AMENDMENT 12 JULY 1979

WM. H. 7IMMER POWER STATION

INSTRUCTIONS FOR UPDATING YOUR DAR

Changes to the MARK II DAR are identified by a vertical line in the right margin of the page. To update your copy of the ZPS-1 DAR, remove and destroy the following pages and figures and insert pages and figures as indicated.

REMOVE

INSERT

Page v After page vii Page xii Figure 3.2-18 Figure 3.3-8 After page E.2-8 Pages v and v (Cont'd) Page vii (Cont'd) Pages xii, xiii, and xiv Figure 3.2-18 Figure 3.3-8 Appendix F Title Page; pages F.0-1 through F.0-iii; pages F.1-1 and F.2-1; Figures F.2-1 through F.2-4; page F.3-1; Figure F.3-1; page F.4-1; pages F.5-1 through F.5-7; and Figures F.5-1 through F.5-12.

N. 444

7907310431 A

ZPS-1-MARK II DAR AMENDMENT 12

JULY 1979

1

2

1

8

11

12

TABLE OF CONTEN. .t'd)

	PAGE
A.4 COMPUTER PF chang	A.4-1
A.4.1 DYNAX A.4.2 FAST A.4.3 KALSHEL A.4.4 TEMCO A.4.5 PIPSYS A.4.6 RSG A.4.7 SHAKE	A.4-1 A.4-1 A.4-2 A.4-2 A.4-3 A.4-4 A.4-4
A.4.8 LUSH	A.4-5
B.O PESPONSES TO NRC QUESTIONS	B.0-1
B.I NRC LETTER DATED JULY 12, 1976	B.1-1
B.2 KEYWORD INDEX TO NRC QUESTIONS	B.2-1
B.3 NEC QUESTIONS WITH RESPONSES	в.3-1
Series 020 Questions Series 041 Questions Series 130 Questions	B020-1 B041-1 B130-1
C.O SOIL-STRUCTURE INTERACTION MODEL	C.0-1
C.1 INTRODUCTION	C.1-1
C.2 PROCEDULE	C.2-1
C.3 DESCRIPTION OF ANALYTICAL MODEL	C.3-1
C.4 <u>RESUTIS</u>	C.4-1
D.0 CONTAINMENT STRUCTURE ANALYSIS FOR CHUGGING LOADS	D.0-i
E.O <u>RESPONSE TO NRC'</u> , MARCH 15, 1973, REQUEST FOR ADDITIONAL I FORMATION	E.O-i
F.O CONTAINMENT STF JTURE ASCT SMENT FOR LOCA JET IMPINGEMENT AND POOL SWELL LOADS	F.0-1
F.1.0 INTRODUCTION	F.1-1
F.2.0 LOADS	F.2-1
F.2.1 LOCA Jet Load F.2.2 Pool Swell Load	F.2-1 F.2-1

AMENDMENT 12 JULY 1979

TABLE OF CONTENTS (Cont'd)

	PAGE	1
F.2.2.1 Symmetric Pool Swell Load F.2.2.2 Asymmetric Pool Swell Load	F.2-1 F.2-1	
F.3.0 STRUCTURAL ANALYSIS MODEL	F.3-1	12
F.4.0 METHOD OF ANALYSIS AND RESULTS	F.4-1	
F.5.0 DESIGN ASSESSMENT	F.5-1	

ZPS-1-MARK II DAR AMENDMENT JULY 1979 AMENDMENT 12

1.2

LIST OF TABLES (Cont'd)

NUMBER	TITLE	PAGE	1
D.1-1	Design Load Combinations	D.1-2	
D.5-1	Forces on Containment Section 1 for Individual Loads	D.5-3	
D-5-2	Forces on Containment Section 4 for Individual Loads	D.5-4	
D.5-3	Forces on Containment Section 11 for Individual Loads	D.5-5	8
D.5-4	Forces on Base Mat Section 2 for Individual Loads	D.5-6	
D.5-5	Forces on Base Mat Section 3 for Individual Loads	D.5-7	
D.5-6	Total Design Force - Containment Section 1	D.5-8	
D.5-7	Total Design Force - Containment Section 4	D.5-9	
D.5-8	Total Design Force - Containment Section 11	D.5-10	
D.5-9	Total Design Force - Base Mat Section 2	D.5-11	
D.5-10	Total Design Force - Base Mat Section 3	D.5-12	E.
F.5-1	Forces on Containment Section 1 for Individual Loads	F.5-2	
F.5-2	Forces on Containment Section 4 for Individual Loads	F.5-3	
F.5-3	Forces on Containment Section 11 for Individual Loads	F.5-4	
F.5-4	Forces on Base Mat Section 2 for Individual Loads	F.5-5	
F.5-5	Forces on Base Mat Section 3 for Individual Loads	F.5-6	
F.5-6	Design Load - Combinations	F.5-7	1

