\hline Bradbury monarda & Monarda bradburiana \\
\hline Bristly greenbrier & Smilax tamnoides \\
\hline Broad-leaved panic-grass & Panicum latifolium \\
\hline Broad-leaved spike grass & Uniola latifolia \\
\hline Buffalo clover & Trifolium stoloniferum \\
\hline Bullace plum \({ }^{\text {c }}\) & Prunus insititia \\
\hline
\end{tabular}

\section*{APPENDIX 3A-1 (continued)}

Common Name
Canada cinquefoil \({ }^{c}\)
Canada goldenrod
Carolina Suckthorn
Carolina rose
Cherry
Choke cherry
Clammy ground cherry \({ }^{\text {c }}\)
Clover
Common cinquefoil
Common milkweed \({ }^{\text {c }}\)
Common mullein
Common persimmon
Common ragweed
Common strawberry
Coral berry
Crabgrass
Cream-colored false indigo \({ }^{c}\)
Crooked-stemed aster \({ }^{C}\)
Crown-beard
Daisy fleabane
Downy serviceberry
Eastern white pine \({ }^{c}\)
Ebony spleenwort
Elmb
Elm-leaved goldenrod

Scientific Name
Potentilla pumila
Solidago canadensis
Rhamnus caroliniana
Rosa carolina
Prunus sp.
Prunus virginiana
Physalis heterophylla
Trifolium sp.
Potentilla simplex
Asclepias syriaca
Verbascum thapsus
Diospyros virginiana
Ambrosia artemisiifolia
Fragaria virginiana
Symphoricarpos orbiculatus
Digitaria sanguinalis
Baptisia leucophaea
Aster prenanthoides
Verbesina occidentalis
Erigeron annuus
Amelanchier arborea
Pinus strobus
Asplenium platyneuron
UZmus sp.
Solidago ulmifolia

Common Name
False buckthorn \({ }^{\text {c }}\)
False dragonhead \({ }^{C}\)
False Solomon's-seal \({ }^{C}\)
Field milkwort
Field garlicc
Florida lettuce
Flowering dogwood
Four-leaved miltweed \({ }^{\text {C }}\)
Fragrant sumac
Frost grape
Globose cyperus
Goats-rue \({ }^{\text {C }}\)
Golden Alexanders
Grass
Green ash
Green dragon \({ }^{\text {C }}\)
Ground plum \({ }^{\text {c }}\)
Hackberry
Hairy agrimony
Hairy mountain-mint
Hairy ruelliac
Hairy skullcap
Hawthorn \({ }^{\text {C }}\)
Hickory
Hog-peanut

Scientific Name
Bumelia 1anguinosa
Physostegia virginiana
Smilacina racemosa
Polygala sançuinea
Allium canadense
Lactuca floridana
Cornus florida
Asclepias quadrifolia
Rhus aromatica
Vitis vulpina
Cyperus ovalaris
Tephrosia virginiana
Zizia aurea
(Unknown)
Fraxinus pennsylvanica
Arisaema dracontium
Astragalus mexicanus
Celtis occidentalis
Agrimonia pubescens
Pyenanthemum pilosum
Ruellia carolinensis
Scutellaria elliptica
Crataegus sp.
Carya sp.
Amphicarpa bracteata

Common Name

\section*{Hogwort}

Honey-locust
Honewort
Hop-hornbeam
Horse nettle
Inland rush
Knotweed
Large-bracted tick-trefoil \({ }^{c}\)
Late purple asterc
Lead plant
Least hop-clover \({ }^{C}\)
Little bluestem
Loblolly pine \({ }^{c}\)
Loosely-flowered panic-grass \({ }^{c}\)
Low hop-clover
Mad-dog skullcap
Mild rose
Mockernut hickəry
Naked flowering scape trefoil \({ }^{C}\)
Onion
Osage orange
Pale-leaved wood sunflower \({ }^{C}\)
Pale plantain
Partridge-Pea
Pecan \({ }^{\text {C }}\)
Perfoliate bellwort

Scientific Name
Croton capitans
Gleditsia triacanthos
Cryptotaenia canadensis
Ostrya virginiana
Solanum carolinense
Juncus tenuis
Polygonum aviculare
Desmodium cuspidatum
Aster patens
Lathyrus japonicus
Trifolium dubium
Andropogon scoparius
Pinus taeda
Panicum laxiflorum
Trifolium procumbens
Scutellaria lateriflora
Rosa blanda
Carya tomentosa
Desmodium nudiflorum
A11ium Sp.
Maclura pomifera
Helianthus strumosus
Plantago rugellii
Cassia fasciculata
Carya illinoensis
Uvullaria perfoliata

\section*{APPENDIX 3A-1 (continued)}

Common Name
Pignut hickory
Pilose aster
Pinkweed \({ }^{c}\)
Pink wild bean
Plantain-leaf everlasting
Poison ivy
Pole-spike-lobelia
Possum-Haw \({ }^{\text {C }}\)
Post-oak
Prairie blazing star \({ }^{C}\)
Prairie rose
Purple cone flower \({ }^{C}\)
Redbud
Red cedar
Red clover
Red mulberry
Red oak
Red willow dogwood
Rough avens
Rough bedstraw
Rough buttonweed
Rough-leaved dogwood
Round-leaved dogwood
Roundseed paspalum
Rue-anenome

Scientific Name
Carya glabra
Aster pilosus
Polygonum pensylvanicum
Strophostyles umbellata
Antennaria plantagnifolia
Rhus radicans
Lobelia spicata
Ilex decidua
Quercus stellata
Liatris pycnostachya
Rosa setigera
Echinacea purpurea
Cercis canadensis
Juniperus virginiana
Trifolium pratense
Morus rubra
Quercus rubra
Cornus amomum
Geum virginianum
Galium asperellum
Diodia teres
Cornus drummondii
Cornus rugosa
Paspalum circulare
Anemonella thalictroides

\section*{APPENDIX 3A-1 (continued)}

Common Name
Running serviceberry
Rusty nannyberry
Scotch pine \({ }^{c}\)
Scrub pine \({ }^{c}\)
Shagbark hickory
Sheep sorrel
Shingle-oak
slender mountain-mint
Slender gerardiac
Slender rush
Slippery elmb
Smooth-seeded wild bean
Smooth serviceberry
Spanish oak
Spotted spurge
Squarrose sedge \({ }^{c}\)
St. John's wort
Sugarberry
Sugar maple
Sweet coneflower
Sycamore
Tall bellflower
Tall ironweed
Thin-leaved hackberry

Scientific Name
Amelanchier stolonifera
Viburnum rufidulum
Pinus sylvestris
Pinus Virginiant,
Carya ovata
Rumex acetosella
Quercus imbrica:ia
Pycnanthenum tenuifolium
Gerardia tenuifolia
Juncus tenuis
Ulmus rubra
Strophostyles leiosperma
Amelanchier laevis
Quercus falceta
Euphorbia maculata
Carex squarrosa
Hypericum sp.
Celtis laevigata
Acer saccharum
Rudbeckia subtomenetosa
Platanus occidentalis
Campanula americana
Vernonia altissima
Celtis tenuifolia

\section*{APPENDIX 3A-1 (continued)}

Common Name
Three-sided mercury
Tickseed-sunflower
Trumpet creeper \({ }^{C}\)
Twice-toothed ragweed
Typical paspalum \({ }^{c}\)
Violet
Virginia creeper
Wavy-leaved aster
Western ironweed
White ash
White avens
White clover
White oak
White oat-grass
White sassafras
White wild licorice
wild bergamot
Wild carrot
Witchgrass
Woodland agrimony
Woolgrass \({ }^{\circ}\)
Yarrow

Scientific Name
Acalypha virginiana
Bidens aristosa
Campsis radicans
Ambrosia bidentata
Paspalum pubescens
Viola sp.
Parthenocissus quinquefolia
Aster undulatus
Veronica fasciculata
Eraxinus americana
Geum canadense
Trifolium repens
Quercus alba
Danthonia spicata
Sassafras albidum
Galium circaezans
Monarda russeliana
Daucus carota
Panicum capillare
Agrimonia rostellata
Scirpus cyperinus
Achillea millefolium

\section*{APPENDIX 3A-1 (continued)}
\begin{tabular}{ll}
Common Name & Scientific Name \\
Yellow foxtail & Setaria lutescens \\
Yellow wood sorrel & Oxalis europaea
\end{tabular}
a Source: Fernald (1370).
b Considered endangeced throughout the state of Missouri due to the Dutch elm disease (Gale, October 25, 1973).
c Randomly sampled.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Spectes} & \multirow[t]{3}{*}{Preferred Habitat} & \multirow[t]{3}{*}{WHOSE
\[
\begin{gathered}
\text { Home } \\
\text { Range }^{b}
\end{gathered}
\]} & \multicolumn{4}{|l|}{APPETMDIX 3B-1} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Litters } \\
\text { per } \\
\text { year } \\
\hline
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Young } \\
& \text { per } \\
& \text { Year } \\
& \hline
\end{aligned}
\]} & \multirow[t]{3}{*}{Category} \\
\hline & & & LIFE HISTORY \({ }^{\text {a }}\) OF RANGES ENCOMPASS & GAME AND CALILAWAY & FUR MAMMAL COUNTY, Mi & SSOURI & & & \\
\hline & & & \[
\begin{gathered}
\text { Food } \\
\text { Preference }
\end{gathered}
\] & \[
\begin{gathered}
\text { Age } \\
\text { at } \\
\text { Maturity }
\end{gathered}
\] & \begin{tabular}{l}
Breeding \\
Season
\end{tabular} & Gestation Period & & & \\
\hline Badger & Open prairie & \[
\begin{aligned}
& 1 \text { to } 2 \\
& \text { sq. } m \mathrm{i} .
\end{aligned}
\] & Rabbits, mice and ground squirrels & 1 year & AugustSeptember & 6-9 months & 1 & 1-7 & Fur, game \\
\hline Beaver & In and along streams, rivers, marshes, lakes & . 5 mile & Tender bark of trees, corn, and aquatic plants & 3 years & JanuaryFebruary & 3-4 months & 1 & 1-8 & Fur \\
\hline Coyote & Brushy areas and open farmlande & \[
\begin{aligned}
& 1,5- \\
& 15 \text { miles }
\end{aligned}
\] & Rabbits, mice, carrion and some plants & 1-2 years & \[
\begin{aligned}
& \text { January- } \\
& \text { March }
\end{aligned}
\] & 58-63 days & 1 & 2-19 & Fur \\
\hline \[
\begin{aligned}
& \text { Eastern } \\
& \text { cottontail }
\end{aligned}
\] & Open brushy land and forest border & \[
\begin{aligned}
& 1-5 \\
& \text { acres }
\end{aligned}
\] & Leaves of grass, weeds, clover, batk & \begin{tabular}{l}
4 months- \\
1 year
\end{tabular} & MarchSeptember & 26-30 days & 1-6 & 1-9 & Game \\
\hline Eastern for squirrel & Hardwood forests and hedgerows & 10 acres & Nuts, Eruits, corn, bark. buds and seeds & 1 year & December January & 44-45 days & 2 & 1-6 & Game \\
\hline Eastern gray squirrel & Hardwood forest & \[
\begin{aligned}
& 200 \\
& \text { yards }
\end{aligned}
\] & Nuts, fruits, corn, bark, buds and seeds & 1 year & DecemberJanuary & 44-45 days & 2 & 1-6 & Game \\
\hline Gray fox & Wood areas and open brushlands & \[
\begin{aligned}
& .5-5 \\
& \text { miles }
\end{aligned}
\] & Rabbits, mice. carrion and some plants & 1 year & \[
\begin{aligned}
& \text { January- } \\
& \text { May }
\end{aligned}
\] & 51-63 days & 1 & 1-10 & Fut, game \\
\hline \[
\begin{aligned}
& \text { Long-tailed } \\
& \text { weasel }
\end{aligned}
\] & Woodlands and thickets near water & 400 acres & Live mice, rats, rabbits and squirrels & \begin{tabular}{l}
Male-14 \\
years. \\
Female- \\
4 months
\end{tabular} & \begin{tabular}{l}
July- \\
August
\end{tabular} & 9 months & 1 & 1-12 & Fur, game \\
\hline
\end{tabular}
(panuffuos) I-ge XIGNAddy
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Species & Preferred Habitat & \[
\begin{gathered}
\text { Home } \\
\text { Range }^{\text {b }}
\end{gathered}
\] & \begin{tabular}{l}
Food \\
Preference
\end{tabular} & \[
\begin{gathered}
\text { Age } \\
\text { at } \\
\text { Maturity }
\end{gathered}
\] & Breeding
Season & \[
\begin{gathered}
\text { Gestation } \\
\text { Period }
\end{gathered}
\] & \[
\begin{gathered}
\text { Litters } \\
\text { per } \\
\text { year }
\end{gathered}
\] & \begin{tabular}{l}
Young per \\
Year
\end{tabular} & Category \\
\hline Mink & Along rivers, streams, lakes, marshes and ponds & \[
\begin{aligned}
& 2.5 \\
& \text { miles }
\end{aligned}
\] & Mice, rabbits, fish, £rogs and crayfish & 1 year & \begin{tabular}{l}
February- \\
Apr:1
\end{tabular} & 40-75 days & 1 & 2-17 & Fur \\
\hline Muskrat & In marshes, streams, rivers, lakes and ponds & \[
\begin{aligned}
& 200 \\
& \text { yards }
\end{aligned}
\] & Aguatic plants, clover, corn, grass and clams & \[
\begin{aligned}
& 4 \text { months- } \\
& 1 \text { year }
\end{aligned}
\] & MarchSeptember & 29-30 days & 1-5 & 1-11 & Pur \\
\hline Opossum & Wooded areas along shallow streams & 40 acres & Insects, carrion, fruit and grain & 1 year & FebruaryMay & 13 days & 2 & 5-13 & Fur, game \\
\hline Racenon & Hardwood timber & . 5 miles & Fruit, grass, grain, nuts, fish, and clams & 1-2 years & \[
\begin{aligned}
& \text { January- } \\
& \text { June }
\end{aligned}
\] & 63 days & 1 & 1-7 & Fur, game \\
\hline Red fox & Borders of woods and adjacent open lands & \[
\begin{aligned}
& \text {.5-5 } \\
& \text { miles }
\end{aligned}
\] & Rabbits, mice, carrion and some plants & 1 year & DecemberMarch & 49-56 days & 1 & 1-10 & Fur, game \\
\hline River otter & Along streams, rivers and lakes & \begin{tabular}{l}
\[
50-100
\] \\
miles of shoreline
\end{tabular} & ```
Fish, crayfish,
and other
aquatic
animals
``` & 2 years & Winter or early spring & 9-12 munths & 1 & 1-5 & Fur \({ }^{\text {c }}\) \\
\hline Spotted skunk & Prairie, brushy areas and cultivat- & \begin{tabular}{l}
4 sq. \\
miles
\end{tabular} & Insecta, mice, Eruit, corn & 1 year & EebruaryNarch (and later?) & 7-10 weeks? & \[
\begin{aligned}
& \frac{1}{2 ?}
\end{aligned}
\] & 2-6 & Fur, game \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Specien & \[
\begin{gathered}
\text { Preferred } \\
\text { Eia! jtat }
\end{gathered}
\] & \begin{tabular}{l}
Higne \\
Range
\end{tabular} & Food Preference & Rge at Meturisy & Areeding Season & Gestetion Perlod & \begin{tabular}{l}
Littez／ \\
Y！
\end{tabular} & \begin{tabular}{l}
Young／ \\
Eitter
\end{tabular} \\
\hline Big heown Dat & \begin{tabular}{l}
Hollor trees． \\
mines．seves， \\
busldinges
\end{tabular} & 20 rule radius & Inverts & 24 montha & Fal2 & 2－25 monthe & 1 & 1－2 \\
\hline Deer mouse & Fastures，meadovs． cultiveted flelds， arid along fleld bortiers & ¢－17 actes & \begin{tabular}{l}
Inferts，nuts， \\
vild seeds \\
diceestic greains， \\
and fruate
\end{tabular} & \[
\begin{aligned}
& \text { Pemade - } \\
& 46-5 . \text { days } \\
& \text { Male - } \\
& 56-62 \text { deys }
\end{aligned}
\] & Dpring and fall & \(22-23\) daye & 6 & 2－5 \\
\hline Evening tat & Roosts in follage of trees，and it hoLlow trees & & Flying insects & & Fall ard Spring & 2－24 mbnthe & 2 & \(1-2\) \\
\hline \begin{tabular}{l}
Rastern \\
end．praunk
\end{tabular} & Forest borters end in sharubbery 2n residential erees & \(2 / 5-3\) actes & Nut：seeds， terriest occas－ Eionel smail thamele 15 & 3 year & Spring end throughout sumner & 31 days & 1－2 & 1－8 \\
\hline \[
\begin{aligned}
& \text { Easterm } \\
& \text { mole }
\end{aligned}
\] & Unitle：pround 2 m meadow，pastures． Lewns，ppen wood ands & i-3 moles
acte & 651 anamel foode？ seedes of dets． wheat，corn， kad grase & 1 year & Spring & 4－6 weeks & \(\pm\) & 2－5 \\
\hline Sascetp
piplstrel:e
(bet) & \begin{tabular}{l}
Live in vetreats about cliffs． \\
buildings and paves
\end{tabular} & & Flyang insects & & Fal2 cnd Spzang & & 2 & 1－2 \\
\hline Franklin ground squizre？ & Borderland between woods and prairies & 100 yarda in dilameter， erbund dien & 3／4 wegetable matter，weeds， fruits，root．B． and green vegetation & \[
\begin{aligned}
& \text { Nature in } \\
& \text { theis fitst } \\
& \text { Spring }
\end{aligned}
\] & Spring & & 1 & 4－21 \\
\hline Grey myotis （bac） & Caver & Nigrate as many as 200 males & Intects & & －－＊ & ．．． & \(\ldots\) & － \\
\hline Wispld potton ret & Dense g．Eby fieids．roedside grown with veeds & \[
\begin{aligned}
& \text { Female } \mathrm{x}-3 / 4 \\
& \text { apre } \\
& \text { Nele } 1-2 \text { t amres }
\end{aligned}
\] & \begin{tabular}{l}
Stems，Leaves， \\
roots，seeds，and \\
sedges；erayfinh \\
and eggs sif ground \\
nesting birds
\end{tabular} & 5 months & Vear zound & 27 deys & several & 5－7 \\
\hline Boery bat & Hood regions． preferring coniferous forest． & －－－ & Jnserss & －．．． & Lete sumner， Early fall & 90 days & 1 & 1－2 \\
\hline House mouse & Kell hidden places，in hones or outs．de & 11 Seet when indiopss & Srain and vege－ －able producte & 6 weeks & \begin{tabular}{l}
まarly \\
spring to late fall
\end{tabular} & 29－22 days & \(5-10\) & 2－13 \\
\hline Indiana mycutis （bes） & Caves & －－ & Insects & －－＊ & － & －． & － & ＊＊＊ \\
\hline Keen myotis （bat） & Caves & Nay move as many as 150 miles tp new ceves & Soft－bodied aduat insects & 1 year & \begin{tabular}{l}
Fall． \\
vinter， \\
Byring
\end{tabular} & 50－60 deys & 2 & 1 \\
\hline Leest shrew & Open grase，brush． snd dry falliow ましたよ & －－m & \begin{tabular}{l}
Smell insects． \\
sheile，ELugn， \\
earthworms，dead \\
seed 12 mammals
\end{tabular} & 1 mantin & Februery－ November： & 22－23 days & Several & \(2-6\) \\
\hline \begin{tabular}{l}
Litt1e \\
brown \\
nytutis \\
（bat）
\end{tabular} & \begin{tabular}{l}
Caves in vinter， \\
and ettics，under \\
Zoose Dark on \\
trees in sumune？
\end{tabular} & Nay move aw many as 150 niles to new cavea & Soft－bodied adult insects & 2 year & Fall， winter． sp：ing & 50－60 days & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Species & \[
\begin{aligned}
& \text { Preferresd } \\
& \text { Snaitnt }
\end{aligned}
\] & \begin{tabular}{l}
Hione \\
kange
\end{tabular} & \[
\begin{gathered}
\text { Fond } \\
\text { Preference }
\end{gathered}
\] & \[
\begin{aligned}
& \text { hove at } \\
& \text { Maturity. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Mreeding } \\
& \text { Seasor }
\end{aligned}
\] & \[
\begin{gathered}
\text { Gestetion } \\
\text { Pertar } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Littery } \\
\text { 喑. }
\end{gathered}
\] & Young Lutter \\
\hline Meadow うunplng mouse & Open gressy hebitates & 1 bere & Crase seeds & 2 monthis & \begin{tabular}{l}
きatly \\
＊yizing to Ruguet
\end{tabular} & 25 deys & 3 & 5－6 \\
\hline Norwey ret & Pudidings，sewers． Around Aumps & 200－200 feet of thedr neet & Tmuivorous． vegretable and anithal & 3－5 monthe & Teat round & 21－26 6ays & 5 & 7－12 \\
\hline Pine wole & Under ground in oak－hickory forest or mised hardwoode & －acte & Succulant roote． ＊prouts．tubezk． tender bark af tree roots，Eruat and oocaseional insects & 2 months & Jamuary－ Detoter & 22 days & Severel & 2－4 \\
\hline Plains pocket gopher & \begin{tabular}{l}
Open lands： \\
prairie grasslands． \\
pastures，culti－ \\
vated areas
\end{tabular} & & Tleshy zoots． anderground stems of gresses and lequanes & 1 year & Spring & 4 weenk & 2 & 45 \\
\hline \[
\begin{aligned}
& \text { Prairie } \\
& \text { vole }
\end{aligned}
\] & Dpland herbaceous Sorewte，grassiands． thiokets，fallow fields and under： greit shocks & 1／25 acre & \begin{tabular}{l}
Terider stens， \\
Leaves，roots， \\
tubers，Zlowezs， \\
seeds．and \\
fruits of grassees and sedges
\end{tabular} & ```
Nale - 5 weeks
Temale -
25 daye
``` & \begin{tabular}{l}
Year－ \\
round with peaks in spozng and fall
\end{tabular} & 22 days & Severse & 1－7 \\
\hline Red bet & Wood areas，roost in trees． & & Flying insects & －－＊ & \begin{tabular}{l}
Yall． \\
winter． \\
spring
\end{tabular} & 60－90 daye & 1 & 2－4 \\
\hline Short－ talled nhrew & Dark，damp，wet locations in wooded areas & क-1 acre & S．arth worms． snails，slugs， spidezs，sals－ manders，D2zds， sriakes，nide & Spring after burth & \begin{tabular}{l}
Eaz1y \\
mpzing to late fall
\end{tabular} & 21－22 days & \(2-2\) & 3－10 \\
\hline 51． iver － halred that & Forest and alnng wooded water pourses & & Flyang，boEt－ bodied insects & ＋．－ & Augast iot Septemier & －＊－ & 1 & 1－2 \\
\hline Small－ footed myotis mat： & Cave and tumnels． prefers cooler places & \(\ldots\) & Soft－bodied flying insects & －－－ & －＊－ & －－－ & ＋n－ & ＊－＊ \\
\hline Southern bog lemaing & Low damp boqs ank neadows with heavy growth of vegetation & \[
1 / 3 \text { acre }
\] & Areen vegetation & －－．－ & Yeer－ round & 23 deys & 2－3 & 2－6 \\
\hline Southern Elying sçuzzel & \begin{tabular}{l}
Heavy，deciduous \\
timber not far \\
from water
\end{tabular} & 4－5 acres & Fickory nute． acorns & 1 year & \begin{tabular}{l}
February－ \\
March \\
May－July
\end{tabular} & 40 days & 1 & 2－6 \\
\hline \begin{tabular}{l}
Thisteen－ \\
IIned \\
ground \\
squizred
\end{tabular} & Flat ppen yrase－ lands．or other dry open flelds & 25 ecres & Insects，earth－ worms，eqpe and young of ground nestang birts： seetls，fruiss， roots，and foliage & 1 year & Spzing & 27－28 deys & 2 & 4－14 \\
\hline Western harvest mouse & \begin{tabular}{l}
Abandoned fields． meadows．Fence \\
rows，preferably \\
near water
\end{tabular} & h＋1h acrex & Seeds of legumes anc yrasses & 3－4 months & \[
\begin{aligned}
& \text { Spring to } \\
& \text { Eali }
\end{aligned}
\] & 33－24 deys & Severs3 & \(1-7\) \\
\hline White－ footed mouse & Fasture，meadows， cultivated fields． Field borderk． Fence rows & 9－2\％acres & \begin{tabular}{l}
Insects，nuts， \\
vald seeds． \\
domestic grains
\end{tabular} & \begin{tabular}{l}
Female－ \\
46－51 tays \\
Male－ \\
56－61 days
\end{tabular} & \[
\begin{aligned}
& \text { Spring } \\
& \text { and } \mathrm{f} 411
\end{aligned}
\] & 22－23 days & 4 & 1－9 \\
\hline
\end{tabular}
```

APPENDIX $3 B-3$
CHECKLIST OF MAMMALS WHOSE RANGE ${ }^{\text {a }}$ ENCOMPASSES CALLAWAY COUNTY, MISSOURI

```

FAMILY
Scientific Name Common Name
DIDELPHIDAE
Didelphis marsupialis
Opossum
SORICIDAE

Blarina brevicauda
Cryptotis parva
TALPIDAE
Scalopus aquaticus \({ }^{\text {d }}\)
VESPERTILIONIDAE
Myotis 1ucifugus
Myotis grisescens
Myotis keenii \({ }^{\text {c }}\)
Myotis sodalis \({ }^{b, e}\)
Myotis subulatus \({ }^{\text {b }}\)
Lasionycteris noctivagans
Pipistrellus subflavus
Eptesicus fuscus
Lasiurus borealis
Lasiurus sinereus
Nycticeius humeralis
LEPORIDAE
Sylvilagus floridanus \({ }^{\text {d }}\)
SCIURIDAE
Scientific Name Common Name

SCIURIDAE

Citellus tridecemlineatus

Citellus franklini
Tamias striatus
Sciurus carolinensis \({ }^{\text {a }}\)
Sciurus niger \({ }^{\text {d }}\)
Glaucomys volans
GEOMYIDAE
Geomys bursarius
CASTORIDAE
Castor canadensis \({ }^{f}\)
CRICETIDAE
Reithr Aontomys megalotis
Peromyscus maniculatus \({ }^{\text {d }}\)
Peromyscus leucopus \({ }^{\text {d }}\)
Sigmadon hispidus
Synaptomys cooperi
Microtus ochrogaster
Microtus pinetorium
ondatra zibethicus \({ }^{\text {d }}\)

\section*{MURIDAE}

Rattus norvegicus
Mus musculus

Thirteen-lined ground squirrel

Franklin ground squirxel
Eastern chipmunk
Eastern gray squirrel
Eastern fox squirrel
Southern flying squirrel

Plains pocket gopher

Beaver

Western harvest mouse
Deer mouse
White-iooted mouse
Hispid evtton rat
Southern bog lemming
Prairie vole
Pine vole
Muskrat

Norway rat
House mous

FAMILY

\section*{Scientific Name}

ZAPODIDAE
Zapus husdonius \(\quad\) Meadow jumping mouse
CANIDAE

Can1s 1atrans \({ }^{2}\)
Vulpes fulva
Urocyon cinereoarcenteus
PROCYONIDAE
Procyon lotor \({ }^{\text {d }}\)
MUSTELIDAE
Mustela frenata \({ }^{c}\),d Long-tailed weasel
Mustela vison
Taxidee taxus Badger
Spilogale putorius
Mephitis mephitis \({ }^{\text {d }}\)
Lutra canadensis
CERVIDAE
odocoileus virginianus \({ }^{\text {d }}\)

Mink

Spotted skunk
Coyote
Red fox
Gray fox

Raccoon

Striped skunk
River otter

White-ta: 'eed deer
a. After Burt and Grossenheider (1952).
b Considered "endangered" by the Mis_ouri Department of Consarvation (Gale, October 25, 1973).
c Considered "rare" by the Missouri Department of Conservation (Gale, October 25, 1973).
d Identified on the site.
e considered "threatened" by the U.S. Department of Interior (1973).
\(f\) Identified on the Missouri River.

LIFE HISTORY \({ }^{\text {E }}\) OF BIRDS IDENTIEIED
WITHIN THE GENERKL STUDY LREA, CALLAWAY COUNTY, MISSOURI
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & \begin{tabular}{l}
Hebltet \\
Preference
\end{tabular} & \[
\begin{aligned}
& \text { Food } \\
& \text { reference }
\end{aligned}
\] & Averege Number of Eggs ber Clutch & \[
\begin{gathered}
\text { Number } \\
\text { of Clutches } \\
\text { Per, Year } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
hverage Incubation \\
Feriod (days)
\end{tabular} \\
\hline Acsdien flycetcher & Wooded area, near water & Insecte & 3 & 1 & 23 \\
\hline hnericen bittern & Nersh, pond & Small vertebretes, Large invertebrates & 4 & 1 & 28 \\
\hline American golefinch & Hiedger ow & Seeds, vegetation & 5 & 1 & 13 \\
\hline knerican widgeon \({ }^{\text {b }}\) & Open weter, fivers & \begin{tabular}{l}
Aquatic plents. \\
mol2uscs
\end{tabular} & 10 & 2 & 24 \\
\hline Baltimore oriole & Orcherd, forest & Insects & 4 & 1 & 12 \\
\hline Beld eegle \({ }^{\text {b }}\) & Rock outcrops neat weter & Fish, muskrat & 2 & 2 & 34 \\
\hline Barn ewellow & Agricultur ? area & Insects & 4 & 1 & 25 \\
\hline Beited kingtisher & Near water & Fieh & 6 & 1 & 23 \\
\hline B1ack-b111ed cuckoo & Forest & Insects & 2-3 & 1 & 14 \\
\hline Black-capped chickadee & Forest, hedgerow & Insects, seeds & 7 & 1 & 12 \\
\hline Elack duck \({ }^{\text {b }}\) & River, stream, mazsh & Aquatic insecte, snails, plants & 9 & 1 & 26 \\
\hline Blue goose & River, maxsh, pond & Grasses, aquatic plants & 4 & 1 & 23 \\
\hline Blue srosbeak & 01d fitid, hedgerow & Insects, seeds & 4 & \(\pm\) & 11 \\
\hline Elue Szy & Forest & ```
hcorns, berries,
insects
``` & 4 & 2 & 18 \\
\hline Elue-winged teal & Narsh & Invertebrates, Bquatic plants & 20 & 2 & 22 \\
\hline Sobwhite & Hedgerow agrisultwr al fielas & Seeds, fruits & 15 & 1 & 23 \\
\hline Erown-headed cowbird & Agricultural fields & Insects, seecs & 5 & 1 & 20 \\
\hline Erown thzasher & Hedgerow, thicket & Insects, grein & 4 & 2 & 13 \\
\hline Canada goose \({ }^{\text {b }}\) & Lake, pond, river,
Eieles & Grein & 5-6 & 1 & 29 \\
\hline Cardinal & Hedgerow & Insects, seeds & 3 & 2 & 12 \\
\hline Cetbive & Thicket, hedgerow & Fruite, seeds & \({ }^{4}\) & 1 & 13 \\
\hline Celer waxw: & Orchard & Eruits, insects & 4 & 1 & 12 \\
\hline Chamney ewift & Residential area & Insects & 4 & 1 & 19 \\
\hline Chipping eperrow & Residential and agricultural areas & Seeds, insects & 4 & 1 & 11 \\
\hline Cormon crow & Agricultural area & Grein, seeds, borriee, insects & 5 & 2 & 18 \\
\hline
\end{tabular}

APPENDIX 30-1 (zontinued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & Hiebitat Preference & \[
\begin{gathered}
\text { Food } \\
\text { preference }
\end{gathered}
\] & Average Number of Eggs Per Clutch & Nuniter of Clutches Per Year & hverage Incubation Period (days) \\
\hline Common grackle & Agricultural area & Insecte, grain & 4 & 1 & 14 \\
\hline Common nighthaw/k & hgricultural area & Insects & 2 & 2 & 19 \\
\hline Common redpol2 & Forest edge, open fielde & Seeds & 4-5 & 1 & 12 \\
\hline Dickeissel & Open meadow, pasture & Seeds, fruits & 4 & 2 & 12 \\
\hline Downy woodperker & Forest, residential areas & Insects & 4 & 1 & 12 \\
\hline Eastern bluebird & O.chard, hedszrow & Insects, fruit & 5 & 1 & 12 \\
\hline Esstrin kinghire & Brushy old fields & Insects & 3 & 1 & 13 \\
\hline Eastern phoebe & Farm & Insects & 5 & 1 & 16 \\
\hline Eastern wood pewee & Agricultural areas & Insects & 3 & 1 & 13 \\
\hline Field sparrow & Brushy fencerows & Instets, seeds & 4 & 1 & 12 \\
\hline Fox sparrow & Brushiand & Seeds & 6 & 2 & 13 \\
\hline Golden eagle & Forest & Large nammals, birds, snakes & 2 & 1 & 31 \\
\hline Grasshopper sparzow & Gressland with shrubs & Insects & 4-5 & 1 & 11 \\
\hline Great blue heron \({ }^{\text {b }}\) & Lake, marsh & Fish, insecte, amphabians & 4 & 1 & 28 \\
\hline Great erested Elycatcher & Forest & 1. eects & 5 & 1 & 25 \\
\hline Great horned owl & Porest & Mamulals, Dirds & 2 & 1 & 30 \\
\hline Green heron & Marsh & Small vertebrates, large invertebrates & 4 & 1 & 17 \\
\hline Hairy woodpecker & Forest, orchard & Insects & 4 & 1 & 14 \\
\hline Harris" sparrow & Brushland & Seeds & 4 & 1 & 13 \\
\hline Herring gul & lake, river & Scevenger, decaying fish, cerrion & 3 & 1 & 26 \\
\hline Horned Jark & Prairie, agric turad area & Seeds & 4 & 2 & 13 \\
\hline House sparrow & Residential & Grain, insects & 5 & 3 & 13 \\
\hline House wren & Forest edge, hedgerow & Insects & 7 & 1 & 13 \\
\hline Indigo bunting & \#edgerow, agricultural & Invertebrates, seeds & 4 & 1 & 12 \\
\hline Kilideer & Shoreline, open
field & Insects & 4 & 1 & 24 \\
\hline Loggerhead shrike & Open country & Mice, small birds, gresshoppers & 4-5 & 1 & 12 \\
\hline Mallard & Marsh & Aquetic plants, graine invertebrates & 10 & 1 & 26 \\
\hline
\end{tabular}

\section*{RPPENDIX 35-1 (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & Nabitat Prefezence & \begin{tabular}{l}
Food \\
Preference
\end{tabular} & \begin{tabular}{l}
Avezage \\
Number \\
of Eggs \\
Pez clutch
\end{tabular} & Number
of Clutohes
Per Year & \begin{tabular}{l}
Avezage Incubstion \\
Period \\

\end{tabular} \\
\hline Narsh hewk & Marsh & Riodents & 5 & 1 & 26 \\
\hline Neadowlark & hgrieulturad fieles & Insects, seeds & 5 & 1 & 14 \\
\hline Wockingbizd & Residential area & Insects, fruits & 4-5 & 1 & 22 \\
\hline Nourning dove & Rgzicultural land & Seeds, grain & 2 & 2 & 15 \\
\hline Myrtie warkler & Forest & Insects & 4-5 & 1 & 12 \\
\hline Osprey \({ }^{\text {b }}\) & River, lake, Etreamt & Pish & 3 & 1 & 28 \\
\hline Pied-bi12ed grebe & Deep water matsh & Aquatic invertebrates. small vertebrates & 6 & 2 & 25 \\
\hline Pideated woodpeckez & Forest & Insects & 4 & 2 & 20 \\
\hline Fintai \({ }^{\text {b }}\) & Ponds, ziver, marsh & Requatic plants. mo11uscs & 10 & 2 & 22 \\
\hline Purple mattin & Residential area & Insects & 4 & 1 & 13 \\
\hline Red-beliled woodpeckez & Bottomiand, Forest & Insectif. seeds & 4 & 1 & 14 \\
\hline Red-eyed vireo & Pozest & Insects, Exuits & 4 & 1 & 13 \\
\hline Red-her jed woodpecker & Open groves of trees & Insects, seeds & 5 & 1 & 14 \\
\hline Red t 21 eed hawk & Forest & Rodients & 2 & 2 & 2 E \\
\hline Red-winged kiackbivd & Marsh, agricultural field & Seeds, insects & 6 & 2 & 12 \\
\hline Ring-necked duck. & Narsh, slough & Aquatic plants, ingects & 20 & 2 & -- \\
\hline Robin & Aesidential arem, forest & Insects, earthworms, fruit & 4 & 1 & 13 \\
\hline Hock dove & Agricultural lane & Seeds, graith & 2 & 3 & 1.5 \\
\hline Rough-legged hawk & Forest with open ereas & Rodents, insects & \(4-5\) & 1 & 2 E \\
\hline Rough-winged Ewal: & Sravel pit, bank & Insects & 6-7 & 1 & 16 \\
\hline Ruby-throated humminghird & Resitential area & Nectar & 2 & 1 & 14 \\
\hline RuFied grouse & Forest & Nuts, fruits, buds, grain & 10 & 1 & 21 \\
\hline Rufous-sided towhee & Hedger * , thicket & Seeds, insects & 3 & 1 & 13 \\
\hline SLate-colozed junco & Field, forest & Seedis, insects & 4 & 1 & 12 \\
\hline Snow goose & Lake, pond, river, floodplain & Graing grasses & 6 & 2 & 22 \\
\hline
\end{tabular}

NPPENDIX 3C-1 (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & Hiabitat Preference & Food Preference & \begin{tabular}{l}
hverage \\
Number \\
of Eggs \\
Pez Clutch
\end{tabular} & \begin{tabular}{l}
Number \\
of Clutches \\
Per Year
\end{tabular} & Average Incubat: ot Period (days) \\
\hline Song spazrow & Lowland thicket & Insects, seeds & 4-5 & 3 & 12 \\
\hline Sparrow hawk & Agricultural areb & Insects, 2.fers & 4 & 2 & 29 \\
\hline SもAEIIng & Acyicultural and zesidential areas & Insects, Erusts & 5 & 1 & 14 \\
\hline 3wamp sperzow & He土gerows & Inaects, seeds & 4 & 2 & 13 \\
\hline Sumber taragez & Upland wood & Insects & 4 & 1 & 12 \\
\hline Tree sparrow & Hedgerome & Irsects, seeds & 4 & 1 & 13 \\
\hline Tufted titmouse & Forest, hedgerow & Insects, beeds & \(5 \sim 6\) & 1 & 22 \\
\hline Turkey & Forest & Pruat, mest, seeds, insects & 12 & 2 & 28 \\
\hline Turkey vulture & Forest & Carrion & 2 & 2 & 41 \\
\hline Whip-poor-will & Hardwood furest & Insects & 2 & 1 & 14 \\
\hline White-breaeted nuthatch & Forest & Nuts, seeds, insects & E & \(\pm\) & 12 \\
\hline Whitercrowt d spartow & Brushland & Seedis, insects & 4 & 1 & 21 \\
\hline White-throsted sparzow & Brushland & Seeds, insects & 5 & 1 & 23 \\
\hline Wood duck \({ }^{\text {b }}\) & Elooded forest, Eloctplain & Nuts, fruits & 2. & 1 & 29 \\
\hline Wood thrush & Fozest & Infects, fruit & * & \(\pm\) & 16 \\
\hline Yellow-b112ed cuckoo & Orchard, garden, woodland & Insects & 3-6 & 1 & 14 \\
\hline Ye110w-breasted chat & Forest & Insects & 5 & 1 & 21 \\
\hline Yeilow-shaftee flicker & Fgriculturad area & Insects, plants & 7 & \(\pm\) & 17 \\
\hline Yellowthroat & Brushland, swamp* woodland ecotone & -usects & 4 & 1 & 12 \\
\hline
\end{tabular}

\footnotetext{
a Bent. 1961 through 1966.
Rortright, 1962.
b Species observed along the Missouri River and not observed in the General Study Area.
}

CHECKLIST Ot BIRDS WHOSE RANGE \({ }^{\text {a }}\) ENCOMPASE'S CALLAWAY COUNTY, MISSOURI
\begin{tabular}{|c|c|c|c|c|}
\hline Common Name & Scientific Name & Sampling Period -Observed \({ }^{\text {D }}\) & Residency Status \({ }^{\text {c }}\) & Abundance
Statugd \\
\hline Acadian flycatcher & Empidonax virescens & ES & SR & \(c\) \\
\hline American bittern & Dotaurus lentiginosus & 5 & SR & r \\
\hline American coot & Fulica amaricana & & SR, SV & \(r\) \\
\hline Rmerican goldfinch & Spinus tristus & E5 LS E & PR & ca \\
\hline American redstart & Setophaga ruticilla & & SR & c \\
\hline American w. dgeon & Mareca americana & & \[
W R
\]
SV & \[
\mathrm{ca}
\] \\
\hline American woczisnck & Philohela minor & & \[
\begin{aligned}
& S R \\
& W R
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{y} \\
& \mathrm{CE}
\end{aligned}
\] \\
\hline Bald eagief & Haliaeetus leucocephalus & & \[
\begin{aligned}
& \text { WR } \\
& S R
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{c} \\
& \mathrm{ca}
\end{aligned}
\] \\
\hline Baltimore oriola & Icterus galbula & ES & \[
\begin{aligned}
& \mathrm{SR} \\
& \text { WR }
\end{aligned}
\] & \[
\begin{aligned}
& c \\
& c z
\end{aligned}
\] \\
\hline Bank Swallow & Riparia riparia & & SR & u \\
\hline Barn ow \(1^{\text {f }}\) & Tyto alba & & PR & \(I\) \\
\hline Barn ewallow & Eirundo rustica & ES,LS & SR & \(c\) \\
\hline Barred owl & Strix varia & & PR & \(c\) \\
\hline Bell's vireo & Vireo bellii & & SR & 1 \\
\hline Belted kingfisher & Megaceryle ilcyon & ES & SR & \(c\) \\
\hline Black-billed cuckoo & Codoyzus erythropthalmus & ES LS & SR & \(r\) \\
\hline Black-capped chickadee & Parus atricepillus & ES LS W & E PR & \(c\) \\
\hline Black-crowned night heron & Nycticorax nycticorax & & \[
\begin{aligned}
& \text { SR } \\
& \text { WR }
\end{aligned}
\] & ca \\
\hline Black duck & Anas rubripes & & \[
\begin{aligned}
& \text { WR } \\
& \text { SV }
\end{aligned}
\] & \[
\mathrm{cz}
\] \\
\hline Black tern & Chlidonias niger & & Sv & \(r\) \\
\hline Blue goose & Chen cetrulescens & & \[
\begin{array}{ll}
F & W R \\
& S V
\end{array}
\] & \[
\begin{aligned}
& \mathrm{u} \\
& \mathrm{ca}
\end{aligned}
\] \\
\hline Blue-grey gnatcatcher & Polioptila caerulea & & SR & c \\
\hline Blue grosbeak & Guiraca caerula & L.S & SR & z \\
\hline Blue Jay & Cyanocitta cxistata & SESLSEW & PR & c \\
\hline Blue-winged teal & Anas discors & 1.5 & SR, WR & ca \\
\hline Bobwhite & Colinus yirginianus & 5 ES LS FW & PR & \(c\) \\
\hline Bohemian waxwing & Bombyci2 a garrulus & & WR & ce \\
\hline Bonaparte's gull & Harus philadelphia & & WR & ca \\
\hline Brewer's blackbizd & Euphagus Evanocephaius & & WR & ca \\
\hline Broad-winged hawk & Butes platypterus & & SR & 4 \\
\hline Brown creeper & Certhia familiaris & & WR & u \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Common Name & Scientific Name & \begin{tabular}{l}
Samp1ing \\
Period \\
Observed \({ }^{\text {b }}\)
\end{tabular} & \[
\begin{gathered}
\text { Residency } \\
\text { Status }
\end{gathered}
\] & Abundance
Statuad \\
\hline Brown-headed cowbizd & Modothrus ater & 5 ES LS & 58 & c \\
\hline Brown thrreher & Toxostoma rufur & 5 ES LS & ER & \(c\) \\
\hline Buffleheas & Bucephala albeala & & WR & = \\
\hline Canada goope & Branta canacensis & & WR & \[
\begin{aligned}
& c \\
& u
\end{aligned}
\] \\
\hline Canvasback & Aythys valisineria & & WR & \(\downarrow\) \\
\hline Cardinal & Richmondere cardinalis & S.ES LS IW & PK & \(c\) \\
\hline Carolina wren & Thryothorus Iudovicianus & & PR & \(u\) \\
\hline Cospian tern & Hydropzogne caspia & & 5 g & ca \\
\hline Catbird & Dumetel1a catolinensis & ES 25 F & SR & \(c\) \\
\hline Cettie egret & Bubulcus ibiss & & SV & ca \\
\hline Cedar waxwing & Bombyciala cedrorum & \(F\) & WR & \(c\) \\
\hline & & & SR & \(z\) \\
\hline Longepur & Calcazius panatus & & WR. & cos \\
\hline Chimhey gwizt & Chaeture pelagica & ES LS & St & c \\
\hline Chipping sparrow & Scizetis passerina & ES & SR & c \\
\hline Chuck-ki12's widow & Ceprimulgus carolinensis & & SR & 4 \\
\hline Cliff ewallow & Petrochelidon pyzrhonota & & 5R & U \\
\hline Common crow & Corvus trachyrynchos & S ES LS EW & PR & c \\
\hline Common egret & Casmerodius albus & & SR & c \\
\hline Common galiinule & Gellinula chloropus & & SR & \(z\) \\
\hline Common goldeneye & Bucephala clangula & & WR & c \\
\hline Common grackle & Quiscalus guiscula & S ESLSE* & \[
\begin{aligned}
& S R \\
& W R
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{e} \\
& \mathrm{u}
\end{aligned}
\] \\
\hline Common \(200 n\) & Qavia immer & & WR & ce \\
\hline Common meryanber & Mergus mercanser & & WR & \(c\) \\
\hline Common nighthawk & Chordeties Minor & ES Lb & SR & \(c\) \\
\hline Common redpol1 & Acanthis flammea & F \(W\) & WR & ca \\
\hline Cammon enipe & Cape 218 gal21napo & & WR & I \\
\hline Common tern & Sterne himundo & & EV & ce \\
\hline Cooper's hawke & hcefpiter cooperis & & FR & 4 \\
\hline Dickeisbe? & Spiza anericana & ES & SR & \(c\) \\
\hline Doubปe-crestea cormorante \({ }^{\epsilon}\) & Phalacrocorax euritus & & SR,WR & EE \\
\hline Downy woodpecker & Dendrocopos pubescens & FW & PR & \(c\) \\
\hline Eestern bluebird & Sialia sialis & S ES LS FW & \[
\begin{aligned}
& \text { SR } \\
& \text { WR }
\end{aligned}
\] & c \\
\hline Eastern kingbind & Jyzannua tyranmus & ES IS & 53 & \(c\) \\
\hline Eastern mexdowlark & Sturnella magna & S P.5 LS F w & PR & \(c\) \\
\hline Eestern plusebe & Sayornis phoebe & 1.5 & 5R & c \\
\hline Eestern wood pewee & Contopus varens & L5 LS 5 & 5 F & \(c\) \\
\hline Evening grosbeaik & Hesperiphona vespertina & & WR & r \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Common Name & Scientific Name & & \begin{tabular}{l}
Sampling \\
Period \\
Dbserved \({ }^{\text {D }}\)
\end{tabular} & Residency & Abundance Status \({ }^{\text {d }}\) \\
\hline Field sparrow & Spizella pusilla & S & ES LS & SR & \(c\) \\
\hline Forster's tern & Sterna forsteri & & & SV & cs \\
\hline Fox sparrow & Passerella iliaca & & F & WR & u \\
\hline Gadwa 11 & Rnas strepers & & & WR SV & \[
\begin{aligned}
& \mathrm{u} \\
& \mathrm{ca}
\end{aligned}
\] \\
\hline Glossy ibls & Plegadis falcinellus & & & Sv & ca \\
\hline Golden-crowned kinglet & Regulns calendula & & & WR & \(c\) \\
\hline Golden eagle & Aquila chrysaetos & & W & WR & \(r\) \\
\hline Goshawk & Acaipiter gentilis & & & WR & \(r\) \\
\hline Grasshopper sparrow & Ammodramus savannarum & & ES & SR & c \\
\hline Great blue heron & Ardea herodias & & & \begin{tabular}{l}
SR \\
WR
\end{tabular} & \[
c
\] \\
\hline Great crested flycatcher & Myiarchus grinitus & & ES & SR & \(c\) \\
\hline Great horned owl & Bubo virginianus & & F W & PR & c \\
\hline Greater scaup & Aythys marila & & & WR & \(=\) \\
\hline Green heron & Butorides Xizescens & & ES & SR & \(c\) \\
\hline Green-winged teal & Anas Sarolinensis & & & WR
SV & \[
\begin{aligned}
& \mathrm{u} \\
& \mathrm{ce}
\end{aligned}
\] \\
\hline Hairy woodpecker & pendrocopos scalaris & 5 & F W & PR & u \\
\hline Harlan's hawk & Buteo hardeni & & & WR & 1 \\
\hline Harris's sparrow & zanotrichia querula & & F W & WR & r \\
\hline Henslow's sparrowf. & Passerherbulus henslowif & & & SR & r \\
\hline Herrang gull & Larus argentatus & & & WR & ป \\
\hline Hooded merganser & Lophodytes cucullatus & & & WR & u \\
\hline Jorned lark & Eremophila alpestris & & ES W & PR & c \\
\hline House sparrow & Passer domesticus S & £5 & LS EW & PR & c \\
\hline House wren & Troglodytes aedon & & ES & SR & c \\
\hline Indigo bunting & Passerina cyarea & & ES LS & \[
\begin{aligned}
& S R \\
& W R
\end{aligned}
\] & \[
\begin{aligned}
& c \\
& c a
\end{aligned}
\] \\
\hline Kentucky waterthrush & Sciurus noveboracensis & & & SR & 4 \\
\hline Killdeer & Charadrius vociferus & & LS FW & SR & c \\
\hline Fing reil \({ }^{\text {f }}\) & Rallus elegans & & & \$8 & ca \\
\hline Lapland longspur & Calcarius Lapponicus & & & WR & c \\
\hline Lerb eparcow & Chanclestes grammacus & & & SR & u \\
\hline Least bittern & - wobrychus exilis & & & SR & ข \\
\hline Least Elycatcher & Empidanex minimus & & & SR & ca \\
\hline Least tern \({ }^{\text {f }}\) & Sterna albifrone & & & SR & r \\
\hline Lesser scaup & Rythya 告finis & & & WR
SV & y \\
\hline Lincoln's sparrow & Melospiza 1 incolnii & & & WR & \(\Sigma\) \\
\hline Little blue heron & Plorida caerulea & & & SR & \(c\) \\
\hline
\end{tabular}

APPENDIX 3C-2 (continued)


\begin{tabular}{|c|c|c|c|c|}
\hline Common Name & Scientific Name & Sampling Period observed \({ }^{b}\) & \[
\begin{aligned}
& \text { Residency } \\
& \text { Statusc }
\end{aligned}
\] & Abundance Status \\
\hline Red-shafted flicker & Colaptes cafer & & WR & \(r\) \\
\hline Red-shouldered hawkf & Buteo 1ineatue & & PR & u \\
\hline Red-tailed hawk & Buteo tamaicensis & S ESLS F & W PR & \(c\) \\
\hline Red-winged bleckbird & Agelaius phoeniceus & S ES LS F & SR
WR & c
u \\
\hline Ring-billed gull & Larus delawbrensis & & WR & c \\
\hline Ring-necked duck & Aythya collexis & F & WR & u \\
\hline Robin & Turdus migretorius & 5 ES LSE & W WR & c \\
\hline Rock dove & Columba livia & ES LS & PR & c \\
\hline Rose-brpasted grosbesk & Pheucticus Iudovicianns & & SR & u \\
\hline Rough-legged hawk & Buteo lagopus & \(F\) & WR & 12 \\
\hline Rough-winged swallow & Stelgidopteryx ruficoilis & 1.5 & SR & c \\
\hline Ruby-crowned ringlet & Requlus satrapa & & WR & I \\
\hline Ruby-throated Hummingbird & Archilochus colubris & ES LS & SR & c \\
\hline Ruddy duck & Oxyura Lamaicensis & & WR, SV & ca \\
\hline Ruffed grousef & Bonasa umbellus & F & PR & ca \\
\hline Rufous-sided towhee & Pip110 ervthrophthalmus & ES LS & SR & c \\
\hline Rusty blackbird & Euphagus carolinus & & WR & \(z\) \\
\hline Savannah sparrow & Passerculus sandwichensis & & WR & ca \\
\hline Saw-whet owl & Regolius acadicus & & WR & ca \\
\hline Scarlet tanager & Piranga 0 ivacea & & SR & u \\
\hline Screech owl & Otus asio & & PR & u \\
\hline Sharp-shinned hawif \({ }^{\text {f }}\) & Accipiter striatus & & PR & 1 \\
\hline Short-billed marsh wre: & Cistothorus platensis & & \[
\begin{aligned}
& S R \\
& W_{R}
\end{aligned}
\] & ce \\
\hline Short-eared owl & Asio flammeus & & WR & u \\
\hline Shoveler & Spatula clypesta & & \[
\begin{aligned}
& \text { WR } \\
& \text { SV }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{r} \\
& \mathrm{ca}
\end{aligned}
\] \\
\hline Slate-colored Junco & Junco hyemalis & EW & WR & \(c\) \\
\hline Snow bunting & Plectrophenax nivalis & & WR & ca \\
\hline Snow goose & Chen hyperborea & \(F\) & \[
\begin{aligned}
& \text { WR } \\
& S V
\end{aligned}
\] & ca \\
\hline Snowy egret & Leucophoyx thyla & & SV & u \\
\hline Snowy owl & Nyctea ECAndiaca & & WR & ca \\
\hline Song sparrow & Melospize melocia & SESEW & \[
\begin{aligned}
& \operatorname{SR} \\
& \text { WR }
\end{aligned}
\] & ca
\[
0
\] \\
\hline Sore zeil & Porzana carolina & & ER & CA \\
\hline Sperrow hawk & Falco sparverius \$ & ES LS F W & PR & \(c\) \\
\hline Spotted sandpiper & Actitic macularia & & SR & \(u\) \\
\hline StEv1ing & Sturnus vulgaris S & ES LS E W & PR & c \\
\hline Summer tariager & Piranga rubra & S ES & SR & c \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Common Name & Scientific Name & Sampling Period Observed \({ }^{\text {b }}\) & Residency & Abundange Status \({ }^{\text {c }}\) \\
\hline Swamp sparrow & Melospiza georgiana & F & WR & ย \\
\hline Trail2's flveatcher & Empidonax traillis & & SR & เ \\
\hline Tree sparrow & Spizella arborea & * & WR & \(c\) \\
\hline Tree swallow & Iridoprocne bicolor & & SR & u \\
\hline Trfted titmouse & Parus bicolor & ES F W & PR & \(c\) \\
\hline Turke: & Meleagris gallopavo & 5 F & PR & \(r\) \\
\hline turkey vulture & Cathartes aura & ES LS & \[
\begin{aligned}
& \text { SR } \\
& \text { WR }
\end{aligned}
\] & \[
\begin{aligned}
& c \\
& I
\end{aligned}
\] \\
\hline Upiand plovere & Bartramia longicauda & & SR & u \\
\hline Virginia rail & Rallus 1imicola & & SR & ca \\
\hline Warbling vireo & Vireo gilvus & & SR & \(c\) \\
\hline Western meadowlark & Sturnella neglecta & & SR & u \\
\hline Whip-poct-will & Caprimulgus vociferus & ES LS & SR & \(c\) \\
\hline Whistling swan & Olor columbianus & & WR & z \\
\hline White-breasted nuthatch & Sitta carolinensis & F W & PR & c \\
\hline White-crowned sparrow & 2anotrichia leucophrys & F & WR & c \\
\hline White-eyed vireo & Vireo griseus & & SR & \(u\) \\
\hline White-fronted goose & Anser albifzons & & Sv, WR & 00 \\
\hline White ibis & Sudocimus albus & & SV & ce \\
\hline White pelizau & Pelecanus erythrorhynchos & & WR, SV & ca \\
\hline White-tharoated sparrow & Zanotrichia albicallis & F & WR & c \\
\hline White-winged crosshill & Loxia leucoptera & & \[
\begin{aligned}
& \text { WR } \\
& S V
\end{aligned}
\] & ca \\
\hline Winter wren & Traglodytes troglodytes & & WR & 0 \\
\hline Wood duck & Aix sponsa & & \[
\begin{aligned}
& \text { SR } \\
& \text { WR }
\end{aligned}
\] & \[
c
\] \\
\hline Wood thrush & Hylocichla mustelina & ES & SR & c \\
\hline Worm-eating warbler & Helmitheros vermivorus & & SR & I \\
\hline Yellow-be1112d sapsucker & Sphyrapicus varius & & WR & \(u\) \\
\hline Yellow-billed cuckoo & Coccyzus americanus & ES & SR & \(c\) \\
\hline Yellow-breasted chat & Ietariz virens. & ES & SR & \(r\) \\
\hline Yellow-orowned night heron & Nycticorax yiolacea & & SR & u \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Common Name & \begin{tabular}{c} 
Sampling \\
Period \\
Observedb
\end{tabular} & \begin{tabular}{c} 
Residency \\
Statusc
\end{tabular} & \begin{tabular}{c} 
Abundance \\
Statusd
\end{tabular} \\
\hline Yellow-shafted flizker & Colaptes auratus & ES LS F W & PR \\
Yellowthroat & Geothlypis trichas & ES & SR \\
Yellow-throated vireo & Vireo flavifrons & SR & c \\
Yellow warbler & Dendroica petechia & SR & C
\end{tabular}
a Robbins et al., (1966)
b S - Spring
ES - Early Summer
LS - Late Summer
F - Fall
W - Winter
c Audubon Society (1971)
PR - Permanent resident
WR - Wincer resident (December 21 - February 20)
SR - Summer resident (breeding)
SV - Summer visitor
d Audubon Society (1971)
C - Common (easily observed)
U - Uncommon (infrequently reported)
R - Rare (sparingly recorded)
CA - Casual (reported only a few times)
e Gale (October 25, 1973)
Species is considered "endangered" (survival within Missouri is in jeopardy) by the Missouri Department of Conservation.
f Cale (October 25, 1973)
Species is considered "rare" (in small numbers and may become endangered) by the Missouri Department of Conservation.
T-GL XIONSadV

\section*{FAMILY}
Scientific Name
\begin{tabular}{|c|c|c|}
\hline Scien & Common Name & Habitat \\
\hline \multicolumn{3}{|l|}{CRYPTOBRANCHIDAE} \\
\hline Cryptobranchus alleganiensis alleganiensis & Hellbender & Aquatic \\
\hline Necturus maculosus & Mudpuppy & Aquatic \\
\hline \multicolumn{3}{|l|}{SALAMANDRIDAE} \\
\hline Diemictylus viridescens lou,sianensis \({ }^{\text {b }}\) & Central newt & Aquatic \\
\hline \multicolumn{3}{|l|}{AMBYSTOMIDAE} \\
\hline mbystoma maculatum & Spotted salamander & Deciduous forest \\
\hline Ambystoma texanum & Small-mouthed salamander & Under old \(\log s\) \\
\hline Ambystona tigrinum tigrinum & Eastern tiger salamander & Forests \\
\hline \multicolumn{3}{|l|}{BUFONIDAE} \\
\hline Bufo americanus \({ }^{\text {b }}\) & American toad & Shallow body of water \\
\hline Bufo woodhousei fowleri & Fowler's toad & Sandy river bottom \\
\hline \multicolumn{3}{|l|}{HYLIDAE} \\
\hline Hyla versicolor \({ }^{\text {b }}\) & Gray ireefrog & Trees, shrubs \\
\hline Hyla crucifer & Spring peeper & Marshes \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline FAMILY
\(\qquad\) & Comimon Name & Habitat \\
\hline Acris crepitans blanchardi & Blanchard's cricket frog & Ponds, marshes \\
\hline Pseudacris triseriata triseriata & Western chorus frog & Low vegetation \\
\hline MICROHYLIDAE & - & \\
\hline Gastrophryne carolinensis & Eastern narrow-mouthed toad & Various habitats \\
\hline \multicolumn{3}{|l|}{RANIDAE} \\
\hline Rana palustris & Pickerel \(\ddagger\) rog & Streams, bogs \\
\hline Rana pipiens complex \({ }^{\text {b }}\) & Leopard frogs & Marsh, ponds, backwaters \\
\hline Rana areolata circulosa & Northern crawfish frog & Burrows \\
\hline Rana clamitans melanota \({ }^{\text {b }}\) & Green frog & Springs, creeks, ditches \\
\hline Rana catesbeiana \({ }^{\text {b }}\) & Bullfrog & Aquatic \\
\hline a By Conant (1958). & & \\
\hline b The species has been identified & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
FAMILY \\
Scientific Name
\end{tabular} & Common Name & Habitat \\
\hline \multicolumn{3}{|l|}{CHELYDRIDAE} \\
\hline Chelyara serpentina \({ }^{\text {b }}\) & Common snapping turtle & Aquatic \\
\hline Sternothaerus odoratus & Stinkpot & Muddy ponds \\
\hline \multicolumn{3}{|l|}{TESTUDINIDAE} \\
\hline Terrapene carolina triunguis \({ }^{\text {b }}\) & Three-toed box turtle & Timbered hillsides \\
\hline Terrapene ornata ornata & Ornate box turtle & Grassy fielde \\
\hline Graptemys geographica & Map turtle & Streams, rivers \\
\hline Graptenys kohni & Mississippi map turtle & Rivers, lakes \\
\hline Graptemys pseudogeographica ouachitensis & Ouachita map turtle & Rivers \\
\hline Chrysemys picta belli. & Western painted turtie & Muddy ponds \\
\hline Pseudemys suripta elegans & Red-eared turtle & Ponds, ditches \\
\hline \multicolumn{3}{|l|}{TRIONYCHIDAE} \\
\hline Trionyx spinifer hartwegi & Western spiny softshell & Muddy ponds, rivers \\
\hline Trionyx muticus & Smooth softshell & Muddy ponds, rivers \\
\hline \multicolumn{3}{|l|}{IGUANIDAE} \\
\hline Sceloporus undulatus hyacinthinus & Northern fence lizard & Timbered hillsides \\
\hline \multicolumn{3}{|l|}{ANGUIDAE} \\
\hline Ophisaurus attenuatus attenuatus & Western slender glass lizard & Grassy fields \\
\hline \multicolumn{3}{|l|}{TEITDAE} \\
\hline Cnemidophorus sexlineatus & Six-1ined racerunner & Grassy fields \\
\hline \multicolumn{3}{|l|}{SCINCTDAE} \\
\hline Lygosome laterale & Ground skink & Wooded areas \\
\hline Eumeces laticeps & Broad-head skink & Arboreal \\
\hline Eumeces anthracinus pluvialis & Southern coal skink & Moist areas \\
\hline Eumeces fasciatus & Five-iined skink & Decaying vegetation \\
\hline \multicolumn{3}{|l|}{COLUBRIDAE} \\
\hline Natrix grahami & Graham's water snake & Fonds, lakes \\
\hline Natrix erythrogaster transversa & Blotched water snake & Streams, ponds \\
\hline Natrix sipedon sipedon & Northern water snake & Streams \\
\hline Natrix rhombifera thombifera & Diamond-backed water snake & Sloughs, ponds \\
\hline Storeria occipitomaculata occi tomaculata & Northern red-belj tad snake & Woodlends \\
\hline Storerja dekayi wrightorum & Midland brown snake & Moist woods, marshea \\
\hline Storeria dekayi texana & Texas brown snake & Mo.st woods, bogs \\
\hline Thamnophis sauritus proximus & Western ribbon snake & Ditches, marshes \\
\hline Thamnophis sirtalis sirtalis \({ }^{\text {b }}\) & Eestern garter snake & Grasslands, ditches \\
\hline Thamnophis sidtalis parietalis & Rad-sided garter snake & Graselands, ditches \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline FANILY Scientific Name & Common Name & Habitat \\
\hline \multicolumn{3}{|l|}{COLUBRIDAE} \\
\hline Tropidocionion Inneatum Iineatum & Northern Iined snake & Under rocks \\
\hline Haldea valuriae & Smooth eerth snake & Timbered hillsides \\
\hline Heterofon platyrhinos & Eastern hognose Enake & Open fields \\
\hline piadophis punctatus arryi & Preirie ringneck snake & Oren woods \\
\hline Carphophis amoenus vermis & Western worm snake & Moist woods \\
\hline Coluber constrictor Elaviventris & Eastern yellow-bellied racer & Rocky hillsides \\
\hline Opheodirys sestivus & Rough green snake & Arboreal \\
\hline Opheodrys vernalis blanchardi \({ }^{\text {c }}\) & Western smooth green snake & Grasslands, timbered hillsides \\
\hline Elaphe obsoleta obsoleta & Black rat snake & Moist woodlots \\
\hline Pituophis melanoleuoos sayi & Bullenake & Timbered areas \\
\hline Lampropeitis calligaster calligaster & Prairie kingsnake & Pastures, open fields \\
\hline Lampropeltis getulus holbrooki & Speckled kingsnake & Hillsides, uplands \\
\hline Lampropeltis doliata syspila & Red milk snake & Maist habitats \\
\hline \multicolumn{3}{|l|}{VIPERIDAE} \\
\hline Agkietrodion contortrix mokeson & Northern copperhead & Wooded hillsides \\
\hline Sistrurus catenatus catenatus \({ }^{\text {C }}\) & Eastern massasaugas & Marshy areas \\
\hline Crotalus horridus horridus & Timher rattlesnake & Bluffs \\
\hline \multicolumn{3}{|l|}{a After Conant (2958)} \\
\hline \multicolumn{3}{|l|}{b The species has been observed on the site.} \\
\hline c Considered rare within Missouri (Ge) & 25, 1973). & \\
\hline
\end{tabular}

\title{
CALLAWAY PLANT UNITS 1 and 2 PRECONSTRUCTION MONITORING ANNUAL SUMMARY
}


\section*{TABLE OF CONTENTS}

SECTION
1.
2.
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2. 2.7
2. 3
2. 3.1
2.3.1.1
2.3.1. 2
2.3.2
2.3.2.1
2.3.2.2
2. 3.3
2.3.3. 1
2.3.3.2
2. 3. 4
2.3.4.1
2.3.4.2
2. 3.5
2.3.5.1
2.3.5.2
2. 3.6
2.3.6.1
2.3.6. 2
2. 3.7
2.3.7.1
2.3 .7 .2
2.4
2.5
2.6

GENERAL. INTRODUCTION
AQUATIC ECOLOGY

\section*{IN:RODUCTION}

METHODS AND MATERIALS
DESCRIPTION OF SAMPLING LOCATIONS
WATER QUALITY
PHYTOPLANKTON
ZOOPLANKTON
VASCULAR HYDROPHYTES
BENTHIC MACROINVERTEBRATES
FISH
RESULTS AND DISCUSSION
WATER QUALITY
Missouri River
Logan Creek
PHYTOPLANKTON
Missouri Rive:
Logan Creek
PRIMARY PRODUCTIVITY
Missouri River
Logan Creek
2OOPLANKTON
Missouri River
Logan Creek
VASCUIAR HYDROPHYTES
Missouri River
Logan Creak
BENTHIC MACROINVERTEBRATES
Missouri River
Logan Creek
FISH
Missouri River Logan Creek

ECOLOGICAL SUMMARY
CONCLUSIONS AND RECOMMENDATIONS
REFERENCES
SECTION
TITLE
3.

TERRESTRIAL ECOLOGY
3.1
3.23.2.1
3.2.2
3.2 .3
3.2.4
3.2 .5
3.3
3.3.1
3.3.1.1
3.3.1. 2
3.3.1. 3
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.3
3.3.3.1
3.3.3.2
3.3.4
3.3.4.1
3.3.4. 2
3.3.5
3.4
3.5
3.6
4.

INTRODUCTION
METHODS AND MATERIALS
VEGETATION AND SOILS
MAMMALS
AVIFAUNA
AMPHIBIANS AND REPTILES
INVERTEBRATES
RESULTS AND DISCUSSION
VEGETATION AND SOILS
Prairie Vegetation Type
Forest Vegetation Type
Soils
MAMMALS
Small Mammals
Large Mammals
Inventory of observed Species
AVIFAUNA
Prairie Habitats
Forest Habitats
AMPHIBIANS AND REPTILES
Amphibians
Reptiles
INVERTEBRATES
ECOLOGICAL SUMMARY
CONCLUSIONS AND RECOMMENDATIONS
REFERENCES
APPENDIXES A AND B

NUMBER
2.3.1-1
2.3.1-2
2.3.1-3
2.3.1-4
2.3.2-1
2.3.2-2
2.3.4-1
2.3.4.2
2.3.6-1
2.3.6-2
2. 3. 5-3
2.3.6-4
2.3.6-5
2.3.6-6

\section*{TITLE}

Water Quality Data from the Missouri River and Logan Creek, Spring 1974

Water Quality Data from the Missouri River and Logan Creek, September 1974

Trace Metal Concentrations from Missouri River and Logan Creek Sater Samples, Spring 1974

Trace Metal Concentrations (mg/l) from Missouri River and Logan Creek Water Samples, September 1974

Densities (cells/liter) of Phytoplankton Collected in the Missouri River and Logan Creek, June 1974

Densities (cells/liter) of Phytoplankton Collected in the Missouri River and Logan Creek, September 1974

Density (organisms/liter) of Zooplankton Collected from the Missouri River and Logan Creek, June 1974

Density (organisms/liter) of Zooplankton Collected from the Missouri River and Logan Creek, September 1974

Benthic Macroinvertebrates collected from the Missouri River and Logan Creek, June 1974

Wet-Weight Benthic Macroinvertebrate Biomass and Densities for Missouri River and Logan Creek, June 1974

Benthic Macroinvertebrates Collected from the Missouri River and Logan Creek, September 1974

Wet-Weight Benthic Macroinvertebrate Biomass and Densities for Missouri River and Logan Creek, September 1974

Number of Benthic Macroinvertebrates Collected in a Metefed Larval Net in the Missouri River, June 2j, 1974

Nur.oer of Benthic Macroinvertebrates Collected i' a Metered Larval Net in the Missouri River fune 23 and September 8, 1974
\begin{tabular}{|c|c|}
\hline NUMBER & TTTLE \\
\hline 2.3.6-7 & Number of Benthic Macroinvertebrates Collected in Drift Nets in Logan Creek, June 22, 1974 \\
\hline \(2 \cdot 3 \cdot 6-8\) & Benthic Macroinvertebrates Collected from the Missouri River and Logan Creek During July (J-3) September \((S-3)\), December \((D-3), 1973\), and February \((F-4)\), June \((J-4)\), and September \((S-4)\), 1974 \\
\hline 2.3.7-1 & Species of Fish Collected in the Missouri River and Logan Creek \\
\hline \(2.3 .7-2\) & Total Number and Length Range of Fishes Collected with Gill and Fyke Nets from the Missouri River, June 1974 \\
\hline \(2.3 .7-3\) & Total Number and Length Range of Fishes Collected with a Boom Electroshocker in the Missouri River, September 1974 \\
\hline 2.3.7-4 & Total Number and Length Range of Fishes Collected with Gill and Fyke Nets from the Missouri River, September 1974 \\
\hline \(2.3 .7-5\) & Total Number and Length of Fishes Collected with Seines in the Missouri River and Logan Creck, June 1974 \\
\hline 2.3. \(7-6\) & Total Number and Length Range of Fishes Collected with Seines in the Missouri River, September 5, 1974 \\
\hline 2.3.7-7 & Condition Factor and Length-Weight Regressions for Five Species of Missouri River Fish Collected, June and September 1974 \\
\hline 2.3.7-8 & Larval Fish Collected with a Netered Tow Net from the Missouri River, June 23, 1974 \\
\hline \(2.3 .7-9\) & Total Number and Range of Fishes Collected with Seines in Logan Creek, September 6, 1974 \\
\hline 2.3.7-10 & Mear ~ \(u k=C a\{\geq r ?\) eted Total Length (mm) at End of Each Year of Life of Bluegill and Gizzard Shad Collected in 1974 \\
\hline 3.3.1-1 & Some Characteristics of Ground Layer Vegetation Based on Plot Clippings at the Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline
\end{tabular}
```

