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ABSTRACT

A simplified fracture mechanics analysis was performed to determine the
potential unstable tearing in boiling water reactor (BWR) stainless steel
piping that have severe intergranular stress corrosion cracking (IGSCC). The
fracture analysis was based on the tearing stability concept and associated
tearing modulus stability criterion.

The results from this study indicate that unstable crack extension would
probably not occur in BWR stainless steel piping systems designed in accord-
ance with the ASME Code even though severe IGSCC may be present. The analysis

indicated that stainless steel piping with severe IGSCC could experience
unstable fracture if the piping length to radius ratio (L/R) was very large
(approximately 200). Since the values of L/R for BWR stainless steel piping

systems are generally an order of magnitude less than this, large margins
against unstable fracture are assured for these systems,
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STABILITY ANALYSIS OF CIRCUMFERENTIAL
CRACKS IN REACTOR PIPING SYSTEMS

1.0 INTRODUCTION

In 1978, intergranular stress corrosion cracking (IGSCC) was found in
a large-diameter (>20 inch) stainless steel pipe in a single boiling water
reactor (BWR). This cracking incident and other considerations related to
IGSCC prompted the U. S. Nuclear Regulatory Commission (NRC) to form a

Pipe Crack Study Group to consider various aspects of IGSCC, including an
assessment of the significance of IGSCC in large-diameter stainless steel
BWR piping. The Study Group final report (Pef. 1) included a description of
a fracture mechanics analysis that was performed to determine the potential
for unstable crack extension in large-diameter stainless steel BWR piping
that had experienced severe IGSCC. Because the NRC Pipe Crack Study Group

report included only a brief summary of the fracture mechanics analysis,
this report has been prepared to provide the detailed analytical formulation
and calculational procedures used to support the Study Group's conclusions
concerning the potential for flaw-induced fracture in large-diameter stainless
steel piping.

The IGSCC in BWR piping is found in the heat-affected zone of pipe
welds and results from a critical combination of stress, environment, and

material sensitization occurring from the welding operation. The cracks

initiate at the pipe inner surface and grow radially and circumferentia ly
by the corrosion mechanism. Although many of the stress corrosion cracks
are detected during inservice inspection before propagating through the pipe
wall, some cracks may actually propagate through the pipe wall. However,

should cracks propagate through the pipe wall, leak detection systems are
capable of sensing the leaks. Furthermore, even though part-through or

through-wall IGSCC may be present, materials used for the piping system,
such as Type 304 stainless steel, exhibit such high ductility and toughness
that it is very unlikely they will suffer sudden fracture even when relatively
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la.'ge flaws are present. In fact, all of the leaks resulting from stress

corrosion cracking have been observed in stainless steel piping that did
not fracture.

To provide additional assurance that piping subjected to stress corrosion
cracking will leak b: fore breaking, analyses were performed to show that
a leaking through-wall crack grows in a stable manner and that it does not
cause sudden pipe fracture. In the present study, a fracture mechanics
analysis is performed to assess the stability of crack extension in the
piping system. The analysis is based on the tearing stability concept and
the tearing modulus stability criterion (Ref. 2). The criterion is valid

for materials whose failure is characterized by gross yielding of the cross
section containing the crack and subsequent plastic stability.

The concept of tearing modulus, T, has been developed on the basis of
the J-integral resistance curve and the non-dimensional quantities T

mat
and T These quantities are defined asappl.

dJ
T

_ E mat (la)mat - o2 dag

and

T _ E dJ (lb)appl o 2 dag

where E is Young's modulus, o is an appropriate flow stress, a is a character-g

istic flaw size in the stability analysis, J is the value of J following themat
material resistance curve, and J is the applied value of J. The condition of
stability of crack growth is given by the following:

stable (2a)Tmat > Tapp1

unstable (2b)Tmat < Tappl
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When Equation 2a is satisfied with a substantial margin, stable crack growth is
assured. Rigorous accounts of the concept of T and its applicability are found
in References 2 and 3.