AMENDMENT 12 JULY 1979

LIST OF FIGURES (Cont'd)

44.00	2.36	100	62.7		Phil. 1
762.1		241		191	w.
1.18		200			276

TITLE

8020.58-2	Comparison of Computer Code with EPRI Test Data, Water Velocity vs. Time	
B020.58-3	Comparison of Computer Code with EPAI Test Data, Water	6
8010 58-4	Pool Surface Poelition ve. Time	
8020.58-5	Pool Surface Valocity ve Time	
8020.30-3	Pool Surface Valocity vs. Time	
D020, J0-0	Voter 11 Air Creic and Air Public Processo ve Time	12.00
BU20.38-7	wetwell Air Space and Air bubble riessure vs. lime	1.0
B020.62-1	Temperature Instrumentation in the Superession root	1
Q020.71-1	Pool Surface Elevation - Run 36	1
Q020.71-2	Pool Surface Elevation - Run 3/	1
Q020.71-3	Pool Surface Velocity - Run 36	12
Q020.71-4	Pool Surface Velocity - Run 37	
Q020.71-5	Bubble Pressure - Run 36	1.
Q020.71-6	Bubble Pressure - Run 37	1
C.3-1	Representative Profile	· · · ·
C.3-2	Finite Element Model	
C.4-1	Free Field Response Spectra	
C.4-2	Design Response Spectra	1
C.4-3	OBE Horizontal Response Spectra, N-5 Component	+
C.4-4	OBE Horizontal Response Spectra, E-W Component	
C.4-5	DBE Horizontal Response Spectra, N-S Component	
C.4-6	DBE Horizontal Response Spectra, E-W Component	
C. 4-7	OBE Vertical Response Spectra	
C.4-8	DBE Vertical Response Spectra	1.1
D-1	Chugging Load - Magnitude and Spatial Distribution	1
D-2	Chugging Load - Time History	
D-2a	Chugging Load - As Used For The Analysis	
D-3	Structural Model Including Soil	1
D-4	Frequency Response for Meridional Membrane Force at	
D=4	Containment Wall Elevatica 477 Feet 8 Inches	
D-5	Frequency Response for Circumferential Membrane Force	
	at Containment Wall Fleration 477 Feet 8 Inches	- 1
D=6	Fraguency Regnance for Meridianal Moment at Containment	
0.0	Wall Flovation 477 Foot 8 Inches	
D-7	Frequency Laspongo for Circumferential Moment at	
D-7	Containment Wall Flowstian 477 Post & Inchar	
n 0	Containment wall Elevation 4/7 reet o Inches	
D-0	Frequency Response for Meridional Shear at Concariment	1
	Wall Elevation 4// Feet & Inches	
D-9	Frequency response for meridional Memorane Force at	
	Containment Wall Slevetion 514 Feet 0 Inch	
D-10	Frequency Response for Circumferential Membrane Force	
	at Containment Wall Elevation 514 Feet O Inch	
D-11	Frequency Response for Meridional Moment at Containment	
	Wall Elevation 514 Feet 0 Inch	
D-12	Frequency Response for Circumferential Moment at	
	Containment Wall Elevation 514 Feet 0 Inch	
		1

488 197

AMENDMENT 12 JULY 1979

12

LIST OF FIGURES (Cont'd)

