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Vertical Vibration of fmbedded Footings™

sl
Multiply By Milos Novak' and Youpele O. Beredugo®
To by
ndlumeters (mam) 8BS INTRODUCTION
cenumeters (cm) 2-&
snters (m) vy Most of the existing theoretical solutions treat the footing as a rigid body
meters (m) 0.305 attached to the surface of an elastic half-space. However, real footings are
kuometers (km) ;:: usually partially embedded, and experiments indicate that embedment can
meiers (m) ¥ considerably affect the dynamic response of footings (7,14).
square centumeters (cm?) 6.45 No rigorous analytical solution of embedded footings is available because
squase meters (m? 0.093 of the obvious mathematical difficulties. The most promising way of approaching
square meters (m”) “g‘m this problem seems to be the finite element analyses as used by Lysmer and
( Ture "J;z "“:’M,) 199 Kuhlemeyer (13), and by Kaldjian (9) for static stiffness. Nevertheless, thers
i o is a need for alternative approximate solutions that would be able to previct
cubx cenumeters (sm’) 1.4 the motion in more degrees-of-freedom and to yield the stiffness and damping
Qubnc meters (m”) :.07: characteristics of embedded footings realily applicable in dynanic 2nalyses of
cublc meters (m’) ) various structures.
Ldograms (kg) 0.453 An approximate analytical approach was formulated by Baranov (1), who
iograms (k) %072 assumed that the soil underlying the footing base is an elastic half-space and
aswtons (N) 44 that the overlying soil is an independent elastic layer composed of a series
sewions (N) 9.81 of infinitesimally thin independent elastic layers. The compatibility condition
por square between the elastic half-space ang! (he. overlying elastic hye( was satisfied qnly
meter (N/m?) a9 at the body and very far from it. Nevertheless, the solution seems to yield
Rdone w10ns per sQuare reasonable results in closed forms, and is very versatile and easily applicable
meier (kN/m?) 69 to any vibration mode (3,16). For these reasons, this solution is further extended
cubic metens (&) 0.0038 in this paper and compared with finite element solutions and with experiments
Me (dm”) 38 in order to verify its applicability. Embedment into a stratum is also investigated.
Culnc meters (m") 1. Note.—Discussion open until May 1, 1973. To extend the closing date one month,
cubic meters /minute (m’/ min) 0.0038 & written request must be filed with the Editor of Technical Publications, ASCE. This
paper is part of the copyrighted Journal of the Soil Mechanics and Foundations Division,
Proceedings of the American Society of Civil Engineers, Vol. 98, No. SM12. December.
paacals (Pa) e 1972. Manuscnpt was submitted for review for possible publication on April 21, 1971.
'Prof., Facuity of Engrg. Sci., Univ. of Western Omario, London, Ontario, Canada.
1Shell-BP Nigeria Lid., Lagos, Nigeria.
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Special attention is devoted 10 the vertical motion because this is the fundamen-
1al vibration mode for checking the theory. A brief consideration of all vibration
modes is given in R=f. 16. Coupled horizontal and rocking motion is analyzed
in detail in Ref. 3.

EQUATION OF MOTION

Fig. | shows a model of the embedded footing-soil system, and the forces
acting on the footing. The basic differential equation of motion is

ma() = PO =RAD=N) . coonninenrmmmmrrmrmnees m

in which: m = mass of footing; w = vertical displacement of footing; P(f)
= time dependent vertical excitation force: R (1) = dynamic vertical reacuon
at base of footing: and N (1) = dyramic vertical reaction along the side surface
of footng.

In order (o solve Eq. 1, the following assumptions are made:

1. The footing is a ngid cylindrical body with radius r,.
2. Linear elasticity is assumed.
The dynamic reaction, R (1), 1s independent of the depth of embedment.
( There is a perfect bond between the sides of the footing and the soil.
S The excitation force, P(1), 1s harmom¢ 2nd acts along the vertical axis.

