NUCLEAR REGULATORY COMMISSION

ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

IN THE MATTER OF:

SUBCOMMITTEE MEETING
on
EMERGENCY CORE COOLING SYSTEMS

Place - Washington, D. C.
Date - Wednesday, 20 June 197y Pages 260-462

ACE - FEDERAL REPORTERS, INC.
Official Reporters
4.44 North Capitol Street

277320
Washington, D.C. 20001

PUBLIC NOTICE BY THE
UNITED STATES NUCLEAR REGULATORY COMMISSION'S ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

WEDNESDAY, 20 JUNE 1919

The contents of this stenographic transcript of the proceedings of the United States Nuclear Regulatory Commission's Advisory Committee on Reactor Safeguards (ACRS), as reported herein, is an uncorrected record of the diezussions recorded at the meeting held on the above date.

No member of the ACRS Staff and no participant at this meeting accepts any responsibility for errors or inaccuracies of statement or data contained in this transcript:

UNITED STATES OF AMERICA
 NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

SUBCOMAITTEE MEETING on

EMERGENCY CORE COOLING SYSTEMS

Room 1046
1717 H Street, N. W. Washington, D. C.

Wednesday, 20 June 1979
The ACRS Subcommittee on Emergency Core Cooling Systems met, pursuant to adjournment, at 8:30 a.m., Dr. Milton s. Plesset, chairman of the subcommittee, presiding. PPESENT:

DR. MILTON S. PLESSET, Chairman of the Subcommittee MR. JESSE EBERSOLE, Member

$$
277322
$$

kds

DR. PLESSET: Let's begin. We have ? rather full day, but of necessity it is going to be a shirt day, because some of us have to leave by $3: 30$. That is th + good news.

Now the bad news: We are going to be succinct both in our questions and our comments. I have asked the Staff to be likewise.

Before we begin I thought I would say a few words to you. What we are concerned about today is the fact that the ACRS must make a report to the Commissioners in July regarding the research budget; and this, I am sure, will also go to the Congress, even though we prepare another port due in December.

We have already prepared two reports. Let me tell you what kind of reaction they have gotten. In the preparation of the bill in the House Committee, which has oversight on the finances of the NRC, they made some comments in the bill.

There are some specific criticisms of the ACRS in the bill. That is unusual. Let me read it to you. They want to propose three changes to increase the utility of the ACRS report as follows:

One, they are asking ACRS to prepare its report in accordance with a schedule that permits it to be used by the Commission in preparation of the fiscal year 1981 authorization request. That we are doing, hopefully. The
kds \quad Commissioners would consider the budget in July.
Two, prepare a clear statement of research priorities, including specification of projects the ACRS believes should be added to or dropped from the Commission's research program. That is a very specific request.

Three, include discussion of the specific manne: in which the Commission's reactor safety research projects are expected to affect the Commission's reactor regulations. That is a little less clear.

You can see what some of our problems are. It may very well be that the ACRS reports of the past two years have been more concerned with form than substance.

Now we have to try to reverse that and pay more attention to the substance and less attention to the form.

I mention these things to you because we look to you for help in considering the budget and the items, and diraction of the safety resea:ch program.

I think that Mr. Murley of the Staff will certainly help us get as much of this in this short day as possible.

Do any of our consultants trant to make comments on our task? I don't know if we can do it all roday, but we will try.

Ne will have to transmit to the full committee our views regarding the budget, as well as the research program, which is the more important thing for us to be concerned
kds
with, rather than just the dollars.
So you will wait until after the presentations to make comments. Hopefully we can complete all the presentations before $3: 00$ o'clock. I think that is when we will have to adjourn; $3: 30$ is as late as we can stay, and we need some time for discussion.

I would like if we could finish by $2: 30$ or 2:45.

PROF. THEOFANOUS: In view of the time limitation, could I suggest we let the speakers speak without interruptions so we get the train of thought, and then naybe after a particular segment, ask questions, instead of breaking in all the time?

DR. PLESSET: That is a good idea. It will certainly help.

I also asked Tom Murley to no s his people be succinct and not go into any particular amount of background material. We are pretty familiar with the facilities and fairly familiar with the programs that are involved with those facilities. We can save a lot of time that way.

Any other comment?
I Ehirk that is a good suggestion. I hope the Staff will make note of that. We will try to cooperate for a change and let them speak without too mucr harassment and interruption.
$\mathrm{kds}_{\mathrm{s}} \quad 1$ comment?

MR. KURLEY: Yes. Okay, thi: will be the first time we have really gone into detall on budgetary material with the Cormittee.

I had intended in my introductory talk to tell you what the material is all about and lead you through it. I will do that.

Also Dr. Plesset has asked that I take a little time to explain what is in the fiscal 1980 supplementary request that we will be requesting of the Commission, probably within a month.

First I think I need to go over some introductory remarks. We a reexarn ning our program in light of the Three Kile Island accident.

We have already made some changes in the program. The semiscale tests have bean run on TMI type simulations.

The LOFT program has been changed. We have conducted hydrogen experiments and will be conducting more.

And there was a change in emphasis in our Code D progran. We are tarting to accelerate transient codes.

You recall last year we had the research staft With the support primarily of the Idaho National Engineering Laboratory staff. I conducted a survey of reactor safety

$$
277326
$$

kds
research needs.
(Slide.)
I will just quickly reiterate what these were. There was widespread agreement that licensing evaluation models be conservative with regard to large LOCA.

The current programs were addressing the small scale model research needs, but fur ther large scale tests were neded for both PWRs and BWRs.

We have started the large 3D prozram, and it is now going at high speed. Gary Beinett will talk about that later.

We nave since started BWR countercurrent flow limiting research programs et -ynn, in ssachusetts. Thet is also large scale in conjunction with EPRI and GE; and I believe Al Serkiz intended to cover some of that.

Also there was widespread agreement in the community and ACRS that more emphasis should be placed on non-LOCA research. We started to do that, as a matter of fact.

```
            (Slide.)
            We went to the Commission. This budget chart is
    taken from last year's Commission presentation. We showed
    that the LCOA-ECCS program would start down after fiscal
    1980 and continue down.
    Indeed, thr whole light water reactor program would
```

$k d s \quad 1$
start down in fiscal 1980. That has been our plan up until the TMI accident.

I think we have learned that there are quite a few areas we haven't been addressing adequately, and we intend to do that.

As a result, we foresee the following impaut on our program: in fact, it will not peak in fiscal 1980, but will peak in 1981 and take a large jump, and start down at roughly about the sane rate.

I have shown three budgets here. The dark lines are the old lines from last year. For information, the 1978 and 1979 figures include part of DOE's funding for LOFT. You recall they had to pay to finish the construction of it. It was all part of safety research in a way, so I am including this to show the trends.

We are going in with a supplement to our 1980 budget. If we get that, then the budget increase will start off in 1980 at a much higher rate than what we have previously asked for, and still will peak in 1981 and come down.

```
                            If we don't get a budget supplement in 1980, then
it will take a much sharper rise in 1981.
    I should explain that this budgetary supplement will
get us into areas where we will start looking at accidents
    that go beyond design besis accidents. Particularly, we will
```

kds
be looking at what we call degraded p!ant conditions.
By and large we have assumed that we have taken the Appendix K assumptions that may be loss of offsite power, but the ECC systems work.

When you get into transients and small LoCAs, where the time scales can extend out into hours, there is a lut of opportunity for operator intervention. That can sometimes negate the emergency cooling system.

Likewise we will be :ooking at multiple failures of equipment. We intend to be doing more exploratory research.

Ne will be looking at real plants. We will be looking at trying to apply the lessons of WASH-1400 to real plants, and how they would stack up against the various accident scenarios in WASH-1400.

We are looking into possibly some simple methods for making quick calculations. We don't have firm ideas on that yet. I throw it out as an indication that we are thinking along these lines.

I have asked to se if we can get eve., a small computer in research so we could experiment with some small programs ourselves to see if it makes sense to do quick calculations. I think we can, of the kind Carl Michelson does, for example.

So those are the general aleas we will be moving

Dr. Plesset wanted me to talk about the fiscal 1980

This may change slightly. Sol Levine is still working on the papers, but there will be major changes. (Slide.)

The first area, better understanding of transients and small LOCAs. We see an urgent need to modify and check our codes to improve their capability to handle transients, natural circulation and small LOCAs.

This includes a fair amount of money just for running the codes to examine the transients.

We plan to $u p$ ade SEMISCALE by adding a secondery system and a secondary steam generator so we can look at plant transients.

We are tentatively planning to upgrade the ILTA facility to study BNR transients and small LOCAs. We need to modify LOFT so we can accelerate the small LOCA tests. It
kds | w1ll require some addition hardware that we hadn't planned on until another year or two; but now we intend to accelerate it.

Don McPherson will talk about this later.
We have separate effects, and thermal hydraulic tests. Also, Al Serkiz will talk about how they will be modified.

We intend to do some studies of cooling several damages cores, like what may exist in TMI today, for example, or possibly looking at other types of core damage and see that, in fact, we can cool those.

We intend to icok ai the release and transport of fission produced from dair sed fuel that may get much hotter than 2200 degrees, up to 3000 or 4000 degrees Fahrenheit.

- A major item is to establish a data bank for each operating reactor that will allow us to do calculations imnediately. Once we learn there is an accident or an event at some plant, we intend to have codes available and a data bank, including an operating deck for each reactor. Procably this will be done at National Labs.
(Slide.)
The second area of extreme importance is enhanced operator capability. This is the second item. Logically it should be first. We have to develop the instrumentation needs that should be brought into the control room so the
$k d s \quad 1$
operators know the status of the plant.
The most ojvious is liquid level in the reactor vessel. We think we have experience along those lines that can help commercial plants.

There is a lot more, too. We should syscematically go through each plant or each type of plant and find out what kind of instrumentation is needed to measure the parameters that have to go into the control roo-

We then will look at control room displays, and in particular what kind of diagnostic systems che operator should have ava" able to him.

I don't velieve we mentioned it last time, but there is an excellent prototype system that is existing on the Halden reactor. Halden is a small test reactor in Norway where they have a diagnostic system. It is in a small room next to the control room. It has three CRT displays.

It is not really the palnt operator -- it is one of the operations staff - can sit at the displays. It interrogates the plant computer. It doesn't control the plant. It draws daid out of the plant computer and analyzes it.

For example, the thermocouple readings at TMI could have been displeyed continuously and systematically on the CRT displays in this room I mentioned.
kds

We are looking very seriously at installing such a syste't on LOFI so that we can get experience ourselves. LOFT is an operating reactor, It is, I think, uniquely geared to this kind of a system, so we can get some operating experience.

The Germans are so impressed with this system at Halden that they are moving toward installing it on the Groven-Rhinefeld reactor in Bavaria. It is a PWR built by KWU, and Prof. Berkhauffer in Germany is very impressed wich this system. I think they are moving toward possibly installing it on most of their plants in Germany, though that is a bit premature to say that now.

The third item is a task to identify the data transmission requirements and review the accident response procedures of the NRC itself. We should have more information available to us in the incident response center.

We are looking at, do we need out own computer, what kind of display steps, and so forth.

MR. EBERSOLE: ESF means engineered safety features. If you go to any SAR you will find ESFs are limited to definition of machinery and equipment that mitigates LoCAs. It doesn't include the critical auxiliary feedwa:er pump.

Therefore, it is obligatory to center the scope of What is callec ESF until all elements of the plant that cope with the after heat removal problem after trip withcut the

277333

kds
condensor. That is a point of beginning.
MR. MURLEY; This is shorthand. We agree with
that.
(Slide.)
Plant response under accident conditions. You recall in TMI we had quite a lack of understanding of what condition the reactor was in: but also thert was a question of was there a hydrogen bubble, how big? Was there oxygen, how much? And a lot depended of not knowing the extent of boiling, if there was any; we didn't know the coolant chemistry, and so forth.

We intend to undertake some tests to examine what the coolant chemistry could be under fuel failure cunditions, and better ways of sampli, ? that at high pressure.

We expect to look at hydrogen behavior, how it is generated, its transport through the stem. And clearly we will have to look at probably each reactor, because removing hydrogen from the - the pressurizer surge line on a BSW plant is different from Westinghouse plants, so the behavior of hydrogen gas would be different getting out if the pressurizer reliet valve went. We have to look at each of those.

```
            We will do effects of hydrogen explosions. We
    won'z oo explosion research ourselves, but we should catalog
```

$$
\begin{array}{ll}
2 \rightarrow- & \cdots \\
i, & \cdots
\end{array}
$$

the information available. There is a wide range of information available. It was not readily accessible to the SRC on short notice.

We will have to $100 k$ at the response of plant equipment and structures to accident conditions. Here we mean things like the hydrogen pressure spike. What could that do to equipmant in containment? What could it do to the containment itself? What does the containment spray system -- sodium hydroxide -- do to equipment in containment? What does prolongec exposure to radiation do to cabling and equipment? so forth.

A lot of tils equipment was not designed to withstand the water and radiation levels at TMI. In fact, some of it dian't.

We irtend to look at - this means maintaining containment integrity under fuel melt conditions.
bw

Ne should go beyond the TMI accident itself and take a look at if we were to get large fasses of molten fuel, what could be done to mitigate the consequences. We have programs along these lines. This is meant to augment that.

Finally, we nced to do benchmark testing of struc ural anc oio!ig system analys! 5 codes. We spent a lot of time and thought put into what we call verifying codes. That was always our large LUCA codes.

We have done nothing with regard to our suructural piping system analysis codes. It has shown up in seismic plant shutdown. Ne have to start doing that in a system $9 t 16$ way for these codes as well.
(S1Ide.)
Final:y, I boiifeve there should be a comprehensive postmortem examination and plant recovery. This should not be primarily the governtint's responsibility. We have had discussions with EPRI, DOE, and with the utilities and there w111 be another meeting next week at EPRI.
My understanding is that they intend to take the lead on the postmortem of the TMI plant. Nevertheless. we believe we should be an integral partner to that activity and, in fact, will have to do some of the examinations ourselves, we believe.
Ne expect to take some damaged fuel who. it comes
out probably to - we are looking seriously at the hot shop at the test area north in Idaho out near LOFT that was initially built for the aircraft nuclear propulsion project. It was recently upgraded. It will be a first class facility. We think that is a logical place to examine some of the fuel. Ne believe we should go in and measure the fission product chemistry and plate-out data. What kind of fission products and where are they plated out in TMI?

Finally, we want to look at some of the safety-related equipment, cabling, instruments, that kind of thing in the plant and fin that help us establish some requalification criteria. If the utility plans to take TMI back to power someday, we clearly have to have some criteria under which we will allow the plant to operate. We think we need research in those areas. (slide.)

Two more. One is risk assessment. I am not the best one to talk about it. I will summarize it for you. When we presented it to the committee the last time, we only had $\$ 300,000$ here. Ne ought to be fed up, and we agree. So we have beefed it up. Ne need si. 4 million to go into detail looking at the event trees of accidents. This should a kind of the intellectual guide answer to our research program on 100 king at various accident scenarios. at least the ones coming out of AASH-14 and any others we
308.02 .3
bw
can think of, and then that will allow us to examine with our codes ${ }^{\text {a }}$ much more detall those various scenarios. We expect a larger program on human error rates and the impact of human errors on risk.

Ne have to beet up our failure data analysis
effort. The total there is $\$ 3.1 \mathrm{millif}$.
(Slide.)
With regard to improved reactor safety, this is
a different budget category. That is why it's broken out separately, the same as for risk assessment. We need to look at improved containment concepts. Here we mean vented containments primarily and we intend to look at how we might backfit vented concepts into existing containments. We will look at imfroved safety systems for coping with accidents. These are things like residual heat removal systems that can coorate higher than 4.00 psi, better decay heat remove systemi, that kind of thing.

And valuelimpact methodology is really aimed at if we are looking at backfitting reactors, we know there is a high economic cost with that, and we have to have some better methods for quantifying the oenefits.

That sumfaz zes the fiscal ' 80 supplement. We sent down copies of the Commission Staff Paper. It's discussed in more detail there.
I would suggest you refer to that for more details.

Now I would like to shift gears into our fiscal -1981 budget submission. This 's what is new to the Committee. There is a formal procedure that we have to go through. Ne have sent down to the comittee our zero base budgeting documentation. For the uffice of Research, it's this thick. It's almost impenetrable to a beginner, so let me try to summarize it for you.

DR. PLESSET: Tom, let's see if we have any comments on the supplement. I think that would be a suitable point to do that, before we get into the 1981. Let's have succinct, pointed comments or questions. Ivan, you look ar though you are ready.

MR. CATTON: I made a lot of notes here. Just one thing, better understanding of transient to. small LOCA events, that seems like a lot of money. I would need more detail. That seems like a lot of money to spend in an area where work has been oging on for some time.

MR. MURLEY: Let me discuss that with you at the break. I have a sub-breakdown on that, but I don't have it at hand here.

DR. PLESSET: Does that include a lot of
analytic work?
MR. MURLEY: Yes.
DR. PLESSET: Nostly analviical work, or does it include special work?

MR. CATMDiv: Nould you put the second slide back up? Better understanding of transient and small LoCA accidents.
(Slide.)
The botton two items look new. Coclability of several damaged cores and establishing of the data jank. I assume the data bank is so you have -- if you were going to run RELAP, it would be set up anc ready to go for a specific plant, that is what that means?

MR. MURLEY: Yes.
MR. CATTON: it's the ones from that point up that I would e some reservations about. I guess I would need to see mure before I could be more specific.

HR. MURLEY: I would suygest a starting point would be the discussion in the Staff paper - the Commission paper. Unless you have something specific. I don't know how to respond.
4. large part of it has to do with hardware.

```
s3 million and 2.2, $1 million, this really is hardware to
```

 do transient tests.
 MR. CATMOA: Are you referring to --
DR. PLESSET: Here is a paper headed "Research
Fy $/ 80$ Supplemental Budget Information."
4R. CATION: I got so many vesterday -
MR. MURLEY: Bring my copy uo from the table,
will you, B:11? Thanks.
DR. PLESSET: This was prepared for the Commissioners by 501 Levine. What you might do is look at it all, then ask your question again. Is that all right? Can we come back to it, Tom?

MR. MURLEY: Yes.
MR. CATION: The first item, it's not c! ear to me what modifications must be made. I have been led to believe for the most part the codes do reasonably well in handling the small LUCA.

MR. MURLEY: it's more than that. TRAC, for example, does not have a secondary system in it. If we will deal with transients that originate in the secondary system, and most of them do, we have to put that in and we have to put in control features.

Ne will be looking at RETRAN which is a very old version of RELAP but has good control features in it. There is an IRT code we purchased from Combustion and is up at Brookhaven. Ne need to beef that up.

Ne are shifitng away from the large LolA emphasis. When we do that, you need a lot more capability in your codes.

```
    MR. CATMON: A different kind of capability.
    YR. YURLEY: That's right. But it takes time and
    money to do that. Ne are saying that that is about s1.7
```

million. A full secondary system with associated trips and controls would be added. Noncondensable gas model. RETRAN and IRT will be modified to meet the immediate licensing needs.

MR. CATTON: Now you have three.
MR. MURLEY: We will incorporate COBRA into
TRAC. That will allows us to do more detall core analysis. I think COBRA really needs -- if you want to look at details of cores, you need that kind of detail. That doesnet have a system capability.

MR. CATTON: Let me give to you some of the feedback I have been getting listening to people talk about analysis. You get the feeling that it's a quasi-static process and can almost do the classification by hand. This was confirmed by some of the people with the Licensing Staft who were here a few days aço ac the Full Committee meeting. That question was asked them directly. How well can you make classifications without a computer? A person indicated they could do reasonably well on the back of an envelope.

Look at Michelson's analysis, which was tone using maybe a hand calculator - I was going to say slide rule but that's --

DR. PLESSET: That's obsolete.
(Saughter.)
MR. CATTON: From the point of view of putting

```
together a system to look at a plant as a system, which
means you all have the steam generators and pumps and
everything and the various controls built into the system,
    is important. I am not sure that if I were doing it, I
    would want to hang all that on a code llke TRAC that has
    a level of sophistication that is just not needed as far as
    I can tell, at least for the begiming part of the accident.
    Now if you get down to the case near the bottom
    where you are interested in what happens after you have
    damaged the core, that is another ballgame.
    MR. MURIEY: Let me respond. As I said, there
    are classificetions that can be done simply, and we
    intend to do those and find out the range of applicability of
    those classifications. We have to have the capability .o
    do those on short notice.
    I don't think you can rely on them unless they
    they have been tested against something bigger. To shut
    off our advanced code development or say thet you don't
    need to look at these even quasi-steady state accidents --
    there was ooiling going on, so in orde: to examine that
    you need a code that has two-phase capability. You nave
    to look for subtle things in these accidents.
        MR. SHUMWAY: I wanted to agree witr ev
    only because with hand classifications you can _u an orerall
    gross mess and energy balance on the system, but if you want
```

to know about the two-phase distribution of liquid in the reactor, which you must know if va, are going to assess whether or not you have DMB and heat-up, you need more rophistication then you can have with hand classifications.

MR. CATMON: I hope I wasn't implying you would do it all by hand. It's just that --

MR. MURLEY: You were questioning why we need money. That is at the root of it. I am teling you 2 until now we have been going very fast with our effor. focused on the large LOCA analysis. We have to shift gears a oit and put a lot more emphasis on a broader range of codes than we have been. That includes TRAC, RETRAN, IRI and CCBRA.

MR. CATMON: I thought RETRAN was an EPRI code. MR. MURLEY: Yes. It was developed by Energy, Inc. under EPRI's sponsorship. Ne either have it or will have it and will be using it as wel as the Idaho and Brookhaven.

MR. CATION: Where does the SSC code fit in?
KR. KURLEY: That is a liquid metals systems code developed by Brookhaven. He have asked them to look

```
at if they could modify that to look at water reactors.
```

 It's not a simple modification. You hsve to take out the sodium, take out the secondary system, two-phase
    ```
capability and so forth.
    If that can be done, we may put some effort into
    that. Now it's limited to a scoping analysis of what can be
    done. It's a good liquid metal systems code.
    MR. CATION: Also a good systems code.
    MR. MURLEY: Yes.
    MR. CATTON: I Guess I am speaking from ignorance,
    but it seems to me that that would be a good direction to
    go. Nater hydrology is very much like sodium. The heat
    transfer part, you have to worry about.
    MR. MURLEY: There a lot of differences when you
    get in details. steam generator models are different.
    It has no pressuriz-n, no two-phase capability. Ne have
    to look at those. I have accounted for $1.7 mill:on of tre
    3.1. The other is analysis of PNR and BWR transients. Iuis
    is to use the codes looking at these various scenarios.
    This is where a large part of the learning will
    come.
    MR. CATION: 1.7 and 1.4?
    MR. MURLEY: 1.7 was to accelerate the transient
    codes. 1.4 was to use them and to analyze the range of
    transients that we identify preliminarily through the fault
    iree and event tree analysis.
    MR. EBERSOLE, I think we are saying you are going
    to depart from strictiy large LuCA analysis and extend
```

studies out to small LOCA and cascades O° various sorts that threaten the afte: heat removal process. Up to now you have been comfortable in lumping 3 WRs and PWRs into the same bucket, because they have the same fotential for large Lucas.

Now it's essentia as you broaden your scope to fut them in separate camps and look on a relativistic basis for the portents of getting into trouble with thesa particular models.

In the first sentence you talk about natural circulation and small LOCA accidents in PWRs and BNRs. It looks like mixing tomatoes and oranges and apples in this category.

BiNRs have phase change for heat transfer. They have a neat system to cause a small break in their SAR design. They short-circuit a lct of the problems which the BirR can't. I an syaing it will be a branching package, once you get down to this area, where you will inevitably see striking differences in accident potential betwee them which should be called out.

MR. SULLIVAN: I looked at sur last item in the budget on this slide and you are establishing a data bank at 5.4 million. Is n't that low? There are ov r 50 operating plants now. To put zogether that many decks for thet a mount of money in th. detail you need for looking
$\therefore 7$
5

```
    at the secondary side, I would question whether you could do
```

 at the secondary side, I would question whether you could do
 that with this or not.
 that with this or not.
 MR. MURLEY: It probably will take more. On
 MR. MURLEY: It probably will take more. On
 the other hand I am not sure we can do everything in one
 the other hand I am not sure we can do everything in one
 year. That is somewhere around seven people full-time.
 year. That is somewhere around seven people full-time.
 I don't know whether we can double that or triple that.
 I don't know whether we can double that or triple that.
 DR. PLESSET: It's a matter of people that
 DR. PLESSET: It's a matter of people that
 determines a lot of those numbers that you have.
 determines a lot of those numbers that you have.
 MR. MURLEY: Yes, Ne have factored in --
 MR. MURLEY: Yes, Ne have factored in --
 this is not everybody's wish list thrown together and
 this is not everybody's wish list thrown together and
 compiled. This nad a fair amount of management review
 compiled. This nad a fair amount of management review
 in PSR and has been cut avout half from what was originally
 in PSR and has been cut avout half from what was originally
 requested.
    ```
        requested.
```

 .
 PROF. THEOFANOUS: I want to make sure I understand yc, wrrectly. In the first list, you are asking a question of understanding the small LOCAs.

Then in the fourth of fifth list you talk about the improved risk assessment, the 1.4 million is for actually carrying out the risk ass"ssment, actually carrying out the -

MR. MURLEY: Excuse me. Part of this is also what I would call better understanding.

PROF. THEOFANOUS: I wanted to make sure. I believe most of the understanding now will come from that and not from going there and tagging on things. We have a lack of understanding.

MR. MURLEY: I understand what you are saying. You can only get so much understanding from an event tree. You can identify accident scenarios, but you don': know how the reactor will respond to those.

Let us suppose you postulate the kind of event that
led to TMI, namely a feedwater transient where this and that
were valved out, and the high pressure injection system was
on and off for certain amounts of time.
Postulating those on an event tree wouldn't tell
you what the plant will do. You need calculations. It will
De an interrelating effect between the calculations and the
event trees. I agree with you

$k d s \quad 1$

PROF. CATTCN: Twenty some odd.
MR. MURLEY: Kie don't have those in the agency. PROF. THEOFANOUS: Where is the computer time? I thought it was in there.

MR. MURLEY: That is virtually all people. The 3.5 includes a fair amount of computer time but, together. we are talking avout probably 40 or 50 people on top of our exist:ng programs.

PROF. CATION: You can't belive that second item, analysis of human error, rates out, because that will determine the first item. You are really talking about $\$ 5.7$ million in this package. Nithout the second, the first becomes meaningless.

PROF. THEOFANOUS: I think if yOu tink of that in terms of on top of your present programs, it becomes difficult. The people you have to draw on to put in this activity must be people who are very familiar with accidents and already have been very much involved in this.
M. MURLEy: That is a good point. Let me address that.

PROF. THEOFANOUS: A lot of shifting has to take place.

```
DR. PLESSET: Address it briefiy, Tom.
    (Laughter.)
    MR. MURLEY: I don't want you to get the iave, which
```

kds 1 you could do, that we should spend this $\$ 40$ million but 2 cut $\$ 40$ nilllion out of our other programs.

But they will have to be replaced, because we still have to carry out the SEMISCALE and LOFT programs. Don't get the idea that it is either this or the other. We think we can do both.

PROF. THEOFANOUS: Arother small point.

* am seeing a tremendous shift, basically going on
from what is called a large LoCA to a small LoCA. Ne must recrignize they are all LuCAs. In spita of the tremendous amc - of money spent for la:ge LoCAs. I don't think we have at thiz time the kind of unifo anding we were sent out to get years ago when the se plans vere made.

I would hate to see that at this point just because an accident happened com ing from a small LOCA, we forget about the large ones and put all our efforts to the extremely small ones.

This kind of activity you are talking about, better understanding, ought to be done with a view of the wnole spectrum. There are also intermediate LuCAs with their own problems ard difficulties in terns of complixities. The
$k d s \quad 1$
operator again has to know which way the accident is going. In order to provide this kind of indication, we have to have a better understanding ourselves of what is happening in order to project, for example, instrument readings to what is happening in the system.

The conclusion then -- I surgest this activity of constructing event trees and accident scenarios, I would suggast this be viewed as a total effort with a view to addressing the whole Lnca.

By LOCA, I mean eny kind of sequence that leads to losing your coolant from the reactor system.

4R. EBERSOLE: Including those that don't start with a LOCA at all, like a battery failure, for instance; a universal ailure, which will inevitably lead to some kind of LOCA.

DR. PLESSET: Yes. You will have that kind of thing in your study, I believe.

MR. MURLEY: Definitely.
MR. EBERSULE: it is a little wrong to call them a
LuCA at the outset. It might be somebody demineralizing Mr. MURLEY: Transient can include a wide range of things.

Mr. ZUDANS: I have a few comments.
Pisk assessment. I can't separate item 1 and 2 in my own mind. I would like to think it is possible to

277352
kds 1 constructing event trees where elements are human error, not 2 just equipment fairlure rates; and for that reason I think that this is probably the most important part of your additional program, to put some very experienced, bright people to work to really study -- even by Monte Carlo-everything that possibly could happen.

You must think in terms of here, under these conditions, if something bad can happen, it will. If an error aan be made, it will be made.

What are the consequences then? he talked about it yesterday quite a bit. I think a case like TMI fell in between the cracks, and the question is really: fow many more such cracks exis: in current systems?

My feeling is these two itens are the most important ones in your program, and maybe are underestimeted. I don't know. I am not expert in this field; but I feel you should join these two items if possible.

PROF. THEOFANOUS: Maybe a better question to ask is: What is the projection? With this kind of budget
allocation, when do you hope to have the answers we are
talking about? One yeer, two, tive, ten?
DR. PLESSET: That is a paintul question. You don't have to answer that one.
(Laughter.)
YR. MURLEY: I would hope we could start having some
kds 1 insights, let's say, within a year. PROF. THEOFANOUS: when do you hope to have iufficient insight to claim we have completed this? I think that is what you ara talking about when you talk about cracks.

MR. MURLEY: : don't know what completeness means. maif. Theofanous: i don't mean it in the sense of 100 percent; but what would you consider sufficient completement to prevent similar things hajpening like TKI? MR. MURLEY: I can't answer that.
MR. ZUDANS: I think we have it today.
DR. PLESSET: That is a good point. I let Tom off the hook. Maybe next year we will come back and he will give us the answer.

PROF THEOFANOUS: I think it is a very important question.

DR. PLESSET: I agree, but I think it is - let him think about it.

PROF. THEOFANOUS: I can't have an opinion on the budget unless I know how close the budget is bringing me to Where I want to go. If it will be ten years, that is something else from six months.

MR. MURLEY: Tell me where you want to go. I view this as an exercise in looking under rocks and poking into corners and looking for accidents that we have never looked at
1308.03 .8
kds 1 before, and hardly even thought about.