NUMBER	TITLE
D-13	Frequency Response for Meridional Shear at Containment Wall Elevation 514 Feet 0 Inch
D-14	Frequency Response for Meridional Membrane Force at Base Mat R=40 Feet 5-1/2 Inches
D-15	Frequency Response for Circumferential Membrane Force at Base Mat R=40 Feet 5-1/2 Inches
D-16	Frequency Response for Meridional Moment at Base Mat R=40 Feet 5-1/2 Inches
D-17	Frequency Response for Circumferential Moment at Base Mat R=40 Feet 5-1/2 Inches
D-18	Frequency Response for Meridional Shear at Base Mat R=40 Feet 5-1/2 Inches
D-19	Key Containment Design Sections
D-20	Interaction Diagram for Containment Section 1 - Meridional Forces
D-21	Interaction Diagram for Containment Section 1 - Hoop Forces
D-22	Interaction Diagram for Containment Section 4 - Meridional Forces
D-23	Interaction Diagram for Containment Section 4 - Hoop Forces 8
D-24	Interaction Diagram for Containment Section 11 - Meridional Forces
D-25	Interaction Diagram for Containment Section 11 - Hoop Forces
D-26	Interaction Diagram for Base Mat Section 2 - Meridional Forces
D-27	Interaction Diagram for Base Mat Section 2 - Hoop Forces
D-28	Interaction Diagram for Base Mat Section 3 - Meridional Forces
D-29	Interaction Diagram for Base Mat Section 3 - Hoop Forces
F.2-1	LOCA Jet Impingement Pressure Distribution
F.2-2	Drywell/Wetwell Pressure History for Main Steamline Break
F.2-3	Pool Swell Symmetric Load
F.2-4	Pool Swell symmetric Load
F.3-1	Structural Model Including Soil
F.5-1	Key Containment Design Sections
F.5-2	Notations and Sign Conventions for Forces and Moments
F.5-3	Interaction Diagram for Containment Section 1 - Meridional Forces
F.5-4	Interaction Diagram for Containment Section 1 - Hoop Forces
F.5-5	Interaction Diagram for Containment Section 4 - Meridional Forces

12

LIST OF FIGURES (Cont'd)

NUMBER

TITLE

F.5-6	Interaction Diagram for Containment Section 4 -	
F.5-7	Hoop Forces Interaction Diagram for Containment Section 11 -	
F.5-8	Meridional Forces Interaction Diagram for Containment Section 11 -	
F.5-9	Interaction Diagram for Base Mat Section 2 -	
F.5-10	Interaction Diagram for Base Mat Section 2 -	
F.5-11	Interaction Diagram for Base Mat Section 3 -	
F.5-12	Heridional Forces Interaction Diagram for Base Mat Section 3 - Hoop Forces	

DOWNCOMER ELEVATION

488 200

NOTE :

 Ft AND Fr ARE ORTHAGONAL COMPONENTS, ie., TANGENTIAL AND RADIAL. VECTORS INDICATE POSITIVE COORDINATE DIRECTIONS.

WM. H. ZIMMER NUCLEAR POWER STATION. UNIT 1 MARK II DESIGN ASSESSMENT REPORT

FIGURE 3.2-18

DOWNCOMER VENT GEOMETRY

AMENDMENT 12 JULY 1979

NOTE :

1. THE JRAG OAD APPLIES IN EITHER HORIZUNTAL OR VERTICAL DIRECTION.

488 201

WM.	H. ZIMM	1EF	RNUCLE	AR POW	ERSTA	TION, UN	IT 1
	MARK	11	DESIGN	ASSES	SMENT	REPORT	
			FIGUE	RE 3.3.	-8		

DRAG LOAD DUE TO POOL SWELL AND FALLBACK PHENOMENA

APPENDIX F

CONTAINMENT STRUCTURE ASSESSMENT FOR

LOCA JET IMPINGEMENT AND POOL SWELL LOADS

WM. H. ZIMMER NUCLEAR POWER STATION, UNIT 1

488 202

AMENDMENT 12 JULY 1979

TABLE OF CONTENTS

		PAGE
F.1.0	INTRODUCTION	F.1-1
F.2.0	LOADS	F.2-1
F.3.0	STRUCTURAL ANALYSIS MODEL	F.3-1
F.4.0	METHOD OF ANALYSIS AND RESULTS	F.4-1
F.5.0	DESIGN ASSESSMENT	F.5-1

AMENDMENT 12 JULY 1979

LIST OF TABLES

NUMBER	TITLE	PAGE
F.5-1	Forces on Containment Section 1 for Individual Loads	F.5-2
F.5-2	Forces on Containment Section 4 for Individual Loads	F.5-3
F.5-3	Forces on Containment Section 11 for Individual Loads	F.5-4 12
F.5-4	Forces on Basemat Section 2 for Individual Loads	F.5-5
F.5-5	Forces on Basemat Section 3 for Individual Loads	F.5-6
F.5-6	Design Load Combinations	F.5-7