Under these assumptions, the dynamic reaction at the base can be expressed
using elastic half-space solutions. The relation between footing base displacement
wit) and elastic half-space reaction R (1) can be written as

R(1)= Gr,(C, + TATT R T E R P LT ER R L AL L 2)
Y -fl !1
in which: C, = L 3)
Eef T it f

Herein, f,, = functions of dimensionless frequency d, = mro\/;/—G. Poisson’s
ratio and stress distribution in the base, G = shear modulus of half space,
and r, = radius of footng. (Functions f,, were introduced by Reissner and
can be taken from later solutions, e.g., Refs. 4, 12, 18.)

The dynamic reaction, N (1), acting on the vertical sides of the footing is
a complex function of the embedment depth, I, the dimensionless frequency
a,. the shear modulus, G,, and densily p,, of the adjacent soil layer and also
of the quality of the contact between the soil and the footing. If s = the dynamic
reaction per unit depth of embedment, then:

!
N,(:)-I BOR AR v s oo mssspbmssasassrssssmmunseneis @)

If the approximate assumption is accepted that s is independent of z. then
s = s(1) and Baranov's solution (1), of which the basic assumptions are outlined
in the Introduction, can be used. According to Ref. 1, the unit reaction:

| ( V@ OAS, A MIWU) oo vonsnnorannnstissnisassasnss o)
S(()'s (5:‘15:) b-‘{f)
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Fig. 1.—Embedded Footing Excited
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210 the vertical motion because thi¥is the fundamen-
.ag the theory. A brief consideration of all vibration
Conpled horizontal and rocking motion is analyzed Pt)

the embedded footing-soil system, and the forces i
s o (ferential equation of motion is

B s o K e B B R B )

sting. w = vertical displacement of footing: P(1) g Ny ) ®co Nplr) oo
witatwn force: R (1) = dynamic vertical reaction S S 6 : :
s+ = dynamic vertical reaction along the side surface R SR e l""i

« following assumptions are made:

yhindnical body with radius r_.

imed.

R (1), is independent of the depth of embedmeni.
between the sides of the footing and the soil.
11), 1s harmonic and acts along the vertical axs. \

Fig. 1.—Embedded Footing Excited Vertically

the dynamic reaction at the base can be expressed
The relation between footing base displacement
;z + R (1) can be written as 12 g
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J,(8)]y(8g) + ¥, (8,) Yo(8y)

inwhich S, =2
ikl 1 S 4%0 Jita,) + Yi(ay)

i
Jita,) + Yi(a,)

Herein J,(a,), J,{a,) = Bessel functions of the firsi kind of order zero and
one, respectively, and Y, (a,), Y,(a,) = Bessel functions of the second kind
of order zero and one. Then the total side reaction is, from Egs. 4and §:

S,

‘ ¥ - -
N, (1) -I G,(S,+ iS)w(nd:=GI(S,+ S Hw(t) ... (8)
o
Substitution of Eqs. 2 «nd 8 into Eq. | yields the equmoh of vertical vibrations:
.. [ .61 .. |
"“"“)’G’olcn"C:"G“".(ss""sz) w()msP(t) .....0000. 9

With complex excitation:

P(1) = P expiwt) = Py(cos wf + isinwf) . ....ovvnvnnennen (10)
the steady-state response is

W) wexpliet) . .vcvocctvinrsacnsrsesnsss e an

in which P, = real force amplitude and w = complex response amplitude.
Note the frequency dependent stiffness (spring) constant:

G, I

kuGrC,+=—=8,) . coviirenicriiiiriniiennnnns (12)
G r,

and the frequency dependent damping constant:

Gr, G, 1
€= —— C,*—-—-S, .............................. (13)
Gr

w
Then the real part of the vibration is
wit)m wocos(@l+ @) ...cocnvrriirrraniinen .. (14)

in which real amplitude

2 P, 1
b o g = N - m—— = (15)
Vik=-me') +(cw)’ k| w \'|° <y
V ] = | — + 4D | —
Uo Uo
Cw
phase shift @ = =@UAR———7 .. .....ccrarrasrenensreny (16)
k- me’
. » c
damping ratio Dm ———— . .. ... ciass e (17)
mw,

and natural undamped frequency of an embedded footing
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s 00 0a,)* Y, (a,) Y, (a,) -

Lite,) + Yilay)

wel functions of the first kind of order zero and
1. Y, la,) = Bessel functions of the second kind
o the total side reaction is, from Egs. 4 and §:

iy deo G US, + B, me) ............ (8)

$ mto Eq. 1 yields the equiaon of vertical vibrations:

G, ! .