I am telling you I think we can be looking under rocks within a year. I don't know how many rocks there are, so I have no idea of the scope of the job and when we will have looked under every one. I am not sure it is even detinable.

DR. PLESSET: i think we ought to go into the 1981 budget discussicn.

MR. ZUDANS: Could I finish another comment? Very short one. I thin. in your improved reactor safety area, I would recommend that you could have a systematic review of all interconnected systems with the idea in mind that regardless of how they are isolated from each other, the -

MR. MURLEY: There is a generic safety item called systems interactions. We re probably going to take over responsibility for that from NRC.

Right now it is under Steve Hanaur's task force on safety itens. We are negotiating to take that over, and will look at that carefully with the risk assessment group.

MR. ZUDANS: I am pleased to hear you know abcut Halden; and I also know you went ol: there; is that correct?

MR. MURLEY: Yes.
MR. EヨERSOLE: Dr. Zuc'ans' point tere, you said interconnected systems. If you just look at schematics and

kds

```
(Slide.)
        These were provided -- we call them the delta
    charts. What it is is we list each budget area like code D,
    break it into two or three or sometimes eight or nine
    subcomponents.
    In this case we have steps codes, component codes,
    an area called assessment and applicatioli..
    We then show what is the fiscal 1080 level in the
    President's budget that is now before the Congerss, and
    what we aie requesting in fiscal 1981.
    Now a key point to ncte here is because of the
    notion of a fiscal }1980\mathrm{ supplement, this has very much
    complicated our budget lives. Inis assumes we don't get
    the 1980 supplement, so that the $8.9 mil1ion code D is
    without a supplement, and the $14.4 million is what we need
    in 1981, assuming we don't get a supplement in 1980.
            One of the innovations of President Carter, as
        you prooably know, is the zero bese budgeting concept. In
        that concept we have to list several potential levels of our
        budget.
            (Slide.
            This year we have four. They are titled: the
        mininum budget, the current budg%t, the requested budget,
        and the amended budzet.
            The minimum program is intended to mean what is the
```

kds $\quad 1$
minimum level below which the program loses its integrity and you really can't accomplish your functions. I don't want to go over this.

It is just to tell you the next chart that says fiscal 1281 minimum is what we believe in the code D area is the minimum integrity program.

Moving up from that level we show a chart going from the minimum to the current, and the difference between them.

```
(Slide
Giving whet is in the base for a minimum program, we then add 51.78 million in the various areas, and it tells you what you buy or what in this case Congress would buy or get for \(\$ 1.3\) million; what the nation gets.
(Slide.)
Similarly, the next chart shows how we move from the current budget. I should say current is defined to mean more or less our current program. What does it cost to keep the current program going without major reductions or najor increases? In that case our assessment is that it takes about 5.11 million a year to keep the current program going in code D.
(Slide.
Now the next one is what are we requesting? ie are requesting a sizaole figure, as you cri see, \$3.4 mil1ion
```

kds i increase. All of tnis assumes we get no increase in fiscal 21980.
(Slide.)

The last chart is a new innovation that says. what happens if in fact we get the fiscal 1980 increase? How much do we need in fiscal 1981?

In this case this clearly shows we don't need as much increase, although the totals are about the same. If we were to get our amended budget, the $\$ 3.1$ million that I had a dialogue with Ivan Catton about is included in the \$12.4 million.

If we got that, the fiscal 1981 budget woula be somewhat different than if we didn't get it. That is a:1 this chart is intended to show. Anyone going through the budget in detaile this will allow you to work your way through it.

DR. PLESSET: Ton, does that pretty much complete your presents cion?

Could you give us some indication of priorities?
You rememer that little criticism the ACRS reports had that said we didn't indicate priorities; you haven't either, so you are in the same boat as we are. That's good company, I would say.
(Laughter.)
M?. MURIEY: I would rather not do that standing up

277 35?
308.03 .13

277360

DR. PLESSET: Fine. Any other briet comment before we let Tom go? We kept him longer than he scheduled hinself, but ! think it was very helpful.

MR. MURLEY: I asked my staff to cut their presentations down, so I hope it will make up for my extra time.

MR. ZUDANS: I would like to ask one brief question before you leave.

Your plans currently are to simply take over a system like Halden has and apply it to LOFT, or do you plan to work out your own, or recommend the utilities do their own monitoring systems that are computerized, not necessarily called CRTs, but just a screen type of information that kind of keeps in pace with actual reactor state, and continues to display what the state is?

If the operators makes any action, it indicates whether he is doing right or wrong; also makes reference to technical specifications and new procedures that might be Euilt into such software -- i. other words, an aid to the operator, not to control the slant but monitor and provide information.

MR. MURLEY: Let me make a and then I will
respond directly to your question. I was at Halden last October. : led a ==search team there. : was very much impressed with it.

IMAGE EVALUATION TEST TARGET (MT-3)

IMAGE EVALUATION TEST TARGET (MT-3)

IMAGE EVALUATION
 TEST TARGET (MT-3)

I sant the LOFT project manager over also to take a look at it. One of the systems engineers at Idaho went with him. They came back and said that the system is very useful, and we could implement it, we believe. We are looking at it.

But they said it is not a great advance in the state of the art at all. Ne routinely do that in refinery operations in this country.

But the nuclear industry, in terms of control and display and diagnostics, is a generation behind a lot of other industries.

So the key thing -- this was Dick Kauffman. He said not that they made oreak-throughs, but simply that they did it. You can see it.

My own view is that the utility $=$ the German utility would never consider such a thing unless they had an example to go to and see how it worked on a test reactor.

That is my thought as well. Until we put it some place and demonstra=t it and beat the bugs out of it in our country, it will be very difficult to get some operators to rely on it or even think about that.

My first thought is we would put in pretty much the same system they have at Halden. They have seen working on it since about 1971, so they nave put a lot of time and thought
kids \quad into it, and ironed a lot of bugs out. MR. ZUDANS: Okay. MR. GARLID: I would like to ask a brief question. In your fiscal 1980 supplemental budget, you
had categories. Fiscal 1981 you have different categories. How do those two fit together? Are those under the fiscal 1980 mostly under systems engineering?

MR. MURLEY: The fiscal 1930 supplemental -- oh. dear.

MR. GARLID: You Save a totally different breakdown.
MR. MORLEy: Ne did that for a reason. : guess I
will have to take the 1980 supplement figures and put them into our budget breakdown, because they are in different budget break downs.

I will tell you the problem we had. When we talked with the Licensing Staff we sent them over saying here is our research needs, and here is how we think we ought to be going as a s'foplemental in fiscal 1980.

They were broken down according to the old budget categories: systums engineering, LOFt, code, so forther. Frankly, the reaction was, this is more of the same old stuff. There is no new thinking here, just you are upgrading SEMISCALE and LOFT. Sig deal.

The point is, it completely lost the logic involved. There is a logic. That is why I presented it this way, as a
kds 1 logic pattern and not a budget category. But I will do that.

DR. PLESSET: Thank you, Tom.
I guess we can - yes, Dr. Hiu. PROF. WU: I have a brief question. In the research I heard about the current work, is it moving towards a direction to develop some of the simplified out basic research on the transient with problems such as flushdown of steamwater or headwater interface, liquid jet into the steam and also a bubble flow and so forth?

Those are made more elementary, but each with a very specific pnysical understanding. This type of proulem seems to be valuable towards a physical understanding of some of the more systems approach prozrams.

It looks like quite a bit of work has been taken on or carried out by KNU, and I wonder what is the priority in future programs of this type of proolem?

MR. MURLEY: We have had for a long time a number of small programs heading towards a basic understanding ot phenomena. We needed that for the large LoCA code as well. I don't see much change in those programs.

PROF. WU: Will there be an increased level of activity planned for 1980 and 1931?

MR. MURLEY: Ne planned on it.
Al?
kds $\quad 1$

MR. SERKIZ: Some of those questions you are asking are development and support, where we go after basic phenomena to start the buildings blocks that come up. I will cover some of that.

MR. ZUDANS: I would like to add one more thought.
I will forget it otherwise.
Could I give thought to the following idea: We need larger and larger scale test results, really, to be certain about analytical tools and otherwise. How about thinking for the future about instruments on existing facilities or new ones to be bu lt to such an extent that sho certain transients occur, you can collect the data?

There have been several such small LOCAs like TMI, none of which had adequate instrumentation to use the results as test results.

My feeling is there is no better facility than a commercial reactor for doing these tests. Some of the tests could be run on your actual reactors without damage to the plant, to study the response.

MR. MURLEy: That is a good point. I forgot to
mention in the analysis of transients item, the $\$ 3.1$ million
we were discussing, we have sone plans to analyze the tra ients that have been run on purpose in reactors, like the Peach Bottom transient.

And we have talked with Roger Hatson, and he has in
kds \quad mind possibly asking much more of that from the licensing people. And if that is the case, we will specify at least minimum instrumentation so we can analyze the problem.

MR. ZUDANS: You can put in the instruments and sit back and wait. It will happen sooner or later. PROF. CATION: That is not a pleasant thought. DOE does this, by the way. In some of the solar energy installations, they actually instrumented them at government expense. The person with the unit supplies the data to DOE.

I think wnat you are : ..oting is something similar.

MR. ZUDANS: Exactly.
PROF. CATTON: RSR supplies the instrumentation and the facility feeds back the data when they get it. That would probably be a minimal expense.

MR. MURLEY: Good thought.
DR. PLESSET: Ne have to go on. Tom. I imagine you concur with our proceedin;

MR. YURLEY: Yes, thank you.
DR. PLESSET: All rignt.
PRESENTATION OF AL SERKIZ.
4R. SERKIZ: : recognize that the tine has slipped oy; and the package I have prepared as handout material gives you considerably more information than I plan on shoving on
kds 1 the viewgraph machine.
I think it would be worthwhile to set the stage is this coming through? I guess it is.
(Slide.)
Let me set the stage in terms of the specific research areas that fall under the cognizance of the separate effects research plan. I will also show you a few slides to try to put the budget picture back in some perspective.

A point was brought up about confusion. This is the suoplemental budget focused in certain particular subelements. There is a budget unit called systems engineering which carries both separate effects research programs as well as research support branch, $2 D / 3 D$, and so ori.

```
    The speciflc programs i will ac..ess from the
    budgetary and reprogramming and reevaluation viewpoint will
    be the SEMISCALE program, which you are familiar with,
    and I will give you some information and insight into the
    types of transient ..mulations that were run on a SEAISCALE
    facility in suoport of TMI.
    I will take you through the SD and RF heat trensfar
    programs. You are aware of the 3D hear transter projram at
    ORNL, the program at General Electric at San Jose.
    Ne are recommending upzrading this specific facility
```

kds 1 so it does a better job of simulating the BWR machine.
Next is a new program we have recently entered into, a second program with General Electric and EPRI. This is thi Lynn facility looking at the upper p.enum spray interactions and countercurrent flow limitations.

The Flecth Seaset program at Westinghouse looks at RF phenorena both in separate effects and in a simuleted system.

The question was asked, where do we go for jetting information, perhaps on fundamentals and basics? i will speak to these two categories first. Gary Benne.tt will discuss 2D/3D. When I come back on I will speak to nodel D.

It is under this that we have basic prograns under way at universitiso such at M.I.T.; and Peter Griffith at R.P.I. under Dick Leahy; John Chen at Lehigh, where we are addressing what is happening locally and how can we better understand it.

These a. 2 small prograns as opposed to facility; this is an integral facility which gives systems effect. These are facilities which have control boundary conditions where we try to simulate the system by separate extects.

In addition, there is another category we fund called technical support. This particular cateçory has bee used in the past and will be used again to address advanced instrumentation and advanced techniques that might be
kds $\quad 1$
applicable to the type of scenario we saw in TMI.
(Slide.)
With respect to the levels of funding being applied to the diffarent categories shown here, this is a breakdown of the fiscal 1979 funding level that is being applied to these five categories.

The SEMISCALE program is roughly a so million program; and I will discuss specifically -- I will discuss with you a reoriented SEMISCALE program which is being designed to handle questions that need to be addressed now, and to become basically a PWR system type simulator.

This includes the addition of a secondary loop or secondary loops, because we want to model both an A and B loop, and go into a configuration representative, of the correct steam generators, and so on.

The $B D$ and RF heat transfer programs are about a 57 million effort. These will be coming down some, perhaps maintaining a constant level, as we make use of the same facilities to carry out experiments that are relative to the small oreak type of plant transients natural circulation boil-off, and so on.

I will not speak too much to the ECC bypass. This was discussed over the last three years. our intention is to phase out of small programs.

In model D and technical support, we are looking at
kds 1

```
where will we reorient or direct effort.
    In terms of the overall systems engineering
decision unit, OM3, separate effects research branch,
    sl7 million, roughly speaking, roughly ha, a total budget
    unit as administered.
```

 (Slide.)
 With the excellent hindsight provided by TMI-2,
 we are quite busy. We are reviewing all our programs to be
 sure we address both IMI-2 type lessons learned plus
 scenarios perhaps that before were thought to be just war
 games.
 We indicated to you last year we are deemphasizing
 large LOCA research. The intent was to complete large LOCA
 research and go on to other a. zas even moreso.
 Ne de plan of utilizing existing facilities or
 modifying them or upgracing them so we can minimize
 expenditure of capital fands to come back in and address this
 question.
 There re new research requirements being identified
 and we are working closely with NRC Steft. We are rethinking
 our fiscal 1980 effort.
 I will show you specific examples late: where we
 are redirecting effort.
 We are requesting selective tiscal 1980 and 1981
 budget supplements. Two particular categories Tom mentioned
 278009
 is upgrade on SEMISCALE and the two-100p test apparatus for

BNR research.
The point was made that the PWR and BWR machines are two distinct machines. I agree.

Ne have now three facilities in the country that can be system simulators: LOFT is a nuclear simulator; the SEMISCALE system, when upgraded; the TLTA system at General Electric at San Jose nas this potential.

Ne don't have facilities that people can turn to to run + is type of scenario, "what if" type scenarios. Both the SEMISCALE and GE facility at Sen Jose give us that potential.
(Slide.)
With respect to the type of dollars that we are talking about in the fiscal 1980 and 81 budget requirements, this is a display. It is in your packet.

With respect to the SEMISCALE system, the
presidential budget Tom referred to was shown at the s6. 7 milli ion level. The upgrade on SEMISCALE to put in the secondary system, get once through and U-tube generators, estimated at $\$ 3-1 / 2$ million; total requirement. if there was no suoplemental in fiscal 1980. of s10.2 million. If we had the 1980 suoplement, then the budget requirement in 1981 obviously would come down.

A simila: type of oudzet display can be presented
rds $\quad 1$

2

3

4

```
for BD and RF hear transfer. There are $3 million identified
here. s2 million of this I will tag as required to make
the ILTA -- extend it, upgrading it to better represent
the BWR internals and BNR system to carry this to an
off design, non-LOCA type simulator.
There is \(\$ 1\) million shown that would be devoted to utilizing existing programs such as Flecht Seaset to run natural circulation and boil-off experiments, we well as run some boil-off experiments in the \(3 D\) hear transfer facility at Oak Ridge.
In fact, they did use bundle 1 at Oak Ridge on the BD heat transfer program in conjunction with the -oise diagnostics people upon request from NRC during the TMI incident to see if they could use this noise diagnostics to ascertain whether you went into dry-out. They utilized bundle 1. This was on call.
The results looked like favorable research should be applied there. The results were favorable and people are talking about picking up the instrumentation aspect at noise diagnostics to 100 k at it further.
Ne are piggy-backing on any and all our facilities for this type of research.
```

ECC bypass, you can see is phasing out. Essentially, fiscal $/ 81$ we will be done with it. Small scale. Model development is shown here and is shown to actually come down because of the emphasis on utilizing the system codes. Technical support is being redirected primarily to get into instrumentation and diagnostics. With that instrumentation again to address the TMI tvpe questions or supplement current instrumentation in the reactor system.

For example, how do we know the real liquid level in the reactor core?
(Slide.)
Let me just sort of take you back a few months in SEMISCALE and oring you up to whre we stand. Less than a half year ago SEMISCALE was set up in programmatic fashion to conduct UHI experiments. There is the $S-06-7$ experiment which indicated downcomer voiding and oscilato y behavior mass depreciation, et cetera.

This mass depletion phenomena has been studied in
© Oliow-up experiments and the best we understand from the
data, the excessive heat from the downcomer walls led to
voiding associated with core back flow and high core
steaming rat \mathfrak{z}.
SEMISCAL \equiv is being revised, or the facilitv is
being upgraded with a new type of insulation material.
bw
1 It's a honeycomb - evacuated honcycomb type used in the aerospace industry. In effect the results of utilizing that type of insulation will be to negate or prevent future breakdown of thermal insulation. Dr. Tong was out to the G5inscale project last year and he was party to som resu'ts of thermal conductivity or conductance tests and the new insulation they have has a value of one-tenth of the prior.

In effect the SEMISCALE facility will be modified to insulate i $^{\text {f from a mismatch of surface area to volume }}$ ratio effects.

As I indicated SEMISCALE was about the only facility we had in the country, or perhaps the world, that we could turn to in suoport efforts of the TMI incident. Within two days of the TMI incident they were running gas bubble venting experiments. In effect, they were using the SEMISCALE facility as a similarity to see if thev could work a bubble out of the system.

In addition, they then utilized the facility to
see if there could be a trensient similarity of the type --
to simulate the tyoe of transient that IMI experienced.

There has always been a lot of discussion
associated with SEMISCALE and atypicality and mismatch
and surface area to volume ratios, one dinensionality,
et cetera. I would like to show you one curve -- I don't
propose to go into details which is an illstrative curve of what was done with an existing facility to address the question: what happens if the operator does keep his eyes on the pressurize level? Can we use this type of facility? (Slide.)

Here is an experimental run. There is a time scale consistent with the TMI accident. The pressurizer level was kept. There was bleeding from the accumulator. You can see the core level starting to oscillate, drop, decrease. If the core level was not monitored or other type of instrumentation not used, the operator would have said he had a full pressurizer level. The test was terminated here on a safecy cutoff not to burn off valves. There is a quick report being prepared on a series of these experiments and it's targeted for issuance in early July.

I will be sure that the committee does get copies
of that. It's a very informative report. There was a lot of work dane by the project. As a result of this type of experiment. it led us to the conclusion that that facility does warrant an upgrade, a significant upgrade.

I will talk briefly here to he type of upgrades we are proposing for the SEMISCALE facility. That program is currently under redirection to go and carry out the following:
(Slide.)
ow

We are moving small break testing up. What we are planning to do is run small break testing in the July through August time frame of this nature. We are in a HI configuration.
The upper plenum is a UHi configuration. Ne will run small break transients that allow a loss-of-primary coolant at a rate equal to or about that of high present injection system below and above.

The primary purpose of this is to get a series of runs that small break codes can be tested against.

We will rerun the $50-67$ test with new insulation to establish conclusively, if possible, whether indeed it was a hot wall effect or something else. That will be tucked in here.

Right now the SEAISCALE project is putting together a list of feedwater transients. These are in preliminary stages. I would describe it: you have a turbine trip and then you have the the type of scenario either that UnI had and the SEMISCAKE people are looking at the type of scenario of how might we set up experiments where we deliberately introduce operator effects. The operator does something in the scenario. Since it's not fully thought out, I would rather not comment.

The schedule here would be we would run these in the late fall-early wintertime frame.

Now at the same time that we are redirecting here, not shown on this slide ... rather than go through a lot of slides, we are in the process of asking those people to start on a preliminary system design and take a look at procurement activities that would be required to, one, upgrade the SEMISCALE facility to have secondary systems.

By this I mean closed loop secondaries, two independent secondaries. In effect go to 24 by 2 configuration like the Sir plant. Ne want to be able to have the capability with an upgraded SEMISCALE to have two independent secondary 100 ps so we can look at transients of the type you have gas pockets formed, either slash or secondary loop, and have a system dump capability in the secondary $100 p s$ with the cross. Have something which will allow us to st up in hardware a 4 by 2 SW type configuration. Closed loop secondary.

Right now the SEMISCALE facility as online has a scale PWR type steam genertor, but it's a u tube. There is another U tube steam system generator on order, and this, I think, is slated for delivery somewhere next spring.

Our intention is to have both ones through an
U type steam generators to upgrade the primary system to include both a reactor type scale pump on both of the primary loops, to install the internal wall insulation,
so that we get away from this hot wall effect, and the MOD2 configuration is the ne whore we have two external downcomers. In effect we are setting up a one-demensional 2 by 4 loop.

MR. EBERSOLE: Will you rig for secondary blowdown?
MR. SERKIZ: Yes, sir.
MR. EBERSOLE: That will cause a discharge of UHI even though there is no break in the primary 1000 . MR. SERKIZ: Yes, sir. Let me put a different slide on here and talk from this. (slide.)

The schedule, as best the Idaho people can tell us now this is the reason for the preliminary planning stage. I got this material over the weekend sent back to me. Ne will go into a design phase and experimental planning phase here. Ne can, with the system as configured and feeding into it steam generators and upgrading the secondary sysem, start conducting the type of experiments that you alluded to here, in that we are configured up basically in a Westinghouse configuration here.

We would start running these type of experiments on a preliminary planning fashion or, let's say, the first round to see the type of effects that are experienced.

What we are doing, I guess the best way I should answer that question: we are working witt the people in

MR. SERK : If the question is directed more specifically as to the impact on the code, I am going to let a code man answer that one.

PROF. CATTON: Let me rephrase it. If the $2 D / 3 D$ effects are important in the small break, and I have been led to believe -- I don't know tha* I agree they are, but I have been led to believe they are -- of what use is SEMISCALE in the small break? If they are not important, that question sort of goes away.

- While you are there, I would quote out of one of your documents. The Japanese 2000 rug -- I put SEMISCALE and FLECHT in the same arena for many reasons -- by providing additional information.

However, the limited Japanese program will not be. sufficient to replace FLECHT in the opinion of both PMG and NRR Staff. What does that mean? How limited is the Japanese test?

MR. SERKIZ: It is a difficult question because you introduced three facilities. Does your question address FLECHT, 2D/3D, or SEMISCALE? On SEMISCALE you can handle multidimensional effects.

DR. PLESSET: It is a one-dimensional --
PROF. CATTON: How important are the multi-
dimensional effects?
MR. SERKIZ: In what respect?

PROF. CATTON: In small breaks.
MR. SERKIZ: Lou, would you care to answer that question?

Garry?

MR. BENNETT: On the large breaks we know it is important. I will defer for the small break analysis.

MR. SHOTKIN: Shotkin of NRC.
I agree with Ivan that there probably are some multidimensional effects in the small break. One of the main effects --

DR. PLESSET: He heard there were. He didn't say so. You think there are.

MR. SHOTKIN: There could be. One of the main effects we want to follow in the small break is how the level. goes down in the system during the small break. I think that is primari:y one-dimensional. SEMISCALE should give us all the information we need on that.

MR. SERKIZ: In terms of liquid inventory levels and that type of information, I guess the evidence that I would offer is the type of transients that have been run to try to simulate the TMI accident. There has been considerable discussion whether you could even control a one-dimensional atypical system.
Evidently they met with reasonable amounts of success. They feel very confident of being able to use this
facility, not as a demonstration PWR full ecale, but -- I will use the term assimulator, hardware simulator facility where one could test out various scenarios.

Without a secondary system, we can't do it.
PROF. THEOFANOUS: Going back to Lou, has anybody given thought to the differences present in the primary system SEMISCALE from those you might find in a full scale LWR? That is the question crucial to levels and so on.

I would like to raise the question that somebody should look into that.

DR. PLESSET: That is one reason to use -
at all. The question is how it relates to the full scale, you mean.

> PROF. THEOFANOUS: That's right. Its clear differences would be present.

MR. SHOTKIN: Could I answer that question in terms of looking at core uncovery rather than just looking at small breaks? That is what. we are interested in. Core uncovery could be due to small breaks or due to a small break in a pipe or valve opening.

In this case, the core uncovery has a presssure effect. It has multidimensional effects. There we want to coordinate all our facilities, including the 2D/3D facilities, that could look at multidimensional effects under core uncovery situations, SEMISCAIE which could look at the present effect
as the core starts to uncover.
PROF. THEOFANOUS: I agree with you. I asked the question in terms of not only core uncoverv, but two-phase distribution within the primary system.

It is interesting to know what is in hot leg and what is the composition or percent of vapor in the inlet to the pressurizer.

When they are different, one would expect different behavior and different feedback from the pressurizer. This nd of question.

If you look at only the core uncovery itself separately, then I --

MR. SHOTKIN: We don't have any one facility where we could look at all effects at the same time. We could 100 k at pressure effects at some facilities, multidimensional effects at others. We must try to integrate them using codes and engineering judgment.

DR. PLESSET: Isn't it unfortunate the core test facility was designed the way it was? Before it was built, it might have been made to stand some reasonable pressures. How did it happen that it wouldn't? It is too late now, but I am curious how it happened that way.

MR. SHOTKIN: The scenario the world community has been analyzing for the past several years has been the large break LOCA. The biggest uncertainty was in the
reflood portion of that. We understood pretty much the conditions where our uncertainties were. Those were at low pressure.

The system had depressurized and we are wondering how fast the ECC liquid after refill gets up into the core. That is low pressure.

DR. PLESSET: There were other uncertainties. Is there an early quench, for example? What is the effect of the externally-mounted thermocouples, which could be quite significant and might affect the interpretation of the LOFT results unless we have information to the contrary?

There have been a lot of measurements of the effect of little bumps on the s like fuel rods having a big impact on cooling. These are other things.

Where will they be studied? The test facility
would have been fine if not misdesigned. How come that
happened?
Say in a word why.
MR. SHOTkIN: It is a -- it was originally
called large scale RF test facility.
DR. PLESSET: We should label it that always in our minds?

MR. SHOTKIN: No. We can try to redirect the program to look at some core uncovery tests that might give us information on multidimensional effects.
ar 7

Dr. Tong is over in Germany next week to discuss with the Germans and Japanese how to redirect those facilities. He is taking with him staff ideas on that.

DR. PLESSET: It would te a neat trick, but unless ha is a genious, I don't see how hr can do it.

You didn't tell me how it happened.
Oh, it was a refill facility.
MR. SHOTKIN: Reflood.
DR. PLESSET: You are trying to make it ito
something different, more than that.
MR. SHOTKIN: That's right.
MR. MC PHERSON: I am Dr. McPherson.
The facility that you are discussing in Japan was designed by the Japanese prior to our entering into discussions with them on the cooperative work.

Nevertheless, yes, it is a reflood experiment. But I did want to say a few things around the question you have been asking.

The LOFT core is 83 percent of the diameter of the cylindrical core test in Japan and consequently constitutes essentially almost the same amount of $3 D$ necessary that that facility does.

However, we are unable to make the " tailed measurements that that facility does. The tests we have run to date in LOET have given us high confidence in our
ar 8
understanding of what is going on in the core.
Nevertheless, those which we do have, have been very helpful in supporting our understanding of the thermal hydraulics.

Finally, re surface mounted thermocouples, we have eight different programs ongoing now in support of that question. Some in reactors, some out reactor. That is, using electrical heaters. Even some electrical heaters in reactors.

We believe the entire test series will give us a complete picture of where and when those experimental thermocouple z do have an effect. We know they do sometimes. We know they don't sometimes.

We are trying to draw the boundaries.
DR. PLESSET: We need to take a break.
[Recess.]

DR. PLESSET: All right, let's reconvene. We were having some discussion regarding SミmISCALE. We weren't quite completed. Mr. Ebersole wanted to comment. Then we w 111 throw it open.

MR. ESERSULE: In our past world where we thought the large LoCA was he principal and nrly only area of jeopardy to core colling after trip. we put a number of safeguards to help that conditions. The UHI system is one.

Looking at these in their mitigating capabilities to help out, we overlook the accident potential of these systems. Anong those is UKi, the capacity to disrupt core cooling capaz -y.

Inis was approximately a $30-$ to-1 y io of call-ups for needed functions of UHI to inadvertent call-ups; a 30-to-1 probability we would rather not be called up.

The effect is to potontially invite the discharge of nitrogen into the sealed primary 1 oop.

The failure criterion faces proolems like vertex formation in the accumulator, difficulties in measuring level, activating "alves that must close under dynamic needs.

It is critical to realize in considering the new accident set, to consider the accident potential of the old LoCA mitigating functions, notably UHit itself.

Mr. SERKIZ: I accept your points, Dr. Ebersole; and

303.07 .3


```
We will carry out this summer in conjunction with the upgrading of the ILTA putting togather this type of scenario and seeing what it would take in a facility to have the epability.
The reason I am not in a position to do other than show you a list on some of these types of transients, saying those are the nost important -- there has been a lot of discussion already going on as to what is important.
Also, I would make the point brought up earlier by someone about why don't we run these tests in large plants. Some of our BirRs lately have been running some of these tests for us.
The 3 NR is a different animal. I look at it as that type of machine and the PNR another one.
Ne are working with the probabilistics analysis people analyzing these. A lot more of these scenarios are being developed as possibly for real versus the single failure criteria.
4R. MICHELS'IN: 0 \& course, these can occur with just postulating a single operator action or fallure. When you look at the pressurized water reactor, one should not overlook those plants with loop isolation valves. There are a few in the country.
They heve this striking potential to change oreak sizes quickly under circumstances in which the core may not
```

kds 1 be able to usually recover.

MR. SERKIZ: This is reason we want to maintain in SEMISCALE two independent secondery loops, so we can have that tyne of simulation capability.

MR. EBERSOLE: Not only do thes have those valves, but have overator instructions to try to stop the leak.

DR. PLESSET: Would you go on to your next part, A1?

MR. SERKIZ: Yes.
(Slide.)
I would like to very quickly take you through
these four programs, concentrating primarily, to give you an insight on our thinking, in upgrading the TLTA, and giving you information in general.

When carrying our buget category here, these four programs appear. Ne have a level of effort at INEL that we utilize their staff towork with us and interact with the contractors.

The reason for this is these three programs are cooperative programs, and they do involve, in the case of the BMR, obviously Beneral Electric; in this case, Westinghouse.

The budjet dif - 'ution that we have for those prograts is as follows.

```
(Slide.)
The budget distribution in fiscal 1979 is shown here. The reason for these programs coming down lower than Oak Ridge is, recognize the NRC share of the industry cooperative programs ranges sumewhere between 38 to 42 percent.
What we are doing here is funding part of the total program cost. That information is in our handouts.
(Slide.)
The program at Oak Ridze terms the PWR blowdown heat transfer program is displayed here. Ne have concluded the bundle 1 experiments, and we are in the process of installing, within a week as best I can determine from the people at Dak Ridge, we wil have installed bundle 3 , whicn has considerably more internal thermocouple and cwo phase flow monitoring instrumentation.
I put this up, and I want you to note we are getting out of a large LOCA program. This is slated and is being managed by (lak Ridge to conclude in fiscal 1982. Fiscal 1980 is the year where we will conduct the round-ots experiments on bundle 3 . The information and experiments are in thet packeze you have.
We utilize fiscal 1931 to analyze the data and essentially -lose down the facility and issue final rescrts and analyses in tiscal 1982. As an example, I would show you
```

-kds 1 one grapn.