ZPS-1-MARK II DAR AMENDMENT 12 JULY 1979

2

LIST OF FIGURES

NUMBER	TITLE
F.2-1	LOCA Jet Impingement Pressure Distribution
F.2-2	Drywell/Wetwell Pressure History for Main Steamline Break
F.2-3	Pool Swell Symmetric Load
F.2-4	Pool Swell Asymmetric Load
F.3-1	Structural Model Including Soil
F.5-1	Key Containment Design Sections
F.5-2	Notations and Sign Conventions for Force and Moments
F.5-3	Interaction Diagram for Containment Section 1 - Meridional Forces
F.5-4	Interaction Diagram for Containment Section 1 - Hoop Forces
F.5-5	Interaction Diagram for Containment Section 4 - Meridional Forces
F.5-6	Interaction Diagram for Containment Section 4 - Hoop Forces
F.5-7	Interaction Diagram for Containment Section 11 - Meridional Terces
F.5-8	Interaction Diagram for Containment Section 11 - Hoop Forces
F.5-9	Interaction Diagram for Base Mat Section 2 - Meridional Forces
F.5-10	Interaction Diagram for Base Mat Section 2 - Hoop Forces
F.5-11	Interaction Diagram for Base Mat Section 3 - Meridional Forces
F.5-12	Interaction Diagram for Base Mat Section 3 - Hoop Forces

12

F.1.0 INTRODUCTION

This report presents an assessment of the containment structure for the LOCA jet and pool swell loads on the pool boundary defined in the "Lead Plant Program Load Evaluation Report," NUREG-0487 dated October 1978.

The adequacy of the containment structure at key design sections is demonstrated with the aid of interaction diagrams.

F.2.0 LOADS

A conservative definition of the LOCA jet load and pool swell load is given in NUREG-0487 dated October 1978.

F.2.1 LOCA Jet Load

Figure F.2-1 shows the spatial distribution of the LOCA jet icad on the wetted surface of the suppression pool. The magnitude of the load is 33 psig below vent exit and attenuates linearly to zero at the pool surface.

F.2.2 Pool Swell Load

The containment structure is analyzed for two load cases for the LOCA pool swell phenomenon; the symmetric and the asymmetric loads.

F.2.2.1 Symmetric Pool Swell Load

For the symmetric load, the loading is applied over the entire 360° of the containment wall. The pressure history of the drywell and wetwell air space is given in Figure F.2-2. Curve A of this figure applies to the drywell and curve B applies to that portion of the wetwell wall which is above the pool water surface. The LOCA-pool swell portion of these curves ends at time 2.97 seconds.

The peak wetwell air space pressure during this event is 23 psig, while the peak drywell pressure is 21 psig.

For the portion of the wetwell walls which are below the water surface, the load definition is given in Figure F.2-3. This load is 22 psig at the basemat level which decreases finearly to 16 psig at the elevation of the vent exit, and then increases linearly to 23 psig at the maximum pool swell elevation.

F.2.2.2 Asymmetric Pool Swell Load

The peak drywell pressure during this event is applied uniformly over the entire drywell.

Figure F.2-4 shows the pressure distribution of the pool swell asymmetric load for the wetwell.

The asymmetric pool swell load of 23 psig is applied over a sector of 180°, in addition to the hydrostatic load.

488 207

488 208

208 WM. H. ZIMMER NUCLEAR POWER STATION. UNIT 1 MARK II DESIGN ASSESSMENT REPORT FIGURE F.2-1 LOCA JET IMPINGEMENT PRESSURE DISTRIBUTION

488 210

1)

F.3.0 STRUCTURAL ANALYSIS MODEL

The containment is modeled as an axisymmetric structure by finite shell elements as shown in Figure F.3-1. The structural model includes the basemat, primary containment, reactor pedestal, drywell floor, and reactor pressure vessel (RPV). The soil is modeled by axisymmetric solid finite elements in nine horizontal layers down to the bedrock level.

