10	5	R	M	NR	Ç-	7
1	2-	7	8),		а.	
	2.	-	-			

10 CFR 110

U.S. NUCLEAR REGULATORY COMMISSION

APPROVED BY GAO B-180225(R0362)

APPLICATION FOR LICENSE TO EXPORT NUCLEAR MATERIAL AND EQUIPMENT (See Instructions on Reverse)

1. APPL USE	ICANT'S S. DATE	OF APPLICATION D. A	PPLICANT'S REFERENCE	2. NRC USE -	XSP	NEE NO.	521	DOCKET NO.	669
3. APPL	ICANT'S NAME ANI	DADDRESS	RIS	4. SUPPL	IER'S NAME A	ND ADDRE	SS	RIS	
a. NAM	e Transnu	clear, Inc.		(Compl U.S.	ete if applicant is i .D.O.E.	not supplier	of material)		
C. STRE	EET ADDRESS	line Place 52	05 Loosburg Diko	a. NAME	Coodypar	Atomic	Corp		
CITY	One Sky.	s s s	TATE ZIP CODE	b. STREE	ET ADDRESS	Acourte	0010.		
	Falls C	hurch	VA 22041	Rout	te One				
a. TELE	EPHONE NUMBER (Area Code - Number - E.	x tension)	C. CITY				STATE ZIP CO	DDE
	707 - 83	20 - 2450		Pike	eton			OH 456	61
5. FIRS SCHE	EDULED	6. FINAL SHIPMENT SCHEDULED	7. APPLICANT'S CONT DELIVERY DATE	RACTUAL	8. PROPOSED EXPIRATIO	LICENSE N DATE	9. U.S. 0 CON1	TRACT NO. (If A	OF ENERGY (nown)
		1	To be determin	eđ	date of i	ssuance	То	be assigned	eđ
10. UL1	TIMATE CONSIGNER		118	11. ULTI	MATE END US	E			
a. NAM	ME Institut Ma	ax Von Laue -		Will	be used i	n the H	ligh Flu	ux Reactor	at
D. STR	Paul Lange	vin		Grend	oble, Fran ement)	ce (Se	e atta	ched End U	se
c. CIT	Y - STATE - COUN	TRY		1					
	Grenoble, 1	France		11a. EST	DATE OF FIR	ST USE			
12. INT	ERMEDIATE CONSI	GNEE	tis and services and a service	13. INTE	RMEDIATE EN	D USE	-		
a. NAM	Nikem GmbH	, D-6450 Hanau	, Federal	Conve	ersion and	fabric	ation (of fuel el	ements
D. STR	Republic of	Germany and		(566	accached	LING USE	State	merre,	
e. CIT	Y - STATE - COUN CERCA Roma	TRY ans, France		124 557	DATE OF FIR	STLISE			
14. INT	ERMEDIATE CONSI	GNEE	RIS	15. INTE	RMEDIATE EN	DUSE			1/2-1-12
a. NAI	Me Transnuklea	r GmbH		Inte	rmediate f	or tran	sport	purposes o	nly.
D. STR	G45 Hanau, 1	Postfach 11003	0						
e. CIT	Y - STATE - COUN	TRY Wolfgang	-bei-Hanau	1					
In	dustriegeland	de, Hessen, W.	Germany	15a. EST	DATE OF FIR	ST USE			
16. NBC	llock de che	17. DESC	RIPTION	ualua of	18. MAX.	ELEMENT	19. MAX.	20. MAX	21.
USE	nuclear equi	oment and components)	i ngciear material, give donar	value ur	WEIG	нт	WT. %	ISOTOPE V	VT. UNIT
	Uranium in	the form of u	ranium hexafluor + U235	ide	33.0	Kg U	93.3%	30.8 Kg	Kg
	CITE TOTICE OF	0 22.20 Percen						0200	
							1.18		
	6								
	-						1.1.1.1.1		
1	1								
22. COL SOL	UNTRY OF ORIGIN.	- Contractor	23 COUNTRY OF ORIGI	N-SNM	DCED 2	4. COUNT SAFEGU	ARDS (IF	(HATTACH Known)	L
25 1.01		ATION //	U.D.					640000	
25. AUI	DITIONAL INFORM	JUN	6 PM 1 14				7908	130084	
26. The	applicant certifies the	et this application is pre	pared to ponformity with T	itle 10, Co	de of Federal Re	gulations, a	nd that all i	nformation in th	5
27.		a SIGNATUR	RE FORDS /Mar	1.	b. TIT	LE Assi	stant M	lanager	
AU1	THORIZED OFFICIA	L SIGNATOR	TAN IMA		-	Machi	naton	Omenabiana	