-—-—(S.OAS,)]WU)-PH) .......... )
Gr,
T TN | N S R - - (10)

amplitude and w = complex response amplitude.
ent stil{ness (spring) constant:

........................... (12)
ot damping constant:
T P eI (13)
bravon is
N W O 0 T e T e e I e (14)
Y '
Tk o \7] o
CIE
.. 0.
fw
.—.? ......................... (16)
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Fig. 3. —Comparison of Stifiness Increase with Finite Element Solution
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(The natural undamped frequency must be determined from Eq. 18 by trial
and error approach because il appears inboth C,and §,.)

248r
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Fig 5—Dimen=ionless Rc-onant Amplitudes Versus Mass Ratio for Various Embed-
rments & = [/r, (Undisturbed Soil and Side Fill withn = p /p = 0.7%)

DIMENSIONL £68 FESONANT FREQUENCY o,

EMBEDMENT RATIO B 177

Fig. 8 —~Dimensioniess Resonant Frequencies Versus Relative Embedment for Various

Mass Ratios B (n=p,/p)

( In most practical problems, th
of an unbalanced mass, m_, and in Eq. 15 the exciting force amplitude is:

e excitation force, P(1), is caused by rotation

——

EMBEDDED FOOTINGS

swv 2

in which ¢ = eccentricity of rotating mass; it is sc
introduce the dimensionless amplitude, A = w m/(

EXAMPLES OF NUMERICAL RESULTS

From Eq. 15 the response curves of embedde«
with various assumptions concerning both the b
pertinent stiffness parameters C,and §,, and da
are shown in Fig. 2 and given in a poiynomial
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in which ¢ = eccentricity of rotating mass; it is sometimes convenient 1o also
introduce the dimensionless amplitude, A = wom/{m e).

EXAMPLES OF NUMERICAL RESULTS

Froia £q. 15 the response curves of embedded footings can be computed
with various assumptions concerning both the base and side reactions. The
pertinent stiffness parameters C, and S, and damping parameters C,and §,
are shown in Fig. 2 and given in a polynomial form in Tables 1 and 2 to

-]

tparmesd Anp. oy ok &

fa

o
-

Q (e g g e e e

, R

(%) o o
- - =

(&)
o

RESONANT AMPLITUDE RATIO R,

o
»~

os T s 20 2s
EMBEOMENT B+ Isr,

Fig. 7—Resonant Amplitude Ratio Versus Embedment (Approximately Valid for any
Mass Ratio; Undisturbed Soil n = |, Side Fill n = 0.75, 0.85)

\?r

-
-

RESONANT FREQUENCY RATIO R,
.

EMBEDMENT RATIO Be 1/
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facilitate the computation. Curves concerning strata were calculated with v =

0.25 from Warbarton (20) and are shown in Fig.

2 in dashed lines. Curves

-
T .

e RN Y ARk tUeE A
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Fig. 9 —Theoretica! Response Curves for Vertical Vibration of Footings Embedded

in Elastic Stratum (Undisturbed
of Elastic Stratum)

Soil. Various Embedments, and Various Thicknesses
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Fig. 10.—Variation of Theoretical Resonant Amplitudes of Vertical Vibration of Footing
( tmbedded in Elastic Stratum with Thickness of Stratum {Unaisturbed Soil, Various

nbedments)

concerning half-space were computed from Bycroft (4). It will be noticed that

S, = 0 for a,~ 0 which resuits from the assumption that the base overlying

SM 12 EMBEDDED FOOTINGS

layer is independent of the underlying half-space a:

Ta Fig. 3 the static stiffness increase found by k
stiffness increases obtained from Eq. 12 with C
for a rather representative frequency a,= 08
embedment, 8, k(0) = stiffness for surface foour
element method and thus, Fig. 3 yields an idea abou
of the approxitiate analytical approach. it may t
tend to overestumate the rigidity increase with s
shown later herein.

Embedment in Hall-Space.—In Fig. 4, the the
given for a rigid base stress distribution. The curve
a situation where the footing is embedded in an
are in reasonable agreement with the finite eler
Kuhlemeyer (13). The dashed lines show a differ
is surrounded by a side fill whose density p, =
was assumed that G, /G = (o,/0).]