2
(Slide.)
This is bundle 1 that came out of the Uak Ridge facility. That was designed for something like 14 or 15 powered blowdowns. It has undergone 34 blowdowns.

You will note the heater rods, electrical rods are pretty straight. It looks in good shape. On this particular bundle, once we concluded bundle 1 tests, we ran boiler tests. Wa have a high degree of confidence in oak Ridge designing and fabricating bundles with his survivanility probaoility.

To show you that the program is in the process of concluding its final round of testing and going out of business -- people will be put on something else.
(Slide.)
Nith respect to the 3 WR research conducted in RSR, our programs in terms of experiments are concentrated at two facilities: TLTA which you have seen, the program at Lynn, Kassachusetts, I will show you photographs of equipment and facilities up there.

1 just want to use one offshoot slide you don't have just to discuss with you what we plan on doing.
(S11de.)
If you recall, the TLIA inception back in 1972 was a single bundle facility. The jet pumps didn't have the
${ }^{-}$teds 1 correct height. It was a simulation racility to model the 2 blowdown phase of a SNR.

Since thet time the pragram hsa been augmented as you see here. It has been a jury rig add-on, et cetera. We have come through a set of experiments that we had in mind for that facility, and the time has been long overdue that the facility should be upgraded so we have a better representation of what that facility should have in h- :dware for BWR LOCA testi ${ }_{7}$.
(Slide.)
I emphasize this because when you call it a small or intermediate break. It is LOCA testing. I would focus up the ILTA to you this morning two ways. One, we want to upgrade it to conclude our LuCA testing. I. will show you a schedule going with this.

Ne want capability to run blowdown through reflood. We plan on installing three bundles to have parallel bundle effects. He will uograde the internals to have full height scaling on the jet pumps, a better steam separator, improved bypass and volume distribution and scaling, and alsc have the capability to run small break tests.

I will show you a slife that I didn't have prepared to include in your package.
(slide.)
Schematically, what we have nere is this snows where
kds 1 2
we intend to be in an upgraded ILTA.
With respect to that same consideration and redirection, what we plan on doing is also looking, and we are 100 king , at what I term here a ILTA extension. It may not ts a TLTA extension. It may be a combination of TLTA and utilizing the Atlas facilities at General Electric at San Jose.

```
These are BNR transier: \({ }^{\circ}\) being lonked at in terms of scenarios and events. Ne sr.ould be through that phaze by roughly September to see what sort of .tentions are on ILTA or a combination of Atias and ILTA.
in Tom's slide we showed supplemental deltas of three or three and a half for SEMISCALE in fiscal 1980, and ssmething on the order of \(\$ 3 \mathrm{million}\) in a blowdown and reflood heat transfer are back-of-the-envelop type estimates now to go into an extension to look at transients that are off normal operation, but without neutronics feedback. It is on the order of \(\$ 2 \mathrm{million}\).
All I can say is we are actively interacting with the NRC Staff. Points of vien are being expressed. Maybe we shouldn't do this in small facilities. Maybe we snould instead analyze mure closely the BNR transients we had already.
```

```
    I am giving you very current thinkging. Ne hope to
```

 I am giving you very current thinkging. Ne hope to
 come up with the hizhest probability associated with these,
    ```
    come up with the hizhest probability associated with these,
```

Thds I

```
and do an ordering, and we would be in a position to report
    to you where we stand on that.
    In terms of budget cycle requesting supplemental
        budgets and so on, we feel we need a 3WR type facility to
        start looking at some of these type of transients. ,that I
        would like to do is show you a few color slides and some
        background slides on the Nest Lynn facility of General
        Electric.
        (Slide.)
    In that facility what we are doing is looking at
        what happens in the upper plenum, the upper core plate tie
        structure. Ti,s is iust an overview on that particular
        facility.
            That facility is now in operation, and the
        NRC contract interactions with ooth EPRI and GE have been
        concluded in the past month.
                            This, for example, is the sector bundle that is
        being -- sector simulator bundle being \cdotstilized in the
        West Lynn facility.
        (Slide.)
        I think you are familiar with the assemolies: the
        handling handles, boxes, channels, so on; full scale raid
        use, 30-degree sector.
    OE is, I Delieve, scheduled to conclude their
        BNR-S type tests at the end of July. That data will be made
```

$-k d s \quad 1$
2 3 4 5 6
available to us as part of this triparty rogram. I would guess that would be avallable to us this fall.

(Slide.)
In is is in your package that 1 provided you. It is a program that the core spray distribution testing will continue into fiscal 1980; single heated electrical oundle testing at the San Jose. Ne will continue both -- we come out of here with the BNR-6 testing, and go into BNR-4.

We also have scheduled 360 degree, roughly a third
or half scale diameter tests; the analytical support.
of course, * : program now is projecting into a four year cycle beyond fiscal 1979 with this type of funding distribution.

This particular program, the numbers shown here are NRC costs, and are 40 percent of the estimated operating cost. What we have through these cooperative programs is a reduced budget requirements on the NRC.

Perhaps I stauld stop here on the 3 wh programs. We have a new one. : can come back with supplemental slides and take questions on the GE prozrams.

DR. PLESSET: Let's do that. Maybe there will be no questions.

MR. SERKIZ: , ve could get back on schedule.

3C3.C. 12
'.ts
$e-7 \quad 4$

5

6

7

8 9

10

DR. PLESSET: Hopefully.
MR. SERKIZ: Okay.

rds ।
that would be run out in this time frame.
The level of funding associated with this program is as shown here. Again the cost to NRC is 42 percent.

PROF. CATTON: I have seen Flecht, ILTA, SEMISCALE and the reflood tests. I am having trouble trying to figure out where they fit into the big picture, and what the contribution of each is.

I get the 'ealing in looking at what you are presenting -- for example under Flecht, systems effects test, scaled 2-100p PHR utilizing components and so forth, what is being done at these other facilities that couldn't all be done at SEMISCALE, for example? Why do you have to have the Fiecht system as well as the SEMISCALE?

Can some of the ILTA -- could they, for example. be folded into SEAISCALE? Could the Oak Ridge program be folded into SEMISCALE? Would this yeld a more efficient system or more effective use of the dollars?

MR. SERKIZ: Many questions. Let me try to come back through them.

First, SEAISCALE is an integral systems facility that allows you to 30 from high pressure to low pressure through a LOCA transient. It has its current limitations; pernaps not noticeable being the core region dimensionality effects and limited bundle representation, for lack of a better term.

With respect to the Oak Ridge program, as I indicated on the earlier slide, that is essential concluded over the next several years.

Bundle 3 was put there so we could get LOCA information so we could determine two phase flow mixture distribution during these transients and in effect conclude the type of data base that was needed to come up with the heat transfer correlations and put that question to oed.

It is a highly instrumented bundle. We are not concentrating on time CHF. That was beat to death the last few years. That is a PWR type bundle; TLTA is a BWR type bundle.

Can I fold SEMISCALE and TLTA into one? No. BNR and PWR are different animals. I have two facilities. One I alee have on line, principally designed to be a PWR. I have - BWR facility which I am saying needs upgrading so we have a parallel channel effect, the correct height scaling on le: pumps, more representative geometry, et cetera.

In terms of cost effectiveness to the government. the cooperative program cost the government out of a total of some 38 percent.

If : tried to cram everything into one facility,
I start driving myself to something I recall trying to defend here a year a yo called a multipurpose test facility. : am trying to deal with facilities on line with minimum cost
-ids

```
investment to investigate the two principal type reactors.
    The Flecht Seaset program was designed prior to
TMI to handle reflood, handle -- primarily look at flow
blockage effects. This was the reason for the 21 rod
bundle.
This was done in close coordination with the NRR people. We wanted to look at local flow blockege effects. If you are modeling the thermal hydraulics, these bundles are instrumented.
It is a program built upon a building block of separate effects, and taking the same equipment available in the program and tying it together into a low pressure system effects facility.
I can give you an example. Ne already used, for example -- we got some data -- I will come back to this slide for discussion purposes.
(SIide.)
Ne have, for example, just move testing around, and we have run steam cooling tests, and preliminary analysis shows better cooling than the current model.
Loren, did you tell me 50 percent enhancement?
MR. THOMP SON: Yes.
M?. SERKIZ: Ne have a high temoerature capability.
    : stress this point with Flecnt Seaset. I am jumpin# between
    facilitiss here. , have different facilities and are trying
```

kids 1 to do the most in each.

Flecht Seaset has a testing capability of up to 2300 degrees Fahrenheit. To test reflood conditions - this is even more important when you look at perhaps starved flow or boil-ott, where you are looking for data in a region where fuel clad damage can start occurring.

We have simulated fuel pin designed or bundles with a testing capability up to 2300 degrees Fahrenheit.

A question came up, why cant we do this in uther facilities? Different facilities cover different aspects. What we are doing here is trying to do the most with existing facilities, include our LOCA related research, certainly concentrating more on the small LOCA than the large LOCA, but certainly conclude those program particular aspects. and then redirect programs either in as is condition -in other words, use the facility or something else, like we could potentially use the oak Ridge bundle for boil-off and natural circulation tests in the bundle.

Okay? ie haven't thought that far. We haven't

```
planned that. I think it would cluzter up this type of
```

meeting to give you four examples and get into that type of
discussion.
Let me stop and go sack to the question.
MR. MURLEY: Are you close to the end? de are way
behind.

```
MR. SERKIZ: I would like to. I don't know if I answered your question. These facilities have their own capabilities as they stand.
PROF. CAITON: I gless a better answer would have been a single viewgraph showing the flow of information from the facilities to your goal.
I will have to read the transcript. I got lost in what you were saying. It was too much too fast.
I want to ask one more thing. We had a report a year ago about views on the blowdown heat transfer. and what was felt to be neoded to be done in that area.
Paul didn't feel much more needed to be done. There were concerns aoout electrical hecuing. I see sontinued use of facilities with electric heating and expansion of facilities with electric heating.
Just a single comment on that will end it.
4R. SERKIZ: if the question is being raised in terms of can an electrical heater simulate the thermal hydraulic boundary conditions or simulate the fuel bundle, all of these electrical heaters have been designed keeping that in mind.
PROF. CAITON: I have not seen that. There were questions raised about things like gas conductance and the lack of it, particular having to do with retlood. WR. SERKIZ: Nith respect to reflood?
```

PROF. CATTON: In particular with respect t, retlood, quenching.

MR. SERKIZ: In the TLTA upgrade this is a key design question. It will be factored into the heater design plus the programming of power to the heater to try to get the simulation.

PROF. CATION: I understood there was a study in this area going on.

MR. SERKIZ: if you can give me a specific, i can try to answer the question. I would draw your attention to the las three Oak Ridge quarterlies and several topical. I would be happy to send them to you.

Un the bundle 3 , considerable care was given to avoid perturbances of thermocouple installation, programming of the heater power, et cetera.

D?. PLESSET: Let me comment about now upgrading TLTA, which might have been concluded from Ivan's remark.

He didn't mean it, I am sure. Outside NRC there

```
Is a lot of comment about the disproportionate amount of
```

 money going into Bur problems as compared to PNR problems.
 I don't know if you heard this.
 MR. SERKIZ: t heard it expressed different ways,
 yes.
 (Laughter.)
DR. PLESSET: But the Idea is that. You are aware

$k d s$
A BWR refloods with cool, clean water. Therefore, It is an absolute requirements that the rods get in a gwR type reactor before starting the reflood process. There is no mechanism which will jeopardize insertion of those rods, one postulates, but there are.
Noticeable among then is the stubborn aspects of the designers to continue to put the drive control insert and exhaust tubes in direct line of the muzzle of the blast from LUCAs inside the dry well.
This brings an interface problem up wherein one must argue whether or not you are going to get the rods in, having suffered damage in the rats nest of tubes immediately adjacent to LUCA effects.
I am not sure but what there isn't a mechanism which will preclude gettir.y some of the rods in. if not many, for the reason that you closed or damaged this tube set.
I wont go into detail beyond that, but it was dismissed so far by superficial handwaving type arguments which done hold today.
VR. SERKIZ: Let me make one comment on one of your early comments, the nuclear feedback effects which are very prevalent in the BNR.
I accept your point about looking more closely at the 3 NR ATHS situation. This is unanticipated. LOCA is the point I was trying to make is one of the significant
points of disagreement now, is should we invest in a further extension of a facility to study these type of transients where we would have extreme difficulty modeling these nuclear feedback effects with electrically heated bundles? MR. ESERSOLE: I am thinking about it more crudely. Can you asses without going that far to the point of acknowledging or dismissing the potential for intercepting rod insertion in BWR?

MR. SERKIZ: i don't know; but I will bring that point back to the people I deal with.

MR. ESERSOLE: Okay.
PROF. CATTON: I would like to finish up the comment about electrical rods.

There has been some special work comparing Flecht heater rods with those filled with simulated fuel. There are differences between the two. The repeated use of Flecht gives you highly oxidized pins, which changes some of the re11ood characteristics.

- Where is all this leading us to? What meaning do the Flecht results have? How much more of that data should we collect? I will leave it at that. DR. PLESSET: I think 1 would make one last comment before you go on to the next topic. Ne are running behind. I want to emphasize jessie Ebersole's point, which is really a hycromechanical question.
308.08 .11

MR. SERKIZ: I will feed that back to people like Warren Winners and the people at GE.

DR. PLESSET: This is important. It was discussed et $^{+}$several reviews of 3 WR plants, this kind of question.

MR. SERKIZ: I will bring the massage back.
I would like to take a break for myself and let Gary Bennett present the 2D/3D program, and then we can see how the time situation is.

I will cover model D and the technical support.
Perhaps covering the model D, since there was interest raised here, it might be appropriate to go through it.

DR. PLESSET: To help us, we might leave out the discussion of small scale ECC bypass. Just ask Tom to assign a priority to it.

4 I intend to skip over a number of the viewgraphs in the 5

MR. BENNETT: The next part of the presentation is a discussion of the refill and reflood program.
in the interest of time I thought I could mention handout.
(slide.)
The 2J/3D program is an interational cooperative program with the Japanese and Federal Republic of Germany. It was set up to cover such phenomena as steam binding which might occur in a pressurized water reaction given a LUCA, flow distribution effects within the core, flow hydrodynamics both in the downcomer and upper plenum, and we are now looking into questions such as core uncover and national circulation.

I would like ot briefly describe the facilities involved in the 2D/3D program.
(Slide.)
In Germany we have the PKL facility. This is not formally a part of the 2D/3D program. However, because we have been testing out instrumentation, we are getting a lot of information out of it. That is a full heignt facility with 3-1000 capability.

Now the facility which is being built in Germany as part of the formal 2J/3D agreement is the upper olenum test facility which is a full-scale vessel and will be a downcomer. In Japan we have the cylindrical test facility which is 2000 electrical rods, full height core, With a system effects .-. It has four loops. Also in Japan we have the slab core test facility. 2000 rods. Full height. The interesting thing is that ite tull radius. A full radial slice. The U.S. contribution includes development of advanced instrumentation for these ianilities and analytical work at Los Alamos using TRAC.

Through the program we hope to be able to develop information and understanding modeling large breaks, small breaks, natural circulation and core uncover. Also indicated ECC penetration, steam binding and flow blockage. (Slide.)

The accomplishment so far in fiscal year 1979 includes completion of construction of the cylindrical core test facility in Japan and a number of shakedown tests have already been run on the cylindrical test facility.

The preliminary design of the slab core test
facility had been completed. Ne hope to nave that operational
in early 1981.
The air water loop tests in Idaho have been
comoleted on the instruments which they are provided. He
have already completed installation of a number of the
308.09 .3
or 1 instruments in the cylindrical core test facility and PKL. TRAC calculations have been run on PWs as part of the program and to identify test facility design. (Slide.)

Dr. Plesset mentined in the opening the effect of the different programs on licensing. I indicated on this viewgraph some of the effects we think the 30 program will address the fteam binding effect and its influence or temperature.

Downcover behavior and effectiveness of different ECC systems. We intend to look at small breaks and natural circulation discussed in the various facilities. Because these are larger scale than what we have felt within some areas, this will help us in the computer code checkout and extrapolation to a full sized pressurized water

```
reactor.
```

```
            (91Ide.)
            We have been looking into what we can do to
    address questions which have come out of TMI. Dr. Iong
    is going to be in Germany the end of the month-long with
    Mr. Farmer, program manager, to discuss with the Germans
    and Japanese how we might aporopriately nove the direction
    of these prograns to address other concerns such as smal1
    oreak tests, natural circulation tests, block bundle tests
    and core uncover tests.
```

We are working on this now to explore how we can incorporate this into the existing schedule and jet additional information at a larger scale.
(Slide.)
The budget is broken out here. I ? ${ }^{\text {a }}$? in the handout additional information on the work scope of the principal laboratories. The good news is our budget is going down in 1981. The 1980 budget currentlyunder Congressional review is $\$ 15.8 \mathrm{million}$. In 1981 it goes down to 512 million . Ne are not involved in the 1980 supplemental for the 20/3D program. The labs developed, Idaho is developing pieces for facilities. Oak Ridge is developing =advanced instrumentation to get thickness measurements, and so forth. Los Alamos is providing the analytical support to tie the various facilities together and eventually scale them to larze-size plants.

In addition they are providing stereo lenses, basically periscopes, for looking at these fields. Ne have a number of support groups helping is who are involved in preparation of specs and general technical support.

So the program peaks in 1980 . The budget currently being considered by Congress starts down beginning in 1981.

```
                        I think from the scnedule charts whicn you have
```

you can see the technical reason for it.

```
(Slide.)
    (Slide.)
    Most of the activity starts in this period. Because
    a large part of our instrumentation has to be delivered in
    1975.1 }280\mathrm{ periond, that is when we expect our peak fundin7.
    and then we wil1 start ramping down. A lot of the
    instrumentation will be in place.
    As we move out to 1982 to 1934, it w111 be+
    preliminarily analytical support on the part of the U.S.
    The cylindrical core test facility is currently
    undergoing shakedown tests and the slap core will undergo
    shakedown tests in 1981. This indicates th: need the
    laps have for providing support to the Japanese program.
    (Slide.)
    Similarly, you can see the Serma.i program. PKL
    is not formally a part of the 2D/3D program.
    However we are using it to test out our
    instrumentation. We are-getting information from PKL..
    The p:incipal German facility here. Here is
our schedule. Most of the instrumentation we need to be
    delivered in 1981.
    Now the nandout has work scopes for Idano and
    Oak Ridge and Los Alamos. I have viewgraphs on those.
    if you want to discuss them.
    But that in a very orief nutshell is the 20/3D
    progrem, and I am happy to report that we are on schedule.
```

The Japanese and Germans are on schedule. The U.S. program is on schedule.

DR. PLESSET: Thanks very much. That is on schedule. Ne aren't. Let's hava brief questions on the program.

MR. CATTON: Could you refer me to a document somewhere that would give the detalls of these verious programs? What do you expect to get out of the Japanese program, what measurements and runs will be made?

Then you can avcid using up the titg of the Subcommittee.

MR. BENNETT: We have several documents. Ne have a paper presented in Japan by Dr. Soo which describes instrumentation. We have a baseline document. I can get you coples of those.

MR. CATION: I am particularly interested in the physical processes we will know about after the test is run.

MR. BENNEIT: He will send you copies.
D2. PLESSET: Let me make one comment here.
There has peen a lot of emphasis put on instrumentation which will be adapted to operating lizht water reactors, particularly as a result of TMI-2. You have a large instrumentation development program in addition to the instruments we think of right off, level indicators and
maybe improved pressure tempersture instruments, and instrumentation to follow the course of an eccident.

Now could your progran make contributions as to those problems? I am speaking now of things we can put into present type reactors, as well as new ones.

So there is a special requirement here that is quite different from the instruments you had developed for a research program. These things have to have life, requirements anc reliability requirements. Quite different from research instruments. It would be very helpful in this large program if some work could oe done in that area.

MR. PENETT: We do tilink that there will ve some spin-otf both : om this program and others that will be helpful.

DR. PLESSET: I want more than spin-oft. : want a real hiard effort. In some sense I would be less interested in some of the instruments you developed for this program than I an in the instruments that might come out of it for LinRs in the near future.

WR. SENFETT: Dr. Se :alks to various people about the possibility of using some of the se instruments. One question is always: can we get the atilities to use some of the things tht come out of these pregrams?

DR. PLESSZT: There are other ways of getting the

```
utilities to use them, if they are really good instruments.
    DR. S(O): About instrumentation, we do have -- up to
    now the ones we are having are for the research type. I
    would point out --
    DR PLESSEI: We aren't criticizing.
    DR. S(O): We fully appreciate that point. Research
        type is not always applicable to the power plant. But there
        are some external ones that we used, unobtrusive ones, that
        could be applied. We are going through ver' detailed reviews
        and we have submitted a memo to Dr. Tong on our
        recommendations.
            In Idaho they have a so-called commercial plan
        allication and that is second run. In July when we have all
        instrumentatopms going through the third total review, we will
        have another halfday review on wnich instrumentation could _
        be applied for the power plant and which condition. Ne
        are going through this review.
            Among all the ones we have, there are quite a
        few externally applied, such as jamma beam and so forth,
        we can apply to the power plant too.
            MR. EBERSOLE: Consider the specific differences
        between the B&N design and Nestinghouse. I think we will
        find we will be able to reobtain solid liquid systems on
        B&AN type design, because of the efficiency of the yenting
        process.
```

Un the other hand, we won't find that capability on the inverted U tube stean zenerators and may well be approaching an admission after violent arguments about it, that we may have to face permanent loss of netural circulation on these types of steam generators.

All is not lost if that is so, if we can cool by evaporative reflux condensation in the steam generators.

Do you have such a program accommodating the use of borated water in that process?

MR. BENNETI: As a matter of fact, we have been talking about the possibility of the reflux boiler.

Dr. Tong has been talking about it in-house. We plan to discuss it with the Germans and Japanese.

MR. EBERSOLE: I didn't see it.
MR. BENNETT: I skioped over that quickly.
MR. SULLIVAN: Gar, could you draw a scenario between the FLECHT-SET program and this 30 program in terms of the REFLOOD? We see lot of similar type of work being done for both.

MR. BENNETI: The question there is more one of
scale. The $3 D$ program allows us to 1 ook at additional multidimensional effects. FLECHT allows us to focus on intrabundle estects. Both are important.

Ne need to address both. The programs will be complementary. The people running then are down the hall
from each other.
Westinghouse has been involved in reviewing the direction we are going in the $3 D$ program. I think the two compliment each other in terms of scale.

MR. CATION: What kind of effects do you
expect to see in the Japanese tests?
MR. ZFNNETT: It have been postulated you may have flow going one direction vertically and down elsewhere. Chimney effect. Oh, you are talking about recirculation?

MR. CATION: No. I asked a question.
MR. BENNET: You are talking about the original
scope with the REFLOD.
MR. CATION: what kind of 3-dimensional effects do you expect to see?

MR. BENNETT: There may be cross flow. There may be a chimney effect. Flows going up in one location of the core and coming down somewhere else.

MR. CATION: Water up, water down. Recirculation of the water below the quench rod, is that what you are saying?

MR. 3ミNNETT: It may be.
MR. CATMOA: Is that what the chimney effect is?
4R. 3ENNET: No. fou have a flow one way and another potential flow pattern elsewhere. Or you could have flow, you know --

WR. CATTON: Mould recirculation below the
quench -- I thought you meant the water would geyser up In the middle and there would be steam on both sides of it. That is not what you mean?

MR. BENNETT: No. Stan, you look like you were about to say something.