In this report, a simplified, conservative stability analysis is made
parametrically. In the analysis discussed in Sections 2 and 3, the pi-pe
is treated as a beam whose cracked cross section is subjected to a plastic

limit moment. Because segments of the crack on the compressive side may
close and carry the compressive load, the analysis is made with and without
crack closure. The stability of cracks observed in actual reactor piping is

discussed in Section 4.

2.0 METHOD OF ANALYSIS

The tearing stability fracture mechanics analysis is based or the
concept of tearing modulus, T, as defined by Equation 1 and requires the
knowledge of the applied value of J (or its differential form dJ) in tenns
of crack size and other geometric details as well as the loading system
configuration and stiffness.

To facilitate the analysis, the pipe is treated as a beam subjected

to bending and axial loads. To ensure a conservative analysis, the following
conditions are imposed:

1. The cross section containing a crack is fully yielded.
2. The material is assumed to be perfectly plastic (or elastic

perfectly plestic with large deformations).

That is, the cracked section of the pipe is subjected to the plastic limit
moment, M .

p
With the given conditions, it is convenient to use the following

definition of J (Ret. 4):

o[
-
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J=- dc (3)
o

where A is the crack area, M is a bending moment applied on a cracked body,
and c is the corresponding angle of rotation. When perfectly plastic
behavior is assumed and the limit moment is reached, Equation 3 is rewritten
(see Figure 1) as

BM 3M

g{c g[do (4)J=- or dJ = -

Note that the axial force is normally a built-in load, such as internal
pressure, is independent of flaw size, and is not usually expected to be large
enough to cause gross yielding of the net section. The influence of the axial
force on the J value is taken into account, in effect, by changing the loca-
tion of neutral axis and the limit moment, M . Thus, Equation 4 will provide

p
a reasonable approximation of J, including the effect of axial loads. If J

is known as a function of crack size end other variables, then the stability
analysis may be perf ormed for each specified loading system.

The geometry of the cracked section of the pipe is assumed to be as
shown in Figure 2. That is, the section contains an internal circumferential

crack in addition to a through-wall crack. The following notation is used
in the present analysis (see Figure 2):

R = radius of the pipe measured to the middle of the wall
t = thickness of the pipe wall

20 = angle contained by the through-wall crack
a = depth of the circumferential crack

o = flow stressg

P = axial force

In addition, it is convenient to introduce the following nondimensional
quantities:

583 293
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i=f (Sa)

* (2nR )_o (5b)
g

Because a part of the crack located on the compressive side may close and
carry some compressive load, the analysis considers the two extreme cases:

1. No crack closure occurs on the compressive side, or
2. The crack closes completely on the compressive side and carries

compressive load.

These two situations are shown in Figure 3.
When examining Figure 3, it can be seen that the location of neutral

axis defined by angle a, the limit moment, M , and the J value, etc., are
p

functions of four variables (that is, t/R, e, i, and P) and depend on the
closure condition 1 or 2. For simplicity, we may now assume that the pipe is
a thin-walled cylinder; that is,

t/R << 1 (6)

Under this assumption, one parameter, t/R, is eliminated from the analysis.
Also, when the axial force, P, results from an internal pressure, p, is related
to p by

P=f (7)

The expressions for the location of neutral axis, a, the limit moment, M ,
p

and the J value are given in the following sections in terms of the remaining
three parameters (0, 5, and P) for both closure conditions 1 and 2. A

simplified crack instability analysis follows.
co7 70 1JU) JV1
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2.1 Location of the Neutral Axis

The location of the neutral axis is defined by an angle a as shown in

in Figure 3. In this case, a = a(0,5,P) is readily written as follows:

Without crack closure (see Figure 3a):

a=f9+f _
(8a)

1-a

With crack closure (see Figure 3b):