LIST OF TABLES (continued)

```

NUMBER
3. 3. 1-2
3.3.1-3
3.3.1-4
3.3.1-5
3.3.1-6
3.3.1-7
3.3.1-8
3.3.1-9

Some Characteristics of Ground Layer Vegetation Based on Plot Clippings at Sampling Stations of the Callaway Plant Site, Callaway County, Missouri, May-June 1974

Comparisons Within and Between Sampling Stations Based on Calculated Importance Values for Major Component Species of Ground Layer vegetation Occurring in Subplots of Prairie Habitats, Callaway Plant Site, Callaway County, Missouri, Fall 1974

Comparisons Within and Between Sampling Stations Based on Calculated Importance Values for Major Component Species of Ground Layer Vegetation occurring in Subplots of Prairie Habitats, Callaway Plant Site, Callaway County, Missouri, May-June 1974

Comparisons Within and Between Sampling Stations Based on Calculated Importance Values for Major Component Species of Understory Layer Vegetation Occurring in Subplots of Prairie Habitats, Callaway Plant Site, Callaway County, Missouri, Fall 1974

Comparisons Within and Between Sampling Stations Based on Calculated Importance Values for Major Component Species of Ground Layer Vegetation occurring in Subplots of Forest Habitats, Callaway Plant Site, Callaway County, Missouri, Fall 1974

Comparisons Within and Between Sampling Stations Based on Calculated Importance Values for Major Component Species of Understory Layer Vegetation Occuring in Zuiplots of Forest Habitats, Callaway Plant Site, Callaway County, Missouri, Fall 1974

Comparisons Within and Between Sampling Stations Based on Calculated Importance Values for Major Component Species of Overstory Layer vegetation Occurring in Subplots of Forest Habitats, Callaway Plant Site, Callaway County, Missouri, Fall 1974

Comparisons Within and Between Sampling Stations Based on Calculated Importance Values for Major Component Species of Ground Layer Vegetation Occurring in Subplots of Forest Habitats, Callaway Plant Site, Callaway County, Missouri, May-June, 1974

\section*{LIST OF TABLES (continued)}
\begin{tabular}{|c|c|}
\hline NUMBER & TITLE \\
\hline 3.3.1-10 & Chlorinated Hydrocarbon Concentrations of the Soil at the Union Electric Callaway Plant, Units 1 and 2 Site \\
\hline 3.3.1-11 & Chemical Characteristics of the Soil at the Union Electric Callaway Plant, Units 1 and 2 Site \\
\hline 3.3.2-1 & Estimated Small Mammal Densities (per acre) for Permanent Sampling Stations Located in Forest Habitat, Callaway Plant Site, Callaway County, Missouri, Spring and Fall, 1974 \\
\hline 3.3.2-2 & Estimated Small Mammal Densities (per acre) for Permanent Sampling Stations Located in Prairie Habitat, Callaway Plant Site, Callaway County, Missouri, Spring and Fall 1974 \\
\hline 3.3.2-3 & Standard Neasurements of Small Mammals Captured on the Callaway Plant Site, Callaway County, Missouri, Spring and Fall 1974 \\
\hline 3.3.2-4 & A Phylogenetic Listing of Mammal Species Observed on or Immediate to the Callaway Plant Site During the 1973-74 Baseline Survey, the Initial Monitoring Survey, May-June 1974, and the Fall Survey, September 1974, Callaway County, Missouri \\
\hline 3.3.3-1 & Estimated Mean Avian Densities (number/acre) for Permanent Sampling Stations on the Callaway Plant Site, Callaway County, Missouri, Spring and Fall 1974 \\
\hline 3.3.3-2 & Comparisons of Mean Bird Density (per acre) Based on Observations Made at or Immediate to Permanent Sampling Stations Located in Similar Habitat Types of the Callaway Plant Site, Callaway County, Missouri, Early June 1974 \\
\hline 3.3.3-3 & Avian Diversity Based on the Maximum Species Observed in any One-Day Survey of Transects That Traverse Eight Permanent Sampling Stations Located Within the Callaway Plant Site, Callaway County, Missouri, Spring 1974 \\
\hline 3.3.3-4 & Avian Diversity of Commonly Nesting Birds Based On the Maximum Species Ubserved in any One-Day Survey of Transects That Traverse Eight Permanent Sampling Stations Located Within the Callaway Plant Site, Callaway County, Missouri, Early June 1974 \\
\hline
\end{tabular}

NUMBER
3.3.3-5 Avian Diversity for the Eight permanent Sampling Stations, Callaway Plant Site, Callaway County, Missouri, Fall 1974
3.3.4-1
3.3.4-2
3.3.4-3
3.3.5-1
3.3.5-2
3.3. \(5-3\)

Checklist of Bird Species Observed During the Environmental Baseline Inventory (June 1973), the Spring Monitoring Survey (June 1974), and the Fall Monitoring Survey (September 1974), Callaway Plant Site, Callaway County, Missouri

Variety and Numbers of Herpetofauna Observed in the Vicinity of the Callaway Plant Site, Callaway County, Missouri, Spring and Fall 1974

Variety and Numbers of Herpetofauna Observed Within Permanent Sampling Stations Located on the Callaway Plant Site, Callaway County, Missouri, Spring and Fall 1974

Amphibians and Reptiles Marked and Released in the Vicinity of Permanent Plots, Fall 1974

Taxonomic Identification of Invertebrates Collected in Selected Permanent Forest (F) and Prairie (Pr) Sampling Stations Located within the Callaway Plant Site, Callaway County, Missouri, June 1974

Taxonomic Identification of Invertebrates Collected in Selected Permanent Forest (F) and Prairie Sampling Stations Located Within the Callaway Plant Site, Callaway County, Missouri, September 13, 1974

Comparison of Invertebrate Specimens Collected by Permanent Study Plot and Transect During the Spring and Fall Sampling Period, 1974 on the Callaway Plant Site, Callaway County, Missouri
\begin{tabular}{ll}
\(\frac{\text { Number }}{2.2 .1-1}\) & \multicolumn{1}{c}{ Title } \\
\(2.3 .1-1\) & \begin{tabular}{l} 
Location of Aquatic Sampling Stations \\
Relationship Between Water Quality and \\
Discharge
\end{tabular} \\
\(2.3 .2-1\) & \begin{tabular}{l} 
Mean Weekly Discharge of the Missouri \\
River, Hermann, Missouri
\end{tabular} \\
\(3.2-1\) & \begin{tabular}{l} 
Major Ecological Associations \\
\(3.2-2\)
\end{tabular} \\
\begin{tabular}{l} 
Locations of Permanent Sampling Stations \\
Sesign of the 2.5-Acre Terrestrial
\end{tabular} \\
\(3.4-1\) & \begin{tabular}{l} 
Major Ecological Associations
\end{tabular} \\
Pyramid of Biomass
\end{tabular}

\section*{1. GENERAL INTRODUCTION}

This report swmarizes the first year (preconstruction) of a two-year preoperational monitoring program. The preconstruction monitoring program consisted of three sampling periods (winter, spring, and fall) for monitoring selected aquatic parameters and three (spring, midsummer, and fall) for monitoring selected terrestrial parameters. The results of the winter sample were included in the five aquatic sampling periods comprising the baseline inventory and summarized in the Callaway Plant, Units 1 and 2, Environmental Baseline Inventory Annual Summary.

The objectives of the preconstruction monitoring program are generally complementary to those of the previously completed baseline studies. However, the orientation of investigation differs. Whereas the baseline study was a broad-based investigation to characterize factors or components of the plant site environment, the focus of monitoring studies is to document intensively the ecological relationships of selected permanent sampling stations for the purpose of detecting changes in the natural system. The ultimate goal of the monitoring program is to obtain sufficient background data and a degree of surveillance compatability whereby natura: variation in key environmental parameters can be distinguished from significant environmental impact, if any, caused by plant construction and operation.

Although the preconstruction monitoring program was designed and to a considerable extent implemented by Dames and Moore, outside consultants were retained to undertake portions of the monitoring program. Dr. David B. Dunn, Prifessor and Curator of the Herbarium, University of Missouri-Columbia, performed all plant identification and super" sed fall sampling of vegetation and Birds; Dr. Dean E. Me: er, Associate Professor of Zoology, University of Missouri-C ambia, performed the fall sampling and identification of the amphibians and reptiles; and Dr. Thomas R. Yonke, Associate Professor of Entomology, University of Columbia-Missouri, was responsible for identification of the invertebrates and invertebr te sampling in the fall.

This report consists of two major parts: Aquatic Ecology and Terrestrial Ecology. Each is an entity, with its own Introduction, Methods and Materials, Results and Discussion, Ecological Summary, and Conclusions and Recommendations. The subsections are the standard divisions found in most environmental reports, with the possible exception of the Ecological Summary and Conclusion and Recommendations. The Ecological Summary for both the aquatic and terrestrial disciplines attempts to summarize
the ecological interrelationships pertinent to the plant site. The Liotic and abiotic interrelationships are discussed very briefly and at a very general level because the lack of published information of this type precludes a more elaborate discussion. The Conclusions and Recommendations section attempts to relate survey data to potential environmental impact from plant construction and operation.

Tables and figures are placed in the text following the threedigit subsection in which they are mentioned.

\subsection*{2.1 INTRODUCTION}

This report contains the spring and fall survey results for the proposed Callaway Nuclear Power Plant preconstruction environmental monitoring program. Aquatic sampling was conducted from the 20 th to the 23 rd of June and from the "nd to the 7 th of September, 1974.

The purpose of the monitoring program is to detect impact resulting from plant construction and operation. The preconstruction monitoring program is designed to further inventory important aquatic flora and fauna near the proposed plant site and to document seasonal variation in local populations. Specifically, the first year's preconstruction monitoring program is designed to estimate the degree of homogeneity among sampling stations and to provide a quantitative base from which plant-induced effects, if any, can be measured. Components of the aquatic ecosystem being considered. in this investigation are:

Water Quality
Phytoplankton Zooplankton

Benthic Macroinvertebrates Vascular Hydrophytes Fish

This portion of the report is divided into six major subsections. Section 2.1 (Introduction) outlines the purpose and scope of the study and discusses report format. Subsection 2.2 (Methods and Materials) describes sampling stations and methods and materials used to analyze various aquatic parameters. Subsection 2.3 is Results and Discussion; 2.4, Ecological Summary; 2.5, Conclusions and Recommendations: and 2.6 , References.

\subsection*{2.2.1 DESCRIPTION OF SAMPIING LOCATIONS}

The preconstruction monitoring program was designed to interface with the baseline study (Union Electric Company, 1974). Accordingly, several of the previously established sampling locations were used. These are Transects A, B, and C in the Missouri River and Stations D and E in Logan Creek (Figure 2.2.1-1). Two additional samplirg locations were established to provide a better repzesentation of the area that may be affected by plant construction and operation. Transect H was established about midway between Transects B and C on the Missouri River. Station E-2 was added dout midway between Stations D and E on Logan Creek, just below the mouth of Mud Creek. Station E-2 was relocated on Mud Creek in September to provide a measure of water quality for this creek.

Sampling stations on the Missouri River transects are designated with the numerals -1 and -2 for mid-channel and north shore locations, respectively. North and south ends of the transects, as discussed in Section 2.3.7, are designated by letters. For example, \(H-S\) and \(H-N\) refer to the south shore and north shore areas of Transect \(H\), respoctively.

The 1974 aquatic monitoring program consisted of three sampling periods, winter, spring, and fall. The winter sample was completed as scheduled and the results are presented in Callaway Plant Units 1 and 2, Environmental Baseline Inventory, Annual Summary, and will not be included in this report.

Spring sampling was zchoduled to begin mid-May, but spring rainfall and high water levels delayed sampling until June 20th. During the sampling period, Missouri River flow ranged from 95,000 to 103,000 ofs; river flow had reached \(278,000 \mathrm{cfs}\) during May and \(232,000 \mathrm{cfs}\) in early June. The delay in the aquatic sampling program is not believed to have significantly affected achievement of the objectives of the preconstruction monitoring progran or the quality of the data collected.

Fall sampling occurred as scheduled in early September.
\begin{tabular}{|c|}
\hline UNION ELECTRIC CO. \\
CALLAWAY PLANT \\
UNITS I \& 2 \\
\hline IOCATION OF AQUATIC \\
SAMPING STATIONS \\
\hline
\end{tabular}
Figure 2.2.1-1
\(\triangle\) REFORM

\subsection*{2.2.2 WATER QUALITY}

In order to expedite sampling and prevent further delays, the June water quality sampling was restricted to Transects H and \(C\). This modification of the program was acceptable because previous statistical analyses of water quality data had shown that all river transects were generally homogeneous with respect to water quality parameters (Union Electric Company, 1974). Therefore, for the spring survey, water quality at Transect \(H\) was considered representative of that at Transects A. and B. Further, samples were taken both upstream (Transect \$1) and downstream (Transect C) of Logan Creek to detect any differences in water quality due to the influence of the creek.

Analyses of the June water quality data and further review of the sampling program led to the implementation of a modified water quality sampling program for the fall. Based on knowledge of the relationship among transects and the proposed location of the Callaway Plant intake and discharge structures, Stations \(\mathrm{A}-2, \mathrm{~B}-2, \mathrm{H}-2, \mathrm{C}-1\), and \(\mathrm{C}-2\) were selected for sampling in the September and subsequent surveys. It is believed that Station B-2 will provid: a base from which to compare plant discharge, which is proposed to emanate from that point. Station C-2 and H-2 will provide a baseline from which the downstream effect of the discharge may be measured. Also, given that Stations \(\mathrm{A}-2\) and \(\mathrm{A}-1\) are statistically homogeneous, A-2 will provide an upstream "control" sample for comparison with other downstream samples. Finally, the extent to which the discharge plume will extend into the open river channel will be assessed, in part, through comparisons with water quality data from C-1.

Samples were collected from the first 1 meter below the surface with a Van Dorn PVC sampler and placed in polyethylene bottles containing appropriate preservations, as recommended by the U.S. Environmental Protection Agency (1971). Samples for fecal and total coliform analyses were collected in sterilized glass bottles. Following collection, all samples were packed i. ice for transportation to the laboratory. Field determinations were made for dissolved oxygen (YSI Model 54), conductivity (YSI Model 33), temperature (YSI Model 54), pH (Fisher Acumet), and alkalinity (field titration).

Water samples were also collected in June for pesticide analyses. Samples were placed in glass containers and shipped to Analytical Biochemistry Laboratory, Columbus, Missouri for analyses of 15 different pesticides anc herbicides.

Wilcoxan's sum rank test was used in the statistical analysis of the water guality data. Wilcoxan's test is a nonparametric test designed to evaluate two independent samples (Hollander and Wolfe, 1973). The analysis was conducted on the following variables: pH, dissolved oxygen, chemical oxygen demand, total suspended solids, total dissolved solijs, temperature, and
specific cunductivity. Data collected for four distinct sampling locations were analyzed for each parameter listed above. Specifically, station comparisons included:
\[
\begin{array}{lllll}
A-2 & \text { vs } B-2 & A-2 & \text { vs } C-2 & A-2 \text { vs } C-1 \\
B-1 & \text { vs } B-2 & B-2 & \text { vs } C-1 & C-1 \text { vs } C-2 \\
B-1 \text { vs } C-1 & B-2 \text { vs } C-2 & B-1 \text { vs } C-2
\end{array}
\]

Copper and cadmium were found to be present in the water samples at concentrations that warranted further analysis. \#his analysis consisted of single and step-wise multiple regression analyses to correlate and rank selected water quality parameters with copper and cadmium concentration. Those water quality parameters that, in single regression analysis, accounted for 30 percent or more of the variability in concentrations of copper and cadmium were then reevaluated by means of multiregression analysis.

One gallon whole-water subsurface samples for phytoplankton analyses were taken with a Van Dorn sampler. These samples were preserved with merthiolate. (USEPA, 1971).

Phytopla.kters were identified and enumerated from SedgwickRafter cell preparations in the following taxonomic categories: coccoid and filamentous blue-green algae; coccoid, filamentous, flagellated, wad colonial green algae; euglenoid algae; and centric and pennate diatoms. The following taxonomic references were used in identifications: Palmer (1962), Prescott (1962, 1970), Smith (1950), Whitford and Shumacher (1969), and U.S. Department of the Interior (1966).

Chlorophyll \(\underline{a}, \underline{b}\), and \(\subseteq\) analyses were attempted but, due to interference from large amounts of suspended solids in the samples, no reliable data were obtained. In lieu of chlorophyll analysis the \({ }^{14} \mathrm{C}\) method was used to determine river productivity.

Phytoplankton primary productivity was estimated in situ by the \({ }^{14} \mathrm{C}\) method (Strictland and Parsons, 1972). A solution of radioactive carbonate \(\left(\mathrm{HCO}_{3}\right)\) was added to light and dark bottles filled with water samples from Stations H-2, C-2, D, and E plus one additional location downstream of Logan Creek in June; and from Stations \(\mathrm{A}-2, \mathrm{C}-2\), and \(\mathrm{H}-2\) in September. Bottles were placed at their respective stations and suspended at the depth from which subsurface phytoplankton samples were collected. After an approximate 4 -hour in situ incubation, the water samples were fixed with 10 ml of formalin. The samples were later filtered in the laboratory and treated with hydrochloric acid to remove inorganic carbon. Liquid scintiliation counting was conducted at Virginia commonwealth University.

\subsection*{2.2.4 ZOOPLANKTON}

Subsurface net zooplankton samples were taken by filtering 24.3 liters of water (cullected with a Van Dorn sampler) through a Wisconsin F ankton net having a No. 20 mesh plankton bucket. The concencrate was washed into sample bottles and preserved with Lugol's solution.

Sedgwick-Raft: z sell preparations were examined in the laboratory at 200 X i. \(\lg \mathrm{g} \boldsymbol{f}\) fication. Zooplankters were enumerated and identified to the genus level according to the following taxonomic references: Ahlstrom (1940, 1943), Edmondson (1959), Pennak (1953), and Brooks (1957).

\subsection*{2.2.5 VASCULAR HYDROPHYTES}

Vascular hydrophyte investigations were limited to field observations of aquatic vegetation in both the Missouri River and Logan Creek.

\subsection*{2.2.6 BENTHIC MACROINVERTEBRATES}

Missouri River benthic macroinvertebrates were collected with a Ponar dredge, larval meter nets, and by random sampling. Ponar dredge samples were taken in duplicate (June) and in triplicate (September) at the four north shore stations with a \(520 \mathrm{~cm}^{2}\) Ponar in approximately 0.5 to 0.8 meters of water. Samples were screened in the field with a U.S. No. 30 standard sieve \((0.59 \mathrm{~mm})\). All material retained by the sieve was washed into 0.95 -liter wide-mouth jars and preserved with 10 percent buffered formalin containing 0.002 percent rose bengal. Larval meter net samples were taken in triplicate at Stations \(\mathrm{B}-2\) and \(\mathrm{C}-2\) with a \(0.6-m\)-diameter conical drift net having a \(0.76-\mathrm{mm}\) mesh collecting bucket. A flow meter attached to the net opening quantitatively measured water passing through the net. Triplicate samples of approximately 7 minutes each were made at the two stations. Random sampling consisted of identifying organisms attached to gill nets (used for fish sampling) and sticks and rocks contained in the grab samples.

Logan Creek benthic macroinvertebrate collections were similar to those of the Missouri River, except that the Ekman sampler \(\left(230 \mathrm{~cm}^{2}\right)\) was used instead of the Ponar dredge and a drift net (No. \(6 ; 30 \times 45 \mathrm{~cm}\) ) was used in lieu of the larval meter net. Random sampling consisted of identifying organisms attached to rocks and sticks.

All samples from both the Missouri River and Logan Creek were washed in a No. 35 sieve ( 0.50 mm ) in the laboratory and placed in a white enamel tray, where invertebrates were sorted from detritus. Wel-weight biomass was determined for all major groups. Each group was blotted dry and immediately weighed to the nearest 0.1 mg . Worms and midge larvae were then permanently mounted with \(\mathrm{CMCP}_{10}\) mounting medium on glass slides for identification and enumeration. Remaining macroinvertebrates were preserved in 70 percent ethanol after identification. All samples were retained as legal voucher specimens.

The following taxonomic references were used: Beck (1968); Brinkhurst (1964, 1965); Brown (1972); Hamilton, Saether, and Oliver (1969); Hilsenhoff and Narf (1968); Hiltunen (1973); Holsinger (1972) ; Kennedy (1969); Mason (1973); Roback (1957); Ross (1944); Usinger and Day (1968); and Williams (1972).

Species diversity was calculated for Ponar and Ekman grabs; the Shannon-Wiener diversity index was used:
\(\bar{d}=\Sigma\left(N_{i} / N\right) \log _{2}\left(N_{i} / N\right)\)
whore: \(\overline{\mathrm{d}}=\) species diversity
\(\mathrm{N}=\) total number of individuals in a compozite sample for a particular station
\(N_{i}=\) total number of individuals of a particular species in the composite sample.

\subsection*{2.2.7 FISH}

In Tune, the fish community of the Missouri River near the plant site was sampled by nets and boom electroshocking. Gill and fyke netting was conducted behind L-head dikes, revetments, and in back chutes on 1 th the nor th and south sides of the river. Transects were sampled it the following general areas: \(\mathrm{A}-\mathrm{S}, \mathrm{B}-\mathrm{N}, \mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{S}\). Electrosnocking was conducted along the north and wouth ends of Trancects \(A, B, H\), and \(C\). The fish sampling guar was the same as that used previously and is described in the Annual Report (Union Electric Company, 1974). In September, fish sampling was the same, except that boom electroshocking was omitted. Earlier experience with boom shocking in the Missouri River showed that this technique is ineffective ir sollecting fish.

In Logan Creek fish were sampled at Stations D, E-2, and E using electroshocking and seines. In addition, standing crop biomass estimates were made at Station \(E\). A measured area of creek at Station \(\bar{E}\) was blocked off with seines; fish were collected either with a back-pack electroshocker or minnow seine. The area was fished until catch per unit effort was reduced significantly. The total population estimate was then made from the relation of fishing success to cumulative fish catch (Leslie and Davis, 1939). This technique was utilized both on the 31st of May and 23rd of June, 1974.

Fish were weighed to the nearest gram and total length was measured to the nearest millimeter. Scales were removed from selected forage and sport species for age and growth analyses. Selected specimens were preserved in 10 percent formalin for later to ic identification or retained as voucher specimens. Taxonom, 24ik ences used for identification were Eddy (2969), Hubbs ar 60 ( 1967 ), Cross (1967), Pflieger (1968), and Moore (1) Larval and juvenile fish were identified with the aid \(c\). a key by May and Gasaway (1967).

Length-weight relationships of selected fishes were calculated; log-transformed values were used in the ca. dlations. Regression lines were fitted by the least s. aares method; the equation describing the line is presented in the general form:
\[
\log w=\log a+b \log L
\]
where: \(\quad W=\) estimated weight in grams (gm)
```