```
    MR. FAB: Stan Fabic. The way I understand
```

 chimney effect --
 OR. PLESSET: The mike isn't on.
 MR. FAE: Okay. Ne nay have a situation where we
 are generating a lot of steam in the central part where we
 have higher peaking factors and may be getting water coming
 down from the unper plenum around the seriphery.
 So you have a fall back around the periphery.
 We have steam going up in the hot chamnels. That is one
 form of chimney effect. And we have observed even in
 one-dimensional test facilities situations where flow is
 coning from above while the steam is coming from below
 in the same channel above the quench rod.
 DR. PLESSET: Any other comment? It is a big program and I would think you might have some opinions with regard to -- yes?

MR. ZUDANS: I like to come back to the question Ivan asked before. I had a chance to think about it. Does RSR have some surmary sheet nat shows all the information that you looking to obtain from different programs and then indicating from which of your facilities such information is expected to come?

In other words, an overview picture. We have been asking the questions all the time. We don't quite know what they expect to get from one precisely. There could be duplication. That was a good question.

I would like to see such information on a large sheet or maybe two sheets.

DR. PLESSET: You might get a papyrus role.
[Laughter.]
PROF. CATTON: I would even buy three, but three inches of paper is a bit too much.

MR. BENNETT: Over the years we have put together different charts.

For example, there is one which Dr. Tong shows quite often which shows scale and different phenomena plotted against it.

MR. ZUDANS: That would put us back in shape to
understand what we are talking about.
DR. PLESSET: Thank you.
Al, we are back to you.
MR. BENNETT: One thing I might mention. Since we are not covering technical support, I asked Andy Bates to pass out the research support branch of the technical support activity and that will be coming around for you to look at.

DR. PLESSET: Fine.
MR. SERKIZ: What I would like to do is quickly go through two categories.
[Slide.]
One called Model D.. That was primarily because the question was raised where do we address basic phenomena. I will give you examples. We have a funding subcategory in separate effects research branch we call Model D.

In those particular programs we do have research going on at universities and at some national labs using people that have developed an expertise and are acknowledged to have good credentials.

> We use their data to develop basic correlations or basic models.
[Slide.]
The programs we currently have underway in fiscal 1979 -- these we had for several years-- I think many of the
persons sitting around the table are familiar with them -we have at ANL transient heat transfer modeling. Under ob Hendry and some of his personnel.

At Brookhaven we have Owen Jones and his people looking at nonequilibrium phase change.

We utilize a variety of staff ar INEL to work in developing and benchmarking the heat transfer correlations and verification.

John Chen at Lehigh, looking at nonequilibrium heat transfer.

Reter Griffith working with us in reflood thermal hydraulics.

Prof. Bancroft at Northwest University looking at condensation phenomena to come up with right models to model condensation rates.

Dick Haley doing LWR safety research as a category we carry.

Channel instabilities. Basic research on two-phase flow.

We have Dr. Lee at Stony Brook University in Long Island looking at droplet entrainment between what would be fuel rod type assemblies.

We had work going on at the University of
Washington to come up an understanding of two-phase flow regimes.

The point I would make here, what we are doing here is many of these studies have been basic studies that have concentrated on the large LOCA.

All these programs are currently being discussed with the principal versus an NR staff and others to see where we can redirect the level of expertise and thinking into nonlarge LOCA.
[Slide.]
Some examples of this, of the specific activities that are carried out.

At MIT under Peter Griffith, he more recently is looking at natural circulation between hot and cold regions in a bundle using 2×6 rod sections. Studying how liquid moves between them.

He looked at steam generator modeling during reflood, using a $4 U$ tube steam generator. Studying filow regimes as a function of air and liquid velocities.

He did lots of work in gravity feed reflood oscillations.
[slide.]
Dick Haley at RPI has been working on these areas. Two-phase flow instrumentation looking at vold fraction, distribution within budnles, phase separation and distribution, parallel charnel effects.

He completed a loop and is testing to look at steam 278064
binding in BWR type fuel assembly geometries. Has a parametric test series planned.
[slide.]
At Lehigh we have John Chen. John looked at direct measurement in nonequality. Improved correlations of post-CHF heat transfer. Worked on development of film probes for measurement of liquid film thickness.

Dr. Lee at Stoneybrook has been studying droplet flow, work tied in with the $2 D / 3 D$ tie plate geometry. Looking at effect of grid spacers on low and blockages on droplet distributions.
[Slide.]
Hendry at ANL is coming up with a best estimate. model for transient CHF. Their report is scheduled the end of this fiscal year.

Also coming up with subchannel analysis for a two fluid model of transient two-phase flow.

Prof. Bancroft at Northwest University is doing parametric studies looking at condensation in horizontal and vertical steam water flow type geometries

Also getting into looking at plenum pool hold-up experiments. He would like to do work with holography to be able to discern the nature and distribution of twophase flow type regimes.

The point I am making here is we utilize these
types of personnel that have the qualifications to look at the fundamentals.

Our intent would be to continue utilizing them, but perhaps redirecting them to 100 k at problems more clearly identified now than they might have been several years ago.

We have another category called technical support. [slide.]

This again derives exactly from that, it provided technical support to other programs. Some of the advanced instrumentation, the film probes being used, for example, in the 2D/3D program three years ago were looked at under small effort in different places under technical support.

In that way they also assisted the model D work.
The people we have working in those areas, or labs we have working there are in the handout I provided.
[Slide.]
We have, for example, at ORNL always maintained an advance two-phase instrumentation effort. We utilized under technical support, support on other programs, staff at ANL are able to utilize libraries, et cetera, in heat transfer studies and coordination.

We carry under technical support the INEL data bank where we keap a central repository on test data from SEMISCALE, LOFT, all of the programs ultimately ave design ? to put the
ar 7
data in a data bank here.
At Oak Ridge they have a measured data repository keyed specifically to the blowdown heat transfer program. These two are interrelated.

Sandia has worked about a year and a half and will in another year conclude their work on a pulsed neutron generator which is a tool in conjunction with the ANL work, Paul Keeler at Argonne on two-phase flow tracers will be able to come up with a system where we can pulse a two-phase flow mixture and use it for calibration of instrumentation.

I believe the plans are to have it available for the LOFT instrumentation in about a year.

For example, Sandia, this particular program has met its goals of coming up with being able to deliver the required pulsing level and the frequency. This next fiscal year, fiscal 1980, will have several units put together, one of which would go out to the LOFT project. Our intent is to maintain about the same level of effort in technical support and in Model D.
[sLide.]
Some examples which are in the handout, I will simply key on them. You can read them at your convenience.

I mentioned earlier we have the development of pulsed neutron generators at s. Mia. We met our goals in May. We are expecting delivery of the units for use by people 278067
with two-phase flow facilities in June of 1980.
I would like to give you an insight into our thinking as to where we would redirect some effort in these areas.
[Slide.]
These particular slides are intended to convey that message. Currently ANL has been looking at transition and film bciling, heat transfer, oscillations on refiood. We feel there is a need to reorient some of this activity to pull together z data base for natural zonvection and natural circulatic: heat transfer with steam and in two-phase flow Eixtures.

Jones and his peoplo have been looking at flashing
we would postpone the post-CHF work.
The data bank is in a preliminary state.
Can we use the in-place equipment to 100 k at setting up a direct data link between NRC and power plants? We are looking at that. We are in a very preliminary phase there. I have run through those rather quickly.

Our current level of effort, as I indicated early on in the slide -- let me come back to those areas.
[Slice.]
I would anticipate we would have to maintain a level of effort on this order over the next two-three years.

Questions?
MR. EBERSOLE: One question:
In this small break category, we are in search of heat sinks primarily to cope with the problem. The heat sinks are two in conext: the break itself and transfer to the secondary side.

Are we in need of adaitional knowledge about the mass volume and energy transport characteristics of orifices such as broken down relief valves or a better understanding about the relationship between mass, volume, and stu transport through these orifices?

Furthermore, are we in need of new knowledge on the performance of boilers under reduced pressure with much smalle transfer surfaces than they woula ngmali, 278 have?
ar 10

MR. SERRIZ: With respect to your first two questions, that is a need for more or better information on the flow characteristics or capability to predict them through relief valves, the answer is yes.

Owen Jones, for example, has been doing work on nonequilibrium flow in converging, diverging sections.

Owen was in about a month ago and we specifically said, okay, you are coming up with promising results on being able to model that. What if you extended that work to the type of geometries representative through the internal zone relief valves?

This, to me, represents a natural extension of something that is already underway. Not primarily from the viewpoint to go out and test valves, but to utilize Jones and his people where they are meeting with success in being able to tie nonequilibrium two-phase flow models with the data they are getting -- a simple experiment of converging and diverging nozzles.

The information has been coming out in quarterlies. Look at what the internals of a relief valve look like. How can we design simple analytical approaches and simple models to get that uncertainty down?

Yes, we need more information there. With respect to experiments for that type of relief valve, that's another ball game.
ar ll

You can always test these valves and so on and go back to a topsy-turry world arguing is this the way to approach it?

With respect to the PWRs, I don't know if people are looking at that' specific question that closely. I would take that message back.

PROF. CATTON: In redirecting particularly the university programs, are you having any problem with the sole sourcing of that work? Or do you have to go for bid?

MR. SERKIZ: It is our intent wherever possible to go out on competitive bid. The mandates have been laid on us from a variety of sectors. I don't feel that the universities are at all inhibited or prohibited from competing competitively.

Our plans are to, within this next calendar year, to focus up our research needs in terms of the model D or the fundamentals and go out on RFP for it.

DR. PLESSET: How would you evaluate Professor A from Professor B ?
[Laughter.]
This is an interesting point.
MR. SERKIz: It would be based on credentials and the program he submits.
[Laughter.]
MR. ZUDANS: All of your current programs really go
to people, not to institutions.
DR. PLESSET: There is a legal problem he is concerned with. In getting these contracts placed.

MR. SERKIZ: I think if we have a work scope that is well defined and we know what our end objectives are, there are maybe three elements one considers:

One certainly are the personnel proposed, which are an important factor.

The second is what comes along with it in some cases on available facility and support.

The third being demonstration of some sort on being able to meet your commitments.
I. think that is a fairly straightforward --

DR. PLESSET: That might limit you to people with whom you have already been working and would make it more difficult for new blood to get into it.

MR. SERKIZ: No, because the RFP would be an open REP.

DR. PLESSET: How would you get a demonstration of being able to meet commitments that are required if you had no previous experience with that university?

MR. SERKIZ: What normally happens with offerers that are bidding is they provide examples of performance on related programs. That is one way. That is a factor that can be used.

$$
278072
$$

We are not trying to imit new blood. We are encouraging new blood by that process, and new thinking. DR. PLESSET: I see your difficulty and hear the words.

PROF. THEOFANOUS: I see abrupt changes here in direction of many of those programs, and wonder whether you can tell us the implication. Either you were doing things before that weren't valuable and, therefore, you quit them; or you feel that you have to go with the fashion of the times.

Tell us more about this. What is the implication?
MR. SERKIZ: The implication is the obvious one that was hammered around here as well as discussions related to TMI. All of a sudden we are that much smarter because it happened.

The redirection is twofold, or multifold. In many instances here the personnel we have been utilizing have come in and said we shouldn't be working on this, but we should be working here.

PROF. THEOFANOUS: What happens to the other things they were working on?

MR. SERIKIZ: we are concluding --
PROF. THEOFANOUS: So they weren't needed in the first place.

I am concerned because obviously if there was a program in place, a lot of thought went into that. Let me
take an example here.
The nonequilibrium change studies. I know these people have been working on improvement of the probes and parametric studies for a number of years. Investment went into that. I am sure you must have given a lot of thought to investing this money.

Suddenly I wonder what happens to this.
MR. SERKIZ: It is not turned off.
PROF. THEOFANOUS: That is what it says.
MR. SERKIZ: It was scheduled for completion this fiscal year, mid to three-quarters through the next fiscal year. We want owen and his people to conclude that work and report on it. Ht has both model D work in it as well as the Carson with the experimental data.

We want that concluded and reported. That is a two and a half to three year effort. He was running into a natural conclusion in fiscal 1980, anyway.

PROF. THEOFANOUS: I haven't seen results yet. It is hard to believe they will conclude without results. MR. SERKIZ: I will send you the quarterly reports.

PROF. THEOFANOUS: I receive them, but haven't seen any results from that yet. Up until a few months ago they were developing the optical probe.

MR. S OO: The first batch came out.
MR. SERKIZ: I will send you the last two

| ar15 | 375 |
| :---: | :---: |
| 1 | quarterly reports. |
| 2 | PROF. THEOFANOUS: I have them. Thank you. I have |
| 3 | the reports already. |
| 4 | PROF. CATTON: I hope a topical is coming out on |
| 5 | that. |
| 6 | MR. SOO: Yes, it is. |
| 7 | MR. SERKI2: A topical will come out covering its |
| 8 | own program. |
| 9 | PROF. CATTON: The quarterly reports were a bit |
| 10 | terse. |
| 11 | MR. SERKIZ: Some contractors write terse reports |
| 12 | and others write verbose reports. |
| 13 | PROF. CATTON: Some write none: |
| 14 | MR. SERKIZ: Yes, and I don't care to discuss that |
| 15 | here. |
| 16 | [Laughter.] |
| 17 | DR. PLESSET: Thank you all. You helped us get |
| 18 | through this. We do have another topic which I think every- |
| 19 | body would appreciate a very brief presentation. |
| e10 20 | |
| 21 | |
| 22 | |
| 23 | |
| 24 | |
| ice-Federai Reporters, inc. | |
| 25 | |
| | 278075 |

MR. MC PHERSON: I am Don McPherson.
I wanted to answer a question raised earlier about the application of instrumentation to commercial plants.

We did have such a meeting last week. We called together representatives of all five vendors at EPRI together with asking EPRI to invite utilities so that we might discuss the possible implication of instrumentation we have developed in the LOFT program and other programs related to ECCS work at INEL.

- During that meeting we asked the vendors and utilities to discuss those instruments which they had heard about during a week colloquium on instrumentation which they felt might be useful to their operations and off-normal operations.

> If I may summarize the response was generally somewhat pessimistic from my point of view. The vendors tended to find a number of reasons why it would not be very useful to put any of our instruments into their plants principally because of the life testing that would be necessary for these instruments.
In fact, the IOFT instrumentation meets pretty
well the same specifications in most cases as commercial plants do.
Consequently, there really is not any significant
problem there. Following the meeting we had a more
optimistic reply which I guess is typical of such meetings where utilities and vendors are asked to speak openly and, in fact, there was a suggestion that they would be interested in seeing some of our instruments on their plants.

We suggested that we might be able to offer such instruments to fund the application of those instruments to their plants for checking out the usefulness of them.

I just mention that in passing. I found that especially interesting and pleasant. Okay?
[Slide:]
I will move right along in this presentation because I do want to get to your interest, namely where the funding in 1981 will be applied and especially related to small breaks and off-normal transients.

Very briefly, the achievements to date:
We have completed our power range testing. We issued a research information letter on all non-nuclear tests done in the $\mathrm{I}-1$ series.

We performed the first two nuclear loss-of-coolant experiments in the large break series, one in December and one in May.

On May 31, we performed an isothermal small break loss-of-coolant experiment with the object of providing sufficient data for us to plan small break test series.

This data was locked up and is due to be released
tomorrow. The purpose of locking it up was to terminate prediction of that test as a significantly urgent test by our RELAP and TRAC codes.

We are pulling out the central fuel assembly for replacement in preparation for upcoming exper-ments.
[slide.]
This is a good time to break in between the past and future by telling you about new focus that we have arrived at through discussions with the regulatory arm of NRC, together with utilities and vendors..

The focus now is going towards th it of studying system response to off-normal conditions, to natural perturbations such as opening and closing of relief valves or injection -- high pressure injection, for example. And the response to operator intervention such as purposely closing high pressure injection system, for example.

Another area of this focus is small break and transient codes in specific areas as opposed to the entire codes wh:re I think the general feeling expressed here earlier was that our small break and transient codes aren't that bad.

However, in certain areas where we get the system filled with steam or a mixture of steam and noncondensible gases, there certainly are questions about how good our codes are.

$$
\begin{aligned}
& \text { It is those specific areas which we leave it to } \\
& \qquad 278078
\end{aligned}
$$

licensing, our own code people, to point out where we intend to address the focus of our experiments.

We will also study means of recovering from uncontrolled situations, from small breaks whose flows may be larger or smaller than the HPSI flow, for example, and where we might arrive at a quasi-steady state condition where the two flows are equal.

As a byproduct of this new focus, we see the following:

Assessment of conventional process instrumentaltion. We have already begun this work wherein we separate the information the operators learn from conventional process instruments in the LOFT reactor while it is having accident simulation and compare that with the special instrumentation which is much more in depth and gives us much more information.

Another byproduct is that this approach will provide us data for code assessment through the standard problem program. The standard problem has been put under LOFT funding responsibility and we are now more closely related to the standard problem and will be ensurang, I think, in this manner that the data we produce will be used more effectively in evaluation of an assessment of various codes.

Assurance and understanding to the regulatory staff,
to the technical community and by participation of media

This will get to the public, we believe.
As a side comment, there is nothing quite so convincing as to sit in the LOFT control room or visitors' room and observe an experiment going on and see how the predictions compare with the measurements in real time.
[slide.]
This is a messy slide, but I only want to use it as a demonstration that we are considering changing the LOFT nuclear program. The column on the left indicates our current program.

Theo, you will note we have not left out any tests in the program being considered, but we have rearranged them. Specifically those diagonal lines indicate that we are bringing small breaks up to the near future. We are not doing this lately.
We are studying the situation very carefully to ensure we can get meaningful data, that it will be useful for licensing, that we will be able to make the measurements we feel are necessary for our code assessment.

Inserted on the right-hand column you will see some I-6 tests. That is the series intended to study transients. We have always intended to study them. They hadn't been inserted in the current schedule because we knew we could insert them
between major tests. That is the only reason they are not on the left column.

They were always supposed to be there. You will see we have those $L-6$ tests interspersed with the large black dots beside them. We have also added additional small break tests, the L-0001, for example, and the other is down the column with plus signs beside them indicate additional small breaks.

Fiscal years are indicated and you will see it simply tried to indicate to you we have rearranged the test series.
[slide.]
Here is what we expect to achieve in 1980. Three small break loss-of-coolant experiments. That would be this here.

We perform a large break loss-of-coolant experiment, probably the $=-25$ experiment. The same as the past experiment, but with loss of offsite power. We would begin natural circulation testing and we would issue research information letters on the $-2-2$ and $L-2-3$ and small break experiments.

The work on that is half completed now. We expect to have it out September or October.
[slide.]

Achievements in 1930. This is what we would achieve
with the current budget we are discussing.
We would complete the power ascension series, the $I-2$ series we have been doing up until now.

We would continue natural circulation testing, begin off-normal transient testing, and issue research information letters on the entire large break loss-of-coolant experiment series.
[Slide.]
I know you are not especially interested in knowing about how every dollar is spent in LOFT and I will very briefly run ever that with the object of showing you the kinds of 'hings the money goes into, and then address my 1981 budget in terms of the current level of spending to show you incrementals where we go up or down.

This list simply shows you the breakdown that we are using in our 189 s on the LOFT program in 1980 and 1981.

I had this drawn up at INEL. We could have one program for 300 K at Hanford, so for a complete picture for the 1981 budget, you should add $\$ 300,000$ to get $\$ 44.3$ million in the right-hand column.

The following viewgrapts simply give breakdowns of each of these 189 s.
[slide.]
The program is shown here. Let me point out one line on this viewgraph, namely electrical nuclear heater rod
comparison. The question was raised earlier. We have had this going on for one year now.
le object is to study all the data we have fiom electrical rods and nuclear rods, including the codes which are used to relate the two, and come up with this conclusion as to how valid the electrical rods are in simulating nuclear heaters and under what conditions.

Obviously under some conditions are better than under others.

Steady state, forced convection, obviously they will not be that much different, but transients during blowdown reflood, we expect differences and have seen differences.

A large part of this program rumng around $\$ 300,000$ is in support of the IFA-511 ex oriment at Halden.

We are do:ng analysis on that test to support the work going on. It is a test in which we run electrical and nucle r heaters under the same conditions in the reactor and compare the results.

We will use the measured nuclear results to predict how we would operaze the electrical rod if we wanted it to simulate what we saw the nuclear do and zun the elec:riczi under those conditions, and see how it matched up.

Possibly out of this task we will have some conclusions as to improved cesigns of electrical heaters or
possibly some conclusions that under certain conditions one simply can't simulate nuclear heaters with electricals. PROF. CATTON: DO you have any results on this study yet?

MR. MC PHERSON: Our report is due out in two months. There will be the report of the survey of all the electrical heater/nuclear heater comparisons that we have had done, and will include the codes which are used -- a critique on the code used to compare the two.

It will also list the programs underway, the intended way in which the results from those different programs will be used to come to some conclusions.

DR. PLESSET: I want to make a remark. Every minute you speak now takes a minute away from Fabiz. I am sorry, that is the way it is.

PROF. CATTON: Would you see I get a copy of that resort?

MR. MC PHERSON: Yes.
DR. PIESSET: Maybe you can accelerate a bit.
MR. MC PNERSON: I will simply suggest you leaf through the next six pages, because each of them is a breakdown of the vari=as 189 s and is intended to give you a view of the kind of word:: which each 189 incirdes.
Very briefly, the test reactors typically require about 20 million a year to operate without any analysis,
without any fuel.
If you add those extra things we do in LOFT together on top of the $\$ 20$ million, it comes out to a reasonable number. That is about all we can really address here.

278085
308.12 .1
kds \quad 2

Let's try to look at increments.
(slide.)
The 1973 oudget, President's budget, was $\$ 40$ million. On the second column from the left it am going down the intended President's budget. On the right-nand I am trying to give --

DR. PLESSET: President's intended budget.
(Laughter.)
MR. MC PHERSON: Our intention for the President's budget.
(Laughter.)
MR. MC PHERSON: So we compare 40 with 40 here. Obviously the President's budget was 40 . Ve spent 40 .

In 1979 the President's budget was 39.1 , including the DOE funds. I am trying to give you the whole picture as opposed to a split.

Ne were required to purchase a portion of a special spares inventory out of the 1979 bucget, leaving us with a relative budget this year of 73.2 .

Let me go into the special spares a bit more. The total special speres inventory, which is fifferent fron normal spares, came to $\$ 3.7 \mathrm{million}$. It had been intended that the total special spares budget for LoFt be 55.7 million.

Out of the 1980 budjet we have to complete the
purchase of the special spares whicn are already in
kds 1 existence, and we have to increase the special spares inventory to bring it up to the full requirement.

In addition, in going over to NPC full support of LOFT in 1979 - through 1979 and now 1980, we have been required to go on a budget authority acccounting system as opposed to an oglibational budget accounting system. which means when you place an order you have to have as much money as is required to fulfill that order, whether you get the equiprent or services this year or three years from now.

We have been required by $D 0 \equiv$, who runds the progran for us, to 70 on that system.

Now we can't do it this year with the 1980 budget. Ne had to go partially that way with $\$ 2$ million assizned here. You will see later in 1981 we have an additional $\$ 3$ million which gets us on to the BA budget.

If you consider that total of $\$ 5.8 \mathrm{million}$ as an increment over what we have been funding subtracted from the 42.9, you end up with a relative oudjet for comperison of 37.1.

Now the 1980 budget has a supplamental that was referred to. And we included in the LOFT case hartware changes to accelarate small break and transient tests: the k ind of thing there is lower the pump seal.

We also have instrumentation to commercial plants.
I already alluded to that. That is an additional $s 2$ million.
$k d s \quad 1$

2 3

4

```
If you subtract the 2 - and 5.8 from the 44.9, you have
our relative budget of 39.1.
    (Slide.)
    Ne have our minimum and current budgets. We have
    a requested budget and supplemental budget. So I had to
    show these three different budzets from left to right in
    the right-hand column in terms of what would be
    accomplished.
    I laid out in the left column the plans which I
addressed in my second viewgraph. Then according to which
of the budgets we are given, we would accomplish varying
numbers of experiments.
    So you can see with a minimum - and current, which
we are combinnit in the LuFT case - we would accomplish, one,
off normal transient; two, large breaks, which would complete
the large break series.
    One, off normal transient. The additional funds
    of S4 million would give us one additional test off normal
    transient, small break; and the suoplemental would give us
    another small break.
    (Slide.)
    With that in mind, we go on to the 1981, and the
    same method : addressed the 1980 budget. The minimum and
    current request is shown at the top. The new responsiollities
    over what we are doing now would complete the change over to
```


kds $\quad 1$
fault diagnostics. That is the diagnostic computer work
discussed earlier.

The flat $\$ 4$ million added together with the $\$ 5.3$ million, subtracted from the 43.3 gives us a relative budget of 39 .

Finally the supplemental oudget for 1981 would have an additional $\$ 1$ million, and with that $\$ 1$ million over and above what 1 already describe for the current level. we would have two IMI-2 related experiments, small off normal transient and small break.

Ne would continue the instrument application to commercial plants we will have begun in 1980 if we get the supplemental budget, and continue the operation of fault diagnostic work begun in 1980 if we get the supplemental.

That is the whole story. I am pleased to answer questions now.

DR. PLESSET: I think we will have to have a very brief discussion because of time, but we will definitely stop at 12:30.

You mentioned this instrumentecion. I want to be sure my point was clear. I was not thinking of adapting instrumentation developed in the research program $22 / 30$ necessarily at all. I was thinking of a fresh asproach to the instrumentation needs as had been expressed by ACRS and others from a new point of view, not taking an offshoot or
spin-off or anything like that.
I was thinking only of what you were discussing, but using some of the funds in the 2J/3D program -- that's a large instrumentation program.

Now I think Mr. Ejersolo has a comment in this general direction that he passed to Dr. Catton. He had to leave.

PROF. CATTON: Jessie incicated that he had not heard any mention of use of audio type detection devices, not like the second. It seems you could use various microphones; and pattern recognition is a very cheap type of instrumentation as ignoring it.

MR. MICHELSOH: Yes and no. Wnen I first came on LOFT I attempted to have a l lose parts monitor installed, and for a variety of reasons it was not approved and is not on.

I have raised the question again. Ke anticipate -we are discussing that now. Ne may put on a loose parts monitoring system.

In addition, we have just sent out a directive to auggent our instruments in such a manner that we would have a subcooling temperature device which should be in operation on our next experiment.

So while we are going through our small break we would have the operators able to have this degree.

MR. BENNETT: In total programs, the diagnosti .
$k d s$

```
    progran. we have a loose parts monitoring system, and we
    aer looking into that.
    PROF. CATTON: I wasn't referring just to loose
    parts. For example, recognition of the onset of boiling
    with an accoustic monitor.
    MR. MC PHERSON: One of my programs is that of
monitoring the noise on the neutron detectors. We have been
looking at that data and have a man actively involved in it.
    That is one area that comes under your --
    PROF. CAITON: It is not visible in your program.
    MR. MC PHERSON: I am sorry. Hy program is so
    extensive. I would like to speak for three days on it, but
half an hour is all I had.
    MR. LIPINSKI: Westinghouse had done work on
    accoustic monitoring several years back, their own in-house
    work. There are reports on those subjects.
    PROF. CATTON: I don't see it as any part of the
NRC instrumentation development program.
    MR. MC PHERSON: Ne have some within the LOFT
    program.
    PROF. CATMON: What about within the 3D program or
some of the programs under Dr. Soo?
    MR. SON: Ne don't have ongoing, but we do plan
to do more in that area. Ne do plan to look into thet more.
At current, we have not used that, mainly because when we use
```

kds 1 two phase, accoustics are always a problem.

We did look into Westinghouse. There is a problem involved in that.

MR. ZUDANS: I have a very simple question.
You flashed a slide showing considerations in reshuffling the nuclear development program. There was another piece of program discussed before, improved risk assessment, which will study differences in areas and event trees.

How flexible is your considered program to include some cracks they may find in the other program?

MR. MC PHERSON: As flexible as has been indicated. Strong efforts to change it in the past two months. There is thing set in concrete. As long as we have the support of the community, ACRS, NRC, NRR, we ere able to alter that program to the degree LOFT is capable of responding to questions.

PROF. WU: As a follow-up, I fully support this accounstic device. Perhaps in the pioing flow, I am happy to hear from Dr. Soo that we have this direction.

I wonder if it might also be extended to the siting of the flow noise for the transient and the two phase type of situation. It can be very useful.

PROF. CATTON: And fairly cheap, which ithink the commercial people will like.

MR. $S(x)$: We do plan to recommend that be put right by the safety valve and use that to tell whether we have flow or not.

MR. MC PHERSONz Ne are already learning a great deal about noise kind of information. Preliminary indicetions are that our ion chambers and self-powered neutron detectors do see the two phase flow down the downcomer and lot of level in the core.

MR. SHUMWAY: You are shifting to simulating the TMI type transients. One of the most difficult items to calculate on that transient is the water level as it comes down off the top of the core, the froth level, and uncover the core, and the heat transfer coefficients above this froth front which may be in the range of one or two English units. And RELAP now has a minimum of 5 ; but that can be changed, of course.

You have a short core in LOFT and the instrumentation has been arranged for the large breaks. What is being doing to eliminate these problems?

MR. MC PHERSON: Ne find our instrumentatich is
adequate to tell us when we hav a loss O devel, decreased
level over our instruments.
The clad thermocouples and the coolant thermocouples which are scettered through the core as well actually certainly indicate -- and our liquid level detector
308.12 .10
kds $\quad 1$ 2 Is, what condition it is in, what quality it has.
$X X X \quad 6$
e-12 7
8
9
10
. 1
12
13

15
16
17 19

21

25 DR. PLESSET: Thank you.

We will recess for lunch now until 1:30. (Whereupon, at 12:30 p.m. the meeting was recessed to reconvene at 1:30 p.m. this same day.)

1415

DR. PLESSET: I think we can go back into active session.

For this afternoon, Dr. Fabic will lead the discussion for the analysis development branch.

MR. FABIC: Mr. Chairman, I have two handouts. It is clear I have far too much material than I can present in any reasonable length of time.

I thought you may appreciate using it at your leisure later. I don't intend to cover it all.

In fact, I will play it by ear and after the first couple of viewgraphs I will ask you which ones you want to see.

DR. PLESSET: We will try not to have too many interruptions. At each segment of your talk, if you could stop, we could have questions then. That will make it more efficient, I think.

MR. FABIC: I am Stan Fabic, branch chief of Analysis Development, Reactor Safety Research Division. [slide.]

I thought it might be useful to very briefly go through the perspective that made io $b^{\text {n }}$ the way we have been going for the last few years.

In 1972 we had RELAP available a Idaho. There was an advanced code developed at that time. In 1974 a Eaivly significant event happened. The American Physical Society
study was conducted which recommended more physically based codes be developed. That prompted RES to take another view at code development and we decided to keep fixing up the code we had and develop advanced codes that do indeed have better physical bases.

The advanced code development was divided into two parts: detailed advanced codes and fast-running advanced codes.

We started off with development of the THOR code at Brookhaven as the fast-running code. Later on RELAP-5 came along.

In 1978 we had three candidates for fast-running. In December NRC management decided to develop the fast-running track at LASL.

INEL was going to take care o ration to BWR issues.

In March 1979 the first detailed version of TRAC, TRAC-PIA, was released to the public. In the same month we had the TMI-2 accident. The only consequence as f t as our present plans are concerned would be to accelerate the fast-running TRAC development that we already had in the plants.

What we are now hoping for is thai -, the end of this calendar year there will be a first version of a fastrunning TRAC applicable to PWR available.

By that I mean much faster running than RELAP, yet 278097
ać ranced.

[Slide.]

Now we have perceived unhappiness from various sources with number crunchers. Why do you have these large complex codes to look at phenomena like small breaks, TMI, so on.

I am saying that complex codes are unwieldy for extensive mapping of great variety of postulated accidents. Equipment malfunctions, operator actions, and so on.

Here I have two suggested courses of action which are in addition to the current plans to do all I just described a while ago. There are two possibilities.

Maybe we ought to do one or both. One is to take a good look at hybrid. We have been doing that very recently. It does look very feasible to have a good physically based code, one-dimensional, with nonequilibrium thermal hydraulics, plus noncondensible gas, with neutron kinetics thrown together.
In computational space they are faster than real
time. So the operator can do a great number of studies in a very short time, s op the calculation in the middle, change the parameters, see what would the future course be if something happened.

$$
\begin{aligned}
& \text { Operator action, for example, or malfunction. } \\
& \text { Now, the way we have scoped it out is that if }
\end{aligned}
$$

five field equations to be solved and so on, all the necessiry equations are presented by electronic circuits and can 411 be on a card.

So one card per cell, including the function generators for equational state. Each cell has its own. But that hardware has to be built. It would take four years maybe to build it. One year to prove everything works fine within the acceptable errors.

Then it would take a number of years to build the hardware. edicated hardware. That is a drawback.

On the other hand, this is really what NRC needs in the long run.

MR. LIPINSKI: Are you aware of the U.S. Army program to develop an advanced type computer? This goes back four years ago when we were developing the transient code for the Clinch River reactor.

They sent invitations to all government agencies to see if they wanted to participate in the program. Their plan at that time was to have three machines developed in parallel, Electronics Associates, Applied Dynamies and a company called Dentell Corp. in Denver. They were different because they proposed to develop special digital equipment to replace the conventional analog and solid state type equipment.
I think it was ERDA or AEC at that time, but the
lead engineer I dealt with attended one of these meetings and recommended that -- we will call it DOE now -- not participate in the program. They wanted a contribution of $\$ 200,000$ from the agency to become a full participating member.

I don't know that anybody ever contacted NRC to see if they had interest at that time. They had a three-year program. I don't know where it stands because I have not maintained any contact with these people.

MR. FABIC: I think this is useful information. We also had some experience -- Idaho had some experience with Trunk Associates a few years ago in the LOFT project, but I think they went around about it in a different way than we would do.

The hardware is developing at such a hard pace that three years ago the hardwa-e is prehistoric compared to what you have today in the way of combining the effectiveness of digital circuits to switch and direct the flow of information between the elements.

The electronic speed of analog hardware, where you can solve all these equations simultaneously without numerical problems, without instability, with their own function generators, without switching back and forth to -that is the way it used to be done. Not any more.

There is a great potential there on tap and it could be used.

MR. LIPINSKI: A fourth machine we looked at was ILIAC-4. 54 parallel digital processors. Except you have to write your own programs to fit that particular machine. That is another possibility.

That gives you the ability to solve equations in parallel at high speeds.

MR. ZUDANS: Additional comment. I am sure you are familiar with microprocessors and parallel processing. Computations are done --

MR. FABIC: We have done it faster.

MR. ZUDANS: The microprocessors now with circuiti or digital --

MR. FABIC: They are digital processors. I talk about that on this side. Thank you. I will look into this. In parallel, we are looking at the visibility of developing very fast digital routines. I am not even talking codes. Routines. With intelligent shortcuts. Possibly in-house development using microprocessors.

I have an example here. I will leave a copy with you. I have done in my own spare time, I developed a natural circulation routine that solves the damaged core $B W$ natural plant circulation in less than two seconds.

That may not be the most intelligent way to go about it, but this --

DR. PIESSET: Let me ask, would any one of the 278101
ar 7
consultants like a copy? It is fairly thick.
All right. May we make copies?
MR. FABIC: Of course.
DR. RLESSET: Thank you.
MR. FABIC: That is the other part that we are now looking into of possibly doing something in-house where we can go to a lot of analysis in a simplified way, taking shortcuts where we think they are defensible, and looking at the type of accident phenomena that hasn't been looked at before.

Certainly in the case of small break or some of the non-LOCA transients, you can do a lot of things to simplify the analysis. We are aware of those and can take account of them.
[Slide.]
Now I have a lot of material that I could present. [slide.]

I am sure you don't want to hear it all. I would like to leave it to your discretion. If you can tell me which particular topic in this list would you like me to concentrate on.

Here, for example, I will be giving you a list of codes that have been completed. We are always being accused about plans and never achievements. We have done something. I can show you what we have done. I can show you what we are

$$
278 \quad 102
$$

ar 8

developing.
I don't think you are interested in where the bills will come.

I also have two viewgraphs that show which codes we have now in hand to address which generic issues, including TMI, and which codes will have, when we finish our business, to do the same job. That is this part.

Then I have on a few viewgraphs where we are applying these codes. Quite a few viewgrachs on code assessment. This may not be the time to go through it, but I can show you a copy on that.

One viewgraph on statistical studies, conclusion of' some studies that was finished.

One viewgraph on budgets. Perhaps I ought to start with budgets because it is very short.

DR. PLESSET: I am sure we will see that, anyway.
MR. FABIC: After hearing the LOFT budget, this may come as a shock to you. This is small change.
[slide.]
Okay, I broke it down into the following two categories:

Code development and code assessment and applications. I am showing here the S3B levels. Level 1 is the minimum level. The red line shows the supplementary FY ' 80 budget we asked for.
ar 9

Here you see three levels and so on. You can see here the systems code development is going down at a fairly fast pace and will end up hopefully in 1984 with just maintenance activity.

The component codes are quite low, anyway. They will end up at just about the maintenance activity with one code we want to keep maintaining where we are learning about the start of two-phase flow -- we will do the best we can just to keep abreast.

DR. PLESSET: How do you justify your request for th supplement? Briefly.

MR. FABIC: Okay. The primary -- this one here?
DR. PLESSET: Yes.
MR. FABIC: Okay. The primary -- there are two categories. One is acceleration of the fast-running -acceleration of development of the fast-running codes. That is a sizeable part. And then application of codes to analysis that just aren't being done. The thing someone ought to do with codes we have as well as codes that will be finished at the end of this year, we think we can use these advanced codes to look at the operating reactors, the issues that haven't been looked at yet.

I think the code that we will have at the end of the year will be quite fast-running.

We can do quite a few analyses. We should spend the
money in doing these analyses. These are the two main topics. DR. PLESSET: Thank you.

MR. FABIC: Now I also -- yes, what we had to do in the fiscal 1980 budget is consider the case we have no supplement. How would wo reorient current priorities because of TMI?

What we decided in that case is to take quite a lot of funds from the code assessment, independent assessment, and put it on accelerating development of fast-running codes.

What I also wanted to do with the supplement is to remove that -- I think we should strongly continue the code assessment program. We are learning a great deal from that activity. We shouldn't delay and push it aside.

Now the bottom part, you will see again various levels. The code assessment program is gaining in magnitude. It will reach some kind of plateau during 1981 to ' 83 and then we hope in 1985 we wili not only have assessed codes, but we would have done a sufficient number of statistical studies to arrive at what we call marginal safety evaluation. How safe are we with respect to some EM or Appendix K type criteria, for example?
That, I could talk in terms of a large break.

Now we are emphasizing other kinds of accidents and we don't even know what -- well, having done this part, I wonder whether I ought to give you -- you will find that
codes keep changing names all the time. So I will give you a new nomenclature after I show you this generic viewgraph which shows what codes exist today to address what phenomena.
[slide.]

First column shows EM, licensing code. Best estimate and advanced best estimate.

Across the row you see headings large and intermediate break LOCA, PWR, BWR. Small break LOCA, the same. Steam line break only PWR. Anticipated transient without scram, both types of reactors. Other transients -by that I mean none of those -- others that don't fall into this category.

There are quite a few. All right.
The EM codes that we -- green means we are finishing
end of this calendar year. Black means it is available. It can be used already.

BWR we can address some -- do some EM calculation. Not yet verification. That will take time. But they are available.

IRT is a code that 3 rookhaven has bee improving for NRR and it has been designed to look at no LOCA, Mild transients. It can do two-phase two but homogenous equilibrium without momentum equation.

It can't do natural circulation. No phase separation
so you can't look at small breaks, either.
ar 12

RELAP-3B has been in existence in Brookhaven for some time for ATWS calculations. Both.

Again other transients, IRT is a possibility. Best estimate, we have RELAP-4 MOD 6 in operation for some time. MOD 7 coming downstream at the end of the year. We may or may not be able to do some LOCA calculation with BWR with that :.

Small breaks, we think we will be able to do with MOD 7 a variety of small breaks.

Steam line break, IRT, RELAP-4 MOD6.
RETRAN is a code developed for EPRI and we are getting it now under license from EPRI and will make it available at Brookhaven and Idaho. This code can be used for natural circulation studies in addition to some other codes.

Advanced codes, we have issued to public TRAC-P1A. That is a detailed code, slow running. And the fast version of TRAC we hope to have the end \& this calendar year. I call it TRAC-PF1. P for PWR. F for fast.

RAMONA is a code we imported from Norway. Fairly advanced thermal hydraulics. Fast-running. Threョ-dimensional -- you can select -- neturon kinetics coupled. What we are doing with that code is making it applicable to U.S. PWR plants. It is possible -- I put a question mark because we don't have it yet, to put critical flow routine there so we can
even do small breaks for BWRs using that code.
The purpose of this graph is to show we don't
have many holes as to the capability of doing analysis.
I am not claiming we have the best and most economical analysis, no. But we have the analyses technique.

MR. zUDANS: Can any of these codes handle the entire primary and secondary system?

MR. FABIC: These are all systems codes. I think
in the end we will have a different picture. Let me show you the new nomenclature we are trying to get familiar with, ourselves.
by

(Slide.)

This shows something about the time we expect these versions. You see now there is a generic PNR and BNR version of TRAC. P stands for PNR. Each is now divided into detailed, ((low running, 3-dimensional and fast running code. The black stands for the time when the code will be available at the contractor for NRC use but not released to public. Released to public is rec. That is shown in red here.

So the end of this calendar year we expect the the next detailed version of the PNR code called TRAC P D2 will be available to public and the first fast version will be available for NRC use..

The last code in this category is P D.3. Known later on as B D3. That code will have not only thermohydraulics but also neutron kinetics coupled with 3-dimensional neutron kinetics.

If you really want to spend time with bencnmarck classifications, you can with that version. The fast running versions PF2, that is the end of the fast running version line. okay?

That will have the kinetics feedback. The first version will not have that. This one will have neutron kinetics one-dimensional feedback as Hell.

You cannot justify small LolA but also anticipated
bw 1