I~f0+ "_ (P+f) (3b)a=
2-a 2-a

2.2 Plastic Limit Moment

Having located the neutral axis, the limit moment, M , is also readily
p

calculated by geometric considerations. It is convenient to normalize M
p

in the form

o
M =4o R't A (0,5,P) (9)

p g p

2Note that 4c R t is the limit of the gross section of the pipe (0 = i = 0)g

under pure bending (P = o). fi is a nondimensional representation of the
g

limit moment, which is given by the following:

Without crack closure:

=(1-5)(cosa-fsin6)+yPsina (10a)A
p

503 303
where a is given by Equation 8a.
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With crack closure:

[1
2
I

i )
p

(1-a_
cosa-fsine1+{Psina (10b)R = (1-5) '

/

where a is given by Equation 8b.

The numerical values of R are plotted against 0 in Figures 4 and 5
p

for various values of each parameter and for both cases with and without
crack closure.

The limit moment, M , increases slightly as the a. sial force, P, increases
p

with other variables unchanged. However, the magnitude of bending moment,
which can be externally applied on the cracked section, decreases due to the
axial force. To obtain the applied value of J, the total magnitude, M ,

p
is used in Equation 4.

2.3 Expression of J

Because we are interested in the stability of the through-wall crack
extending in the circumferential direction, J should be calculated along the
radial eoq2 of the crack. Referring to Figure 2, the increment of crack
area, dA, is given by

dA = 2Rt(1-5) do (11)

Substituting this into Equation 4 and combining with Equation 9, J is
calculated as follows:

2a R 3R
J=- P- (12)c

1-5 30

F07 7 q ,1
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J is conveniently normalized in the form

J = (o R) 3 = (o R) Fg (0,a,P) .4 (13)
g g

where J = Fg (0,5,P) 4 is a nondimensional representation of J and

3R
2 p (34)FJ (0,a,P) = -
- 301-a

Combining Equations 8, 10, and 14, Fg (0,5,P) is written in the following
simple form.

Without crack closure:

F = sin a + cos 0 1 _ cos a (15a)
J 2 1-a

With crack closure:

=sina+cos0-f _ cos a (15b)F
J

1#-
2

where a is given by Equations 8a and 8b respectively.
The numerical values of F are shown in Figures 6 and 7 for variousg

values of the parameters.
The preceding analysis of J and the subsequent stability analysis are

readily generalized for a cracked beam with an arbitrary cross-section
subjected to the limit moment (Figure 8). Note that J is always given in the

form

-nljuryJso
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J=(o h-fhjo (16a)g

ar

h-f 4 (16b)J=o g

where, referring to Figure 8,

b= vertical distance from the neutral axis to the crack edge
B= width of the beam at the location of neutral axis

P= axial force
A area given by P/c=

p g

Alternately, the exoressions of J given by Equations 13 and 15 can also
be obtained from Equation 16.

3.0 SIMPLIFIED INSTABILITY ANALYSIS

The previously discussed data allows a conservatively simplified
instability analysis of crack extension in the piping system to be made. The

analysis uses the procedure similar to that discussed in Reference 2. That

is, by referring to Figure 9, when a rotation 4 is imposed at the fixed ends
of the beam, 4' is written in the following form considering separately the
elastic part, 4el, nd the plastic part, 4 ):p

3=cl+*pl (17)e

The total rotation 4 remains constant during the examination of stability.

5B5 !s,
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dI=d$el+dtj=0 (18)g

The elastic part of rotation, 4el, has the form

*el * (19)
"

3
where M = Mp (limit moment, Equation 9) and I = nR t. The plastic part of

the rotation, c ), is from Equation 13:p

(20)*pl " o R ' F
g

wnere F is given by Equation 15.
J

Because we are interested in the through-wall crack as it extends in
the O direction, from Equation 19

DM

de (21)de l = 30 Ee

By combining Equations 9 and 14, dp l is written in the forme

(1- ) F (0,i,P) do (22)dt =-
gel

Sn3 H3

'xz,,,
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Also, from Equation 20, noting that both J and F contain 0,
3