a = intercept of the regression line
L = total length in millimeters (mm)
b = regression coefficent

```

The correlation coefficient was also calculated for each regression.

Condition factor ( \(\mathrm{K}_{\mathrm{TL}}\) ) was calculated for individual fish, and the mean value for each of the selected species in each age group was calculated. The condition factor, which describes the relative plumpness or well-being of a fish, is defined as:
\[
\mathrm{K}_{\mathrm{TL}}=\frac{\mathrm{WX} 10^{5}}{\mathrm{~L}^{3}}
\]
where: \(\quad K_{T L}=\) condition factor
\[
\begin{aligned}
\mathrm{w} & =\text { weight }(\mathrm{gm}) \\
\mathrm{L} & =\text { total length }(\mathrm{mm})
\end{aligned}
\]

Larval fish were sampled in both the Missouri River and Logan Creek. The Missouri River was sampled near the north end of Transects \(B\) and \(C\) with a \(0.6-m\) diameter conical drift net having a \(0.76-\mathrm{mm}\) mesh collecting bucket. A flow meter attached to the net opening quantitatively measured the water passing through the net. Triplicate tows of approxims+ely 7 minutes each were made at the two stations. Larval i1sh in Logan Creek were sampled with smaller drift nets, as described in Section 2.2.6.

Age and growth analyses of fish were made from scales collected during the study. Impressions of at least three scales per fish were made in the laboratory on plastic slides with a roller press. Scale measurements (mm) were then made with the aid of a microscopic projector; two or more scales were examined to verify the number of annuli. Total scale radius was obtained by measuring from the center of the focus to the anterior-most portion of the scale.

Linear regression analysis was used to determine body-scale relationships for each fish species. Lee's formula (Tesch, 1971) was used to perform calculations of growth. The intercept values were derived from lineai regressions.

\subsection*{2.3 RESULTS AND DISCUSSION}
2.3.1 WATER QUALTTY

\subsection*{2.3.1.1 Missouri River}

Water quality data from both the spring and fall collections are presented in Tables 2.3.1-1 and 2.3.1-2. Wilcoxan's sumrank test, applied to data from Stations \(\mathrm{A}-2, \mathrm{~B}-1, \mathrm{~B}-2, \mathrm{C}-1\), and \(\mathrm{C}-2\), confirmed previous assumptions regarding homogeneity among water quality stations and further supports the basis for the selected modification in the sampling program.

Water quality of the Missouri River near the site has been characterived as primarily influenced by agricultural runoff, dilution phenomena, and industrial and municipal pollution (Union Electric Company, 1974). Variation in concentration of chemical constituents has largely been a function of river discharge. Total dissolved solids generally decreased in concentration with increased river discharge, while suspended materials and sediment load increased. Data from the present study illustrate this phenomenon (Tables \(2 \cdot 3 \cdot 1-1\) and \(2 \cdot 3 \cdot 1-2)\). The mean river flow during June sampling was 95,600 ofs; the discharge during the September sampling was 81,800 cfs. Biocnemical oxygen demand (BOD), chloride, total hardness, sulfate, and total dissolved solids (TDS) varied inversely with river flow. Constituents that varied directly with discharge, such as chemical oxygen demand (COD), nitrate, Kjeldahl nitrogen, total phosphorus, are directly related to the quantity of suspended particulate matter (seston) in the waterway. The increase in coliform bacteria with increased discharge is probably related to the amount of runoff from livestock grazing land. The State Water Qualıty Standard of 2,000 coliform bacteria/ 100 ml (Missouri Clean Water Commission, 1973) river water was exceeded at Station \(\mathrm{B}-2\) in September and was probably exceeded in June, as suggested by the over-growth in the plate cultures (Tables 2.3.1-1 and 2.3.1-2). Ballentine, et al. (1970) also found that coliform bacteria densities exceeded several times the National Technical Advisory Committee criteria of \(10,000 / 100 \mathrm{ml}\) total coliform and \(2,000 / 100 \mathrm{ml}\) fecal coliforms. Fall counts upstream at River Mile 118.0 averaged \(36,000 / 100 \mathrm{ml}\) total and 4,700 fecal from October 28 to November 8, 1968 (Ballentine, et al., 1970).

Pesticide contamination was not evident, as concentrations in the spring were below detectable limits. This agrees with results of previous pesticide tests on water samples taken in July, September, and December, 1973 (Union Electric Company, 1974). Only the April 1973 samples reveaied the presence of chlorinated pesticides, which were in low concentrations (19-31 \(\mathrm{\mu g} / 1)\). Chronic pesticide contamination from leached agricultural soils in this area, therefore, does not appear to exist.

The moderately high COD and dissolved oxygen (DO) with concurrently low BOD levels (Tables \(2.3 .1-1\) and \(2.3 .1-2\) ) are probably related to the presence of allochthonous organic materials in the seston that
are more resistant to biological degradation. It is also possible that certain organic materials leached from the surrounding watershed are adsorbed on clay particles where they become more resistant to biological degradation.

Trace metal analyses from previous studies at the site and historical data from Hermann, Missouri point to copper and cadmium as occurring in concentrations that may occasionally be toxic to aquatic organisms (Union Electric Company, 1974). Copper concentrations during the present study ranged from .007 to \(.04 \mathrm{mg} / 1\) (Tables \(2 \cdot 3 \cdot 1-3\) and \(2 \cdot 3 \cdot 1-4\) ). Although copper toxicity to aquatic organisms has been observed at concentrations as low as \(.02 \mathrm{mg} / 1\) (Battelle's Columbus Laboratory, 1971), it is probable that the copper in the Missouri River is either largely a mineral constituent of the organic detritus in the seston, or adsorbed to suspended clay particles. Figure 2.3.1-1 illustrates the relationship of total suspended solids (TSS) and discharge to copper and cadmium concentrations. Copper concentrations vary directly with TSS, while cadmium appears to be more a function of discharge.

To test the hypothesis that copper concentration is related more to the concentration of suspended solids than to dissolved solids, step-wise multiple regression analyses were performed on data collected from the site since 1973. Independent pa ameters in the analyses were COD, TDS, TSS, dis harge, zzdmium, and iron. Sixtyseven percent of the variation in copper consentration was explained by the concentration of TSS; the linear expression:
\[
\text { Where: } \begin{aligned}
Y & =.0075+.000 \cap 25 \mathrm{X} \\
\mathrm{Y} & =\mathrm{Cu} \text { concentration in } \mathrm{mg} / 1 \\
\mathrm{X} & =\text { TSS concentration in } \mathrm{mg} / \mathrm{l}
\end{aligned}
\]

No other regressions ere significant ( \(\mathrm{p}<.05\) ) ; that is, no other variables used in the analyses contributed significantly to the observed variation in copper concentrations. Therefore, these results suggest that the potential for acute copper toxicity to aquatic organisms is minimal because the copper appears to be either a constituent of the organic seston or is adsorbed to clay particles and is not readily available to most aquatic organisms. However, chronic copper toxicity to detritophageous organisms could occur because these organisms ingest organic seston and clay particles.

Multiple regression analysis was performed on the same data; cadmium as used as the dependent variable. The only parameter that contributed significantly to the observed variability in cadmium concentration was discharge, which accounted for 68 percent. The linear regression is:
\[
Y=.0085+.00008 X
\]

Where: \(Y=\) cadmium concentration in \(m g / 1\)
\[
x=\text { discharge in ofs }
\]

Therefore, cadmium concentrations vary directly with discharge levels.

\subsection*{2.3.1.2 Logan Creek}

The water quality of Logan Creek is generally better than that of the Missouri River. Concentrations of most water quality parameters measured in Logan Creek increased downstream, probably as a function of increased runoff. In previous samples, evidence of organic pollution generally was not found, althougn fecal coliform counts were occasionally high. Data from the present study show similar patterns, although a great deal of variation is evident in some parameters (Tables 2.3.1-1 and 2.3.1-2). For example, TSS, COD, BOD, organic nitrogen, and phosphorus levels were higher during the spring, when discharge was high, than during the fall. Most variations in concentration, however, can be explained as a function of discharge rates.

Station \(\mathrm{E}-2\) was added in the fall to provide a measure of the effects of Mud Creek on water guality of Logan Creek. Mud Creek appeared to be higher in dissolved solids than upper Logan Creek and, at times, has some bacterial contamination.

WATER QUALITY DATA FROM THE MISSOURI RIVER AND LOGAN CREEK, SPRING \(1974^{a}\)
\[

\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & \multicolumn{4}{|l|}{Missouri River Stations} & \multicolumn{3}{|l|}{Logan Creek Stations} \\
\hline & \(\underline{\mathrm{H}-1}\) & H-2 & \(\mathrm{C}-1\) & \(\mathrm{C}-2\) & D & E & E-2 \\
\hline Total Suspended Solids & 318 & 350 & 256 & 386 & 16 & 92 & 52 \\
\hline Total Solids & 720 & 785 & 652 & 826 & 420 & 360 & 368 \\
\hline Total Coliform (col/100 ml) & >20,000 & \(>20,000\) & \(>20,000\) & \(>20,000\) & \(>20,000\) & \(>20,000\) & \(>20,000\) \\
\hline Fecal Coliform (col/100 ml) & O.G. \({ }^{\text {b }}\) & O.G. & O.G. & 288 & 60 & 21.48 & 204 \\
\hline pH (standard units) & 7.9 & 7.9 & 7.8 & 7.9 & 8.0 & 7.9 & 7.8 \\
\hline Temperature ( \(\left.{ }^{\circ} \mathrm{C}\right)\) & 25.2 & 25.0 & 25.0 & 25.0 & 25.0 & 25.0 & 25.0 \\
\hline Specific Conductivity (1mho/cm) & 520 & 600 & 490 & 610 & 620 & 270 & 430 \\
\hline Dissolved Oxygen & 6.4 & 7.6 & 6.8 & 7.6 & 5.0 & 7.3 & 6.2 \\
\hline Turbidity (FTU) & 80 & 97 & 84 & 100 & 13 & 65 & 33 \\
\hline
\end{tabular}

\footnotetext{
All values are expressed in \(\mathrm{mg} / 1\) except where noted.
\({ }^{\text {Bo.G. }}\) O over-grown (to numerous to count).
}
ZーI' \(\varepsilon \cdot 乙\) G'IGVL
WATER QUALITY DATA FROM THE MISSOURI RIVER AND LOGAN CREEK, SEPTEMBER \(19744^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Missouri River Stations} & \multicolumn{3}{|l|}{Logan Creek Stations} \\
\hline \(p-2\) & B-2 & \(\underline{H-2}\) & \(\mathrm{C}-1\) & \(\mathrm{C}-2\) & D & E & E-2 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 153 & 155 & 151 & 129 & 152 & 225 & 230 & 266 \\
\hline .08 & . 08 & . 04 & . 06 & . 08 & . 08 & . 02 & . 02 \\
\hline 0.7 & 0.6 & 1.0 & 1.1 & 1. 4 & 0.9 & 1.4 & 1.0 \\
\hline 18.8 & 25.6 & 22.0 & 17.2 & 20.0 & 20.8 & 7.8 & 17.2 \\
\hline 25.5 & 25.9 & 25.5 & 11.5 & 25.5 & 2.47 & 4.11 & 3.70 \\
\hline 244 & 222 & 226 & 161 & 220 & 272 & 258 & 293 \\
\hline .001 & .001 & \(<.001\) & <.001 & .002 & . 002 & <.001 & <.001 \\
\hline .55 & .51 & . 42 & . 29 & . 31 & . 14 & . 16 & . 24 \\
\hline . 01 & .01 & .01. & . 01 & .01 & . 02 & <.01 & <.01 \\
\hline . 97 & . 08 & .75 & . 73 & . 87 & . 83 & . 25 & 1.02 \\
\hline .10 & .09 & .11 & .97 & . 11 & .03 & . 02 & . 02 \\
\hline .13 & .13 & .12 & .08 & .13 & . 03 & . 04 & . 02 \\
\hline 164 & 161 & 162 & 70.8 & 157 & 226 & 16.9 & 20.6 \\
\hline 424 & 418 & 410 & 284 & 456 & 282 & 250 & 302 \\
\hline
\end{tabular}
Parameter
Alkalinity (as CaCO 3 )
Carbonate
Bicarbonate
Ammonia (as N)
Biochemical Oxygen Demand
Chemical Oxygen Demand
Chloride
Hardness, Total (as \(\mathrm{CaCO}_{3}\) )
Hexane Sol. Materials
Nitrogen, Total Kjeldahl (as N)

Orthophosphate, Sol. (as P)
Phosphorus, Total (as P)
Sulfate
Total Dissolved Solids
TABLE 2.3.1-2
\begin{tabular}{|c|c|c|c|c|}
\hline & Missour & River & tions & \\
\hline A-2 & B-2 & \(\underline{\mathrm{H}-2}\) & C-1 & \(\mathrm{C}-2\) \\
\hline 96 & 103 & 93 & 87 & 94 \\
\hline 581 & 580 & 582 & 344 & 548 \\
\hline 3,000 & 3,000 & 2,800 & 2,200 & 2,30 \\
\hline 900 & 2,300 & 1,300 & 900 & 850 \\
\hline 33 & 32 & 24 & 25 & 23 \\
\hline 20.5 & 21.8 & 21.5 & 23.0 & 21.8 \\
\hline 490 & 690 & 1500 & 400 & 690 \\
\hline 8.7 & 8.5 & 8.1 & 6.8 & 7.5 \\
\hline
\end{tabular}
all values are expressed in \(\mathrm{mg} / 1\) except where noted.
(continued)
\[
\begin{array}{lll}
\text { Logan Creek Stations } \\
\hline \underline{D} & \underline{E} & \underline{E-2} \\
26 & <10 & 17 \\
328 & 274 & 322 \\
375 & 400 & 2.100 \\
700 & 290 & 360 \\
15 & 3.8 & 5.8 \\
20.0 & 20.0 & 21.0 \\
455 & 425 & 465 \\
5.0 & 10.4 & 9.3
\end{array}
\]

TABLE 2.3.1-3
TRACE METAL CONCENTRATIONS FROM MISSOURI RIVER AND LOGAN CREEK WATER SAMPLES, SPRING \(1974^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Parameter} & \multicolumn{4}{|c|}{Missouri River Station} & \multicolumn{3}{|l|}{Logan Creek Station} \\
\hline & H-1 & \(\underline{\mathrm{H}-2}\) & \(\mathrm{C}-1\) & \(\mathrm{C}-2\) & D-1 & E & E-2 \\
\hline Arsenic & <. 005 & \(<.005\) & \(<.005\) & <. 005 & <.005 & <. 005 & <.005 \\
\hline Cadmium & <.001 & <. 001 & <,001 & <. 001 & <. 001 & <.001 & <.001 \\
\hline Calcium & 60 & 54 & 54 & 56 & 94 & 50 & 72 \\
\hline Total Chromium & <. 005 & <.005 & <. 005 & \(<.005\) & <. 005 & e. 005 & <.005 \\
\hline Copper & . 04 & . 019 & . 012 & . 011 & . 004 & . 008 & . 006 \\
\hline Iron & 8.5 & 11 & 8.0 & 11 & 1.6 & 6.5 & 4.0 \\
\hline Total Iron & 14 & 20 & 16 & 20 & 1.6 & 8.5 & 4. \\
\hline Lead & . 140 & . 047 & . 047 & <.020 & <. 020 & . 195 & . 080 \\
\hline Magnesium & 15 & 17 & 16 & 17 & 32 & 16 & 23 \\
\hline Mercury & . 001 & .0003 & . 0005 & . 0003 & . 0002 & . 0002 & . 0009 \\
\hline Selenium & <.005 & <.005 & <.005 & \(<.005\) & <.005 & <.005 & <.005 \\
\hline Sodium & 29 & 39 & 29 & 36 & 7.6 & 4.0 & 5.2 \\
\hline Zine & . 02 & . 04 & . 04 & . 64 & . 02 & . 02 & . 05 \\
\hline
\end{tabular}

\section*{TABLE \(2 \cdot 3 \cdot 1-4\)}

TRACE METAL CONCENTRATIONS (mg/l) FROM MISSOURI RIVER AND LOGAN CREEK WATER SAMPLES, SEPTEMBER 1974
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameter & \multicolumn{5}{|c|}{Missouri River Stations} & \multicolumn{3}{|l|}{Logan Creek Stations} \\
\hline & A-2 & B-2 & \(\mathrm{H}-2\) & \(\mathrm{C}-1\) & \(\mathrm{C}-2\) & D & E & \(\mathrm{E}-2\) \\
\hline Arsenic & \(<.005\) & <. 005 & <. 005 & <.005 & <. 005 & \(\bigcirc .005\) & <. 005 & \(<.005\) \\
\hline Cadmium & . 009 & . 007 & . 004 & . 004 & . 003 & . 006 & . 005 & . 005 \\
\hline Calcium & 52 & 55 & 52 & 42 & 52 & 57 & 55 & 63 \\
\hline Chromium, Total & <. 005 & <. 005 & <.005 & \(<.005\) & <.005 & <. 005 & \(<.005\) & <.005 \\
\hline Copper & . 011 & . 007 & . 007 & . 008 & . 008 & . 006 & . 004 & . 006 \\
\hline Iron & 3.3 & 2.1 & 1.6 & 1.4 & 1.6 & 1.2 & 0.5 & 0.5 \\
\hline Iron, Total & 5.2 & 3.8 & 2.8 & 2.7 & 2.8 & 1.9 & 0.5 & 0.5 \\
\hline Lead & . 020 & . 020 & <. 020 & <. 020 & <. 020 & <. 020 & <.020 & . 120 \\
\hline Magnesium & 19 & 19 & 18 & 12 & 18 & 25 & 26 & 31 \\
\hline Mercusy & . 0003 & . 003 & . 0007 & . 0006 & . 003 & . 016 & . 001 & . 001 \\
\hline Selenium & <.005 & \(<.005\) & <. 005 & <.005 & <. 005 & \(<.005\) & <. 005 & \(<.005\) \\
\hline Sodium & 58 & 59 & 58 & 23 & 54 & 4.4 & 4.8 & 4.6 \\
\hline Zine & . 04 & . 06 & . 04 & . 04 & . 04 & . 06 & . 01 & . 04 \\
\hline
\end{tabular}


\subsection*{2.3.2.1 Missouri River}

Phytoplankton of the lower Missouri River characteristically occur in low densities and are dominated numerically by diatoms (Berner, 1951; Damann, 1951; Williams, 1965; Stern and Stern, 1971; Union Electric Company, 1974; University of Missouri-Rolla, 1974). The paucity of phytoplankton is related to excessive turbidity, high current velocity, and the lack of adjoining lentic waters (Berner, 1951). The harsh conditions of the Missouri River are illustrated by their effects on plankton populations entering from tributary rivers. Damann (1951) reports that plankters entering the ‥issouri River from tributaries were subjected to adverse conditions and did not multiply. A reduction in tributary phytoplankton populations after entering the Missouri River was also noter by Ballentine, et al. (1970). Berner (1951) nad earlier suçested that, in the absence of backwater areas, plankton production was autogenic, with little contribution from tributaries. Ballentine, et al. (1970) supported the suggestions of others that the Missour River phytoplankton community originates in lentic waters.

Diatoms clearly were numerically dominant in the present study, comprising 80 and 76 percent of the total phytoplankton numbers in June and September, respectively (Tables \(2 \cdot 3 \cdot 2-1\) and 2,3,2-2). Diatoms in the June sample were predominately of the pennate form, while the September sample contained primarily centric diatoms. This form of seasonal variation is typical of diatom populations (Patrick, 1948).

Densities of phytoplankton from the present study show a fall maximum not observed in past investigations (Table 2.3.2-2). The mean density increased from \(89,842 /\) liter (1) in June to \(11,430,780 / 1\) in September. Although fall diatom bloums are a common phenomenon in rivers (Williams, 1964), the September value represents a greater than 100 x increase in density over the June sample and is greater than any reported for the lower Missouri River. Ballentine, et al. (1970) found total phytoplankton densities of \(1, \overline{593}, 000 / 1\) upstream at Chamois (RM 118.0) in the fall of 1968. Mean discharge during their study was \(55,600 \mathrm{cfs}\). The greatest observed density reported by Ballentine, et al. (1970) was 2,178,000/1 in mllections taken between Kansas City and St. Joseph, Missouri.

The high fall densities of phytoplankton observed ir the present study illustrate the limiting effect of turbid ty on photosynthetic processes in the river. In late summer and early fall, flow rates and water levels decline (Figures 2.3.2-1 and \(2.3 .2-2\) ), and larger suspended particles settle, reducing river turbidity. General river turbidity is further reduced under low flow conditions due to the increased proportion of groundwater to surface runoff water in the river. As the water
level continues to drop, revetments become especially good habitats for phytoplankton because they become closed off, forming lentic pools. The decrease in turbidity coupled with the abundant nutrients (Union Electric Company, 1974) in the Missouri River explain the phytoplankton bloom observed in the fall sampling period.

\subsection*{2.3.2.2 Logan Creek}

Past investigations of phytoplankton in Logan Creek have shown species composition to be similar to the Missouri River near the site; phytoplankton densities, however, were one to fou. orders of magnitude higher (Union Electric Company, 1974). Aigher phytoplankton densities in Logan Creek relative to those of the Missouri River appeared to be related to the presence of a stable substrate, lower current velocities, and lower turbidity levels. Seasonal variations in densities and species composition of Logan Creek shytoplankton were found to be typical of temperate streams, where green and euglenoid species attain maximum densities during warmer months but are absent in winter when diatoms predominate. Most of the principal taxa in the creak were benthic diatoms.

The June 1974 phytoplankton sample contained predominately pennate diatoms (see Table 2.3.2-1). Densities were low and did not show the previously observed pattern of increased upstream abundance. Also, in contrast to previous findings, densities in Logan Creek were lower than those in the Missouri River. Presumably, low spring densities were due to the high water levels and discharge that had existed prior to sampling (see Figures 2.3.2-1 and 2.3.2-2).

The September 1974 samples also were dominated numerically by pennate diatoms (see Table 2.3.2-2). Centric diatoms, predominate in the Missouri River samples, comprised only from 4.5 to 23 percent of the total diatom numbers. Total phytoplankton densities were unusually high but were always lower than densities in the river samples. Phytoplankton were slightly more abundant upstream at Station E than at Station D.

The fall maxima in phytoplankton densities in Logan Creek are greater than the previous maximum of \(1,115,000\) cells/l observed at Station E in July 1973. The maximum phytoplankton density ohserved in September 1973 was \(10,222 / 1\) at Station E. Turbidity levels corresponding to these two periods were 90 and 3 Jackson Turbidity Units (JTU's), respectively.

TABLE 2.3.2-1
DENSITIES (cells/liter) OF PHYTOPLANKTON COLLECTED IN THE MISSOURI RIVER AND LOGAN CREEK, JUNE 1974


DENSTTIES (CELLS/LITER) OF PHYTOYLANKTON COLLECTED IN THE MTSSOURI RIVER
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Missouri River Stations} & \multicolumn{2}{|l|}{Logan Creek Stations} \\
\hline \(A-2\) & B-2 & H-2 & \(\mathrm{C}-1\) & C-2 & \(\frac{\mathrm{D}}{}\) & E \\
\hline 163,300 & 163,300 & 163,300 & 326,600 & 163,300 & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & 4 & \(+\) & \(+\) \\
\hline \(+\) & 4 & 4 & 163,300 & \(+\) & \(+\) & \(+\) \\
\hline 2,122,900 & 2,776,100 & 1,796,300 & 653,200 & 1,632,900 & 979,800 & + \\
\hline \(+\) & 163,300 & \(+\) & \(+\) & 4 & \(+\) & \(+\) \\
\hline 5,388, 300 & \(6,042,100\) & 6,205,400 & 3,919,200 & 5,551,200 & 489.900 & 163,300 \\
\hline 2,449,500 & 3,102,700 & 3,592,600 & 1,633,000 & 5,552,200 & 2,122,900 & 3,592,600 \\
\hline \(+\) & 4 & 4 & 4 & \(+\) & \(+\) & 4 \\
\hline 1,143,100 & 489,900 & \(+\) & 816,500 & 653.200 & 163,300 & 326,500 \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & 326,600 & \(+\) & \(+\) \\
\hline 11,267,70\% & 12,737,400 & \(11,757,600\) & 7,511,900 & 13,879,400 & \(3,755,900\) & 4, 382,400 \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline UNION ELECTRIC CO. \\
CALLAWAY PLANT \\
UNITS 182 \\
\hline \begin{tabular}{l} 
MEAN WEEKIY DISCHARGE \\
OF THE MISSOURI RIVER, \\
HERMANN, MISSOURI
\end{tabular} \\
\hline Figure \(2.3 .2-1\) \\
\hline
\end{tabular}

\subsection*{2.3.3 PRIMARY PRODUCTIVITY}

\subsection*{2.3.3.1 Missouri River}

Phytoplankton primary productivity, as measured by \({ }^{14} \mathrm{C}\) fixation method, is reported below:
\begin{tabular}{|c|c|c|}
\hline Station & Date & \[
\mathrm{mgC} / \mathrm{m}^{3} / \mathrm{hr}
\] \\
\hline \(\mathrm{H}-2\) & 20 Jw & 2.3 \\
\hline C-2 & 20 Ju, & 1.9 \\
\hline C-2 & 20 Jun & 1.4 \\
\hline A-2 & 7 Sep & 122.7 \\
\hline \(\mathrm{C}-2\) & 7 Se & 126.2 \\
\hline H-2 & 7 Se. & 86.9 \\
\hline
\end{tabular}

As expected, high discharge, high turbidities (95 JTU average), and low phytoplankton densities resulted in low productivity values for the June sample. The September study yielded values, consistent with findings of lowered turbidities, decreased flow, and high phytoplankton densities.

\subsection*{2.3.3.2 Logan Creek}

The \({ }^{14} \mathrm{C}\) primary productivity study in Logan Creek yielded the following:

\section*{Station \\ Date}
\(D\)
\(E\)
\(D\)
\(E\)

20 Jun
20 Jun
7 Sep
7 Sep
\(\mathrm{CO}_{2}\) fixation
\(\mathrm{mgC} / \mathrm{m}^{3} / \mathrm{hr}\)
5.1
40.1
8.4
4. 6

June productivity in the creek was, as expected, higher than that observed for the river (Section 2.3.3.1). Turbidity in the creek was low, and phytoplankion densities were moderately high. However, productivity differences between sampling stations show a direct, rather than inverse, relationship with turbidity. For example, turbidity and productivity were both highest at Station \(E\) in June, while a similar relationship existed at Station D in September. Moreover, September productivity did not reflect the high diatom counts observed in the creek (Section 2.3.2.2).

There are several possible explanations for the above observed phenomena. First, many of the diatoms in the phytoplankton samples may be dead frustrules washed from the bottom by earlier rains. These diatoms would not contribute to primary productivity but would increase phytoplankton counts. The predominance of benthic diatoms in Logan Creek samples attests to the fact that benthic diatoms are suspended in the water column. Secondly, a high percentage of the carbon assimilated during photosynthesis may be
excreted into surrounding water in soluble form, resulting in an underestimation of primary productivity (Gieskes and Bennekom, 1973). Thirdly, if nutrients become depleted, maximum phytoplankton biomass would be reached, and productivity would decline. Chu (1942) reports that algae are likely to suffer a nutrient deficiency when nitrogen concentration is welow \(0.2 \mathrm{mg} / 1\) and phosphorus below \(0.05 \mathrm{mg} / 1\). During the September study, nutrient levels were somewhat below these limits. However, nutrient depletion is related to flow ratzs. Nutrients that may be limiting in lentic waters are not as important in lotic waters because flow continually renews the aquatic medium (odum, 1956). Hence, no real nutrient deficit can build up as long as adequate flow is maintained. Once flow is reduced, nutrients can become limiting.

\subsection*{2.3.4 ZOOPLANKTON}

\subsection*{2.3.4.1 Missouri River}

Rotifers, characteristically the predominant zooplankter in most major river systems (Williams, 1966), were the most abundant component of the net zooplankton samples in the present study (Tables 2.3.4-1 and 2.3.4-2). Earlier collections at the study site were also dominated by rotifers (Union Electric Company, 1974).

The September 1974 collections contained greater net zooplankter densities and taxa diversity than did the June 1974 collections (Tables 2.3.4-1 and 2.3.4-2). Densities averaged 68.4 organisms/1 in September and \(34.2 / 1\) in July. Normally, maximum rotifer densities in large temperate rivers occur in the summer months when the water is warm and clear (Williams, 19f6). However, in the present study, maximum water clarity occurred in September.

Hynes (1972) states that rotifers become common when diatom densities increase. Although phytoplankton densities in September were exceptionally high (Section 2.3.2), zooplankton densities remained moderately low. Because zooplankters feed on phytoplankton, particulate organic matter, and bacteria, maximum zooplankton densities often occur after maximum phytoplankton densities. Such a lag in zooplankton abundance was observed in the lower Missouri River by the University of Missouri-Rolla (1974) when a maximum of 2100 zooplankters/l were collected in July 1973. The low densities observed in the present study may be explained in part by this lag effect, in combination with the effects of temperature and flow. Generally, however, the lower Missouri River is considered rotifer poor (Williams, 1966).

Most of the zooplankters collected during the present study are planktonic(free floating). However, sessile rotifers were abundant in September, comprising as much as 69 percent of the total sample (Table 2.3.4-2). In addition, drift net samples taken in June contained large numbers of sessile rotifers attached to organic debris. The appearance of these organisms in both seasonal collections points to the existence of large commanaties of periphytic invertebrates (Aufwuchs) that become dislodged during high water.

\subsection*{2.3.4.2 Logan Creek}

A total of 26 taxa of zooplankton, including 18 rotifers, has been reported for Logan Creek (Union Electric Company, 1974). A maximum density of \(2133 / 1\) occurred in July 1973 and included 13 taxa. In the present study, 14 taxa were collected, including 7 rotifers (Tables 2.3.4-1 and 2,3,4-2). Maximum density of \(34.3 / 1\) was observed in September at Station D. Rotifers were numerically predominant at both stations in June, but crustaceans were predominant at Station D in September.

Total densities of zooplankton in Logan Creek were slightly higher in June than were corresponding river collections. In September,

Missouri River collections contained two to three times the density of the Logan Creek collection. However, if dislodqed sessile rotifers are disregarded, both bodies of water had similar densities.

TABLE 2.3.4-1
DENSITY (organisms/liter) OF ZOOPLANKTON COLLECTED FROM THE MISSOURI RIVER AND LOGAN CREEK, JUNE 1974
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Organism & \multicolumn{3}{|c|}{Missouri River Sampling Stations} & & \multicolumn{2}{|l|}{Logan Creek Sampling Stations} \\
\hline & \(\mathrm{H}-1\) & H-2 & \(\mathrm{C}-1\) & \(\mathrm{C}-2\) & D & E \\
\hline \multicolumn{7}{|l|}{ROTIFERA} \\
\hline Branchionus sp. & 9.07 & 9.19 & 7.98 & 9.42 & 9.77 & 6.81 \\
\hline Filinia sp. & 0.95 & 1.02 & + & + & \(+\) & 2.27 \\
\hline Keratella sp. & 1.91 & 2.55 & 2.09 & 3.62 & 8.15 & 4.54 \\
\hline Polyarthra sp. & + & 2.04 & 0.42 & 1.09 & 1. 62 & + \\
\hline Trichotria sp. & \(+\) & + & + & + & 1.62 & + \\
\hline Total Rotifer Density & 11.93 & 14.80 & 10.49 & 14.13 & 21.16 & 13.62 \\
\hline \multicolumn{7}{|l|}{CLADOCERA} \\
\hline Bosmina sp. & 1.43 & 1.53 & 0.84 & 0.72 & + & + \\
\hline
\end{tabular}

COPEPODA
Cyclops sp.
\begin{tabular}{lccccccc} 
(naupli) & 1.91 & 2.55 & 2.94 & 1.81 & 3.25 & 6.81 \\
Cyclops sp. & + & + & + & + & + & 2.27 \\
\hline Cyclopoid & + & 2.04 & 1.26 & 1.81 & + & + \\
cal Crustacea Density & 3.34 & 6.12 & 5.04 & 4.34 & 3.25 & 9.08
\end{tabular}

OTHER INVERTEBRATES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ostracoda & 0.48 & 0.51 & + & \(+\) & + \\
\hline Tardigrada & 1.43 & \(+\) & + & 0.36 & \(+\) \\
\hline TAL & 17.18 & 21.43 & 15.53 & 18.83 & 24.41 \\
\hline
\end{tabular}
TABLE \(2,3,4,2\)
DENSITY (ORGANISMS/LITER) OF ZOOPLANKTON CUX LECTED FROM THE MISSOURI RIVER
\[
\text { AND LOGAN CREEK, SEPTEMBER } 1974
\]
\[
\begin{aligned}
& \frac{\text { ions }}{\Sigma-1} \\
& 13.72
\end{aligned}
\]
RIVER
\(\frac{\text { Legan Creek Stations }}{D}\)
\[
\begin{array}{l|l}
\text { m } & m \\
u & \stackrel{m}{m}++++\underset{m}{m} \\
\dot{m}
\end{array}
\]
\[
\stackrel{\stackrel{N}{m}}{\underset{\sim}{m}}++\frac{\stackrel{\pi}{\underset{m}{m}}}{\dot{m}}
\]
\[
\stackrel{m}{\dot{i}}+\quad \stackrel{\infty}{\infty}++\begin{aligned}
& \underset{0}{0} \\
& \underset{\sim}{0}
\end{aligned}
\]
\[
\begin{array}{lcc|l}
m & m & m \\
m & \ddot{m} & \ddot{n} \\
\dot{m} & \dot{m} & \dot{m} & 0 \\
8
\end{array}
\]

\[
\begin{aligned}
& \stackrel{\underset{\sim}{\infty}}{\underset{\sim}{\infty}++\underset{\sim}{\infty}} \underset{\sim}{\underset{\sim}{n}} \\
& \left.\begin{array}{l}
\dot{N}+\underset{\sim}{\underset{\sim}{n}} \\
\dot{\sim}
\end{array}++\underset{\sim}{m} \right\rvert\, \begin{array}{l}
\dot{\sim}
\end{array}
\end{aligned}
\]

\subsection*{2.3.5 VASCULAR HYDROPHYTES}

\subsection*{2.3.5.1 Missouri River}

During the present study, no vascular hydrophytes were observed in the Missouri River near the site. However, a few hydrophytes, mainly potamogeton Sp., were seen in an isolated chute near Station \(\mathrm{B}-2\) in September. This chute, closed off by silt deposits and dikes, provided the lentic conditions necessary for establishment of vascular hydrophytes. Ordinarily, physical conditions in the river are too harsh for rooted aquatic plants. Berner (1951) observed no rooted aquatic plants in the river channels, chutes, or backwaters. Likewise, none have been observed previously in the vicinity of the Callaway Plant, Units 1 and 2 (Union Electric Company, 1974).

\subsection*{2.3.5.2 Logan Creek}

Dames \& Moore reported the occurrence of water primrose (Jussiaea sp.), water willow (Dianthera sp.), duckweed (Lemma sp.), and sedges (Carex spp.) at Station E during earlier studies, but no vascular hydrophytes were observed at Station D. During the present study, two submergent vascular hydrophytes were observed at Station E in September. The plants are tentatively identified as a filiform pondweed (Pontamogeton sp.) and a water plantain, probably Alisma sp.. Lack of fruiting bodies made specific identification impossible. No vascular hydrophytes were observed in Logan Creek in June, and none were seen at any time at Station D.

\subsection*{2.3.6 BENTHIC MACROINVERTEBRATES}

\subsection*{2.3.6.1 Missouri River}

Benthic communities in the Missouri River are normally composed of oligochaetes, burrowing tayElies, and dipters-mainly chiror midae (Union Electric Company, 1974; University of Missouri, 1972; Merner, 1949). Densities, biomass, and species diversity are generally low, being restricted by spates (excessive currents) and unstable substrate (Union Electric Company, 1974).

June 1974 grab samples contained only 11 species, dominated by oligochaetes (97.1 to \(10 c\) percent, Table \(2.3 .6-1\) ). Densities also were low, with a mean of \(1169 / \mathrm{m}^{2}\) (Table \(2 \cdot 3 \cdot 6-2\) ). A combination of two factors could account for the unusual species composition and low densities. First, high water (maximum of 278,000 cfs) in late May and early June eliminated all but those forms suited to burrowing, such as mayflies, chironomids, and oligochaetes (Figure 2.4-1). Secondly, the burrowing mayflies and most chironomids had probably emerged prior to sampling.

Septembri 1974 grab samples showed an increase in species numbers and densities cver the June samples (Table 2.3.6-3). This was a result of stabie river flows prior to sampling and reappearance of burrowing mayflics and chironomids (Figure 2.4-1). Species numbers increased to 19, and mean densities (from all stations) reached \(1347 / \mathrm{m}^{2}\). Oligochaete dominance was still high, ranging from 76.4 to 91.7 percent.

An increase in species numbers and densities after the spring high water period (normally April) to a high during the winter period has been noted in the Missouri River (Union Electric Company, 1974). High winter densities are common for both lotic and lentic environments (Hynes, 1972) and are generally considered a result of decreased predation, improved water quality, and life cycle patterns of individual benthic species.

Wet-weight biomass showed a fall increase, as did densities (Table 2.3.6-4). The average biomass for north shore stations in June was \(1698 \mathrm{mg} / \mathrm{m}^{2}\) and \(3268 \mathrm{mg} / \mathrm{m}^{2}\) for September. The mayflies and dragonflies, with their greater weight per individual, accounted for almost a doubling of biomass in September, with only a 20 percent increase in densities. The September 1974 average biomass is exceeded only by the December 1973 Station C-2 biomass of \(5797 \mathrm{mg} / \mathrm{m}^{2}\) (Union Electric Company, 1974). These values are greater than the \(241 \mathrm{mg} / \mathrm{m}^{2}\) maximum reported by Berner (1951). However, even the high winter biomass does not approximate the biomass of \(29,000 \mathrm{mg} / \mathrm{m}^{2}\) reported for an unchannelized portion of the Illinois River between Chillicothe and Grafton (Berner, 1951).

Species diversity indices increased from June to September 1974 as follows:
\begin{tabular}{ccc} 
Station & June & September \\
\cline { 1 - 1 } \(\mathrm{A}-2\) & 0.67 & 0.92 \\
\(\mathrm{~B}-2\) & 0.89 & 0.98 \\
\(\mathrm{H}-2\) & 0.22 & 1.45 \\
\(\mathrm{C}-2\) & 0.64 & 1.64
\end{tabular}

Generally, diversily in the Missouri River increases during the winter (Union Electric Company, 1974). According to Wilhm and Dorris (1968), diversities below 2.0 indicate gross pollution and between 2.0 and 3.0 , moderate pollution. In the case of the Missouri River at the site, gross pollution would be attributed to physical stress from spates and shifting substrate, which are the result of river channelization. In this sense, channelization could be considered a form of pollution to the bottom fauna.

In addition to grab samples, drift samples were also taken. In contrast to observations by Berner (1949), species composition in drift samples varied greatiy from that observed in the grab samples (Tables \(2 \cdot 3 \cdot 6-5\) and \(2 \cdot 3 \cdot 6-6\) ). Also, the number of drift organisms averaged much lower for both June ( \(0.0547 / \mathrm{m}^{2}\) ) and September \(\left(0.546 / \mathrm{m}^{2}\right)\), than that observed by Berner \(\left(0.7593 / \mathrm{m}^{2}\right)\) at Boonville, Missouri on April 18, 1946. Similar low values for the ohio River
were indicated by Philip A. Lewis (personal communication, November 18, 1974, biologist, E.P.A., Cincinnati, Ohiol. Drift density seemed to increase from upstream Station B-2 to downstream Station \(C-2\). There is greater dike and revetment surface area upriver from Station \(C-2\) than Station \(B-2\), which could be the source of most drift organisms.

Random samples (rocks and logs removed from a revetment) taken in September at Station B-2 confirm the use of revetments by benthic species not associated with the shifting sand (grab samples). The rocks and logs had a combined surface area of 0.05 square meters and contained the following:

Taxon

\section*{Calculated density}

\section*{Number collected}

Turbellaria
Oligochaeta Amphipoda Chironomidae
Trichoptera
Ephemoptera
Total
\[
\begin{array}{r}
3100 / \mathrm{m}^{2} \\
60 / \mathrm{m}^{2} \\
320 / \mathrm{m}^{2} \\
4280 / \mathrm{m}^{2} \\
40,180 / \mathrm{m}^{2} \\
80 / \mathrm{m}^{2} \\
\hline 48,020 / \mathrm{m}^{2}
\end{array}
\]
(4)

Even taking into account the small area sampled to yield numbers per \(\mathrm{m}^{2}\), the values are very high. These values far surpass previously reported values for this and other rivers (Hynes, 1972; Needham and Needham, 1962; University of Missouri, 1972), where a major source of organic enrichment does not exist. This random sample of the revetment indicated a larger benthic food base than previously expected. However, this is an artificial substrate of sorts and would compare better with values for basket samplers. For example, basket samplers in the Wabash River near New Harmony, Indiana (August 25, 1966), yielded densities of \(167,600 / \mathrm{m}^{2}\) (Mason, et al.. 1971).

\subsection*{2.3.6.2 Logan Creek}

Historical data concerning Lnzan Creek benthic fauna are apparently lacking, except for the study by Dames \& Moore. Dames \& Moore characterized the creek as similar to the Missouri River in species composition, with slightly higher densities, biomass, and diversity.

June 1974 samples at Station D contained 94.1 percent oligochaetes (Table 2.3.6-1), with chironomids and nematodes comprising the remainder for a total density of \(3292 / \mathrm{m}^{2}\) (Table 2.3.6-2). Ninetynine percent of the wet-weight biomass of \(15,268 / \mathrm{m}^{2}\) was contributed by Branchiura sowerbyi. Species diversity was also low at 1.23.

In September, the benthos population at Station \(D\) was still dominated by oligochaetes ( 99.1 percent), as noted previously. Wet-weight biomass was slightly higher at \(3806 \mathrm{mg} / \mathrm{m}^{2}\). However, Branchiura sowerbyi dominance was replaced by Limnodrilus sp. ( 65.0 percent). A reduction in diversity of fauna after the June sampling resulted in a species diversity of 1.03 , the lowest recorded in 2 years of
study by Dames \& Moore. This reduction in diversity may be the result of a toxic pollutant, such as a pesticide. Saether (1970) noted that oligochaetes are more tolerant of pesticides than chironomids. If pesticides were responsible, the effect was local because the upstream Station E had a normal assemblage of chironomids.

Another factor that may have contributed to the low diversity at Station D is the Missouri River backwater, which deposits a thick layer of ooze in the lower creek. Thick ooze of this nature often becomes anerobic and is a ponr substrate for most benthic macroinvertebrates. Only chironomids and oligochaetes, which feed in the ooze and respire through anal gills exposed to the water, can survive (Brinckhurst, 1973). Also, Station D is subject to constant scouring action which limits invertebrate diversity (Hynes, 1972).

The June 1974 samples at Station E contained 79.0 percent oligochaetes and \(\mathbf{1 9 . 2}\) percent chironomids (Table 2.3.6-1). Density was \(892 / \mathrm{m}^{2}\), with a wet-weight biomass of \(518 \mathrm{mg} / \mathrm{m}^{2}\). Diversity increased from \(: .23\) at Station D to 1.70 at Station E. The greater distance of Staiion \(E\), as noted above, from the confluence of Logan Creek witi the Missouri River probably accounts for the major differences in diversity. Daplicite ( 2.5 -hour sampling periods) drift nets yielded two mayflies and one midge larvae (Table 2.3.6-7). This limited catch reflects the low flows during the June sampling. Random samples in June at Station E revealed the presence of a moderately dense population of mussels, mainly Amblema sp. and Uniomerus sp.. An estimation of their density was \(0.5 / \mathrm{m}^{2}\). Also, a limited number of Palaemonetes kadrakensis green shrimp and immature crayfish was collected in seine hauls.

September grab samples at Station E indicated an oligochaete dominance of 69.8 percent with chironomids contributing 25.6 percent. Population densities were \(868 / \mathrm{m}^{2}\) and biomass was \(946 / \mathrm{m}^{2}\). Species diversity increased from 1.23 in June to 2.39 in September. Station \(E\) seems to be receiving mild organic pollution: both nutrients and fecal coliforms have been reported as moderate to high (Table 2, 3.1-2). The dominance of benthic fauna by oligochaetes and diversities below 2.5 support possibilities of mild pollution. The pollution source could be agricultural runoff (including cattle waste in the creek), septic tank field lines, or a combination of both. Intermittent flow, as noted by Dames \& Moore (1974), could also be a limiting factor.

A summary of the benthic macroinverte, rate species collected in Logan Creek and the Missouri River is presented in Table 2.3.6-8 for the fall 1974 survey, the baseline survey, and the preconstruction survey.

TABLE 2.3.6-1

\section*{BENTHIC MACROINVERTEBRATES COLLECTED FROM THE MISSOURI RIVER AND LOGAN CREEK, JUNE: 1974}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Organism} & \multicolumn{4}{|l|}{Missouri River Sampling Stations} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Logan Creek \\
Sampling \\
Stations
\end{tabular}} \\
\hline & A-2 & B-2 & H-2 & \(\mathrm{C}-2\) & D & I \\
\hline \multicolumn{7}{|l|}{Nernatoda} \\
\hline Unknown sp. & \(p^{a}\) & \(+\) & \(+\) & P & \(E^{\text {b }}\) & E \\
\hline \multicolumn{7}{|l|}{Annelida} \\
\hline \multicolumn{7}{|l|}{Oligochaeta} \\
\hline Dero Sp. & P & \(+\) & \(+\) & P & E & \\
\hline Tubifex sp. & P & + & P & P & E & E \\
\hline Limnodrilus sp. & P & P & P & P & E & E \\
\hline Branchiura sowerbyi & \(+\) & P & \(+\) & + & E & E \\
\hline Lumbriculus sp. & P & \(+\) & + & P & + & + \\
\hline \multicolumn{7}{|l|}{Crustacea} \\
\hline copepoda & + & + & \(+\) & \(+\) & \(+\) & \\
\hline Calanoida & \(p\) & P & \(+\) & \(\mathrm{R}^{\text {c }}\) & \(+\) & \\
\hline Cyclopoid & \(+\) & \(+\) & \(+\) & R & E & E \\
\hline Cladocera & \(+\) & \(+\) & + & F & + & \\
\hline \multicolumn{7}{|l|}{Amphipoda} \\
\hline Crangonyx sp. & \(+\) & + & \(+\) & R & + & + \\
\hline \multicolumn{7}{|l|}{Decapoda} \\
\hline Palaemonetes Kadiakensis & \(+\) & + & \(+\) & + & \(t\) & R \\
\hline Astacidae (immature) & \(+\) & + & + & + & \(+\) & P \\
\hline \multicolumn{7}{|l|}{Diptera} \\
\hline \multicolumn{7}{|l|}{Chironomidae} \\
\hline Ablabesmyia sp. & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & F \\
\hline Chironomus sp. & \(+\) & \(+\) & \(+\) & P, R & E & E \\
\hline Chironomus sp. B & + & R & + & \(+\) & + & + \\
\hline Cryptochironomus sp. & P & + & \(+\) & + & \(+\) & + \\
\hline Tribelos sp. & * & \(+\) & \(+\) & \(+\) & + & E \\
\hline Polypedilum sp. & + & + & + & R & + & + \\
\hline Microtendipes sp. & \(+\) & \(+\) & + & + & \(+\) & E \\
\hline \multicolumn{7}{|l|}{Culicidae} \\
\hline Chaeborus sp. & + & \(+\) & + & R & \(+\) & + \\
\hline \multicolumn{7}{|l|}{Trichoptera} \\
\hline Hydropsyche sp. & + & R & + & R & \(+\) & + \\
\hline Chematopsyche sp. & \(+\) & R & \(+\) & \(+\) & \(+\) & \\
\hline \multicolumn{7}{|l|}{Ephemoptera} \\
\hline Centroptilum sp. & \(+\) & R & + & + & R & + \\
\hline Stenonema sp. & \(+\) & R & \(+\) & R & \(+\) & F \\
\hline Paraleptophlebia sp. & \(+\) & + & + & R & + & + \\
\hline Isonychia sp. & \(+\) & R & \(+\) & + & \(+\) & + \\
\hline Caenis sp. & R & \(+\) & \(+\) & \(+\) & \(+\) & \\
\hline
\end{tabular}
```

TABLE 2.3.6-1 (continued)

```
```

Organism
Odonata

```

```

 Argia sp.
 Anisoptera
 Gomphus sp.
 Macromia sp.
 Mollusca
Amblema sp. + + + + + N
Uniomeras Sp. + + + + + + R
a Ponar grabs
b Ekman grabs
c

```
\[
2-9 \cdot[\cdot \overline{3} \text { द®VL }
\]
Stations
\[
\begin{aligned}
& \text { WET-WEIGHT BENTHIC MACEOINVERTEBRATE BIOMASS AND DENSITIES FOR } \\
& \text { MISSOURI RIVER AND LOGAN CREEK, JUNE } 1974^{a}
\end{aligned}
\]
\[
\begin{gathered}
\text { Nematoda } \\
+101 \\
(19) 1 \\
(43) 2 \\
(21) 1
\end{gathered}
\]
\[
\begin{array}{lcc}
\begin{array}{lr}
\text { Oligochaeta } \\
(1720) & 1919
\end{array} & \text { Crustacea } \\
(912) & 899 & (10) 5 \\
(1159) & 1744 & + \\
(3099) 15136 & + \\
(705) & 280 & + \\
(808) & 262 & +
\end{array}
\]
\[
\begin{aligned}
& \frac{\text { Odonota }}{+} \\
& + \\
& \begin{array}{c}
\text { (10) } 1938 \\
+ \\
+ \\
+
\end{array}
\end{aligned}
\]
\[
\begin{gathered}
\text { Total } \\
\text { Wet-Weight } \\
1939 \\
904 \\
15268 \\
518 \\
262
\end{gathered}
\]
\[
\begin{array}{ccc}
n & N & N \\
1 & 1 & 1 \\
\text { it } & \text { th } & U
\end{array}
\]
\[
0
\]
\[
12
\]

\footnotetext{
\({ }^{a}\) (number of organisms) wet-weight in \(\mathrm{mg} / \mathrm{m}^{2}\)
\[
745 т а м-73 м
\]
}

TABLE 2.3.6-3
BENTHIC MACROINVERTEBRATES COLLECTED FROM THE MISSOURI RIVER AND LOCAN CREEK, SEPTEMBER 1974

\section*{Organism}

Platyhelminthes
Turbellaria
Annelida
Oligochaeta
Branchiura sowerbvi Limnodrilus sp.
Lumbriculus sp.
Crustacea
Amphipoda
Craygonyx sp.
Decapoda
Astacidae (immature)
Palaemonetes kadiakensis
Diptera
Chironomidae
\(\frac{\text { Ablabesmyia }}{\text { Chironomus }} \mathrm{sp}\).
Coelotanypus sp.
Cryptochironomus sp.
Glyptotendipes sp.
Microtendipes sp.
Pentaneurini
Procladias sp.
Polypedilum sp.
Psectrocladius sp.
Pseudochironomus sp.
Tanypodinae
Missouri River
Sampling Stations
\begin{tabular}{llll}
\(\mathrm{A}-2\) & \(\mathrm{~B}-2\) & \(\mathrm{H}-2\) & \(\mathrm{C}-2\)
\end{tabular}

Missouri River Sampling Stations
\(\begin{array}{llll}\mathrm{A}-2 & \underline{B-2} & \underline{H-2} & \underline{C-2}\end{array}\)

Logan Creek \(\frac{\text { Sampling Stations }}{D}\)
\(\mathrm{P}^{\mathrm{a}} \quad \mathrm{R}^{b}\)
\(+\)
\(+\)

P
\begin{tabular}{ll}
P & P \\
P & P \\
\hline
\end{tabular}
\(E^{C}\)
\(+P+P\)
\(+\)
\[
\mathrm{P}
\]
\(+\)
\begin{tabular}{ll}
+ & + \\
+ & +
\end{tabular}
\begin{tabular}{llllll}
+ & \(P\) & + & \(P\) & + & \(F\) \\
+ & \(P\) & \(P\) & \(P\) & + & E \\
+ & \(P\) & P & P & + & + \\
+ & P & + & P & E & E \\
+ & + & + & + & + & E \\
+ & + & + & + & + & E \\
+ & + & P & + & + & + \\
+ & + & \(P\) & P & + & E \\
+ & R & P & + & + & + \\
+ & R & + & + & + & + \\
+ & + & + & + & + & + \\
P & R & + & + & + & +
\end{tabular}



\footnotetext{
Mollusca
Lasmigona
-d
Lasmigona sp.
Coleoptera
Stenelmis
}
Organism
Tanytarsini
Tanytarsus sp.
Culicidae
Chaoborus sp.
Tipulidae
оертиеqед
snueqe.

 . ds эuヵKsdoxpKH Lype sp.
Ephemoptera Centroptilum sp. Hexagenia sp.

Megaloptera
- ds \(\overline{\text { StTETS }}\)
Odonata
- ds \(\overline{\text { snyduos }}\)
Hemiptera
- ds \(\overline{\text { sajaxKs }}\)
.ds \(\overline{\text { eouang }}\)
\(\frac{\text { Organism }}{\frac{\text { Pisidium }}{\text { Shaerium }} \text { (cycloca }}\) (muscvli
a Ponar grab sample
bRandom sample
CEkman Dredge Sample

TABLE \(2 \cdot 3 \cdot 6-4\)
WET-WEIGHT BENTHIC MACROINVERTEBRATE BIOMASS AND DENSITIES
FOR MISSOURI RIVER AND LOGAN CREEK, SEPTEMBER \(1974^{\circ}\)


\footnotetext{
\({ }^{a}\) (number of organisms) wet-weight in \(\mathrm{mg} / \mathrm{m}^{2}\)
}

TABLE \(2 \cdot 3 \cdot 6-5\)

> NUMBER OF BENTHIC MACROINVERTEBRATES COLLECTED IN A METERED LARVAL NET IN THE
> MIESOURI RIVER,
> JUNE 23,1974
\begin{tabular}{|c|c|c|}
\hline Organism & Station B & Station C \\
\hline \multicolumn{3}{|l|}{Crustacea} \\
\hline \multicolumn{3}{|l|}{Amphipoda} \\
\hline Crangonyx sp. & \(+\) & 1 \\
\hline \multicolumn{3}{|l|}{Diptera} \\
\hline \multicolumn{3}{|l|}{Chironomidae} \\
\hline Chironomus sp. & 1 & 1 \\
\hline Chironomus sp. B & 1 & + \\
\hline Polypedilum sp. & + & 1 \\
\hline \multicolumn{3}{|l|}{Culicidae} \\
\hline Chaoborus sp. & + & 1 \\
\hline \multicolumn{3}{|l|}{Trichoptera} \\
\hline Hydropsyche sp. & 1. & 1 \\
\hline Chematopsyche sp. & 1 & + \\
\hline \multicolumn{3}{|l|}{Ephemoptera} \\
\hline Centroptilum sp. & 3 & + \\
\hline Stenonema sp. & 10 & 13 \\
\hline Paraleptophleba sp. & + & 1 \\
\hline Tsonychia sp. & 2 & \(+\) \\
\hline Caenis sp. & 2 & + \\
\hline \multicolumn{3}{|l|}{Odonata} \\
\hline Gomphus sp. & \(+\) & 1 \\
\hline TOTAL & 20 & 20 \\
\hline DENSITY & \(0.0503 / \mathrm{m}^{3}\) & \(0.0568 / \mathrm{m}^{3}\) \\
\hline
\end{tabular}
\[
\text { TABLE } 2 \cdot 3 \cdot 6-6
\]

NUMBER OF BENTHIC MACROINVERTEBRATES COLLECTED IN A METERED LARVAL NET IN THE MISSOURI RIVER JUNE 23 AND SEPTEMBER 8, 1974

Organism
Annelida
Oligocheate
Limnodrilus sp. +
Crustacea
Amphipoda
Crangonyx sp.
Diptera
Chironomidae
\(\frac{\text { Chironomus }}{\text { Chironomus }} \mathrm{sp}\).
Chironomus sp . B Polypedilum sp. Tanypodinae (unknown)
Culicidae
Chaoborus sp.
Trichoptera
Chematopsyche sp. Hydropsyche sp.
Lype sp.
Ephemoptera
Caenis sp.
Caenldae (unknown)
Centroptilum sp.
Hexagenia sp.
Isonychia sp.
Paraleptophleba sp.
Stenonema sp.
Odonata
Gomphus sp.
\(+\)
1
\(+\)
1
\begin{tabular}{l} 
June 23 \\
\hline Station B Station C
\end{tabular}

1
\(\square+\)
+1 + 1

Organism
Hemiptera
Buenoa sp.
Coleoptera
Stenelmis sp.
TOTAL
DENSITY
\begin{tabular}{cr}
\multicolumn{3}{c}{ June 23} \\
\hline Station B & Station C \\
\hline
\end{tabular}
\begin{tabular}{cc}
+ & + \\
+ & + \\
21 & 20 \\
\(0.0527 / \mathrm{m}^{3}\) & \(0.0568 / \mathrm{m}^{3}\)
\end{tabular}

September 8
Station \(\mathrm{B} \quad\) Station C
\(\begin{array}{cc}+ & 1 \\ + & \frac{1}{16} \\ 0.0490 / \mathrm{m}^{3} & 0.0603 / \mathrm{m}^{3}\end{array}\)
\(0.0527 / \mathrm{m}^{3}\)
\(0.0568 / \mathrm{m}^{3}\)
TABLE 2.3.6-7NUMBER OF BENTHIC MACROINVERTEBRATES COLLECTED INDRIFT NETS \({ }^{\text {a }}\) IN LOGAN CREEK,JUNE 22,1974
Organism Station D Station E
Crustacea
Copepoda
Cyclopoid ..... 6 ..... 38
Diptera
Chironomidae
Ablabesmyia sp. ..... 1
Ephemoptera
Stenonema sp.
Centroptilum sp. 1
\(a_{0.135-m^{2}}\) nets
\[
\text { TABLE } 2 \cdot 3 \cdot 6-8
\]
```