WM. H. ZIMMER NUCLEAR POWER STATION, UNIT 1 MARK 11 DESIGN ASSESSMENT REPORT FIGURE F. 3-1 STRUCTURAL MODEL INCLUDING SOIL

12

F.4.G METHOD OF ANALYSIS AND RESULTS

The containment structure, described in Section F.3.0, is analyzed by the Sargent & Lundy version of the finite element program DYNAX which is capable of analyzing axisymmetric structures subjected to symmetric and asymmetric static or dynamic loads. The LOCA jet impingement and pool-swell loads are applied as Fourier sine and/or cosine harmonics for each case in this analysis.

AMENDMENT 12 JULY 1979

F.5.0 DESIGN ASSESSMENT

The following key design sections in the containment structure, shown in Figure F.5-1, are selected for this assessment:

- a. basemat Section 2 near the junction between the basemat and reactor support,
- b. basemat Section 3 near the junction between the basemat and the containment wall,
- c. containment Section 1 in the wetwell near the junction between the basemat and the cylindrical wall,
- d. containment Section 4 in the drywell wall near the junction between the drywell floor slab and the cylindrical wall, and
- e. containment Section 11 in the conical drywell wall.

A breakdown of the effects of the LOCA jet impingement and pool swell and other individual loads on these critical design sections is given in Tables F.5-1 through F.5-5.

The design forces and moments on the key sections are obtained by combining the various individual loads in accordance with the load combinations specified in Table F.5-6.

The adequacy of the containment structure is verified by plotting the design force-moment combinations on the interaction diagrams for the various design sections. As can be seen from Figures F.5-3 through F.5-12, all points plot within the boundary of the respective interaction diagrams. This demonstrates that the contain ant structure can safely accommodate the effects of the conservative LOCA jet impingement and pool-swell loads defined in NUREG-0487 dated October 1978.

12

TABLE F.5-1

LOAD DESCRIPTION	M ₀ (kip-ft/ft)	M ₀ (kip-ft/ft)	N (kip/ft)	N _θ (kip/ft)	Q _{R¢} (kip/ft)	Q _{R0} (kip/ft)	Q (kip/ft)
PERMANENT LOADS	-226.95	-45.20	-430.74	-113.00	66.65	0	0
OPERATING TEMPERATURE	-73.99	-32.83	6.91	3.64	3.34	0	0
OPERATING BASIS EARTHQUAKE	0	0	118.28	0	0	0	60.95
SAFE SHUTDOWN EARTHQUAKE	0	0	162.40	0	0	0	88.46
+SRV ALL	121.34	3.14	16.17	4.69	13.96	2.82	19.44
-SRV ALL	-47.74	-1.10	-14.96	-4.63	-26,24	-2.82	-19.44
+SRV ASYMMETRICAL	66.52	4.42	11.06	4.64	5.44	1.77	6.00
-SRV ASYMMETRICAL	-19.58	-1.35	-8.19	-2.95	-17.85	-1.77	-6.01
+SRV ADS	95.98	2.38	11.34	2.80	9.44	3.68	12.54
-SRV ADS	-36.46	-0.66	-7.70	-2.73	-21.27	-3.29	-13.33
ASYMMETRICAL CHUGGING	152.59	4.49	9.60	5.21	27.13	0	0
+SRV SINGLE	64.56	1.45	7.03	2.07	4.76	0.65	3.23
-SRV SINGLE	-16.59	-0.38	-2.43	-0.79	-14.82	-1,31	-3.15
SBA & IBA PRESSURE LOADS	169.50	28.80	98.95	8.97	-30.95	0	0
DBA PRESSURE LOADS	199.42	33.90	116.20	10.57	-36.43	0	0
SYMMETRIC POOL SWELL	144.55	4.54	47.07	5.00	-26.22	0	0
ASYMMETRIC POOL SWELL	306.69	10.72	47.43	-5.74	-52.07	+17.81	+62.87
JET IMPINGEMENT	307.3	9.21	18.30	-1.97	-57.19	0	0

ZPS-1-MARK II DAR

AMENDMENT 12 JULY 1979

488 216

F.5-2

TABLE F.5-2

FORCES ON	CONT. A INMEN	T SECTION	4 I	FOR	INDIVIDUAL	LOADS
	the second se				and the second se	