Grenoble, 3 May 1979 CO/fa

INSTITUT MAX VON LAUE PAUL LANGEVIN

END USE STATEMENT

We certify that the following quantities based on contractual figures, and including D.O.E. allowable tolerances on uranium weight and enrichment :

kg U	kg U235	maximum enrichment		
33,0	30,8	93.30		

which application for export licence will be applied by Transnuclear Inc. will be used in High Flux Reactor at Grenoble.

M. JACQUEMAIN

619067

MAX VON LAUE PAUL LANGEVIN

JE/od-79-143

Grenoble, le 27 avril 1979

DEPARTEMENT REACTEUR

CHECKLIST OF INFORMATION REQUIRED IN CONNECTION WITH REQUEST FOR LICENSE TO EXPORT HIGHLY ENRICHED URANIUM

1. QUANTITY REQUIRED :

about 33 kg U at 93 % U-235

The quantity of U-235 is included in 6 spent fuel elements from the HFR (High Flux Reactor) of the I.L.L. (Institute Max von Laue -Paul Langevin) in Grenoble/France.

These fuel elements are currently located at Savannah River Plant/ U.S.A. for reprocessing.

The I.L.L. entrusts two manufacturers with the production of HFR fuel elements :

NUKEM at Hanau/Western Germany CERCA at Romans/France

Each manufacturer needs about 30 kg U at 93 % U-235 for the working stock and a further 10 kg U at 93 % U-235 for each fuel element.

2.A. a) in process

- at NUKEM : about 31,6 Kg U at 93 % U-235

- at CERCA : about 43,8 Kg U at 93 % U-235

619068

- at COGEMA : about 55.4 kg U at 93 % U-235

JE/od-79-143

b) on hand

Three fuel elements with 27,6 kg U at 93 % U-235.

- 2 -

c) in core

One fuel element with 9.2 kg U at 93 % U-235.

d) in storage

Presently 7 fuel elements with about 7 $\times 6,3 = 44,1$ Kg U at about 81 % U=235.

e) at the reprocessing plant

Presently 16 fuel elements with about 16 x 6,3 = 100,8 Kg U at about 81 % U-235 in Savannah River Plant/U.S.A. The transfer of these spent fuel elements was effected between August 1977 and April 1979.

2.B. a) in process

Each manufacturer needs a working stock of 30 kg U at 93 % U-235 and about 10 kg U at 93 % U-235 for each fuel element. The I.L.L. has signed two contracts with NUKEM and CERCA for 5 fuel elements each. The necessary working stock is therefore : 2 x (30 + 5 x 10) = 160 kg U at 93 % U-235.

b) on hand 2-3 fuel elements with 18.4 - 27.6 kg U at 93 % U-235.

c) in core

One fuel element with 9.2 kg U at 93 % U-235. 619069

3.A. Since the reactor became operational in 1972, the reactor use program consists of 6 cycles (equal to 6 fuel elements) per year. See also the I.L.L. Annual Report 1978.

JE/od-79-143

1.4 × 1 -

3.8. The neutron flux (in n/cm²/s) at several points in the reactor is :
Thermal neutrons : maximum undisturbed flux in the reflector 1.5 x 10¹⁵
Neutrons with energy less than 0.625 eV : minimum disturbed flux at the point of the tangential beam tube 1 x 10¹⁵
Average flux in the fuel element 2.2 x 10¹⁴
Average flux in the reflector 1.8 x 10¹⁴
Fast neutrons : maximum flux in the centre tube 3.5 x 10¹⁴
Neutrons with energy greater than 0.821 MeV : maximum flux on the control rod 2.7 x 10¹⁴

See also the I.L.L. Annual Report 1977, especially page 16 beam tube arrangement), page 19 (in-pile beam tube arrangement) and drawing "Fig. 23.20".