BENTHIC MACROINVERTEBRATES COLLECTED FROM THE MISSOURI RIVER AND LOGAN CREEK DURING JULY $(J-3)$, SEPTEMBER $(S-3)$, DECEMBER ($\mathrm{D}-3$) , 1973 , AND FEBRUARY $(\mathrm{F}-4)$, JUNE $(\mathrm{J}-4)$, AND SEPTEMBER $(\mathrm{S}-4), 1974$

```
0. \(\tan\) ism

Pletyhelminthes
Turbellaria
Nematoda
unknown sp.
\begin{tabular}{c}
\multicolumn{1}{c}{ Missouri River } \\
\begin{tabular}{llllll}
\(\mathrm{J}-3\) & \(\underline{\mathrm{~S}-3}\) & \(\underline{\mathrm{D}-3}\) & \(\underline{\mathrm{~F}-4}\) & \(\underline{\mathrm{~J}-4}\) & \(\underline{\mathrm{~S}-4}\)
\end{tabular}
\end{tabular}
\begin{tabular}{cccccc}
\multicolumn{6}{c}{ Logan Creek } \\
\begin{tabular}{lllll}
\(\mathrm{J}-3\) & \(\mathrm{~S}-3\) & \(\mathrm{D}-3\) & \(\mathrm{~F}-4\) & \(\mathrm{~J}-4\) \\
\(\mathrm{~S}-4\)
\end{tabular}
\end{tabular}

\section*{Annelida}

Oligochaeta
Enchytraeidae
unknown sp.
Lumbriculidae
Lumbriculus sp.
unknown sp.
Tubificidae
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Aulodrilus pigneti & & & & & & & & & x & \(x\) & & \\
\hline Branchiura sowerbyi & \(x\) & \(x\) & \(x\) & x & \(\times\) & x & x & x & x & x & x & * \\
\hline Ilyodrilus templetoni & & & & X & & & & & & & & \\
\hline Limmodxilus ceruix & & & X & \(\times\) & & & & & * & X & & \\
\hline L. claparedeanus & & & \(x\) & * & & & & & x & x & & \\
\hline L. hoffmeisteri. & & & x & x & & & & & X & x & & \\
\hline L. Sp. & * & * & \(x\) & \(\times\) & x & \(x\) & x & * & * & \(x\) & x & x \\
\hline L. udekemianus & X & & X & X & & & & & X & X & & \\
\hline Peloscolex sp. & & * & & & & & & & & & & \\
\hline Tubifex sp. & & * & & & X & & & & & & \(\times\) & \\
\hline unknown sp. & * & \(\times\) & x & x & & & x & \(x\) & x & \(x\) & & \\
\hline
\end{tabular}
wn sp.
Na ididae
Aulophorus sp.
Dero digitata
Dero sp.
Nais elinguis
N. sp.
x

X
x
\(x\)

TABLE 2.3.6-8 (continued)
Organism


\footnotetext{
Diptera
hera
Ablabesmyia janta
\(\frac{\text { Ablabesmyia }}{\text { Ablabesmyia }} \frac{\text { janta }}{\text { sp. }}\)
Chiroromus sp.
Conchapelopia sp.
Cricotopus exilis
Cryptochironomus blarina
Cryptochironomus Euluus
\(\frac{\text { Cryptochironomus }}{\text { Cxyptochironomus }} \frac{\text { Epluus }}{\text { sp. }}\)
Dicrotenaives Sp. Wiferus
Glyptotendipes lobiferus
Glyptotendipes senilis
Glyptotendipes sp.
Microtendipes sp.
Orthocladius sp .
Paracladopelma sp.
Paralauterborneilla sp.
Paratendipes sp.
Pentaneurini (unknown)

\(\frac{\text { Polypedilum }}{\text { Polypedilum }} \frac{\text { scalaenum }}{\text { sp }}\)
}

Organism
\(\frac{\text { Procladius }}{\text { Procladius }} \frac{\text { adumbratus }}{\text { ripa ius }}\)
Procladius sp.
Psectrocladius sp.
Pseudochironomus sp.
Rheotanytarsus sp.
Stictochironomus sp.
Tanypodinae
Tanytarsini
Tanytarsus sp.
Tendipedini
Tribelos sp.
Trichocladius sp.
Trissocladius sp.
Zavrelimyia sp.
Culicidae
Chaoborus punctipent is Chaoborus sp.
Ceratopogonidae
Bezzia sp.
Unidentified sp.
Esychodidae
Psychoda sp.
Tipulidae
Tabanidae
Tabanus sp.
Trichoptera
Chematopsyche sp.
Hydropsyche orris
Hydropsyche sp.
Lype sp.
Neureclipsis sp.
Unidentified sp.
Missouri River
\(\overline{J-3} \quad \frac{S-3}{S} \quad \frac{\mathrm{D}-3}{\mathrm{~J}} \quad \underline{\mathrm{~F}-4} \quad \mathrm{~J}-4\)

\(x\)
x
\(x \quad x\)
x
\begin{tabular}{|c|c|c|c|c|c|}
\hline 7-3 & S-3 & D-3 & F-4 & J-4 & S-4 \\
\hline
\end{tabular}
\(x\)
x
\(\times\)
x
\(\times\)
\(x\)
X \(\quad\) x
*
\(x\)
\(x\)
X
X
\(x \quad \mathrm{x}\)

X \(\quad\) 友
\(x \quad x\)
*
x
\(x\)
x

X
x
\(x\)
\(x\)



\section*{Organism}


\footnotetext{
Megaloptera
Sialis sp.
Odonata
\(\frac{\text { Argia sp. }}{\text { Gomphus }} \mathrm{sp}\).
Macromia sp.
Hemiptera
Buenoa sp.
Gyretes sp.
Coleoptera
\(\frac{\text { Dubiraphia }}{\text { Stenelmis }} \mathrm{sp}\).
Megaloptera
\(\frac{\text { Sialis }}{} \mathrm{sp}\).
Odonata
\(\frac{\text { Argia }}{\text { Gomphus }} \mathrm{sp}\).
\(\frac{\text { Macromia }}{} \mathrm{sp}\).
Hemiptera
\(\frac{\text { Buenoa }}{\text { Gyretes }} \mathrm{sp}\).
Coleoptera
\(\frac{\text { Dubiraphia }}{\text { Stenelmis }} \mathrm{sp}\).
Megaloptera
\(\frac{\text { Sialis }}{} \mathrm{sp}\).
Odonata
\(\frac{\text { Argia }}{\text { Gomphus }} \mathrm{sp}\).
\(\frac{\text { Macromia }}{} \mathrm{sp}\).
Hemiptera
\(\frac{\text { Buenoa }}{\text { Gyretes }} \mathrm{sp}\).
Coleoptera
\(\frac{\text { Dubiraphia }}{\text { Stenelmis }} \mathrm{sp}\).
Megaloptera
\(\frac{\text { Sialis }}{} \mathrm{sp}\).
Odonata
\(\frac{\text { Argia }}{\text { Gomphus }} \mathrm{sp}\).
\(\frac{\text { Macromia }}{} \mathrm{sp}\).
Hemiptera
\(\frac{\text { Buenoa }}{\text { Gyretes }} \mathrm{sp}\).
Coleoptera
\(\frac{\text { Dubiraphia }}{\text { Stenelmis }} \mathrm{sp}\).
Megaloptera
\(\frac{\text { Sialis }}{} \mathrm{sp}\).
Odonata
\(\frac{\text { Argia }}{\text { Gomphus }} \mathrm{sp}\).
\(\frac{\text { Macromia }}{} \mathrm{sp}\).
Hemiptera
\(\frac{\text { Buenoa }}{\text { Gyretes }} \mathrm{sp}\).
Coleoptera
\(\frac{\text { Dubiraphia }}{\text { Stenelmis }} \mathrm{sp}\).
Megaloptera
\(\frac{\text { Sialis }}{} \mathrm{sp}\).
Odonata
\(\frac{\text { Argia }}{\text { Gomphus }} \mathrm{sp}\).
\(\frac{\text { Macromia }}{} \mathrm{sp}\).
Hemiptera
\(\frac{\text { Buenoa }}{\text { Gyretes }} \mathrm{sp}\).
Coleoptera
\(\frac{\text { Dubiraphia }}{\text { Stenelmis }} \mathrm{sp}\).
Megaloptera
\(\frac{\text { Sialis }}{} \mathrm{sp}\).
Odonata
\(\frac{\text { Argia }}{\text { Gomphus }} \mathrm{sp}\).
\(\frac{\text { Macromia }}{} \mathrm{sp}\).
Hemiptera
\(\frac{\text { Buenoa }}{\text { Gyretes }} \mathrm{sp}\).
Coleoptera
\(\frac{\text { Dubiraphia }}{\text { Stenelmis }} \mathrm{sp}\).
Megaloptera
\(\frac{\text { Sialis }}{} \mathrm{sp}\).
Odonata
\(\frac{\text { Argia }}{\text { Gomphus }} \mathrm{sp}\).
\(\frac{\text { Macromia }}{} \mathrm{sp}\).
Hemiptera
\(\frac{\text { Buenoa }}{\text { Gyretes }} \mathrm{sp}\).
Coleoptera
\(\frac{\text { Dubiraphia }}{\text { Stenelmis }} \mathrm{sp}\).
Mollusca
Gastropoda
Ferrisia sp .
Pelecypoda
\(\frac{\text { Amblema }}{} \mathrm{sp}\).
\(\frac{\text { Corbicula }}{\text { Lasmigona }} \mathrm{sp}\)
Gastropoda
Ferrisia sp .
Pelecypoda
\(\frac{\text { Amblema }}{} \mathrm{sp}\).
\(\frac{\text { Corbicula }}{\text { Lasmigona }} \mathrm{sp}\)
Uniomeras sp.
Pisidium adamsi
Shaeriidae unknown
Gastropoda
Ferrisia sp .
Pelecypoda
\(\frac{\text { Amblema }}{} \mathrm{sp}\).
\(\frac{\text { Corbicula }}{\text { Lasmigona }} \mathrm{sp}\)
Mollusca
Shaerium partumeium
}
Ephemerella frisoni
Paraleptophle

\subsection*{2.3.7.1 Missouri River}

Pflieger (1971) summarized fish collection data from 1853 to 1969 in Missouri. From these data he produced maps that note collection sites for each species of fish reported from Missouri. A tentative species list for the Callaway Plant site has been constructed from these maps (Table 2.3.7-1). The table includes 34 species known to occur in the Missouri River and 32 species in tributaries of the area. Thus, a total ichthyofauna of 67 species has occurred historically near the site.

None of the Dames 5 Moore collections confirmed the presence of nine species reported by Pflieger (1971). All of these species were minnows, with the exception of the black redhorse (Moxostoma duquesnei). Many minnows species in Missouri are limited to certain parts of the Missouri River. Some, for example, are restricted to the upper and others to the extreme lower parts of the river. Because no collections had previously been made between the Osage and Gasconade Rivers (Pflieger, 1971), where the flow differs significantly, it is logical to assume that the Callaway Plant site might have a slightly different assemblage of minnows than those reported by Pflieger.

The present study consisted of two trips, with 35 species being collected from Missouri River (Table 2.3.7-1). Twelve species collected had not been recorded by Pflieger (1971). However, five had been collected previously by Dames of Moore. Their presence reaffirms Pflieger's classification of these species as wide ranging. The remaining seven species had been reported only from tributaries by Pflieger (1971). Low summer flows probably account for their presence in the river.
During the June sampling period, 13 species of fish were captured in gill and fyke nets set in quiet waters behind dikes and revetments (Table 2.3.7-2). Greatest numbers and diversity were obtained from Transect \(C\), which intersects the river near the mouth of logan Creek. Although there were no clear trends in catch among stations, white crappie, freshwater drum, gar, river carpsucker, and carp were most abundant in the catch. Sport fish such as white crappie, sauger, and northern pike were captured only at Transec: c. Commercially important blue catfish and flathead catfish were captured only at Transect A. Smallmouth buffalo, reported to be the second most abundant fish in commercial catches (Robinson, 1973), were not collected.

Electroshocking was conducted in June along the north and south shoreline for a period of about 4 hours but was largely unsuccessful, as only 11 fish were collected (Table 2.3.7-3). High turbidity and high river currents reduced the effectiveness of the electroshocker. Other workers have encountered similar problems with this type of gear in the Missouri River (Minter, 1972).

The September gill and fyke net collections yielded 15 species (Table 2.3.7-4). Most abundant were freshwater drum, smallmouth buffalo, goldeye, and white crappie. Northern pike, black bullheads, and sauger, all collected in June, were not present in the September collections. However, paddlefish, goldeye, smallmouth buffalo, and white bass were present only in September. Most of the seasonal differences in species composition are from species that are classed as wide-ranging (Pflieger, 1971); therefore, their ephemeral appearance in the catch is not unusual.

To put the present (June and September 1974) fish collections in perspective, a discussion by species is in order. For clarity, they will be discussed by family in phylogenetic order.

The lamprey family (Petronyzonidas) has only one representative in the Missouri River, the chestnut lamprey. Dames o Moore collected five specimens in necember 1973; during the present study, none were collecled. Pflieger (1971) suggests that populations are decreasing because of reduction in spawning areas.

Two of the three species belonging to the sturgeon family (Acipenseridae) in Missouri are considered rare, the lake sturgeon (Acipenser fulvenscens) and pallid sturgeon (Scaphirhynchus albus). Their presence has never been reported at the Callaway plant site. However, the other species, the shovelnose sturgeon (Scaphirhynchus platyrhynchus), occurs at the site (Table 2.3.7-1).

The collection in September 1974 of the single member of the paddlefish family (Polydontidae) confirms the presence of paddlefish in the lower Missouri River (below confluence of the osage River), where they have not been reported previously (Pflieger, 1971).

The gar family (Lepisosteidae) is represented by the longnose (Lepisosteus osseus) and shortnose gar (L. platostomus). Similar to findings of pflieger (1971) and University of Missouri-Rolla (1974), the present study showed that the shortnose gar was more abundant than the longnose gar. This was true in both spring and fall collections.

The eel family (Anguillidae) is represented by the American eel (Anguilla rostrata) in Missouri. Its presence at the Callaway plantsite has not been confirmed by this or previous Dames \& Moore studies. Pflieger (1971) reports collections containing eels at several up-river sites. The catadromous nature of this species predicts its presence, at least seasonally, at the Callaway plant site.

The shad family (Clupeidae) contains the gizzard shad (Dorosoma cepedianum), one of the most abundant fish in the Missouri River. Dames \& Moore collections in 1973-74 confirmed its abundance at the site. Another species, skipjack herring (Alosa chrysochloris), not normally considered a resident of the lower Missouri River, has been collected both in 1973 and 1974 by Dames \& Moore, although it was not collected during the present study. Pflieger (1971)
characterizes the species as inhabiting open waters of large rivers and being intolerant of extreme turbidity. Its presence in the lower Missouri River may indicate a reduction in excessive turbidity.

The present collection contained one species of the mooneye family (Hiodontidae), the more common goldeye (Hiodon alosoides). Previous collections (Dames \& Moore, 1974; University of Missouri-Rolla, 1974) in the area have contained the mooneye (Hiodon tergisus), which is considered rare in Missouri by Pflieger (1971).

The pike family (Esoxidae) was represented by the northern pike (Esox lucius). There is a question as to whether E. lucius has a natural population in Missouri or is present becaus of northern intrusion. Pflieger (1971) states that there is a possibility of a self-sustaining population in the Osage River. This is probably the source of the single specimen collected in June 1974.

The minnow family (Cyprinidae) is more diverse than any other family in the Missouri River. During the present study, 10 species were collected, including the common carp (Cyprinus carpio). It was moderate in abundance and accounted for 10 percent of the June net collection and 8 percent of the September net collection (Table 2.3.7-2 and 2.3.7-4). This species, with its granivorous nature and high fecundity (Berner, 1951), is well suited to the Missouri River.

The other minnows collected corresponded closely to those reported by University of Missouri-Rolla (1974). The emerald shiner, Notropis athernoides, was the most abundant for both spring and fall surveys. Second in abundance for the spring survey was the silver chub, Hybopsis storeriana, and for the fall the western silvery minnow, Hybognathus argyritis (Tables \(2 \cdot 3 \cdot 7-5\) and \(2 \cdot 3 \cdot 7-6\) ). ( H . argyrtis is considered a subspecies of \(\underline{H}\). nuchalis, silvery minnow, by Bailey, et al. [1970].).

The sucker family (Catostomidae) is ecologically well suited to most large river systems. Their use of detritus, an abundant food source, and touch-taste feeding mechanism reduce effects of high turbidities (Hynes, 1972) normally associated with large rivers. At the Callaway Plant site, this family is represented by five species. All three species of the carpsucker genus, Carpiodes, have been collected. The river carpsucker ( \(\mathbf{C}\). carpio) is by far the most prevalent species of this genus in the Missouri River (Pfleiger, 1971). The other two Carpiodes species were collected during the June 1974 survey.

The remaining sucker species, smallmouth and largemouth buffalo, found at the site are both in the same genus (Ictiobus). Pflieget (1971) and University of Missouri-Rolla (1974) both stated that the largemouth buffalo (I. cyprinellus) is the most common buffalo species in the Missouri River. However, at the site the smallmou:h buffalo (I. bubalus) is more common (Union Electric Company, 1974). During the present study, the smallmouth buffalo was the only buffalo species collected.

The catfish family (Ictaluridae) is represented by four species at the site. In order of decreasing abundance, they are as follows: flathead (Pylodictis olivaris), blue catfish (Ictalurus furcatus), channel catfish (I- punctatus), and black bullhead (I. melas). Dominance of blue catfishis higher at the site than previously reported by Pflieger (1971) and University of MissouriRolla (1972, 1974) for the Missouri River; conversations with local fisherman support Dames \& Moore's findings.

The temperate bass family (Percichthyidae) was represented by a single species, the white bass (Morone chrysops). Several authors have indicated that reduction in turbidity could account for appearance of this species.

The sunfish family (Centrarchidae) was better represented in Logan Creek than in the Missouri River. Only one species of sunfish, the bluegill (Lepomis macrochirus), was collected from the river. However, both largemouth and smallmouth bass (Microptrus salmoides, M. dolomieui) were collected in the river. Dames \& Moore's collection of smallmouth bass from the river represents only the third such collection. The remaining sunfish species, white crappie (Pomoxis annualris), was quite abundant behind revetments and at the mouth of Logan Creek. It accounted for 10.2 percent of the fall and 16.2 percent of the spring net catch.

The perch family (Percidae) was represented by the sauger (Stizostedion canadense) and orangethroat darter (Etheostoma spectabile). Several young-of-the-year sauger were collected both in the spring and fall. However, adults were taken only during the spring survey. This indicates low abundance of this species or possible migration of the adults upstream during tie spring.

The drum family (Sciaenidae) was represented at almost every station during both surveys by freshwater drum (Aplodinotus grunniens). This species is also common in commercial catches, being taken by net or seasonally by trotline (Robinson, 1973).

Although the fish fauna of the Missouri River is diverse, standing crops and growth rates are reported by several authors as low (Berner, 1951; Carlander, 1969; Gammon, 1970; and Robinson, 1973). Sammon (1970) attributed low productivity resulting from high turbidity as part of the cause. Berner (1951) states that channelization also lowered productivity by reducing backwater where plankton production occurs.

To aid in assessing production potential, food availability, and general suitability of the aquatic environment, condition factor (K) was calculated for the five most abundant species collected during both sampling periods (Table 2, 3, 7-7). Condition factors for four of the five species were either lower than values reported by Carlander (1969) or as low. [The condition factor for white crappie in the Missouri River is about equal to that attained by this species in rivers of other states, such as in Oklahoma (Houser and Bross, 1963).] This species is able to eat anything from
plankton to small fish. It also is not greatly affected by turbidity or mud bottom. Therefore, it is well suited to backwater arcas of the Missouri River, as its condition factor illustrates.

The other species with a near avorage condition factor was the carp. Berner (1951) indicated cuTp are seed and detritus eaters. The fluctuating water level in tho river results in good seed supply at least part of the year. Gizzard shad and river carpsucker, which have a low condition factor, do not selectively eat seeds and rely mainly on detritus.

Drum condition was lower than that of either white crappie or carp. The drum has a more restricted diet than white crappie. It is not able to use plankton and must generally utilize larger food types such as fish and invertebrates.

An age and growth study was conducted on gizzard shad collected in the Missouri River during the present study. Back calculated lengths ui age (Table 2.3.7-10) are slightly below the median growths reported by Carlander (1968) for Missouri, Illinois, Kentucky, Tennessee, and North Carolina. Because gizzard shad probably are able to directly derive energy, they utilize organic detritus (Baker and Schmitz 1971).
In an effort to assess the food base of the river, seining was conducted along sand bars and in backwater areas. Seine hauls in June 1974 were dominated by shiners (Notropis spp.) and chubs (Hybognathus spp.). Most abundant in all catches was the emerald shiner, reported to be the most abundant minnow in the Missouri River. The spring sample also contained numerous young-of-the-year gizzard shad, white bass, white crappie, sauger, and others. Sauger, gizzard shad, bluntnose minnow, and brook silverside were collected exclusively at night.

September 1974 seine hauls were also dominated by both adult and juvenile shiners and chubs. The western silvery minnow (Hybognathus argyntis) appeared for the first time. In addition, juveniles of several species were collected, including river carpsucker, channel catfish, largemouth bass, white bass, and sauger. Berner's (1951) seine collections contained fewer minnows and were dominated by Hybognathus spp. and Hybopsis spp.

For both fall and spring periode, approximately 300 fish were collected per \(15-\mathrm{m}\) haul of a \(7.5-\mathrm{m}\) minnow seine. This abundant population can be explained by the food habits of the collected species. They are able to utilize particulate organic matter (detritus), which is the major energy source for the river's aquatic organisms.

Larval fish data were collected during both spring and fall surveys; a metered net was used for sampling. These data serve a two-fold purpose. First, they indicate spawning use of the Missouri River and, secondly, they document the presence of possible entrainable fauna.

Results of the larval fish sampling, conducted in the spring (June 23), showed that larvae of several species were suspended in the water column and that reproduction had occurred only a short time earlier (Table 2.3.7-8). Some egg-sac larvae were less than 4 mm long. Densities of fish larvae and eqas were calculated to be \(0.201 / \mathrm{m}^{3}\) at Transect \(B\) and \(0.270 / \mathrm{m}^{3}\) at Transect \(C\). The difference in densities probably reflects contributions from Iogan creek and associated backwaters at Transect C. Fish eggs were collected only at Transect \(C\).

In the fall (Suptember 5), no larval fish were collected at Transect \(B\), but two carp about 20 mm long were taken at Transect \(C\). They represent a density of \(0.005 / \mathrm{m}^{3}\).

\subsection*{2.3.7.2 Logan Creek}

Logan Crfek does not support the same species diversity as other tributaries in the area. Dames \& Moore, in four collecting periods, reported 26 species from two stations, whereas Pflieger (1971) found a more diverse ichthyofaunc in tributaries adjacent to the Callaway Plant site. He irdicated the 32 species occur only in these tributaries. The creek's small size may account for its moderately low diversity. One of the environmental factors limiting Logan Creek diversity is its periodically low flow. During low flow periods, pools are formed where water temperatures and dissolved oxygen can become limiting to fish survival. Rapid water level change is another stress factor. The short and narrow drainage basin reduces seepage and increases volume and speed of runoff. Station D on Logan Creek suffers from additional stress of heavy silt deposits ( 50 to 80 \(\mathrm{cm})\). This silt is deposited by flood waters of the river. Because of the low gradient and current at Station \(D\), these deposits are removed quite slowly.

Seining at Station D in June 1974 yielded a total of 10 species of fish (Table 2.3.7-5). Five of these (Shortnose gar, gizzard shad, emerald shiner, smallmouth bass, and freshwater drum) were age 0 juveniles and three (channel zatfish, bluegill, and white crappie) were probably age 1 juveniles. Juvenile smallmouth are of interest because they have not been previously collected in the creek, though local fisherman catch adults. Adult smallmouth bass have also been collected from the river near Hermann, Missouri (Minter, 1972).

In September 1974 the number of species collected by seining at Station \(D\) increased from 10 to 17 (Table 2.3.7-9). Intrusion of river species into the creek accounted for most of the increase. Warmouth (Lepomis gulosus), one of the river species collected, has never been reported in collections from lower Missouri tributaries (Pflieger, 1971).

Sampling was conducted at Station E on May 30 and June 22, 1974. The May sampling yielded seven species, mainly bluegills and green sunfish (Table \(2 \cdot 3 \cdot 7-5\) ). Green sunfish were absent in June when

13 fish species were collected. In all, 16 species were collected at Station E in the spring of 1974.

Standing crop biomass estimates were made at Station \(E\) on both May 30 th and June 22 nd. During the May sampling, a 30 -meter bection of the cret vas blocked off with minnow seines and sampled with a backpack D. C. electroshocker until the catch per unit effort was reduced sufficiently to allow a population estimate. The same procedure was used in June, with the exception that a 14.1 -meter section of the stream was sampled with a minnow seine. A total of 60 fish were collected from the blocked-off area on May 30th. Regression of catch per unit effort on cumulative catch resuited in an X-intercept of 68 fish. Total biomass, extrapolated from the catch, is estimated at \(2,469 \mathrm{~g}\), or \(24.18 \mathrm{~kg} / \mathrm{ha}\). Standing crop biomass, estimated from the regression obtained from 28 fish collected on June 22 nd , was \(9.265 \mathrm{~kg} / \mathrm{ha}\). The difference in the two estimates is due primarily to the large number of green sunfish present in the May sample. The June sample contained fewer sunfish and a greater diversity of smaller fish, such as minnows and gizzard shad.

On September 6th, 1974, an 18 -meter section at Station E was blocked and seined. A biomass estimate of \(4.342 \mathrm{~kg} / \mathrm{ha}\) was calcuiated from the X -intercept of 68 fish . The presence of numerous juvenile fish in the sample accounted for the increase in fish numbers without a corresponding biomass increase.

Biomass at Station D was estimated by use of a beach haul seine. One-half of the seinewas strung out directly across to the opposite bank. The other end was played out along the near bank. Then the near bank side of the net was seined across so as to encircle a given area. Two seine hauls sampled an area equal to about \(360 \mathrm{~m}^{2}\). Estimated biomass was \(9.678 \mathrm{~kg} / \mathrm{ha}\), which almost equals the biomass of the second sampling period at Station E.

The growth rates for bluegill collected from Logan Creek during the present study are very low (Table 2.3.7-10). For example, back calculated length at age are slightly above the lowest reported for Oklahoma during the period 1952 to 1963 (Houser and Bross, 1963).

In general, the number of species and standing crop at Station \(E\) is lawer that at Station D. Widerranging river species frequent Station \(D\) and account for most of the difference.

\section*{Summary}

In summary, the water quality of the Missouri River is influenced primarily by surface drainage from undisturbed and cultivated lands, high discharge rates, and industrial and municipal pollution. Variation in most wacer quality parameters measured during the present, as well as earlier, studies was a function of discharge rate and the presence of suspended solids. Coliform bacteria counts increased during periods of high runoff and often exceeded
state standards. Chronic pesticide contamination does not exist, though zhlorinated pesticides have been detected in spring water samples. Copper concentration, earlier suggested as a possible aquatic +nvicant (Union Electric Company, 1974), was Jound to be associated more with the concertration of suspended particulate matter than with total dissolved solids. Therefore, toxicity of copper to most aquatic organisms is not likely. Cadmium, however, is probably a component of the total dissolved solids.

Data from the present study support the contention that water quality is higher in Logan Creek than in the Missouri Piver. Dissolved solids, suspended solids, turbidity and coliform bacteria levels are generally lower in the creek than in the river. Dissolved oxygen is generally higher in the creek than in the river, though Station D in Logan Creek may, because of its close proximity to the river, have dissolved oxygen levels more characteristic of the river than the creek. Diurnal depletion of dissolved oxygen may occur in the lower reaches of the creek due to respiration of organically enriched bottom muds.

Low phytoplankton and zooplankton densities generally found in the river are related to excessive turbidities and lack of adjoining lentic waters. However, in the present study, seasonal fluctuations, density, and productivity of phytoplankton were unusually great. Phytoplankton densities in September were over 100 times greater than those in June and as much as 8 times greatel than the highest densities reported for the lower Missouri River. Primary productiv-ty in September, as measured by uptake of \({ }^{14} \mathrm{C}\), was also moderately high, indicating that active photosynthesis was occurring. During the summer, river discharge rates dropped below \(44,000 \mathrm{cfs}\), thus reducing turbidity and creating quiet water areas behind revetments. Prior to the September study, discharge increased from 44,000 to 89,000 cfs. Apparently, this water level increase flooded the revetments and washed phytoplankton into the river channel, thus producing the high densities observed in September. Turbidity, which was still moderately \(10 \%\), permitt i photosynthesis to continue both in the river channel and behind revetments.

Phytoplankton densities in Logan Creek during the September study were also high, though lower than Missouri River densities. Primary productivity, however, was low at both sampling stations. It appears that the presence of large numbers of dead diatom frustrules accounted for high densities and low productivity measured in the study, though other factors, such as nutrient depletion, may be responsible for this anomaly.

Variation in benthic macroinvertebrate density, diversity, and biomass was found to be a function of river discharge and unstable substrate. High spring water levels plus the normal emergence of mayflies and chironomids resultea in low diversivies and densities and the predominance of oligochaete worms in the June river samples. September samples contained a more diverse
and dense assemblage of macroinvertebrates as a result of improved water quality, lower predation, and normal life cycle patterns.

Macroinvertebrate drift samples taken in the river yielded a species composition different from that found in the bottom grab samples. The source for many of the drift organisms may be channel modification structures such as dikes and revetments. Samples of rocks and logs taken from a revetment revealed the presence of species not associated with other bottom substrata. Caddis flies, chironomids, flat worms, amphipods, mayflies, and oligochaete worms were present in densities greater than \(48,000 / \mathrm{m}^{2}\).

Logan Creek benthic macroinvertebrates are similar in species composition to those in the Missouri River but usually have higt.er densities, biomass, and diversitv. Seasonal variation in benthic macroinvertebrate diversity, biomass, and density was similar to that observed in the river and was largely influenced by the same physical and biological factors. Variation between stations is primarily related to differences in water quality and substrate. Low diversity observed previously at Station D was also noted in the present study and was the lowest recorded in 2 years of study. The most important factors affecting benthic invertebrates in the lower creek arc those related to flooding and silt deposit by the river, though pesticide contamination may also play a role.

During the present study, 35 species of fish were collected in the Missouri River. Seven of these species had not been collected in the area previously but are reported as tributary species. Freshwater drum, white crappie, and river carpsucker were constantly abundant in all collections. Seasonal variation in catch was due largely to the appearance of wide-ranging species. Seine collections on sand bars and backwater areas were dominated by the emerald shiner. Numerous juvenile fish were collected, including gizzard shad, white bass, white crappie, sauger, freshwater drum, largemouth bass, and others.

Results of the larval fish sampling in June indicate that larvae of at least eight species were suspended in the water column. Densities of fish larvae and eggs were estimated at \(0.261 / \mathrm{m}^{3}\). at Transect C, suggesting that Logan Creek and associated backwaters at Transect \(C\) contributed to the catch. The September sampling yielded only two larval carp.

Seining and electroshocking in Logan Creek yielded a total of 26 species, including 12 species of juveniles. The eight species of juveniles present in the creek in May and June were mostly river species. A greater number of mintows and sunfish made up the nine species of juvenile fish present in September.

Stanling crop biomass estimates from oollections made at Station E in May, June, and September are \(24.18 \mathrm{~kg} / \mathrm{ha}, 9.265 \mathrm{~kg} / \mathrm{ha}\), and \(4.342 \mathrm{~kg} / \mathrm{hd}\), respectively. Biomass from collections at Station D in September is estimated at \(9.678 \mathrm{~kg} / \mathrm{ha}\). The appearance of wide-ranging river species at Station \(D\) accounts for the observed difference in biomass in September.

Condition factors of the five most al wdant fish species collected in the Misscuri River were calculated. Condition factors for carp and white crappie were about average when compared to those from other states. Gizzard shad, ri rer carpsucker, and freshwater drum exhibited below-average condition factors.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Common Name} & \multicolumn{4}{|l|}{Missouri River} & \multicolumn{2}{|l|}{Logan Creek} \\
\hline & 1853-1969 & \(1972^{\text {b }}\) & \(1973^{\text {C }}\) & \(1974{ }^{\text {d }}\) & \(\underline{1973-74}{ }^{\text {e }}\) & \(\underline{1974}\) \\
\hline Sicklefin chub & R & & & & & \\
\hline Sucketmouth minnow & R & & & & & \\
\hline Emeraid shiner & R & \(x\) & X & X & & \(x\) \\
\hline Rosyface shiner & T & & & & & \\
\hline Redfin shiner & R & & x & \(x\) & * & x \\
\hline Silverband shiner & R & & & & & \\
\hline Bleeding shiner & T & & & & & \\
\hline Common shiner & T & & & & & \\
\hline Bigeye shiner & T & & & & & \\
\hline Red shiner & R & & & x & x & * \\
\hline Sand shiner & R & & & x & x & \(\times\) \\
\hline Topeka shinex & \% & & & & & \\
\hline Blacknose shiner & ' \({ }^{\text {T }}\) & & & & & \\
\hline Mimic shiner & R & \(x\) & & & & \\
\hline Ghost shinex & R & & & & & \\
\hline Ozark minnow & T & & & & & \\
\hline Southern redbelly dace & T & & & & \(x\) & \\
\hline Western silvery minnow & T & & & \(x\) & & \\
\hline Plains minnow & R & * & & & & \\
\hline Bluntnose minnow & T & & & x & \(x\) & \(x\) \\
\hline Flathead minnow & T & & & & & \\
\hline Stonerollet & T & & & \(x\) & \(\mathbf{x}\) & x \\
\hline River carpsucker & R & * & \(x\) & \(x\) & X & x \\
\hline Quillback & R & & * & x & \(x\) & x \\
\hline High-finned carpsucker & & & x & x & & \\
\hline White sucker & R & & * & & & \\
\hline Longnose sucker & & & 8 & & & \\
\hline
\end{tabular}
Family

\section*{Species}
Cyprinidae (continued)
mybopsis meeki
Phenacobius mirabilis Notropis
Notropis \(\frac{\text { atherinoides }}{\text { rubellus }}\)
Notropis umbratilis
\(\frac{\text { Notropis }}{\text { Notropis }}\) shumardi
Notropis zonatus Notropis cornutus
Notropis boops
Notropis Iutrensis

Notropfs heterolepis
Notropis volucellus
Notropas buchanani

 Hybognathus placitus
Pimephales notatus
 Campostoma anomalum
\(\frac{\text { Carpiodes }}{\text { Carpiodes }} \frac{\text { carpio }}{\text { cyprinus }}\)
Carpiodes velifer

Catostomidae

Family
Species

Catostomidae (continued)
Hypentilium nigricans
Ictiobus cyprinellus
Ictiobus bubalus
Moxostoma duquesnei
Moxostoma exythrurum
Moxostoma macrolepidotum
Ittaluridae
\(\frac{\frac{\text { Ictalurus }}{\text { Ictalurus }} \frac{\text { furcatus }}{\text { melas }}}{\frac{\text { Ictalurus }}{\text { Ictalurus }} \frac{\frac{\text { natalis }}{\text { nebulosus }}}{\text { Ictalurus }}}\)\begin{tabular}{l} 
punctatus \\
Plyodictis olivaris
\end{tabular}

Noturus exilis
Cyprinodontidae
Fundulus catenatus
Fundulus olivaceus
Fundulus notatus
Poeciliidae
Gambusia affinis
Atherinidae
labidesthes sicculus
Percichthyidae
Morone chrysops

Common Name

Northern hog sucker Largemouth buffalo Smallmouth buffalo
Black rediorse
Golden redhorse
Northern redhorse

Blue catfish
Black bullhead
Yellow bullhead
Brown bullhead
Channel catfish
plathead catfish
Slender madtom

Northern studfish
Blackspotted topminnow
Blackstripe topminnow

Mosquitofish
T

Brook silverside

White bass

Collection Dates
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Missouri River} & \multicolumn{2}{|l|}{Logan Creek} \\
\hline 1853-1969 \({ }^{\text {a }}\) & \(1972^{\text {b }}\) & \(1973{ }^{\text {c }}\) & \(1974{ }^{\text {d }}\) & \(1973-74^{\text {e }}\) & \(1974{ }^{\text {f }}\) \\
\hline
\end{tabular}
x
\(x \quad \mathrm{x}\) x
\(x\)
\(\times\)
T

R
T
T
\(R\)
R
T

T
T
T
x
\(x\)
x
x
x
\(\times \begin{aligned} & x \\ & x \\ & x\end{aligned}\)

\section*{Family}

\section*{- 5pecies}

Centrarchidae
Micropterus \(\frac{\text { dolomieui }}{\text { Micropterus }} \frac{\text { salmoides }}{\text { Lepomis gulosus }}\)
Lepomis cyanellus
Lepomis humilus
Lepomis megalotis
Lepomis macrochirus
Pomoxis annularic

Percidae
Stizosteidon
Percina phoxocephala
Percina
Etheostoma \(\frac{\text { nigrum }}{\text { Etheostoma }} \frac{\text { spectabile }}{\text { Elabellare }}\)
Etheostoma
Etheostoma punctulatum
Etheostoma exile

Sciaenidae
Aplodinotus grunniens

Common Name

Smallmouth bass
Largemouth bass

\section*{Warmouth}

Green sunfish
Orangespotted sunfish
Longear sunfish
Bluegill
White cxappie

Sauger
R

Logperch T
Johnny dartex T
Orangethroat darter T
Fantail darter T
Stippled daxter
T
Iowa darter

Preshwater drum

T
T
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Missouri River} & \multicolumn{2}{|l|}{Logan Creek} \\
\hline \(1853-1969{ }^{\text {a }}\) & \(1972^{\text {b }}\) & \(1973^{\text {e }}\) & \(1974{ }^{\text {d }}\) & \(1973-74^{e}\) & 1974 \\
\hline
\end{tabular}
T
x
\(x\)
\begin{tabular}{ll}
\(x\) \\
\(x\) & \(x\) \\
\(x\)
\end{tabular}
\(\mathrm{x} \quad \mathrm{x} \quad\)\begin{tabular}{c}
x \\
x
\end{tabular}
\(\mathrm{R} \times \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x}\)
\begin{tabular}{llllll}
\(R\) \\
\(R\) & \(x\) & \(x\) & \(x\) & \(x\) & \(x\) \\
\(x\) & \(x\) & \(x\) & \(x\) & \(x\)
\end{tabular}
\(x \quad x\)
\(x\)
x
\(x\)
-
x
x
a River (R) and tributary (T) collections reported by Pflieger (1971). \(_{\text {( }}\).
\({ }^{6}\) Collected from one station at Hermann. Missouri (Missouri River Environmental Inventory, 1972). An unidentified Notropis species was also collected near Hermann, but has not been included in the table.
\({ }^{c}\) Collected from five stations near the site area by Dames \& Moore, July, September, and December, 1973.
\(\mathrm{d}_{\text {collected }}\) from six stations by Domes \& Moore, June, 1974.

\({ }^{\mathrm{E}}\) Collected from two stations by Dames \& Moore, June and September, 1974.
Goberved during the survey, but not collected.

TOTAL NUMBER AND LENGTH RANGE OF FISFES COLLECTED WITH GILL AND EYKE NETS FROM THE MISSOURI RIVER, JUNE \(1974^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Common Name} & \multicolumn{2}{|l|}{Station A-North End} & \multicolumn{2}{|l|}{Station A-South End} & \multicolumn{2}{|l|}{Station B-South End} & \multirow[t]{2}{*}{\[
\frac{\text { station }}{\text { Number }}
\]} & B-North End \\
\hline & Number & Length & Number & Length & Number & Length & & Length \\
\hline Shovelnose sturgeon & \(+\) & \(+\) & 2 & \(430(467) 490\) & 4 & 7 & \(+\) & \(+\) \\
\hline Longnose gar & \(+\) & \(+\) & 1 & 615 & \(+\) & \(+\) & 1 & 605 \\
\hline Shoztnose gar & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline Gizzard shad & \(+\) & 4 & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline Northern pike & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline Carp & \(+\) & \(+\) & 2 & \(300(385) 470\) & \(+\) & \(+\) & 2 & \(248(337) 425\) \\
\hline River carpsucker & \(+\) & \(+\) & \(+\) & \(+\) & 1 & 377 & \(+\) & \(+\) \\
\hline Blue catfish & 1 & 210 & 1 & 805 & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline Black bullhead & 1 & 200 & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline Flathead catfish & \(+\) & 4 & 1 & 705 & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline White crappie & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline Sauger & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline Freshwater drum & \(+\) & \(+\) & 4 & \(+\) & \(+\) & \(+\) & 3 & \(225(267) 309\) \\
\hline
\end{tabular}

Common Name

Shovelnose sturgeon
Longnose gar
Shortnose gar
Gizzard shad
Northern pike Carp
River carpsucker
Blue catfish
Black bullhead
Flathead catfish
White crappie
Sauger
Freshwater d zum
\(\frac{\text { Station H-South End }}{\text { Number }}\)
Station C -North End
Number
\(\frac{\text { Station C-South End }}{\text { Number }}\)

\footnotetext{
\({ }^{a}\) Total length range ( mm ) with mean length in parentheses.
}

TOTAL NUMBER AND LENGTH RANGE OF FISHES COLLECTED WITH A BOOM ELECTROSHOCKER IN THE MISSOURI RIVER, JUNE \(1974^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Common Name & Station Number & B-North End Length & Station Number & C-North End Length \\
\hline Shortnose gar & 2 & \(490 ; 517\) & 3 & \(565(582) 618\) \\
\hline Gizzard shad & + & + & 2 & 210; 214 \\
\hline Carp & \(+\) & + & 1 & 432 \\
\hline White crappie & + & + & 1 & 185 \\
\hline Freshwater drum & 4 & + & 2 & \(231 ; 234\) \\
\hline
\end{tabular}

\footnotetext{
a Total length range (mm) with mean length in parentheses.
}
\[
\text { \#ABLER } \quad 2,3,7-4
\]
TONAL, NUMBER NND LENGTH RANGE OF FISHES COLLECTED WITH GILL AND EYKE NETS FROM THE MISSOURI RIVER, SEPTEMBEP \(1974^{3}\)

\(\frac{\text { B-North Ena }}{\text { iength }}\)
+
910
\(550(553) 555\)
\(415(508) 649\)
\(320(342) 374\)
259
\(320(397) 450\)
\(391(405) 415\)
340
+
540
+
\(66(79) 90\)
＂panzasqo 7os．


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ＊ & ＋ & ＋ & ＋ & Lz（sz）zz & ＊ & \(+\) & ＋ & OE（62） 22 & t & ＋ & ＋ & unap затөмysaxia \\
\hline ＊ & ＋ & ＋ & ＋ & ＋ & ＋ & 45 & 1 & \(+\) & ＊ & 16（19） t \％ & 2 & a \({ }^{\text {abnes }}\) \\
\hline ＋ & ＋ & ＋ & ta & 2z & 1 & ＋ & ＋ & ＋ & ＋ & ＋ & ＋ &  \\
\hline ＋ & ＋ & ＊L才（891）\({ }^{\text {¢ }}\) & \(\varepsilon\) & 271（000 18 & 2 & ＋ & ＊ & ¢3（2て）81 & \(z\) & ＋ & ＋ & a̧ddex3 ว7รั\％ \\
\hline ＊ & ＋ & ¢E & I & 日S（Ep） 12 & 5 & ＋ & ＋ & 6E & T & \(+\) & ＋ & sseq yวncultwag \\
\hline ＊ & \(\pm\) & 86 & t & ＋ & ＋ & ＋ & ＋ & ＋ & ＋ & ＋ & ＋ & praqĂ4 4ş̦uns \\
\hline S21（917） 76 & 28 & をET（605）8L & t2 & 95 & 1 & ＋ & ＋ & ＋ & ＋ & ＋ & ＋ & Itsbeny \\
\hline 271（201）36 & E & 6ZTfE0T） 19 & 52 & \(+\) & ＋ & ＋ & ＋ & ＋ & \(\pm\) & ＋ & \(\pm\) & पstjuns reatuen \\
\hline QLTEET）T9 & 97 & ＋ & ＋ & ＋ & ＋ & \(+\) & ＋ & \(+\) & ＊ & ＋ & \(\pm\) & yetjuns uaars \\
\hline ＋ & ＋ & ＋ & ＊ & ＊ & ＋ & 92 （2） 67 & \(z\) & 58（2Z）85 & ET & とこ & I & sseeq a7trm \\
\hline ＊ & ＋ & ＋ & ＋ & ＋ & ＊ & ＋ & ＋ & t & ＋ & ¢2（22）日1 & E & 9ptstantto xocau \\
\hline ＋ & ＊ & IE & I & OE & T & \(+\) & ＋ & ＋ & ＋ & ＋ & ＋ & पsizearnhsow \\
\hline Sctog）โร & 6 & \(59(65) 05\) & \＄ & ＊ & ， & ＋ & ＋ & ＋ & ＋ & ＋ & ＊ &  \\
\hline 56 & I & ＋ & ＊ & \(+\) & ＋ & ＋ & ＋ & ＋ & ＋ & ＋ & ＋ & peauting xaers \\
\hline ＋ & ＋ & ＋ & ＋ & LET（86）58 & 5 & \(\pm\) & ＋ & ＋ & ＋ & ＋ & \(\pm\) & 4ड537es faumeyo \\
\hline ＋ & \(+\) & Laz & £ & ＋ & ＋ & \(92(E 己) 02\) & \(9^{2}\) &  & \(q^{2}\) & ＊ & ＋ & ofvjang 49nowifeus \\
\hline ＊ & ＊ & TST（SDI）6ET & z & \(+\) & ＋ & ＋ & ＋ & ＋ & ＊ & ＋ & ＋ & संख्याIIn \\
\hline ＊ & ， & 2ヲ（Ľ）ST & 93 & ＋ & ＋ & ＋ & ＋ & \(\pm\) & ＋ & ac（zz） & 12 & моywtu asourunty \\
\hline ＋ & ＋ & T9（85）ts & 5 & ＋ & ＋ & ＊ & \(+\) & ＋ & ＋ & ＋ & ＋ & xaurus uदiptid \\
\hline ＊ & ＋ & OL & I & ＋ & \(\pm\) & ＋ & ＋ & ＊ & ＋ & ＋ & ＋ & xamy a P \\
\hline 19 & 1 & 39 （0） 198 & El & LZ（cz）Ez & D & L2（I2） 61 & \(\angle\) & OE（zz） & B98 & 09（0E）61 & 96 & daufys piexaus \\
\hline ＋ & ＋ & ＋ & ＊ & ＋ & ＋ & ＋ & ＋ & VE（5\％） 87 & 90 & ＋ & ＋ &  \\
\hline ＋ & ＋ & ＋ & ＋ & ＋ & ＊ & \(+\) & ＋ & － & ＋ & 56 & 1 & qпys pexy\％ey \\
\hline ＊ & ＊ & \(\pm\) & ＋ & ＊ & ＊ & ＋ & ＋ & 09－9p & \(z\) &  & bit & xalfoxaucas \\
\hline \＃\％ & 1 & ことE（9日I）TET & 6 & CP（be） 68 & \(z\) & 42 & t & \(59(0 \varepsilon) z z\) & ET & OF（LZ）tz & 81 & peys preazts \\
\hline ＋ & ＋ & ＋ & ＋ & ＋ & ＋ & ＊ & \(\pm\) & SE（8Z） 91 & L & ＋ & ＋ & EuFasay yगefatys \\
\hline \(\pm\) & ＋ & ＋ & ＊ & 65 & T & ＋ & ＋ & ＋ & \(\stackrel{ }{*}\) & \(+\) & ＋ & xeb asoufious \\
\hline ＋ & ＋ & ＊ & ＊ & ＋ & ＊ & ＋ & ＊ & LS & \(\tau\) & ＋ & ＋ & T2E \({ }^{\text {ascoubtac }}\) \\
\hline  & Tagum & पुที้ว & Jaqum & 475यन7 & 1açun & प7大पना & \(\overline{\text { İquin }}\) & प7 हuar & 72Gumin & प7 हूaन & raquinN & Dwen अowno \\
\hline OE \(R\) & & 22 au & \[
\bar{m} \mathrm{C}
\] & 22 a & \[
\mathrm{unf}
\] & 22 a & unf & \[
\varepsilon z
\] & aunf & \[
22
\] & \[
\overline{m p}
\] & \\
\hline a प\％I & vas & 9 पот7 & e7s & a wot & 7e7s & H trot & ＋875 & प7nos－g & uoz7e7s & a \(40 \%\) & E7S & \\
\hline
\end{tabular}


TABLE 2.3.7-6
TOTAL NUMBER AND LENGTH RANGE OF EISHES COLLECTED WITH SEINES IN MISSOURI RIVER
SEPTEMBER 5, 1974
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Common Name} & \multicolumn{2}{|c|}{Station B} & \multicolumn{2}{|l|}{Station B-South} & \multicolumn{2}{|c|}{Station H} \\
\hline & Number & Length & Number & Length & Number & Length \\
\hline Skipjack herring & 1 & 75 & \(+\) & 4 & \(+\) & \(+\) \\
\hline Gizzard shad & 3 & \(66(71) 80\) & 11 & 71 (145) 278 & 24 & \(33(10:) 275\) \\
\hline Flathead chub & 2 & \(42(58) 73\) & \(+\) & \(+\) & \(+\) & + \\
\hline Silver chub & \(+\) & \(+\) & 15 & \(28(45) 62\) & 3 & 61 (65) 70 \\
\hline Emerald shiner & 77 & \(7(43) 72\) & 330 & \(24(36) 42\) & 88 & 23 (45)64 \\
\hline Red shiner & \(+\) & + & 41 & \(28(40) 47\) & \(+\) & \(+\) \\
\hline Silvery minnow & 22 & 27 (48)80 & \(+\) & \(+\) & + & + \\
\hline Bluntnose minnow & + & \(+\) & 8 & \(28(45) 62\) & \(+\) & + \\
\hline River carpsucker & 32 & \(45(59) 67\) & 8 & \(45(48) 51\) & 3 & \(30(32) 33\) \\
\hline Channel catfish & 3 & 57(59)62 & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline Mosquitofish & + & \(+\) & 2 & \(25(26) 26\) & \(+\) & \(+\) \\
\hline White bass & \(+\) & + & 1 & 65 & 2 & \(95(100) 104\) \\
\hline Eluegill & 1 & 43 & 6 & 25 (36) 48 & 2 & \(20(24) 28\) \\
\hline Largemouth bass & \(+\) & \(+\) & 4 & \(25(36) 48\) & + & + \\
\hline White crappie & \(+\) & \(+\) & + & \(+\) & 4 & \(56(71) 100\) \\
\hline Orangethroat darter & \(+\) & + & \(+\) & + & 2 & \(30(31) 31\) \\
\hline Sauger & + & \(+\) & \(+\) & + & 1 & 72 \\
\hline Freshwater drum & 2 & \(88(99) 109\) & + & + & + & \(+\) \\
\hline
\end{tabular}

TABLE 2.3.7-7

\section*{CONDITION FACTOR AND LENGTH-WEIGHT REGRESSIONS FOR FIVE SPECIES OF MISSOURI RIVER FISH COLLECTED, JUNE AND SEPTEMBER 1974}
\begin{tabular}{llll} 
Species & Condition Factor & & length-weight Regressions \\
Gizzard shad (male) & (19) & & 0.929
\end{tabular}

\footnotetext{
Number of specimens used for calculation.
}
\[
\text { TABLE } 2 \cdot 3 \cdot 7-8
\]
LARVAL FISH COLLECTED WITH A METERED TOW NET FROM THE MISSOURI RIVER,
Transect B
\[
\text { TABLE } 2 \cdot 3 \cdot 7-9
\]

TABLE 2.3.7-10

MEAN BACK-CALCULATED TOTAL LENGTH (mm) AT END OF EACH YEAR OF LIFE OF BLUEGILL AND GIZZARD SHAD COLLECTED IN 1974

Bluegill
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Number & \multicolumn{4}{|c|}{Age} \\
\hline Class & of Fish & 1 & 2 & 3 & 4 \\
\hline 1973 & 4 & 84 & & & \\
\hline 1972 & 31 & 63 & 91 & & \\
\hline 1971 & 9 & 62 & 95 & 111 & \\
\hline 1970 & 5 & 55 & 85 & 122 & 137 \\
\hline mean & & 66 & 90 & 116 & 137 \\
\hline mean & & 66 & 30 & 26 & 21 \\
\hline
\end{tabular}

Gizzard Shad
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Number & \multicolumn{4}{|c|}{Age} \\
\hline Class & of fish & 1 & \(\underline{2}\) & 3 & 4 \\
\hline 1973 & 6 & 126 & & & \\
\hline 1972 & 10 & 148 & 218 & & \\
\hline 1971 & 25 & 142 & 208 & 260 & \\
\hline 1970 & 1 & 104 & 170 & 268 & 317 \\
\hline mean length & & 130 & 199 & 264 & 317 \\
\hline mean increment & & 130 & 68 & 75 & 53 \\
\hline
\end{tabular}

\subsection*{2.4 ECOLOGICAL SUMMARY}

Abundance and diversity of aquatic biota near the Callaway Plant site have been characterized as limited by excessive turbidity, high discharge rates, and lack of quiet backwater area. The following discussion highlights some of the more important features of the aquatic ecosystem as they are related to these limiting factors.

Low primary productivity in the Missouri River has resulted from heavy silt loads, which reduce the amount of light available for photosynthesis by planktunic and periphytic algae. Because primary productivity is low, the major source of t.argy available to the aquatic community is from terrestrial plant and animal materials in the watershed. This energy source, available directly to both invertebrates (zooplankton, benthic invertebrates) and to vertebrates (fish) can result in short food chains. For example, several of the minnows that provide forage to other fishes can utilize organic detritus directly. Bottom feeders such as the carp probably derive a portion of their energy from detritus.

The single most important feature of the lower Missouri River near the site is its physical nature, resulting from channelization. The channel modification structure blocks side channels and backwater areas and increases the flow. Nearly every aspect of the aquatic ecosystem is subsequently affected. Quiet backwaters, important as plankton-producing areas, spawning sites for fish, and nursery areas for fish larvae are eliminated. As a result, tributary streams such as Logan Creek likely receive increased pressure as a substitute for lost lentic areas. The importance of Logan Creek as a spawning area was shown in this study. That lentic areas are important for plankton production is illustrated by the findings of the present study with regard to phytoplankton production behind revetments. Moreover, high flow rates, siltation, and fluctuating water level resulting from channelization limit the production of bottom-dwelling organisms.

At the Callaway Plant site study area, several L-head dikes and revetments exist on both sides of the river. Different aquatic habitats such as open river channels, sand bars, reveted areas, and creek can be distinguished on the basis of associated biota as well as by physical features. The major components of these associations are presented in Figure 2,4-1. Logan Creek, being less physically stressed, has, for example, a proportionately different assemblage of benthic macroinvertebrates than has the river. The creek also has resident populations of fish, dominated by sunfish and minnows. The energy source to the Logan creek biota is also largely from terrestrial sources, although phytoplankton productivity is undoubtedly higher as a result of low turbidities.

Numerous minnows were collected on the sand bars and quiet water areas closed off by the bars. Juvenile fish of several species were also collected and a diurnal difference in catch was noted. Several species probably move to the shallows at night to feed.

The revetments were found to contain high densities of macroinvertebrates of a species composition different frota that found on the river bottom. These macroinvertebrates are probably the source of a portion of the drift organisms collected in the open channel. Also, the organisms found on the revetment probably are a food source to several species of fish. During the winter months of low flow, the dikes and revetments provide protective areas where fish are known to congregata. Commercial fishermen near the study site take advantage of this phenomenon to increase their catches.


\begin{tabular}{|c|c|}
\hline RIVER & CREEK \\
\hline CENTRIC DIATOMS PENNATE DIATOMS & PENNATE DIATOMS CENTRIC DIATOMS \\
\hline ROTIFERS & ROTIFERS \\
\hline NOME & PONDWEED WATER PLANTAIN SEDGES \\
\hline MAYFLY LARVAE (DRIFT) CADDIS FLY LARVAE (DRIFT) MIDGE FLY LARVAE (DRIFT) & OLIGOCHAETE WORMS MIDGE FLY LARVAE MAYFLY LARVAE \\
\hline MIDGE FLY LARVAE (BOTTOM) CLIGOCHAETE WORMS (BOTTOM) MAYFLY LARVAE (BOTTOM) & \\
\hline \begin{tabular}{l}
GIZZARD SHAD LARVAE \\
SHINER LARVAE \\
SKIPJACK HERRING LARVAE \\
WHITE BASS LARVAE \\
CARP LARVAE \\
BASS LARVAE \\
SUNF ISH LARVAE
\end{tabular} & EMERALD SHINER BLUEGILL LONGEAR SUNFISH WHITE CRAPPIE GREEN SUNFISH BLUNTNOSE MIENOW GIZZARD SHAD \\
\hline & UNION ELECTRIC CO. CALLAWAY PLANT UNITS \(1 \& 2\) \\
\hline & \begin{tabular}{l}
MAJOR \\
ECOLOGICAL ASSOCIATIONS
\end{tabular} \\
\hline & Figure 2.4-1 \\
\hline
\end{tabular}

\section*{2. 5 CONCLUSIONS AND RECOMMENDATIONS}

The results of this report, though they add substantially to the data base collected at the site, do not contradict the conclusions regarding the potential impact of the plant put forth in the Callaway Plant Units 1 and 2, Environmental Baseline Inventory, Annual Report. To reiterate, major factors influencing the aquatic system near the site appear to be channelization, turbidity, and surface run-off. Turbidity and water quality changes from surface run-off are directly related to channelization. Channelization results in a mure immediate transport of run-off water downstream and prevents normal modification of water quality. Channelized water, having a greater velocity, reduces the possibility of suspended particles settling out of the water column and increases the erosional potential that results in higher turbidities. Channelization also has resulted in elimination of productive backwaters and marshy habitats. Because of this, tributaries to the Missouri River have become increasingly important as aquatic habitats, especially if they provide spawning and nursery sites for fish.

The plant intake and discharge structures were located so as to minimize any of the Callaway Plant's adverse ecological effects, especially with regard to Logan Creek. The intake structure was designed to reduce impingement of fish and the discharge effluent to meet water quality standards. Because of these construction and operational considerations, and the already limited biota production in this section of the Missouri River, no major impacts are anticipated.

Since Logan Creek may be an important spawning creek, it is recommended that sampling frequency di ing spawning be increased over that in the first year of the preoperational monitoring program. The recommended program for determining spawning intensity in Logan Creek is as follows: When the temperature of Logan Creek reaches about \(60^{\circ}\) F (late April), the first of two samples to be taken during a 2 -week period will be made to measure early spawning activities. For measuring late spawning activities, a second sample will be made about 2 weeks following the firstsample. Allowing time for sampling, spawning intensity will have been measured over a time period of about 6 weeks. During the second sampling period, routine data on benthos and fish will be collected. This sampling period coincides with 1973 and 1974 samples. Thus the sampling for the aquatic program should consist of a winter, spring and early summer, and fall sampling.

Ahlstrom, E. H. 1940. A review of the Rotatorian genera Brachionus and Platyias with descriptions of one new species and two new varieties. Bull. Amer. Museum Natural History 77 (3):143-184.

Bailey, R. M., J. E. Fitch, E. S. Herald, E. A. Lachner, C. C. Lindsey, C. R. Robins, and W. B. Scott. 1970. A list of common and scientific names of fishes from the United States and Canada (Third Edition). Mmcr. Pish. Soc. Special Pub. No. 6.

Ballentine, R. K., Z. A. Arden, L. A. Parrish, D. B. Hicks, and S. L. Bugbee. Futer quality of the Missouri River (Gavins Point Dam to Hermann, Missouri). Dupt. nf the Interior, F. W. Q.A. Nat. Field Investigations Center, Cincinnati, Ohio.

Battelle's Columbus Laboratories, 1971. Water quality criteria data book. Effects of chemicals on aquatic life. U. S. Environmental Protection Agency, Washington, D. C.

Beck, W. M. 1968. Chironomidae. Chapter 5 in Keys to the water quality indicative organisms, Southeastern U. S. Fred Parrish, ed. Federal Water Pollution Control Administration.

Berner, L. M. 3947. A limnological survey of the Missouri River from its mouth to the lowa state line during summer of 1945. Masters Thesis, University of Missouri.

Berner, L. M. 1951. Limnology of the lower Missouri River, Ecology. 32:1-12.

Brinkhurst, R. O. 1965. Studies on the North American aquatic Oligochaeta 1: Naididae and Opistocystidae. Proc. Acad. Nat. Sci. Philadelphia. 118:1-33.

Brinkhurst. R. O. 1964. Studies on the North American aquatic Oligochaeta 1: Tubificidae. Proc. Acad. Nat. Sc., Philadelphia 117:117-172.

Brooks, J. L. 1957. The systematics of North American Daphnia. Conn. Acad. of Arts and Sci., Vol. XIII. Yale University Press, New Haven.

Brown, H. P. 1972. Aquatic dryopoid beetles (Coleoptera) of the United States. Biota of freshwater ecosystems manual no. 6. U. S. Envirommental Protection Agency.

Carlander, K. D. 1969. Handbook of freshwater fishery biology. Vol 1. Iowa State University Press, Ames.

Chu, S. P. \(l^{n+1}\). The influence of the mineral composition of the mediul cn growth of planktonic algae. Part 1. Methods and cultrire sedia. Jour. of Ecology 31 (2):284-325.

Cross, F. B. 1967. Handbook of the fishes of Kansas. Museum of Natural History Miscellaneous Publication No. 45., University of Kansas, Lawrence.

Damann, K. E. 1951. Missouri River Basin plankton study. Federal Security Agency, Public Health Service, Environmental Health Center, Cincinnati.

Eddy, S. 1969. The freshwater fishes. Wm. C. Brown Co., Dubuque, Iowa.

Edmonson, W. T. (ed.). 1959. Ward and Whipple's fresh-water biology, 2nd ed. Wiley, New York.

Gamon, J. R. 1970. The effect of inorganic sediment on stream biota. Water Quality Office, U. S. Environmental Protection Agency.

Gieskes, W.W. C., and W. J. Van Bennekom. 1973. Unreliability of the \({ }^{14} \mathrm{C}\) method for estimating primary productivity in eutrophic Dutch coastal waters. Limnology and Oceanography \(18(3)\) : 494-495.

Hamilton, A. L., O. A. Saether, and D. R. Oliver. 1969. A classification of the Nearctic Chironomidae. Technical Report 124, Fisheries Research Board of Canada. Winnipeg, Manitoba.

Hilsenhoff, W. L. and R. P. Narf. 1968. Ecology of Chironomidae, Chaoboridae and other benthos in 14 Wisconsin lakes. Ann. of Ent. Soc. Amer. 61(5):1173-1181.

Hiltunen, J. K. 1973. Keys to the tubificid and naidid Oligochaeta of the Great Lakes region. Great Lakes Fishery Laboratory Lab Guide. Unpublished.

Hollander, M. and D. A. Wolfe. 1973. Nonparametric statistical methods. John Wiley and Sons, Inc. New York.

Holsinger, J. R. 1972. Freshwater amphipod Crustacea (Gammaridae) of North America. Biota of freshwater ecosystems manual no. 5, U. S. Environmental Protection Agency.

Hubbs, C. L. and K. F. Lagler. 1967. Fishes of the Great Lakes region. University of Michigan Press, Ann Arbor.

Hynes, H. B. N. 1972. The ecology of running waters. University of Toronto Press, Toronto.

Kennedy, C. R. 1969. Variability of some characters used for species recognition in the genus Limnodrilus and Claparedeanus (Oligochaeta: Tubificidae). J. Nat. Hist. 3:53-60.

Leslie, P. H. and D. H. S. Davis. 1939. An attempt to determine the absolute number of rats on a given area. J. Animal Ecology 8:94-113.

Mason, W. T. 1973. An introduction to the identification of chironomid larvae. Revised edition. U. S. Environmental Protection Agency, Cincinnati, ohio.

Mason, W. T. Jr., P.A. Lewis and J. B. Anderson. 1961. Macroinvertebrate collections and water quality monitoring in the Ohio River Basin 1963-1967. Office of Technical Programs, Ohio Basin Region \& Analytical Quality Control Lab., U.S.E.P.A., Cincinnati, Ohio.

May, E. B. and C. R. Gasaway. 1967. A preliminary key to the identification of larval fishes of Oklahoma, with particular reference to Canton Reservoir, including a selected bibliography. Oklahoma Fishery Research Lab. Bull. No. 5., Norman, Oklahoma.

Minter, K. W. 1972. Fisheries. pp64-102. In University of Missouri - Rolla, Missouri River Environmental Inventory, Rulo, Nebraska to mouth near St. Louis, Missouri. Vol. 1.

Moore, G. A. 1968. Fishes. pp21-166. In W. F. Blair, A. P. Blair, P. Brodkorb, F. R. Cagle and G. A. Moore. Vertebrates of the United States. McGraw-Hill Book Co., New York.

Needham, J. G. and P. R. Needham. 1962. A guide to the study of fresh-water biology. Holden-Day, Inc., San Francisco.

Odum, H. T. 1956. Primary production in flowing waters. Limnology and Oceanography 1:102-117.

Palmer, C. M. 1962. Algae in water supplies. Public Health Service Publication No. 657.

Patrick, R. 1948. Factors affecting the distribution of diatoms. Bot. Rev., 14:473-524.

Pennak, R. W. 1953. Fresh-water invertebrates of the United States. Ronald Press, New York.

Pfleiger, W. L. 1968. A check-list of the fishes of Missouri, with keys for identification. Missouri Dept. of Conservation, D-J Series No. 3.

Pfleiger, W. L. 1971. A distributional study of Missouri fishes. Univ, of Kansas Publications, Museum of Natural History. \(20(3): 255-570\)

Prescott, G. W. 1962. Algae of the western Great Lakes area. Wm. C. Brown C0., Dubuque, Iowa.

Prescott, G. W. 1969. How to know the aquatic plants. Wm. C. Brown Co., Dubuque, Iowa.

Prescott, G. W. 1970. The fresh water algae of the United States. McGraw-Hill, New York.

Poback, S. S. 1957. The immature Tendipedids of the Philadelphia area (Diptera: Tendipedidae). Proc. Acad. Nat. Sci. Philadelphia. Monogr. No. 9:1-152.

Robinson, J. W. 1973. Collection and compilation of commercial fisheries harvest data in Missouri, 1965-1971. Final report, Investigations Projects, State of Missouri.

Ross, H. H. 1944. Caddisflies or Trichoptera of Illinois. Illinois Nat. His. Survey Bull. 23.

Saether, O. A. 1970. A survey of the bottom fauna in lakes of the Okanagan Valley British Columbia. Fish. Res. Bd. Can. Tech. Report No. 13.

Smith, G. M. 1950. Fresh-water algae of the United States. McGraw-Hill, New York.

Stern, D. H., and M. Stern. 1972. Aquatic biology in University of Missouri-Rolla, Missouri River Environmental Inventory, Rulo, Nebraska to mouth near St. Louis, Missouri. Vol 1.

Strickland, J. D. H. ard T. R. Parsons. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin 167 (2nd. end) Ottawa.

Tesch, F. W. 1970. Age and growth. pp. 93-123. In W. E. Ricker (ed.), Methods for assessment of fish production in fresh waters. I.B.P. Handbook, No. 3 (2nd printing), London.

Union Electric Company. 1974. Callaway Plant Units 1 and 2, Environmental baseline inventory. Unpublished report. Union Electric Company, St. Louis, Missouri.
U. S. Department of the Interior. 1966. A guide to the common diatoms at Water Pollution Surveillance System stations. Federal Water Quality Administration, Water Pollution Surveillance, Cincinnati, Ohio.
U. S. Environmental Protection Agency. 1971. Methods for chemical analysis of water and wastes. EPA Analytical Quality Control Lab., Cincinnati, ohio.

University of Missouri-Rolla. 1974. A baseline study of the Missouri River: Rulo, Nebraska to mouth near St. Louis, Missouri. Vols. III, IV. A report to the Department of the Army, Kansas City District, Corps of Engineers.

Usinger, R. L. and W. C. Day. 1968. Aquatic insects of California, University of California Press, Los Angeles.

Whitford, L. A. and G. J. Shumacher. 1969. A manual of the fresh water algae in North Carolina. North Carolina Agri. Experimental Station Tech. Bull. No. 188.

Williams, I. G. 1964. Possible relationship between planktondiatom species numbers and water quality estimates. Ecology 45:809-823.

Williams, L. G. 1966. Dominant planktonic rotifers of major waterways of the United States. Limnol. Oceanogr. 11 (1) : 83-91.

Williams, W. D. 1972. Freshwater isopods (Asellidae) of North America. Biota of freshwater ecosystems Manual No. 7. U. S. Environmental Protection Agency.

\subsection*{3.1 INTRODUCTION}

The Callaway Plant site is located on the Coates Plateau in Auxvasse Township \((T-46-N, R-8-W)\), the southeastern portion of Callaway County, Missouri. The small town of Reform, centrally located within the plant site, is about 350 feet higher than and 5.75 miles south of the Missouri River. The plant site, primarily the northeastern and southwestern sectors, is variously dissected by drainageways. Site topography is rolling to steeply rolling in character. In general, the rougher terrain supports forest vegetation, some of which is grazed, and the more level areas have been or are being utilized as pasture and for production of annual agricultural crops.

A broad-based environmental baseline inventory of the Callaway Plant site was conducted in 1973-74. The objectives of this investigation were:
a. to record and describe "important" species of flora and fauna in the site area during all four seasons of the year
b. to provide baseline data that could be used to develop a monitoring program for detecting impacts of plant construction and operation on the environment
c. to offer recommendations to the Union Electric Company concerning effects of construction on any "unique or unusual" habitat, animals, or a combination of these two life forms found within zones of direct impact

The terrestrial sampling for the preconstruction phase of the environmental monitoring program was initiated at the Callaway Power Plant site in spring, midsummer, and fall of 1974.

The objectives of the monitoring program ave generally complementary to those of the previously completed baseline studies. However, the orientation of investigation differs. Whereas the baseline study was a broad-based investigation to characterize the factors or components of the plant site environment, the focus of monitoring studies is to intensively document ecological relationships of selected, permanent sampling stations for the purpose of detecting changes in the natural system. The stations were strategically located at varying distances and bearings from, and outside of, the area to be directly impacted by site development.

The data collected in the three samples ar presented and summarized in this report. The purpose of his report is to determine the suitability of the sampling design for achieving the monitoring program objectives and to discuss the ecological relationships among the major environmental components.

This part of the report is organized into six major sections: Introduction, Methods and Materials, Results and Discussions, Terrestrial Ecological Summary, Conclusions and Recommendations, and References. Most major sections are divided into subsections, the number of which depends on the complexity of the subject matter. The Methods and the Results and Discussions are subdivided by broad terrestrial parameters (Vegetation, Mammals, Birds, Amphibians and Reptiles, and Invertebrates). The text ends with a Conclusion and Recommendations section that attempts to relate survey data to potential environmental impact from plant construction and operation.