The curves shown in Fig. 4 were computed {«
the effect of embedment very distinctly. The van
with embedment for other mass ratios can be seen
amplitude ratio R = resonant amplitude with emt
of surface footing, was found practically indepen
7 can be used for any footing embedded in a hall-
amplitude reduction.

The natura’ frequency (w,) variations appea
ratio to0. However, the resonant frequency (freg
ratio R, = resonant frequency with embeament )
footing, highly depends on mass ratio (Fig. 8).

Embedment in Stratum.—With equal ease, the
in a stratum can be analyzed using the proper {
the stiffness and damping parameters C, . Sid
the same as before.

Examples of theoretical response curves are sh
of relative embedment 5 and two values of m
of embedment, as well as a strong variability of the
involved, are obvious. The variations of resona
and stratum thickness are plotted in Fig. 10
embedment considerably reduces the dependanc
graphs shown do not apply for other mass rab

trends to be expected. Any particular situation <

as long as the base reactions are available.

It can be seen that the omission of ember
overestimation of amplitudes in the case of
omission of layering can lead 10 substantial und

SIMPLIFIED DESIGN ANALYSIS

Calculation of amplitudes and resonant freque
fied if stif{ness parameters C and S are takenas|
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.t 2omcsTiung Strata were caiculated with v =

.ad arc shown in Fig. 2 min dashed lines. Curves

. - L 04 o LAd 2 J
TN B L LA Ay 4

Curves for Vertical Vibration of Footings Embedded
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o Resonant Amplitudes of Vertical Vibration of Footing
o Thickness of Stratum (Undisturbed Soil, Various

computed from Bycroft (4). It will be noticed that
sults from the assumption that the base overlying
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layer is independent of the underlying half-space and has an infinite spzn.

In Fig. 3 the static stiffness increase found by Kaldjian (9) is compared with
stiffness increases obtained from Eq. 12 with C, =4/1v and §, computed
for a rather representative frequency a, = 0.8. [A(&) = suﬂncss with the
embedment, 8, k(0) = stiffness for surface footing.] Kaldjian used the {inue
element method and thus Fig. 3 yields aa idea abou’ the accuracy and Umulations
of_the approximate analyical approach. It may be noted that all the theores
tend to overestimate the rigidity increase with small embedments as will be
shown later herein.

Embedment in Half-Space.—In Fig. 4, the theoretical response curves are
given for a rigid base stress distribution. The curves shown in full lines describe
a situation where the footing is embedded in an undisturbed soil. The curves
are in reasonable agreemsnt with the finite element solution by Lysmer and
Kuhlemeyer (13). The dashed lines show a different case in which the footing
is surrounded by a side fill whose density p, = 0.75 p. [In this exampie it
was assumed that G,/G = (p,/p)’.]

The curves shown in Fig. 4 were computed for a high mass ratio to show
the cffect of embedment very distinctly. The variations of resonant amplitudes
with embedment for other mass 7atios can be seen in Figs. $, 6, and 7. Resonant
amplitude ratio R, = resonant amplitude with embedment 8/resonant amplitude
of surface footmg. was found practically independent of mass ratio. Thus Fig.
1can he used for any Sookag-embedded 4 a-halfspaselo eslumats tha resanant

The natural frequency (w,) variations appear highly independent of mass
ratio too. However, the resonant frequency (frequency at maximum amplitude)
ratio R = resonant frequency with embedment 8 /resonant frequency of surface
footing, highly depends on mass ratio (Fig. 8).

Embedment in Stratum.—With equal ease, the response of footings embedded
in a stratur. can be analyzed using the proper functions f, and f, to compute
the stiffness and damping parameters C,,. Side reaction parameters S, , are
the same as before.

Exampies of theoretical response curves are shown in Fig. 9 for several values
of relative embedment & and two values of mass ratio. The essential effect
of embedment, as well as a strong variability of the response with all the parameters
involved, are obvious. The variations of resonant ampiitudes with embedment
and stratum thickness are piotted in Fig. 10. With higher embedments, the
embedment considerably reduces the dependance o the stratum thickness. The
graphs shown do not apply for other mass ratios: however, they indicai® the
trends to be expected. Any particular situation can be analyzed without difficulty
as long as the base reactions zre available.