- 3.C. The reactor is an international facility used purely for fundamental research. There is no reactor with the same flux level or energy spectrum in Europe.
- 4.A-E. The I.L.L. High Flux Reactor fuel element is a cylindrical (type HFIR) element made in one piece, incorporating 280 plates each containing 30.6 g U at 93 % U-235.
 - a) Its geometry could not be changed without a complete reconstruction of the reactor, as it is closely integrated with the beam tubes, irradiation tubes, hot and cold sources, central control rod and tangential safety rods constituting the pile block.
 - b) Within its present geometrical limits, it would be completely impossible to obtain not only the performance (power, fission

· · · · ·

Uranium were replaced by 20 % enriched Uranium. In fact the Uranium content in the UAL₃-AL alloy forming the meat is close to the technical limits of what the manufacturer can do with the powder metallurgy technology used.

To summarise, it may be said that a change to 20 % enriched uranium would involve not only the need to design a completely new fuel element, but probably at the same time a complete reconstruction of the entire reactor block surrounding the core, without the certainty of obtaining the very high flux of thermal neutrons in the reflector which makes this one of the most powerful fundamental research reactors in the world.

Such changes would of course involve a very long-term stoppage of the work of the I.L.L., as this is entirely bound up with the utilisation of the neutrons produced by the reactor.

5.A. See the following drawings :

-	Fig.	23.12	Vertical	section of	the	reactor poo	1
	1 1 10 8	dear had at the first	5 Test 1 Sec. 7 Sec. 740 5				

- Fig. 23.20 Irradiation tubes
- Fig. 23.1 Vertical section of the reactor vessel
- Fig. 23.18 In-core operational parameters

The D_2O cooling flux at normal power 57 MN across the fuel element is about 2 250 m³/h, the usual temperatures at the entrance/exit of the fuel element are 30° C/50° C.

5.B. The HFR fuel element looks like the fuel element of the High Flux-Isotope Reactor of Oak Ridge/U.S.A., except that it is constructed in one piece. The 280 involute formed fuel plates contain about 9.2 kg U at 93 % U-235 (see Fig. 22.1).

The structure material is aluminum, the plate cladding is an aluminum alloy with 1 % each of iron, nickel and magnesium (Al-Fe-Ni). The plates are rolled, the fuel assembly consisting of welding these plates onto the annular structural tubes.

JE/od-79-143

. . .

The uranium meat in each plate is an uranium aluminum alloy (UAL₃-AL), manufactured by the usual powder technology.

The I.L.L. fuel elements are produced in France and in Germany (see point 1.).

5.C. The storeroom for new fuel elements is inside the reactor building. The room is monitored by radar.

The transfer of the fuel element into the fuel handling machine is manually effected outside the pool.

Before loading the reactor, the machine is checked in the pool at the test position (see Fig. 25.3 - test position = puits d'essai).

The loading and unloading of the reactor consists of locating the fuel handling machine over the top of the reactor chimney (see Fig. 23.12 - fuel handling machine = hotte) using the travelling gantry (= portique de la hotte).

The spent fuel element is unloaded under heavy water and stored still within the fuel handling machine in the pool for spent fuel elements (see Fig. 25.3). Fifty days later, the heavy water in the machine is exchanged for normal water. The fuel element is then put into the storage basket (= panier de stockage).

After a further 200 days, the spent fuel element can be evacuated in a lead container (= château de plomb) without liquid cooling.

5.D. There is no storage arrangement for new or spent fuel elements outside the reactor building, except by the fuel manufacturers.

The first 16 spent fuel elements of the reactor were reprocessed at the French Marcoule plant, the uranium was reenriched in the U.S.A. and retransferred to the I.L.L. fuel manufacturers.

619072

Since 1977, the spent fuel elements have been sent for reprocessing to the Savannah River Plant. The reenrichment is planned to take JE/od-79~143

1 5 4

5.E. See 4.A.

Annexed papers :

- I.L.L. Annual Report 1977
- Drawing Fig. 22.1. Fuel element
- Drawing Fig. 23.1. Vertical reactor section

- 6 -

- Drawing Fig. 23.12. Vertical reactor section
- Drawing Fig. 23.18. Operational parameters
- Drawing Fig. 23.20. Beam tube arrangement
- Drawing Fig. 25.3. Pool for spent fuel elements