LOAD DESCRIPTION	M _{\$\phi\$} (kip-ft/ft)	M _θ (kip-ft/ft)	N _¢ (kip/ft)	N _θ (kip/ft)	Q _{R¢} (kip/ft)	Q _{R0} (kip/ft)	Q _T (kip/ft)	ľ
PERMANENT LOSS	42.74	7.34	-401.05	-514.53	-6.21	0	υ	
OPERATING TEMPERATURE	-198.71	~53.95	9.45	289.91	-49.29	0	0	
OPERATING BASIS EARTHQUAKE	0	0	76.56	0	0	0	58.06	1
SAFE SHUTDOWN EARTHQUAKE	0	0	98.20	0	0	0	83.62	
+SRV ALL	10.43	1,92	13.83	5.11	1.14	0	7.46	
-SRV ALL	-6.17	-1.16	10.73	-5.75	-2.03	0	-7.46	
+SRV ASYMMETRICAL	5.56	0.74	7.41	2.3	1.45	0.07	3.58	
-SRV ASYMMETRICAL	-2.64	-0.67	-9.08	-3.69	-1.46	-0.07	-3.48	12
+SRV ADS	6.28	1.43	10.50	4.07	1.91	0	5.20	
-SRV ADS	-4.00	-1.17	-7.71	-4.07	-1.60	0	-5.69	
ASYMMETRICAL CHUGGING	11.37	5.12	10.85	10.12	4.03	0	0	
+SRV SINGLE	3.48	0.43	4.89	1.53	ī.0	0	2.40	
-SRV SINGLE	-1.68	0	-2.66	-2.58	0	0	-1.19	
SBA & IBA PRESSURE LOADS	58.04	9.87	78.63	66.84	19.76	0	0	
DBA PRESSURE LOADS	68.28	11.61	92.51	78.63	23.25	0	0	
SYMMETRIC POOL SWELL	47.90	8.14	47.67	60.05	-2.45	0	0	
ASYMMETRIC POOL SWELL	62.03	10.52	63.83	54.36	-9.87	0	+7.93	
JET IMPINGEMENT	21.05	3.36	21.16	2.39	-1.15	0	0	

AMENDMENT 12 JULY 1979

217

488

F.5-3

where the	100.00	-	Table 1	384	-
- U - A	12.1	100	52	Page	- A
1.23	1.1.8.2.	an			
			~ ~		~

F.5-4

FORCES ON	CONTAINMENT	SECTION	11	FOR	INDIVIDUAL	LOADS
the second se						

	LOAD DESCRIPTION	M _{\$}	^M _θ (kip-ft/ft)	N _¢ (kip/ft)	N _θ (kip/ft)	Q _{R¢} (kip/ft)	Q _{Rθ} (kip/ft)	Q _T (kip/ft)
	PERMANENT LOADS	152.81	23.93	-295.76	-280.19	-7.22	0	0
	OPERATING TEMPERATURE	-484.37	-206.28	41.12	-?6.00	-20.43	0	0
	OPERATING BASIS EAFTHQUAKE	0	0	182.08	0	0	0	59.93
	SAFE SHUTDOWN EARTHQUAKE	0	0	255.85	0	0	0	87.23
	+SRV ALL	12.69	2.13	10,93	5.87	1.92	0	9.20
	-SRV ALL	-11.59	-2.23	-6.06	-5.63	-2.08	0	-9.20
	+SRV ASYMMETRICAL	0.89	0.77	10.80	1.57	0.20	0.06	7.38
	-SRV ASYMMETRICAL	-1.28	-0.78	-10.06	-1.76	-0.24	-0.06	-7.36
	+SRV ADS	1.15	1.20	10.26	2.18	0	0	7.85
	-SRV ADS	-1.63	-1.25	-9.10	-1.91	0	0	-8.00
	ASYMMETRICAL CHUGGING	1.97	7.44	10.26	2.60	0.48	0	0
	+SRV SINGLE	0.48	0.74	4.03	0.72	0	0	1.77
4.	-SRV SINGLE	-0.77	-0.62	-3.99	-1.14	0	0	-1.46
88	SBA & IBA PRESSURE LCADS	3.09	2.65	42.45	71.90	9.86	0	0
~	DBA PRESSURE LOADS	3.62	3.11	49.89	84.35	11.59	0	0
	SYMMETRIC POOL SWELL	6.79	4.03	7.38	43.93	2.66	0	0
8	ASYMMETRIC POOL SWELL	-3.16	1.49	17.64	48.99	0.32	0	+6.44
	JET IMPINGEMENT	-24.51	-4.63	26.13	15.83	-5.45	0	0