```
transient without scram.
    Now in the BWR sector here we are showing some
    detailed code avallability, our best guess is today, and
    on the fast running version you will see the name Levy
    in brackets next to the code name. This is based on some
    discussions we had internally.
    If Levy and his associates were involved
    extensively in helping out, we could meet those deadi ines.
    What do we mean by fast running PWR code?
    (Slide.)
    That is the thing we have Goday. Maybe somebody
    would like to comment. Theis a geometrical representation.
    Not one-dimensional. It can be made so by choice of the
    user. But the plena, for example, will be one-dimensional.
    The core, you could have 2-dimensional. You
    could use concentric annuli which do communicate radially.
    The downcomer can be as detailed as it is today
    in the detaled code, or you can have completely
    one-dimensional. You can choose the amount of detail.
    Ne feel if you want to apply his code to large breaks
    i- PNifs, it would make no sense to use one-dimensionel.
    This allows us to go when we want to go when
        we want to or a little bit more detailed.
    MR. CATION: You have the versatility to set the
    dimensionality in various parts independently?
```

MR. FABIC: Right. That is what i was trying to show here. Everything outside the vessel would be one thing. This the vessel.

MR. CATTON: You can select the downcomer --
MR. FABIC: We can have the downcomer 2D. It's only 2D. There is no definition cross trickness. 10 everything else.

KR. ZUDANS: what is the purpose of having downcomer 2 D , when you connect to 1 D ?

MR. FABIC: it doesn't matter once it gets into the downcomer, but the penetration of liquid into the downcomer from the nozzles in the first place does very much depend on how you treat the downcomer. -

MR. ZUDANS: Those are kind of boundary conditions. They will force it to readjust somewhat.

Mr. FAEIC: The boundary conditions from the Lower plena will not be quite accurate but will still affect delivery of water. Isometrical downfall can be handled this way. One of the bijgest problems that licensing people have with the applicants today is how to represent the downcomer with the one-dimensional codes they have. If you use one string or two, now you connect them. What do you get? How physical is it? This way I think we car be as complicated as we can afford and as simple as we want to 29.

MR. ZUDANS: I assume if you want to, you could make a couple of size two-dimensional on the reactor plenum as well.

MR. FABIC: We have detalled codes for that which we can benchmark simple. things against. Let me at this stage show you this graph that talks about final systems codes. When we are through with all the development, we don't want to continue any further.
(511de.)
This is the picture. It shows the fast running TRAF and detailed TRAC and BWR and PWR version with neutron kinetics and without. It will cover the whole spectrum. This bottom note shows what kinetics dimensionality witl be contained in what codes. Shown in green is hybrid as a possibility for very, very fast running classifications which we haven't decided on, but it's a possibilitv. There is another possibility to do much simpler classifications, much simpler adfitional classifications with many shortcuts, which is not shown here at all. Instead of telling you which codes we have ilnisked, which you can read in there, I have now the following options. It's up to your discretion which way: go. I could stion you a couple of viewgraphs on comparisons of TRAC, on how we can go abuut doing the indep ndert assessment. What key indicators we are looking for in a couple of comparisons. Or I could tell
bw 1 you the work we have done on the TMI accident scenario. It's up to you.

DR. PLESSET: What is your preference? We have to cut something out, I think.

MR. FABIC: It's too much material here.
DR. PLESSET: I think we want questions at this point.

MR. SULLIVAN: I know from your chart that at the end of calendar, 30 you will be competed with the PWR versions of TRAC.

MR. FABIC: No.
MR. SULLIVAIN: It says TRAC P3 --
MR. FABIC: Yes. That is the planned version. I am sure you will find this is not quite right from an investment. You want to improve and adjust. We might issue another update of the same code.

MR. SULLIVAN: Then on your slide it showed all the areas which the IRAC would be applied to. Do you think that is optimistic, to say that they would be through with that code to the extent that it would be an ミM?

MR. FABIC: Very good question. I didn't want to bring a viewgraph I had prepared which shows from the beginning of development until today how applications changed, how the names changed and the dates changed, and it keeps going on. I don't think it serves much purpose. In view
ow
of all that and experience, you may be right that we are optimistic. I think in our game we have to be optimistic. MR. SULLIVAN: I see that TRAC is scheduled to be a lot of things. I am not sure it's very realistic to think that roughly a year from now they will be through withe it, the PiN version.

MR. FABIC: I think there will be a PWR version. with neutron kinetics a year from now. Okay? Whether that will be the last word and we ere going to stop right there depends on what we learn from code assessment. It we find we have to improve physics, we will improve it without changing the name of the code. Ne kep doing assessment until the end of 1934, until the last 2D/3D experiments.

MR. ZUDAINS: In these codes do you provide for operator actions?

MR. FABIC: Very good question. No. You will notice that my second. viewgraph in the beginning, i said that a lot of people perceive these codes as number crunchers. You shove something in and eventually get something out, and you have to try to digest what it told you. Okay? You can't stop the classification midstream and change something in the middle and see what the consequences are. You cant change things in the middle. You do restarts, but that is again delays.

MR. ZUDANS: There are other ways. You could preprogram.

MR. FABIC: You can do that too.
MR. ZUDANS: Preprogram options where you can have operator interactions which may result from the other studies they will do in the risk assessment. They might identify combinations at such and such time.

MR. FABIC: This we can do even today. We can tell when the valve will open and when some pumps will stop. We can de that now.

MR. ZUDANS: You want somebody to go stop it.
MR. FABIC: That we don't have. What we are, therefore, planning is - remember that simple route even I talked about? These are ones where we will be on the microcomputer. We can stop the classification any time. change the parameters, see the change in the results as they are going being generate. The same thing you can do more efficiently with the hybrid. Much faster. you get a lot more information.

This is the way we ought to be going.
MR. ZUDANS: You reach a po 't where you can do essentially real tine classifications. Interactive is not unthinkable.

WR. FABIC: I agree.
PROF. THEOFANOUS: You talk about development and
also quite a few graphs on assessment. Does application fall also under your responsibility?

MR. FABIC: Yes.
PROF. THEOFANOUS: I haven't seen anything in that area. Except for the TMI. I don't mean TMI application. I am talking about generic application.

MR. FABRIC: This a viewgraph that shows that we have ongoing code applications. The first is on IMI. I have the whole other sections.
(Slide.)
Then there is this viewgraph on applications. (Slide.)

Anis shows first some IMI work at LASL. But then -- this is sill TMI. There is another application. Okay. Here we go.

We have analytical support to the 2D/3D program. We have to do a lot of design classifications, as well as pretest, posttest predictions, many of these classifications scheduled. Here is the list of those. Ne will be conducting similar analytical support to ti. 20/30 program and that will se done with the BMR version TRAC at INEL. He will see a lot of these here. Looking at the operating reactors issues. Using these codes to 100 k at the transients or accidents that we haven't be analyzing before, but to this detail we can do today.

PROF. THEOFANOUS: I am interested in that part. Can you tell us what you are planning there? what is the extent of the program?

MR. FABIC: I don't have plans today. I can say: "Look, we foresee there will be so many hours of computer time, so many runs we might be doing. This much money I think I will need." Okay? From past experience. When we get requests urgent, tell me right now --

PROF. THEOFANOUS: No will do the request?
MR. FABIC: For example, TMI came. We had to do a.11 the changes at INEL. It cost us $\$ 200,000$. They are not lengthy.

PROF. THEOFANOUS: My question is aimed at a slightly different target. What you tell me is helpful, but. I want to know whether it's under your branch or any other branch under the office of Research -

MR. FABIC: The funds are under my branch.
PROF. THEOFANOUS: Excuse me. Let me explain.
Is your branch responsible or is it some other branch that is aiming at applying the codes to learn something? will learn something? Who will be responsible for learning something?

```
    MR. FABIC: Now I understand. Ne nave in fact
recently discussed this particular issue. Ne haven't been
doing that in the past. Ne have decided to do it very
```


bw 1

DR. PLESSET: We will leave that out. PROF. THEOFANOUS: I was going to vote the other way.

DR. PLESSET: Ne can have a show of hands. Who wants to hear about TMI?

PROF. THEUFANOUS: Maybe some -
MR. CATMON: Only one small part of TMI is of interest. That is near the point that the core dried out.

DR. PLESSET: I don't think they got to that. Did you get to the core dry-out regime?

MR. FABIC: No. But we have gone up to 110 minutes of the transient. We haven't seen the core dry-out. We think we know why. I could say a few words about it just very briefly. About why we think we haven't gotten this yet. Ne think we should have, but we didn't.

DR. PLESSET: Briefly then. Ne will talk a
bit about the sisessment program.
MR. FABIC: First or second?
DR. PLESSET: Do TMI now.
MR. FABIC: All right. I will skiz a number of

```
    items which have to do with quite a few classifications that
```

were ir support of natural circulation studies and variou.
aspects of the transient. MPR nas oeen asking for all
these classifications in the itrst place. Ne are reoorting
2Ξ

```
the results. What we are told by both labs doing these
    classifications - this can be looked at partially as
    excuses -- is the fact that the number of boundary conditions
    you have to know to do the classification are not known.
    (Slide.)
    There have to be guesses made. Nhen they
    make guesses, they find disagreement with data, so they
    change guesses. If you have enough of these to play around
    with, sooner or later you will get agreement. But I am
    warning you about it.
    MR. CATMON: You are having the same problems
    as B&iN have been having.
    MR. FABIC: I must say it's true they are not
    well defined and you can put different assumptions and get
    different answers.
    This is part of our weakness. I will talk
    about another one which is more of a technical weakness
    the way I see it.
    (Slide.) That is our representation of B&/
    steam generator. I find that there is something called
    aspirator in the main feed line inlet which brings in
    the steam water mixture into the feedivater, the downcomer,
    to preneat it.
    That dian't play any part in TMI, but it's
not - It may be important when we look at natural
```

303.14 .13

MR. FABIC: Yes. Whether that is the one or something else. In TRAC classification we had the wrong flow rates for the feedwater. They have assumed that the aux feedwater flow rate is equal to the main feedwater flow rate. It should be about one-third. They told us in just weekend.

Here is the results of INEL analysis, using ? 2 LAP.
$k d s$ 1

PROF. CATTON: We heard yesterday how unimportant the steam generator is. I am kind of in agreement with you. I am pleased to see this.

MR. FABIC: I don't understand why they would say that.

PROF. CATTON: I didn't either.
MR. FABIC: Red is measurements in TMI. Green is the first calculation at INEL. Blue is the Latest calculation that shows here, after about 500 seconds this is the first 20 minutes of the trans $e:-$ that the calculation doesr' 't predict the pressure dropping.

It is not dropping secause of the wrong heat removal. There should have been more heat removal to drop the temperature. It should be saturation pressure here. Saturation pressure calcuated stays level; it should be dropping down.

Ne have seen a report. INEL told us what next steps they will take in trying to resolve that problem, one of then being look at the steam zenerator haet transter in a better way.

Here are the hot lez temperatures versus

```
measure. Big discrepancy. Here it is. Not enougn neat
    oeing removed by the steam generator. Temperature hanging
    ouit. The same thing on the code.
    PROF, CATTON: Could it have been the brake flow
```

```
that was a little out of whack?
MR. FABIC: of course it could be. What we are not sure of there again is what was the -- when the valve stuck open, it stuck fully open or halfway open or three-quarters? What was the opening when the valve stuck open? We are not sure of that.
Even more important, however, is the fact that we don't know how to model that rake flow to that kind of valve from -- I don't think we will ever do that. Ne will put in some reasonable model which has a chance with appropriate multipliers that are empirical multipliers coming from mythical test data. Then you will have a chance to do a good job.
Right now we don't know what the multipliers are when the valve is discharging two phase mixture rather than single phase.
18. ZUDANS: Could you make some judgment from the tanks that were filled in the basement and overflowed?
HR. FABIC: 1 will show you some of the calculations. I think that is a good point.
Prof. CAITOI: it was early, though.
KR. ZUDANS: Twenty minutes. That would give you some indication what you discharged through that valve. This was early also.
WR. FABIC: Good point. it had no way to compare
```

calculated discharge with measurements. That is a way.
MR. ZUDANS: At least for some time.
DR. PLESSET: But the valve had been leaking into
that tank quite a bit before the accifent; quite a long time.
Yes. That is what the operator's testimony stated.
MR. ZUDANS: They still have level indication.
DR. PLESSET: So they could tell what happened
after the accident began?
MR. ZUDANS: Yes.
DR. PLESSET: On, in that case that is sometning
else.
VR. SULLIVAN: That is being done now.
DR. PLESSET: It is?
MR. SULIVAIN: Yes.
MR. FABIC: The last viewgraph has to do with
Idaho calculations.
(Siide.)
This shows five calculations performed for a time
eriod after twonty min tes. Various assumptions were made as to liquid levels in a tean generator where the HRP was on or off, and when the acc imulator was on or ofs.

They all came with unacceotable conclusions. Like
there is no core recovery at all or ter ereture length so 2400. That is surprising. So I think these were all oad starts.
$k d s$

What Idaho finally decided is they would like to get a good calculation the first 20 minutes before they attempt anyfurther long-term time.
(Slide.)
Now, at LASL we only have the detailed code, trying to make this simpler. This snows you loops. I don't think this is very interesting.
(Silde.)
However, the vessel --
PROF. CATION: if we will carry it very far -- would
you put that slide back?
MR. FABIC: Don't look at the pressurizer.
PROF, CATTON: If you don't handle the candy cane right -- noding wouldn't do that.

MR. FABIC: What you see is each one of these segments is subdivided into mesh. There is a finer mesh going through. It doesn't mean only one control -

MR. SHOTKIN: in this calctiation, that volume 11
is just one volume; but their calculation wouldn't be used for natural circulation studies.

Inis is just going to be used for the core uncovery at TMI, up to about 120 minutes. Let's say the first 3 hours, 130 minutes.

PROF. CATTON: Some of us believe core uncovery occurred at 120 minutes.
$k d s \quad 1$

MR. SHOTKIN: Up to core uncovery is two hours. Maybe they will extend another hour. For natural circulation they need the more detail Stan is talking about which wasnet in this calculation.

PROF. CATION: The first pump went off at 70 minutes, the second at 110. You will have to stop at 110 minutes.

MR. FABIC: The reason we are doing this calculation is not to Show when the core uncovers, but what went where and when after it uncovered.

Did we start accumulating scrap or in what part of the primary loop? ". have to continue with the calculation until we find out where the inventories were going. We don't want to do 15 hours, but we should be finding out whether we wore accumulating steam in the upper head or the candy cane, at what time, according to calculation.

MR. SULLIVAN: When the transient goes two phase, you will need more detail. It should be two phase much before that.

4R. FABIC: Yes.
(Slide.)
This is the vessel. It shows in the current
version we are stuck with the fact that we have to have at
least two circumferential definitions, all the way us and
kds
sown the vessel.

We are using the minimum that can be used with this kind of analysis.

Here is a good example of current restrictions with the code to describe the control of the relief valve.
(S11de.)
Here are the cells within the pressurizer itself. Then you have to use many fine cells to get the critical flow calculated from what we call first precipice, not using correlations and not using some other models which are conpatible with the code.

There, of course, also we pay some penalty for that. In a fast running code we wil. go away from that constraint and adopt simple techniques to calculate zritical flow to relief valves. However, we had fairly good success with that.

I just found yesterdiy calculation results that Brookhaven has done as part of an interest assessment

```
using IRAC from their own clinical control studies, special
studies, with fairly good comparisons as to pressure versus
spece; and I think they were surprised to see the first time
we applied the code to = othing new it worked.
    (Slide.)
    In TMI, it didn't work. Here is the TMI TRAC
    comparison, pressure versus time for the first }110\mathrm{ minutes
```

kds 1 or so. These are minutes now, not seconds.
Red is data from TMI. Slue is TRAC calculations. I think here we are not sure how fast this dry-out of the secondary side really occurred. That could have changed the level in here of that first undershoot.

The second very fast decrease in pressure is attributed to instantaneous discharge of -- first the core models the auxiliary feedwater as being added at the bottom, not coming from the top. It is added instantaneously. When it comes on, it comes on full blast.

It probably didn't happen that way. There are valves the have to open over some time. You can get it in. They think this is the reason why it came down too fast.

Then in this period of 12 minute to 15 minutes, they used the 2 HPI pumps operations. Now they think there should have been only one. That is the reason why they have a fairly steep increase in pressure. They had one HPI pump after 50 minutes.

The fact that this drop here is too steep, the drop in pressure, is attributed to another code input error which says the auxiliary feedwater flow used in TFAC was equal to the main feedwater flow, which is about three times the amount that the auxiliary feedwater should have had.

That is the response for that. They cont want to keep defining this, but this in playing around. What they
$k d s \quad 1$
will do is repeat the calculation with corrections done from the time it reached this plateau, and go until complete, and beyond.

This early part doesn't play any role here. They will reach a start here and go to core recovery.

PROF. CATTON: Couldn't you maintain the evel in the steam generator at the point it was measured to oe to separate whether your problem was with the primary or secondary sicz?

MR. FABIC: Because the boundary condition like that is not available in the core. You can't separate a liquid level as a boundary condition. The liquid level is calculated by

PROF. CATTON: The feeling we have been given in the past is that this was a relatively unimportant part. If you veered the heat transfer in the steam generator plus or minus 50 percent it yields very little change in the final results.

I got that from B\&il yesterday. It may not be true, I understand.

MR. FABIC: The heat transfer coefficient plus this area.

```
    MR. SULLIVAN: I agree with Ivan. B&W did
    indicate to us yesterday that - I p...+ed out yesterday I
    thought it was. It looks like they are from even the TRAC
```

kds 1
calculations. I think Ivan is right. It should be pursued with BSN.

PROF. CATTON: The TRAC code runs could collect some of that out. If they input the measured secondary side conditions and things fell on line, maybe we would begin to seperate the phenomena.

MR. SULIVAN: I wish it was that easy. The secondary side is not numbered. Very little we are sure of, identically sure of at even the levels in the steam generator, there are questions about them, the measurements that are made, the ranges they were on. and. when they switched ranges.

There is a lot of questions about what actually happered on the secondary side of the steam generator. It is not black and white.

MR. MICHELSON: How do you know what the auxiliary feedwater flow rate is, for instance? You know the level of the generator remained constant for long periods of time, like at ten inches. You know that auxiliary feedwater was coming in. But you don't know how much.

You know you are evaporating all that came in because the level remained constant. You don't know how much less than that might have been coming in.

PROF. CATMON: You know temperature and pressure.
MR. MICHELSON: But you gon't know the mass that is

```
involved.
```

MR. SULIIVAN: The only thing you can do is assume it was full flow.

MR. MICHELSON: You can tell on the back of an envelop it couldn't be that.

MR. SULLIVAN: That is what we did. The energy balances arena very good.

DR. PLESSEI: I don't want to spend the rest of our

```
tive on this, if we can avoid it.
```

One more comment.
PROF. THEOFANOUS: What about phase separation:
MR. FABIC: I want to tell you something about it right now.
(Slide.)
This is a breakthrough through the relief valve. It indicates, for example, high flows here and here. That is when we have a heavy fluid heating the well, either liquid or a very dense mixture.

A low flow is where you have steam or very low

```
density.
```

The reason these density differences are there is because of the phase separation calculated inside the pressurizers. How good it is, we haven't yet --

PROF. THEOFANOUS: S\&N told us ten day's ago that they calculate and assume and think is reasonable that the
308.15 .11

```
kds ! system was completely homogenous.
    MR. FABIC: I can't understand that.
    PROF. THEOFANOUS: if that were, the TRAC results
        might be useful to them.
    MR. FABIC: Wnen we like them and believe in them,
        I think we will.
                            PROF. CAMTUN: They don't believe the steam
        generator is very important.
e-15 9
```

10
11
12
: 3
14
15
15
17
18
19
20
21
22
23
24
25
bw

1

DR. PLESSET: We can go to your next topic. M?. FABIC: All right. I will be very brief. DR. PLESSET: Is certainly worth some of the criticisms in some people's minds. That is good. MR. FABIC: Later on you will see that I talk about qualitative and quantitative ways of assessing the code. I will not spend much time on qualitative at all. except to show you one plot that shows L-23 results of temperature profile along the hot rod as a function of time. What we show here in red is data and green is TRAC results using ILOEJE correlation. (Slide.)

It shows the core is not doing bad. The
flat temperatures are good. Final quench is here. Qualitatively, it's not that at all. Other words that are not hot rods are also -- for quantitiative assessment we can't use time -- there is no way to have these results digested in a format where you can extrapolate what you learn from different scale facilities.

I will briefly talk about integraters we are using here.

To describe present -- first of all, in using in assessing the code, integral test facilities, our primary purpcse is to see how well do we reoresent dynamics of the system. Ine code. Is the feedoack between component right?
bw

```
Rather than details of heat transfer. That is not very
important. Other tests and those familiar -- integral
test, dynamics of the whole system. That is presented by
present time history. And the present time history itself
could be characterized with certain types of occurrence.
For example the time to empty the rods, no matter what the
facility. The time for accumulators to come on. The
time the pressure reaches one -- I will show you how
we use these indicators. The other indicator is what is
the inventory of fluid here? Here we show the time after
reaching the minimum when you just start to refili, and --
there is a formula here like 10 percent above the
minimum, or if you start with zero volume, then 10 percent -
time to reach that. Time until when you get the final
core reflood started, you might have a number of oscillations,
but the final core oscillation sustained REFLECHT started --
this is indicated with a double asterisk. I will show you
one more viewgraph to indicate this.
    (Slide.)
    The time to get zero flow at the ore inlet
after the first reversal, these are the times we can pick
for different facilities. That indicates something about
dynamics of flow inside the reactor vessel.
    The next two may look like too much heat transter
oriented indicators. They are really not. All these
```

quench cycles really tell us is that there is a flaw going on there. Bursts of flow are responsible for quenching. If we agree with the times of these quenchers, that means the hydraulics is also okay.
(Slide.)
Here I show time for the first and last quencher and time for second quencher, if it exists in the facility. In different facilities we only have one quencher, showing the last quencher. Of course, we are also showing the value of the peak clad temperature as the last indicator. Ten of them altogether, we thought that was enough.

Certainly you are supplemented here. We have great detall how well it does overall without quant itative band here.
(Slide.)
What we do with these indicators is plot them on a predicted versus measurement scatter plot. Everything lies on a 45-degree line. We will have uncertainties in prediction and in measurement that will exolore sensitivity studies. When our crosses lie outside the 45-degree line, it means we have errors in the code or inadequacies in the formulation, errors in numerical analysis. Nhatever.

We think that with sucn plo:s which have - this is
all for one indicator. Everyone of these crosses is
bw

$278 \quad 137$
bw 1
to change some of this he'e. That would be the end.
DR. PLESSET: Thank you, Stan.
We appreciate your condensing some very interesting
things. Now we can have some questions.
MR. ZUDANS: Very quick question. In first shelf in THI here, isn't that becouse they actually had HPI from 4 to 8 percent.

MR. FABIC: What happened before that time is very confused as to how many were actually on, whether there was one or two, and in what time period. I do have a paper that shows what they assume. Those assumptions are not the same as INEL's.

MR. ZUDANS: I was tickled by the remark you said: Since these points are coming from different sized facilities, you may have a chance to extrapolate. In view of the fact you have facilities that are small scale MR. FABIC: No. You have some full scale.

MR. ZUDANS: TMI.
WR. FABIC: No. 2D/3D. Full scale upper plenum, downcomer, lower plena, full height core/full width core -- half width, but full-scale width.

There are four high-steam generators in the test facilities. Enough to get measurements. I think we have quite a few large-scale data. It will not be all wild extrapolation, no.

MR. ZUDANS: Okay, as long as you have that k ind of information.

MR. SULLIVAN: In the TRAC code it's almost conceivable to me the small break may be even harder to model than a large break. Surely the fluid dynamics are going to be easier. You shouldn't pass them by either. Now you are working with small delta Ps and the fluid dynamics will have to be very good. Separation will have to be good. I was thinking more in terms of the heat transfer from the system. It will be critical you get those right because the transients are so long and you are integrating them over such long periods of time.

MR. FABIC: Can I digress a bit to answer his point? Something I learned recently from experiments done at MIT with glass hardware. Looking at three loops in smaller scale briefly, air-water, okay?

That was the purpose of the experiment. They learned something else. They learned - may I take this off and go to the blackooard? if a steam generator represented before U tubes and they are nested inside each other, and add manifold supply inside, and they had now air-water mixture, droplets of water, coming from here. If the flow rate is low enough as a natural circulation of the type Dr. Micnelson looked at, reflux boiler, you find there is a very nonuniform distribution

Lw 1
for fluid. In fact, two of them, there was no flow.
Most of the flow was on this one and on this one. It
was a lot of instability.
We can define a region of flow where there is
instability in his equipment.
Now we have to seriously take a good look at
that.
I don't know the consequences when you have
many, many tubes, to the just four, but we have seen even
in PWR tests with the Westinghouse steam generator there is
a small distribution because of centrifugal action alone in
the plant. What this will do so heat transfer, because if
you were starting some. regions of that bundle, the heat
transfer, that would be different.
How will we handle that in fast running or
slow running situations? Ne will have to look at that.
DR. PLESSET: Any other question or comment?
(No response.)
Evidently not.
Thank you very much. Ne will have a ten-minute
break and come back and have a orief summarization.
I want to thank all the Staff for their
presentation.
(Recess.)
$k d s \quad 1$

DR. PLESSET: What I thought we could do for the next 15 or 20 minutes is I will just go around the table and ask if you have comments you would like to direct to me regarding what we had presented today.

Why don't I start - who wants to lead off?
Harold.
MR. SULIVAiv: I forgot who made the presentation, but he showed SEMISCALE data for one of the transients run to simulate IMI. The SEMISCALE facility was to model the Trojan plant which is a Nestinghouse plant.

And the pressurizer also stayed full in that -during that experiment.

So not only it seems to be the U-tube in the B\&W system, but also a Nestinghouse, plant may give a false indication of liquid level. I don't know whether that was prought up or not.

DR. PLESSET: I don't think it has; but I think in one of the bulletins to Westinghouse they were directed not to consider the pressurizer level as an indication of core covery at all times.

It is covered in that sense, but people still may not have a feeling it applies.

Why did it say full?
MR. SULLIVA.f: I will pass the question along to our chiet consultant on SEAISCALE.
kds 2

DR. PLESSET: That means Mr. Shumway. MR. SHUMNAY: Magic.
(Laughter.)
MR. SHUMNAY: The opening of the system was at the top of the pressurizer, so the only way the pressurizer could drain was through countercurrent flow; and it did. That is all I know.

DR. PLESSET: But their relief valves are no different from those on -- not much different from Baw plants. You have the same kind of opening.

Right?
MR. SHUMNAY: We modeled that opening, that's right. B\&if plant's pressurizer on TMI-2 stayed full, and al.so on SEMiSCALE. The low pressurz point of the system, exceot for the gravity head part, is at the top of the pressurizer.

The water can only jet out by countercurrent ilow against the steam that is being generated in the core, that is the high pressure point, that is trying to escape from the systen through the oreak.

DR. PLESSET: I think that is a very pertinent ooservation to all we have been hearing.

Do you think that SExISCAL三 is really going to give you a good handle on things like this? I guess you think it does.
kds $\quad 1$
2 3

MR. SULI IVAiv: I would think with that indication and that experimental result, if a code disagreed with it, I would like to know the difference between the two before I would stop an operator from taking that as the iiquid level indicator.

Most of the indications I have gotten is tnat a Westinghouse pressurizer would empty during a small oreak. DR. PLESSET: So the U-tube loop is not necessarily the fatal element. Is that what you are implying? MR. SULLIVAN: Right. And also I think that it would be worth IRC warning the utilities that own Nestinghouse and Combustion plants that that did occur. PROF. CATTON: That is a very small pipe you have, isn't it?

MR. SULIVAN: Also a very small leak.
PROF. CATIUN: The surje line is typically ten inches or larger.

MR. SHUMNAY: It is fairly oig in TMI-2; and that line wouldn't drain the water.

PROF. CATION: It was a loop seal there. if I had a straight vertical pipe --

MR. SHUMAAY: in SEMISCALZ we didn't change the pressurizer. It is modeled after "estinghouse. But we did change the loop seal design. The surje line was changed, the
308.17 .4
kds 1 TMI surge line.

DR. PLESSET: I didn't understand that last
statement.
MR. SHUMNAY: The surge. line in SEMI SCALE was piped to match the loop seal in TMI-2.

DR. PLESSET: So it was not like a Westinghouse
plant?
MR. SHUVWAY: It was like a Nestinghouse in the volume, pressurizer volume.

DR. PLESSET: But it had a loop seal which
Westinghouse plants don't have.
MR. SHUNWAY: Yes.
DR. PLESSET: That may be the way they would get out of that.

MR. SHUMNAY: It may be; but I don't think that is the key issue. I think that water would be in there if you didn't have the loop seal, personally.

PROF. CATTON: Even though the pipe is quite
large.
MR. SHUMNAY: Yes.
27. PLESSET: How that is not stable. To try 5 maintain a column of water with steam pressure on the bottom -

PROF. CAITON: Ten inch diameter pipe.
DR. PLESSET: That is not stable. You can try it
kds 1 sometime.

PROF. CATTON: Nhat was the size of your pipe? MR. SHUMAAY: Quarter inch.

DR. PLESSET: That would be stabilized because of Surface tension effects.

How hot was it? It is getting pretty small.
PROF. THEOFANOUS: Even a quarter of an inch? I don't think it would be small enough to make it stable. DR. PLESSEI: It is getting close to stability, yes.

PROF. CATTON: About an inch.
DR. PLESSET: I think that's right.
PROF. CATTON: The candy cane being 36 inches in
diameter in the B\&iN plants. it would be damn tough to simulate in small scale like SEMISCALE. I am not sure it would have meaning.

DR. PLESSET: What is the pressurizer height in SEMISCALE in the model above that?

MR. SHUWWay: Wuch lower than the TMI pressurizer.
OR. PLESSEI: How hign was it?
MR. SHUM\%AY: About seven feet, compared to like
forty feet.
DR. PLESSET: Seven feet of water column is whet