It can be seen that the omission of embedment can result in unrealistic
overestimation of amplitudes in the case of a stratum. And, contrarily, the
omission of layering can lead to substantial underestimation of amplitudes.

SIMPUFED DESIGN ANALYSIS

Calculation of amplitudes and resonant frequencies can be considerably simpli-
fied if stiffness parameters C,and S, aretaken as{requencyindependent (constant),
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Table 1.—Stiflness and Damping Parameters for Hall Space and Side Layers
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e e o |
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~ 2
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Table 2.—Stiffness arid Damping Parameters for Stratum
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C,= 00040440, - 0.7386al + 132705 - 19 6104 + 49 8a; - 269504 + $.069a; C, =045 §
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' CHE E 0% a,s08 g




C,~ 400 - 00K)%5e, + 061460, - 26004, 7 VOl a] - 0 Jedbu;

oo C,=)% Oce,~11 -~
2
C, = 1.4)8a, + 057420} - 1.134a] + 0.74)) 0} ¢,=3% z
@
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C,= 3060, ¢, =500 S
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C,=744a, - 2986a; + 43240, - 1. 7820 C,=680
TR T e R ML
eny S, =02153a, + 2.760a,/a, + 0.06084 $,=270 0sa,s200
. S, = 6.059a, + 0.7022a,/4, + 0.01616 $, =610
w
<
o~
w
<
5
Tabla 2.—Stiffness and Damping Parameters for Stratum
’ - BT Constant Validity
hry Stratum v = 029 parameters range
_m _a : Y “ ™
1.0 C, = 12.1) - 1.178a, - 0.3056a; ~ 1.177a5 + 0.4160a; C,=100 0sa,% 150 é
C, = 0.2395a] + 0.5646a} + 0.0227a] - 0.3403a} + 0.20)a ¢, =030 §
20 C,=8.13 + 085160, - 3.664a] - 8.289a; + 11.18a] - 3.978a] C, =100 Vs o,s 128 4
C, = 0.004044a, - 0.7386a] + 13.27a; - 19.61a] + 49 8a; - 26.9%a8 + 5.069a) €, =045 §
30 C, = 1.04 + 0.4659a, - 6.989a) &, =58 0sa,s021 é
C, = 0.7361a, - | 462a; + }.57)a] C,=06%
40 C, = 6579 - 0.2422a, - 0.3889a; - 29.69a; + 7.711a5 + 76 440} - 77420} C, =43 0sa,5062
C, = 002804a, + 1.02a} + 7.458a] - 184.20] + 655.7a; - 804 95 + 420, { Cy=100

LOEL
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snd damping parameters C, and S, as proportional to dimensionless {requency,
a,(Fig. 2). These assumpti~ns seem well justified for the embedment parameters
S, and S, if a, ® 0.1, as they do for C, for a half space; C, for & stratum
is less linear but very small, thus adding little to the t1otal damping. The constancy
of C, may be generally questioned (see Ref. 12); nevertheless, it seems acceptable
in the shown f{requency range. Altogether, the simplifying assumptions are
consistent with the generally accepted practice in design analysis of surface
footings (17).
Therefore, assume that C, = &, and §, = §, and that:

R X A LR L LRl 20
in which C,, and §,; = constants whose values can be readily established

407y
— AR AR, [ PARANETIRS

b CONSTANT PARAMETERS

\
b 1-14

NN 55 AVPLITUDE A
o
o S——

o3 4 or 8 =k ] e " 2 3 ] . 7
DMENSIONESS FREQUENCY &

Fig. 11.—Comparison of Response Curves Computed with Varisble and Constant
Parameters ([/ry= 05,0, 8.1.0/p," 075end G,/G = 0.5)

from Fig. 2. Tables 1 and 2 or any other suitable formulae for f, . Several
suitable values of C,,and 3, are given in Tables | and 2.

With constant stiffness parcmeters, C, and §, substituted in Eq. 12 in place
of C, and §,, the frequency independent stiffness constant is obtained, and
with it. the natural undamped frequency w, directly foliows {from Eq. 18.