ZP. MARK II DAR

12

AMENDMENT 12 JULY 1979

and the second s	1. 101-101	arm	TT 1		e
11.2	141.	P.C	24	2-001	CE
- 2.5	22323	2.16	5. 8.	e	C.R

Load Description	$\frac{M_{\phi}}{(kip-ft/ft)}$	M ₀ (kip-ft/ft)	$\frac{N_{\phi}}{(kip/ft)}$	Ν _θ (kip/ft)	Q _{R¢} (kip/ft)	Q _{R0} (kip/ft)	Q _T (kip/ft)	
PERMANENT LOADS	105.24	3,60	0	0	26.67	0	0	
OPERATING TEMPERATURE	-426.00	-460.00	0	0	-10.40	0	0	
OPERATING BASIS EARTHQUAKE	-134.00	-116.00	0	0	32.00	32.00	0	
SAFE SHUTDOWN EARTHQUAKE	-195.00	-167.00	0	0	45.00	45.00	0	
+SRV ALL	125.20	45.40	31.90	8.90	22.00	7.00	9.50	
-SRV ALL	-148.10	-56.80	-16.40	-2,30	-27.00	-7.00	-9.50	
+SRV ASYMMETRICAL	59.38	27.15	22.43	4.32	11.75	2.13	3.60	
-SRV ASYMMETRICAL	-42.93	-22,13	-9.74	-2.73	-27.58	-2.17	-3.72	1.2
+SRV ADS	112.50	39.30	22.40	5.90	12.90	5.60	5.90	12
-SRV ADS	-79.50	-31.80	-9.90	-3.10	-25.00	-4.80	-5.10	
ASYMMETRICAL CHUGGING	117.90	30.80	23,90	9.20	22.00	0	0	
+SRV SINGLE	72.80	24.70	14,70	1.80	5.50	1.00	1.10	
-SRV SINGLE	-29.60	-11,50	-4.50	-1.40	-16.90	-2.00	-2.90	
SBA AND IBA PRESSURE LOADS	-222.00	-257,00	0	0	-11.65	0	0	
DBA PRESSURE LOADS	-261,12	-301.90	0	0	-13.70	0	0	
SYMMETRIC POOL SWELL ASYMMETRIC POOL SWELL	-66.75 -212.40	-26.75 -92.82	26.86 122.60 -69.19	14.77 44.78	-3.25 7.60 -1.77	0 0	0 <u>+</u> 67.09	
JET IMPINGEMEN'I	-192.46	-90.84	51.5	45.8	2.50	0	0	

FORCES ON BASEMAT SECTION 2 FOR INDIVIDUAL LOADS

488

219

AMENDMENT JULY 1979

12

ZPS-1-MARK II DAR

TABLE F.5-5

FORCES ON BASEMAT SECTION 3 FOR INDIVIDUAL LOADS

Load Description	M _¢ (kip-ft/ft)	M ₀ (kip-ft/ft)	$\frac{N_{\phi}}{(kip/ft)}$	$\frac{N_{\theta}}{(kip/ft)}$	Q _{R¢} (kip/ft)	$\frac{Q_{R\theta}}{(kip/ft)}$	Q _T (kip/ft)	
PERMANENT LOADS	-575.84	-150,65	0	0	-75.92	0	0	
OPERATING TEMPERATURE	-318,80	-385.50	0	0	5.00	0	0	
OPERATING BASIS EARTHQUAKE	-327.00	-113.00	0	0	-29.00	-29.00	0	
SAFE SHUTDOWN EARTHQUAKE	-470,00	-164.00	0	0	-42.00	-42.00	0	
+SRV ALL	119.10	14.10	18.30	13,90	14.60	1.60	1,80	Ľ.
-SRV AIL	-73.70	-15.00	-6,90	-7.20	-10.10	-1.60	-1.80	
+SRV ASYMMETRICAL	45.04	5.24	15.25	6.52	16.70	0.72	2.19	1
-SRV ASYMMETRICAL	-19.66	-6,06	-4.20	-2.87	-5.21	-0.64	-2.03	
+SRV ADS	.9.30	7.00	13.30	10.30	10.70	1.40	3.50	12
-SRV ADS	-33.40	-8.50	-6.50	-4.20	-4.40	-1.20	-3.80	
ASYMMETRICAL CHUGGING	89.30	10.90	20.70	7.00	0	0	0	
+SRV SINGLE	55,00	6.90	8.30	4.40	7.80	0	0	
-SRV SINCLE	-17.80	-2,70	-2.80	-2,60	-2.60	-1.00	-1.00	1
SBA AND IBA PRESSURE LOADS	-438.00	-15.16	0	0	-60.00	0	0	-
DBA PRESSURE LOADS	-515.44	-17.82	0	0	-70.58	0	0	1
SYMMETRIC POOL SWELL	222.30	18.41	22.84	20 82	25.05	0	0	
ASYMMETRIC POOL SWELL	297.50	13.15	86.32	44.36	34.59	0	+26.89	
JET IMPINGEMENT	236.9	-11.7	50.9	48.3	29.5	0	0	