P
d)p) = 3J J

dJ + dF (23)

For convenience, Equation 23 can also be written in the following form:

dt )p g p- dJ + -

2 a
do (24)=

oR
F\ J)

By substituting Equations 22 and 24 into Equation 18 and noting that the
crack increment in the O direction is Rdo, we have

ph o 2 = F (0,5,P) h+F2 (0,5,P) df (25)j
o o Rg

where F) and F2 Jare related to F as follows:

2

F) (1-5) F (26)=
g

and

3F

F2* ' 30 (27)
J

Thus, T in the instability condition (see Equation 2b) is given byappl
,.,

, ,
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=

J

.' |4
and 4

2- sina (32) . ):sine +{F * cosa -7; 2 F

17 ( l7 /t

gy . .

-
>

.

where a and F are given by Equations 8b and 15b, respectively. LJ

?) The numerical values of F) and F2 are presented against 6 in Figures 10 .

'

.i 4E .
' thro igh 13, for various values of parameters and conditions with and without ~

.

.f

crack closure, ro- 7.r :" * |JuJ JlJ
.

>a ,

L -,____t
,r ,

.

.Wu

a . . . . - #
'

* -

.
,

, . *.
, ,q

e



2.0 - Tappi = F, (9 4,P)- + F (8 5 E}*( 2 g)2

.~

NO CRACK CLOSURE
I.6 - 5 = /t , P =

27T R t 0o )

520.25
5= 0.01.2 - L 4

LL-
,

'

n 5=0 0

a 5=02 5 g,o oy
_

_ P
50.5 c 0~00

5
' g = 0. 5 e o.125

e o.25

=0.75 $ o.50
, , , , , ,

0 10 20 30 40 50 60

h5 * O (degree).s
LW

Figure 10. F versus P, without crack closure.
4(' 3

e ~
*

y,

t c'
L,



T Oppt = F, (e,6,F ).g + F (8.6. )*2 2 g2.0 -

WITH CRACK CLOEURE

5= /t,P=
1.6 - 1RtOo'i

g 6: 0.25
e

1.2 - g6= G O
~

,

~
L1.- 6 6:0.25 us

-0'5
1-7

[
- go - 0.25" *

-0:g
0:O.O P

U-0.75
3g 0.00

-

g 0.t 25

0:0.75 g 0.25

$ a50
' g t IOI' 0 ' 20 30 40 50 60

> @ (degree)
'

| $,
, gigure u. r versus o. with crack closure.

3
.

i
..

W



N
Tappi = F (e,6,F) h + F (8 3'E)"( zg)i 20.4 -

o

NO CRACK CLOSURE

a= / , P = [(2rR t 0o )t

0.25

5:00

[ a = o.5
i

5= 0. 75 m
)k

- 0. 2 - 5:0.25 f

, g; g
g a E= o.5 p,

-0A - 5=o # UUU
E=025 a o.i 25

any a a o.25

k O.50t t I f f f

O 10 20 30 40 50 60

> 0 (degree)

tn Figure 12. F2 versus 0, without crack closure.
C.o
L/4

;^
q,:

e .
_

'N!



_ Toppi = F,( s,5,E).g . F (6,5,P).( E R)2 20.4 - a=025 o

I WITH CRACK CLOSURE
e

I, 2y R t O,- )*

\ No
620.5 '

1 0:o.75 ' '
NN

,

A
- 0. 2 -

's p
x o.oo

- 0.4 ~

a oi25

& O.25

, , i t t i

0 10 20 30 40 50 60

> S (degree)'

s.

{- -

ve
Figure 13. F2 versus 0, with crack closure.

_! t -4
1 __ .