```
you are supporting.
```

MR. SHUMNAY: Something like that.
308.17 .6
kds I
2 3 3

```
        PROF. CATTON: I used to use that method to
    oles my brakes, and a quarter-inch pipe held the orake fluis
    w a no problem at all.
    PROF. THEOFANOUS: Quarter-inch or three-quarter?
    Fine. I thought threq-quarters you said. I take
    it back. I am with you now.
    DR. PLESSET: That may be really the difference.
    MR. SHUwWAY: Between what and what?
    DR. PLESSET: The fact that you had a
    pressurizer and it held up.
    MR. SHUMNAY: They did the same thing in the
    drainage pipe.
    PROF. CATTON: No.
    MR. SHUMNAY: At TMI.
    DR. PLESSET: Different reasons. It was a
    manometer seal and the pressure on the gas side was nigh
    enough to maintain a column. Certainly that nigh, or higher
    even.
    But now --
    MR. SHUMNAY: Nait a minute. Mass is going out
    that line.
    DR. PLESSET: Right.
    MR. SHUMNAY: Nhy wouldn't the water bleed back
    against the effluent out?
    DR. PLESSET: Because it is held up by the loop
```

$k d s$
seal?
MR. SHUMNAY: Are you sure it is not held up by countercurrent flow?

DR. PLESSET: It is a stable loop seal. I think I am right.

PROF. CATTON: That's right.
DR. PLESSET: The fact that you have steam bubbling through that $100 p$ isn't significant so far as supporting that column goes. If you have a U-tube, ten , iches diameter or ten feet, or whatever, it can be supported if you have efin'gh gas pressure. It is stable.

If you don't have that, if you have a straight column, and if it is then enough it can be held up by capillary, without the loop seal.

MR. ZUDANS: The loop seal goes like that in the pressurizers, correct?

DR. PIESSET: At B\&/. That is the only one. The others are not a manometer type seal.

MR. ZUDANS: You could have one beginning at this
end and go all the way up and hold it.
PROF. CATTON: Some have a rather long ruri, like
40 or 50 feet.
DR. PLESSET: I don't think it matters if it is
truly level. It will run out.
Ne11. let's go on. Harold, do you have another
3308.17 .8
kas

2

> nickel?

Theo?
PROF. THEOFANUUS: I don't know exactly how to say this. I am very disappointed and disturbed with the response I see that the research is taking to the TMI-2 accident.

DR. PLESSET: which part of the research?
PROF. THEOFANOUS: The focus in all of it. I don't see there - I think as a result of THI-2 there are certain lessons we must have learned and certain actions we must take.

There are other urgent actions, I think, and I don't see leadership in taking any of those actions.

I pointed out some of those things in the letter I sent.

DR. PLESSET: You didn't give any priorities. You have to have priorities.

PROF. THEOFANOUS: I only discussed one topic in the Better.

DR. PLESSET: Which one is that? Let the other
people hear.

```
    PROF. THEOFANOUS: It is very difficult to say in
    a short tin: The letter is two and a half pages. I would
    rather make reference to that.
    If you want me to say in a nutshell, I feel that --
```

kds $\quad 1$
again, something ${ }^{\text {a mentioned many times throughout meetings }}$ is that I don't $\hat{\text { reel }}$ we have paid enough attention to the accident analysis and accident sequences, not only for small LOCAS, but a 11 LOCAS.

In order to - if we did our homework on that, probably TMI-2 might not have happened. Tne way to find out the kinds of cracks that are evidenced in what happened in TMI-2 is work through the accidents and work through the systemi interactions, study the results of the computer codes.

Stan mentioned the computer codes are thers and they are available to be used. The problem is nobody is using them. They have been there for some time.

In order to use them effectively in that respect, you can't take a casual effort -- I don't want to accuse people in terms of casual efforts, but I am thinking of an order of magnitude of different consideration to that as being the focal point.

DR. PLESSET: Right. But I think we have to do
this in an orderly way, sebarate it from the panic approach
to a lot of activities as a result of TMI-2.
PROF. THEOFANOUS: That is the point. I see a lot of things coming out of TilI-2, and I don't see the systematic, orderly way of going through the accidents.

DR. PLESSET: They are not organized, right, I
kds
agree.
PROF. THEOFANOUS: All the activities, our response to TMI-2 ought to be organized. Starting from that. I describe we have several line of defense. One is prevention, mitigating, establishing consequences, and so on.

That really ought to be the order of priority of research. The way I read the Stafi's proposals is they say, well, up to now we have been dealing with the two ends of it, design basis accidents. We have been ignoring the spacy in between.

I think that is putting it in the wrong focus. The order ought to be from preventing, next to the intermediate stage, next to class 9 .

How you will put the threshold has to come from a more systematic study of the different accidents. That is why I keep saying that everything has to start from there. I don't see it happening, and I feel very disappointed with it.

DR. PLESSET: I think they are going to make an effort on the experimental side. I would like your response to the applicasility of the program with the small break tests with LOFT and the small break sequences with SEMISCALZ. That is on the experimental side.

Are you in agreement this is reasonaole?
PROF. THEOFANOUS: is, I am not. I donet think it

bw 1

DR. PLESSET: I think you have a very good point. I would hate to see us arrive at some additional facility nseds without real careful thinking. I am including 20/3D as no facility to date which is really without serious criticism. I think you have a very good point and i think you are right. They are not approaching this problem in this way.

MR. ZUDANS: I remember when they discussed risk assessment. They insisted they would go back and set up a very extensive study where they would look for other cracks, so to speak.

That might affect all the programs, all the
test setups. I insisted they join those two things. fiuman factors and event trees. I thought this program covered what you are addressing-here. It may have to be made mora specific.

PROF. THEOFANOUS: Let me respond to that. am disappointed. I think this is a token. when this program was presented to the IAI-2 ten days ago, there nas only $\$ 400,000$ allocated to the activity. : raised serious doubts then and they increased it by a small factor. on the other hand we go to Stan and near his whole progran outlined, and he doesnct have anything to say about the subject that is crucial. He spent all his time on development, a lot of time and assessment and didn't say one

```
word -- I asked the question about whither this was a
possioility or not. He said he saw this as a possibility.
But he had nothing to say about it. They should be soing
those things already. Not planning three years f-om
now.
    MR. GARLID: I wanted to second what Theo was
    saying, but in a different sense. I think the arguments
    for what they are doing in modifying the experiments they
    ha:e are reasonable and very persuasive that they can do
    some Lhings. In a way it goes back to what Carl
    Michelson did, where he inves:igated something that
    according to him was pretty much on his own time and
    discouraged at the time and now that it turned out to pe
    an event very pertinent to that investigation, reports
    are given a lot of attention. It seems to me what the
    Research Staff ought to do is someho orient the organization
    to encourage this kind of thing.
    I don't see any of that in the fiscal'81 bufget.
    Some items are mentioned in the fiscal / 80 budget.
    \mathrm{. PLESSET: Thank you. Now Ivan.}
    MR. CATION: I think that the program that was
    mentioned, the risk assessment and so far it fills tnat gap.
    I don't ayree with Theo as far as it being a
    token effort. I don't think it is. I heard Roger Matson
    with his lessons learned group. He is paying a lot of
```

attention to that area. Almost everybody we hear from is at laast giving it lip service. I think it's too premature to say they won't do anything, unless you know them better than we. Maybe you do.

PROF. THEOFANUUS: I knew you would disagree with me, but since you did, let's take that further. First of all, I think already they ought to be doing it. I don't see it anywhere.

Secondly, even ten days ago we heard that
the budget allocated for this particular item was one-third of what you saw today. You saw it three times bigger because I was arguing with Sullivan on the TMI-2 suocommittee just ten days ago.

If people believe so much about it and if it was the focal point according to their own thinking, that ought to be there before in the first place.

What I am trying to say is that I like to see that the people are responsible for developing those plens, : like to see that somehow they become convinced themsolves. Not do something because they hear somecody say something about it. Ihis should be something that has to be done. Unless they become convinced, you will not have the approoriate leadership. This needs leadership. That is where I find fault. It's a matter of first convincing the people responsible for these activities in orter to provide
the right mechanism. The mechanism is not there yet. I guarantee that. It's there only for analysis. I used that word in my letter. There is no mechanism there for synthesis and a lot of cracks are present. TMI happened as a result of us not having enough time with the synthesis.

Some of us have been talking about this for years now. Even today there isn't a concerted effort to provide the synthesis in order to make sure no other cracks exist.

DR. PLESSET: Do they have the personnel to undertake this kind of synthesis?

PROF. THEOFANOUS: Absolutely.
DR. PLESSET: Where?
PROF. THEOFANOUS: All over the place. People
in the National Labs.
DR. PLESSET: You mean outside NRC?
prof. Thelfainous: including NrC. Stan Fadic and
Lou Shotkin. These people have seen with these plants.
Dr. Tong. They work with the plans. They know the systems.
There are people on the Subcommittee. Carl Michelson,
for example, knows the system.
They have to be bought together under some
unified leadership to address this in a systematic down-to-earth fashion. Pragmatically, realistic and urgent as it is.

MR. SULLIVAN: I agree with Theo. It's going to
bw
take quite an effort. It will be a very painful effort, because t have only looked at systems in a very general way. When you start 100 king into them and looking at interaction of all the secondary steps, it will be a very painful process to go through and it's going to take quite a while to see what an operator can do to a plant and to make an accident either better or worse.

I am not sure i even understand what happened at TMI to make it better. DR. PLESSET: ivan, do you have another comment? MR. CATTON: 1 forget it. (Laughter.)
DR. PLESSET: Gcod.
PROF. THEDFANOUS: There are significant resources of people through the review groups that have been aole to draw together people from all walks of life and different backgrounds. There are a lot of people in the National Labs that are very much involved in that. There is no question of lack of people.
DR. PLESSET: : just wanted to hear you sav it.
What you have to do is get some of this counsel to me within
a few days, because what is being considered is a
suoplementary budzet. The basis for it is, say. TMi-2.
Otherwise they wouldn't have the audacity to propose such
a thing.
bw

```
            Ivan, you remembered what you wanted to say?
    MR. CATTON: My view of what happened at Inil is
    a little different. I think what it gets down to is how
    a plant is acminstered. Some of us are on the LER
    subcommittee. Straightaway, you see LER is very nice.
    You learn a lot from them. But the route back to the
    plant was nonexistent. The people operating the plant didn't
    know about things like Davis-3esse, Oconee. They hardly
    knew about what went on in their own plant. I don't care
    how much research you do or how many smart people you have
    doing it. Unless something is done about that part, the
    rest doesn't make any difference.
    Somehow that has to be straightened out.
    MR. LIPINSKI: An automated plant.
    MR. CATMON: Maybe that is the direction.
    NR. LIPINSKI: The ultimate, if you eliminste
    the people, you end up with a totally automated plant.
    Having autonated the plant I have to worry about the next
    level, the guy who keeps it working and automated.
    DR. PLESSEI: The mafntenance man. Okay,
    Prof. Nu had a comment.
    PROF. NU: I wanted to follow up a little longer
    along this line. I understand there is not much time and
    I don't know the situation, as well as Theo.
        MR. PIESSET: Nobody does.
```

PROF. WU: And I don't know I can say in the same meaniny as you said about synthesis. But perhaps. in my own feeling, the safety of the nuclear reactor will be a very important issue for the future off this industry.

Surely we have a good case on hand from which we hope to learn as much as we can. So perhaps in this postmortem see if we can extend the scope a bit in the investigation and use the highest imagination as we can.

Already we have brought other than the engineering and technical side facets of the matter, should we concentrate on the human factors. Error in decisionmaking under very difficult circumstances.

Furthermore, look into into what way we can avoid the future hazardous situations and see if there is any design that can be improved. This would almost take a game theory type of approach. It's like playing chess.

There is no time and space to do the role of elimination approach, but to spot a few important areas where the engineering design plus the human operation can be carried on with the least possible doing of any hazardous situations such as the U tube type checks and so forth.

Even the mathematical approach of the dynamic programming. See if there is anything that indicated a mistake. What would be the consequences? Look to the improvement of the engineering design and avoid any possible
abuse of operation. It may take a different work task force from what wo have.

You already named good names of experts already familiar with the engine" ng side. I think it might take a bit broader scope to learn -- to enrich the lesson as we can. That is, on this TMI-2 case. Then if I may take a couple of more minutes, I want to talk about the future research program, and specially for some of those basic proolems to enlarge the capability of the very sophisticated system codes, $2 D / 3 D$, and so on, phase transition, transient flow and others.

Now the possibility of the last example is an excellent one that Stan Fabic mentioned.

There is a flow instability and flow separation and 50 forth, secondary $f 10 w$, and all this seems we can come to a very solid foundation and improve the understanding as we track some of these basic problems and study it in full.

In such cases, conservation of mass, momentum, energy, they might have a considerasle dezarture from original assumptions based on which these system codes were developed. Once we learn some of the good lessons in these basic lessons in these basic problems they nignt nave a very good utility in the future to improve the existing system code by saving if the flow separation and
such is important, there might be an easier way, much more simplified, but on the physical basis, well-based assumptions, by putting some of the energy sink, in order to continue on a much more simplified basis in the system a pproach.

Then also along this line, see if it is worthwhile to keep a very close waitact and collaboration with the efforts put in by the Japanese and the German team in what is developed in due course.

If these are the desirable ways to move, then the next thing is see if the budgetary master is sufficient to inhance such a stepped up activity.

Thank you.
MR. ZUDANS: This pertains to the same subject of Theo. I want to really make it understood that in principle, I agree with Theo, except that my interpretation was they were going to pay attention to this subject. We asked very clearly. I think maybe we should take a position that any supplementary budget lead item would be this particular item, and any changes to a facility or design or analysis tools should be based on findings on this risk assessment. Looking for new cracks. Then there would be a good reason for it.

It TM: is interpreted in every which way bu different groups in different fashions, everyoody finds
something he can do. There is no unified purpose. Unified purpose is in what Rheo states. That, we could emphasize That is all.

DR. PLESSET: I think we have used up our time, unless there is some really excruciatingly important remark, I will consider the session adjourned. Let me add one nonagenda item. Tom Murley suggested we have our next meeting in Idaho Falls. Ne usually do have a meeting there about once a year. What is the sentiment of our distinguished -- I know what those two would say.
(Laughter.)
PROF. THEOFANOUS: when are you thinking about?
DR. PLESSET: Sometime this year. PROF. THEOFAN(OUS: August or July?

DR. PLESSET: July is too busy. Late summer. PROF. THEOFANOUS: MORe like August. MR. ZUDANS: Early September? I am not here in August. Not until the 9 th, but then I am in Europe until the 31 th.

PROF. THEOFANOUS: Combine it with a meeting in
Seattle.
DR. PLESSET: What meeting?
4R. LIPINSKI: The 20th to the 24th is the
International Fast Reactor Safety Meeting in Seattle.
\square

The week of August 28.

PROF. THEOFANOUS: If you can combine with
that, it would be helpful.
DR. PLESSET: After that, to just follow it.
MR. LIPINSKI: The 27 th .
DR. PLESSET: You might lose a meeting. MR. ZUDANS: I would like not to loze it. I hope you won't be able to make up the schedule that quick. (Laughter.)
DR. PLESSET: Thanks again. We will have to try to arrange this meeting well in advance.
(Nhereupon at 3:00 p.m. the neeting was adjourned.)
hope you won't be able to make up the schedule that quick.

SYSTEMS ENGINEERING (Contd.)

(Thousands of Dollars)

SYSTEMS ENGINEERING

FY 1981
MINIMUM PROGRAM
$\$ 32.1$ MILLION

- Stretchout facility. upgrade by 6-12 manths, limited tesing.

SEMISCALE

BD/RF ITT

3-D

- continue pwr bdit and flecht-seaset, and bur CCFl. TLTA EXTENSION LIMIIED BY FUNDING CONSTRAINTS.
- SUPPORT 3-D FLOW EXPERIMENTS in germany and ${ }^{\text {a }}$ IPAN
- FABRICATE INSTRUMLNTATION FOR UPPER PLENUM TEST FACILITY IN GERMANY AND SECOND TEST SERIES IN THE CYLINDRICAL CORE TEST FACILITY IN JAPAN.
- PROCURE DATA ACQUISITION SYSTEM FOR UPPER PLENUM TEST FACILITY IN GERMAN:
- PERFORM PRE- AND POST-TEST ANALYSES FOR CYLINDRICAL. CORE TEST FACIL ITY AND SLAB CORE TEST riCIL.ITY IN JAPAN.

ECC BYPASS - TERMINATE SMALL SCALE BYPASS RESEARCII IN FY 1980
MODEL DEVELOPMENT

991812

OP. SAFETY
TECH SUPT.
(SERB)
(RSB)

SYSTEMS ENGINEERING (CORT'd.)

191812

$<\mid, \quad, \quad 8$
1
SYSTEMS ENGINEERING
(THOUSANDS OF DOLLARS)
FY 1981
CURRENT
6.780
6.890
12.000
900

| 오 |
| :--- |
| $\underset{=}{=}$ |
| |

SEMISCALE
BD/RF HT
311
ECO BYPASS
MODEL DEVELOPMENT (ABB)
(SERB)

691812
SYSTEMS ENGINEERING
(Thousands of Dollars)
FY 1981
$<\underset{m}{2}$
$\frac{\text { RE. }}{10,150}$
9.390
12,000
900 INSTALL SECONDARY LOOP,
CONCLUDE UNI TESTS AND
W OPERATIONAL TRANSIENT
TESTS, COMMENCE UPGRADING
TOTAL SYSTEM TO A 4 4×2 BR
CONFIGURATION WITH OTSG's,
ANALYZE PVR-BDHT RESULTS,
COMPLETE ILIA UPGRADE AND
INITIATE TESTING, COMMENCE
BUR-CCHL 30° SECTOR SYSTEMS
EFFECTS TESTING, COMMENCE
FLECHT-SEASEI SYSTEMS
EFFECTS TESTING.
041822

MODEL DEVELOPMENT
(SERB)
OP. SAFETY

(DB)

TECH SUPT.

(RR)

TOTAL
${ }_{2}^{2160}$
(1,030)
$(1,590)$
$\begin{array}{ll}\underset{\sim}{z} & 0 \\ \text { 을 } & 0 \\ =1\end{array}$
$\stackrel{-}{-}$
$\stackrel{-}{-}$

START DEVELOPMENT OF COMPUTERIZED
INFORMATION RETRIEVAL SYSTEM
ON REACTOR SAFETY RESEARCH DATA
-

15,050
SYSTEMS ENGINEERING
(Tifousands ef Dollars)

-3.800
-
$1,6.15$
$(1,415)$
$\stackrel{\stackrel{8}{8}}{\stackrel{\circ}{6}}$
EQUIPMENT FUR SEMISCALE UPGRADE
AND TLTA EXTENSION ORDERED IN
FY 1980
CONDUCT CONTAINMENT IMIER-
COMPARTMENT FLOW TESTS
BROADEN DATA BASE FOR STEAM/
WATER/GAS SEPARATION
ADDITIONAL PHENOMENA RELATED
TO TMI PHENOMENA
$\varepsilon \angle 18 L 2$
$\begin{aligned} & \text { SYSTEMS ENĞINEERING (Contd.) } \\ & \text { (Thousands of Dollars) }\end{aligned}$
$\begin{gathered}\text { FY } 1981 \\ \text { AMEND.. } \\ 9,750\end{gathered}$
<1 会
$\frac{\text { FY } 1980}{\text { AMEND. }}$
$7 \angle 18 L 2$

部部空
高新

$$
\varsigma \angle 18 \angle Z
$$

Accelerate test program by 20\%
TEST INStRUMENTATION AND DIAGNOSTIC
COMPUTER

$$
\begin{aligned}
& \text { CHANGE TO BUDGET-AUTHORITY } \\
& \text { ACCOUNTING (DOE REQUIREMENT) }
\end{aligned}
$$

$$
\overline{1 \pm 07}
$$

io

$$
\begin{aligned}
& \text { FUEL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ஸ̂ ㄷ }
\end{aligned}
$$

$\frac{L 0 F T}{\text { (Thousands of Dollars) }}$

$$
\begin{aligned}
& \frac{\underline{L} O F T}{\text { (THOUSANDS OF DOL }}
\end{aligned}
$$

611812 EXPEDITE TRAC-BIVR
ACCELERATE ART AND RAMONA III
BEGIN HYBRID CODE
EXPEDIE COBRA-TF CODE (HOT
CHANEL VERSO) AND TRAC/COBRA
COUPLED VERSION FOR UH SYSTEM
ANALYSIS
RECOVER TRAC ASSESSMENT SCHEDULE
LOST DURING FY 80 TO ACCOMFIDAIE
IMI-RELATED PRIORITIES
STATISTICAL APPL. OF TRAC
TRAC APPLICATIONS TO OPERATING
REACTORS
WRAP APPLICATIONS PER RR SPECS.
DATA BANK ON POWER PLANTS
CODE DEVELOPMENT
(Thousands of Dollars)
$\begin{array}{cc}\frac{\text { FY } 1981}{(R E Q .)} & \Delta \\ 6.330 & 1.900\end{array}$
$\stackrel{\circ}{2}$
$\stackrel{\stackrel{8}{m}}{m}$
N
$\stackrel{8}{\circ}$
14.430

1,410
8
m
8
∞
∞
SYSTEMS CODES
COMPONENT CODES
TRAC ASSESSMENT
AND APPLICATIONS
TOTAL

```
CODE DEVEISPMNI
    FY 1981
MINIMM PPDGRNM
```

$\$ 9.2$ MILION

SYSTEMS COIES

COMPONENT CODES

TRAC ASSESSMENT AND APPLICATIONS

- UPIAIE RNMONA III FOR BMR TRNSSiENTS
- DEVELOP FIRST VERSION OF TRAC FOR RIA
- develop trac-el (FOR bWr loca)
- aSSESS beacor vs data on iniercorpaitiental flow
- apply basic tesis to develop local mooels.
- verify indroflastic cooe used for aniysis of sliicooled blowionn loans on core barpel
- ASSESS FIRST VERSION OF TRAC ATWS
- ASSESS FAST-RLWNING VEPSION OF TRAC-FPIR BASED ON AVAILARIEE IATA
- apply trac-pwr to loft and trac-bwr and -pwr to large scale refood tests
- lIMITED APPLICATION TO CASES OF INIEPEST TO NRR

| | MIN | CUPRENL | Δ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SYSTEMS CODES | | | | |

CODE DEVELOPMENI

(THUUSANDS OF DOLIARS)
$i 981$

$8 \angle 2$

CONIINE NEYELOPING UERY FAST RINNING CODE FOR NON-IESICN BASIS ACCIDENIS (POSSIBLY "IIBRID CONCPPI")

(THOLSNMS OF DOLIARS)

으ㅁㅜㅜ웅
1,410

4,860

12,400

SH00 SWEISAS
arporent codes
TRAC ASSESSMENT
NDD APPLICATIONS
듭
FY 1981 -

200
$\stackrel{?}{2}$

1,650

7,260

2,400

옃

15,240

INCIFASE APPLICATION OF TRAC TO PPOBBLEMS OF
INIEPSST TO NRR
CONIINE DELELOMTNT OF DATA BNNK FOR
OPERATING PEACTORS.
--
ACCEEERATE DEVEIDPPENT OF COBRA HOT CIWNEL
COIE (TO BE USEI IN CONUNCTION WITH TRAC
SYSTEM CAIC).
-
$7818: 2$
FUEL BEHAVIOR
(Thousands of Dollars)

| $\frac{F Y 1981}{(R E Q .)}$ | |
| :--- | ---: |
| 2.750 | 670 |
| 1.490 | 90 |
| 16.280 | 2.020 |

∞
N
0
N
HYDROGEN PROGRAMS

- EXAMINE SAMPLES OF TMI ruLl
- ESCALATION
- EXPERIMENIS ON CORES BOILING
LOWN (OTHER PBF FEQ. DOWN)
- ESSOR
- VAPOR EXPLOSIONS, INTEGRATED
FISSION-PRODUCT TRANSPORT
CODE, TMI F.P. DEPOSITS AND
HYDROGEN PROGRAMS

| FY 1980 |
| :---: |
| (PRES.) |
| 2.080 |
| 1.400 |
| 14.260 |
| 3.992 |
| 1.368 |

CLAD AND FUEL
FUEL CODES
IN-PILE TESting
(PBF)
In-PILE TESTING
(OTher)
fuel Melt

$$
\begin{aligned}
& \frac{\text { FUEL BEHAVIOR }}{\text { FY } 1981} \\
& \text { MINIMUM PROGRAM } \\
& \$ 23.3 \text { MILLION }
\end{aligned}
$$

CLAD \& FUEL - MRBT 8×8 Bundle examined and analysed. Reports comíeted on two Additional 4×4 bundles

- Stress/rupture out-of-pile tests complete, start in-Pile tests
- Frapcon-2 steady state code will be maintained.

FUEL CODES - FRAP-T-6 transient fuel code will be maintained

- MATPRO-12 materials property code updated
- FRAPCON-2 and FRAP-T-6 improvements verified

IN-PILE (OTHER) - Nuclear tests begin in NRII

- Halden membership maintained

IN-PILE (U.S.) - 5 PBF tests in RIA and OPTRAN series

- PBF Facility engineering and operation continue

FUEL MELI - Conclude fully instrumented vapor explosion tests

- Model containment F. P. transport in trap
- F. P. Vapor dressures measured to $1000^{\circ} \mathrm{C}$ for Trap model
- CORCON MODELS FOR LONG TERM CORE/CONCRETE INTERACTION

FUEL BEHAVIOR

FY 1981

| | FUEL BEHAVIOR | | | $\begin{aligned} & \hat{\infty} \\ & \hat{\infty} \\ & \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| | CURRENI | REQ ${ }_{2}$ | \triangle | |
| CLAD AND FUEL | 1,950 | 2,750 | 300 | - examine tmi fuel |
| FUEL CODES | 1,486 | 1,490 | 0 | |
| IN-PILE (0THER) | 4,215 | 4,210 | 0 | |
| IN-PILE (II.S.) | 14,465 | 16,280 | $\therefore 15$ | - EXPERIMENTS ON CORES BOILING down |
| FUEL MELT | 1,840 | 3,970 | 2,130 | - i.: Fission product data, hydrogen PPOGRAM, COOLANT CHEMISTRY |
| | | | | CONTAINMENT LOAD SOURCES |
| | 23,956 | 28,700 | 4,745 | |

FUEL BEHAVIOR

| | EY. 1980
 (PRES.) | EY.1981
 (REO.) | Δ |
| :--- | :--- | :--- | :--- |
| FRACTURE MECHANICS | 3,250 | 5,480 | 2.230 |

- hydrogen embrittlement and STRUCTURAL RESPONSE TO H_{2} EXPLOSION3
- interactive pipe safety ASSESSMENT CODE
- PRESSURIZED THERMAL SHOCK
OPERATING EFFECTS $\quad 3,350 \quad 6,330 \quad 2,980$
- STRESS CORROSION CRACKING (SCC) IN BWR PIPING
- toughness loss in Cast

STAINLESS STEEL

- REAL-TIME, IMPROVED FLAN DETECTION

| NON-DESTRUCTIVE
 EXAMINATION | 2,000 | 2,900 | 900 |
| :--- | :--- | :--- | :--- |
| | - | - | - |
| IOTAL | 8,600 | 14,710 | 6,110 |