```

1. Totis. \. ty (plants/acre) = 43,560 sg ft (1 acre)
```
2. Relative Density \(=\frac{\text { Number of individuals/species }}{\text { Number of individuals of all species }} \times 100\)
2. Frequency of Species \(=\frac{\text { Number of times individual species occurs }}{\text { Total number of times all species o cur }}\)
4. Relative Frequency \(=\frac{\text { Frequency of individuai species }}{\text { Sum of frequencies of all species }} \times 100\)
5. Basal Area per Tree \(=\frac{\text { Total basal area }}{\text { Numbor of trees }}\) (overstory only)
6. Relative Dominance \(=\frac{\text { Total basal area of one species }}{\text { Total basal area of all species }} \times 200\) (overstory only)
7. Total Basal Area = Mean area \(x\) density (overstory only)
B. Importance Value \(=\) Relative density + relative dominance + relative frequency)
(adapted from Curtis and Cuttam, 2956)

In addition to the overstory and understory sampling conducted during the fall 1973 field effort, increment core samples were taken of the major overstory species.

At the laboratory, the core was mounted in a position to vertically expose the vascular structures. Once mounted, the core was macroscopically and microscopically viewed, aged, and characterized by observing any "signatures" of cyclic or unique occurrences indicating the prehistory of the site. This data was then tabulated to further characterize each of the sampled locations.

The general layer vegetation for each of the eight sampling stations wes surveyed in the spring, summer (early August) and fall (early September). Ground layer vegetation surveying was "imited to herbaccous species and woody plants of less than 20 inches in height.

The sampling procedure (for spring and fall samples) consisted of clipping all ground layer vegetation from quadrats loceted within vegetation survey subplots as shown in Figure 3.2-1. The area
of the clipped quadrats used to sample forest habitat was 0.25 milacres ( \(3.3 \times 3.3\) feet) and for prairie vegetation, 0.125 milacres in size. Clipped vegetation was sorted and packaged by species. Individusl bags were coded in accord with field identification, with subplot and sampling station numbers. Matching voucher specimens of species occurring in subplots were collected in the imuediate area. The specimens were placed in press and later forwarded to Dr. D. B. Dunn of the University of Missouri for identification.

Clipped vegetation was transported to the Dames \& Moor ? Laboratory in Cincinnati, Ohio, where the materials were oven drita and weighed. Net oven dry weights were recorded in grams according to species and the subplot and sampling station from which the species were collected.

For the midsummer (August 1974) vegetation sampling, incidental species not previousiy identified or collected during the spring sampling period were collected. This was done by walking transects through each plot and collecting plants not observed during the spring survey.

Relative frequency and relative dominance based on proportional dry weights were calculated for each species occurring at a given sampling station. Relative frequency and dry weight values were summed to provide a quantitative estimate of the importance (importance values) of individual species in the compositions of ground layer vegetation of respective forest and prairie communities. These values are also shown in the above-mentioned appendices. Species percent frequency, dry weights and importance values were further utilized to characterize and compare ground layer vegetation of the sampling stations as will be made apparent in following discussion.

As part of the monitoring program, certain soil chemical properties were examined. At each sample location, samples were collected at a depth of \(3-4\) inches with a soil auger. The chemical analysis procedures are similar to those recommended by the Environmental Protection Agency; the analyses were conducted at Dames and Moore's Environmental Iaboratory (Cincinnati, Ohio).
the following chemical properties of the soil were determined: ph, total nitrogen, available phosphorus, potassium, calcium, sodium and magnesium; the following heavy metals were also determined: arsenic, cadmium, chromium, copper, lead, mercury, and manganese. An analysis for herbicide and pesticide residues in the soil was alsc performed. The herbicide and pesticide ana'yses were performed by abc Analytical Bio Chemistry Laboratories, Inc., Columbia, Missouri.

\subsection*{3.2.2 MAMMALS}

Rodents were censused by the trap-and-recapture methods described by Smith, Jorgensen, and Tolley (1972) and Smith and Jorgensen (1974). Trapping grids were established on each of eight permanent sampling stations--four in deciduous forest habitats and four in grassland habitats. Each trapping grid entailed use of 144 Sherman live traps; one trap was placed near each of 144 wooden stakes located at right angles to and 30 feet apart from one another. Stakes were arranged in a geometric square, 12 stakes to a side, encompassing 2.5 acres (Figure 3.2-2). The sampling area of each grid extended one-half trap distance ( 15 feet) beyond the staked perimeter; thus, the effective trapping area was 2.98 acres per grid. Traps were set for 6 consecutive nights during each of the two sampling periods, spring and fall. Thus, for each sampling period and permanent sampling station, a total of 864 trap hights occurred; and for each major habitat type (prairie and forest), trap nights were \(3,456(864 \times 4)\). During the spring survey, trapping occurred from May 31 to June 5, and for the fall survey from September 18 to September 23.

All traps were baited daily with a mixture of peanut butter and oatmeal. Traps in forest habitats were checked for captures and baited each morning, while traps in grassland habitats were baited each evening and checked for captures each morning. Captured animals were marked by toe clipring, and species, sex, age class, reproductive condition, and capture location on the grid were recorded. When sufficient captures permitted, 10 animals of each species were anesthetized with methoxyfluorane (Richins, Smith, and Jorgensen, 1974), and total tail, ear, and hind foot length measurements were recorded. These measurements were compared to published data to verify field identifications.

A computer program (Smith, Jorgensen, and Tolley, 1972) was used to derive small mammal population estimates from the data obtained from the trap-and-recapture program for each of the eight permanent sampling stations. Population estimates were then converted to density estimates by the following formula:
\[
\text { Population density }=\frac{\text { population }}{\text { effective trapping }} \text { area }
\]

Population density estimates are herein expressed as numbers/ acre for each species. Age class - sex relationship of species occuriing within each permanent sampling station are also estimated.

Thirty snap-traps, baited with a peanut butter and oatmeal mixture, were set in prairie habitat for four nights (June 5, 1974 to June 9, 1974) to obtain voucher specimens to aid in identification.

Because the cottontail rabbit is a naturally-occurring primary consumer as well as an important prey species for a variety of predators, the status of the rabbit population is particularly relevant to a monitoring program. An automobile surves of about 13 miles on local roads was used to survey the cottontail rabbit. The survey techniques are similar to those described by Lord (1959). The locations of the census route and the schedule of route surveys was adopted to correspond with time and travel requirements of investigators conducting small mammal surveys at the various permanent sampling stations previously discussed. The rabbit survey extended over a fourday period during each sampling period--Tune 2, 1974 to June 5, 1974 during the spring survey and Septemior 17,1974 to September 21, 1974 during the fall survey. Results of the survey were used to estimate the relative abundance of cottontail rabbits. The estimated mean relative abundance is expressed as the ratio of number of rabbits/mile traveled.

A 20 -mile nighttine census route to inventory larger mammals was established along existing roads in the vicinity of Reform, Missouri. Spotlighting was used to supplement observations made with auto headlights. The surveys began approximately 1 hour after sunset; the numbers and kinds of mammals seen were recorded. The surveys were conducted for three nights during the spring and fall surveys... Lord's (1959) techniques were used to derive an estimate of relative abundance of the various mammal species observed.

\subsection*{3.2.3 AVIFAUNA}

The spring avifauna survey of the Callaway Plant site was conducted during the height of the breeding and nesting period, May 25 to June 11, 1974. A similar survey during the fall coincided with the migration period, September 21 to \(30,1974\).

The eight permanent sampling stations selected for intensive ir restigation of vegetation and small mammal populations were the focal point for the spring avian studies. Walking transects for observing bird activities were established so that a portion of the transect route traversed the permanent sampling stations. Portions of the transect route exterior to the sampling stations were located in habitat conditions very similar to those prevailing within the perimeter of the sampling stations.

The technique described by Emlen (1971) was modified to estimate avian densities within and immediate to the permanent sampling stations. The investigator walked along each transect and recorded all birds observed or heard within a strip of established width and 100 yards ahead. A strip width of 200 feet was adopted for survey of prairie habitats; a 400 -foot width was used for forest habitats; The visibility of birds, the disturbing effect of the investigator's movements, and the density of vegetation were importan. factors determining width selection. This method differs from Emlen (1971) in that coefficients of detection in each study area were estimated rather than mathematically determined. This was necessary because the continuity of habitat required by Emlen (1971) was not present on the Callaway Plant site.

The areas sampled for each transect were as follows:
\begin{tabular}{rr}
\(\mathrm{Pr}-1\) & 8.82 acres \\
\(\mathrm{Pr}-2\) & 6.17 acres \\
\(\mathrm{Pr}-3\) & 5.29 acres \\
\(\mathrm{Pr}-4\) & 9.70 acres \\
\(\mathrm{F}-1\) & 21.16 acres \\
\(\mathrm{F}-2\) & 21.16 acres \\
\(\mathrm{F}-3\) & 28.20 acres \\
\(\mathrm{F}-4\) & 21.16 acres
\end{tabular}

Species of birds recorded were identifiod either by sight or song. The plots were not surveyed in order; instead, a random sampling tas used to keep the consistency of the data equal for all the plots. Every plot was visited at least twice for each sampling time to provide data consistency throughout the study.

Breeding bird densities were computed by the following formula:
\[
\frac{\text { Number of Birds } \times 2}{\text { Area of coverage (acres) }}=\text { Birds/acre }
\]

The area of coverage acreage was computed for each transect route by multiplying the strip width by transect length (feet) and
subsequent conversion to acres. The length of each transect was measured from an aerial photograph (scale \(1^{\prime \prime}=1920^{\circ}\) ); no adjustment was made for distance as influenced by topographic variation.

Each transect route was traversed three times during the sy: ing
 the same time each day. Hence, an avtute or:. of Lilas, a calculated for each transect route, p orlde valici basis for comparisons between and within habitat cypes. \% student's "t" test was used to compare means and to test \(f 0131\) alfice : difference between avian densities at the various saipled, as, This test provides a method of substantiating the similarity ol Aiss. ilarity of plots on the basis of data obtained in field surveys.

During the fall survey, transect sampling methodology was modified to give a more accurate accounting of birds using the permanent sampling plots during the migration period. Each plot (Figure 3.2-1) was sampled by an investigator who walked a series of transects the length of the plots and 100 feet apart. In addition, he would walk a transect 100 feet from the outer perimeter and completely around it. The area sampled for each plot remained constant at 6.45 acres each.

The formula for computing avian densities for the fall survey therefore is:
\[
\frac{\text { Number of Birds }}{6.45 \text { (area of coverage in acres) }}=\text { Birds/acre }
\]

The avian densities thus derived are subject to several unavoidable modifying constraints, such as the flocking behavior of migrating birds, the decreased visibility of birds in post-breeding piumage, and the disturbing effects of the investigator's movements. These modifying constraints tend to increase variance in the results. Each plot was sampled four times in a random sequence at varying times of day to yield more accurate estimates of avian density as this relates to activity patterns and time of day.

\subsection*{3.2.4 AMPHIBIANS AND REPTILES}

Amphibians and roptiles were recorded whenever encountered at each of the persanent sampling stations established on the Callaway Plant site. A variety of suitable habitats were searched to detect the presence of reptiles and amphibians; for example, pond banks were investigated, and logs and large stones were upturned and the opleme. Care was taken to disrupt the habitat only momencaiily \(s\) ensure the reliability of subsequent reptile and amphibian surveys. The total survey also included areas adjacent to the primary sampling locations.

Amphibians collected within the permanent sampling areas during the sprang survey (June \(6-8,1974\) ) were marked by toe clipping (Woodbury, 1953). Reptiles were usually collected for voucher specimens. The exception was turtles; an identification number and date was carved on the riastron of captured species.

During the fall survey (September 13-15, 1974), herpetofauna were marked by code to indicate the permanent plot nearest their point of capture and released. The code is as follows:
1) Lizards, frogs, toads, and salamanders:

A toe was cut off in a manner to indicate the nearest plot - left front foot for forest plots, right front foot for prairie plots (1. 2, 3, or 4), starting with the inside toe.
2) Turtles:

A notch was filed in the marjinal scutes (through to the bone) according to the same code.
3) Snakes:

Subcaudals were clipped by the same code as the snake was held venter up (meaning a reversal of the actual side).

Voucher specimens of each species encountered were collected for later study to assure positive identification, as necessary. Identification and nomenclature follow Hlair, Blair, Brodkorb, Cagle, and Moore (1968) and Conant (1958). Whenever possible, identifications were made in the field.

\subsection*{3.2.5 INVERTEBRATES}

Invertebrates of the vegetative stratum were sampled at permanent sampling stations established on the Callaway Plant Units 1 and 2 site. The sampled areas were Stations \(F-1\) and \(F-4\) in forest habitats and Stations Pr-1 and Pr-4 in prairie habitats. Station locations are shown in Figure 3.2-1. Sampling dates for the spring survey were June 10 and 11, 1974. Fall samples were taken on September 13, 1974.

An aerial sweepnet with a \(38-\mathrm{cm}\) diameter, heavy-duty muslin bag and a \(90-\mathrm{cm}-10 n g\) handle was used for collecting the invertebrates. The sampling technique consisted of making 50 swee, s over a distance of 50 paces along three randomly selected transects within each of the four 2.5 -acre sampling stations. In both the prairie and the forest communities, some vegetation was collected in the net along with the invertebrates. This necessitated transferring the contents into a l-gallon \(21 P L O C R\) bag after the first 25 sweeps and again after the second 25 sweeps along a given transect. Both plant and animal contents from each sample were carefully transferred into the bag, which was then sealed and immediately placed on ice in a large ice chest in the field. On arrival at the laboratory, the samples were transferred to a freezer, where they were stored until each sample was processed for identification and , unting. Plant parts collected in the sweepnet were examined in the laboratory for invertebrates that might have achered to them. Organisms were appropriately pinned, pointed, preserved in ethyl alcohol, or mounted on microscope slides for identification (USDA, 1967). This procedure proved highly satisfactory for the majority of organisms collected.

\subsection*{3.3 RESULTS AND DISCUSSION}
3.3.1 VEGETATION AND SOILS
3.3.1.1 Vegetation

Prairie Vegetation Type
The Prairie Sampling Stations Pr-1 through Pr-4 were composed of two predominant floristic strata: the ground layer and the understory vegetation. These two strata will be considered separately in the following discussion, which presents species composition and seasonal diversity. The ground layer and understory will, however, be considered as an integral unit in the discussion of successional trends and directions.

Prairie Sampling Station Pr-1 exhibited a moderate diversity, with 17 species present in the fall 1974 sampling. Based on dry weight and presence, several ground layer species held dominant positions within the subplots. Meadow fescue (Festuca elatior L.) was by far the most dominant, having a relative frequency of 100 percent and an importance value of 132.94 (Appendix A-1). Cinquefoil (Potentilla simplex Michx.) and the graminoid (Panicum lanuginosum Ell.) were the second and third most frequent species, both having relative frequencies of 31.25 percent and importance values of 10.83 and 10.75 , respectively (Appendix A-1). Subdominants falling within the ground layer strata of Sampling Station Pr-l having importance values below 10 included Japanese lespedeza (Lespedeza striata (Thunb.) H. \& A.), a carex (Carex glaucodea Tuckerm.), a moss species, and Korean clover (Lespedeza stipulacea Maxim.) [Appendix A-1]). The remaining ground layer vegetation (10 species) had importance values less than 4.25 , based on relative frequency and relative dry weights.

Dry weight, utilized as an indicator of presence in this study, was an important parameter; it allowed distinctions to be made among the ground layer plots on the basis of species composition. The estimated dry weight based on \(3,044.76\) grams per 0.125 milacre for \(\mathrm{Pr}-1\) was \(1,522,380\) grams/acre ( \(3,356,84\) pounds/ acre), shown in Table 3.3.1-1. This sampling station showed an overall increase in production of 261,490 grams (576.84 pounds) of dry weight plant material over the weights obtained during the spring sampling period (Table 3.3.1-2).

Seasonal comparison of the dominant ground layer species from Station Pr-l indicated that reed fescue (Festuca arundinaceae Schreb.) had phased out, while meadow fescue (Festuca elatior I.) remained the prominent grass species. Spring subdominants, carex (Carex glaucodea Tuckerm,) and orchard grass (Dactylis glomerata L.) (Appendix \(A-2\) ) were replaced in prominence in the fall by the cinquefoil and a species of panicum (Appendix A-1). There was a pronounced change in the species within the supportive community of the ground layer as the season progressed from spring to fall. Twenty-three species were recorded for the spring sample, while
only 17 species were recorded in the fall sample. Ther were eight carryover species found in both samples; wwever, 15 species recorded in the spring faaled to occur in the sabsequent fall sample. Within the fall sample, nine new species were tallied that had not occurred in the spring sample. Thus, a total of 34 distinct species were recorded for the ground layer.

The understory vegetation of Prairie Sampling Station Pr-1 displayed a considerable diversity in speri s composition during the fall 1974 sampling program. The fall sampling period was the first instance data were obtained on understory veget tion present within the Callaway Plant site. Woody species iredominated; persimmon (Diospyros virginiana L.) was the most frequent species encountered, with a density of 21 trees and an importance value of 64.2 overall (Appendix \(\mathrm{A}-3\) ). Subdominants of the understory included snowberry (Symphoricarpos sp. Duham.), pasture rose (Rosa carolina L.), and white ash (Fraxinus americana L.) with importance values of 37.1 , 29.2 , and 11.6 , respectively (Appendix \(A-3\) ).

The subdominant species of the understory found within Prairie Sampling Station Pr-1 all held importance values less than 10 (Appendix A-3). Evidence of regeneration is present in the understory of Station \(\mathrm{Pr}-1\) in that the species composition includes black oak (Quercus velutina Lam.), post oak (Quercus stellata wang.), hickory (Carya ェp. Nutt.), slippery elm (Ulmus rubra Muhl.), and white ash mentioned previously. All of these species are elements of the forested sites discussed in detail later within this section and indicate that regeneration of overstory species was not a successional possibility within Station Pr-1. On the average, there were 3.2 understory trees or shrubs in each quadrat, yielding 518.4 trees and/or shrubs per acre within the prairie vegetation type.

The second Prairie Sampling Station, Pr-2, showed an extremely high diversity and composition of various ground layer species. A total of 42 distinct species were recorded during the fall 1974 sampling program. The major dominant ground layer species was redtop (Agrostis alba L.) with a relative frequency of 93.75 percent and an importance value of 39.91 (Appendix A-4). Canada blue grass (Poa compressa L.) was second in prominence with a freguency of \(10 \overline{0}\) percent and as importance value of 24.23 (Appendix \(\mathrm{A}-4)\). A disparity seemed co exist between redtop, frequency 93.75 percent, and canada blur grass, frequency 100 percent. This was easily explained when the dry weights of the two species were compared. Redtop z-counted for 642.80 grams of dry weight, while Canada blue grass accounted for 314.00 grams of dry weight, roughly half the total for the dominant species, redtop (Appendix A-4). The third, fourth, and fifth species were the graminoid (Panicum lanuginosum Ell.), prairie threeawn grass (Aristida oligantha Michx.), and Japanese lespedeza (Lespedeza striata (Thunb.) H. \& A) with frequencies of 87.50 percent, 37.50 percent, and 93.75 percent, and showing importance values of \(12.45,11.78\), and 11.66 , respectively (Appendix A-4). Ground layer vegetation having im portance values less than 10.0 amounted to 37 additional species
(Appendix A-4). Eighteen of the species collec i curing the fall 1974 sampling period consisted of graminoic types, including edges, narices, and rushes.

Plot clipping performed during the fall 1974 sampling to obtain herbage dry weight revealed a general increase in vegetative production. This increased biomass was reflected in the total fall sample wefght of \(1,012,950\) grams ( 2233.55 pounds) per acre (based on 2025.9 grams per 0.125 milacre\()\). Specifically, the fall sample showed an increase of 76,825 grams ( 169.42 pounds) per acre of dry weight plant material (Table 3.3.1-1).

The dominant ground layer vegetation of Sampling Station Pr-2 showed a remarkable change in structure from the spring to the fall sampling period. In the spring, the dominant species was Kentucky blue grass (Poa pratensis L.) ; however, in the fall, redtop had replaced the blue grass (Appendix A-5). Kentucky blue grass descended from a spring importance value of 28.57 to a fall importance value of only 9.75 , which is explained by the fact that Kentucky blue grass is primarily a "cool season" grass that fades out during the August-September period. In the spring, redtop was number two, with an importance value of 27.05 , which rose in the fall to 39.91 . Timothy (Phleum pratense 1.), was third in importance in the spring, with an importance value of 21.63 , but fell to a low of 8.35 in the fall sample. Hairy chess (Bromus racemosa 1 .) held fourth position in the spring, with an importance value of 11.39 , but was not recorded in the fall sample. Finally, a carex (Carex bushii Mack.), holding fifth position in the spring with an importance value of 10.37 , was not recorded during the fall period.

This general "replacement" of species is believed to be attributable to the seasonal composition changes brought about by elimination of the heat-intolerant "cool season" grasses. These are replaced by the "warm season" heat-tolerant and xerophvcic species that are more adapted to periods of elevated temperature typically associated with the late summer-fall time period. To further illustrate the seasonal species phase change: in the spring sampling period, a total of 49 ground layer species were recorded, while in the fall period, 42 species were recorded. Of these recorded species, only 23 carryover species were found to be concurrent for spring and fall. Cverall, 68 individual species were recorded for the ground layer of Station Pr-2.

The understory stratum of Sampling Station Pr-2 was limited to only five species, all of which held importance values greater than 10.0 . The most important and most frequent tree species found within the understory stratum of Prairie Station Pr-2 was the woody species persimmon, with a relative frequency of 12 percent, a relative density of 77 percent, and an importance value of 129.2 (Appendix A-6). Subdominant supportive elements of the understory included dewberry (Rubus flagellaris Willd.), white ash, snowberry, and slippery elm, having importance values of \(27.5,23.1,10.1\), and 10.1 , in order. Sampling Station Pr-2
did not exhibit the understory species evident of understoryoverstory regeneration. White ash and slippery elm were present, but the density data fnr these species indicated only a sparse representation. THas fact suggests that succession within Pr-2 exhibited no will-defined trend other than a general shift to more woody-sirubby composition. Generally, the understory was characterized by 8.7 trees or shrubs per quadrat, extrapolated to \(1,409.4\) trees and/or shrubs per acre.

Prairie Station Pr-3 had a moderate species diversity within the ground layer stratum during the fall 1974 sampling program. Specifically, 35 species were recorded for Pr-3 during the survey. Canada blue grass was, by a considerable margin, the most dominant species tallied; its importance value was 45.42 (Appendix: A-7). Furthermore, Canada blue grass had a relative frequency of 93.80 percent and a density based on dry weight of 657.10 grams (Appendix A-7) . Redtop was the species holding secondary importance within Pr-3, with an importance value of 32.04 (Appendix A-7). Kentucky blue grass and a panicum were also grass species and held importance values of 15.52 and 10.51 , respectively (Appendix A-7). Japanese lespedeza wis the fifth and final species having an importance value over 10 (Appendix A-7). There were 30 additional species recorded having importance values lower than 10 . Nineteen of the total 35 species recorded were graminoid species including the allied sedges, carices, and rushes.

Dry weight determined from plot clipping of Station Pr-3 during the fall 1974 sampling revealed a generalized decline in production of herbage from the dry weights obtained during the spring sampling period. This reduction in biomass production was noticeable when weights from both spring and fall were compared. In the spring, the sample station yielded \(1,156,205\) grams (2.549 pounds) per acre. The fall data yielded figures of 940,500 grams \((2,073.80\) pounds) per acre, showing a net \(105 s\) in production of 215.705 grams ( 475.20 pounds) per acre. A possible explanation of this marked decline in production is that compositional changes occurred from spring to fall, or ti.at the edaphic-climatic regime of the Pr-3 station affected its productivity.

Although the composition of the Pr-3 station changed, fall composition was not radically dissimilar to spring composition. The spring dominant was Kentucky blue grass, with an importance value of 38.76 (Appendix \(A-8\) ); this dominance was phased out by Canada blue grass (with a value of 45.42 ) during the fall sampling. Redtop, the second in importance during the spring survey, was also second in the fall survey. The third species in order of importance during the spring was timotiy, while Kentucky blue grass was third in the fall period. Hairy chess and a carex were respectively fourth and fifth during the spring, but were displaced by a panicum and Japanese lespedeza in the fall.

Comparison of species diversity of the ground layer between spring and fall reveals that 35 species were recorded from both the spring and fall sampling periods. A total of 16 carryover species were recorded for both sampling periods. The total species diversity of the spring and fall periods from the ground layer of Station Pr-3 was 54 distinct species.

Sampling Station Pr-3 displayed a sparse understory stratum characterized by only three species. The predominant species was snowberry, with a relative frequency of 1.0 percent, a relative density of 4.0 percent, and an importance value of 100 (Appendix A-9). The two remaining species, slippery elm and honey locust (Gleditsia triacanthos 4. .) were present in equal numbers, both having importance values of 50 (Appendix A-9). If importance values of 100 and 50 seem excessively high, it should be borne in mind that, from all sixteen 6.25 -milecre plots, only 6 individual trees or shrubs were tallied. This spaisity of undersotry was reflected in the trees or shrubs per quadrat value 0.4 , which indicates a meager stratum. extrapolation of the quadrat density data yielded 64.8 trees per acre for the understory of Sampling Station Pr-3.

Analysis of the understory from the viewpoint of succession yielded no trend information. The absence of dense, regenerating woody species indicated that succession to the stage of predominant understory had not taken place, but rather that Prairie Station Pr-3 was still in the "grass" stage and was just beginning to experience invading species.

Vegetation comprising the ground cover of Prairie Station Pr-4 exhibited the least diversity of any of the other three prairie stations. The fall 1974 sampling recorded only 13 species in the subplots of this station. Far above all other species in importance was meadow fescue, with a relative frequency of 100 percent, an importance value of 136.20 , and a yield of \(2,517.35 \mathrm{grams}\) of the total \(2,542.55\) grams recorded for the station (Appendix A-10). White sweet clover (Melilotus alba Desr.) was second in importance in the fall sampling, with an importance value of 14.25 (Appendix A-10). The third species of prominence was Korean lespedeza, with an importance value of 14.14 (Appendix A-10). The remaining 10 species of the ground cover vegetation had importance values less than 10 (Appendix A-10).

Production of biomass within the ground layer was determined from dry weights of herbage. This dry weight served as an indicator of species presence. For Prairie Station Pr-4, the estimated dry weight per acre was based on \(2,542.44\) grars per 0.125 -milacre (equivalent to \(1,271,275\) grams \((2,803.16\) رounds) per acre (Table 3.3.1-1). A comparison of this production data to that obtained during the spring sample indicates an increase in biomass production. The total increase in ary weight per acre was 397,320 grams ( 877.16 pounds). Therefore, though there are relatively few species comprising the Pr-4 station subplots, the production has increased, the increment almost entirely due to the species meadow fescue. Indeed, from the standpoint of fall production, Pr-4 may
be considered as monotypic, owily to the overwhelming influence of meadow fescue.

Spring (Appendix A-11) and fall composition comparisons of precominant ground layer species at Pr-4 are similar to comparisons for Pr-1, in that reed fescue, a dominant in the spring, was overshadowed by meadow fescue, also present in the spring but more widespread in the fall. Horse nettle (Solanum carolinense L.) ranked third in the spring, dropped to an importance value of 13.04, and then increased its presence to an importance value of 14.14 in the fall period. A total of 22 species was recorded from the spring survey, and only 13 species in the fall, with 7 carryover species from spring to fall. A total of 28 distinct ground layer species was tallied for Pr-4.

The nderstory of \(\mathrm{Pr}-4\) was exclusively one species. Dewberry had a relative frequency of 2.0 percent, a relative density of 3.0 percent, and an importance value of 200 (Appendix A-12). Site statistics indicated 0.2 trees or shrubs per quadrat and 32.4 trees or shrubs per acre. Because of the growth form of dewberry, it was conjectured that the primary reason for lack of an established understorl was the intensive competition created by meadow fescue within the subplots. Man-induced stress from cultivation and/or chemical application was also thought to be a possible explanation of the relatively early successional stage found at Prairie Station \(P r-4\). Generally, the prairie stations reflect the regional vegetation discussed by Kucera (1973), though the site contains none of the unique floras cited by him.

Prairie vegetation Sampling Stations Pr-1 through Pr-4 were composed principally of ground cover, with a representation of understory vegetation present in varying degrees. The composition, both area-wide and seasonal, by species, of these four sampling areas varied considerably, as evidenced in Appendix A-1 through Appendix A-12. The prairie sampling stations may be grouped in several ways according to their individual properties. The spring and fall species composition of \(\mathrm{Pr}-1\) and \(\mathrm{Pr}-4\) are most similar, with reed fescue and meadow fescue being the predominating species in eacli area during both seasons. The Prairie Sampling Stations Pr-2 and Pr-3 showed the highest specier diversity, Pr-2 having 49 (spring) and 42 (fall), and Pr-3 hav.ng 35 (spring and fall) species, respectively. Considering pr duction of biomass as a parameter, \(\mathrm{Pr}-1, \mathrm{Pr}-2\), and \(\mathrm{Pr}-4\) showed oderate gains in herbage yield during the fall sample, while Pr 3 showed a general decline in production during the same time interval.

Structurally, the ground layer vegetation exhibited substantial difference at the various sampling locations, based on the species-area curve (Cain, 1938). On the basis of distribution in the species-area curve (Appendices \(\mathrm{A}-1, \mathrm{~A}-4, \mathrm{~A}-7\), and \(\mathrm{A}-10\) ), redtop, timothy, Kentucky blue grass, and Canada blue grass are the dominant ground layer species. Japanese lespedeza, Korean lespedeza, hairy chess, a carex, and a panicum were the predominant members of the supportive community.

The Histinct seasonal "phasing" of the grass species was also ovidenc. The "cool season" grasses, such as meadow foxtail, redtop: timokily, brome, and orchard grass diminished in importance at the time of the fall survey. "Warm season" grasses, including micadow fescue, panicum, and blue grass increased in prominence during the fall sampling. This natural variation is a normal seasonal occurrence and must not be misconstrued as a successional trend.

Vegetation of the understory, present at all of the prairie sampling stations, showed a considerable individual differentiaticn at each station. Species diversity for the understory included Pr-1 (10 species), Pr-2 (5 species), Pr-3 (3 species), and Pr-4 (1 species).

Overa11, the dominant understory species averaged from all stations included persimmon, snowberry, and dewberry. White ash, slippery elm, honey locust, and pasture rose comprised the supportive elements.

Succession was evident generally throughout the prairie sampling stations, where both the ground layer and the understory vegetation indicated the evolving trend. This successional progression was well documented for Callaway County (Drew, 1942), particularly with respect to revegetation of abandoned land and the ensuing "rebound" or reinvasion by characteristic species. Drew (1942), and Cox et al. (1972) considered several periods of years as indicators of the general trend. These trends include:
1. First year: The dominant species, while reflecting the last grow" crop, include primarily panic grasses, crab grass, common ragweed, trailing wild bean, plantain, and horseweed. Generally, the first year is composed of low-value grass species, composites and some legumes.
2. Second year: The composition remains ostensibly the same; however, goldenrods and asters are increasing in importance.
3. Third year: Compositional change alters abruptly from the previous year. The formerly dominant annual grasses and composites evidence a decline. An increase in perennial species is noted, with goldenrods, asters, and broomsedge showing an upsurge in absolute numbers.
4. Fifth year: The perennial species have taken hold by this time, with goldenrod and asters at an almost dominant position. Wire grasses are first noted at this stage. The important species of the first and second year are almost totally absent from the area.
5. Fifth to Twentieth year: The vegetation composition attained at the five-year period remains almost in equilibrium throughout this period, experiencing only minor changes. Subtle additions include development of dewberry, cinquefoil, legumes, and broomsedge. Introduction of woody species commences and is customarily well developed by the twentieth vear. Competition between shade-tolerant and shade-intolerant species is pronounced at this time.
6. Twentieth to Thirty-fifth year: Increasing evidence of woody trees and shrubs is found, with a rapidly growing overstory eliminating all but shade-tolerant species. Species within this category include muhlenbergia, goldenrods, snakeroot, and meadow violet.

Subsequent to the thirty-fifth year, the woody species are generally well developed. As the woody species mature, they become important as regeneration seed sources. In transition areas (ecotones) between forests and pastures or oldfields, the presence of oaks, hickories, maples, elms, ashes, red cedars, sassafras, and persimmon was noted. These species served as excellent seed sources for the pastures and oldfields, which they adjoin. It is worthy of note that regeneration of these seed sources was evident during the fall sampi. \(y\) data (Appendix A-1 through Appendix A-12) for Stations Pr-1 through Pr-4.

Several of the understory species are considered to be transgressive, that is, transitional between the oldfield and the immature forest (Buzzaz, 1968). Species falling within this category include red cedar, sassafras, black oak, honey locust, and slippery elm. A listing of invader species, "Transitional Species Preferring Disturbed Sites" prepared by Dr. Dunn, is included (Appendix \(\mathrm{A}-13\) ). Buzzaz (1968) additionally considers the dissemination of propagules (seeds) of different species on old or abandoned fields to be of primary importance. Further, the success and viability of these vegetative species is responsible in large measure for an increase in the animal populations of the area (Johnson and Odum, 1956; Pearson, 1959).

Comparisons of similarity for the ground layer prairie vegetation based on importance values (Table 3.3.1-3) elicited some interesting conclusions. Prairie Stations \(\mathrm{Pr}-2\) and \(\mathrm{Pr}-3\) evidenced the highest similarity based principally on the mutual occurrence of redtop, a panicum, Canada blue grass, and Japanese lespedeza, with an index of similarity of 84.80 percent (Table 3.3.1-3). Prairie Stations Pr-1 and Pr-4 were also found to be most similar to one another, but here the reason for the similarity was the pervasive presence of meadow fescue based on an index of
similarity of 83.76 percent (Table 3.3.1-3). The most dissimilar of the prairie stations were Pr-2 and Pr-4 with an index of similarity of 12.18 percent. overall, distinct differences in composition were found to occur throughout the prairie ground layer sampling stations based on species composition and presence. Spring comparisons are presented in Table 3.3.1-4.

Similarity comparisons for the understory stratum of the prairie sampling stations (Table 3.3.1-5), indicated that Station Pr-1 and Pr-2 were most similar with an index of similarity of 80.5 percent. Prairie plots \(\mathrm{Pr}-2\) and Pr-4 were second in overall importance with an index of similarity of 56.9 percent. The most dissimilar plots were Pr-1 and Pr-4, with a second group Pr-3 and \(\mathrm{Pr}-4\) all having indexes of similarity of 0.00 percent (Table 3.3.1-5). These determinations indicated a homogeneity of composition between \(\mathrm{Pr}-1\) and \(\mathrm{Pr}-2\) which was not found for any other combination of plots.

Succession is influenced by many natural and induced factors. However, within the Callaway site specifically, it is felt that several factors are of paramount importance in regulating the speed of succession. These factors include climatic conditions favorable to seed production and plant growth, vigor of seedlings established in the prairie areas, availability of fertile seed sources, distance of the seed source from the field, size and general morphology of the seeds of various species, and finally, the occurrence of good seed production years. These natural \(f\) ztors, in concert with seasonal composition changes, serve to arrect the successional trend of the Callaway Plant site both in composition and in time of development. A complete species table for prairie and forest vegetation was prepared (Appendix A-14).

Generally, the prairie sampling st-ions, both from the standpoint of ground layer and uncierstory, will progress toward a woody shrub-dominated cover cype in the foreseeable future. If undisturbed by man, fire or infestation, these sites potentially would develop into the oak-hickory forest associations characteristic of the vicinity of the Callaway Plant site.

\section*{Forest Vegetation Type}

In this section, the vegetation of each of three strata--ground layer, understory, and overstory--is described for each of four forest sampling stations.

Generally, the upland central hardwood types were predominantly white oak, black oak, and red oak. On the more moist sites, such as those found in Callaway County, Missouri, codominants or subordinates usually were found to include along with the oaks, white ash, black cherry, sugar maple, slippery elm, Ohio buckeye, shagbark, and bitternut hickory, with flowering dogwood and sassafras the most numerous understory species. Locally common species included shadbush and hop-hornbeam on the drier
sites and redbud and hornbeam on the more moist sites. Usually, these overstory and understory species occurred on residual soils developed from sandstone and shale but were also found on shallow limestone soils and areas covered with varying de.trs of loes.

At the conclusion of the discussion of each of the four sampling stations, an overall discussion of conclusions will be presented.

Forest Sampling Station \(\mathrm{F}-1\) showed remarkable diversity in floristic composition of the ground layer, with 41 distinct species present in the fall 1974 sampling. Several ground layer species were found to hold dominant positions in the \(\mathrm{F}-1\) sampling area. Fragrant sumac was the dominant, with a relative frequency of 33.3 percent, a relative dry weight of 21.82 percent, and an importance value of 25.15 (Appendix A-15). White oak and a carex (Carex rosea Schk.) were the second and third most frequent species, with relative frequencies of 6.66 and 7.77 percent, respectively (Appendix A-15). White oak had an importance value of 22.46 and the carex value was 16.56 (Appendix A-15). White ash and Virginia creeper (Parthenocissus quinquefolia L. Planch.) were fourth and fifth, with respective importance values of 16.34 and 12.41 (Appendix A-15). The remaining ground layer vegetation ( 36 species) had importance values lower than 10 .

Dry weight, an important indicator of species presence during the spring and fall sampling programs, was utilized for Forest Station \(\mathrm{F}-1\). The estimated dry weight per acre, based on 162.63 grams per 0.25 milacre , was \(40,657.50 \mathrm{grams}(89.64\) pounds per acre), as shown in Table 3.3.1-1. The Fall F-1 sampling station showed an overall decline in production of \(28,707.5\) grams (63.36 pounds) per acre.

Seasonal analysis of the dominant ground layer from Station F-1 indicated that the spring dominant was Virginia creeper (Appendix A-16). Both the spring and fall samples recorded 41 distinct species, with only 19 carryover species found during both surveys. A total of 63 distinct species was recorded from the ground layer of \(\mathrm{E}-1\).

The ground layer vegetation, as mentioned previously, exhibited a remarkable diversity in both spring and fall periods. This diversity was in part due to the open nature of the overstory and understory strata, discussed in the following section. The decline in herbage yield of the ground layer of Station \(\mathrm{F}-1\) was thought to be due in part to the lack of moisture available to the vegetation during the midsummer and fall of 1974. The ground layer vegetation is the most susceptible strata to moisture deficit. It was believed that succession within the ground layer is in the incipient or early pioneer stage and has not been taken over by the customary goldenrod-broomsedge cover type.

The understory of \(\mathrm{F}-1\) exhibited a surprising diversity of vegetative composition, with 24 distinct species represented. The predominant species of the understory in the vicinity of Forest Station \(\mathrm{F}-1\), both in importance and freguency, was flowering
dogwood (Cornus florida L.). Flowering dogwood comprised 14.1 percent of the understory, on the basis of relative frequency, with an importance value of 35.3 (Appendix A-17). White oak and hickory (Carya sp. Nutt.) were also dominant in the understory, with relative frequencies of 10.1 percent and 12.1 percent, respectively (Appendix A-17). Though the hickory had a higher relative frequency than the white oak, the white oak had a much higher density ( 45.0 ) than the hickory (37.0) (Appendix A-17). Subdominant species included white ash, fragrant sumac (Rhus aromatica Ait.), hop-hornbeam (Ostrya virginiana (Mill.) \(k\). Koch.), and black oak, with importance values of 19. \(6,19.5\), 14.9 , and 12.1 , respectively (Appendix \(A-17\) ). The remaining understory species included shadbush (Amelzanchier arborea (Michx. F.) Fern.), slippery elm, red cedar (Juniperus virginiana I.), red oak, winter grape (Vitis vulpina L.), dewberry (Rubus flagellaris Willd.), poison ivy (Rhus radicans L.), red mulberry (Morus rubra L.), summer grape (Vitis aestivalis Michx.), hackberry (Celtis occidentalis L.), Ohio buckeye (Aesculus glabra Willd.), virburnum (Viburnum sp. L.), black cherry (Prunus serotina Ehrh.), hawthorn (Crataegus sp. L.), sassafras (Sassafras albidum (Nutt.) Neew.), sugar maple (Aceor saccharum Marsh.), and grayback grape (Vitis cinerea Engelm.) (Appendix A-17). The vegetation of the understory amounted to an average of 23.0 trees and/or shrubs per quadrat, and by extension, 3,726 trees and/or shrubs per acre.

The great diversity of species within the understory of Forest Station \(F-1\) was explained by the fact that the overstory consisted of an open canopy that permitted the shade-intolerant understory species to flourish and become well established. It was also noted that many of the understory species within range of Station \(\mathrm{F}-1\), such as the grapes, ivy, cherry, sassafras, viburnum, mulberry, and dewberry provide outstanding forage sources as well as cover, concealment, and habitat for wildlife species.

Overstory in the Forest Sampling Station \(\mathrm{F}-1\) area was dominated by white oak (including species and varieties) with a cumulative basal area of 4,337.4 square inches. White oak held a relative frequency of 25.5 percent, a relative density of 28.8 percent, and an overall importance value of 132.8 (Appendix A-18). Two species of secondary importance included flowering dogwood and black oak, with importance values of 43.8 and 34.2 , respectively. The flowering dogwood had a relative frequency of 16.4 percent and a relative density of 25.2 percent, while black oak had a relative frequency of 14.5 percent and a relative density of 17.1 percent. Shagbark hickory and post oak were additional subdominant species having importance values in excess of 15.0 , namely 18.7 and 16.1 , respectively. The remaining species tallied for Forest Station F-1 included shadbush, black hickory, hop-hornbeam, red oak, slippery elm, red cedar, mockernut hickory and white ash. Statistically, there were 6.9 trees per quadrat, a total of 279.5 trees per acre. The basal area per quadrat was 348.5 square inches, which was equivalent to \(14,114.3\) square inches per acre.

Structurally, the overstory exhibited substantial stratification, partially due to the open canopy condition. Support for this conclusion, in addition to the sample data, were the increment cores taken and analyzed from the F-l station. The cores evidenced an age spread from 15 years for a slippery elm and flowering dogwood specimen, to 135 years for a hybrid oak specimen (Appendix \(\mathrm{A}-19\) ). Further support for the uneven-aged nature of the stand was found in the diameter classes of the increment core study. Three distinct groups were evident: a 2.0 to 2.5 -inch class, a 4.00 - to 7.00 -inch class, and a 12.01 - to 17.00 -inch class. The larger diameter class was composed chiefly of white and hybrid oaks. This size class differentiation indicated that the stand, though diverse, had not attained maturity, evidenced by the "regenerative" nature of the 2.0 -inch diameter species. A mature, even-aged stand was not expected to display such diversity; therefore, it was felt that Station \(F-1\), though showing several over-mature specimens, was not a mature, climax oakhickory forest stand. Succession, if allowed to proceed undisturbed for Station \(P=1\), would be expected to evolve to a closed canopy oak-hickory forest characteristically found within the region.

The ground layer of Forest Sampling Station F-2 had a high species diversity. A total of 38 distinct species was tallied during the fall 1974 sampling program. The dominant species of the ground layer at \(E-2\) during the fall was fragrant sumac, which had a relative frequency of 5.81 percent and an importance value of 21.18 (Appendix A-20). Virginia creeper was second in overall prominence, with a relative frequency of 9.30 percent and an importance value of 16.38 (Appendix A-20). The fragrant sumac was dominant, though its relative frequency was less than Virginia creeper, because its dry weight (19.30 grams) was greater than that of the Virginia creeper ( 8.90 grams ). The third and fourth species in order were white oak and elegant bedstraw (Galium cocinnum Torr. \& Gray), with importance values of 15.44 and 13.9 , respectively (Appendix \(\mathrm{A}-20\) ). The remaining species with importance values greater than 10 were a carex (Carex rosea Schk.) (13.52), wild bean (Strophostyles helvola L. Britt. (13.10), and hop-hornbeam (10.52) (Appendix \(\mathrm{A}-20)\). Ground layer vegetation with importance values less than 10 included 31 species (Appendix A-20).

Clippings from forest subplots during the fall 1974 sampling revealed a general decline in production of herbage from the dry weights obtained during the spring sampling period. This reduction in biomass was reflected in a comparison of the total weights, both spring and fall. In the spring, the sample station yielded 65,725 grams ( 145 pounds) per acre. The fall sampling yielded a production of \(31,387.5\) grams ( 69.20 pounds) per acre for a net loss of \(4,337.5\) grams ( 75.8 pounds) per acre of slightly greater than a 50 percent decline in production. It was felt that this decline in production of herbage was due to a particularly dry summer-fall period of 1974 that caused some of the species to be "phased out" due to lack of moisture.

The composition of Forest Station F-2 did not change radically. The spring dominant was Virginia creeper (Appendix A-21), while the fall dominant was fragrant sumac. In the spring, the second species of importance was the fragrant sumac and in the fall Virginia creeper was of second importance. By virtue of the large number of specifs (54) collected in the spring sample, no individuals other than those already mentioned had importance values above 10 (Appendix \(\mathrm{A}-20\) ). In the fall, species with importance values greater than 10 included white oak, elegant bedstraw, a carex, wild bean, and hop-hornbeam.

Comparison of the species diversity of the ground layer between the sprang and fall indicated that 54 separate species were recorded from the spring sampling and 38 species were recorded for the fa:l sample. A total of 19 carryover species were recorded for both sampling periods. The total species diversity for spring and fall from the ground layer of Station F-2 was 73 distinct species.

Understory at Forest Sampling Station F-2 had the broadest species diversity found to exist at any of the four stations. A total of 30 distinct species were recorded in the fall 1974 sampling program. The most important species, from the standpoint of importance value and relative density, was fragrant sumac, with figures of 25.9 and 18.3 percent, respectively (Appendix \(\mathrm{A}-22\) ). It was interesting to note, however, that flowering dogwood, white oak, and white ash each had greater relative frequency than fragrant sumac, with 9.0 percent, 8.3 percent, and 9.7 percent opposed to the value for sumac, which was 7.6 percent (Appendix \(\mathrm{A}-22\) ). Though these species were more numerous than fragrant sumac, their relative densities were much lower. That is to say, the density of fragrant sumac was higher in those subplots where it was found. This suggests that fragrant sumac had a clustered distribution rather than a random heterogeneous distribution within the sampled quadrats. The importance values of the subdominant species were flowering dogwood (22.8), white oak (18.6), and white ash (15.2) (Appendix A-22). The remaining species found in the subdominant category was sugar maple, with a relative frequency at 4.8 percent and an importance index of 11.5 (Appendix \(\mathrm{A}-22\) ). The remaining species recorded at Station F-2 had importance values less than 10 and included in order, hickory, snowberry, black oak, pasture rose, poison ivy, shadbush, slippery elm , black haw (Viburnum prunifolium L.), wild plum (Prunus americana Marsh.), red cedar, black cherry, prickly ash (Zanthoxylum sp. L.), sassafras, persimmon, bittersweet (Celastrus sp. L.), winter grape, grayback grape, black raspberry (Rubus occidentalis L.), hop-hornbeam, hawthorn, red oak, American bittersweet (Celastrus scandens L.), red mulberry, wahoo (Euonymus atropurpureus Jacq.), and catbrier (Smilax sp. L.). Statistically, Sampling station F-2 had 39.9 trees and/or shrubs per each 6.25 -milacre plot. This density was equivalent to \(6,463.8\) trees and/or shrubs per acre (Appendix A-22).

Forest Station \(\mathrm{F}-2\), with such a rich and interesting diversity of species, was an open canopy overstory. The open canopy
permitted a wide variety of shadu-intolerant species to prosper, species which in a closed canopy situation would not likely have survived. Successional:y, cumpetition among dominants in this sampling area was still or the preliminary stages, judying from the closely bracketed densities of the species comprising the understory at \(\mathrm{F}-2\). Forage spewies were abundant in the Sampling Station \(\mathrm{P}-2\) area. Specirts of impurtante inclucted fragrant sumac, shadbush, black haw. black cherfy. Pa, wifkn, Delsimmon, bittersweet, grapes, idack raspberry, tok mabei..., and catbrier. The F-2 understory wh a an excellent area for cover and concealment for wildlife sprecies and met all the -f-irements for a good habitat with considerable carrying ou-di.ity.

Overstory : getation within Fcresi Sampling Station F-2 was dominated by 13 species, of which white oak (including the species and varieties) was most dominanc ohite oak was by far the most ubiquitous species, with an imporzance value of 134.9 (Appendix A-23). White oak, further, had a relative frequency of 25.0 percent, a relative density of 46.7 percent and a cumulative basal area of \(2,859.7\) square inches (Appendix A-23). Shagbark hickory was the subdominant species, having second position in the stand with an importance value of 43.5 (Appendix A-23). Black hickory and red oak were the next prominent species in the stand, with importance values of 26.4 and 23.5 , respectively. It was interesting to noti that although red oak was fourth based on importance value, it ranked second based on basal area ( 515.9 square inches), which indicated that though red oak had a relative frequency of only 8.3 percent, those specimens tallied were all of a more mature diameter class than the other species of the stand. The remaining species having an importance value greater than 15.0 were black oak (22.2) and flowering dogwood (20.5) (Appendix A-23). The remajining components of the overstory from Station F-2 included, in order, shadbush, mockernut hickory, sassafras, post oak, black cherry, red mulberry, and persimmon. The overstory components amounted to 9.8 trees per quadrat or 396.8 trees per acre with basal areas of 282.7 square inches per quadrat and \(11,449.4\) square inches per acre.

The overstory of Station F-2 demonstrated st.atification, though in this sampling area, the strata were not found to be as distinct as observed for Stations \(\mathrm{F}-1, \mathrm{~F}-3\), or \(\mathrm{P}-4\). The oaks and hickories displayed similar dominance of the overstory of \(\mathrm{F}-2\), supported by shadbush, dogwood, black cherry, and red mulberry. The lack of observable distinct strata within the sampling area was further related to a lack of refined diameter classes taken for increment core aging (Appendix A-19). The size classes ran from 2.16 through 8.00 inches, with fairly uniform representation throughout. One separate class (11.18 inches) was found for a single white oak specimen. The age classes ran from 17 to 62 years without major breaks. Though this age and diameter class information indicated that forest stand F-2 was an uneven aged stand, the marked absence of clean-cut size and age classes indicated that this stand was becoming a distinct oak-hickory forest. The prominence of the understory vegetation (30 distinct species), coupled with the density, led to the observation
that the young overstory stand suppoit 2 a rich understory flora小y virtue of its open canopy. Shade tolerance and species competiticn wore among the prime factors noted serving to shape the Forest Station F-2. If undisturbed, succession will be expected to lead this stand toward the climax oak-hickory forest type characteristic of the area.

Torest Sampling Station F-3 exhibited a moderate species diversity within the ground layer stratum during the fall 1974 sampiing. Specifically, 28 separate species were recorded for P-3 in the "all. Fragrant sumac was the most dominant species recordcd, with an importance value of 26.73 (Appendix 24), a relative frequency of 6.32 percent and a density based on dry weight of 22.17 grams (Appendix A-24). A carex (Carex rosea Schk.) was the species of secondary importance in Station \(\mathrm{F}-3\), with an importance value of 25.31 (Appendix A-24). The third and fourth species, Virginia creeper and tick trefoil (Desmodium nudiflorum L. D.C.), held importance values of 25.26 and 19.93, respectively (Appendix A-24). Wild bean and horse-mint (Monarda russeliana Nutt.) were the fifth and sixth species of importance, with values of 15.09 and 12.26 in orcler. There were 22 additional species recorded having importance values lower than 10 (Appendix A-24).

Determination of dry weight values from plot clipping at Forest Station F-3 during the fall 1974 sampling revealed a marked decline in production of herbage from the dry weights obtained during the spring sampling period. This decline in biomass was noted in comparison of total weights for both spring and fall. During the spring, Station \(F-3\) yielded 44,300 grams ( 98.00 pounds) per acre. Data from the fall sample indicated production to be 27,145 grams ( 59.85 pounds) per acre based on 108.58
 a total of 17,155 grams ( 38.15 pounds) per acre. This decline in production was thought to be due largely to the general dry period from midsummer to fall 1974, in the vicinity of the \(\mathrm{F}-3\) site.

Species diversity comparisons of the ground layer between the spring and fall demonstrated that 38 species were recorded from the spring sample (Appendix A-25) and 28 species from the fall. A total of 17 carryover species were noted during the 1974 sampling effort. Total species diversity for the ground layer of Forest Station F-3 was 49 separate species. Spring and fall comparisons of species revealed that fragrant sumac remained the dominant species throughout the year. In the spring, virginia creeper, wild bean, tick tre oil, wild licorice (Galium circaezans Michx.), and grayback grape held the dominant positions. In the fall, a carex (Carex rosea Schk.), Virginia creeper, tick trefoil, wild bean, and horse-mint were the dominant species. This information indicates a stable ground layer vegetation.

The understory vegetation of Forest Sampling Station F-3 exhibited considerable diversity in species composition. Twentyfour species were present and were recorded during the fall 1974
sampling program. The dominant species recorded was fragrant sumac, which had an importance value of 70.7 (Appendix A-26). Flowering dogwood was the next most important species, with an importance value of 22.6 (Appendix \(\mathrm{A}-26\) ). Flowering dogwood had greater relative frequency ( 13.2 percent) than fragrant sumac ( 12.3 percent), which indicates that the sumac had a non-random grouped (clonal) distribution (Appendix A-26). Subdominant species with importance values greater than 10 included black cherry (14.7), black oak (13.4), hickory (13.1), and white oak including the varieties (10.8) (Appendix A-26). The supportive species also found within subplots at \(Y=3\) included, in order, sugar maple, sassafras, red oak, winter grape, pasture rose, dewberry, grayback grape, wild plum, red mulberry, red cedar, snowberry, hawthorn, white ash, summer grape, shadbush, hackberry, persimmon, and black haw. In total, there were 39.9 trees and/or shrubs per quadrat and \(6,463.8\) trees and/or shrubs per acre within Forest Station F-3.

The density and importance value of fragrant sumac (Appendix A-26) establish it as the dominant species in Forest Station \(\mathrm{F}-3\). Once again, however, \(a s\) in \(\mathrm{F}-1\) and \(\mathrm{F}-2\), the open canopy had permitted many species of the understory strata to compete for light and space. This, then, was the reason why the flora of \(\mathrm{F}-3\) was so varied. Forage sources were available and considerable in quantity at F-3 and should provide excellent habitat for wildife.

Overstory vegetation in the \(\mathrm{F}-3\) area was composed of 13 distinct species and was dominated by white oak (including species and varieties). White oak had a relative frequency of 26.9 percent, a relative density of 57.0 percent, a relative dominance of 58.3 percent, and an importance value of 142.2 (Appendix A-27). White oak had a cumulative basal area of \(3,175.1\) square inches, which was more than 2.5 times greater than that of black oak, the next forest dominant, with a basal area of \(1,296.3\) (Appendix A-27). Black oak had an importance value of 54.5 , which would have been a respectable figure were it not for the pervasive size and frequency of the white oak component of the stand. Additional elements of the overstory included flowering dogwood, black hickory (Carya texana Buckl.), and post oak, with respective importance values of \(25.2,23.2\), and 16.5 (Appendix A-27). The relative frequencies of these species were: flowering dogwood ( 17.3 percent), black hickory ( 11.5 percent), and post oak (7.7 percent) (Appendix A-27). The remaining elements of the overstory with importance values less than 15.0 were red oak (14.5), shagbark hickory (8.7), sugar maple (6.9), mockernut hickory (3.1), red mulberry (2.6), and grayback grape (2.6) (Appendix A-27). There were a total of 10.8 trees per quadrat, or 437. 4 trees per acre having a basal area per quadrat of 333.2 square inches and a basal area per acre of \(13,494.6\) square inches.

The physiognomy of the overstory exhibited considerable stratification, the oaks being the highest within the strata,
subtended by the hickories, maple, and red mulberry. This stratification is further supported from the increment core data (Appendix A-19), which show that for Sampling Station F-3, the oaks generally are older species, ranging from 38 to \(50+\) years, whereas most of the hickories range from 10 to 35 years, with one notable exception being a black hickory 61 years old. The diameters also indicated that this was an uneven-aged stand by virtue of the three size classes observed, namely 2 to 2.5 inches, 3 to 7 inches, and 8 to 13 inches. The oaks were well represented in the largest diameter class and the supportive community in the small and medium-size classes. Probably, then, this oak-hickory stand was not yet mature, judging from diameter classes and strata of the overstory, combined with the wide diversity of the understory species. Reproduction of selected overstory species was noted for the understory, indicating that the overstory was reproductively active and had not gone into the regenerative "stagnation" noted for some mature and overmature forests of the oak-hickory type. This forest in the future will develop into a closed-canopy oak forest type with mixed hickory interspersed. This successional trend is believed to be correct if no detrimental external influences interrupt the direction of the advancing stand development.

Forest Sampling Station F-4 demonstrated considerable diversity of ground layer species, possessing 29 separate species at the time of the fall sampling. Dominance was held by fragrant sumac, which had a relative frequency of 10.6 percent, a relative dry weight of 24.04 percent, and an importance value of 34.64 (Appendix A-28). Wild bean and sunflower (Helianthus strumosus I.) were second and third most frequent species, with relative frequencies of 9.09 percent and 3.03 percent, rospectively (Appendix A-28). The importance value of wild bean was 14.85 and for sunflower, 13.33 (Appendix A-28). Pasture rose and black oak were fourth and fifth in order, with importance values of 13.27 and 11.93 (Appendix A-28). A carex (Carex rosea Schk.) and elm-leaf goldenrod (Solidago ulmifolia Muhl.) were the last species having importance values greater than 10.0 , namely, 10.33 and 10.3 , in order. The remaining vegetation ( 22 species) of the ground layer had importance values less than 10.0 .

Dry weight, utilized in this study, was an important indicator of species presence, both in spring and fall samples. For F-4, the estimated dry weight based on 167.40 grams per 0.25 milacre was 41,850 grams ( 92.27 pounds) per acre, as shown in Table 3.3.1-1. An overall decline in productivity was noted for Station \(F-4\). This reduction in biomass was 24,270 grams (53.73 pounds) per acre.

Changes in seasonal composition of the dominant flora of \(F-4\) were noted. The spring dominant, Sampson's snake root (Psoralea psoralioids [Walt.] Corry var. elandulosa [Ell.] Freeman) (Appendix A-29) was replaced by fragrant sumac in the fall sampling. The spring subdominants fragrant sumac, black-jack oak, bur oak hybrid (Quercus macrocarpa Michx. V Q. marilandica), and
the pasture rose shifted importance with the fall samp. e subdominants, wild bean, sunflower, pasture rose, black oas, a carex (Carex rosea Schk.), and elm-leaf goldenrod. The spring sample recorded 44 distinct species, with 20 carry-over species to the fall sample, which comprised 29 species. Totally, 53 species were present for the spring and fall samples at Station F-4.

The vegetation composing the ground layer at F-4 exhibited a moderate diversity, somewhat greater in the spring than in the fall. The understory and overstory of \(\mathrm{P}-4\) support the contention that there was an open canopy condition existing within the F-4 area. The "openness" of the canopy was not as pronounced as that found at \(F-1\) or \(F-2\), which explains why the diversity of species based on shade intolerance was less at Sampling Station \(F-4\). The marked decline in biomass production recorded for F-1 through F-4 supported the belief that the extensive dry midsummer and fall of 1974 caused loss of herbage through wilt and lack of growth generally. The ground layer vegetation was most subject to moisture changes and by virtue of that fact reflected the moisture deficit in terms of reduced or arrested production. Successionally, F-4 will continue to proceed toward the woody perennial stage if left undisturbed.

Vegetation comprising the understory at Forest Sampling Station F-4 demonstrated a wide diversity in composition, with 25 distinct species represented. The most predominant species in the understory of F-4 recorded during the fall 1974 sampling was fragrant sumac, which had an importance value of 44.9 (Appendix A-39). Fragrant sumac had a relative frequency of 13.5 percent and a relative density of 31.4 percent (Appendix A-30). Three other species comprised the supporting subdominants having importance values greater tran 10. Black oak was second in prominence, with an importarice value of 31.7. White oak and flowering dogwood were third and fourth in rank, with respective importance values of 27.0 and 11.8 . The remainder of the species recorded for Station \(F-4\) had importance values less than 10 , and in order included red oak, white ash, hophornbeam, hickory, suyar maple, shadbush, black cherry, pasture rose, grayback grape, winter grape, hawthorn, persimmon, red cedar, hybrid oak, post oak, dewberry, red bud, wahoo, wild plum, sassafras, and slippery elm. The understory was developed to the point at which there were 25.7 trees and/or shrubs per quadrat and \(4,163.4\) trees and/or shrubs per acre.

A diversity of 25 species indicates, as in the other understory Sampling Stations F-1 through F-3, that the forest in which these species comprised the understory is not a closed canopy type. Indeed, with as much diversity as was recorded for the understory, considering density alone, the overstory was quite open, with many "breaks" in the cover. The open canopy has permitted the understory to develop to a high degree. Being highly diverse, Sampling Station F-4 had not established welldeveloped formal successional patterns. Discounting the
dominant species somewhat, consiferation was \(\subset\) ide e toward the specific vegetative components \(t\) t serve 3 to furn foundation for the strata.

Jpecies from the understory of \(\mathrm{F}-4\) that provided forage to wildlife populations included hickory, shadbush, black cherry, grapes, hawthorn, persimmon, oaks, dewberry, wild plum, and sassafras. These edible species provided excellent cover and concealment habitat, as well as food, to many wildlife forms.

Overstory vegetation in the area of Porest Sampling Station \(F-4\) exhibited moderate diversity, with 11 species represented. The dominant species was white oak (including species and varieties), with an importance value of 92.7 (Appendix A-31). Black oak was the second species, having an importance value of 88.0 (Appendix A-31). However, if judged solely on basal area, black oak, with \(2,115.3\) square inches, would have been first, followed by white oak, with \(1,241.9\) square inches. White oak was more important because of its higher frequency of occurrence ( 28.6 percent) as opposed to that of black oak ( 23.8 percent). Post oak was the species holding third position, with a relative frequency of 21.40 percent, a relative density of 23.1 percent, and an importance value of 65.0 (Appendix A-31). The last species holding an overstory importance value greater than 15 was flowering dogwood, with 15.6 (Appendix A-31). The remaining species were tallied for Forest Station F-4 and included, in order, sugar maple, black-jack oak, black hickory, shagbark hickory, slippery elm, shadbush, and white ash. Physically, the overstory comprised 5.7 trees per guadrat, or 230.9 trees per acre. The basal area was 290.5 square inches per quadrat, yielding \(11,765.3\) square inches per acre.

The overstory of Forest Station F-4 showed a pronounced stratification, dominated by six species of oak, with a supportive strata composed of maple, dogwood, and hickories. The increment cores taken from F-4 added further insight to the stratification. Once again, three predominant diameter classes ( 2 to 2.5 inch, 3 to 9 inch, and 10 to 16 inch) emerged from the sampling station. The most direct correlation between age and diameter class-species relationship was observed for \(\mathrm{F}-4\). Three age classes ( \(30+\) years, 60 to 70 years, and over 100 years) supported the supposition that this was yet another example of an uneven-aged stand. The open canopy, the predominance of seedlings of overstory species within the understory, and the age structure data provided emphasis to this determination. The domination by oak species within this station, coupled with the age determinations of the cores, indicated that \(P-4\) was a sub-climax oak-hickory forest type. If this stand were undisturbed, it would in time develop to a more even-aged, nature oak-hickory association with a gradual decline in supportive species such as dogwood, shadbush, and possibly white ash.

The composition by species of Forest Sampling Stations F-1 through P-4 was varied, but most widely diverse in the ground layer. Less
diversity was found in the understory, with the overstory remaining fairly stable. Ground layer data were presented in Table 3.3.1-6, understory data in Table 3.3.1-7, and overstory dat I in Table 3.3.1-8. Species most common in the ground layer included Virginia creeper, fragrant sumac, white oak seedlings, and wild bean. For the understory, white oak, hickory, white ash, fragrant sumac, hop-hornbeam, and black oak were the most commonly occurring species. In the overstory strata, white oak was the overall dominant, with flowering dogwood, shagbark hickory, black oak, black hickory, and red oak also usually present. Comparisons of spring data for Stations \(F\)-l through F-4 are presented in Table 3.3.1-9.

Though a seasonal "phase" change was observable for ground layor vegetation in \(\mathrm{F}-1\) through \(\mathrm{F}-4\), no such temporal relationship occurred within either the understory or overstory sampling areas. Generally, the openness of the overstory canopy was responsible for the well developed and diversified understory and ground layer vegetation. Succession, particularly in the ground layer, was difficult to describe, with stages varying from incipient oldfield to areas in which the ground layer was substantially interspersed with understory woody specimens. In the understory, however, successional pathways were more distinct, with a profusion of tree seedlings aud saplings of overstory species present and usually dominant within the understory stratum. Useful indicator species for disturbance were compiled by Dr. D.B. Dunn (Appendix A-13). These species were considered transgressive or transitional species characterized as "invaders" or decreaser species that indiczted a stress to the vegetation. Being highly competitive for space, these species \(h\), ye been found to frequent all types of disturbed sites. Particuiar reference in Appendix A-13 is made to species found in or among both the prairie and forest samping locations. In addition to the table of transitional species (Appendix A-13), a coml'? sites and strata is in luded (Appendix A-14). This table identifies the species by common and scientific name, by the location of the sampling station in which it was found, and in what strata it was observed.

The understory of Forest Stations F-s through F-4 exhibited a marked diversity of species, which was somewhat surprising considering the age of the overstory stratum. This diversity may have been a response to pyric or moisture stresses of the past in which the understory was eliminated and subsequently new species invaded the stressed area. Kucera et al. (1963) indicated that fire (and, by extension, moisture stress) could retard development of woody species growth in prairie locations. Further, subsequent to a fire (or moisture) stress, relatively high productivity was experienced. The accumulation of understory litter was responsible for developing a maximum fuel load, which would increase the effectiveness of fire in controlling woody growth of ground layer or understory species. This information added further support to the hypothesis that in areas \(F-1\) through F-4, some environmental stress of the past brought about the remarkable diversity of species found in the forest sampling areas.
merstory vegetation of the Callaway County area has been described in the past. Minkler (1971) has described the composition of a Misscuri forest of the past as chiefly red gin, black gum, white oak, black oak, hickories, white ash, red maple, elm, hackberry, and cottonwood. His inf rmation was drawn from a site evidently more mesic than the Callaway Plant site area based on the ied gum, black gum, and cottonwood species. However, the data indicated that this forest of the fast had a balanced structure with a great diversity of species and age classes. Minkler (1971) stated that he considered the ability of overstory specier -o tolerate saturated soils and standing water to have litt. e effect in determining species composition. He felt rather that sfade tolerance and growth rate combined with past occurrences created openings in the fores. His observations were ound to fit the data very well and supported the contention that some stress had occurred during the past that led to the profusion of species observed in the for st sampling stations.

The overstory was influenced by edaphic factors, as observed in the field. The Menfro soil series, d silt-loam deep loess, extended from the edges of the river bluffs and provided an excellent medium for establishment of forested stands. Based on early land recurds from 1816 and 1817 (Wuenscher and Valinnas, 1967; , the major dominant forest species in Missouri that were characteristic of this soil type were, in order of importance, white oak, sugar maple, black حak, hackberry, white ash, and assorted hickories. Specifically, for Callaway County, the dominant species and their importance alues were white oak (82), black oak (37), hickory (35), sugar maple (35), and elm (24) (Wrenscher ana valionas, 1967). It was pointed out that during the distanc past, the Kansan glaciation extended into Callaway County, leaving soil deposits that have, over the years, provided the edaphic foundation of the current vegetation of the counti and, ndeer, the Callaway plant site specifically.

Characteristicaily, the overstory of the forest sampling stations was composed of white oak found on all upland sites, slopes, and ridgetops except, foz ver: xeric or sha:low soil ridges (Duncan and Ellis, 1965 ). Assoclated species, according to Duncan and Ellis (1965), generally were found to include post oak, sassafras, persimmon, black cherry, and white ash incluaing various xerophytic hickories. For the drier sites, post oak and black oak were observed to occur but Lecause of their intolerance is competition on bottom soils, they urially weze relegated to poorer sites. Duncan and Ellis (1969) noted that black oak, due to its extreme shade intolerance, usually was not found to succeed itself unless major disturbance occurs in the forest canopy. It was further iliustrated that post oak-black oak stands were generally found as second growth communities following cutting or other major disturbances (Duncan and Ellis, 1967).

Successionally, it was determined i mat the forest stand types located at Forest Sampling Stations F-1 through P-4 were relatively young, based on diameter classes and the longevity of the dominants determined from the increnint core study. Additionally, all stands were found to be une/t l-aged, based on diameter class and the observed physiognomic stratification present in the subplots. Characteristic of tha more morure overstory was a decrease in the diversity of the species comprising the stand. The overall direction of the forest stands, if undisturbed, is toward a mature, even-aged stand having white oak as the dominant, black oak and various hicko.'ie: as subdominants, and a mixture of post oak, black jack oak, Llack hickory, red oak, and flowering dogwood. The canopy openings in the overstory were expected to close gradually, eliminating ail but the woody shade-tolerant understory species, which gracually will "fill" the gaps in the overstory.

Comparisons were undertaken for the ground layer to determine the index of similarity for the various forest sampling stations (Table 3.3.1-6). Forest Stations \(\mathrm{F}-2\) and \(\mathrm{F}-3\) were the most similar with an importance value of 77.79 (Table 3.3.1-6). In decreasing order of similarity, the remaining groups were \(\mathrm{F}-1\) and \(\mathrm{F}-3\) ( 72.0 percent), \(\mathrm{F}-1\) and \(\mathrm{F}-4\) ( 70.46 percent), \(\mathrm{F}-3\) and F-4 ( 61.98 percent), \(F-2\) and \(T-4(61,00\) percet 4\()\), and finally \(\mathrm{F}-1\) and \(\mathrm{F}-2\) ( 60.43 percent) (Table 3.3.1-6). The reason there was such a small spread in the indices of similarity (77.79 to 60.43 percent) was believed to be the prominence of four species, a carex (Carex rosea Schk.), fragrant sumac, wild bean, pasture rose, and, at three of the stations, Virginia creeper. The relatively clustered indices of similarity indicated that the ground layer generally was fairly representative throughout the forested sampling areas.

Index of similarity comparisons for the understory of the forest sampling stations (Table 3.3.1-7) was found to have a clustered distribution. Sampling Stations F-3 and F-4 were the most closely similar stations, with an index of similarity of 89.6 percent. Next in order of similarity were Siations F-1 ard F-4, with an index of similarity of 88.9 percent (Table 3.3.1-\%). The species of inportance throughout the understory were fragrant sumac, flowering dogwood, white ouk, and white ash. The most dissimilar sampling stations were \(F-1\) and \(F-3\), with an index of similarity f 78.1 percent (Table 3.3.3-7).

The dominance of white oak, as previously discussed, was common to all of the forest overstory sampling stations. Utilizing the species dominance information, an index of similarity based on frequency, density, and Jominance values was developed for Stations \(\mathrm{F}-1\) through \(\mathrm{F}-4\) (Table \(3.3 \cdot 1-8\) ). Based on this data, \(F-2\) and \(F-3\) were most similar with an index of 93.6 percent (Table 3.3.1-8). Next in order, were \(F-1\) and \(F-3\) ( 92.3 percent), \(E-1\) and \(F-4\) ( 90.3 percent), \(F-1\) and \(F-2\) ( 90.1 percent), and \(F-3\) and \(F-4\) ( 87.5 percent) (Table \(3,3,1-8\) ). The forest sampling stations with the lowest index of similarity were \(\mathrm{F}-2\) and \(\mathrm{F}-4\) ( 67.4 percent) (Table \(3.3 .1-8)\). The overstory vegetation common to all sampling
stations inclucza four oak species, three hickory species, sugar maple, shadbush, flowering dogwood, and hop-hornbeam.

Many factors, natural and induced, have served to alter the composition of the vegetation in Callaway County. These factors have greatly influenced the vegetation by altering the succassion rates constantly at work. For the county generally, and the site specifically, the vegetation, if removed from influence by man, would develop to the characteristic oak-hickory forest assoc. ation previously discussed.
3.3.1.2 Soili:

The chemica, analysis results of the 10 soils at the permanent sampling stations are snown in Taile 3.3.1-10. In general, soils in the agricultural areas (Pr-1, Pr-2, Pr-3, and Pr-4) have a higher concentration of plant nutrients than those in the forested areas \((F-1, F-2, F-3\), and \(F-4)\). This is expected since forests in this area do not generally receive fertilizer applications. Concerning the heavy metals, there does not appear to be any clear relationship between vegetative type and concentration, with the possible exception of Prairie Sampling Station Pr-1. This station has a greater abundance of heavy metals, consisting predominantly of lead, chromium, and manganese, than any other permanent sampling station. In general, the chemical composition of tho soils of permanent sampling stations does not appear unusual.

The results of the herbicide and pesticide residual analyses of the soils are shown in Table 3.3.1-11. Of these resicuals examined, D ane appear to be abundant.

TABLE 3.3.1-1
SOME CHARACTERISTICS OF GROUND TAVER VEGEYATION \({ }^{a}\) BASED ON PLOT CLIPPINGS AT THE CALLAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI, FALL 1974
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Prairie} & \multicolumn{4}{|c|}{Forest} \\
\hline & PR-1 & ER-2 & PR-3 & ER-4 & \(\mathrm{E}-1\) & F-2 & F-3 & F-4 \\
\hline \multicolumn{9}{|l|}{Estimated Dry Weight/acre} \\
\hline grams pounds & \[
\begin{array}{r}
1,522,380.00 \\
3,356,84
\end{array}
\] & \[
\begin{array}{r}
1,012,950.09 \\
2,233,55
\end{array}
\] & \[
\begin{array}{r}
940,500,00 \\
2,073,80
\end{array}
\] & \[
\begin{array}{r}
1,271,275,00 \\
2,303.16
\end{array}
\] & \[
\begin{array}{r}
40,557,50 \\
89,54
\end{array}
\] & \[
\begin{array}{r}
31,387.50 \\
69.20
\end{array}
\] & \[
\begin{array}{r}
27.145 .00 \\
59.85
\end{array}
\] & \[
\begin{array}{r}
41,850.00 \\
92.27
\end{array}
\] \\
\hline Average & & \[
\begin{array}{r}
1,186,776 . \\
2,616 .
\end{array}
\] & grams pouxds & & & \[
35,25
\] & \begin{tabular}{l}
00 grams \\
7 pounds
\end{tabular} & \\
\hline Number of species identified in subplots (including bybeids) & 17 & 42 & 35 & 13 & 41 & 38 & 28 & 29 \\
\hline Average number of species occurring in each subplot & & & & & & & & \\
\hline (15 subplots per station) & 2.93 & 11.43 & 8,93 & 2.68 & \(5.6 z\) & 5.37 & 4, 93 & 4.12 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{a}\) includes berbaceous species and wook'y plants of less than 20 inches in height.
}
TABLE 3.3
SOME CHARACTERISTICS OF GROUND LAYER VEGETATION \({ }^{\text {G }}\) BASED
ON PLOT CLIPPINGS AT SAMPLING STATIONS OF THE
CALLAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI,
MAY - JUNE 1974
Charactezisticg
Number of species
identified in
subpiots
(inclucing hybrids)
Average number of
species occurring
( 16 subplots fer
station)
Includes herbaceous species and woody plants of less than 20 inches in height.

COMPARISONS WITHIN AND BETWEEN SAMPLING STATIONS BASED ON CALCULATED IMPORTANCE VALUES \({ }^{\text {G }}\) FOR MAJOR COMPONENT SPECIES OF GROUND LAYER VEGETATION \({ }^{b}\) OCCURRING IN SUBPLOTS OF PRAIRIE HABITATS, CALIAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI, FALL 1974

Species
Achillea millifolium L .
Agrostis alba L.
Ambrosia bidentata Michx.
Andropogon virginicus L.
Aristida oliganthe Michx.
Aster pilosus willd.
Bromus sp. is.
Carex glaucodea Tuckerm.
Carex sp. L.
Convolvulus sepium \(L\).
Croton capitatus Michx.
Crotonopsis elliptica willd.
Diospyros virginiana L.
Festuca elatior L. 132.94
Juncus tenuis Willd.
Lespedeza stipulacea Maxim
Lespedeza striata (Thunb.) H. SA.
Lespedeza violacea (L.) Pers.
Melilotrs alba Desr.
```