S-bstitution of Egs. 20 into Eq. 13 yields the frequency independent damping
constant for embedded footings

( c-r{\«ﬁ(C,oS,-,— 2—'—6—') ......... B e E R Q1)
s p G

EMBEDDED FOOTINGS

s™m 12
or the damping ratio
I 9,0,)
pe—! (c”s’ » G
Wb, G, |
S
Gr,

in which mass ratio b, = m/prg.

Then. the vertical amplitud2 is obtained from E
interest,

The amplitude at natural frequency w, (slightly
arnplitude) is simply:

w,l wy) = -—;‘2—- ...................
as in any one degree-of freedcm system (Voigt me

Values of G can be determined by tests, of fi
17.

In Fig. 11, examph of response curves com|
constant parameters are shown for embutment in
The differences decrease with increasing embedm
appear to yield an accuracy sufficient for practica

COMPARISON WITH EXPERIMENTS

In order to assess the practical applicability «
solutiva, the theoretical results have been compar
\aboratory experiments (5), and with a series of
University of Western Ontario by the second ¥ i

In the latter tests, two concrete blocks were
x 27 in. x 48 in. (0.686 m X 0686 m x 1.20
x 38 in. x 48 in. (0.483 m x 0.966 m X {5
concrete block was cast directly in the foundatior
consisted of a mechanical oscillator LAZAN a:
coupled with a Kopp Variator.

Different embedments were obtained by care
the footing sides 1o the appropriate depth. The m
at the test site are: (1) De ity of undic- 2 bed s01
(2) Poisson's ratio = 0.3s, (3) shear modulus =
kg/cm?); (4) equivalent radius of footing = !

of footing = 15.48, and (6) Lysmer s modified ™

The experiments are described in more deta
the response curves in rocking modes are also §
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or the damping ratio

! G

! (c, e I _a')

r,

D= R 22)
WV, G, |
s Y

k]
in which mass ratio by = m/pr,.
Then, the vertical amplitude is obtained from Eq. 15 for any frequency of
interest.
The amplitude at natural {requency w, (slightly smailer than the maximum
amplitude) is simply:

wolw,) = —:—% .................................... 23
or with frequency variable excitation (Eq. 19):

me |
wolwy) = ———-2? ................................... (24)

as in any one degree-of-freedom syst*m (Voigt model).

Values of G can be determined by tests, or found in literature, ¢ g., Ref.
17.

In Fig. 11, examples of response curves computed with both variable and
constant parameters are shown for embutment in a stratum and in a half space.
The differences decrease with increasing embedment. The constant parameters
appear to yield an accuracy sufficient for practical purposes.

COMPARISON WITH EXPERIMENTS

In order to assess the practical applicability of the approximate analytical
solution, the theoretical results have been compared with earlier field tests (14),
laboratory experiments (), and with a series of field tests carried out at the
University of Western Ontario by the second writer.

In the latter tests, two concrete blocks were used with dimensions 27 in
X 27 in. x 48 in. (0.686 m x 0.68¢ m x 1.22 m) (square base) and 19 in
x 38 in. x 48 in. (0.483 m x 0.966 m x 1.22 m) (rectangular base). Each
concrete block was cast directly in the foundation pit. The excitation equipment
consisted of a mechanical oscillator LAZAN and a 220 v. three-phase motor
coupled with a Kopp Variator.

Different embedments were obtained by carefully removing the soil around
the footing sides to the appropriate depth. The major soil and footing properties
at the test site are: (1) Density of undisturbed soil = 103.0 Ib/ft’ (1,650 kg/m’).
(2) Poisson's ratio = 0.38; (3) shear modulus = 6.6 1b/ft* x 10° Ib/ft’ (320
kg/cm?); (4) equivalent radius of footing = 1.26 ft (0.344 m); (5) mass ratio
of footing = 15.48; and (€) Lysmer’s modified mass factor = 2.40.

