

UNITED STATES NUCLEAR REGULATORY COMMISSION REGION IV

611 RYAN PLAZA DRIVE, SUITE 1000 ARLINGTON, TEXAS 76012 CENTRAL FILES
PDR:HQ
LPDR
TIC
NSIC

June 28, 1979

Docket No. 50-267

Public Service Company of Colorado ATTN: Mr. C. K. Millen Senior Vice President P. O. Box 840 Denver, Colorado 80201

Gentlemen:

The enclosed IE Circular No. 79-12, is forwarded to you for information.

No written response is required. Should you have any questions related to

your understanding of this matter, please contact this office.

Sincerely,

Karl V. Seyfr

Director

Enclosures:

1. IE Circular No. 79-12

2. List of IE Circulars
Issued in Last 12
Months

cc: D. W. Warembourg, Nuclear Production
Manager
Fort St. Vrain Nuclear Station
P. O. Box 368
Platteville, Colorado 80651

L. Brey, Manager, Quality Assurance

7907180385

UNITED STATES NUCLEAR REGULATORY COMMISSION OFFICE OF INSPECTION AND ENFORCEMENT WASHINGTON, D.C. 20555

IE Circular No. 79-12 Date: June 28, 1979 Page 1 of 2

POTENTIAL DIESEL GENERATOR TURBOCHARGER PROBLEM

Description of Circumstances:

The Electro-Motive Division (EMD) of General Motors Corporation has recently identified a potential failure mode of turbochargers used on EMD diesels in nuclear plant standby service.

When an engine is in the normal standby mode, the lubricating oil temperature is maintained at about 115 Jegrees F and the circulating oil pump supplies warm oil to the turbocharger bearings at a flow rate of about 2 gpm. Since the total oil pump flow rate is 6 gpm, 4 gpm is also circulated, via a 30 psi relief valve, through the lube oil filter and cooler which serves to keep the entire accessory lubricating oil system primed to support a fast start. If a power outage occurs, the oil circulating pump may stop 5 to 10 seconds before the engine receives a start signal; but the main bearing and piston cooling pump will immediately receive oil from the primed lube oil filter-cooler system, thus providing a rapid buildup of engine lube oil pressure throughout the engine bearing and turbocharger systems.

A potential problem occurs, however, if the diesel engine receives a repeat rapid start within a minimum of 15 minutes and a maximum of 3 hours after a shutdown from a previous run in which the engine has reached full operating temperature. If, for example, the engine had been operated for about 1 hour at full load, the lube oil temperature would be at about 200 degrees F at time of shutdown. Under these circumstances, the full 6 gpm output of the circulating pump will flow only to the turbocharger bearings because of the lower viscosity of the hot lubricant. At this temperature, the circulating pump pressure will not reach 30 psi. Until the lube oil cools to about 160 degrees F, no oil will be supplied via the relief valve to the equipment rack for the first 2 to 3 hours after engine shutdown. During this cooling period, some of the oil contained in the cooler and filter will drain back to the engine sump via the lube oil scavenging pump, and some of the oil from the strainer box will be drawn into the cooler by the system vacuum that develops. The result is that when a repeat fast start occurs within the above 15 minute to 3 hour time frame after a hot shutdown, lack of prime oil system pressure can cause engine damage. In the worst case of a repeat fast start, the engine may actually reach operating speed, 900 RPM, before the required oil pressure is

established at the turbocharger thrust be of the bearing metal so that cumulative d would result in a turbocharger failure.

DUPLICATE DOCUMENT

Entire document previously entered into system under:

ANO 7906210065

No. of pages: 5

364 13,2