-,



- 26 -

Considering that the first term on the right-hand side of Equation 28,
F -(L/R), results from relaxation of the elastic deformation of the beamj
(or pipe) during the crack increment, we may reasonably expect that the
uniform bending condition imposed in the present analysis is more severe
than other loading conditions or pipe geometry provided the length of pipe,
L, between the supports is equal. For example, consider a simply supported
pipe subjected to a concentrate load that causes the maximum bending moment
equal to M at the cracked section as shown in Figure 14. When we impose

p

the condition that total vertical displacement at the load point remains
constant (dA = 0) daring the instability analysis, T is given byappl

f(0,5,P)h+F(0,a,P) (33)T *
l 2appl o Rg

where F) and F re the same functions as in Equation 28. Note that the
2

change in loading condition results in the change in the coefficient of
the first term and does not change the second term. Thus, Tappl given by
Equation 28 is expected to provide the upper bound of the T value inappl
real structural situations.

4.0 APPLICATION

Consider a 28-inch BWR stainless steel recirculation outlet line that
might contain a large intergranular stress corrosion crack in its wall. This

line was selected because it can have the largest possible coolant loss should

a pipe rupture occur. The geometry of the cracked section is as follows
(refer to Figure 2):

583 3?0
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R = 14 in.
t = 1.5 in.

20 ~ 100 degree (for example)
5 = a/t = 0.75 (for example)

The applied pipe loading is assumed to be the BWR design pressure and a bending
moment sufficient to produce a fully plastic bending moment in the remaining
ligament of the cracked pipe section. The assumed bending load necessary to

produce a fully plastic moment in the cracked section corresponds to conser-
vative pipe deflections and is significantly larger than the ASME Code
design allowable for normal operation and anticipated transients. The flow
stress, o , is assumed to be 50 ksi accounting for hardening. Then, fromg

Equation 5, the value of P is approximately 0.1.

For these values of variables, the functions F) and F in Equations 29 through
2

32 are read from Figures 10 thrcugh 13. That is,

Without crack closure (Figures 10 and 12):

F) = 0.24

F2 = -0.28

With crack closure (Figures 11 and 13):

F) = 0.4

F2 = -0.44

Therefore, the T is conservatively given byappl

=0.4h+(-0.28) (34)Tappl

l' O 7 7n-JUJ JJ/
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Using an experimental crack resistance curve for stainless steel (Ref. 5)
ar.d assuming a significant crack extension, it is seen that the J value is
approximately 4000 in.-lb/in.2 Taking J = 4000 in.-lb/in.2 for conservativeness,.

3pp) = 0.4 h - 1.0T

The value of T f r stainless steel is normally larger than 200 (Ref. 5).mat
Assumir.g that T = 200, Equation 2 requires L ~ 600 f t for instability.mat

It should be noted from Figures 10 through 13 that, for the range of
variables considered in the present study,

T + 0.5appl < .

2
R

o

Thus, the instability criterion, Equation 2b, always requires a very large
value of L/R for instability.

Because values of L/R for BWR piping systems are generally relatively
small compared to the calculated values for instability, unstable crack
extension will probably not occur in BWR stainless steel piping sys ems
designed in accordance with the ASME Code, even though severe IGSSC may be
present.

5.0 SUMMARY

The high ductility and toughness of the stainless steal reactor system
piping have made it virtually certain not to experience unstable crack
cxtension. The present study has attempted to provide theoretical assurance
that the piping system will not experience unstable crack extension, even if
severe intergranular stress cortosion cracking should occur.

The analysis is based oa the tearing instability concept and the
associated tearing modulus stability criterion. A conservative analysis
successfully demonstrated that sudden fracture would probably not occur
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from circumferential IGSCC in stainless steel piping systems designed in
accordance with the ASME Code, provided that values of L/R are less than
approximately 200. Because values of L/R in SWR stainless steel piping

systems range between 20 and 30, unstable crack extension will probably not
occur, even though severe IGSCC may exist. Should stainless steel pipina

have values of L/R beyond 200, a more detailed analysis would be necessary
to demonstrate crack stability.