Moss sp.

```

Muhlenbergi i schreberi Gme1.
Panicum lanuginosum El1.
Paspalum ciliatifolium Michx.
Paspalum laeve Michx.
phleum pratense L.
Poa compressa L.
Foa pratensis L.
Fotentilla simplex Michx.
Prunella vulgaris \(L\).
Pycnanthenum tenuifolium Schrad.
\begin{tabular}{|c|c|c|c|}
\hline \(\overline{\mathrm{Pr}-1}\) & \(\underline{\mathrm{Pr}-2}\) & Pr-3 & \(\mathrm{Pr}-4\) \\
\hline & 1.79 & & \\
\hline & 39.91 & 32.04 & \\
\hline & 5.45 & 4.84 & \\
\hline & 2.01 & & \\
\hline & 11.78 & 1. 55 & \\
\hline & 2.87 & 4.85 & \\
\hline & & 1.50 & \\
\hline 6.49 & 3.60 & & \\
\hline & 2.69 & & \\
\hline & 1.26 & & \\
\hline & 4.95 & & \\
\hline & & 1.40 & \\
\hline & 1.28 & & \\
\hline 132.94 & & 4.03 & 136.20 \\
\hline & 1.86 & 4. 54 & \\
\hline 4.25 & 5.02 & 8.80 & 14.14 \\
\hline 8.56 & 11.66 & 10.39 & 7.08 \\
\hline & & & 7.00 \\
\hline & & & 14.25 \\
\hline
\end{tabular}

* *


\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\square\) - \(2-20\) & & & & Sampling statious & - \\
\hline  & & P=1 & Fx-2 & \(\mathrm{r}=3\) & \#-4 \\
\hline  & & & 1.73 & 3.01 & \\
\hline Agrestis alta L . & & & 27.05 & 35.69 & \\
\hline Ambrosis arteetaffotte : & & & & & 3.24 \\
\hline Aubrusta bideatata Mschix. & & 2. 210 & 2.85
1.05 & 3.18
1.63 & 380 \\
\hline  & & & 12.39 & 15.24 & \\
\hline Cavex nibolutencens \$ctivest. & & & 20. 50 & 1.09 & \\
\hline Cweex bustit Nech. & & 3.30 & 10.37 & 10.72 & \\
\hline Carex slaycodes Tuckurs. & & 15,24 & 7, to & 3.42 & 3.24 \\
\hline Cersst tum yiscosum 1 . & & 2.17 & 4.83 & 5. 69 & \\
\hline Crutcer menanchegpmis Mithx- & & & 2.88 & 0.33 & \\
\hline  & & 41.02 & 2.10 & & \\
\hline Eleachst to cmajtessa snit. & & & & 1.83 & \\
\hline Eleocharls tneuty (\%ilis.) Schutes & & & 0.83 & & \\
\hline Erigeros amels [L.) Pers. & & & 6,43 & 3.02
5.58 & \\
\hline Eeigeron strisosus thith. & & & \% 2.20
0.47 & 3.58
0.91 & 123.83 \\
\hline Peataea aruminacea Schrnh, of F. elatior L.
Fragata viretaiame Bucheme. & & 421.31 & 3.16 & 0.21 & \\
\hline Jomese Lexuls Estid. & \(=\) & 9.19 & 1.39 & 5.66 & \\
\hline Lectuen camatomsto L. & & & 1,25 & 1.1? & 1.64 \\
\hline terpedena stipulaces Maxim. & & 1.44 & 5.53 & *,78 & 11,04 \\
\hline  & & 4, 36 & Q.81 & 9.53 & 1.67 \\
\hline Fanicue Lanag tnosum E11. & & . 95 & 81.99 & 9.23 & (1.6) \\
\hline Penitum perlangum Nash & & & 31.63 & [6. 61 & \\
\hline Plantago efiginice t. & & 1.09 & -,90 & 3. 33 & \\
\hline Foe pratensis L. & & 6.19 & 99.57 & 35.76 & \\
\hline Potentilia stapliak Midis. & & 8.35 & 0.43 & & 1.62 \\
\hline Prumetis relentis L. & & 3.37 & 4.23. & 0.53 & \\
\hline  & & 2.80 & 4.9.97 & & \\
\hline  & & 2.20 & 3.58 & & \\
\hline sotamm cacotiemae i. & & & 8.49 & 4. 213 & 14, 76 \\
\hline Sottdago up. & & & 4. 85 & 6.10
5.53 & 5.79 \\
\hline Straphostyles umbellata (Mhit.) Britt.
8 menthetteatios orbleulate Moench. & & & \begin{tabular}{l}
0.89 \\
\hline 1.59
\end{tabular} & 5.53
0.36 & \\
\hline Trifoliua canpestre Setreh. & & & 2.91 & 1.29 & 5.52 \\
\hline trifoltime pravesse L . & & 2.22 & 1.58 & 1.to & \\
\hline Trifoltue revees L
Yernomis sp. & & \(\therefore 29\) & 1.26 & 6.90 & \\
\hline Vernomis as. & & Leutur & 4. 56 & 6. 6.6 & \(\xrightarrow{\square 1}\) \\
\hline totals & & 195.62 & 194. 32 & 197.60 & 187, 34 \\
\hline Comparfanan betwere sampling acat toms & Sumation of timportamce valuen for spectes comm to beth axet 1.0 . & & \[
\begin{aligned}
& \text { Sumation } \\
& \text { for arectes yoe }
\end{aligned}
\] & of teportance values ursting st onty sor station &  \\
\hline \(\mathrm{Pr}-1 \mathrm{va}, \mathrm{Pr}-2\) & 271.30 & & & 148.68 & 60.57 \\
\hline \(\mathrm{Pr}-1^{\mathrm{Nr}}\). Pr-3 & 267.65 & & & 123.57 & 6tse 87 \\
\hline  & 305.74
368.29 & & & 77.22
23.63 & \\
\hline \(\mathrm{Pr}_{\mathrm{Ft}}\) & 2738.31 & & & 153.35 & 34. 82 \\
\hline 19-3 ys, Pr-4 & 222. 38 & & & 162.56 & 57.71 \\
\hline
\end{tabular}


total try wight of enl specie
Coleutatied is sumation of inportance values for apectes cirmon to asy two gtatione i 100
-
COMPARIGONS WITHIN AND BETWEEN SAMPLING STATIONS RASED ON CALCULATED TMDORTANCE VALUES FOR HAJOR COMPONEET SPECIES AABITATS L1. 1974
\(\frac{7!-4}{}\)
700,0
20.6


\footnotetext{



"01-3
}
TABDE 3.3.1-6

74
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{E}-1\) & F-2 & \(\bar{F}=3\) & E-4 \\
\hline 6. 36 & & & 4.13 \\
\hline 3.75 & 5, 86 & 9.22 & 3.92 \\
\hline 5.17 & & & \\
\hline 15,56 & 13.52 & 25.31 & 10.33 \\
\hline 6. 03 & & & \\
\hline 4,34 & & 3.53 & 7.78 \\
\hline 5.72 & & & \\
\hline 8,16 & & 19.93 & \\
\hline 16.34 & & & \\
\hline 3.54 & 3.82 & 4.05 & \\
\hline 4.00 & 13.94 & 4.42 & \\
\hline 13.33 & & & \\
\hline & 2.4B & & \\
\hline 3. 20 & & & 9.19 \\
\hline & 2.94 & & \\
\hline 12.26 & & & 9.73 \\
\hline & 8.80 & & \\
\hline & 10.52 & & \\
\hline 9.76 & & & \\
\hline 3.61 & & & 3,35 \\
\hline & 3.89 & & \\
\hline 12.41 & 16.38 & 25.26 & \\
\hline & 4.23 & 3,68 & 5.57 \\
\hline 2. 71 & 5.22 & 3.55 & \\
\hline 22.46 & 15,44 & 3, 94 & 3.86 \\
\hline & 4.31 & & \\
\hline 5.30 & & & \\
\hline 4.79 & & & 11.93 \\
\hline 25.15 & 21.18 & 26,73 & 34.64 \\
\hline 7.48 & 2.87 & 5.72 & 13.27 \\
\hline 3.44 & & & \\
\hline 3.94 & 7.49 & & 10.03 \\
\hline 8. 38 & 13.19 & 15,09 & 14.85 \\
\hline & 5.07 & & 7.21 \\
\hline 218.19 & 61.06 & 149.53 & 49.79 \\
\hline
\end{tabular}

\section*{}
Summation of impertance Valuem
for Speates common to toth Stations

229,20
264,79
259,29
241,63
192,44
185,54
\[
\begin{aligned}
& \$ 5 \cdot 581 \\
& t+2 \cdot 267
\end{aligned}
\]
\({ }^{\text {c calculated }}\) as \(\frac{\text { Number of points of occurrence of the specigs }}{\text { Number of points of occurrence of all gpecies }}+\frac{\text { Total dry weight of each species }}{\text { Total dry weight gf all gpecies }}\)
\({ }^{\circ}\) tneludes all species for which the percent frequency ( 16 subplots) and Total dry weight of each species Total dry welght of all species 100 (relative dominance (

\footnotetext{
Caleulated as Summation of importance values for species sommon to any two stations
}

\(\mathrm{F}-1\) vs. \(\mathrm{F}-2\)


\(\begin{array}{lll}\mathrm{F}-2 & \mathrm{vs}, & \mathrm{F} \\ \mathrm{F}-3 & \mathrm{vs}, \mathrm{F}-4\end{array}\)
Compacisons between
Sampling stations
Sampleng stations

Species
Acer stecharum Marsh Amelanchier arborea (Michx. E.) Fern. Carya sp. Nutt

Celastrus Cornus florida
\(\frac{\text { Cornus florida }}{\text { Crataeguis sp. L. }}\)
Diospytos virginjana L .
Evaxinus amevicana Juniperus virginiana L .
Mosus rubra L. Prumus \(\frac{\text { Omericana Marsh. }}{\text { Prina }}\)

Prunus Serotina Ehrh.
quercus \(\frac{\text { alba } 4 \text {. and var. }}{x \text { fornowi. Tre } \text {. }}\)
guetcus
x fernowi Trel.
fubra L. and var
ghexcus \(\frac{\text { stellata wang }}{\text { gelutime }}\)
\(\frac{\text { cuercus }}{\text { velutima tem. }}\)
Rhus aromatica Ait.
Rhus radicans ly.
Rhus radicans is.
Rosa trarolina i.
Rubus Elagellaris Willo.
Nees
assafras albidum \{rutt.
Symphordcarpos sp, puham
Vibarnum prunifolitam L.

Vitis aestivalis Nichx
\(\frac{\text { Vitis }}{\text { Vitis }} \frac{\text { cinerea }}{\text { vuipina }} \mathrm{E}\).
TUTAL
Compariaons between
Sampling Stations
mon m \# ?



TABLE 3.3.1-7 (continued)
Calculated as Number of points of occurvence of the species \({ }^{\text {Number of points of occurrence of all species }}+\frac{\text { Total dengity of each species }}{\text { Total density of all species }}\)
\({ }^{\text {b }}\) Includes all species for which the percent \(\mathrm{frequency} \mathrm{( } 16\) subplots) and Total density of \(\frac{\mathrm{c}}{\mathrm{Total} \text { density of apecies }}\) all species
\({ }^{c}\) Calculated as \(\frac{\text { Summation of importance values for species common to any two stations }}{\text { Summation of the total importance values for the same stations }}\)
(each sampling station)
1 spec
TABLE 3.3.1~8

\({ }^{C}\) Caiculated as \(\frac{\text { Summation of importance values fot species comvon to any two atations }}{\text { Summation of the total importance values for the same stations }}\)
relative doAsinancel)
exicended a value if \(\qquad\)


\({ }^{5}\) Imeludes all berbarenen sperier and woady pienns of lese theo 20 faripes is betgh


CHLORINATED HYDROCARBON CONCENTRATIONS OF THE SOIL. AT
THE UNION ELECTRIC CALLAWAY PLANT, UNITS 1 AND 2 SITE Paxts Per Million (w/w)

(1)
 000000000000000
\(m\) NmmososincnnNNNN 00000000000000 \(\checkmark\) マ

 ODODODODODODODO

```

 000000000000000
    ```

        OODOODÓODODOOOO

\(a_{\text {}}\) Indicates less than, if present at all
No detectable residues of \(2,4-\mathrm{d}, 2,4,5-7\)
level greater than 0,05 ppm.
\[
\text { TABLE } 3.3 .1-11
\]
\[
\begin{aligned}
& \text { CHEMICAL CHARACTERISTICS OE THE SOIL AT THE } \\
& \text { ON ELECTRIC CALLAWAY PLANT, UNITS } 1 \text { AND } 2 \text { SI }
\end{aligned}
\]
\[
\begin{aligned}
& \text { CHEMICAL CHARACTERISTICS OF THE SOIL AT THE } \\
& \text { UNION ELECTRIC CALLAWAY PLANT, UNITS } 1 \text { AND } 2 \text { SITE }
\end{aligned}
\]
\[
\begin{array}{lll}
8 & 8 & 8 \\
8 & 0 & 8 \\
8 & 0 & \dot{4} \\
\underset{\sim}{2} &
\end{array}
\]
\({ }^{\text {All }}\) results are expressed in \(\mathrm{mg} / \mathrm{kg}\) unless otherwise specified.

\subsection*{3.3.2 MAMMALS}

\subsection*{3.3.2.1 Small Mammals}

Small mammal densities determined during the spring and fall sampling periods for the four permanent sampling stations located in forest habitats are presented in Table 3.3.2-1.

Short-tailed shrews were present at all four sampling stations during the spring survey but were found only at Sampling Stations \(\mathrm{F}-1, \mathrm{~F}-2\), and \(\mathrm{P}-3\) during the fall survey. The shrew recaptures at Station \(\mathrm{F}-2\) during the spring survey and at Stations \(\mathrm{F}-1, \mathrm{~F}-2\), and \(F-3\) during the fall survey were unusual occurrerzes, because shrews are not attracted by the bait used in the trapping program. However, shrews are often captured when they blunder into traps, or what is more likely, when they enter the traps to prey on insects attracted by the peanut butter/oatmeal bait. Shrews have poorly developed senses of sight and smell but well developed senses of touch and hearing (Schwartz and Schwartz, 1959).

Short-tailed shrew densities at the forested stations are probably about normal. Schwartz and Schwartz (1959) list "normal" population densities as 1.4 per acre. However, short-tailed shrew densities may exceed 25 animals per acre during periods of peak populations. In addition to preying on insects, shorttailed shrews also eat mice, which they kill with a salivary poison. Thus, they may be at least partially responsible for the low densities of white-footed mice in forest habitats.

One least shrew was captured at Sampling Station \(\mathrm{F}-1\) during the fall survey. Although least shrew captures in deciduous forest habitats are not unknown, they are far more common in prairie and oldfield habitats (Briese and Smith, 1974).

Permament Sampling Stations \(\mathrm{F}-2\) and \(\mathrm{F}-3\) were inhabited by whitefooted mice (Table 3.3.2-1). Respective densities of 0.67 /acre and \(0.40 / a c r e\) during the spring survey are considered to be low. No white-footed mice were captured at any sampling station during the fall survey. It is possible that the deciduous forest habitats on the Union Electric site are simply unsuitable habitat for white-footed mice; however, it is probable that the whitefooted mouse population in this portion of Missouri is in one of its cyclic "lows," which occur every 3 to 5 years (Schwartz and Schwartz, 1959). This "low" has probably been reinforced by the oak mast crop failure due to early frost during the last 3 to 4 years. Acorns are among the staple foods of the whitefooted mouse (Schwartz and Schwartz, 1959).

Small mammal densities during the spring and fall sampling periods for the four permanent sampling stations located in prairie habitats are presented in Table 3.3.2-2.

One short-tailed shrew was captured on Station Pr-4 during the spring survey. Although short-tailed shrews do on occasion inhabit prairie situations (Briese and Smith, 1974), their preferred habitat is wooded areas. Therefore, their occurrence on prairie sites should be regarded as an exception (Schwartz and Schwartz, 1959/.

Least shrews were captured at Stations Pr-1 and Pr-4 during the spring survey and at Station Pr-4 during the fall survey. These shrews are generally abundant but are seldom caught in live traps because of their marked preference for insects, centipedes, millipedes, spiders, and similar foods. Like the short-tailed shrews, least shrews have poor senses of sight and smell and locate their prey by sound and touch. They have tremendous appetites, consuming one to three times their weight in food daily. This species may contribute to control of insect populations in an area, but the precise relationship between populations of least shrews and insects has not been scientifically established (Schwartz and Schwartz, 1959).

Western harvest mice were captured at Stations Pr-2, Pr-3, and \(\mathrm{Pr}-4\) during both surveys. Only at Stations \(\mathrm{Pr}-2\) and \(\mathrm{Pr}-4\) were sufficient captures made to enable calculation of denisty estimates. Population densities of \(0.60 /\) acre and \(1.34 / a c r e\) on \(\mathrm{Pr}-2\) and of \(0.67 /\) acre and \(0.44 /\) acre on Pr-3 (spring and fall surveys respectively) are low for this species and may reflect their "trap shyness" (Briese and Smith, 1974). Bancroft (1966) reported population densities of 10 to 12 /acre in relatively similar grassland habitats in Kansas. Populations of western harvest mice may fluctuate rapidly in part because they breed as early as 38 days of age and may bear new litters as often as every 22 days, although this situation is not often seen in field situations (Richins, Smith, and Jorgensen, 1974). Western harvest mice are an exclusively grassland species, feeding primarily on seeds. However, they occasionally supplement their diet with insects (Schwartz and Schwartz, 1959; Bancroft, 1966).

Prairie voles are the most common and most ecologically important species occurring at the prairie stations. It is also the single most important small mammal species present on the Union Electric plant site, both in terms of trophic relationships and numbers. This species is uniquely suited for study as an indicator of environmental change since it reflects change dynamically both as a population and individually. Population densities for all four prairie stations were comparatively low during the spring survey, with the highest density occurring at Station Pr-4 (Table 3.3.2-2). Prairie vole populations generally follow a 4year cycle of abundance, ranging from less than 15 acre at low levels to more than \(250 /\) acre at peak levels. Average population densities generally range between 15 to 50 /acre, but population levels are dramatically influenced by such environmental factors as summer drought, severe winter weather, parisitism, epidemic disease, land use changes, and changing habitat suitability
(Schwartz and Schwartz, 1957; Myers and Krebs, 1974).
It would be difficult to overestimate the importance of the prairic vole in the ecology of the prairie regions. The species is preyed on by almost every predator, even bullfrogs and snapping turtles; yet the prairie vole population may increase by threefold to tenfold in a single season. One individual in captivity produced 13 litters totaling 78 offspring before reaching one year of age (Schwartz and Schwartz, 1959).

That this situation can occur in nature is apparent by the data in Table 3.3.2-2. The population density at Station Pr-1 increased approximately six times between the spring and fall samples. At Station \(\mathrm{Pr}-2\), the increase was about eightfold; at Pr-3 about fivefold. The vole population at Station Pr-4, however, increased little--from 8/acre to about 9.5/acre. This apparent disparity in population trends can be explained by examining the relationship of prairie vole habitat requirements and existing conditions at the four prairie sampling stations.

The sprinc mammal data for Prairie Stations Pr-1, Pr-2, and Pr-3 show sharply lower prairie vole densities than for Prairie Station Pr-4. This difference is probably the result of a difference in previous land use at Pr-4. Station Pr-1 is located in a hay field that was apparently harvested annually in previous times. Consequently, only limited litter accumulations were present at the ground surface, providing little habitat for prairie voles, which require litter for runways and nests. The limited habitat probably is the reason for the low spring survey densities of prairie voles.

Much of the same situation exists at Stations Pr-2 and Pr-3 except here the limited litter accumulation is the result of former pasturage rather than hay harvesting. In contrast, the area at Station Pr-4 was apparently unharvested during the previous growing season. Therefore, the litter layer is fairly thick, providing ideal nesting and runway habitat for the prairie vole.

The habitat situation on these same areas during the fall survey is quite different. Stations Pr-1, Pr-2, and Pr-3 all had been released from the restrictive ecological pressures previously imposed by grazing and hay harvesting. Therefore, a rich, thick mat of lodged grasses and litter had accumulated near the ground level. The situtaion at Pr-4, however, had not changed because the process of litter accumulation had occurred at this station approximately one year previously.

Thus population density increase shown in Table 3.3.2-2 is probably due to the response of the vole population to a substantial increase in habitat suitability, in conjunction with a normal increase due to reproductive activity. Station Pr-4 displays no dramatic population density increase because there was no
significant increase in habitat suitability. The minor density increase noted at \(\operatorname{Pr}-4\) is probably due to normal reproductive activity.

Southern bog leamings were captured during the spring survey only at Station Pr 4. the presence of lemmings is of questionable ecological s.gnificance because the Callaway Plant site is located wit) in the southern distributional limits of the species. Lemmings \(m\), \(y\) locally abundant in some areas but be totally absent frcon cthers that appear to provide suitable habitat conditions Thus, the presence of the species at Station Pr-4 is not part_cularly meaningful. One characteristic feature of all habitats in which the species occurs is the presence of a thick mat of vegetation and litter near or at ground level (Schwartz and Schwartz, 1959).

A summary of standard body measurements made for representative small mammals captured during the spring sampling period (May 31, 1974 to June 5, 1974) and the fall sampling period (September \(18-23,1974\) ) is presented in Table \(3 \cdot 3 \cdot 2-3\). These data are matched in the table with the established limits for each species as published by Hall and Kelson (1959); the measured values are within the established limits for the species in every case.

The small mammal snap-trapping program conducted during the spring survey provided only limited useful information, because of the frequent and heavy rainfall that consistently set off traps or washed away bait. A single specimen of short-tailed shrew, white-footed mouse, and prairie vole were prepared, mounted, and used as an aid in validating field identification.

\subsection*{3.3.2.2 Large Mammals}

The roadsice counts of eastern cottontail were probably influenced by the f2. ent and heavy rainfall. Unfortunately, the extent of influence cannot be ascertained. A mean relative abundance of 8.25 cottontails/ 13.2 miles during the spring survey was derived for the census route. It appears that the population was undergoing a natural seasonal increase; this assumption is based on the observation that there were two distinct size classes of young rabbits. At least two litters were assunied to have been born during the current breeding season. The relative abundance of cottontails observed during the fall survey decreased to a mean of 0.25 rabbits \(/ 13.2\) miles traveled. It is believed that this decrease is more apparent than real. Because the crops in the area had not been harvested, the cottontails had not been forced to utilize roadside vegetation for cover.

Data obtained by nighttime spotlighting during the spring survey indicate a mean abundance of 0.25 raccoons \(/ 20 \mathrm{miles}\) of travel. This figure is considerably lower than expected, inasmuch as raccoon tracks were seen in almost every muddy area on the site.

Interviews with local residents indicated that there is a fairly large population of raccoons in the area, which substantiates track observations. However, this is contrary to results obtained by spotlight survey. During the fall survey, 0.50 raccoons \(/ 20 \mathrm{miles}\) of travel were observed. This figure, while higher than the spring survey, is still lower than expected.

One fox was observed during the course of the spring spotlight survey. On two other occasions, red foxes were observed in approximately the same area. No white-tailed deer were observed during springtime night spotlighting activities; however, fawns, yearlings, and adult animals were observed during conduct of the preconstruction monitoring program. During the fall survey, an average of two white-tailed deer/per 20-mile survey were observed. One opossum and two striped skunks were also observed.

\subsection*{3.3.2.3 Inventory of Observed Species}

Mammals observed at or immediate to the Callaway Plant site are listed in Table 3.3.2-4. Some of these -- the eastern mole and spotted skunk -- were observed only as road-killed animals. Others, such as white-tailed deer, fox squirrel, and gray squirrel were sighted directly. One observed species, the long-tailed weasel, is listed as a "rare" species by the Missouri Department of Conservation (Union Electric Company, 1974).

TABLE 3.3.2-1
ESTIMATED SMALL MAMMAL DENSITTES (PER ACRE) POR PERMANENT SAMPLING STATIONS LOCATED IN FOREST HABITAT, CALLAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI, SPRING AND FALL 1974
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Species} & \multicolumn{8}{|c|}{FOREST STATIONS} \\
\hline & \multicolumn{2}{|l|}{F-1} & \multicolumn{2}{|r|}{\(\mathrm{F}-2\)} & \multicolumn{2}{|l|}{F-3} & \multicolumn{2}{|l|}{F-4} \\
\hline & Spring & Fall & Spring & Fal1 & Spring & Fal1 & Spring & Fall \\
\hline Short-tail shrew & \(p^{\text {b }}\) & 1.68 & 0.37 & 0.34 & P & 1.51 & P & \(+{ }^{\text {c }}\) \\
\hline Adult & P & 1.68 & 0.37 & 0.34 & P & 1.51 & P & + \\
\hline Male & P & 0.84 & P & 0.34 & P & 0.74 & P & + \\
\hline Female & P & 0.84 & 0.37 & \(+\) & P & 0.75 & + & + \\
\hline Sub-Adult & \(+\) & + & + & + & + & + & + & \(+\) \\
\hline Male & + & + & + & + & \(+\) & + & + & + \\
\hline Female & + & \(+\) & \(+\) & \(+\) & \(+\) & + & \(+\) & \(+\) \\
\hline Juvenile & + & + & + & + & + & + & + & \(+\) \\
\hline Male & + & + & + & + & + & + & \(+\) & \(+\) \\
\hline Female & + & + & + & + & \(+\) & + & \(+\) & + \\
\hline Least shrew & \(+\) & P & \(+\) & \(+\) & + & + & \(+\) & + \\
\hline Adult & + & P & \(+\) & \(+\) & + & + & \(+\) & + \\
\hline Male & \(+\) & P & \(+\) & + & + & \(+\) & + & \(+\) \\
\hline Female & + & \(+\) & + & + & \(+\) & + & + & \(+\) \\
\hline Sub-Adult & + & \(+\) & + & \(+\) & \(+\) & + & \(+\) & \(+\) \\
\hline Male & + & \(+\) & + & + & \(+\) & + & + & \(+\) \\
\hline Female & \(+\) & \(+\) & + & + & \(+\) & \(+\) & + & \(+\) \\
\hline Juvenile & \(+\) & \(+\) & + & + & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline Male & + & \(+\) & + & + & + & + & \(+\) & + \\
\hline Female & + & + & \(+\) & \(+\) & \(+\) & \(+\) & + & \(+\) \\
\hline White-footed mouse & + & \(+\) & 0.67 & \(+\) & L. 40 & \(+\) & + & \(+\) \\
\hline Adult & \(+\) & + & 0.34 & + & P & + & \(+\) & + \\
\hline Male & + & \(+\) & 0.34 & \(+\) & P & + & \(+\) & \(+\) \\
\hline Female & \(+\) & \(+\) & + & + & P & \(+\) & \(+\) & \(+\) \\
\hline Sub-Adult & \(+\) & + & 0.34 & + & 0.37 & + & + & \(+\) \\
\hline Male & + & \(+\) & 0.34 & \(+\) & 0.34 & \(+\) & + & \(+\) \\
\hline Female & + & + & \(+\) & + & P & \(+\) & \(+\) & \(+\) \\
\hline Juvenile & + & + & \(+\) & \(+\) & + & + & + & + \\
\hline Male & \(+\) & + & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & + \\
\hline Female & + & + & + & + & \(+\) & + & + & + \\
\hline
\end{tabular}

\footnotetext{
Estimates are based on the EM-2 small mammal estimator (Smith and Jorgensen, 1974) utilizing 144 live traps in a 2.98 -acre grid for a total of 864 trap nights.
\(b_{p=p r e s e n t, ~ b u t ~ i n ~ i n s u f f i c i e n t ~ n u m b e r s ~ f o r ~ d e n s i t y ~ e s t i m a t e . ~}^{\text {d }}\).
c + =Not abserved.
}

ESTIMATED SMALL MAMMAL DENSITTPS (PNR ACWE) POR PERMANENT SAMPLING STATIONS LOCATED IN PRAIRIE HABITAT, CALLAWAY PLANT SITE, CALLAWAY COUNTY, NISSOURI, SPRING AND FALL. 1974
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Species} & \multicolumn{8}{|c|}{PRAIRIE STATIONS} \\
\hline & \multicolumn{2}{|l|}{Pr-1} & \multicolumn{2}{|l|}{Pr-2} & \multicolumn{2}{|l|}{Pr-3} & \multicolumn{2}{|l|}{Pr-4} \\
\hline & Spring & Fa. 2 & Spring & Fal2 & Spring & Fall & Spring & Fall \\
\hline Short-tajled shrew & \(+{ }^{\text {b }}\) & + & + & + & + & + & \(p^{c}\) & \(+\) \\
\hline Adult & \(+\) & + & + & \(+\) & + & \(+\) & \(F\) & + \\
\hline Male & + & \(+\) & \(+\) & + & \(+\) & + & + & + \\
\hline Female & * & + & + & + & + & + & P & \(+\) \\
\hline Sub-Adult & + & + & + & \(+\) & + & + & + & + \\
\hline Male & + & + & \(+\) & + & + & + & + & \(+\) \\
\hline Female & + & + & + & + & 4 & \(+\) & + & + \\
\hline Juvenile & + & + & + & + & \(+\) & + & + & \(+\) \\
\hline Male & + & + & + & + & + & \(+\) & \(+\) & \(+\) \\
\hline Female & + & + & + & \(+\) & + & * & + & + \\
\hline Least shrew & P & + & + & + & \(+\) & + & F & P \\
\hline Adult & P & \(+\) & + & + & + & + & P & P \\
\hline Male & P & + & \(+\) & \(+\) & + & + & P & + \\
\hline Female & + & + & \(+\) & + & + & + & P & P \\
\hline Sub-Adult & \(+\) & + & + & + & + & + & + & + \\
\hline Male & + & + & + & + & \(+\) & + & \(+\) & \(+\) \\
\hline Female & * & + & \(+\) & + & + & + & \(+\) & \(+\) \\
\hline Juvenile & + & + & + & \(+\) & + & + & + & \(+\) \\
\hline Male & \(+\) & + & \(+\) & + & \(+\) & + & + & + \\
\hline Female & + & + & + & + & + & + & + & + \\
\hline Western harvest mouse & + & + & 0.60 & 1.34 & P & p & 0.67 & 0.44 \\
\hline Adult & + & \(+\) & 0.60 & 1.01 & + & P & 0.67 & 0.44 \\
\hline Nale & + & + & P & \(+\) & \(+\) & + & 0.67 & + \\
\hline Female & + & + & 0.34 & 1.01 & + & P & + & 0.44 \\
\hline Sub-Aault & + & + & + & + & P & + & + & + \\
\hline Male & + & + & \(+\) & + & + & + & \(+\) & + \\
\hline Female & \(+\) & + & + & \(+\) & P & + & \(+\) & + \\
\hline Juvenile & + & + & + & 0.34 & + & + & + & + \\
\hline Male & + & \(+\) & + & 0.34 & + & + & \(+\) & + \\
\hline Female & \(+\) & \(+\) & \(+\) & + & + & + & \(\stackrel{+}{+}\) & + \\
\hline Prairie vole & 1.81 & 11.74 & 1.78 & 16.11 & 6.14 & 31.08 & 8.09 & 9.40 \\
\hline Adult & 1.81 & 9.80 & 1. 51 & 11.21 & 3.12 & 21.44 & 5.78 & 8.02 \\
\hline Male & 1.81 & 5.64 & 0.67 & 5.00 & 0.44 & 10.54 & 5.20 & 5.65 \\
\hline Pemale & \(+\) & 4.09 & 0.64 & 5.74 & 2.35 & 11.14 & 1.54 & 2.39 \\
\hline Sub-Adult & + & 1.01 & 0.34 & 3.02 & 0.34 & 3.19 & P & 2.01 \\
\hline Male & + & \(+\) & + & 2.55 & 0.34 & 1.68 & \(+\) & 1.01 \\
\hline Female & + & 2.01 & 0.34 & 0.34 & \(+\) & 1.50 & P & 1.01 \\
\hline Juvenile & + & P & + & 0.67 & \(+\) & 9.47 & 0.67 & + \\
\hline Male & \(+\) & P & + & P & \(+\) & 4.09 & \(+\) & + \\
\hline Female & + & + & + & 0.67 & \(+\) & 4.46 & P & + \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\(\mathrm{Pr}-1\)} & \multicolumn{2}{|l|}{Pr-2} & \multicolumn{2}{|l|}{Pr-3} & \multicolumn{2}{|l|}{Pr-4} \\
\hline & Spring & Fa.11 & Spring & Fal1 & Spring & Fall & Spring & Fall \\
\hline Southern bog 1 emming & + & + & + & + & + & \(+\) & 1.17 & \(+\) \\
\hline Adult & \(+\) & 4 & + & + & + & + & 1.17 & + \\
\hline Male & \(+\) & + & + & + & + & + & 0.67 & + \\
\hline Female & + & + & + & + & + & + & P & + \\
\hline Sub-Adult & \(+\) & \(+\) & + & + & + & + & + & + \\
\hline Male & + & \(+\) & \(+\) & + & + & + & \(+\) & + \\
\hline Female & + & + & + & + & + & \(+\) & + & + \\
\hline Juvenile & \(+\) & + & + & + & + & + & + & + \\
\hline Male & + & + & + & + & + & + & + & + \\
\hline Female & \(+\) & + & + & + & + & + & + & + \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Estimates are based on the EM-2 small mammal estimator (Smith and Jorgensen, 1974) utilizing 144 live traps in a 2.98 -acre grid for a total of 864 trap nights.
\({ }^{b}+\) not observed.
\(C_{p=p r e s e n t, ~ b u t ~ i n ~ i n s u f f i c i e n t ~ n u m b e r s ~ f o r ~ d e n s i t y ~ e s t i m a t e . ~}^{\text {for }}\).
}


A PHYLOGENETIC LISTING OF MAMMAL SPECIES OBSERVED ON OR IMMEDIATE TO THE CALLAWAY PLANT SITE JURING THE 1973-74 BASEIINE SURVEY THE INITIAL MON.TMORING SURVEY, MAY-JUNE 1974, AND THE FALL SURVEY, SEPTEMBER 1974 , CALLAWAY COUNTY, MISSOURI
\begin{tabular}{|c|c|c|c|}
\hline ```
FAMILY
    Scientific Name
``` & Baselíne
\[
\begin{array}{r}
\text { Survey } \\
1973-74 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Spring } \\
\text { Survey } \\
\text { May-June, } 1974 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Fall } \\
\text { Survey } \\
\text { September, } 1974 \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{4}{|l|}{DIDELPHIDAE} \\
\hline Opossum & X & X & X \\
\hline \multicolumn{4}{|l|}{SCORICIDAE} \\
\hline \multicolumn{4}{|l|}{Blarina brevicauda carolinensis} \\
\hline Short-tailed shrew & & X & X \\
\hline \multicolumn{4}{|l|}{Cryptotis parva parva} \\
\hline Least shrew & & X & X \\
\hline \multicolumn{4}{|l|}{TALPIDAE} \\
\hline \multicolumn{4}{|l|}{Scalopus aquaticus machrinoides} \\
\hline Eastern mole & X & X & \\
\hline \multicolumn{4}{|l|}{LEPORIDAE} \\
\hline \multicolumn{4}{|l|}{Sylvilagus floridanus alacer} \\
\hline Eastern cottontail & X & X & X \\
\hline \multicolumn{4}{|l|}{SCIURIDAE} \\
\hline \multicolumn{4}{|l|}{Marmota monax monax} \\
\hline Woodchuck & x & & \\
\hline \multicolumn{4}{|l|}{Sciurus carolinensis carolinensis} \\
\hline Gray squirrel & X & X & X \\
\hline \multicolumn{4}{|l|}{Sciurus niger rufiventer} \\
\hline Fox squirrel & X & X & X \\
\hline \multicolumn{4}{|l|}{CRICETIDAE} \\
\hline \multicolumn{4}{|l|}{Reithrodontomys megalotis dychei} \\
\hline Western harvest mouse & & X & X \\
\hline \multicolumn{4}{|l|}{Peromyscus maniculatus gairdii} \\
\hline Deer mouse & X & & \\
\hline \multicolumn{4}{|l|}{Peromyscus leucopus noveboracensis} \\
\hline White-footed mouse & X & \(\wedge\) & \\
\hline \multicolumn{4}{|l|}{Microtus ochrogaster ochrogaster} \\
\hline Prairie vole & & X & X \\
\hline \multicolumn{4}{|l|}{Ondatra zibethicus zibethicus} \\
\hline Muskrat & X & & \\
\hline \multicolumn{4}{|l|}{Synaptomys cooperi gossii} \\
\hline Southern bog lemming & & X & \\
\hline
\end{tabular}
```

TABLE 3.3.2-4 (continued)

```
\begin{tabular}{|c|c|c|c|}
\hline EAMILY
\(\qquad\) Common Name & \[
\begin{gathered}
\text { Baseline } \\
\text { Survey } \\
1973-74 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Spring } \\
\text { Survey } \\
\text { May-June, } 1974 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Fall } \\
\text { Survey } \\
\text { September, } 1974 \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{4}{|l|}{CANIDAE} \\
\hline \multicolumn{4}{|l|}{Canis latrans frustror} \\
\hline coyote & X & X & X \\
\hline \multicolumn{4}{|l|}{Vulpes fulva} \\
\hline Red fox & & X & \\
\hline \multicolumn{4}{|l|}{PROCYONIDAE} \\
\hline \multicolumn{4}{|l|}{Procyon lotor hirtus} \\
\hline Raccoun & X & X & X \\
\hline \multicolumn{4}{|l|}{MUSTELIDAE} \\
\hline \multicolumn{4}{|l|}{Mustela frenata primulina} \\
\hline long-tailed weasel & X & X & \\
\hline \multicolumn{4}{|l|}{Mephitis mephitis avia} \\
\hline Striped skunk & X & X & X \\
\hline \multicolumn{4}{|l|}{CERVIDAE} \\
\hline \multicolumn{4}{|l|}{Odecoileus virginiana marcoura} \\
\hline White-tailed deer & X & X & X \\
\hline \({ }^{2}\) Phylogeny and species nomenclatu Subspecific nomenclature follows & ow Jones, nd Kelson & arter, and Genow 1959. & \[
1973
\] \\
\hline
\end{tabular}

\subsection*{3.3.3 AVIFAUNA}

7s noted previously, avian survey transects were chosen to traverse relatively homogeneous habitat within or immediate to permanent sampling stations established for intensive investigation of vegetation and small rammal populations. During the course of avian surveys, it was noted that subtle differences in habitat along a given transect frequently resulted in an apparent increase or decrease in the abundance and/or diversity of birds. However, considering the high degree of mobility and wide variance in behavior of bird species, exacting species-habitat preferences cannot be locally established with unequivocal certainty.

\subsection*{3.3.3.1 Prairie Habitats}

The average density of birds observed in three daily surveys of each prairie habitat is shown in Table 3.3.3-1. The dersities are variable from one habitat to another. The high standard deviation shown for Prairie Transects Pr-l and Pr-3 indicutes there mal be a hroad range of variability in daily avian densities estimaced from the survey (Table 3.3.3-1).

Some porcion of the variability was \(c\) nsidered to be weatherrelated. Because surveys of a given transect were conducted on different days, the frequent and irregular occurrence of rainfall before, during, and after a survey undoubtedly influenced bird activities as well as the investigator's ability to detect and recognize birds within the stampling area. However, Students "t" tests (see Table 3.3.3-2) suggest that there are no significant differences in the density of avifauna occurring in or otherwise utilizing the sampled prairie habitats.

The densities of breeding birds associated with the sampled transects are therefore assumed to be relatively siailar.

A tally of all birds recorded during the spring survey along each transect through the four prairie habitacs (Table 3.3.3-3) indicates that the bird population at Prairie Transect Pr-2 had hignest diversity (11 species); that of Prairie Transect Pr-3 had lowest diversity (5 species). Table 3.3.3-3 includes species that are not common nesting inhabitants of prairie or oldfield habitats. Such species were observed flying over the strip or in neardy habitat not representative of the sampled transects. Table 3.3.3-4 includes only those birds common to the site; species uncommon to the site have been omitted. In this table, the similarity or dissinilarity of nesting birds inhabiting the four prairie habitats is more apparent. Pr-1 and Pr-2 are most similar, and Transects \(\mathrm{Pr}-2\) and Pr-3 are somewiat similar. Any comparison of Transect Pr-4 nesting birds with those of other transects shows a low degree of similarity.

From the standpoint of comparable habitat, Transects Pr-1 and Pr-4 (fescue grasslands) and Transects Pr-2 and Pr-3 (abancioned pasture) are most similar. Despite sone disparities, the density and diversity of Sirds associated w'.ch Transects Pr-2 and Pr-3 were of
sufficient similarity to be strongly correlated.
The transects through Prairie Stations Pr-2 and Pr-3 were comparatively short (0.18 miles). Hower er, similar habitat conditions were not available nearby to permit increas.ng the length of the transects. It is likely that if the sampled areas could have been increased, the estimated nesting bird populations of the two transects would have shown even greater similarity.

In contrast, although avian density of Transects Pr-1 and Pr-4 appeared to be relacively similar, species diversity in the two transects was variable. Transects Pr-2 and Pr-3 were surveyed in sequence, whereas 7ransects Pr-1 and Pr-4 were the first and last, respectively. This may be an important factor in explaining the difference in nesting species associated with the Pr-1 and Pr-4 transects.

Data from the fall avian survey are not directly comparable with the casa from the spring survey because of the differences in density, diversity, and distribution wrought by the factors such as migration, effect of weather on cover, and the tendency of premigratory birds to flock together by species. (Density estimates for each transect are given in Table 3.3.3-1.) With the breeding season over, many of the birds had dispersed over larger areas of territory. Also, some of the prairie nesters had already migrated from the area. Most birds observed on the transects were seen flying overhead; they were either moving \(=0\) nearby wooled areas or migrating south. Meadowlarks were by far the most abundant of the birds using the prairie areas for feeding and roosting. These birds also seemed to be the most abundant in the areas around Pr-2 and Pr-3, which abounded in short grass prefo red by the meadowlarks.

The only other prairie nesters seen feeding or roosting on the prairie areas were field sparrows, bobwhite quail, and mourning dove. These birds were observed feeding either early in the morning or late in the evening; after being flushed, they moved to nearby wooded areas.

Otho hirds seen feeding or landing in the prairie areas were bluebirds, least flycatchers, and common grackles. These birds were probably after seeds produced by the prairie vegetation. Also seen hunting over the prairie were sparrow hawks and redtailed hawks.

\section*{3.3. . 2 Foresc Habitats}

The average density of birds observed in three daily surveys of each forest habitat during the spring study is shown in Table 3.3.3-1. The estimated density of breeding birds is relatively similar along the transects through Forest. Stations \(F-2, F-3\), and \(F-4\). In contrast, the estimated density of birds associated with Forest Transect \(E-1\) is nearly double that estimated for other forest transects.

The Students "t" test was used to evaluate differences in the density of birds occurring in the various sampled forest habitats. Of the six possible comparisons, the test indicated two comparisons whereby avian densities were significantly different at a 95 percent confidence limit (Table 3.3.3-2). In both instances, the avian density at Forest Transect \(\mathrm{F}-1\) was significantly different from that of other forest habitats.

The reason for the greater density of birds occurring in Transect F-1 is not clear. However, a forest area adjacent to the transect had been recently and selectively harvested. In consequence, saplings, shrubs, vines, and herbaceous vegetation were responding vigorously to the increased insolation penetrating openings in the overhead canopy. It is likely that this change in the environment following logging activities resulted in a greater variety and availability of suitable food items; this in turn may have attracted birds to the harvested and adjacent areas, such as the F-1 transect.

Common yellowthroats, cardinals, and bluejays were among the species most commonly observed to be associated with the harvested forest area. These species were also among the most frequently observed in surveys of Transect \(\mathrm{F}-1\). This situation provides some support for the assumption that post-logging habitat is attractive to some bird species, thus effecting an increase in bird density within the local area. Additionally, Transect \(F-1\) is located adjacent to a creek where belted kingfisher and Louisiana water thrush were observed. These species demonstrate a strong preference for aquatic habitats, and other surveyed forest transects, for the most part, lacked suitable aquatic conditions.

Although a tally of all species recorded along transects through the four forest habitats demonstrates a relatively similar total diversity (Table 3.3.3-3), there is noticeable variability in the species of birds observed in tie various transects. However, if only the most commonly occurring breeding birds are considered (Table 3.3.3-4), the species consistently associated with forest habitats become apparent. The bluejay was present in all four transects and was usually seen near field-forest boundaries. This species commonly nests alony forest borders where the vegetation is relatively dense. The cardinal was also a common inhabitant of the forest habitat; this species will nest wherever shrubby vegetation exists.

The uncommonly occurring birds, listed in Table 3.3.3-3 but omitted from Table 3.3.3-4, include the red-tailed hawk, belted kingfisher, Louisiana water thrush, common yellowthroat, Baltimore oriole, indigo bunting, and rufous-sided towhee. The red-tailed hawk was observed flying above the plant site. The hawk is a forest inhabitant but often feeds on mammals inhabiting open fields. Their daily range of movement is too extensive to be comparable with that of song birds observed furing a walking strip census. The belted kingfisher and Louis \(1 a n a\) water thrush were observed only clong a woodland creek, as previously noted. The common yellowthroat, indigo bunting, and rufous-sic-s towhee prefer shrubby
surroundings and were observed primarily in forest openings. The Baltimore oriole commonly nests in tall trees near open glades or fields and is not a usual inhabitant of the forest interior.

The uniform and relatively high frequency with which the commonly occurring nesting species were observed within the four forest transects (Table \(3.3,3-4\)) is considered to indicate a basic similarity in bird populations in the sampled areas. The general similarity of habitat conditions in the four transects is also indicated.

The fall avian densities of the eight transects are presented in Table 3.3.3-1. The increased variance among plots, compared to the spring survey, was probably due to the flocking behavior of premigratory birds. This causes a wide degree of variance between successive observations; this variance reflected in the generally wider confidence limits is expressed in the standard deviation values presented in Table 3.3.3-1.

The forests were the most productive of the two habitat types, in that birds were actually observed using the plots. Many large flocks of birds would alight in the trees and somet mes drop to the forest floor to feed. Some of the birds observid doing this were common grackles and red-winged blackbirds. Many of the forest nesters had already migrated from the area by the time the fall survey was taken. Some of the birds that had already emigrated were the eastern wood pewee, wood thrush, ovenbird, and summer tanager.

Of the summer resident birds still in the area at the time of the surveys, one of the most abundant seen in the forest plots was the red-headed woodpecker. It was found in every forest plot and can be seen in just about every forest in the area surrounding the proposed plant site. Other summer residents still present were the bluejay, cardinal, tufted titmouse, and common flicker. Many of these birds also winter in this area and are known to be winter residents.

On September 28, 1974, two bald eagles were seen circling over Forest Transect \(F-4\). They were visible for about 4 minutes, then they separated, one (a juvenile) heading west and one (an adult) moving back towards the river. They were at a fairly low altitude when first spotted but moved quickly up and out of sight. Eagles are known to follow the course of the Missouri River and to winter along large tributaries, feeding on dead fish. Because the site is near the river, bald eagles are expected to be seen occasionally over the site.

Generally, all the forests plots had basically the same species during the fall survey and relative numbers seemed to be very close to each other. Many birds were in flocks and did not readily leave the areas. Although large numbers of species were still present, with the coming of winter the numbers should drop off considerably as more birds migrate south.

A compilation of the avian diversity observed during the fall survey within the eight sampling areas is presented in Table 3.3.3-5.

An inventory of the bird species observed during the spring 1974 surveys (spring and fall) is shown in Table 3.3.3-6. A checklist of species observed in an environmental baseline survey (Union Electric Company, 1974) conducted in the preceding year (June 1973) is also included in the table. The list provides some indication of the annual variability in the species occurring in a given area. However, some of the variability is undoubtedly due to differences in time and effort expended to inventory the local avifauna. This is especially true of the fall survey, where several new species were added to the list of birds observed (Table 3.3.3-6). These are species that summer to the north of the plant site and winter to the south and were merely observed in passage. Little significance should be attached to such observations inasmuch as these birds spend only a miniscule amount of time utilizing the resources of the plant site.

Overall, a high proportion of the species observed during one survey were also reported in the other surveys. Only 2 of the 56 species recorded in the 1973 survey were not identified in one of the 1974 surveys. The greatest number of species (68) was identified in the 1974 spring survey; 17 of these species were not recorded in the 1973 inventory.

On the basis of inventory data, most of the bird species occurring at the Callaway Plant site in June were classified as summer residents (Union Electric Company, 1974); in contrast, the species present in the fall survey were a potpourri of winter, summer, and permanent residents, with a scattered contingent of passage species in migration. Summer residents migrate to the south during the fall season, with a few exceptions. In the case of such exceptions, most individuals migrate south, while a few remain in the area during the winter season; these are then considered winter residents. Approximately one-third of the species inhabiting the plant site in June were permanent residents. The ratio for permanent versus other categories is virtually identical for both the 1973 and spring 1974 inventories.
```