```
PRIMARY SYSTEM INTEGRITY
```

FY 1981
minimum program
$\$ 6.58$ MILLION
fracture mechanics - fabricate intermediate test vessel for low-shelf material.

- val.idate tearing instability concept for elastic-plastic analysis OF VESSELS AND PIPING USING AVAILABLE DATA.
- COMPLETE THERMAL SHOCK TESTING of unpressurized cylinders.
- validate two-phase jet and Pipe hhip predictive codes - quick reference data for licensing.
- complete fracture mechanics evaluation of most likely piping breaks and mechanical property measurements of piping steels.

OPERATING EFFECTS

- COMPLETE ductile shelf fracture toughness characterization of lowShelf weld metals to update the kir curve and 10cFr50 rules.
- Provide data for code and reg. guide on reactor vessel annealing.
- COMPleie irradiated crack growth rate data to update asme code.
- measure mechanical properties from test specimens from vessel wall SURVEILLANCE AND DOSIMETRY ASSEMBLY.
- complete construction of test bed for retired steam generator.
- COMPLETE MODELS to Predict stress corrosion cracking in steam generator tubing.

PRIMARY SYSTEM INTEGRITY

FY 1981
MINIMUM PROGRAM (CONT.)
$\$ 6.58$ MILLION
NON-DESTRUCTIVE EXAMINATION

- continue continuous internal friction monitoring of intergranular STRESS CORROSION CRACKING (IGSCC) AND GENERAL CRACKING IN LWR COMPONENTS.
- begin research in acoustic emission monitoring of igscc and generai CRACKING IN LWR COMPONENTS.
- COMPLETE FIELD EVALUATION OF SAFT-UT.
- establish probability of ultrasonic testing for flaw detection IN FERRITIC PIPING AND BI-METALLIC JOINTS.

$$
\begin{aligned}
& \text { - TEST AND ANALYZE RESULTS OF INV FOR } \\
& \text { LOW-SHELF LIFE MATERIALS. } \\
& \text { - CARRY OUT SPECIFIC TESTS TO } \\
& \text { vaLIdATE TEARING INSTABILITY. }
\end{aligned}
$$

develop realiciac flaw distrib

$$
\begin{aligned}
& \text { IN PIPING AND USE TO IMPROVE } \\
& \text { PROBABILITY OF PIPE BREAKS UNDER } \\
& \text { LOLA AND SSE LOADS. }
\end{aligned}
$$

parameters for licensing application

$$
261812
$$

to PRESSURE VESSELS AND PIPING.
OPERATING EFFECTS
DEVELOP REALIS:IC FLAW dIStribution:
develop tearing instabilityCORRELATION BETWEEN MEASURED ANDPREDICTED MECHANICAL PROPERTIES
FROM SURVEILLANCE/DOSIMETRY BEGIN RESEARCH.

0\&O'T

2,700

PRIMARY SYSTEM INTEGRITY
(Thousands of Dollars)
FY 1981 CURRENT
$\stackrel{\text { B }}{\underset{\sim}{2}}$
$4 \stackrel{\stackrel{8}{4}}{-}$

| | FY 1981 | | |
| :--- | :---: | :---: | :---: |
| | MIN. | CURRENT | Δ |
| FRACTURE MECHANICS | 2,280 | 3,480 | 1,200 |
| | | | |
| OPERATING EFFECTS | 2,700 | 3,730 | 1,030 |

$$
\begin{aligned}
& \text { - validate predictive models for } \\
& \text { STRESS corrosion cracking of } \\
& \text { Inconel steam generator tubing. } \\
& \text { - start development of real-time, } \\
& \text { automated flan detection. } \\
& \text { - provide basis for code case fir } \\
& \text { eddy current steam generator } \\
& \text { inspection. } \\
& \text { - evaluate mel non-code node techniques. }
\end{aligned}
$$

SEISMIC, STRUCTURAL, MECHANICAL, AND SITE SAFETY
(\$ MILLIONS)

L61 $8 \angle 2$
BASE PROGRAM - MINIMUM LEVEL
$\$ 12.6$ MILLION
SEISMIC, STRUCTURAL, MECHANICAL AND SITE SAFETY
ASSESS FACTORS CONTRIBUTING TO SEISMIC RISK
DEVELOP FAILURE PROBABILITIES OF THE REFERENCE PLANT FOR INCREASING EARTHQUAKE SIZES
AsSESS CURRENT METHODS TO DEFINE EQUIVALENT SEISMIC INPUT
Perform probabilistic analysis of currently prescribed load combinations
PLans for experimental verification of failure modes and safety margins - DeVElop limited qualitative ins ights into; seismic behavior of components; reliability
of pumps, valves and snubbers; damage evaluation techioioues to requalify damaged plants

- Provide guidance on load combinations add validation of conpuyer codes
- Complete 5 year increment of seismotectonic studies ia Northeast, Charleston, New Madrid
and Nemaha regions
COMPLETE SOIL FOUNDATION PROPERTIES AND EARTHQIZAKE RESPONSE STUDIES, AND EARTHQUAKE SOURCE MODELING STUDIES
Complete tornado hazard regionalization and lab model loading studies
CONDUCT FULL-SCALE FIELD EXPERIMENTS ON ATMOSPHERIC DISPERSION AT COASTAL AND RIVER
VALLEY SITES.
$\left.\begin{array}{llll} & \text { SEISMIC, STRUCTURAL, MECHANICAL AND SITE SAFETY } \\ \text { FY } 1981\end{array}\right)$

SEISMIC, STRUCTURAL, MECHANICAL AND SITE SAFETY
FY 1981
(\$ MILLIONS)

ACTIVITY
SAEETY TEST FACILITY STUDIES
AEROSOL RELEASE \& TRANSPORT
SYSTEM INIEGRITY
TOTAL

FY 81 MFR PROGRAM

ANALYSIS

- ISSUE CONTAIN-11, BIFLO AND SSC-S CODES
- COMPLETE 2-PHASE COMMIX-2 AND BODYFIT CODES
- COMPLETE PHASE-2 OF ACCIDENT DELINEATION STUDY
- continue code qualification programs
SAFETY TEST FACILITY STUDIES
$\$ 0.7 \mathrm{M}$
- REACTIVATE NRC PROGRAM
EY 81 LMEBR PROGRAM

$\$ 4.6 \mathrm{M}$

DESIGN / FABRICATION
ACRR LOOP
ACRR 7-PIN
ACRR FUEI
ACRR TRANSITIOH PHASE TESTS

EY 81 LIFBR PROGRAM
$\$ 6.0 \mathrm{M}$

- contain qualification
- large core melt retention tests
- acre core debris conlability tests
- tests on cell liner response to accident loads

*EXPECT $\$ 3.7 \mathrm{M}$ TO BE MANDATED RY CONGRESS
FY 80 SUPPIEMENT FOR SAFETY RESEARCH

| BUDGET SUMMARY | |
| :---: | :---: |
| Category | (\$ Million) |
| Better Understanding of Transient and Small LOCA Accidents | \$ 13.4 |
| Enhanced Operator Capability | 3.8 |
| Playt Response Under Accident Conditions | 5.1 |
| Post Mortem Examination and Plant Recovery | 2.7 |
| Improved Risk Assessment | 3.1 |
| Improved Reactor Safety | 1.7 |
| | \$ 29.8 |

(\$Million)
E
$\circ \sim 0 \underset{\sim}{\sim}$
$\stackrel{\rightharpoonup}{\circ} \mid \stackrel{\pi}{\#}$
Enhanced Operator Capability
Develop Improved Control Room Display and Diagnostic
Systems and Improved Requirements for Operator
Training Simulators
Develop Instrumentation Needs and Improved Status
Monitoring of ESF's
Define Data Transmission Requirements and Review
Accident Response Procedures
Plant Response Under Accident Conditions
Improved Understanding of Coolant Chemistry after
Fuel Failure; Better Sampling Methods
Hydrogen Behavior in Coolant and Containment;
Effect of Hydrogen Explosions
Response of Plant Equipment and Structures to
Accident Conditions
Potential Design Improvements for Maintaining
Containment Integrity under Fuel Melt Conditions
Benchmark Testing of Structural and Piping System
Analysis Codes
$\sum_{i=1}^{\overline{=}} 0 \quad 0 \quad=\underset{\sim}{\infty}$
Post Mortem Examination and Plant Recovery
Examine Samples of TMI Damaged Fuel
Measure Fission Product Chemistry and Plateout
Data
Post Mortem of TMI Safety Related Equipment and Establish Requalification Criteria
室
Improved Risk Assessment
Develop Event Trees of Accidents Leading to Severe
Core Damage and Assess Site Specific Accident
Consequences
Analysis of Human Error Rates and Impacts of Human
Errors on Risk
Operationa: Failure Data Analysis

Improved Reactor Safety
Improved Containment Concepts
Improved Safety Systems for Coping with Accidents
Improved Value/ Impact Methodology

RESEARCII PROGRAMS' REYIEH

FOR THE

ACRS SUBCOMMIIIEE ON ECCS
SEParate effects research branch
JINE 20. 1979
A. W. SERKIZ

ACTING BRANCH CHIEF

66
SERB RESEARCH PROGRAMS

022812
"SYSTEMS ENGINEERING" DECISION UNI
BLOWDOWII AND REFLOOD HEAT TRANSFER
OPERATIONAL SAFETY (ROB)

$$
\begin{aligned}
& \text { 2D/3D } \\
& \text { MODEL DEVELOPMENT } \\
& \text {. SERB } \\
& \text {. ABB } \\
& \text { OPERATIONAL SAFETY (ROB) }
\end{aligned}
$$

SEPARAIE EFFECTS RESE: 3 CH BRAHCII

- SEMISCALE
$\$ 6.2 \mathrm{M}$
. BD AND RF HzAT TRANSFER
7.0M
- ECC BYPASS (SMAIL SCALE)
1.7 M
- MODEL DEVELOPMENT
1.5 M
- TECHNICAL SUPPORT
1.2M

SERB TOTAL
$\$ 17.6 \mathrm{M}$
SYSIEMS ENGINEERING DECISION UNIT = $\$ 33.7 \mathrm{M}$

CURIENL ACTIVIIIES

- programs under review to address tmi-2 lessons lfarned
- de-Empliasize large loca research
- CONCLUDE PROGRAMS UNJJERWAY
- ADDRESS NEW RESEARCH REOUIRIMENTS
- PETHINK FY 1980 EFFORT and redirect
- REQUEST SELECTIVE FY 1980 AIID FY 1981 BUDGET SUPPLEMENTS
EY $1972 \frac{\text { FY } 1980 \cdots}{\text { (PRES. } \triangle \text { FYDGET) } 1981 \text { (REE })}$
- SEMISCALE
- bD AND RF H.T.
- ECC BYPASS
- model devel.
- TECII. SUPPORT

| $\$ 6.2 \mathrm{M}$ | 6.7 M | $\$ 3.5 \mathrm{M}$ | $\$ 10.2 \mathrm{M}$ | $\$ 8.1 \mathrm{M}$ |
| ---: | ---: | ---: | ---: | ---: |
| 7.0 M | 6.2 M | 3.0 M | 9.4 M | 8.4 M |
| 1.7 M | 0.9 M | - | 0.5 M | 0.5 M |
| 1.5 M | 1.9 M | - | 0.5 M | 0.5 M |
| 1.2 M | 1.0 M | - | 1.1 M | 1.1 M |
| $\$ 17.6 \mathrm{M}$ | $\$ 16.7 \mathrm{M}$ | $\$ 6.5 \mathrm{M}$ | $\$ 22.7 \mathrm{M}$ | $\$ 19.6 \mathrm{M}$ |

HOTES:

1. Fy 1981 estimates are preliminary and under revieh
2. Fy 1980 estiflates are pre-tmi distributions per the presidenis budget

SEMISCALE OVERYIEK

- FY 1979, CONDICT UHil EXPERINENTS
- DONNCOMER VOIDING AND OSCILLATORY BEHAVICR (REF, S-06-7 EXPERIMENT)
- MASS DEPLETION STUDIED, ADDITIONAL TESTS RUN
- EXCESSIVE HEAT FROM DOHNCOMER WAILS
. . CORE BACKFLOW AIID High CORE STEAMING RATES
- TMI SUPPORT EXPERIMENTS
. . GAS BUBBLE VENTING
.. TMI TRANSIENT SIMILAIION
- pragram redirection recommemded
. . MOVE SMALL BREAK TEST UP (JULY - SEPTEMBER 1979)
- . SYSTEM UPGRADE EFFORTS (OTSG, ADDITIONAL PRIM. PUMP ADD SECONDARY LOOPS)

G22 $3 L 2$

SEMISCALE PROGRAM SCOPE
PRE-TMI (FY 79-81)
LOSS-0F-COOLAN: ACCIDENT
(WESTINGHOUSE UH DESIGN) :
MOI-3 BASELINE TESTS
SMALL. BREAK LICENSING EVALUATION
SMALL. BREAK TESTING
MOD-3 INTERIM EVALUATION TESTS
UZI EEC TESTS
TWO-PIPE DOWNCOMER SEPARATE EFFECTS
TWO-PIPE DOWNCOMER INTEGRAL. TESTS
INTERNAL WALL INSULATION
TWO-PIPE DOWNCOMER
MOD-2 CONFIGURATION

TEST PROGRAMS:

SYSTEM
 MODIFICATIONS:

Preliminary semiscale program scope
POST - TMI (FY 79 - 81)
OPERATIONAL TRANSIENTS / SMALL BREAK
(WESTINGHOUSE, B \& W DE3IGNS)
MOD-3 BASELINE TESTS
SMALL BREAK L.ICENSING EVALUATION
SMALL BREAK TESTING
LOSS-OF-FEEDWATER TRANSIENTS
UHI ECC TESTS
CLOSED LOOP VERIFICATION TESTS (HESTINGHOUSE CONFIGURATION)
NATIRAL CIRCULATION TESTS (SINGLE-PIIASE, REFLUX)
B \& W CONFIGURATION BAS:LINE TESTS
INTERNAL WALL INSULATION
MOD-2 CONFIGURATION
CLOSED LOOP SECONDARY
B \& W CONFIGURATION

PRELIMINARY SEMISCALE BUDGET ESTIMATES

FY-1979 - FY-1980

| | PRE-TMI | | POST-TMI | | | | DIFFERENTIAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACTIVITY | 1979 | 1980 | 1981 | 1979 | 1980 | 1981 | |
| LEVEL OF EFFORT, OPERATIONS \& SUPPORT | 5170 | 4940 | 5225 | 5170 | 5290 | 5505 | $+630$ |
| TESTING | 345 | 855 | 775 | 398 | 452 | 624 | -501 |
| CONVERSIONS | | | | | | | |
| TWO-PIPE CONVERSION | 620 | 240 | 30 | 620 | 135 | -0- | -135 |
| MOD-2 CONVERSION | 70 | 415 | 470 | 70 | 435 | 340 | -110 |
| closed loop secondary | -0- | -0- | -0- | 100 | 1541 | -0- | +1641 |
| B\&W CONFIGURATION | -0) | -0- | -0- | 100 | 2035 | 1565 | +3700 |
| CE CONFIGURATION | -0- | -0- | -0- | -0- | 100 | 600 | +700 |
| TOTALS | 6205 | 6450 | 6500 | 6458 | 9988 | 8634 | 5925 |
| DIFFERENTIAL BY YEAR | | | | $+253$ | +3538 | +2134 | |

SEMISCALE PROGRAM EXISTING SCHEDUIE FF 1980 FY 1991
622812

1. FY-1979 FY-1980 I FY-1981 |

Sertes 7
TMI

UHI Drain

Loss-of-Feedwater Tests

Closed Loop Sec Verif -
\underline{H} Op Tran Tests ? Facility
Down

NOTE: III PRELIMINARY PLANHing STAGE

BLOWDOWM AND REFLOOD HEAI TRANSFER

- PWR BDIIT (B0125)
- BVR BD/ECC (B3014)
- bVR CCFL (B5877)
- FLECIIT SEASET (B6204)
- TECHNICAL SURVEILLANCE AT INEL (AG039)

PROJECTED COSTS SUMMARY

BLOWDOHN AMID REFLOOD HEAT TRANSEER PROGRAMS

| | FY 1979 | EY 1980 | EY 1981 | EY 1982 | EY 1983 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| PUR BDIIT | $\$ 4.3 \mathrm{M}$ | $\$ 4.1 \mathrm{M}$ | $\$ 2.9 \mathrm{M}$ | $\$ 1.9 \mathrm{M}$ | $\$ 0 \mathrm{M}$ |
| BWR BD/ECC | 0.3 M | - | $<2.0 \mathrm{M}>$ | 1.0 M | 1.2 M |
| BWR CCFL | 0.7 M | 1.4 M | 1.9 M | 1.0 M | 0.6 M |
| FLECIIT SEASET | 1.4 M | 0.4 M | 1.5 M | 1.2 M | 0.9 M |
| TECII. SURVEL. | 0.3 M | $\frac{0.3 \mathrm{M}}{}$ | $\frac{0.3 \mathrm{M}}{}$ | $0.3 \mathrm{M}+$ | 0.5 M |
| | $\$ 7.0 \mathrm{M}$ | $\$ 6.2 \mathrm{M}$ | $\$ 6.8 \mathrm{M}$ | $\$ 5.6 \mathrm{M}$ | $\$ 3.2 \mathrm{M}$ |

NOTES:

1. FY'S 1982 AND 1983 ESTIMATES INCLUDE EXTENDED TESTING
2. ESTIMATES STILL UNDER REVIEW, THESE ESTIMATES FOR ROUGH PLANNING PURPOSES

〔\& 8 $8<2$
.. target for installation $=$ jully 1, 1979

- ISOTHERMAL AND REACTOR BLOWDOWN SIMULATION

3 EA

- FILM BOILING IIN UPFLOW YEA
. FILM BOILING IN DOWNFLOW 3 EA
- TRANSITION BOILING 2 EA
- PLUS -
- QUASI-STEADY STAIE EXPERIMENTS

QRNL PWR BDII PROGRAM QYÉRVIEY

BWR RESEARCH

- RHP BLOWDOWN (TLTA)
. . CURRENTLY BD + REFILL
. . UPGRADE PROPOSED
- BUR CCFL (LYINN, MASSACIIUSETIS)
. . upper plenum phenomena (sprays)
- . FlOOding at upper core tie plate

511
L\& $8 \angle 2$

9NIIS3I V501 ע0 Javx9di VITI
1007- 13 + NHOLMO
TIIREE FULL LengTh 8×8 bundles

- IMPROVED BYPASS AND VOLUME (L.P.) SCAL ING
- SMALL BREAK TEST CAPABILITY

BWR TRANSIENTS UNDER CONSIDERALIOH

FOR ILTA EXIENSION

- feedwater transients
- PRESSURIZING EVENT
- RELIEF VALVE CYCLing
- recirculation floh change
- ADS, LOW FLOW, MID-PRESSURE
- RCIC SPRAY IMJECTION
- FLOW Blockage
- PLLSS -
- natural circulation
- SINGLE LOOP OPERATION
- STABILITY TESTS
birr refill - reflood major tasks

BUR CCFL/REEILL - REFLOOD PROGRAM

TESTING:

- CORE SPRAY DISTRIBUTIOH (30° SECIOR, BWR-4 AND BWR-6)
- SINGLE heated bundle tests
- CCFL/REFILL SYSTEM EFFECTS IESTS (30° SECTOR)
- 360° upper Plenum Tluts

ANALYSIS:

- DEVELOPE TRAC BWR MODELS
- compare codes and experiments

ELECHI SERISEI

- bundle separate effects tests
. . 161 ROU 12 F00T BUNDLE
. . PARAMETRIC REFLOOD STUDIES WITH AND WITHOUT BLOCKAGES
- STEAM iENERATOR SEPARATE EFFECTS TESTS
. . FUL LiEIgIIT U-TUBE DESIGN
. . parametric studies of heat transfer
- luppér plenum separate effects tests
. . FULL HEIGIIT WITH SIMULATED INTERNALS
. . PARAMETRIC STUDIES OF LIQUID/VAPOR SEFARATION
- SYSTEM ETFECTS TESTS
, , SCALED TWO LOOP PWR TILIZING COMPONENTS STUDIED IN SEPARATE EFFECTS TESTS
. . PARAMETRIC STUDIES OF SYSTEM BEHAVIOR WITH ALIERNATE INJECTION LOCATIONS

Tel
§って 812

*COORDINATION WITH ADVANCED CODE DEVELOPMENT
rer
沏 $3 / 2$
SMALL SCALE ECC BYPASS PROGRAHS

PRELIHIMARY HIGILLIGHIS ECC BYPASS RIL.

FUTURE SMALI. SCALE KORK

BAILLLLE COLUMBUS LABORATORIES

CREARE, INC.

- loner plenum voiding and level suell test and analysis

SMALL SCALE ECC BYPASS PROGRAMS

major activities

ACTIVIIY
BCL. $2 / 25$ SCALE IHSTRIMENTATION UPGRADE

BCL $2 / 15$ SCALE TESTIHG
L.P. FLASHING, LEVEL SWELL AND ENTRAINMENT

AIR-WATER FLOODING TESTS
RILS

FUNDING

MODEL DEVELOPMENT：

SERB MODEL DEYELOPMENI

SERB MODEL DEVELOPMENI

MASSACIIUSEIIS INSTITUTE OF TECHNOLOGY

THERMAL IYYRAULIC MODELIING

- MODES OF Natural Circulation during reflood
. . 2×6 ROD TEST SECTION (HOT VERSUS COLD REGIONS)
. . LIOUID FLOM STUDIED
- STEAM gENERATOR NODEL.ING DURING REFLOOD
. . 4 U-TUBE STEAM GENERATOR
. . FLOW REGIMES STUDIED AS FUNCTION OF AIR AND LIOUID VEI DCITIES
- GRAVITY FEED REFLOOD OSCILIATIONS
. . NODEL BEING DEVELOPED
. . COMPARISONS WITH SEMISCALE UNDERWAY
SERB MODEL DEVELOPMENT

RENSSELAER POLYYECIINIC INSTITUIE
 LHO PHASE FLOW PIILNONENA IP NUCLEAR REACTOR TECHNOLSGY

TWO PHASE FLOW INSTRURIENTATION

PIIASE SEPARATION AND DISTRIbUTION

- LEIIGG UNIVERSITY: NON-EOUILIBRIUM HEAT TRANSFER AND TWO PHASE IHSTRIMEMTATION
. DIRECT MEASUREMENT OF NON-EOUILIBRIUM QUALITY IN TWO PHASE FLOW UNDER
CONTROLLED CONDITION
. . IMPROVED CORRELATION FOR POST-CHF FLAT TRANSFER
. . DEVELOPMENT OF FILM PROBES FOR THE MEASUREMENT OF LIQUID FILM THICKNESS
AND VELOCITY
SUMY: DROPLET ENTRAINMENT
. STUDY OF DROPLET FLOW WITII 2D/3D TIE PLATE GEOMETRY
. EFFECT OF GRID rACERS ON FLOW
. . EFFECT OF BLOCKAGES ON ENTRAINED DROP DISTRIBUTION
SERB MODEL. DEVELOPMENI

(¿) दू̧ 812

- $\varepsilon / \quad 992 \quad 8 L 2$
. . delidvery of png's bY June 1980
SERB MODEL DEVELOPMENT ANT TECIINICAL SUPPORT

- BDL, NON-EQUILIBRID PHASE CHANGE STUDIES
- parametric study of flashing vapor generation rates - IMPROVEMENT OF MODELS
PLANNED (FY 1980)
- DISCHARGE AND SOLUBILITY OF NON \& NDENSABLES
- DELETION OF OPTICAL PROBE DEY IMPI IT
$54 \quad 892812$

$$
\begin{aligned}
& \text { GARY L. BENNETT, CHIEF } \\
& \text { RESEARCH SUPPORT BRANCH }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2D/3D REFILL AND REFLOOD } \\
& \text { EXPERIMENTAL AND ANALYTICAL RESEARCH PRogram } \\
& \text { PRESENTATION to } \\
& \text { acis subcommittee on ECCS }
\end{aligned}
$$

JUNE 20, 1979
-692812

| SCOPE OF 3-D | FRG-PMFT | JAPAN-JAERI | USNRC |
| :---: | :---: | :---: | :---: |
| INIEGRAL TESTS
 - LARGE BREAK
 - SMLL BREAK
 - MATURAL CIRCIILATION AND CORE UNCOVERY | $\begin{aligned} & \text { PKL-CORE II } \\ & \text { 34O-POD, } \\ & \text { (FULI-HEIGHT COFE, } \\ & \text { 3-LOOP) } \end{aligned}$ | CCFT ORP II (2000-R01), FULL-HEIGHT CORE, 4-100P) | ADNNCED INSTRIMENIATION TRAC AMLYSIS |
| SEPARATE EFFECT
 TESTS (SCALING)
 - ECC PENEIRATION
 - STEM BITDING COUPLING
 - FLION BLOCKAGE | UPTIF
 (FULL SCALE VESSFL, UNHEATED COPE) | SCTF
 (2000-ROD),
 FULL-HEIGHT,
 6 FT WIDE SLAB) | ADNANCEID INSTRIMENTATION. TRAC AVILYSIS |
| NOIE: PKL - PRIMRKKPEISLAIF
 CCTF - CYLIPDRICAL COPE TEST FACILITY
 SCTF - SLAB COPE TEST FACILITY
 UPTF - UPPER PIENMM TEST FACILITY | | | |
| 1. ALL FACILITIES INCUDE TESTS WITH COLD-LEG ONLY INEECTION (USA AND JAPNV) AS WELL AS TESTS WITH COMBINED COLD-IEG AND HOT-LEG INUECTION (FRG). | | | |
| 2. ALL FACILITIES ARE LARGE SIZE, WELL INSTRUMENIED, BUT LON PRESSURE. THE SIIE ETECT (3D) AND PPESSUPE ETECT ARE STUDIED IN CONUUNCTION WITH OTHER TEST FACILITIES. | | | |

THE OBJECTIVES OF THE COORDINATED 3-D PROGRAM ARE:

1. TO STudy the steam binding effect during reflood for a
Medium and large-break loci using various eccs (cold leg
Injection, hot leg injection, lower plenum injection and
vent valve) by measuring:
THE PRESSURE DIFFERENCE BETWEEN THE UPPER PLENUM AND
THE TOP OF DOWNCOMER IN AN INTEGRAL SYSTEM TEST
(PKL, CCTF)
THE PRES $\because=$ HID F DROP ACROSS STEAM GENERATORS (PL, CCTV)

- THE LIQUID CARRYOVER AND FALLBACK AT UPPER CORE SUPPORT
PLATE (CCTF, SCTF, UPTF)
THE DE-ENTRAINMENT OF LIQUID IN UPPER PLENiin (CCTF,
SCTF, UPTF)

3. TO STUDY THE FLOW HYDRODYNAMICS IN THE CORE, DOWNCOHER AND UPPER PLENUM DUi, is REFILL AND REFLOOD FOR A LARGEBREAK LOCA BY MEASURING:

- eCC penetration and lower plenum filling during refill (CCTF, SCTF, UPTF)
- DOWNCOMER FLOW TRANSIENT INDUCED BY THE CONDENSATION OF STEAM BY ECC WATER DURING REFILL (CCTF, SCTF, UPTF) U-TUBE FLOW OSCILLATION DURING REFILL (CCTF, SCTF, PKL)
- LIQUID HEIGHT AND TEMPERATURE OF WATER ACCumulated in upper plenum during combined injection (UPTF, scta)
§ $928 \angle 2$

4. TO STUDY THE EVENTS : EADING TO CORE UNCOVERY DURING THE END
SIGNIFICANT ACHIEVEMENTS IN FY IG7
5. COMPLETED COMSTRUCTION OF CCTF, $2 / 79$

4/79

3. COMPLETED FOUR SHAKEDOWN TESTS OF CCTF, 5/79
4. COMPLETED AIR/WATER LOOP TESTS FOR INSTRUMENTS, 11/78
5. COMPLETED INSTALLATIOH OF SELECTEL יNSTRUMENTS IN CCTF
AND PKL, 4/79
COMPLETED TRAC
6.

EFFECT OF SD PROGRAM ON LICENSING

1. STEAM BINDING EFFECT ON PEAK CLAD TEMPERATURE FOR MARGIN OF SAFETY PER APPENDIX K ASSUMPTIONS WITH VARIOUS BREAK SIZES OF LOLA
2. DOWNCOMER BEHAVIOR AND EFFECTIVENESS OF VARIOUS ECC INJECTION MODES:

- COLD LEG
. HOT LEG
- cold and μ T LEGS COMBINED
- LOWER PLENum
- UPPER PLENum
- DOWNCOMER

3. STUDY OF SMALL BREAK AND NATURAL CIRCILATIONS
4. COBL CHECKOUT AND EXTRAPOLATION TO FULL SCALE REACTOR
A. INTEGRAL EFFECT

- FULL HEIGHT AND COMPLETE SYSTEM SIMULATION IN CCTF AND PKi.
B. SEPARATE EFFECT
- FULL SIZE UP AND DC IN L...
- FULL HEIGHT AND RADIUS IN SCTF

SD ASSISTANCE ON TMI

PL FACILITY

1. SMALL BREAK TESTS

COIF FACILITY

1. NATURAL CIRCULATION SYSTEM COOLING TESTS
2. CORE COOLING TESTS FOR SMALL BREAK

SCTF FACILITY

1. BLOCKED BUNDLE COOLING TESTS FOR SMALL BREAK

20/3D RESEARCH PI OGRAM SCHEDILE
JAERI REFILL-REFLOOD FACILITIES
CALENDAR YEAR

2D/3D RESEARCH PROGRAM SCHEDULE
$8928 / 2$

2D/3D RESEARCH PROGRAM
FY 1980 PROGRAM PLAN

RESEARCH ORGANIZATION: IDAHO NATIONAL ENGINEERING LABORATORY
FY 1980 FUNDING: \$5898K (OPERATING)

WORKSCOPE:
IN SUPPORT OF THE 2D/3D PROGRAM, INEL WILL

- FABRICATE AND CHECK OUT TURBO PROBES - PKL II
- FABRICATE, DELIVER AND CHECK OUT INSTRUMENTS FOR SCTF CORE I
- iNITIATE DESIGN AND PROCUREMENT OF UPTF INSTRUMENTATION
. INITIATE DESIGN AND PROCUREMENT OF CCTF CORE II INSTRUMENTATION
- COMPLETE FABRICATION OF FLOW DISTRIBUTION GRIDS FOR SCTF CORE I
- PROVIDE TECHNICAL AND FIELD SUPPORT, INCLUDING RELATED SOFTWARE APPLICATIONS

> 2D/3D RESEARCH PROGRAM
> FY 1981 PROGRAM PLAN

RESEARCH ORGANIZATION: IDAHO NATIONAL ENGINEERING LABORATORY
FY 1981 FUNDING: $\$ 4814 \mathrm{~K}$ (OPERATING)
WORKSCOPE:
IN SUPPORT OF THE 2D/3D PROGRAM, INEL WILL

- FABRICATE, DELIVER AND CHECK OUT INSTRUMENTS FOR THE UPPER PLENUM TEST FACILITY
- refurbish instruments riún CCTF core I and provide new instruments FOR CCTF CORE II