6.0 REFERENCES

1. U. S. Nuclear Regulatory Commission, " Investigation and Evaluation
of Stress-Corrosion Cracking in Piping of Light Water Reactor Plants,"
USNRC Report NUREG-0531, February 1979. Available for purchase
from the National Technical Information Service, Springfield,
Virginia 22161.

2. P. C. Paris, et al. , "A Treatment of the Subject of Tearing

Instability," USNRC Report NUREG-0311, August 1977. (See also ASTM

STP 6e8, April 1979. ,,p. 5-36). Available for purchase from the
National Technical %rmation Service, Springfield, Virginia 22161.
(See also public or technical libraries.)

3. J. W. Hutchinson and P. C. Paris, " Stability Analysis of

J-Controlled Crack Growth," ASTM SlP 668, April 1979, pp. 37-64.

Available from public technical libraries.
4. J. R. Rice, " Mathematical Analysis in the Mechanics of Fracture,"

in Fracture, Vol. 2 (Academic Press, Inc. ,111 Fifth Avenue.
New York, New York 10003, 1968), pp. 192-311. Available from publisher,

5. W. H. Bamford and A. J. Bush, " Fracture Behavior of Stainless Steel,"

ASTM STP 668, April 1979, pp. 553-557. Available from public or tech-
nical libraries,

b ?||.

-
,,

. ~kt 4 -



O '

U.S. NUCLE AR REGUL AT ORY COMMISSION17 77)
NUREG/CR-0838BIBLIOGRAPHIC DATA SHEET

4. TITLE AN D SUBTIT LE (Add Volume No , at apprmroare) 2. (Leave bisok)

A Stability Analysis of Circumferential Cracks for Reactor
Piping Syste"1s 3. RECIPIE NT'S ACCE S$10N NO.

7. AU T HO H IS) 5. D ATE REPORT COMPLE TED

M"ebruary | Y$9NTH
fH. Tada, P. Paris, R. Gamble

9 PE PF OHMING OHGANilATION N AME AND M AILING ADDHESS lenclu+ 2,p Code) DATE HEPORT ISSUED
Center for Fracture Mechanics ^

| YEARYONTH
Washington Universi ty
Campus Box 1124 S_(t,,,,o,,,k)

St. Louis, Missouri 63130
8 (Leave blank)

12. SPONSOHIN G ORG ANIZ ATION N AME AND M AILING ADO RE SS (Include 2,p Code)

U. S. Nuclear Regulatory Commission
Office of Nuclear Reactor Regulation

11. CON T R ACT NO
Washington, D. C. 20555

13 TYPE OF REPORT PE RIOD COV E RE D (loc /us.ve dares)

Technical Report

15. SUPPLF ME N TARY N OTE S 14. (Leave D/ vik)

16. ABSTR AC T (200 words or less)

A simplified fracture mechanics analysis was performed to detemine tie potential
for unstable tearing in boiling water reactor (BWR) stainless steel piping
systems, which have severe intergranular stress corrosion cracking (IGSCC).
The fracture analysis was based on the tearing stability concept and associated
tearing modulus stability criterion.

The results from this study indicate that unstable crack extension would
probably not occur in BWR stainless steel piping systems designed in accordance
with the ASME Code even though severe IGSCC may be present. The analysis
indicated that stainless steel piping with severe IGSCC could experience unstable
fracture if the piping length to radius ratio (L/R) was very large (approximately
200). Since the values of L/R for BWR stainless steel piping systems are
generally an ordc of magnitude less than this, large margins against unstable
fracture are assured for these systems.

17. KE Y WOR DS AND DOCUME NT AN ALYSIS 17a DE SC RIP TO RS

17 tt IDE N TI FIE HS.' OPE N-E N DE D TE RMS

18 AV AILABILITY STATEMENT 19. SE CURITY CLASS (Thrs report) 21. NO. OF P AGES

Unlimited Availability 20 SE CURITY CLASS (This pap) 22. P RICE
$

NRC FORM 335 (7 77) s /

533 23