TABLE 3.3.3-1

```
```

ESTIMATED MEAN AVIAN DENSITIES (NUMBER/ACRE) FOR PERMANENT
SAMPLING STATIONS ON THE CALLAWAY PLANT SITE,
CALLAAWAY COUNTY, MISSOURI,
SPRING AND FALL 1974

```
\begin{tabular}{lrr}
Sampling & \multicolumn{2}{c}{ Spring } \\
\cline { 2 - 4 } & Station \\
Transect & Mean & Standard \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\(\mathrm{Pr}-1\) & 0.58 & 1.23 & 1.81 & 0.46 \\
\(\mathrm{Pr}-2\) & 1.08 & 0.36 & 1.09 & 0.34 \\
\(\mathrm{Pr}-3\) & 1.75 & 1.45 & 5.22 & 6.37 \\
\(\mathrm{Pr}-4\) & 0.46 & 0.42 & 5.22 & 2.42
\end{tabular}
\begin{tabular}{lllll}
F-1 & 0.66 & 0.16 & 5.47 & 6.32 \\
F-2 & 0.25 & 0.15 & 2.95 & 1.77 \\
F-3 & 0.38 & 0.29 & 1.40 & 0.75 \\
F-4 & 0.34 & 0.20 & 1.09 & 0.72
\end{tabular}
```

TABLE 3.3.3-2

```

COMPARISONS OF MEAN BIRD DENSITY (PE. ACRE) BASED ON OBSERVATIONS MADE AT OR IMMEDIATE TO PERNANENT SAMPLING STATIONS LOCATED IN SIMILAR HABITAT TYPES OF THE CALLNWAY PLANT SITE, CALILAWAY COUNTY, MISSOURI, EARLY JUNE 1974
\begin{tabular}{|c|c|c|c|}
\hline Habitat Types & Station Comparisons & Respective Mean Densities & t-values \({ }^{\text {a }}\) \\
\hline Prairie & \(\mathrm{Pr}-2\) versus \(\mathrm{Pr}-3\) & \(1.080-1.754\) & 1.100 \\
\hline & Pr-1 versus Pr-4 & \(0.590-1.742\) & 0.230 \\
\hline & Pr-1 versus Pr-2 & \(0.580-1.080\) & 0.953 \\
\hline & Pr-3 versus \(\mathrm{Pr}-4\) & \(1.754-0.457\) & 2.094 \\
\hline & Pr-2 versus Pr-4 & \(1.080-0.457\) & 2.753 \\
\hline & Pr-1 versus Pr-3 & 0.580-1.754 & 1. 506 \\
\hline Forest & \(F-1\) versus \(F-2\) & \(0.660-0.250\) & 4. \(083{ }^{*}\) \\
\hline & \(\mathrm{F}-3\) versus \(\mathrm{F}-4\) & \(0.389-0.336\) & 0.352 \\
\hline & \(F-1\) versus \(F-4\) & \(0.660-0.336\) & 2.980* \\
\hline & \(F-2\) versus \(F-3\) & \(0.250-0.389\) & 1.024 \\
\hline & \(F-1\) versus \(F-3\) & \(0.660-0.389\) & 1.971 \\
\hline & \(F-2\) versus \(F-4\) & \(0.250-0.336\) & 0.818 \\
\hline
\end{tabular}
astudents " + " test at the \(95 \%\) confidence limit \((P=.05(4)=2.776\))
*Significant at the 958 confidence limit. Values not murked or not statistically significant at \(\alpha=.05\)
TABLE \(3 \cdot 3 \cdot 3-3\)
AVIAN DIVERSITY BASED ON THE MAXIMUM SPECIES OBSERVED IN ANY
ONE-DAY SURVEY OF TRANSECTS "HAT TRAVERSE EIGHT PERMANENT
SAMPIING STATIONS LOCATED WITHIN THE CALLAWAY PLANT
SITE, Cn LLAWAY COUNTY, MISSOURI, SPRING 1974
Number of Individuals Observed/Transect
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Pratrie} & \multicolumn{4}{|l|}{Forest} \\
\hline Pr-1 & \(\mathrm{Pr}-2\) & \(\mathrm{Pr}-3\) & \(\mathrm{Pr}-4\) & F-1 & F-2 & F-3 & E-4 \\
\hline + & , & + & \(+\) & \(1^{\text {a }}\) & \(+\) & 4 & \(+\) \\
\hline \(+\) & \(+\) & + & \(2^{a, b}\) & 4 & \(+\) & + & + \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & \(1^{\text {a }}\) & \(+\) & + & \(+\) \\
\hline \(2^{\text {a }}\) & \(+\) & \(+\) & 1 & 3 & 3 & 3 & 1 \\
\hline \(+\) & \(+\) & \(+\) & + & \(+\) & 2 & \(+\) & \(+\) \\
\hline \(1^{\text {a }}\) & \(+\) & \(+\) & + & 4 & 2 & \(+\) & 1 \\
\hline \(+\) & \(1^{a, b}\) & + & + & 4 & \(+\) & 7 & + \\
\hline \(+\) & \(+\) & + & \(+\) & 1 & 1 & \(+\) & 1 \\
\hline + & \(1 \mathrm{a}, \mathrm{b}\) & \(+\) & 1a, & + & + & \(2^{\text {a }}\) & \(+\) \\
\hline \(+\) & + & \(+\) & 1 & \(3^{a}\) & \(+\) & \(1^{\text {a }}\) & + \\
\hline 1 & \(+\) & \(+\) & 2 & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & 1 & \(\stackrel{1}{ }\) & \(+\) & \(+\) & + & + & \(+\) \\
\hline 9 & 4 & 5 & 1 & \(+\) & 4 & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & + & 2 & 1 \\
\hline \(1^{\text {b, c }}\) & 2 & \(+\) & 1 & \(+\) & \(+\) & + & 4 \\
\hline + & \(+\) & 2 & 1 & \(+\) & \(+\) & \(+\) & 4 \\
\hline \(+\) & \(1^{\text {a }}\) & + & \(+\) & + & + & \(1^{\text {a }}\) & + \\
\hline
\end{tabular}
\(\varepsilon-\varepsilon^{*} \varepsilon^{*} \varepsilon\) I. ग甘L

```

TABLE 3.3.3-4

```
```

AVIAN DIVERSITY OF COMMONLY NESTING BIRDS BASED ON THE MAYIMUM
SPECIES OBSERVED IN ANY ONE DAY SURVEY OF TRANSECTS THAT
TRAVERSE EIGHT PERMANENT SAMPLING STATIONS LOCATED
WITHIN THE CALLAWAY PLANT SITE, CALLAWAY COUNTY,
MISSOURI, EARLY JUNE 1974

```

\section*{Species Observed}
\begin{tabular}{lcccc}
Dickeissel & \(1^{a}\) & 2 & + & + \\
Eastern kingbird & + & + & + & 1 \\
Eastern meadowlark & 9 & 1 & 5 & 4 \\
Field sparrow & 1 & 1 & + & 2 \\
Grasshopper sparrow & + & 1 & 2 & + \\
Red-winged blackbird & 5 & 1 & -3 & + \\
Total Species (Diversity) & 4 & 5 & 3 & 3
\end{tabular}

\section*{Species Observed}
\begin{tabular}{lcccc}
Bluejay & 3 & 3 & 3 & 1 \\
Cardinal & 4 & 2 & + & 1 \\
Common flicker & 1 & 1 & + & 1 \\
Eastern wood pewee & + & + & 2 & 1 \\
Ovenbird & 2 & + & + & 1 \\
Summer tanager & 2 & + & 1 & 3 \\
Tufted titmouse & + & 1 & 2 & 1 \\
White-breasted nuthatch & 1 & 2 & 2 & + \\
Whip-poor-will & + & + & 1 & 1 \\
Wood thrush & + & 1 & 1 & + \\
Total Species (Diversity & 6 & 6 & 7 & 8
\end{tabular}

\footnotetext{
\({ }^{a}\) Indicates the number of individuals sighted for each species observed.
}

\footnotetext{
\({ }^{+}\)Not observed.
}

TABLE \(3 \cdot 3 \cdot 3-5\)

AVIAN DIVERSITY FOR THE EIGHT PERMANENT SAMPLING STATIONS, CALLAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI, FALL 1974

Species
Bald eagle
Barred owl
Bluebird
Bluejay
Bobwhite quail
Common crow
Common grackle
Common nighthawk
Cowbird
Eastern meadowlark
Eastern phoebe
Field sparrow
Great horned owl
Hairy woodpecker
Hooded warbler
Least flycatcher
Mourning dove
Pileated woodpecker
Red-bellied woodpecker
Red-headed woodpecker
Red-tailed hawk
Red-winged blackbird
Robin
Starling
Sparrow hawk
Yellow-billed cuckoo
Yellow-shafted flicker
TOTAL
\begin{tabular}{|c|c|c|c|}
\hline F-1 & F-2 & F-3 & F-4 \\
\hline \(+\) & \(+\) & \(+\) & 2 F \\
\hline 1 & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & 1 & \(+\) & \(+\) \\
\hline 62 H & 7 & 54 H & 5 \\
\hline \(+\) & \(+\) & \(+\) & \(+\) \\
\hline 5H & \(+\) & 1 & 2H \\
\hline 9 F & \(+\) & 30 F & 67 F \\
\hline \(+\) & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & 1 \\
\hline \(+\) & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & 1 & \(+\) & \(+\) \\
\hline \(+\) & 1 & \(+\) & 1 \\
\hline \(+\) & \(+\) & 1 & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & 2 & \(+\) & \(+\) \\
\hline 1 & \(+\) & 1 1H & \(+\) \\
\hline 1 & \(+\) & 1 & 1.H \\
\hline 6 & 62 H & 5 & 2 \\
\hline \(+\) & 1 & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & \(+\) \\
\hline 2 & \(+\) & 1 & 11 H \\
\hline + & \(+\) & 50 F & 17 \\
\hline \(+\) & \(+\) & \(+\) & 1 \\
\hline \(+\) & \(+\) & 2 & \(+\) \\
\hline 2 & \(+\) & 1 & \(+\) \\
\hline 35 & 21 & 103 & 101 \\
\hline
\end{tabular}
\(\begin{array}{llll}35 & 21 & 103 & 101\end{array}\)
\(\mathrm{F}=\) birds seen flying over the plot.
\(H=b i r d s\) heard on or adjacent to the plot.

TABLE \(3 \cdot 3 \cdot 3-6\)
CHECKLIST OF BIRD SPECIES OBSERVED DURING THE ENVIRONMENTAL BASELINE INVENTORY (JUNE 1973), THE SPRENG MONITORING SURVEY (JUNE 1974), AND THE FALL MONITORING SURVEY
(SEPTEMBER 1974), CALLAWAY PLANT SITE, CALLAWAX COUNTY, MISSOURI
\begin{tabular}{|c|c|c|c|c|}
\hline Common Name & Scientific Name & Baseline Inventory & Spring Monitoring Survey & Fall Monitoring Survey \\
\hline Acadian flycatcher & Empidonax virescens & x & - & - \\
\hline American goldfinch & Spinus tristus & x & * & \(x\) \\
\hline Bald eagle & Haliaetus leucocephalus & - & - & \(x\) \\
\hline Baltimore oriole & Icterus galbula & * & x & - \\
\hline Barn swallow & Hirundo rustica & x & * & - \\
\hline Barred owl & Strix varia & - & - & x \\
\hline Belted kingfisher & Megaceryle alcyon & x & x & - \\
\hline Bewick's wren & Thryomanes bewickii & - & x & - \\
\hline Black-billed cuckoo & Coccyzus erythropthalmus & x & - & - \\
\hline Black-capped chickadee & Parus atricapillus & x & \(\times\) & - \\
\hline Blue-gray gnatcatcher & Polioptila caeru ea & - & x & - \\
\hline Blue grosbeak & Guiraca caerula & - & x & - \\
\hline Bluejay & Cyanocitta cristata & \(\times\) & * & \(x\) \\
\hline Bobwhite & Colinus virginianus & x & x & \(x\) \\
\hline Brown creeper & Certhia familiaris & - & - & x \\
\hline Brown-headed cowbird & Molothrus ater & \(x\) & * & x \\
\hline Brown thrasher & Toxostoma rufum & \(x\) & * & * \\
\hline Cardinal & Richmondena cardinalis & x & x & \(\times\) \\
\hline Carolina wren & Thryothorus Iudovicianus & - & x & - \\
\hline Catbird & Dumetella carolinesis & x & x & - \\
\hline Chimney swift & Chaetura pelagica & x & \(x\) & - \\
\hline Chipping sparrow & S.jizella passerina & x & \(x\) & \(x\) \\
\hline Common crow & corvus brachyrynchos & \(x\) & \(x\) & \(\mathbf{x}\) \\
\hline Common flicker & Colapios auratus & x & \(x\) & \(x\) \\
\hline Common grackle & Quiscalus guiscula & \(x\) & x & \(x\) \\
\hline Common nighthawk & Chordeiles minor & \(x\) & x & \(x\) \\
\hline Dickeissel & Spiza amexicana & x & x & - \\
\hline Downy woodpecker & Dendrocopos pubescens & - & X & \(x\) \\
\hline Eastern bluebird & Sialia sialis & \(\times\) & X & X \\
\hline
\end{tabular}

\section*{Common Name}

Eastern kingbird Eastern meadowlark Eastern phoebe Eastern wood pewee
Field sparrow
Grasshopper sparrow
Great blue heron
Great crested flycatcher
Great horned owl
Green heron
Hooded warbler
Horned lark
House sparrow
House wren
Indigo bunting
Killdeer
Lark sparrow
Least flycatcher
Loggerhead shrike
Louisiana waterthrush
Mallard
Marsh hawk
Mockingbird
Mourning dove
Orchard oriole
Pied-billed grebe
Fileated woodpecker
Purple martin
ked-bellied woodpecker
Red-eyed vireo
Red-headed woodpecker
Red-tailed hawk
Red-winged blackbird

Scientific Name

Baseline Inventory

\section*{Monitoring} Survey

Fall
Monitoring Survey
\begin{tabular}{|c|c|c|}
\hline x & x & x \\
\hline X & X & \(\times\) \\
\hline - & \(x\) & X \\
\hline K & \(\times\) & - \\
\hline \(x\) & \(\times\) & x \\
\hline X & \(x\) & - \\
\hline - & - & x \\
\hline X & X & - \\
\hline \(\times\) & - & x \\
\hline \(\times\) & x & - \\
\hline - & - & x \\
\hline * & \(\times\) & - \\
\hline \(\times\) & \(\times\) & - \\
\hline X & \(x\) & - \\
\hline x & \(\times\) & - \\
\hline - & \(\times\) & x \\
\hline - & x & - \\
\hline - & - & X \\
\hline x & \(x\) & - \\
\hline - & \(\times\) & - \\
\hline - & - & * \\
\hline - & x & X \\
\hline X & x & x \\
\hline \(\times\) & x & \(\times\) \\
\hline - & x & - \\
\hline - & - & x \\
\hline \(\times\) & - & \(x\) \\
\hline - & x & - \\
\hline x & x & X \\
\hline \(\times\) & x & - \\
\hline \(x\) & x & x \\
\hline x & \(\times\) & X \\
\hline - & X & x \\
\hline
\end{tabular}

\section*{Common Name}

Robin
Rock dove
Ruby-crowned kinglet
Ruby-throated hummingbird
Rufous-sided towhee
Song sparrow
Sparrow hawk
Starling
Summer tanager
Tree sparrow
Tufted titnouse
Turkey vilture
Vesper sparıow
Whip-poor-will
White-breasted nuthatch
White-eyed vireo
White-throated sparrow
Wood duck
Wood thrush
Yellow-billed cuckoo
Yellow-breasted chat
Yellowthroat

Scientific Name
\begin{tabular}{|c|}
\hline Turdus migratorius \\
\hline Columba livia \\
\hline Regulus calendula \\
\hline Archilochus colubris \\
\hline Pipilo erythrophthalmus \\
\hline Melospiza melodia \\
\hline Falco sparverius \\
\hline Sturnus vulgaris \\
\hline Piranga rubra \\
\hline Spizella arborea \\
\hline Parus bicolor \\
\hline Cathartes aura \\
\hline Poecetes gramineus \\
\hline Caprimulgus vociferus \\
\hline Sitta carolinensis \\
\hline Vireo griseus \\
\hline Zonotrichia albicollis \\
\hline Aix sponsa \\
\hline Hylocichla mustelina \\
\hline Coccyzus americanus \\
\hline Icteria virens \\
\hline Geothlypis trichas \\
\hline
\end{tabular}

Baseline
Inventory
\(x\)
\(\mathbf{x}\)
\(-\)

Moritoring
Survey

Fal1
Monitoring Survey
\begin{tabular}{cc}
x & x \\
x & - \\
- & x \\
x & - \\
x & - \\
x & x \\
x & x \\
x & x \\
x & - \\
- & x \\
x & x \\
x & x \\
- & x \\
x & - \\
x & x \\
x & - \\
- & x \\
x & - \\
x & - \\
x & x \\
x & - \\
x & -
\end{tabular}

\subsection*{3.3.4 AMPHIBIANS AND REPTILES}

Six species of amphibians and 13 species of reptiles were observed in the envirors of the Callaway plant site during the spring 1974 survey. The fall survey resulted in the collection of 21 species of herpetofauna (154 specimens) and the marking and release at their point of caplure of 142 animals.

\subsection*{3.3.4.1 Amphibians}

The several habitat types on the Callaway Plant site are attractive to a wide variety of amphibians, judged by their presence on the site during the spring and fall surveys.

Most amphibians pass through several stages of development from the egg to the adult. Water is a requirement for breeding and egg development for most amphibians, although some frogs and toads seek terrestrial environs in an immature or adult form and return to aquatic habitats only to breed. Numerous farm ponds, creeks, and ditches on the plant site serve as amphibian breeding areas. Frog tadpoles and young toads were observed during the survey, indicating completion of the reproductive process before the survey had commenced. Numerical estimates of immature amphibians were not attempted.

The species composition (Table 3.3.4-1) of amphibians reported in the fall is quite different from that reported for the spring survey. Three species collected during the fall survey were not reported during the spring survey. A good portion of this variability between sampling periods is due to the secretive nature of amphibians. Undoubtedly, numerous other species could be found with greater expenditures of time and energy. Every pond checked during the fall survey contained bullfrogs, northern cricket frogs, larval bullfrogs, and most also contained larval leopard fiogs.

Seining of fishless ponds in the fall revealed several good populations of newts (both adults and efts) not discovered during the spring sample. Fifty-three adults were marked in one pond. It is likely that certain species of salamanders also use these ponds for breeding sites during early spring, although this has not been documented by field surveys.

Adult bullfrogs, green frogs, and leopard frogs are common inhabitants of permanent water bodies. The American toad, Fowler's toad, gray treefrog, spring peeper, and northern cricket frog require water for breeding and post-hatching development but seek terrestrial environments while relatively immature. The treefrog remains near water, but species of both frogs and toads may travel far from aquatic habitats. Adult bullfrogs were the most commonly occurring amphibian observed during the spring survey (Table 3.3.4-1), while newts were the most common during the fall survey. Every pond
inspected on the plant site had good populations of bullirogs (both adult and larval forms), indicating the species is doing well and represents a possibility for limited sport hunting in the future.

Northern cricket frogs and leopard frogs are also present in most plant site ponds but are not as restricted to water as bullfrogs; they are also encountered in moist woodland situations away from the ponds. Leopard frogs were frequently seen crossing roads at night when the relative humidity was high.

In addition to being difficult to census, amphibian populations are highly sensitive to short-term fluctuations in environmental conditions. Therefore, amphibians probably should not be used as "indicator species" detecting change by annual monitoring programs. However, their role or function in the total ecology of the site canrot be overlooked.

No rare or endangered amphibians were observed during the conduct of the field survey (s).

\subsection*{3.3.4.2 Reptiles}

The numbers of each reptile species and the habitat types in which they were observed on the site are presented in Table 3.3.4-1. The prairies, forests, wetlands, ponds, streams, hedgerows, and variety of ecotones between communities provide reptiles with a variety of habitats within a predominantly agricultural area.

The three-toed box turtle was the most common reptile observed throughout the site during the spring survey (Table 3.3.4-1). It is adapted to an omnivorous diet of plant and some animal material and is not restricted to special habitat locations as are many of the other reptiles recorded during the study. Only 2 three-toed turtles were collected in the fall survey. Their major period of activity is late spring, which explains the large number collected in the spring survey. This species is not a good indicator, as it is likely to be found in woods, prairie, and cropland.

Many, if not most, lizards and snakes are most abundant in an ecotone habitat (Table 3.3.4-1). As a result, field-forest edges, old roads, and abancioned barns and houses (where litter is plentiful) are the best places to look for these species. At least two-thirds of the lizards and snakes captured in the fall survey were found in these habitats. Populations of lizards and snakes can be expected to increase at the plant site as the farm houses are abandoned; however, the i..orease will probably be temporary. As the area reverts to forest, the populaticas of many of the species should decline. Exceptions would be eastern ring-necked snake, ground skink, and five-lined skink, which do well in forest habitats.

The similarities or disparities in habitats of the permanent sampling stations cannot be meaningfully compared on the basis of
herpetofaunal abundance and diversity because too few individuals were observed (Table 3.3.4-2). The ground skink and the threetoed box turtle were rather uniformly observed at forest sampling stations. However, both of these species may occur in prairie habitats. The ground skink is difficult to capture for marking; thus, in some instances, the same individual may have been observed on more than one occasion but recorded as a new sighting.

Table 3.3.4-3 shows the results of an extensive marking program initiated during the fall 1974 field survey. As recaptures of marked individuals are made during subsequent field surveys, a more quantitative review of the ecological role played by each species can then be made.

No rare or endangered reptiles were observed at the plant site during the spring survey.

Previous remarks made about the utility of amphibians for characterizing the local wildlife populations and their significance to annual monitoring program objectives are also applicable to reptiles.

Newt (efts)
Newt (adults)
plains spadefoot toad
Fowler's toad
American toad
Gray treefrog
Spring peeper
Northern cricket frog
Leopard frog
Bullfrog
Green frog
Snapping turtle
Three-toed box turtle
Eastern fence lizard
Slender glass lizard
Ground skink
Five-lined skink
Common water snake
Brown snake
Red-bellied snake
Western ribbon snake
Common garter snake
Smooth earth snake
Eastern hognose snake
Worm snake
Eastern ringneck snake
Racer
Rat snake
Common kingsnake
Copperhead
ToTai
\[
\text { TABLE } 3,3,4-2
\]

\[
\begin{aligned}
& \text { Three-toed box turtie } \\
& \text { Ground skink } \\
& \text { Copperhead }
\end{aligned}
\]
VARIETY AAD NUMBERS OF HERESTOFAUNA OBSERVED WITHIN PERMANENT SAMPLING STATIONS LOCATED ON THE CALIANAY PLANT SITE,
TABLE \(3 \cdot 3 \cdot 4-3\)
AMPHIBIANS AND RE:TILES MARKED AND RELEASED IN THE VICINITY OF PERMANENT PLOTS,

\[
\begin{aligned}
& \text { EALL } 1974 \\
& \frac{\text { Prairie Stations }}{1} 2 \\
& \hline 2
\end{aligned}
\]
\[

\]

\subsection*{3.3.5 INVERTEBRATES}

The invertebrates obtained in the field sarveys are those normally inhabiting the various vegetative strata of the Callaway Plant site in late lay and June (spring survey) and late August and September (fall survey).

The taxonomic identifications of invertebrates collected in both 1974 surveys are shown in Tables \(3 \cdot 3 \cdot 5-1\) and \(3 \cdot 3 \cdot 5-2\). The presence and number of specimens collected are indicated according to major habitat types (forest or prairie), permanent sampling station (\(\mathrm{F}-1, \mathrm{~F}-4\), etc.), and transect number within each station at which a given species was collected.

The preliminary nature of the spring survey precluded making other than very general observations. There was no obvious difference in the species diversity nof numbers of individual invertebrates collected in prairie as opposed to forest habitats. However, a relatively high proportion of the species are apparently associated with only one of the major habitat types; i.e., some species occur only in prairie while others occur only in forest habitats (Table 3.3.5-1). The data indicate that only the thrips occur in both forest and prairie habitats at extremely high densities. The identified families, genera, and species are considered rather numerous, whereas the number of individuals per taxonomic group is relatively few. However, such judgment is highly subjective because a basis for comparison is lacking. There is no known source of base information documenting the diversity and relative abundance of invertebrates in the vicinity of the Callaway Plant site.

The kinds of data reported in Table \(3 \cdot 3 \cdot 5-2\) are typical of those expected from this method of survey. The Insecta represents the largest number of species of any group of organisms. Certain problems are encountered in the identification of certain insects to the species level, resulting in the placement of many specimens only at a higher category such as Family.

The fall survey of invertebrates was dominated by arthropods, especially insects, in the sweeping samples, as was the case in the spring survey. The sweeping method is in fact biased toward collecting these organisms as opposed to other terrestrial invertebrates occupying select habitats or niches other than the exposed surfaces of the vegetative stratum. This bias is inescapable, however, when time and monetary constraints are imposed.

Arthropoda are largely habitat-specific, and this is reflected in the data presented in Tables \(3 \cdot 3 \cdot 5-1\) and \(3 \cdot 3 \cdot 5-2\). A number of trophic levels are represented among the invertebrates sampled. Many species of plant-feeding insects are relatively hostspecific, and therefore their relative numbers (by sample) may be a reflection of the density of the host. Others are polyphagous,
and some are predaceous on small invertebrates; still others feed on dead or decaying organic matter. Insects in particular are subject to dispersal, both vertical and horizontal, having no difficulty in flying from one site to another over the whole of the area of southern Callaway County, or moving fiom the ground litter up onto the higher stratum of a plant within a given habitat. Adverse weather conditions prior to or during the collection periods can affect the organisms, reducing the number collected by sweeping. These factors further complicpte an analysis of the interrelationships within a given habitat, prairie or forest, and need to to kept in mind both now and in the future when one examines and interprets the data presented in Tables 3.3.5-1 and 3.3.5-2 .

The majority of species collected tended to reflect their affinities to either the forest or prairie habitats. For example, species of the planthopper genus Myndus (Homoptera: Cixiidae), and leafhoppers in Erythroneura (Homoptera: Cicadellidae) were well represented in both forest habitats (\(\mathrm{F}-1\) and \(\mathrm{F}-4\)) but were not collected from the prairie sites; the spider oxyopes salticus (Araneidae: Oxyopidae) was exclusive to the prairie communities. Likewise, some species were collected from one of the paired habitats, but not both. Such was the case of Arthrolips decolor (Coleoptera: Orthoperidae), which was collected from Pr-4 but not the pr-l prairie site. This might reflect the different stages of succession of the two prairie habitats.

Many species were collected in relatively low numbers. This could result from a number of factors, including low population levels of the species, aggregations of individuals of a species within the habitat (more easily missed in a given sweep), selectivity in the collection methods used for certain species versus others, adverse microhabitat conditions, weather conditions such as wind, and so forth.

Many more species, organisms, and taxa were collected in the fall survey (ca. 9,500 specimens) than in the spring survey (ca. 2,500 specimens) (Table 3.3.5-3), This is probabiy due in part to the seasonal buildup of populations. It may also be partially due to different personnel taking the Jur \(₹\) samples and the fall samples.

umueatiaue eaunoktquiy
－तี डnวवैग

－ds snuas
аертиотqп：．
－ds snuas
ds aeptitape
－ds eวs甘
aертоsy
Eufresy
－ds snuas
EThATEA Euauks
－ds Envoxpotiqd
－ds sdoumumstu
－ds evamestW

－ds sndarpiudery
ds miptydex日c
－ds sndतatudezon
－ds sntat
－ds Etz7uah
aeptot7さes
－ds snuas
аहртЂuetएчa
－ds snToइT7exaj
อерт7ルечdスxวTW
－de sntras
aeprTydスuTT
－ds sdouaumstw
aepts tुwoч．
\(\qquad\) Is struas sn7exonxeu snauexy aeptauexy
eptavexy
ерт日みもセエV
satpade pue snuas
\(K\) Truea
ATture
1архо
ssets

GLIS LNV＇Td EVMVTTVS GHL NIHLIM GZLVOOT SNOLLvLS ONTIdWVS（dd）GIdIVAd GNV

Class
Order
Family
Genus and species
Insecta (eontinued)
Diptera
Dolichopodidae
Chrysotus sp.
Genus sp.
Empididae
Genus sp.
Lauraniidae
Homoneuxa philadelphica
Genus sp.
Muscidae
Genus s.
Mycetophilidae
Mycomya sp.
Trichonta sp.
Phoridae
Genus sp.
Pipurculidae
Chalarus sp.
Sarcophagidae
Ravinia sp.
Sciaridae
Bradsia sp.
Genus sp.
Sphaeroceridae
Sphaeroceza sp.
Aryidae
Sofus pilicornis
Aphidae
Paragus tibialis
Sphaerophoria cylindrica
Toxomerus geminatus
Tipulidae
Elliptera sp.
Helius sp.
Genus sp.
Unknown
Genus sp.
Apidae
\begin{tabular}{|c|c|}
\hline & \(++\) \\
\hline \[
\begin{gathered}
\mathrm{Cl} \\
\text { Lin } \\
\text { hin }
\end{gathered}
\] & ＋＋ \\
\hline －r） & \(\mathrm{N}+\) \\
\hline
\end{tabular}
\begin{tabular}{l}
Family \\
Genus and species \\
\hline
\end{tabular} insecta（continued） secta（continued）
Hymenoptera
Erachonidae
Genus sp．a．
Genus sp．b．
Chalcidoidea
Genus sp．
Diapriidae
Genus sp．
Encyrtidae
Genus sp．
Euloplidae
Genus sp．
Eupelmidae
Genus sp．
Foxmicidae
Acanthomyops sp．
Camponotus sp．
Crematogaster sp．
Doliehoderus sp．
Formioa sp．
Harpagoxenus americanus
Leptothorad sp．
Monomorium geninatus
Myrica sp．
Paratrechina sp．
Pheidole sp．
Tetramorium caespitum
Halictidae
Lasioglossum rohweri
Iehneumonidae
Genus sp．
Mymeridae
Genus sp．
Pteromalidae
Genus sp．
Psocoptera
Pseudocaeciliidae
Genus sp．
Psocidae
Genus sp．
Fen

（panu；7uoo） \(\mathrm{T}-5^{+}\)＇\(\varepsilon\) a＇tavy

（panは「7（

++++
+++-+
\(++-N\)
\(\qquad\)

Class
Family
Family
Genus and species
insecta (continued)
Coleoptera (continued)
Curculionidae
Anametis grandulata
Apion sp.
Baris sp.
\(\frac{\text { Odontocorynus sp. }}{\text { Pandeleteius hilaris }}\)
Elateridae
Ctenicers signaticollis
Limonius basiliaris
Eimonius quercinus
Erotylidae
Tritoma sanguinipennis
Eugienidae
Zonantes fasciatus
Histeridae
Saprinus sp.
Melandryidae
Micronotus sericans
Scraptia sp.
Mordellidae
Mordellistena sp.
Orthoperidae
Orthoperus sp.
Phalacridae
\(\frac{\text { Phalacrus sp. }}{\text { Staphylinidae }}\)
Apocelius sphaericollis
Stenus sp.
\({ }^{a}\) indicates numbers of specimens collected.
TABLE: \(=3.5-2\)

Nematoda
Unknor
Unknown
Gastropoda
Pupillidae
Vertigo
Succineidae
Genus sp
oiplopoda
Unknown
Axachnida
Chelonethida
Phalangida
Unknown
Gerns
Anyphaenid \(e\)
Anyphaena \(\$ p\).
Genus sp
pphaenid e
Anyphaena
Aysha sp.
Araneidae Acanthepeira stellata

(panutzu0a) \(₹-5^{*} \varepsilon \cdot \varepsilon\) สTสV1
p 72a4s

\[
\begin{aligned}
& \text { ' } \mathrm{G} \text {-ds sfxomc7K4d }
\end{aligned}
\]
\[
\begin{aligned}
& \frac{\text { faxpy sapotiext }}{}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{\text { 'ds Eapy7.10 }}{\text { smsouth }} \\
& \text { аертаекズ }
\end{aligned}
\]

> sngourds si
> aEDTコススa
> snsotprsur anfan
> sneourcsanburnh \(\frac{\text { aeptiapoy7ut }}{\text { smachotebaw }}\)
aeptpATt

> (4duKu) - ds snuas ds snuar อeptoosd
\[
\begin{aligned}
& \text { ลерп7ewsey } \\
& \text {, dis snues }
\end{aligned}
\]
\[
\begin{aligned}
& \text { sn7etase3 sntqouan }
\end{aligned}
\]
\[
\begin{aligned}
& \text { จセpTITAI? }
\end{aligned}
\]
\[
\begin{aligned}
& \text { (penutzuos) e7sesu7 } \\
& \text { รatวads pue snuas }
\end{aligned}
\]

(panuf7u0n)
TABLE 3.3.5-2

Class
Ordel
Family
Genus and species
Insecta (continued)
Homoptera (continued)
Cicadellidae (continued) Exitianus exitiosus Flexamia sp. Graminella nigrifrons Gyponana sp.
Hymetta trifasciata Hymetta spp. Latulus sayi
Neokolla hieroglyphica
Paraphlepsius irroratus Paraulacizes irrorata polyamia apicata scaphoideus spp. Xestocephalus publicarius Gestocephaius publicarius
Cixiliae
\(\frac{\text { My }}{\text { Midus }}\) enotatus
\(\frac{\text { My }}{\text { Mymas }}\) Eulvus
Myndus Sp.
Coccosdea
Genera spp.
Delphacłaae
Kelisia axialis Kelisia axialis Genus spp.
verbidae
Otiocerus degeerii
Dictyopharidae
Phylloscelis atra
Flatidae
Ormenis pruinosa Ormenis septentrionalis ormenis venusta
Issidae
Bruchomorpha vittata
Membracidae
Campylenchia latipes
Publilia reticulata

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & 3 & 1 & 3 & 3 & 1 & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & 10 & 5 & 4 & \(+\) & \(+\) & + \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & 1 & \(+\) & + & \(+\) & + \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & 1 & \(+\) & \(+\) \\
\hline 1 & 3 & \(+\) & \(+\) & 1 & 1 & \(+\) & \(+\) & \(+\) & \(+\) & + & \(+\) \\
\hline \(+\) & 1 & 1 & 4 & 4 & 2 & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & 34 & 12 & 24 & 1 & + & \(+\) \\
\hline 1 & 4 & 2 & \(+\) & \(+\) & \(+\) & \(+\) & 4 & \(+\) & + & \(+\) & \(+\) \\
\hline 6 & 1 & 4 & 3 & \(+\) & 3 & \(+\) & \(+\) & \(+\) & \(+\) & + & \(+\) \\
\hline \(+\) & \(+\) & 2 & \(+\) & \(+\) & 1 & \(+\) & + & \(+\) & 4 & \(+\) & + \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & 7 & \(+\) & \(+\) & \(+\) \\
\hline 4 & 2 & 2 & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & 4 & \(+\) & \(+\) & \(+\) & \(+\) & 2 & + & \(+\) & \(+\) & \(+\) \\
\hline 14 & 25 & 17 & 13 & 23 & 21 & 78 & 13 & 81 & 16 & 2 & 5 \\
\hline 20 & 28 & 23 & 4 & 8 & 1 & \(+\) & \(+\) & \(+\) & \(+\) & + & \(+\) \\
\hline 17 & 24 & 8 & 21 & 21 & 14 & \(+\) & + & + & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & 1 & \(+\) & \(+\) & \(+\) & \(+\) & + & + & \(+\) & \(+\) & + \\
\hline \(+\) & \(+\) & \(+\) & 1 & 4 & 1 & + & \(+\) & 2 & 4 & \(+\) & + \\
\hline + & 2 & 4 & + & + & \(+\) & 4 & \(+\) & \(\ddagger\) & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & 2 & 4 & 2 & \(+\) & \(+\) & 4 \\
\hline \(+\) & 1 & 2 & \(+\) & 1 & \(+\) & 3 & 4 & 4 & \(+\) & + & \(+\) \\
\hline \(+\) & \(<\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) \\
\hline \(+\) & 7 & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & + & 2 & 3 & 2 \\
\hline 2 & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & 4 & \(+\) & \(+\) & 4 & 7 \\
\hline + & \(+\) & \(+\) & \(+\) & \(+\) & 2 & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & + \\
\hline \(+\) & 1 & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & + & \(+\) & \(+\) \\
\hline \(+\) & \(+\) & \(+\) & \(+\) & + & \(+\) & 30 & 36 & 55 & 1.4 & 10 & 2 \\
\hline 1 & \(+\) & 1 & \(+\) & \(+\) & \(+\) & \(+\) & \(+\) & 1 & \(+\) & 1 & 3 \\
\hline 4 & 1 & 22 & 4 & 4 & 1 & \(+\) & + & + & \(+\) & \(+\) & + \\
\hline
\end{tabular}

\(0+n++m+m+n\)
\(m+\infty+N+m+N\)
\(0 \quad+N++m+\infty+m\) -

Class \(\begin{array}{r}\text { ramily } \\ \text { Genus and species } \\ \hline\end{array}\)
esta (continued)
coptera (cont

Coccinellidae
Psyllobora vigintimaculata
Scymnus xanthespis?
Scymnus spp.
Genus sp. (larva)
reulionidae
Apions spp.
Centrinites strigicollis
Conotrachelus sp.
Curculio sulcatulus
Cyrtepistomus castaneus
Geraeus picumnus
Hypera punctata
Pandeletius hilaris
Smicronyx sp.
Genus sp. (larvae)
\(\frac{\text { Zonantes }}{\text { Bonantes }} \frac{\text { fasciatus }}{\text { subfasciatus }}\)

立
Cartodere
(panufauoد) \(z-5^{+} \varepsilon^{\prime} \varepsilon\) gT\&Vม

\(\frac{\mathrm{Pr}-1}{2}\)
\(\qquad\)
Pr-4
\(1 \quad 2 \quad 3\)
ot 7aays

\(\square\)

Class

\[
\text { TABEE } 3.3 .5-2
\]
\[
\begin{aligned}
& \text { led) } \\
& \begin{array}{lll}
1 & \frac{\text { Pr-1 }}{2} & \\
\hline & & \\
4 & + & + \\
4 & 31 & 16 \\
+ & + & 2 \\
31 & 19 & 18
\end{array}
\end{aligned}
\]
Class
Family
Genus and species -- Genus and species

\footnotetext{
Insecta (continued)
Diptera (continued)

Scatopsidae guerula?
Genus \(3 p\).
Sciaridae
aeptzKuot3s
- ds snuag
- exoydoz etwyos

Genus sp.
Simuliidae?
Sphaeroceridae
Stratiomyidae

\(\frac{\text { Ocyptamus }}{\text { Toxomerus }} \frac{\text { Euscipennis }}{\text { marginatus }}\)
\(\frac{\text { Toxomerus }}{\text { Genus sp }}\) politus
Tackinidae
\(\frac{\text { Cholomyiu }}{\text { Genus sp. }}\) inaeguipes Tipulidae
Genus sp

Genus sp.
Unknown
Genus spp.
Hymenoptera
Apidae
Bethylidae \begin{tabular}{c}
Bombus \\
americanorum \\
\hline
\end{tabular}
Brachonidae
Genus spp.
Chalcididae
Eurytoma sp.
\(\frac{\text { Perilampus }}{\text { Genus sp. }}\)
}


```

TABLE 3.3.5-3

```

COMPARISON OF INVERTEBRATE SPECIMENS COLLECTED BY PERMANENT STUDY PLOT AND TRANSECT DURING THE SPRING AND FALL SAMPLING PERIOD, 1974 ON THF CALLAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Transect} & \multicolumn{4}{|c|}{Spring} \\
\hline & F-1 & F-4 & Pr-1 & \(\underline{\text { Pr-4 }}\) \\
\hline 1 & 143 & 130 & 319 & 539 \\
\hline 2 & 326 & 92 & 485 & 41 \\
\hline 3 & 149 & 54 & 115 & 126 \\
\hline Total & 618 & 276 & 919 & 706 \\
\hline Grand Total & \multicolumn{4}{|c|}{2519} \\
\hline & \multicolumn{4}{|c|}{Fall} \\
\hline Transect & \(\overline{\mathrm{F}-1}\) & F-4 & Pr-1 & Pr-4 \\
\hline 1 & 436 & 355 & 1677 & 934 \\
\hline 2 & 535 & 392 & 974 & 796 \\
\hline 3 & 490 & 336 & 1899 & 751 \\
\hline Total & 1461 & 1083 & 4550 & 2481 \\
\hline Grand Total & & & 75 & \\
\hline
\end{tabular}

\subsection*{3.4 ECOLOGICAL SUMMARY}

The following paragraphs and illustrations describe, in a general way, functional relationships and structural components of the regional ecosystem within Callaway County, Missouri. Figure 3.4-1 is a diagrammatic representation of the major ecological associations of the Callaway Plant site. Figure 3.4-2 shows diagrammatically the various trophic levels, their relative contribution to the total biomass of the system, and natural and man-made stresses.

Soil inherently produces and concomitantly is subject to diverse influences, biotic as well as abiotic in nature. Natural soils serve as the starting point in the process of developing the carrying capacity of land for plant and animal communities (Figures \(3.4-1\) and \(3.4-2\)). Natural soils, including the Goss soil of steep timbered hills and Menfro soils on hills bordering the floodplain in the site area, serve as a foundation upon which the "pyramid of biomass" is based. These soils (Goss and Menfro) have not been significantly altered by man. (Soil is ultimately a storehouse for the raw materials required by plants [the primary producers] for development and growth). The distinction is made between natural and agricultural soils subject to the influence of man. This distinction is further based on use, form, and composition, which additionally separate natural and agricultural soils.

Agricultural soils, including the Mexico-Putnam soils of the site area, start out initially as natural soils but subsequently are somewhat altered. The farmer alters the soil, such as at the Callaway Plant site, by first clearing the land, plowing the soil, and then cultivating for production of a standing crop. Additionally, to further assist in optimizing production from the soil, he utilizes fertilizers, pesticides, herbicides and other chemicals to enhance production and limit or eliminate waste. Productive agricultural land in some respects is "short-circuited" successionally, in that the normal organic cycle must be continually supplemented to maintain a high soil fertility, the prerequisite for successful agricultural development. Cultivation physically increases soil aeration and allows for some organic additions at a more rapid rate; however, it also causes greater moisture evaporation by exposing a greater proportion of the soil surface to the air. Surface water runoff from agricultural soils may be made up of consiferable quantities of soluble and suspended material including organic material, fertilizers, silt and residues from herbicides and pesticides. These materials can enter adjacent waterways and have a pronounced influence on the aquatic ecosystem.

Litter, another element of the ecosystem, consists fundamentally of organic components, namely leaves and other vegetative plant
parts shed throughout a growing season. These organic additions to the litter layer provide food to decomposers and microorganisms in addition to insects that inhabit the litter mat of various vegetative cover types. Litter generally is composed of two main forms: first, organic litter consisting of twigs, leaf debris, mulches, duff, and brush, or the undecomposed component of the biotic community. The second major component of litter is humus--litter that has undergone and is undergoing aerobic and anerobic decomposition into organic and inorganic components.

Litter provides input to the soil by adding humus content to the upper horizons of the soil profile (Figure 3.4-2). This addition aids in building the soil profile while helping to increase the capability of the soil to retain moisture necessary for plant growth. Plant roots, stems, bacteria, fungi, and small animals residing in the soil or litter mat provide both physical and chemical additions to the substrate that enhance the soil characteristics.

At the elemental level, litter is a storage point in the nitrogen, phosphorus, and sulfur cycies. Carbohydrates, as well as ligins, proteins, and amino acids present in the litter layer are food for the microorganisms, which are important in cycling nutrients into the inorganic forms required for plant growth and development.

The green plant (Figure 3.4-2), in all its diverse shapes, sizes, and locations, forms the basic source of energy upon which all elements of the ecosystem are totally dependent. The reason for this total reliance on the plant is due to the unique ability of green plants to convert solar energy and chemicals through the photosynthetic process into an organic form which is usable by other organisms. As a result, the green plant, the primary producer in the ecological community, functions as the foundation of the food web.

Vegetation of the field and forest, serving is the basis of the ecosystem, receives its energy inputs from the sun, water, minerals, and the atmosphere. Sunlight, as previcusly mentioned, provides the energy necessary for photosynthesis. Water is an important requirement of plants for physical suppurt metabilism and assists in transporting gases and chemicals throughout the plant. Minerals are required by plants to provide the basic units and cellular materials necessary for normal growth, flowering, and reproduction. Atmospheric gases, in particular carbon dioxide and oxygen, are required by the individual plant to permit photosynthesis and respiration to occur. These primary inputs supply vegetation with the materials necessary for survival and development.

Plants, in their unique position, supply energy in several forms to the primary consumers of the biota. Basically, the energy from plants is in the form of forage materials from the site
area, such as acorn, hackberry, greenbriar, smooth sumac, juniper berries, maple seed, persimmon, blackberry, strawberry, black walnut, and wild grape, plus a variety of grains and succulent shrubs, which supply vitamins, starches, sugars, and other compounds necessary for the life of birds and animals (herbivores). In oldfields and transition areas in particular, the forage value of the vegetation is very high, owing to the prevalence of grasses and shrub species used by herbivores including several bird species, rabbits, whitetailed deer, fox, and gray squirrels (Figure 3.4-1).

In addition to providing forage, vegetation also provides cover and concealment for wildlife utilizing the various habitats. Cover is an important factor in controlling the rate of predation occurring in wildlife populations. The vegetation of the site area consists of a diverse flora including forest associations such as oak, oak-hickory, oak-maple, and bla.k walnut-red cedar. Field associations of the site include pasture and oldfield (prairie). Hardwood forests within the site area in addition to dense shrub thickets afford excellent cover and concealment to a broad spectrum of wildife species (Figure 3.4-1).

Invertebrates are the most abundant of the faunal forms found in the Callaway Plant site area. The multifarious insect species are the most important of the invertebrate fauna, and this position is reinforced by their sheer numbers both in species and individuals. Insects represent every conceivable trophic level from primary consumers such as aphids, to facultative parasites such as wood ticks, to tertiary carnivores such as assasin bugs. There are fructivorous insects, granivorous insects, herbivorous insects, parasitic insects, detritivorous insects, carnivorous insects .-every available plant and animal species is either preyed upon or parasitized by insects. The diets of a good many of the higher animals are based, at least in part, upon the availabllity of insects as food. The invertebrates, especially the insects, are an integral, essential, and omnipresent component of every terrestrial ecosystem on earth.

Most of the smaller herptiles of the Callaway Plant site are predaceous upon insects. Species such as the ground skink, five-lined skink, and the eastern fence lizard live in the forested areas or edges and feed exclusively upon the insects there. Many of the more grassy areas are inhabited by various species of snakes, which prey upon a variety of species. The hog-nosed snake feeds almost exclusively upon toads, while garter snakes and rat snakes eat small mammals, lizards, skinks, baby birds - almost anything available. The three-toed box turtle is more omnivorous in its habits, eating vegetation and occasional insects. The frogs and toads are largely insectivorous, though the larger species such as the bullfrog may prey upon prairie voles and garter snakes.

The herptiles are in turn prey for a number of larger species such as hawks, crows, owls, weasels, and even hogs.

In a natural system, the wild animals are the principal users or consumers of the available botanical component of the habitat (Figure 3.4-2). This utilization may be direct, as in the case of a white-tailed deer browsing on smooth sumac leaves, or perhaps indirect, as in the case of a prairie vole building a runway from lodger fescue stems and accumulated leaf litter. In any case, the key concept is utilization of available resources and this takes on myriad forms throughout zoological components of the ecosystem. Resource utilization is not, however, a oneway operation, for many of the components are recycled within the system and again become available for use by the plants, i.e., the smooth sumac eaten by the deer is converted within the system and again becomes available for use by the plants; the fescue stems and leaf litter decay in time and their elemental components enrich the soil and, in turn, provide essential nutrients for plant growth; the same recycling occurs when an animal dies and the components of its body decay and eventually are recycled and reused.

The birds of the Callaway Plant site are a very diverse lot, changing their food habits and habitats with the season (Figure 3.4-1;. During the nesting season in the spring, various vegetative components of the ecosystem are incorporated into the nesting territory and are fiercely defended by the males, while during the fall, a wide range of habitat type may be frequented. Many birds are granivorous and thus their territories include areas where weeds grow and seeds are abundant. Others are largely insectivorous and their territories are chosen by those areas, primarily grasslands, where insects are abundant. Predatory birds are more wide-ranging, since they prey upon a wider variety of animals. Small raptors such as the sparrow hawk feed primarily upon large insects such as grasshoppers. Larger raptors such as the great horned owl are nocturnal and feed upon species such as mice, voles, and rabbits, which are active at night. Other birds, such as bob-white quail, are omnivorous, feeding alternatively upon seeds, leaves, flowers, insects, spiders, and other materials found along the ground.

Birds are also preyed upon by a variety of predators. Some larger hawks prey upon mourning do as and quail, while many nests are raided by arboreal snakes, specifically the gopher snake and the rat snake.

Birds occupy various zones within a habitat--some preferring the ground surface, others, tall weedy vegetation. Still others occupy the various strata within the forest canopy (Figure 3.4-1).

Birds are very important in the dispersal of vegetative seeds, especially weed seeds. This is important in the natural succession of vegetative communities.

Mammals of the Callaway Plant site are easier to categorize than most other fauna of the area due to their limited numbers and their position in the trophic web (Figures 3.4-1 and 3.4-2).

Shrews are almost exclusively insectivores, although the shorttailed shrew does prey upon the young of mice and of groundnesting birds. Most rodents are herbivorous, with an occasional insect in their diet. Harvest mice and white-footed mice are granivorous, while the prairie vole and the southern bog iemming cut grass stems to make small "haystacks." Cottontail rabi.ts also consume a variety of herbaceous plant parts.

The opossum is an omnivore as is the raccoon, but their tastes are such that there is little, if any, competition between them. Carnivorous mammals include the red fox, the coyote, and th:e long-tailed weasel.

The only really large wild mammal on the site is the whitetailed deer, which is a browser, eating the succulent leaves, stems, and buds of woody plants and forbs.

Small mammals are preyed upon by snakes, bullfrogs, hawks, owls, weasels, foxes, and coyotes; while larger mammals are preyed upon by large hawks, foxes, coyotes, and other top carnivores. Most of the top carnivores are preyed upon only by man.

> UNION ELECTRIC CO. CALLAWAY PLANT UNITS \(1 \& 2\)

PYRAMID OF BIOMASS

\subsection*{3.5 CONCLUSIONS AND RECOMMENDATIONS}

The results of the preconstruction monitoring program substantiate the conclusions reached after the baseline inventory regarding anticipated environmental impact from plant construction and operation. To reiterate, the ecology of the Callaway Plant site is not unique, and its particular ecological balance reoccurs many times throughout central and eastern Missouri. Intensive farming has produced favorable habitat for wildlife populations, but these conditions can be found in areas adjacent to the site. Since construction of the facility will remove only a small portion of the total acreage from production and since the ecology of the Callaway County Plant site is not unique, no significant impact from plant construction on the resident wildlife population is anticipated.

Rare and endangered or extremely important economic species occurring near or on the site will be affected little by development of the facility. The turkey, white-tailed deer, and ruffed grouse require forested habitats broken by small fields or openings and a relatively large home range. Only a few acres of forest will be disrupted during construction, and the access road, pipelines, and railroad spur should not affect movement of these species. Other species, such as the bald eagle, are extremely mobile and are not expected to be found near or on the site very often.

As a result of the first year's surveys, some recommendations can be made to improve the program, especially with regard to the invertebrates.

A voluminous amount of material was collected by sweeping, far too much to analyze critically. Also, large numbers of species cannct be dealt with taxonomically and must be identified only to a higher level. This is due to the lack of adequate keys and/or correctly determined collections of certain taxa (and accessibility to them), and to the inadequate knowledge of certain groups possessed by any identifier.

Even with the large amount of material collected, the methods provide at best a survey of only a component of the terrestrial invertebrates. This is not necessarily a shortcoming, but rether a reality. Spring and fall season comparisons are not expected to be completely alike either in species composition or abundance. Thus a certain taxa from the total survey should be selected for comparison. These should be invertebrates that provide the best chance of being identified to the genus and/or species level, or in selected cases, order or family. The chosen higher taxa (genus, family) should, within the taxon, reflect a relatively homogeneous trophic level and not have species representing two or more trophic levels. As a group, the spiders should prove to be a useful monitoring barometer. They occur in large enough numbers to be meaningful, are all
predators, are generally habitat specific, and as adults are identifiable to some meaningful level, genus, or species. The Hemiptera and Auchenorrhynchous Homoptera are generally plant feeders whose species suck plant juices via piercing-sucking mouthparts. There is a distinct plant-insect interaction with many of the species being host specific. They are also fairly well known and can be identified. The predaceous Hemipterans are well known and afford observation of an insect predatory group. Also the Orthopterans are largely a mandibulate plantfeeding or scavenger group. The Thysanopterans (Thrips), Neuropterans (lacewings), and coleopterans (beetles) are fairly well known and reflective of different trophic levels and should continue to be monitored.

Certain orders of arthropods appear to offer little chance of being identified to either family or genus and should be eliminated from serious consideration, as they probably will not satisfy the objectives of a monitoring program. These include the Collembola, Lepidoptera, Diptera, Hymenoptera, and Acarina. Others such as the odonata, Psocoptera and non-arthropod groups do not occur in sufficient numbers in the sweeps to warrant their inclusion.

Since the invertebrates constitute the largest single component (in terms of number of species) on these permanent study sites, it is necessary to include them in a monitoring program. However, it has been found impractical and scientifically unrealistic to consider all of the invertebrates in the monitoring program.

\subsection*{3.6 REFERENCES}

Bancroft, W. S. 1966. Reproduction, development, and behavior of the western harvest mouse (Reithrodontomys megalotis). Unpublished Master's Thesis, University of Kansas, Lawrence.

Bazzaz, Fakhri A. 1968. Succession on abandoned fields in the Shawnee Hills, Southern Illinois. Ecology 49(5):924-936.

Blair, W. F., A. P. Blair, P. Brodkorb, F. R. Cogle, and G. A. Moore. 1968. Vertebrates of the United States. 2nd edition. McGraw Hill.

Briese, L. A., and M. B. Smith. 1974. Seasonal abundance and movement of nine species of small mammals. J. Manmol. 55:615-629.

Cain, S. 1938. The species-area curve. American Midland Naturalist 19:578-581.

Conant, R. 1958. A field guide to reptiles and amphibians. Houghton Mifflin Company, Boston, Massachusetts.

Cox., David L., Michael Miller, and John A. Hostetler. 1972. Succession in and composition of a Central Illinois prairie grove. Trans. Ill. State Acad. Sci. \(65\left(\frac{1}{2}\right): 33-41\).

Curtis, J. T., and Grant Cottam. 1956. Plant ecology work book, laboratory, field and reference manual. Burgess Publishing Company, 太inneapolis, Minnesota.

Daubenmire, Rexford. 1968. Plant communities, a textbook of plant synecology. Harper \& Row Publishers, New York.

Drew, W. B. 1942. The vegetation of abandoned cropland in Cedar Creek area, Boone and Callaway Counties, Missouri. Univ. Missouri Coll. Agr. Exp. Sta. Res. Bull. 344.

Duncan, Sue H., and William H. Ellis. 1969. An analysis of the forest communities of Montgomery County, Tennessee. Journal of the Tennessee Academy of Science \(44(1): 25-32\).

Dunn, David B. 1974. I ersonal commanication.
Fernald, M. L. 1950. G. จy's Manual of Botany. 8th edition. American Book Company, New York.

Hall, E. R., and K. R. Kelson. 1959. The mamuls of North America. Ronald Press Company, New York.

Hayne, D. W. 1949. Two methods for estimating population from trapping records. J. Mamm. \(30(4): 399-411\).

Hitchcock, A. S. (Revised, A. Chase). Manual of the grasses of the United States. 2nd edition. United States Government Printing Office, Washington, D. C.

Johnston, D. W., and E. P. Odum. 1956. Breeding bird populations in relation to plant succession on the piedmont of Georgia. Ecology 37:50-62.

Jones, J. K., Jr., D. C. Carter, and H. H. Genoways. 1973. Checklist of North American mammals north of Mexico. Occasional papers (12). Museum Texas Technical University.

Kershaw, Kenneth A. 1964. Quantitative and dynamic ecology. American Elsevier Publishing Company, Inc., New York.

Kucera, C. L., John H. Ehreureich, and Carl Brown. 1963. Some effects of fire on tree species in Missouri prairie. Towa State Journal of Science \(38(3): 179-185\).

Lord, R. D. 1959. Comparison of early morning and spotlight roadside census for cottontails. J. Wildl. Mgmt. 23:458-460.

Minckler, Lecn S. 1971. A Missouri forest of the past. Transactions, Missouri Academy of Science. Vol. 5, p. 48-56.

Myers, J. H., and C. J. Drebs. 1974. Population cycles in rodents. Sci. American \(230(6): 38-46\).

Pearson, 2. G. 1959. Small Mammals and old field succession on the piedmont of New Jersey. Ecology 40:249-254.

Phillips, Idwin Allen. 1959. Methods of vegetation study. Holt Rinehart and Winston, Inc., New York.

Richins, G. H., H. D. Smith, and C. D. Jorgensen. 1974. Growth and development the western harvest mouse (Reithrodontomys
magalotis). Gr. Asis Natur. 34:105-120.
Schwartz, C. W. and E. R. Schwartz. 1959. The wilr is of Missouri. University of Missouri Press.

Smith, H. D., and C. D. Jorgensen. 1974. Estimacicı : 'l mammals using recapture methods: EM-2 estimator. Tweriol.

Smith, H. D., C. D. Jorgensen, and H. D. Tolley. 197\%. Estimation of small mammals using recapture methods: partitioning of estimator variables. Acta Theriol. \(17(5): 57-66\).

Steyermark, J. A. 1963. Flora of Missouri. Iowa State University Press, Ames, Iowa.

Union Electric Company. 1974. Callaway Plant Units 1 and 2, Environmental baseline inventory. Unpublisned report. Union Electric Company, St. Lcuis, Misscuri.

United States Department of Agriculture. 1967. Collection and proservation of insects. U. S. Government Printing Office, Vashington, D. C.

Wrenscher, James Z., and Algird J. Valionas. 1967. Presettlement forest composition of the river hills region of Missouri. The American Midland Naturalist 78(2):487-495.

\section*{4. APPENDIXES A AND B}

Both appendixes consist only of tables, the titles of which follow:
\begin{tabular}{|c|c|}
\hline NUMBER & TITLE \\
\hline A-1 & ```
Dasa Summary for Prairie Vegetation Clipped
from Subplots of Sampling Station Pr-1,
Callaway Plant Site, Callaway County, Missouri,
Fal1 1974
``` \\
\hline A-2 & ```
Data Summary for Prairie Vegetation Elipped
from Subplots of Sampling Station Pr-1
Callaway Plant Site, Callaway County, Missouri,
May-June 1974
``` \\
\hline A-3 & Data Summary for Understory Vegetation of Sampling Station Pr-1, Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline \(2-4\) & Data Summary for Prairie Vegetation Clipped from Subplots of Sampling Station Pr-2, Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-5 & Data Summary for Prairie Vegetation Clipped from Subplots of Sampling Station Pr-2 Callaway Plant Site, Callaway County, Missouri, May-June 1974 \\
\hline A-6 & Data Summary for Understory Vegetation of Sampling Station Pi-2, Callaway Plant Site, Callaway County, Missouri, Fall \(19^{\circ} 4\) \\
\hline A-7 & Datz. Sunmary for Prairie Vegetation Clipped from Subplots of Sampling Station Pr-3, Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-8 & Data Summary for Prairie Vegetation Clipped from Subplots of Sampling Station Pr-3 Callaway Plant Site, Callaway County, Missouri, May-June 1974 \\
\hline A-9 & Data Summary fo. Understory Vegetation of Sampling Station Pr-3, Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-10 & Data Summary for Prairie Vegetation Clipped from Subplots of Sampling Station Pr-4, Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-11 & Data Summary for Prairie Vegetation Clipped from Subplots of Sampling Station Pr-4 Callaway Plant Site, Callaway County, Missouri, May-June 1974 \\
\hline
\end{tabular}
4. APPENDIXES A AND B (continued)
\begin{tabular}{|c|c|}
\hline NUMBER & TITLE \\
\hline A-12 & Data Summary for Understory Vegetation of Sampling Station Pr-4, Cailaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-13 & Transitional Species Preferring Disturbed Sites (including overstory, understory, and ground layer) \\
\hline A-14 & Data Summary for Identified Species of Sampling Stations, Callaway Plant Site, Callaway Cuunty, Missouri Spring, Summer, Fall 1974 \\
\hline A-15 & Data Summary of Forest Ground Vegetation Clipped from Subplots of Sampling Station \(\mathrm{F}-1\), Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-16 & Data Summary of Forest Ground *?getation Clipped from Subplots of Sampling Station F-1, Callaway Plant Site, Callaway County Missouri, May-June 1974 \\
\hline A-17 & Data Summary for Understory Vegetation of Sampling Station F-1, Callaway Plant Site, Callaway County Missouri, Fall 1974 \\
\hline P-18 & Data Summary for Overstory Vegetation of Sampling Station \(\mathrm{F}-1\), Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-19 & Increment Core Summary for Overstory Vegetation of Sampling Stations \(F-1\) to \(F-4\), Callaway Plant Site, Callaway County, Missouri, Fall 1974 (Distribution and Mean Age, by Diameter Size Classes) \\
\hline A-20 & Data Summary of Forest Ground Vegetation Clipped from Subplots of Sampling Station F-2, Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-21 & Data Summary of Forest Ground Vegetation Clipped from Subplots of Sampling Station F-2, Callaway Plant Site, Callaway County, Missouri, May-June 1974 \\
\hline A-22 & Data Summary for Understory Vegetation of Sampling Station F-2, Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-23 & Data Summary for Overstory Vegetation of Sampling Station \(\mathrm{F}-2\), Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline NUMBER & TITLE \\
\hline A-24 & Data Summary of Forest Ground Vegetation Clipped from Subplots of Sampling Station F-3, Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-25 & Data Summary for Forest Ground Vegetation Clipped from Subplots of Sampling Station \(F-3\), Callaway Plant Site, Callaway County, Missouri, May-June 1974 \\
\hline A-26 & Data Summary for Understory Vegetation of Sampling Station \(\mathrm{F}-3\), Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-27 & Data Summary for Overstory Vegetation of Sampling Station \(\mathrm{F}-3\), Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-28 & Data Summary of Forest Ground Vegetation Clipped from Subplots of Sampling Station \(\mathrm{F}-4\), Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-29 & Data Summary for Forest Ground Vegetation Clippif from Subplots of Sampling Station \(F-4\), Callaway Plant Site, Callaway County, Missouri, May-June 1974 \\
\hline A -30 & Data Summary for Understory Vegetation of Sampling Station \(\mathrm{F}-4\), Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline A-31 & Data Summary for Overstory Vegetation of Sampling Station F-4, Callaway Plant Site, Callaway County, Missouri, Fall 1974 \\
\hline B-1 & Scientific and Common Names of Herpetofauna Found on Callaway Plant Site, Reform, Missouri During Spring and Fall Sampling Periods, 1974 \\
\hline
\end{tabular}

\[
\begin{aligned}
& 7 \\
& 4 \\
& 4
\end{aligned}
\]

Syperua souteyle mich I nom.

252.90
450.00

\[
\begin{aligned}
& \text { splave } \\
& \text { rexpaniz }
\end{aligned}
\]
 - Frequincy of a apecien oceutronion \& im
Cusostative arient (35 subjlete) by apectes

2elation trequiency and talative velath
'I-dis
OF SSOURI,
(acre plots)
K7tsuad
\(\begin{array}{ll}0 & 0 \\ \underset{N}{n} & n\end{array}\)

(8) Ǎuanbex.
 \(q^{\text {X̌uanbaxa }}\)

Relative \({ }^{C}\)

in
\(0+1 \times 1+\)
\[
\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\dot{m} & \dot{m} & \dot{N} & m & -\dot{m} & \vec{m} & \vec{m} & \dot{m} & \dot{m} & \dot{-i} \\
\dot{m}
\end{array}
\]