- PROVIDE TECHNICAL AND FIELD SUPPORT
DEVELOP ALGORITHMS FOR THE INSTRUMENTS DELIVERED

RESEARCH ORGANIZATION: OAK RIDGE NATIONAL LABORATORY

FY 1981 FUNDING: \$2175K (OPERATING)
\$ 272K (EDUIPMENT)
WORKSCOPE:
IN SUPPORT OF THE 2D/3D PROGRAM, ORNL WILL

- DELIVER, INSTALL. AND TEST PROBES FUR CCTF CORE II
- INITIATE DESIGN AND FABRICATION OF PROBES FOR SCTF CORE !!
- PERFORM TESTS AS NEEDED IN INSTRUMENT DEVELOPMENT LOOP
- FABRICATE, DELIVER AND CHECK OUT INSTRUMENTS FOR UPTF
- PROVIDE TECHNICAL AND FIELD SUPPORT
- DEVELOP ALGORITHMS FOR THE INSTRUMENTS DELIVERED

RESEARCH ORGANIZATION: LOS ALAMOS SCIENTIFIC LABORATORY
FY 1980 FUNDING: $\$ 1850 \mathrm{~K}$ (OPERATING)
\$ 70K (EQUIPMENT)
WORKSCOPE:
IN SUPPORT OF THE 2D/3D PROGRAM, LASL WILL

- PERFORM FLLLL-SCALE PWR SYSTEM CALCULAIIUNS
- PERFORM UPTF CALCULATIONS
- continue calculations for all ccif tesis and some sctf design studies
- SUPPLY LENS SYSTEMS

2D/3D RESEARCH PROGRAM
FY 1981 PROGRAM PLAN

RESEARCH ORGANIZATION: LOS ALAMOS SCIENTIFIC LABORATORY
FY 1981 FUNDING: $\$ 2124 \mathrm{~K}$ (OPERATING)
WORKSCOPE:
IN SUPPORT OF THE 2D/3D PROGRAM, LASL WILL

- PERFORM DESIGN AND EXPERIMENTAL CALCULPTIONS FOR CCTF CORE II
- PERFORM EXPERIMENTAL CALCULATIONS FOR SCTF
- PERFORM DESIGN CALCULATIONS FOR UPTF
- SUPPLY LENS SYSTEM

USNRC INSTRUMENTATION FOR UPTF
278276

OTHER TRANSIENT TESTS IN 2D/3D

CONDUCTING OTHER TRANSIENT TESTS IN THE 2D/3D PROGRAM WILL PROVIDE INFORMATION CONCERNING

- INTERNAL CORE FLOW DISTRIBUTION AND BEHAVIOR ("3-D EFFECTS"), INCLUDING CORE UNCOVERY IN SMALL BREAKS
- MORE REALISTIC SURFACE/VOLUME RATIO ("STORED HEAT EFFECT")
- MORE REALISTIC TIME SCALES
- GEOMETRIC EFFECTS (SIZE, HEIGHT)
- PARAMETRIC EFFECTS (E.G., PRESSURE) •
- TWO-PHASE NATURAL CIRCULATION
- FLOW BLOCKAGE IN DAMAGED CORE

WHICH WILL HELP IN THE DEVELOPMENT AND ASSESSMENT OF SAFETY ANALYSIS COMPUTER CODES.

- nuclear safety information centfr
- national energy softhare center
- FACULIY INSTITUTE
- CRITICAL REVIELS
- COHSULTANTS/SUPPORT SERVICES

$$
\begin{aligned}
& \text { HUCLEAR SAFETY IIHFORMATION CENTER } \\
& \text { OAK RIDGE WATIONAL LABORATORY }
\end{aligned}
$$

- COLLECT, EVAllIATE, DISSEMINATE REIEVANT SAFETY INFORMATIOH
. COLLECT, MANAGE, ASSESS FOREIGN SAFETY DOCUMENTS
- PREPARE BIBLIOGRAPIIIC II!DEX LISTIIIGS
- MAIHGE U.S./FOREIGN REPORT E.CH/NGE
- PUBLISH IUUCLEAR SAFETY JOURIAAL
- collect, package, maintain and distribute nrc contractor-
developed programs nim data
- click library software. fair completeiless
execute test problems
- PREPARE AND EDIT ABSTIACTS
- distribute notes of changes

ASSIST USERS
DEVELOP STANDARDS AND PROCEDURES

ACHIEVEMENTS TC DATE

- Completed Power Range Testing
- Issued Ril on !lon-Nuclear Test Series
- Performed first Two Nuclear LoCe's
- Performed Isothermal Small Break loCe
- Replaced Central Fuel Assembly
New Focus

System Response to | - Off-Mormal Conditions |
| :--- |
| |
| |
| - Natural. Perturbations |
| |
| - Operator Intervention |

Assessment of small-break and transient codes in specific areas
Study me as of recovery from uncontrolled situations
By-Product Role

LOFT NUCLEAR PROGRAM

CURRENT

* All tests initiated at $12 \mathrm{kw} /$ /ft unless otherwise noted.
- Off-normal transients, series L6, was planned for insertion into CURRENT PROGRAM.
+ Added small break tests.

EXPFCTED ACHIEVEMENTS FY 1980

- Perform three small break LOCE's
- Perform large break LOCE
- Begin Natural Circulation Testing
- Issue RIL's on L2-2, L2-3, and small breaks

EXPECTED ACHIEVEMENTS FY 1981

- Compiete Power A.scension Series of LOCE's
- Continue Natural Circulation Testing
- Begin Off-Normal Transient Testing
- oue kil's on Large Break LoCF's

LOFT BUDGET SUMMARY

| | $\underline{F Y}-80$ | $\underline{F Y}-81$ |
| :--- | :---: | :---: |
| EXPERIMENTAL PROGRAM | 3,930 | 4,030 |
| FUEL | 6,120 | 6,280 |
| EXPERIMENTAL INSTRUMENTATION | 7.720 | 7,907 |
| PLANT SUPPORT | 7,860 | 8,070 |
| CORE \& SAFETY SUPPORT | 3,720 | 3,810 |
| COTTON SUPPORT | 5,850 | 6,010 |
| FACILITY OPERATIONS | 7,700 | 7,900 |

[^0]of 682812

$$
0628 \angle 2
$$

ㅍ \&

웁 즁
FUEL

- FUEL MATERIALS PERFORMANCE EVALUATION
- FUEL POST - TEST ANALYSIS
- RELOAD CORE II AND FABRICATION
- CONTRACT FOR RELOAD CORE III
- DOWNCOMER INSTRUMENT FABRICATION
$1628 L 2$

PLANT J̈̈̈turı
- PROVIDE SUPPORT FOR MAINIENANCE, UPGRADE, AND MODIFICATION OF FACILITY
- PROVIDE PERSONNEL AND EOUIPMENT FOR FUEL CHNGE OUT
- PLANT REOUAL IFICATION FOLLOWING EXPERIMNIS

| | FY-80 | FY-81 |
| :---: | :---: | :---: |
| CORE \& SAFETY SUPPORT | 720 | 3810 |

- CORE PAYSICS CALCULATIONS FOR CORE CHWGE OUT
- ANALYTICAL PHNSICS TRACKING OF OPERATING PLANT HISTRDV
- STATISTICAL TTHFPML-HMDRAULIC SAFETY ANALYSIS
- ZERO POWER AND POWER RNNGE TESTING FOLLOWING CORE CHWGE OIT
- PERFORM SNEETY ANALYSIS FOR EXPERIMENTS

$$
\nabla . i v L 2 \quad+628 L 2
$$

평 웅

N
 \%

SPECIAL PROCESS SPARES

$$
562812
$$

${ }_{\text {res }}^{\text {res }}$
${ }_{7 \times 0}^{\mathrm{E}+\infty}$
FACILITY OPERATIONS
PLANT OPERATION IN SUPPORT OF LICE TESTING
RADIOLOGICAL AND I., MISTRIAL SAFETY
reounlify plant following each lace
MAINTAIN AND MODIFY PLANT AS NECESSARY TO CARRYOUT T TESTS
SUPPORT DECONTAMINATION FACILITIES ASSOCIATED WITH SYSTEM CLEANUP

962812
켭 훙 병요

FY
PRESIDENT'S
1978
40.0
39.1 PURCHASE DOE'S SPECIAL SPARES INVENTORY 1.9

1979

1980 42.9 PUPCHASE DOE'S SPECILL SPADE JNVENTNPY 1.8 WITHOUT SUPPLEMENTAL

NEW PESPQNSIRILITIES

INCRESE SPECIAL SPATES INVENTORY TO 2.0

INITAAE CHANGOVER TO RUDGET
AUTHPITY ACCOONIIGGSYSTM

$$
\begin{array}{ll}
\frac{2.0}{} & \frac{2}{5.8}
\end{array}
$$

RELATIVE BUDGEL

$$
40.0
$$

37.?

$$
37.1
$$

37.1
39.1

TABLE OF ACCOMPLISHMENTS PLANNED FOR EACH BUDGET LEVEL

FY 1981 Budget Level

$\$ 44.3 M \quad \$ 48.3 M \quad \$ 49.3 M$

Planned Accomplishments

L2-2 Targe break $8 \mathrm{~km} / \mathrm{ft}$
L2-3 Large break*
L3-0 small break $0 \mathrm{kw} / \mathrm{ft}$
L3-1 small break
L3-2 small break
L3-3 small break with recovery
L6-1 natural cire following L3-3
L2-5 large break
L6-2 off-normal transient
L2-4 large break $16 \mathrm{kw} / \mathrm{ft}$
L2-6 large break w/pressurized fuel
L5-3 off normal transient
L6-4 off normal transient
L3-4 small break
13-5 small break
L4-1 alternate ECCS
L6-5 natural circulation
L5-1 large hot leg break
L6-6 off normal transient
L3-6 small break
17-1 large break 8 steam generator
tube rupture
L7-2 targe break \& steam generator tube rupture

FY 79

$\frac{\mathrm{FY}}{\mathrm{FY} 81}$

L7-3 large break a steam generator tube rupture
14-2 alternate ECCS
L4-3 alternate ECCS
L5-2 large hot leg break
L5-3 large hot leg break
End of Complete Program.

* A11 tests initiated at $12 \mathrm{~km} / \mathrm{ft}$ unless otherwise noted.

FY 1981 LOFT QPERALING BUDGET, $\$ 10^{6}$

Minimum and Curreni

44.3

Men Pesponsibilities

Relative Budget

| Complete changeover to Budget (ithority accounting | |
| :---: | :---: |
| New Facility Operations | |
| HOT SHOP \& HOT CELLS | |
| 2-PHASE CALIBRATION | 2.3 |
| TOTAL | 5.3 |

Requested (lompared with Current Level)
48.3 INCREASE ${ }_{2}$ EXPERIMENT TURNAROUND 2.0

IME BY INITIATE INSTRUMENT APPLICATION
TO COMMERCIAL PLANTS
1.0

INITIATE OPERATIONAL FAULT
DIAGNOSTICS
1.0

TOTAL 4.9
39.0

Supplemental (Compared with Current Level)

$$
\text { TOTAL } 5.0 \rightarrow \rightarrow 0
$$

TMI-RELATED IESTS IN FLECHT SEASET

- FORCED AND NATURAL CONVECTION TO STEAM
- FORCED CONVECTION TESTS WERE PERFORMED IN MAY, 1979 IN 161-ROD BUNDLE
- RE $=2,100$ то 18 , uu0
- PRELIMINARY ANALYSIS SHOWS BETTER COOLING THAN PREDICTED
- HIGH TEMPERATtRE CAPABILITY IMPORTANT: STEAM FLOW CHANGES FROM TURBULENT TO LAMINAR DUE TO AXIAL TEMPERATURE INCREASE
- TESTS ARE PLANNED IN 21-ROD BUNDLE 10 STUDY BLOCKAGE FFFECTS

| TECHNICAL SUPPORTRESEARCH SUPPORT BRANCH | | | | E |
| :---: | :---: | :---: | :---: | :---: |
| | FUNDING ($\$ 000$) | | | co |
| PROGRAM | $\frac{\text { FY } 79}{(A C T U A L)}$ | $\frac{\text { FY } 80}{(\text { PRES. })}$ | $\frac{\text { FY } 81}{\text { (REQ.) }}$ | \sim |
| NUCLEAR SAFETY INFORMATION CENTER | 625 | 500 | 1272 | |
| NATIONAL ENERGY SOFTWARE CENTER | 75 | 75 | 180 | |
| FACULTY INSTITUTE | 0 | 0 | 53 | |
| CRIIICAL REVIEWS | 0
 (FUNDED | 0 | 42 | |
| CONSULTANTS/SUPPORT SERVICES | 0
 (Funded | 0 | 43 | |
| TOTAL (OPERATING) | 700 | 575 | 1590 | |

ANALYSIS DEVELOPMENT RES／RSR

BRIEFING AGENDA
\therefore SYSTEMS CODES \＆COMPONENT CODES
COMPLETED

UNDEべ \triangle EVELOPMENT
RILE
CODE AVAILABILITY PER GENERIC 1554モS

2．CODE APPLIGATIONS
3．CODE ASSESSMINNT
4．STATISTICAL STUDIES
5．BUBFETS

NRL COJE DEVELOPMENT

- PERSPECTIVE -

1972 RELAP-4 "COMPLETED"
DEVEL. OF ADVANCED CODE (SLODP) INITIATID AT IDAHO

1914 AHERICAN PHYSICAL SOCIEYY STHDY
RECOMMENOS MORE PHYSICNLLY BASED CODES

1914 RES PLANS ROR COSE OEVELOPMENT

FIX-UP RELAP-4
(BAND-AIAS)

1178 FAST RUNNING CODE SELECTION IFROM AMAYG THOR, RELAA 5, ANS TRAC)
12/78 NRC MANRGEMENT DECISION
DEVELOP FAST RUNNING TRAC AT LASL
INEL TO TAKE CARE OF TRAC-EWR

3/T9 FIRST DETAILED TRAC, PWR VERSION (TRAC-DIA)
RELEASEA TO PUSLIC
$3 / 79$ TMI-2 ACIDENT
CONSERUENGE: ACLELERATE DEV. OF FAST
RUNNING TEAL
12 HQ EXPECTES COMPLETION DE FIRST WSRSION OF FAST RUNNING TRAC, FOR AWR APPLICATION

278303

PERCEIVED UNHAPPINES, FROH VARIOUS SOURLES, WITH " NUHEER CRUNLHERS

COMPLEX CODES UNWIELOY FOR EXTEYSIVE MAPPING OF GREAT VARIETY OF POSTKLATED ARCIDENTS

EQUIPHENT MALELNETIONS OPERATOR ACTIONS

SHGGESTED COWRSE OF ACTION (IIY ADDITION TO CURRENT PLANS)

HYBRID-BASED
ANALYTIGAL TOOL

* GOOD PHYSICS
($1-\Delta$, THERH. NON-EQUILIE, PLUS NON-CONOENSIRLE
E.45, DLKS $1-\triangle$ NEGTRON KINETIES)
* computation spees FFITER THAN ACCIDENT (REAL) TIME
* instant interaction BETWEEN USER AND "MACHINE"

NEEV TO DEVSLOP
DEDICATEA HARDWARE - A years

DEV. OF VERY PAST DIATML ROUTINES, WITH INTELLIGENT SHORT-CUTS.

POSSICLY OEVELOAEA IN-HOKSE.

EXAMPLE: IN-HOUSE COMPLETSD CODE TOR NATHIAL CIREKLATION IN BEW PLANT WITH CORE $\triangle A M A G E$.

SYSTEMS CODES - COMPLETED

| CODE | COMPLETED | RELEASED To public | $\left.\right\|_{\text {PMTE }} ^{\text {RTL }}$ |
| :---: | :---: | :---: | :---: |
| RELAP-4/MODS | 6/76 | 1/16 | - |
| RELAP-4/MOS 6 | $1 / 71$ | $1 / 28$ | $11 / 78$ |
| RELAP-5/MOS - | $3 / 29$ | $5 / 21$ | - |
| trac-pi | | 12/71 | - |
| TRAC-P1A | | 3/79 | 9/19 |
| beacon/MOO1 | $12 / 16$ | - | - |
| BEACON/MOD 2 | 10/71 | 12/71 | $6 / 7$ |
| BEACON/MOS 24 | 12/18 | 3/79 | - |

COMPONENT CODES - COMPLETED

| CODE | COMPLETED | RELEASED | DATE OFBLIC |
| :---: | :---: | :---: | :---: |
| TOTL | | | |
| K-FIX (Vers. 1) | | $4 / 77$ | $9 / 19$ |
| K-TIF (Vers.1) | | $5 / 78$ | $1 / 79$ |
| SOLA-DF | | $1 / 79$ | - |
| SOLA-LOOP | | $1 / 79$ | $12 / 79$ |
| COBRA-IV-I | | $1 / 76$ | |
| COBRA-TF-a | $12 / 78$ | | $12 / 79$ |
| | | | |

CURKEIVILY AVAILABLE JIJIEI'I CUDEJ ALSO, AVAILABLE BY END OFCY. 1979

$278308=$

PHR VESSEL NODALIZATION FOR FAST RUNNING TRAC

SYSTEMS CODES UNDER DEVELOPN N

$$
\frac{\text { FIIVAL JYXIEMJ CUUEJ }}{\text { (BYEND OFFY82) }}
$$

NEUTRON KINETICS:

$$
\begin{aligned}
& \frac{O-D T R A C-P D 2, B D 2}{O-D, I-D T R A C-P F 2, B F 2} \\
& O-D, 1-D, 3-D T R A C-P D 3, B D 3
\end{aligned}
$$

CODE APPLICATIONS
I. TMI- 2 ANALYSES
A. AT INEL, KSING RELAP-A

* HII EFFECT ON NATURAL CIREULATION … (12 RWNS)
* STEASY, FORCED FLOW (WITH RCS AWMPS RWUNGG), W/ WARIATIONS IN CORE RESISTAMİE, S.C. LELEL, AHB B-LOOP STATKS. … (30 RUNS)
* CHANEE-OVER TO NATKRAL CIRCULATION (12 RUNS).
* LETDOWN FROM 1000 ASI, VARIOUS RCS PUMP TRIP TIMES ...- (6 RUNS)
* H_{2} EFFECT IN RCS
* TMI SCENARIO, FIRST 20 MINS
* TMI SCENARIO, 20 MINS $\leq t \leq 2 \frac{1}{2}$ HRS
* OCONEE SMALL BREAK ... (S RNNS)
* II SHALL BREAK ... (3 RNNS)
* C.E SHALL WREAK ... (S RNN:)
B. AT LASL, USINE TRAC-PIA.
* TMI-2 SCENARIO
* 3 benchmaril calcl for small dranks, USINF ZION $\triangle E C K ~(3 ~ \triangle I F F E R E M T ~ S R E A K ~$ sizes,...)
* GENERIC STUSY DF PRESSURIZER TRANSIENTS
* GENERIG study df s.g. Transients
C. AT PNL, USINE COBRA-IN
* TRYTO REPRODKLE HOT SPOT FLUID TEMAER., TO ASSESS CDRE DAMAFE
D. IN-HOUSE
* fast running code for scopina STUDIES OF NATURAL CIRCULATION IN B2W PLANTS, WITH OR WITHOUT DAMAGED CORE.

II ANALYTICAL SUPPDRT TO NRC/AREC/JAPAN $20 / 30$
ALL AT LASL, USING TRAC CODE

* US pw? loga w/ efzects of noding
* german (KWk) pWr loca
* cctf peediction
* pKl prejiction
* scta design calcs
* uptr desien calles
III. ANALYT. SUPPDRT TO NRC/EPRE/LE BWR REFLOO EXPERIMENTS TG BE RENDERED BY INEL, KSING TRAL-E CODE.
IV. FORSEE FUTURE REQLESTS FGR ANALYTICAL SUPPORT, AT LASL, USING TRAC-P COSES, ON - OPERATING REACTORS ISSUES
- RESAONSE TO RES REquIESTS

INEPNENT ASSESSET OF SYSTES CITES

1. $\mathbb{E} A P-4 M D 6$

* LO LEEL Efort CaNTINIINE, IMOLVING

LIFT, MARIKEY-III, LBI, SEMISCALEMT 3 (SMA. BREAK)

SMMARY OF ASCESYEN RESLIS

* COEE RESULTS OPPAPED KITH TEST DATA CBTAIED TV:

SEMSIAENDD 1, SEMISCNEMD 3, THTF, LFF, PM, FECRT, FECHT SET, MARVIKEN, AND PPG TEST FACILITIES.

- FUL VERIFICATION WAS NDT POSSIBLE DE TO VER LIMITED TEST DATA UHERIAINIT INFORATION

EIDINS

A. GOI AGREEYENTS FOR PPESSIPE-TIME HISTORY PRIOR TO ECC ACAMLATUR INECTION
B. BLONCKN CLAD TEYEBATURE GEEALY AEQATE EXCET HEN DELAYED CF WAS EXCINTEED.
C. SYSTEM BIOKOWN HDPAULIS GEEFLIY GID. HOEVER COFE FLOH IETAILS E.G. OPE INET IIG) POOR IN SIME CASES,
D. FULL LENTH REFOOD HOPAULCS:

EETIER FOR FRL LENTH CORES THAF FOR SHRT CORES, PRIFPILY BECALSE MOEE CEFICIENTS UEEE MDNALITED ON TEE BRSIS OF FEEOT DATA. GOOD AGKEPETT ON WENCH PRCPAGATION NLOKG TIE HOE COE LENGTH LSNALLY NOT OBTAIED.
E. COE WEANESSES WEE FONO IN TE FOLOWING AEAS:

1. ENTRAINEN ADD PHASE SEPARATION
2. DE-ENTRAINET AND FALL BACK
3. VERTICAL SLIP EQUILIBRIM ASSMPTIOXS
4. TRAKITIII AND DISPESED FID IEAT TRASFER
5. af
6. STEAM GEEATRP NODING SEASITIVITY
7. CRITICAL FLOH
8. TURNPTUND AND QEECH TIME STAETIES PDOR
9. LSER GUIDEINES NOT GAERAL

BITER USER GILEEINES IERE DEVECRED AS PART OF TNEEEDENT ASESSMETT
2. IBAC

- acsesserit matrix completid inhouse fur all pur TRAC VERSIONS.
- FORMAT FOR TRAC ASSESSYENT PESULTS PPEPARED (INHODE)
- hork assigmer plan develofed for by 79 all fy 80, for lasl INE AND BNL BEFOPE TMI-2 INCIDETT
- If FY 80 BIDET SUPPLEENT NOT AVAILABLE SCHEULED TASKS

WILL NOT BE ACCMPLISED DE TO PE-ALGMENT OF FNOING GSSESSMENT $\$$ - COEE DEVELPPMETT $\$$, TO ACFELERATE DEVELCPMENT OF FAST RUNING CDES)

LEST STEPS

- assesser plan for trac-bar
- CODE ACCFPTACE CRITERIA

PRIMARY MEANS OF CODE ASSESSMENT:

COMPARISONS OF CODE RESULTS WITH TEST DATA, TAKEN IN
(a) Integral test facilities
(b) Separate Effects tests
(c) Basic Tests
all at different scales and test conditions.

In test types (a) thru (c) looking at different aspects of the code:
(a) Integral tests comparisons will show ability of the code to dynami:ally couple various system components and account for interac::ons and propagation of kinematic waves, as such affect the flow and void distribution within the reactor core.
(b) Separate Effects tests comparisons will show the code ability to correctly simulate actual flow and heat transfer phenomena, in selected, individual system components, to account for variations is gcometry and size, during different stages of transients. Examples: Steam generator, PWR downcomer, LWR upper plenum BWR jet pump, LWR core, etc.
(c) Basic Experiments yield data for evaluating thermo-hydraulic models for local phenomena, and for evaluating the code's numerics.

QUALITATIVE (subjective) ASSESSMENT

Based on observation of specified code results in time and space domains, to ascertain whether such results are physically reasonable. Test data are also cross plotted, wherever available. This will be the predominant mode of code assessment for the basic experiments and for the separate effects tests. In the case of integral tests, the qualitative assessment will be supplemented by the quantative assessment described below.

The following viewgraphs illustrate selection of code results to be plotted for qualitative assessment pertaining to integral tests (LOFT is shown as an example), to separate effects test (Steam generator test in FLECHT-SEASET, as example), and to basic tests (MARVIKEN-III Critical flow test, as example).

- Fluid Temperature
- Flow rate and density

VOID FRACTION IN CELLS OF
UNWRAPPED DOWNCOMER

FOR RUALTATIVE ACSECHENP

CLAD TEMPERATURES IN $\triangle \theta_{\theta}$
son Roratronve acessmevt
QUADRANT

HOT ROD AXIAL TEMEERATAFIE DISTRIBUTIO!

- loft test lz-3
- tral pia (iloeje)

- Fluid Temperature (Secondary)
- Steam Temperature (Primary)
- Tube wii Ti perature

Measurements for
Code Assessment

QUANTITATIVE ASSESSMENT

Based on obtaining "scatter plots" of certain key "indicators". Such scatter plots (of calculated vs. measured) give information that reflects the cole's ability to describe a single parameter in a normalized manner thereby accounting for differences in test geometry scale, break size, etc. It is possible to extract, from that information, and extrapolate to full scale, the "code error".

The latter goes beyond the uncertainties in coefficients and other code inputs.

Examples of key indicators pertaining to integral LOCA tests are shown in the next viewgraph.

Indicators for very small break LOCA tests, natural circulation, non-LOCA transients, and. for BWR LOCA, ave not yet been worked out.

KEY INDICATORS - CONTINUED

PRESENTATION OF KEY INDICATORS

EXAMPLE FOR INDICATOR x

1. EACH ENTRY IN THE GRAF' INDICNES THE MEASUREMENT AND, ALSO, CALCULATION UNCERTANTY. THE LATTER DUE TO KUCEETAIATY IN VARIOUS INPUT COEFFICIENTS ANA MOSEL "CONSTANTS."
2. GODE ERROR INFORMATION COMES FRON COWDITIONS IN WHICH THE 45° LINE DOES NOT INTERSEX WITH DOMAINS OF INFLUENCE DEFINED BY INDIVIDUAL CROSSES.
3. SINCE INDIVIDGIAL ENTRIES MAY REPRESENT DIFFERENT SIRE TEST FACILITIES IT COULD $3 E$ POSSIBLE TO EXTRAPOLATE CODE ERROR TO FULL SCALE PLANTS.

PLOT OF ALL (TIME) KEY INDICATORS

MFF
WU FOC. FID
FLEAT-SEASET-S. 6.
OFAE $1 / 15$
BC. $1 / 15$
BL $2 / 15$
ω
water sum

C．BAIC IESTS
 SIFER CNIT RIBY DICX CAIMA MEY DIOS（EMO高 高 发
 SPER MEI DIO WMNIMEH－III U．MOLSTM
 EMTMETNは $=-2$ 2－

CODE UNCERTAINTY/SENSITIVITY STUDY

1. AT SANDIA LFB.

* COMPLETED UNCERTAINTY STUDY FOR BLOWDOWN REFINE OF LOLA, USING RELAR-/HOS 6
* $\triangle R A F T$ REPORT ISSUED .

FINDINGS: OF 21 PARAMETERS THAT WERE VARIED, 7 DOMINATE O THE PEAK CLAD TEMPER.

GAP WIDTH
TOTAL PEAKING FACTOR
HO_{2} CONDUCTIVITY

$$
\begin{aligned}
& \text { FILH-BOILING HTS } \\
& \text { 2- G' FRICTION MWLTIPLIER } \\
& \text { SLIP IVAPOR/LIQUIDREL.VEL.) } \\
& \text { POWER LEVEL }
\end{aligned}
$$

* NEXT PHASE: REPEAT ABOVE WITH TRAC-PIA ANA CONTINUE TRU END OF LOLA.

2. AT LASL

में CONDUITING MODELING SENSITIVITY STMAY TO DETERMINE WHICH ARE THE MOST IMPORTANT 2-G FLOW MODELING PARAMETERS, IN TRAN CODE, THAT NEED TO BE INCLUDED IN SANDIA'S sTuDY.

* conducting n. ding sensitivity study

BUDGET REQUIREMENTS

NE.C SAONSORED CALCULATIONS OF THI- 2 ACCIDENT SCENARIO

1. $A \& B$ steaming - 90% operating level in secondary
2. $A \& B$ isimated
3. A steaming, B isolated
a. 90% operating level in secondary
b. low operating level in secondary
c. 90% operating level - 3 Med
d. $90 x$ operat ing level with vent valves operational $D=0.0$ Lo open
e. $90 x$ operating level - vent valve stuck open
f. gov operating level - factor of 35 increasp in core resistance
g. $40 x$ operating level in secondary
h. 90% operating level, $D=500$ psia, circulation established, ع. 3 MAs, 8 loop valved off, transient initiated from zero initial film
f. 90x operating level, 95% area blockage
f. 90% operating level, eg area blockage
4. A solid, B isolated - 6 volume S.G., counterflow on Seconder at ide
A. $\quad 20$ Gal stecondary flow
b. 5000 gDm secondary flow
c. $40 \mathbf{y}$ core area blockage, 5000 gpa secondary flow
d. parallel flow. 5000 gpo secondary flow
e. 5000 g om secoridary flow, 382 blockage
f. 5000 gD a secondary flow, 92% blockage
5. A solid, B isolated - 17 volume -
a. nit core area blockage, 5000 gin secondary flow
b. roc fort area blockage. 500 gpo secondary flow
6. A \& 8 solid - counterflow
a. $40 x$ core area blockage, 5000 gan secondary flow
b. no area reduction

22 calces.

CONCLKSION: NATI GIRC. NOT ARODCTEA BY HPI : LETDOWN ACTIVITIES

THI-2 ACCIDENT SIMULATION DIFFICULTIES
DUE TO UNCERTAINTIES IN FOLLOWING
BOUNDARY CONDITIONS:

1. SECANDARY SIDE OF STEAH GENERATORS

* manual intervention of feed unto.

FLOW CONTROL

* TURBINE BYPASS FLOW
* louis level in sa.

2. PRESSHRIEER RELIEF VALVE

* WAS THE VALVE STKCK OPEN ONLY PARTIALLY?
* was the flow area chinning with TIME?

3. HPIS AND LETDOWN FLOWS

* WHEN ON AND WHEN OFF?
* How MaNy pumps on?
* what flow rates?

RELAP-A CALCULATION OF COLD LEG FLUID
TEM,

THREE MILE ISLAND (UNTT 2)- VESSEL DETALLS

$278 \quad 349$

THREE MILE ISLA:SD - UNIT 2 PRESSURIZER MODEL

[^0]: $278 \quad 283$