488

220

ZPS-1-MARK II DAR

AMENDMENT JULY 1979

H

3

9

TABLE 7.5-6

SNULTANISMOU MAN I MOIL

							A Real Property lies and	and the second se	-
	SINGLE	0	0	0	0 ×	0 X	0	о×	
	ASSYMMET- RICAL	×	х	×	хo	× o	ж	жo	
	VIL	×	×	×	00	00	ж	00	
	ADS	0	0	0	хo	хo	0	× o	
	SRV	1.5	1.3	1.25	1.25	1.1	1.0	1.0	
	ag B				1.1			1.0	
	RA.				1.0	1.0		1.0	
	A	4			1.0	1.0		1.0	
201	∇_{d}			с, к	-	1.1	*	1.0	
	^B			÷.,	1.75	1		1.0	
No. The second	ESS F				e e	1.4	1.0	1.0	
N10-1 0-11/1	EO	÷		1.25	4.4	1.1			
	^R O		1.0	1.0			1.0	1.1	
	10	ŗ	1.0	1.0	1.1	1.4	1.0		
	04	1.0	1.0	1.0	5.4	-	1.0	11	
	(ec.)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
		1.7	1.3	1.0	1.0	1.0	1.0	1.0	
	0.1	1.4	1.0	1.0	1.0	1.0	1.0	1.0	
	LOAD	Normal w/o Temp	Normal w/Temp	Normal Sev. Env.	Abnormal	Abnormal Sev. Env.	Normal Ext. Env.	Abnormal Ext. Env.	
	EQN	~	~	~	4 5 10	5 23	Ģ	7 7.a	

LOAD DESCRIPTION

ā	*	Dead Loads	ESS	1	Safe Shutdown Earthquake
	8	Live Louds	80 0-		SEA and IBA Pressure Load
(Ac.	×	Prestressing Loads	T,A	3	Fipe Break Temperature Load
0_1		Operating Temperature Loads	RA	χ.	Fipe Break Temperature React
Ro	8	Operating Pipe Reactions			nport
P.0.	×,	Operating Pressure Loads	P.A	κ.	DEA Pressure Loads (includin pool hydrod: wic loadings)
SRV	×	Safety/Relief Valve Loads	Ro	1.1	Reactions arces Due
E0	4	Operating Basis Earthquake			Pipe Break
SBo	8	Small Break Accident	IBA		Intermediate steak Accident

488 221

12

AMENDMENT 12 JULY 1979

NOTATION SYMMETRIC POOL SWELL ASYMMETRIC POOL SWELL -> X 400.00 C IMP INGEMENT 25 FY = 60.0 KSI AXIAL LOAD IN KIPS *101 B = 6.30 KSI F'C B = 12.00 IN T = 48.00 IN 320.00 Ð X (IN) AS (IN2) +> 00 - FC = 0.765F *C 9.00 00 1.56 = 0.850F'C = 0.900FY FC FS 43. 1.56 240.00 22 5 160.00 WM. H. ZIMMER NUCLEAR POWER STATION, UNIT I INTERACTION DIAGRAM FCR CONTAINMENT SECTION 1 - MERINIUMAL FORCES MARK II DESIGN ASSESSMENT REPORT 80.00 IGURE F.5-3 MOMENT IN FT-KIPS *101 200.00 -160.00 -120.00 -80.00 -40.00 40.00 80.00 120.00 160.00 ni -80.00 AMEND: JULY 1979 12

N