```

Rolenesfin same
crapm Hivan

```



``` Prenanthonur conulfolius solenet. soltape potume Taspalis lasver minto
```



```
pact ruat
tuhjenterglt
Nostocky blumgrent \(\frac{\text { Pragaria virgimiena thation }}{\text { Fifid ntrantorty }}\) \(\frac{2}{2}\)
```


tarnowis pahavian tort.

ax.40 429.05 572.20 502 *

 comelacive miaht che mulopletal by nowetos
 "Bnlative Ateminenoy + relative velaht.
 ceve tacrives

avesmex $2-3$ (Centamen

Relative Density (8)
 cre plots)

$$
9-\forall \text { XraNaddy }
$$

DATA SUMMARY FOR UNDERSTORY VEGETATION ${ }^{\text {a }}$ CALLAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI, FALL 1974

antea
àueqıodur

13
Setancitio Noen
-Theern Nave

sgrancle saike
reitiny

gocren nettio
romed

Trintive vivers
soliegis nitionk

rentinge eidetior
mention fation

I	1	3	3	$\underline{3}$	\%	$\xrightarrow{2}$	3	$\frac{\text { voight }}{3}$	$\frac{18}{5}$	$\frac{125012}{12}$	$\frac{\text { replore }}{12}$	\%	14	15	4	$\begin{gathered} \text { FTosveniry } \\ \text { is) } \end{gathered}$	Helention Preptumaz (1)	$\begin{aligned} & \text { bry whivht } \\ & \text { for ligerive } \end{aligned}$	Welativer Wkight *night
					7.96											*. 35	E2a	3,2e	0 kz
					1.35											*) 3	e.es	3.45	9.15
					8.20											6.75	8 cm	8. 200	e. 01
					3. 20		30.36)						36.20	60.20	58,5e	31.25	1.64	226.30	12.92
					8.20					12,30	41, ©					(2).75	2 2 0		3.08
					48, 20						21.30					22:86	1.39	30. 40	1.48
						5. 20										4.28	0.59	5.20	6.7\%
						d. 65			1.50							22.50	1.35	2.30	0.11
							0.70	9.15								12. 50	1. 38	8. 28	t. 08
								9.90								5.75	0.60	(20	8, we
								6.60			1.00	8.20			3.50-	15,00	2.79	2.00	*.ts
								2.70		C. 26						ti*e	1.37	3.30	0.16
								0.30								5. 25	2 26	8.20	2, 00
									3, 5 \%							6.35	210\%	1, $3=$	2. 26
											1.30					6.73	8.42	T.30	\%. 3
													0. 10			6. 25	0, 03	0. 23	d. 0 e
													7.20			6. 28	6.69	2.20	Q,21
136.00	132.40	138, 35	10.95	175.45	125,85	41,30	$37 . \infty$	273, as	es, 0	9.45	151-95		$\underline{+36}$			8.25	3.es	1.23	0.06
									4	139.35	51		150.18	116.50	24.25	391.a6	99.75	良里, De	90.0.95

Setinatitit som
Comen sem

APPENDIX $A-9$
DATA SUMMARY EOR UNDERSTORY VEGETATION ${ }^{\text {a }}$ OF SAMPLING STATION PR-3, LA. TT SITE, CALLAWAY COUNTY, MISSOURI, FALL 1974
(base 4 on sixteen 6.25 -milacre plots)
Relative ${ }^{e}$
Density (3)

$p^{\text {亿7.1suad }}$

0	0	0	0
+	-	$-i$	$\dot{0}$

Relative ${ }^{\mathrm{C}}$
Frequency (\%)
$\begin{array}{lll}m & m & m \\ \dot{m} & \dot{m} & \dot{m} \\ \dot{m} & \dot{g}\end{array}$
$q^{\text {Kưanbaxa }}$
$\begin{array}{lll}0 & 0 & 0 \\ -1 & - & -1\end{array}$
0.4
Tree or shrub less than 2.0 inches diameter at breast height.
${ }^{b}$ Number of subplots a species occurs.
Frequency of a species occurrence
Cumulative frequeney of ali species
Cumulative number of a species within subplots sampled.
$\times 100$
Summation of relative frequency + relative density.

Fave sarvitomst

segretara etatees ti.1-vers.

250\%
+7ase

Ficlent stit nam

実

APPENDIX A-12

DATA SUMMARY FOR UNDERSTORY VEGETATION O SAMPLING STATION PR-4, CALLAWAY DLANT SITE, CALLAWAY COUNTY, MISSOURI, FALL 1974 (based on sixteen 6.25 -milacre plots)

Scientific Name Come in Name	$\text { Frequency }{ }^{\text {b }}$	$\begin{aligned} & \text { Relative }{ }^{\mathrm{C}} \\ & \text { Frequency }(*) \end{aligned}$	$\text { Density }{ }^{\text {d }}$	$\begin{aligned} & \text { Relative } \\ & \text { Density (\%) } \end{aligned}$	\qquad Importance value
Rubus flagellaris Willd.					
dewberry	2.0	100.0	3.0	100.0	200.0
TOTAL	2.0	100.0	3.0	100.0	200.0

```
Trees and/or shrubs per quadrat = 0.2
Trees and/or shrubs per acre = 32.4
```

a Tree o shrub les than 2.0 inches diameter at breast height.
${ }^{6}$ Number of subplots a species occurs.
Erequency of a species occurrence
Cumulative frequency of all species $\quad \times 100$
d Cumulative number of a species within subplots sampled.
EDensity of a species occurrence $\times 100$
Cumulative density of all species
${ }^{£}$ Summation of relative frequency + relative density.

APPENDIX A-13

TRANSITIONAL SPECIES PREFERRING DISTURBED SITES (including overstory, understory, and ground layer)

Family

Genus of Species
Aceraceae
Acer saccharum Marsh
Acanthaceae
Ruellia humilis Nutt.
Anacardiaceae
Rhus radicans L.
Apocynaceae
Apocynum cannabinum L.
Caprifoliaceae
Symphoricarpos orbiculatus Moench
Caryophyllaceae
Cerastium viscosum L.
Dianthus armeria L.
Celastraceae
Celastrus scandens L.
Cistaceae
Lechea tenuifolia Michx.
Compositae
Achillea millifolium L.
Ambrosia artemisifolia 1.
Ambrosia bidentata Michx.
Aster pilosus Willd.
Aster anomalus Engelm.
Bidens aristosa (Michx.) Britt.
Cirsium altissimum (L.) Spreng.
$\frac{\text { Forest Sampling Stations }}{\mathrm{F}-1} \frac{\mathrm{~F}-2}{\mathrm{~F}-3} \mathrm{F-4}$
$\frac{\text { Prairie Sampling Stations }}{\underline{P_{r}-1} \quad \underline{P_{r}-2} \quad \underline{P r-3} \quad \underline{P_{r}-4}}$
\times
x
x
*
x
x
x

x	x
x	x

x
$x \times$
\times
\times
x

(panuţzuod) हI- \forall XIANAIdV

x
x
x
x
x
x
x
Family
Genus \& Species

Convolvulaceae
Convolvulus sepium L.
Cruciferae
Barbarea vulgaris R . Br.
Cupressaceae
Juniperus virginiana i.
Carex festucacea Schk.
Carex gravida Bailey
Cyperus ovularis (Michx.) Torr.
Cyperus strigosus L.
benaceae virginiana L.
Ebenaceae
x

Eamily	Forest Sampling Stations				Prairie Sampling Stations			
Genus \& Species	E-1	F-2	$\mathrm{F}-3$	F-4	Pr-1	Pr-2	$\mathrm{Pr}-3$	$\mathrm{PY}-4$
Granineae								
Agrostis alba d.					x	X	x	
Agrostis hyemalis (Walt.) BSP					K			
Aristida oligantha Michx.						x		
Dactylis glomerata L.					*			
Danthonia spicata (L.) Beauv.		X						
Festuca elatior L.					x		\%	x
Eragrostis spectabilis (Pursh) Steud.					x		*	
Panicum lanuginosum Eli. \& Vars.	x				x	x	x	*
Paspalum laeve Michx. \& Vars. Phleum pratense L.						x	*	
Poa compressa L . L .				*	x	x	x	
$\frac{\text { Poa }}{\text { Poa }}$ compressa pratensis L.						x	x	
Poa pratensis					*	X	*	
Guttiferae								
Hypericum punctatum Lam.		x	x	x	x	x		x
Juncaeae								
Juncus tenuis Willd.					*	X	x	
Labiatae								
Prunella vulgaris Is.				x	x	x	x	
Pycnanthemum tenuifolium Schrad.		X				X	x	x
Teucrium canadense L.				\mathbf{x}	K			
Lauraceae								
Sassafras albidum (Nutt.) Nees			X	x				
Leguminosae								
Amorpha canescens Pursh				x				
Gleditsia triacanthos L.						X	x	
Lespedeza stipulacea Maxim.				x	x	X	x	x
Lespedeza striata (Thunb.) H, \&A.		x	x	*			x	
Lespedeza violacea (L.) Peis.	X	*	X	X	X			

Family
Genus \& Species

Melilotus a'ba Desr.
 Trifolium campestre Schreb.
 Trifolium pratense L.

Txifolium repens L.
$\frac{\text { Forest Sampling Stations }}{\frac{F-1}{F-2} \quad \underline{F-4}}$
$\frac{\text { Praitie Sampling Stations }}{\mathrm{Pr}_{\mathrm{P}} \mathrm{Pr} \frac{\mathrm{Pr} 2}{\mathrm{Pr}-3} \quad \mathrm{Pr}-4}$

Moraceae
Morus rubra L.
Oleaceae
Fraxinus americana L
Plantaginaceae
Plantago virginiana L.
Podophy11aceae podophy11um peltatum I.

Polygonaceae Rumex acetocella L.

Primulaceae Lysmachia lanceolata Walt.

x
\mathbf{x}
x
x
x
X
x $\begin{aligned} & x \\ & x\end{aligned}$
*
x
x

APPENDIX A-13 (continued)

Family
Genus \& Species

Saxifragaceae
Heuchera sp.

Solanaceae

```
Solanum carolinense L.
```

```
Solanum carolinense L.
```

$\times \quad$ x \times
$\frac{\text { Forest Sampling Stations }}{F-1}$
x
$\frac{\text { Prairie Sampiing Stations }}{\text { Pr-1 }} \frac{\text { Pr-2 }}{\text { Pr-3 }}$
\mathbf{x}
x
Vitaceae
Parthanocissus quinguesolia (L.)

Planch		x	x	x	x
Vitis	aestivalis Michx.	x		*	
Vitis	cinerea Engelm.	x	x	\times	*
Vitis	Vulpina L.	x	x	x	X

Adapted from D. B. Dunn, 1974-personal communication.
APYENDIX A-14
DATA SUMMARY FOR IDENTIFIED SFECIES OF SAMPITNG STATIONE,
CALIAWAY PLANT SITE, CALIAWAY COUNTY, MTSSOUR1.
FALL. 1774

$\frac{\text { Prairie Sampling } 5 \text { tations }}{\text { Pr-i }}$
Fovest Sampling Stations
$\underset{F-1}{F-2} \quad \underline{F-4}$
 $<$ \qquad

APPENDIX A-14 (Continued)

Scientific Name
Common Name
Apocynum cannabinum L. tndian hemp
Axistida oligantha Michx praizie three-awn grass
Asvlepias hirtella Pennel1) Foods milkweed
$\frac{\text { Asclepla. }}{\text { purnie }}$ milikione ${ }^{\text {irasceus }} \mathrm{I}$.
$\frac{\text { Aselupias ruadrifolia taeg. }}{\text { milkwes }}$ asclepias sp. L. milkweed
simina trilobs (L.) Dunal. paspaw

Pspleninm platyneuron (L.) Oakes ebony spleenwort
Aster anomalus Engelm亏̄ster

Aster patens Ait. spreading aster
Aster pilosus willa white heath aster
ster sp: 1 aster
Aster urbine? us tindl. aster
Baptisim leucantha T. \& G.
white wild inciac
Barbarea vulgaris (R.) B.R. yellow rocket
Aidens aristosa (Michx.) Britt. tickseed sunflower
$\frac{\text { Botrychium virginianum (L.) Sw. }}{\text { raztlesrake fern }}$ (L) raztlesmake fern

A
A

Bromus purgans
Canada brome
Brachyelytrum erectum (Schreb.) Beauv
A A A

A

A

A

A

A
A

A
s

A

A
A

A

(penuł7uod) 7 T-V KIqNadaV Forest Sampling Stations
$F-1 \quad \underline{F-2} \quad \underline{F-4}$ -

[^1]

(panurfuogi vi-v XIGnsady
 $\frac{\text { Convolvulus sepium }}{\text { hedge bindweed }}$
$\frac{\text { Convolvulus }}{\text { bindweed }}$ sg.
$\frac{\text { Cornus }}{\text { florida }}$ flowering docwood
$\frac{\text { Crataegus }}{\text { hawthorn }} \frac{\text { danielsii }}{\text { Palmer }}$
$\frac{\text { Crataegus }}{\text { hawthorn }} \frac{\text { s. }}{\text { n }}$
$\frac{\text { Erateegus }}{\text { havehorn }} \frac{\text { niflura }}{}$ Muench.
$\frac{\text { Croton capitatus Michx. }}{\text { hogwort }}$
$\frac{\text { Croton }}{\text { crotonanthogynus Michx. }}$
$\frac{\text { Crotonopsis }}{\text { rushioil }}$
APPENDIX A-i4 (Continued)

Scientific Name
Common Name

$\frac{\text { Eragrostis }}{\text { purple loctablis }}$ (Pursh) Steud.
$\frac{\text { Echinochloa muricata (Beauv.) Fern. }}{\text { barnyard }}$ grass
persimmon
$\frac{\text { Dianthus armeria }}{\text { deptFord pink }}$
Digitaria ischaemum
crab grass
Diodia teres Nalt.
rough buttonweed.) Muhl.
$\frac{\text { Dianthus armeria }}{\text { deptFord pink }}$
Digitaria ischaemum
crab grass
Diodia teres Nalt.
rough buttonweed.) Muhl.
Dianthus armeria
$\frac{\text { Desmodium glutinosum }}{\text { tick trefoil }}$ (Muh1.) Wood
tiok trefoil

poverty grass
 $\frac{\text { Dactylis glomerata }}{\text { orchard grass }}$

$\frac{\text { Cyperus esculentus }}{\text { yellow nut grass }}$

'Aneag ('T) ETESyds ETHOq7UEG
Desmodiam dillenii Dax 2.
$\frac{\text { Dest.ocium nuaiflorum (L.) D.C. }}{\text { tick trifoil }}$ (L)
$\frac{\text { Diodia teres Nalt }}{\text { rough buttonwe }}$
Dioscorea villosa L .
yam inana

persimon
Sleocharis compressa
spike rush
Eleocharis tonuis (willa,) Schultes
$\frac{\text { Sleocharis }}{\text { spike rushuis (Willd.) Schultes }}$
$\frac{\text { Elymus }}{\text { vild } \frac{\text { vilosus }}{\text { rye }}}$ Muh1.

$\frac{4}{m}$
Sciention Name
Exechtites brieracifolia (L.)
Eriqeron annuus (L.) Pers.
whitetop Eleabane
$\frac{\text { Erigeron sp. L. }}{\text { fleabane }}$
$\frac{\text { Erigeron }}{\text { daisy }}$ strigosus Muh1.
Euonymus atropurpeus Jaeq.
wahoo
$\frac{\text { Eupatorium }}{\text { Eistulosum Barrett }}$ Eupatorium
$\frac{\text { supatorium }}{\text { boneset }}$ perfoliatum L .
$\frac{\text { Eupatorium serotinum Michx. }}{\text { late boneset }}$
$\frac{\text { Euphorbia }}{\text { flower } i n g ~ s p u r g e ~}$ i.
Euphorbia maculata $\frac{\text { mod. }}{\text { noding }}$
Euphorbia sp. L.
Festuca arundinacea Schreb.
reed fescue
Festuca elatior
$\frac{\text { Festuca elatior }}{\text { meadow fescue }}$
$\frac{\text { Festuca }}{\text { noddina fescue }}$
$\frac{\text { Fragaria }}{\text { wirginiana }} \frac{\text { Dtrawberry }}{}$ Duesne
Fraximus americana L.
Fraxinus pennsylvanica Marsh
$\frac{\text { Galium }}{\text { wild }} \frac{\text { ircaezans }}{\text { licorice }}$ Michx.
Galium concinnum Torr, s Gray
$\frac{\text { Ginlium pilosum Ait. }}{\text { hairy bedstraw }}$
Gatra filiformis Smell.

```

APPENDIX A-14 (Continued

APPENDIX A-14 (Continued)
\(\frac{\text { Prairie Eampling Stations }}{\text { Pr-1 }} \frac{\mathrm{Pr}_{2} \text { Pr-3 }}{\text { Pr-4 }}\)
\(\frac{\text { Lactuca }}{x+1 d^{\prime}} \frac{\text { canadensis }}{\text { lettuce }}\) L. var, obovata Wieg
\(\frac{\text { Lactuca sp. }}{\text { lettuce }}\)
\(\bullet\)

Forest Sampling Stations
\(\stackrel{F-1}{F-3} \quad \underline{F-4}\)
(pandequaj) ti-V XIGNRday
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{15}{*}{\(\frac{\text { Forest Sampling Stations }}{F-1} \underset{F-3}{F-3}\)}} \\
\hline & \\
\hline
\end{tabular}


Seientific Name
Common Name

\section*{\(\frac{\text { Quercus macrocarpa Michx. }}{\text { bur oak }}\)}

Quercus macrocarpa Michx.
bur oak hybrid
Quercus marilandic
black 引ack and/or oak
\(\frac{\text { Quercus rubra }}{\text { red }}\) bak and var
Quercus shumardii Buckl.
shumard bak
\(\frac{\text { Quercus }}{\text { postellata Wang. }}\)
\(\frac{\text { Quercus }}{\text { post }} \frac{\text { stellata Wang. } \times \text {. alba or } Q \text {. mari. }}{0 \text {. } i d}\)
\(\frac{\text { Quercus }}{\text { black } \frac{\text { velutina }}{\text { oak }} \text { Lam. }}\)
onereus velutina Lam
\(\frac{\text { Quereus velutina Lam. } \times 0 \text {. bushii Sarg. }}{\text { black oak hybrid }}\)
Rhamnus lanceolata Pur bick born
buckthorn
Rhus aromatica Ait.
\(\frac{\text { Rhus }}{\text { fromatica Ait }}\)
Rhus radicans in
Ribes missouriensis Nutt
Missouri gooseberry
Rosa arkansana Porter
cockerell
Rosa carolina I
\(\frac{\text { Rosa setigera Michx. var. tomentosa Torr, s Gray }}{\text { prairie rose }}\)
Rubus argutus Link
high-bush blackberry
\(\frac{\text { Rubus flagellaris willd. }}{\text { dewberry }}\)
Rubus occidentalis
L.
black raspleery
\(\frac{\text { Schrankia }}{\text { suttallii }}\) (A.D.C. ex Britive brier
Scutellaria parvula Michx.
Setaria genieulata (Lam.) Beauv.
Setaria glanca (L.) Beauv.
Smilz-ina racemosa L. Dest.
Smilacina stellata (L.) Desf.
starry
false Solomon's seal smilax sp. 1.
\(\frac{\text { Smilax }}{\text { tamnoides } L}\).
Solidago altissima \(L\).
tall goidenrod
\(\frac{\text { Solidago }}{\text { old-fmoralis Ait. }}\) ield goldenrod
\(\frac{\text { Solidago petiolaris }}{\text { goldenrod }}\)
\(\frac{\text { Solidago }}{\text { goldenrod }}{ }^{\text {L. }}\)
```

 Scientific Name
 Scientific Name
 Common Name
Common Name
Rubus ostryfolius Rydb.
Rubus ostryfolius Rydb.
Rudbeckia hirta L.
Rudbeckia hirta L.
Ruellia humilis Nutt
Ruellia humilis Nutt
Rumex acetocella is
Rumex acetocella is
Rumex crispus L.
Rumex crispus L.
$\frac{\text { Rumex }}{\text { sour dock }}$
$\frac{\text { Rumex }}{\text { sour dock }}$
$\frac{\text { Sabatia }}{\text { rose }} \frac{\text { angularis }}{\text { pink }}$ (1.) Pursh
$\frac{\text { Sabatia }}{\text { rose }} \frac{\text { angularis }}{\text { pink }}$ (1.) Pursh
Sanicula canadensis L .
Sanicula canadensis L .
black snakeroot
black snakeroot
$\frac{\text { Sassafras }}{\text { sassafras }} \frac{1 \mathrm{ba}}{}$
$\frac{\text { Sassafras }}{\text { sassafras }} \frac{1 \mathrm{ba}}{}$
sassafras
schrankia nut
sassafras
schrankia nut
(panufzuod) px-v XIansadv

先

$<$
$\frac{\overline{t-1 \mathrm{~d}} \frac{\overline{\varepsilon-1 \mathrm{~d}}}{\overline{z-1 \mathrm{~d}}} \overline{\overline{1-1 d}}}{\text { suoj7e7S 6utidues atizexd }}$
v
m

< क
κ
$<$
$<\frac{\text { 品 }}{4}$
8

$$
\stackrel{4}{6}
$$

$$
\begin{aligned}
& U \\
& \frac{\alpha}{4}
\end{aligned}
$$

π
APPENDIX $\mathrm{A}-14$ (Continued)

Scientific Name
Common Name

APPENDIX A-14 (Contimued)

Scientifte Name
Comeron same
Vethonias sp. Schreb [romweed
feronica arvensis D corn speedwel I
$\frac{\text { Prairie Samplini Stations }}{P_{x-1}}$

A A

A
A

Veronicastrum pirginicum (L.) Farw. eulvers root

Viburnum prunifolium L. black haw
Vifourrum rafinesquianum Schultes fowny arrow-wood

1burnum rufidulum Raf ssuthern black haw
viburnum

Viola papilionacea Pur sh common violet

A
Viola triloba Schwein. f. dilatata Ell. three-lobed violet
itis aestivalis Michx. summer qrape
Vitis cinerea Engelm. grayback grape
${ }^{\circ}$

itis vulpina 1 winter grape
zanthoxylum americanum Mill. prickly ash

(bantrawon) ST-x kiaksady

scientive ter

Selant ifit Nam
Sumen tive Prentauk ineryititas

Yranteuk imeticitasa h. - hasclbati Mubst ttaed LMar in wtitict Smbtievive tsm trusht: Firetnith in veper As:ar mer akter: Cuartive atba E. acits inat fatur rnsua Sehk.			
 Black iherty Gidetnen milernocarps wishs. bnt unk hrwenoe 12a rhelletrietdes (L,) Spac Tree antwoins Gatitim circiemens Michs. $v+$ lit 14earich Fos sexvestete icray *yivan btbserait fout kornitheate vitul then Sollideren 8whiterred eltysist beintras Sinnthmie mplrats (lic) Beawe. povett \% Praws Moinesus I mosiculat: fis firh buelvesiare Khis aromethice Ait. Svieysuitt Brmac Cever benotss Newis. Eiymen witt mbus Netils. ع! $\mathrm{A} \times \mathrm{x}$ Shlkas Lamsnider. 1 brtskity sreamersar Bintfoula canscienis in 1. Alacl. semphespect Insetima sbepons ssebter *octiline foweru Roshise cici Litamtailit lo. hlach ratpberty Carya ewara (9ilt,) E. Eurb whagburk htekory black jachimaition wak bytotiA Cornc cravtion mastay \rightarrow			
Sosk caroitua L.			
post wak hytirts			
Nodenply/ hum peltation 2. nany apelie Tradestanc is merasstiana			

afpenetx a-16 teont inuent

Cumatative wight (th subpi-6) by apecte
4) Coclartue vetght (a opeciec)

- Antative frequaney + eflactive misht

APPENDIX A-17

DATA SUMMARY FOR UNDERSTORY VEGETATION ${ }^{\text {a }}$ OF SAMPLING STATION F-1, CALLAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI, FALL 1974 (based on sixteen 6.25-milacre plots)

Scientific Name Common Name	$\text { Frequency }^{\text {b }}$	$\begin{gathered} \text { Relative }^{C} \\ \text { Frequency (\%) } \end{gathered}$	$\text { Density }^{\text {d }}$	$\begin{aligned} & \text { Relative } \\ & \text { Density }(z) \end{aligned}$	Importance Value
Cornus florida L.					
flowering dogwood	14.0	14.1	78.0	21.2	35.3
$\frac{\text { Quercus }}{\text { white }} \frac{a^{\prime} \mathrm{ba}^{g}}{\text { oak }} \text { L. and var. }$	10.0	10.1	45.0	12.2	22.3
$\frac{\text { Carya sp. Nutt. }}{\text { hickory }}$	12.0	12.1	37.0	10.1	22.2
$\frac{\text { Eraxinus }}{\text { white }} \frac{\text { americana }}{\text { ash }}$ L.	7.0	7.1	46.	2.	9.6
Rhus aromatica Ait.					
fragrant sumac	5.0	5.1	53.0	14.4	19.5
$\frac{\text { Ostrya }}{\text { hop-hornbeam }}$ (Mill.) K. Koch	8.0	8.1	25.0	6.8	14.9
Quercus velutina Lam. black oak	6.0	6.1	22.0	6.0	12.1
Amelanchier arborea (Michx. f.) Fern. shadbush	6.0	6.1	10.0	2.6	8.7
$\frac{\text { Ulmus }}{\text { sli } i \frac{\text { rubra }}{}} \text { Muhl. }$	6.0	6.1	6.0	1.6	7.7
$\frac{\text { Juniperus }}{\text { red cedarginiana }} \mathrm{L} .$	5.0	5.1	8.0	2.2	7.?
$\frac{\text { Quercus }}{\text { red oabra }}{ }^{g}$ L. and var.	4.0	4.0	8.0	2.2	6.2

Sheet 1

Scientific Name Common Name	Erequency	$\begin{gathered} \text { Relative }{ }^{c} \\ \text { Frequency (\%) } \end{gathered}$	$\text { Density }{ }^{\mathrm{d}}$	$\begin{gathered} \text { Relative }^{e} \\ \text { Density }(8) \\ \hline \end{gathered}$	\qquad
$\frac{\text { Vitis }}{\text { winter grape }}$	3.0	3.0	5.0	1.4	4.4
Rubus flagellaris Willd. dewberry	2.0	2.0	5.0	1.4	3.4
$\frac{\text { Rhus }}{\text { poison ivy }} \frac{\text { radicans }}{\text { L. }}$	1.0	1.0	7.0	1.9	2.9
$\frac{\text { Morus }}{\text { red }} \frac{\text { rubra }}{\text { mulberry }}$	1.0	1.0	2.0	0.5	1.5
$\frac{\text { Vitis }}{\text { summer grape }} \text { aestivalis Michx. }$	1.0	1.0	2.0	0.5	1.5
$\frac{\text { Celtis }}{\text { hackberry }} \text { occidentalis } L \text {. }$	1.0	1.0	2.0	0.5	1.5
$\frac{\text { Aesculus glabra Willd. }}{\text { Ohio buckeye }}$	1.0	1.0	1.0	0.3	1.3
$\frac{\text { Viburnum }}{\text { viburnum }} \text { L. }$	1.0	1.0	1.0	0.3	1.3
$\frac{\text { Prunus }}{\text { black cherry }}$	1.0	1.0	1.0	0.3	1.3
$\frac{\text { Crataegus }}{\text { hawthorn }} \text { L. }$	1.0	1.0	1.0	0.3	1.3
Sassafras albidum (Nutt.) Nees sassafras	1.0	1.0	1.0	0.3	1.3
$\frac{\text { Acer }}{\text { sugar maple }} \text { sarsh }$	1.0	1.0	1.0	0.3	1.3
Vitis cinerea Engelm. grayback grape	1.0	1.0	1.0	0.3	1.3
TOTAL	99.9	100.0	368.0	100.1	200.1

```
Trees and/or shrubs per quadrat = 23.0
```

Trees and/or shrubs per acre $=3,726$

```
a Tree or shrub less than 2.0 inches diameter at breast height.
b}\mathrm{ Number of subplots a species occurs.
C Frequency of a species occurrence
    Cumulative frequency of all species\(\times 100\)
d
d}\mathrm{ Cumulative number of a species within subplots sampled.
e Density of a species occurrence
    Cumulative density of all species }\times10
f
    Summation of relative frequency + relative density.
GIncludes the species and varieties.
```


APPENDIX A-18

DATA SUMMARY FOR OVERSTORY VEGETATION ${ }^{a}$ OF SAMPLING STATION $\mathrm{F}-1$, CAGLAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI, FALL 1974 (based on sixteen $25-$ milacre plots)

Scientific Name Common Name	$\text { Erequency }^{b}$	Relative ${ }^{C}$ Frequency (8)	$\text { Density }{ }^{\text {d }}$	$\begin{gathered} \text { Relative } \\ \text { Density }(8) \end{gathered}$	Dominance ${ }^{f}$	Relative ${ }^{g}$ Dominance (8)	Importance value
$\frac{\text { Quercus }}{\text { white }} \frac{a^{i}}{\text { oak }}$ L. and var.	14.0	25.5	32.0	28.8	4,377.4	78.5	132.8
Cornus florida L. flowering dogwood	9.0	16.4	28.0	25.2	124.0	2.2	43.8
Quercus velutina Lam, black oak	8.0	14.5	19.0	17.1	143.4	2.6	34.2
Carya ovata (Mili.) K. Koch shagbark hickory	6.0	10.9	8.0	7.2	34.9	0.6	18.7
Quercus stellata Wang. post oak	2.0	3.6	4.0	3.6	495.2	8.9	16.1
```Amelanchier arborea (Michx.f.) Fern. shadbush```	4.0	7.3	5.0	4.5	22.7	0.4	12.2
Carya texana Buckl.   black hickory	2.0	3.6	2.0	1.8	313.6	5.6	11.0
Ostrya virginiana (Mill.) Koch							
hop hornbeam	3.0	5.5	5.0	4.5	20.9	0.4	10.4
$\frac{\text { Quercus }}{\text { red subra }} \text { L. }$	2.0	3.6	2.0	1.8	9.8	0.2	5.6
$\frac{\text { Ulmus }}{\text { slippery elm }}$	1.0	1.8	2.0	1.8	8.0	0.1	3.7

Sheet 1
(continued)
2.20$8 \stackrel{\circ}{\text { N }}$
$\dot{N}$
N䛌O$\underset{\sim}{N}{ }_{\sim}^{\sim} \sim$$\because$io$8:$
ni$8 \stackrel{4}{\circ}$
$\infty$


$\cdots$
2
2

$\stackrel{7}{9}$N N$\stackrel{7}{\sim}$※思出$\infty$
$\dot{\circ} \underset{\sim}{\infty} \underset{\sim}{m} \dot{m}$ in

$$
1 .
$$

$\square$

\％	$\stackrel{\text { ® }}{\text { ¢ }}$	$\begin{gathered} \text { N } \\ \underset{\sim}{n} \end{gathered}$

－
$\stackrel{\text { u }}{0}$
$\frac{4}{42}$

Age | Diameter |
| :---: |
| Class |


 EB
$\stackrel{\infty}{\underset{\sim}{\infty}} \stackrel{+}{\sim}$ N
(continued)



-745т̧ay 7عeaxq

$$
\begin{aligned}
& \text { © } \\
& \begin{array}{l}
\text { Specimen } \\
\text { Number } \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
21543 \\
21544 \\
21545 \\
21546 \\
21547 \\
21548 \\
21549 \\
21550 \\
21551 \\
21552 \\
21553 \\
21554 \\
21555
\end{array}
\end{aligned}
$$

KYpenolx A-20

Fulat iven   fesyanncts:	$\begin{aligned} & \text { bri mige. }{ }^{1} \\ & \text { It speckes } \end{aligned}$	$\begin{aligned} & \text { Koletiaes } \\ & \text { Belight is } \end{aligned}$	
1.45	8.80	c. 8	1.0
1314	8. 20.	88	612
60.01	I6. 34	9.\%	190.0


$\cdots$


"Eresumy ot a gesing "tyout


thelwioe tempietin + *elseimententink.


C

Scinctitye the

てz- V XIGNSAdV
$F-2$,
DATA SUN:AARY FOR UNDERSTORY VEGETATION
CALLAWAY PLANT SITE, CALIAWAY COUNTY,

Reiative ${ }^{\text {e }}$
Density (z)

I 7 7a.4s
Importance ${ }^{£}$
Value
 a antzelay
$\begin{array}{llllllllllll}\pi & 0 & m & m & m & m & n & \varphi & 0 & m & \varphi & m \\ n & m & m & m & m & 0 & m & 0 & m & 0\end{array}$
 Relative
Frequency (8)

(panutzuos)
APPENDIX $\mathrm{A}-22$

80.1

APPENDIX $A-22$ (continued)


## APPENDIX A-23

DATA SUMMARY FOR OVERSTORY VEGETATIDN ${ }^{\text {a }}$ OF SAMPLING STATION F-2, CALLAWAY PLAiv' SITE, CALLAWAY COUNTY, MISSOURI, FALL 1974 (based on sixteen 25-milacre plots)


Sheet 1

## APPENDTX A-23 (continued)

Scientific Name Common Name		$\begin{gathered} \text { Relative } \\ \text { Frecuency (8) } \end{gathered}$	Density	$\begin{gathered} \text { Relative } \\ \text { Density } \end{gathered}$	Dominance	$\begin{aligned} & \text { Relative } \\ & \text { Dominance (2) } \end{aligned}$	Importance Value
$\frac{\text { Morus }}{\text { red }} \frac{\text { rubra }}{\text { mulberry }}$	1.0	1.7	1.0	0.6	7.1	0.2	2.5
$\frac{\text { Diospyros }}{\text { persimmon }} \frac{\text { virginiana }}{L}$	1.0	1.7	1.0	0.6	4.9	0.1	2.4
TOTAI	60.0	100.0	156.0	99.7	4,523.8	100.1	299.8
Trees per quadrat	9.8						
Trees per acre	396.8						
Basal area per quadrat	282.7 sq.	in.					
Basal area per acre	$11,449.4 \mathrm{sq}$.	in.					

[^2]




trotselve thowenney + relactive melyht


	2un)																n+mupe	$\begin{aligned} & \text { movion } \\ & \text { mequiuicy } \end{aligned}$	Netiper		
			$y$	*		6		$\checkmark$	4							13				${ }^{2}+{ }^{2}$	Fevence
anreevtatent vtole								9,4s									*.35	2.45	9.15	3, 88	1:\%
								H.5s									*. 25	4.an	0.58	8. 3	$1{ }^{4}$
Prous serotins With.								8.19		1.96	1.20						14.73	2.49	2.4	1.35	s. ${ }^{\text {a }}$
Fodeptyition pelteve 1 , ouv ayetr									8.3s								6. 13	2.x	238	1.84	\% $n$
Vitis metivotis miks:									a.an								6.35	6**	4.0t	coen	-34
Sompeorswerpe mettisularse Rowsh. sivet terry										2.91							k. 25	0.*	7.al	1.40	2 3
cater evewer seltor										9.96	4.57			1.54			is. 73	+ 85	2.37	1.34	6.17
pewerty grase										*. ${ }^{\text {a }}$							s.as	A.*	9,11	8,ad	1.08
Subus fleselinets selit. deubrrto														3.58			*.20	9.96	2, \%	18	2.04
														5.13			5.73	9.**	Q. 13	क. ${ }^{\text {at }}$	1.0)
														*,tw			*. 85	0.00	4.10	2.31	2.5
Wercotcontrum vitstolinam (h.) rarv. colvers, that														4, 3			6. 23	4. \%	10.3	Dint	1.15
wation																*) 4	6.25	a, 0	+ 3	3.59	5.5
Herimenta tokenllats Walle. atr twint																63	*. 35	\%.0	c. 3.	4.9	4.9
Aswors trilion (2.) Muns: ywese								-	-	-	-	-	-	-1mo	-	9. 54	4, 3	3.*	6, as	8,ay	1.53
Tosal.		0.*)	37.21	5.07	10.80	4.23	*5.917	8.57	t0, 78	3.74	24.30	is.ro	2.08	+1,44	6.9	3,33	4n7. NO	n*	M	ton ${ }^{\text {a }}$	(**) $\%$

[^3]
## APPENDIX A-26

DATA SUMMARY FOR UNDERSTORY VEGETATION ${ }^{a}$ OF SAMPLING STATION F-3, CALLAWAY PLANT SITE, CALLAWAY COLNTY, MISSOURT, FALL 1974
(based on sixteen 6.25-milacre plots)

Scientific Name Common Name	$\text { Erequency }{ }^{\text {b }}$	$\begin{aligned} & \text { Relative } \\ & \text { Frequency (8) } \end{aligned}$	$\text { Density }^{\mathrm{d}}$	$\begin{aligned} & \text { Relative } \\ & \text { Density (8) } \end{aligned}$	$\begin{gathered} \text { Importance } \\ \text { Value } \\ \hline \end{gathered}$
Rhus aromatica Ait. fragrant sumac	14.0	12.3	306.0	58.4	70.7
Cornus florida $L$. flowering dogwood	15.0	13.2	49.0	9.4	22.6
$\frac{\text { Prunus }}{\text { black cherry }}$	12.0	10.5	22.0	4.2	14.7
$\frac{\text { Quercus }}{\text { black oak }} \frac{\text { velutina }}{\text { oam. }}$	10.0	8.8	24.0	4.6	13.4
Carya sp. Nutt.   hickory	9.0	7.9	27.0	5.2	13.1
$\frac{\text { Quercus }}{\text { white }} \frac{\text { alba }}{}{ }^{\text {oak }} \text { L. and var. }$	9.0	7.9	15.0	2.9	10.8
$\frac{\text { Acer }}{\text { sugar maple }}$	3.0	2.6	22.0	4.2	6.8
Sassafras albidum (Nutt.) Nees sassafras	5.0	4.4	12.0	2.3	6.7
$\frac{\text { Quercus }}{\text { red oak }} \text { L. }$	4.0	3.5	6.0	1.1	4.6
$\frac{\text { Vitus }}{\text { winter grape }} \text { gre }$	5.0	4.4	1.0	0.2	4.6
Rosa carolina L. pasture rose	4.0	3.5	4.0	0.8	4.3





APPENDIX $\mathrm{A}-26$ (continued)
耳 Ǩanbaxa

Scientific Name Common Name
Cormon Name



Rubus fla ellaris Willd.
dewberry
Vitis cinelea Engelm.
graybatk grape
Prunus americana Marsh.
wild plum
Morus rubra L.
red mulberry
Juniperus virginiana L .
red cedar
Symphoricarpos sp. Duham.
§owber:y
Crataegus sp. L.
hawthorn
Fraxinus americana L.
white ash
Vitis aestivalis Michx.
sumuer grape
Amelanchier arborea (Michx. E.)
shadbush
Celtis occidentalis L.
hackberry
Diospyxos virginiana L.
persimmon

$$
\begin{aligned}
& \text { Relative } \\
& \text { Density } \\
& \frac{0.2}{100.3}
\end{aligned}
$$

$$
\begin{gathered}
\frac{0^{+} \hbar 25}{0^{*} \mathrm{~T}} \\
\mathrm{p}^{\text {Ritsuaa }}
\end{gathered}
$$

${ }^{9}$ Includes the species und varieties.
APPENDIX A-26 (continued)

$$
\begin{gathered}
\text { Importance } \\
\text { Value } \\
\frac{1.1}{200.7}
\end{gathered}
$$

## APPENDIX A-27

DATA SUMMARY FOR OVERSTORY VEGETATION ${ }^{2}$ OF SAMPLING STATION F-3, CALLAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI, FALL 1974 (based on sixteen 25 milacre plots)

Scientific Name Common Name	$\text { Erequency }{ }^{\text {b }}$	Relative   Frequency (z)	$\text { Density }^{\text {d }}$	$\begin{aligned} & \text { Relative } \\ & \text { Density }(\$) \end{aligned}$	Dominance ${ }^{\text {f }}$	Relative ${ }^{9}$ Dominance (*)	$\begin{aligned} & \text { Importance } \\ & \text { Value } \end{aligned}$
$\frac{\text { Quercus }}{\text { white }} \frac{a l b a^{i}}{\text { oak }}$ L. and var.	14.0	26.9	102.0	57.0	3,175,1	58.3	142.2
$\frac{\text { cuercus }}{\text { black }} \frac{\text { velutina }}{\text { oak }}$ Lam.	9.0	17.3	24,0	13.4	1,296.3	23.8	54.5
Cornus florida L. flowering doywood	9.0	17.3	12.0	6.7	63.6	1.2	25.2
Carya texana Buckl.   black hickory	6.0	13.5	14.0	7.8	210.6	3.9	23.2
Quercus stellata Wang. post oak	4.0	7.7	9.0	5.0	204.3	3.8	16.5
$\frac{\text { Quercus }}{\text { red oak }} \text { Lubra } \text { L. }$	3.0	5.8	6.0	3.4	287.0	5.3	14.5
Carya ovata (Mill) K. Koch shagbark hizkory	2.0	3.8	6.0	3.4	84.2	1.5	8.7
$\frac{\text { Acer }}{\text { sugar maple }} \text { sacharum Marsh }$	2.0	3.8	2.0	1.1	108.8	2.0	6.9
Carya tomentosa Nutt. mockernut nickory	1.0	1.9	2.0	1.1	6.2	0.1	3.1
$\frac{\text { Morus }}{\text { red }} \frac{\text { rubra }}{\text { mulber }} \text {. }$	1.0	1.9	1.0	0.6	3.1	0.1	2.5
Vitis cinerea Engelm. grayback grape	1.0	1.9	1.0	0.6	3.1	0.1	2.6 -2.6
TOTAL	52.0	99.8	179.0	100.1	5,442.3	100.1	300.0

APPENDIX A-27 (continued)

> Tree species 2.0 inches or greater diameter at breast height.
> bumber of subplots a species occurs.
> ${ }^{\text {C Freguency of a species occurrence }}$
> Cumulative frequency of all species
> $\times 100$
> Cumulative basal area (sq. in.) of a species within the subplots sampled. "Cumulative basal area of a species
> Cumulative basal area of all species $\times 100$
> $\frac{\text { Cumsity }}{\text { Cutive density of all species }}$
> Cumulative number of a species within subplots sampled.
> $\times 100$
> $\begin{aligned} & \text { sq } \\ & \text { sq. }\end{aligned}$
> 11.2
> Trees per quadrat =
> $\begin{aligned} & \text { Trees per quadrat } \\ & \text { Trees per acre }\end{aligned}$
> Basal area per quadrat
> Basal area per acre


ransea ephasrocayeor 11
surkes



- cometstion wights is eitelotst oy tperich

- telweive trequmpy \& relative velight





FALL 1974 I 7aays

$$
\text { APPENDIX } \mathrm{A}-30
$$

DATA SUMMARY FOR UNDERSTORY VEGETATION ${ }^{\text { }}$ OF SAMPLING STATION F-4,
Relative ${ }^{e}$
Density (z)





$$
\begin{gathered}
\text { Relative } \\
\text { Freguency (8) }
\end{gathered}
$$ Relative ${ }^{e}$



-

$$
\begin{array}{r}
\frac{\text { द'66 }}{z^{\prime} 0} \\
z^{\prime} 0 \\
\frac{\text { (\%)K7tauad }}{\text { aムT7etay }}
\end{array}
$$

APPENDIX A-30 (continued)

$$
\begin{gathered}
0 \cdot \text { ITt } \\
\frac{0 \cdot I}{p^{\text {Rytstaga }}} \\
\end{gathered}
$$

APPENDIX A-31
DATA SUMMARY FOR OVERSTORY VEGETATION ${ }^{\text {a }}$ OF SAMPLING STATION E-4,
CALLAWAY PLANT SITE, CALLAWAY COUNTY, MISSOURI, FALI. 1974
(based on sixteen 25-milacre plots) APPENDIX A-31
DATA SUMMARY FOR OVERSTORY VEGETATION ${ }^{\text {a }}$ OF SAMPLING STATION E-4,
CALLAWAY PLANT SITE, CALIAWAY COUNTY, MISSOURI, FALI. 1974
(based on sixteen 25-milacre plots) APPENDIX A-31
DATA SUMMARY FOR OVERSTORY VEGETATION ${ }^{\text {a }}$ OF SAMPLING STATION E-4,
CALLAWAY PLANT SITE, CALIAWAY COUNTY, MISSOURI, FALI. 1974
(based on sixteen 25-milacre plots)
Relative ${ }^{\mathrm{C}}$ Felative ${ }^{e}$
Density (\%)
$\begin{array}{lllllll}n & \text { in } & \infty & m & m & \ddot{0} & 0 \\ \dot{\theta} & \dot{0} & \dot{0} & \dot{0} & \dot{0} & \dot{0} & \dot{0} \\ n\end{array}$

$\because$	$\cdots$	0	0
0	0	0	0

Relative ${ }^{9}$
Dorninance ( $\%$ )

$\stackrel{m}{m} \quad$ in
$\stackrel{0}{c}$




$$
\text { Density }^{\mathrm{d}}
$$




0	0	0	0
$\infty$	$-i$	-	aे

$6^{\circ} I$ It $Z^{\prime} I$
$\begin{array}{lllll}\infty & 0 & 0 & \infty & 0 \\ \text { in m } \\ \text { in } & \text { in } & \text { i } & \text { o } & \text { in }\end{array}$
$\begin{array}{ll}0 & \stackrel{9}{\infty} \\ \dot{0} & \end{array}$

| $\varphi$ | 0 |
| :--- | :--- | :--- |
| बे |  | I 7aays

```
SCIEINTIFIC AND COMMON NAMES OF HERPETOFAUNA FOUND ON
CALLAWAY PLANT SITE, REFORM, MISSOURI,DURING
SPRING AND FAIL. SAMPLING PERIODS, 1974a
```

Scientific Name

Notophthalmus viridescens
Scaphiopus bombifrons
Bufo fowleri
Buio anericanus
Hyla versicolor
Hyla crucifer
Acris crepitans
Rana pipiens
Rana catesbeiana
Rana clamitans
Cheyldra serpentina
Terrapene carolina
Sceloporus undulatus
Ophisaurus attenuatus
Lygosoma laterale
Eumeces fasciatus
Natrix sipedon
Storer a dekayi
Store ia occipitomaculata
Thamrophis proximus
Thamnophis sirtalis
Virginia valeriae
Heterodon platyrhinos
Carphophis amoenus
Diadophis punctatus
Coluber constrictor
Elaphe obsoleta
Lamperopeltis getulus
Agkistrodon contertrix

## Common Name

## Newt

Plains spadefoot toad
Fowler's toad
American toad
Gray treefrog
Spring peeper
Northern cricket frog
Leopard frog
Bullfrog
Green frog
Snapping turtle
Three-toed box turtle
Eastern fence lizard
Slender glass lizard
Ground skink
Five-lined skink
Comuon water snake
Brown snake
Red-bellied snake
Western ribbon snake
Common garter snake
Smooth earth snake
Eastern hognose snake
worm snake
Eastern ringneck snake
Racer
Rat snake
Common kingsnake
copperhead
${ }^{\text {a }}$ Phylogeny and taxonomy follow Blair, Blair, Brodkorb, Cagle and Monre, 1968.


[^0]:    43
    DIAGRAM
    

[^1]:    Carya texana Buckl, var, villosa (Sarg.) Little
    black hickory

[^2]:    ${ }^{\text {a Tree species }} 2.0$ inches or greater diameter at breast height.
    ${ }^{b}$ Number of subplots a species occurs.
    ${ }^{\text {E Frequency of a species occurrence }}$ (umilative frequency of all species $\quad \times 100$ Cunulative frequency of all species

    Cumulative number of a species wic.:n subplots sampled.
    ${ }^{\text {E Density of a species occurrence }}$
    $\times 100$
    Cumulative density of all species
    f Cumulative basal area (sq. in.) of a species within subplots sampled.
    ${ }^{9}$ Cumulative basal area of a species
    Cumulative basal area of all species $\quad: 100$
    Kummation of relative Exequency + relatire density + relative dominance.
    ${ }^{i}$ Includes species and varieties

[^3]:    
    