The experiments are described in more detail in Refs. 2 and 16, in which
the response curves in rocking modes are alsc given.
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The comparison of the theory with the experiments is complicated due to
nonlinearity which makes the nondimensional resonant amplitudes and frequen-
cies dependent upon the intensity of excitation. (Nonlinear response curves
can be analyzed using a procedure given in Ref. 15.) Nonlinearity causes an
inevitable scatter in the comparison of experimental results with a linear theory.

o
-

MAORANT ANSLITUDE RATIO %,

e A :
2 as e (8 ] "0 a2
CwstowenT matw b= (v,

Fig. 14 —Comparison of Theoretical Resonant Amplitude Reduction with Fielcd Tests
of Footings Embedded in Back Fill Having Density Ratio n = p,/p = 0.765
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Fig. 15.—Comparison of Theoretical Resonant Frequency Ratio with Field Tests of
Footing Embedded in Back Fill Having Density Ratio n = p /p = 0.765

A second difficulty is due to the fact that the measured resonant amplitudes
of the surface footing are consistently found to be two times to three times
greater than the theoretical values. [This was also found in previous experiments
(14).] This difierence may be caused by the reflection of elastic waves from
layer interfaces and fissures, variations in the stress distribution in the footing
base, and partly by the shape of the footing base.

However, as far as the effect of embedment is concerned, the differences
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in absolute values of amplitudes can become less substantial if the relative
vanations are compared. These relative variations in resonant amplitudes and
frequencies are plotied in Figs. 12 to 18.

In Fig. 12, the relative variations in resonant (maximum) amplitudes are shown
ve us relative embedment depth for undisturbed soil. Experiments with both
sguare and rectangular bases are presented. Lysmer and Kuhlemeyer's results
of their finite element solution are plotted also. They indicate a good agreement
with the approximate analytical solution. The field experiments are also in good
agreement with the theory except for the highest embedment at which most
experiments exhibit greater amplitude reduction. Also, the strong effect of
nonlinearity is visible. Usually greater strength of the upper cohesive soil layer
may contribute to a greater amplitude reduction at full embedment. Chae's
laboratory experiments feature a much stronger amplitude reduction than both
theory and field tests, probably due to the conditions of laboratory tests.

In Fig. 13 resonant frequency ratio is plotted against embedment. In most
experiments the frequency increase was considerably smaller than the theory
predicts, particularly with the rectangular base. The reason for this may have
been that the bond between the soil and the footing was not perfect, as the
theory assumes.

Figs. 14 and 15 present an analogous comparison for a footing surrounded
by a backfill. According to Fig. 14, the theory tends to overestimate the effect
of embedment, especially for small embedments. This seems to indicate that
there is a lack of bond between the footing and the backfill. Perfect force
transmission is assumed in the theory, which can hardiy be satisfied with shallow
embedments where the horizontal soil pressure and the frictional bond are very
low. These conclusions are further substantiated by Fig. 15. In this figure previous
experiments (14) agree with the theory very well. The backfill (loess loam)
was compacted very heavily and possibly a better bond between the f{ill and
the footing was achieved. Because the bond depends aiso on the roughness
of the footing sides, this seems to be a further factor affecting the quality
of the force transmission between footing and the backfill.

Frow. Figs. 14 and 15, the conclusion can be drawn that for backfill the
effects of ambedment upon both the resonant frequencies and amplitudes can
be considerably reduced. This reduction depends on the soiu used, i.e., on its
compaction and roughness of the footing sides. Therefore, with footings .ast
into forms, ar even smaller effect of embedment can be expected than that
observed in the experiments described. The reduced effect of the backfill can
be accounted for in the theory by considering p, < p and G, < G.

SUMMARY AND CONCLUSIONS

The effect of embedment upon vertical forced vibration of a rigid footing
was investigated beth theoretically and expenimentally in the field. The conclu-
sions can be summarized as follows:

1. The approximate analytical solution compares favorably with the finite
element solution an” can easily be applied to the analysis of footings and structures
supported by embedded foundations.
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2. The real effect of embedment depends on ¢
difference between undisturbed soil and bac)
important in the case of a stratum.
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2. The real effect of embedment depends on embedment depth, with a marked
difference between undisturbed soil and backfill, and becomes particularly
important in the case of a stratum.

3. The theory and experiments agree qualitatively that there is a decrease
in resonant amplitudes and an increase in resonant frequencies with increasing
embedment depth and increasing density of the backfill.

4. The experimental resonant amplitudes are consistently higher than the
theoretical values computed with a rigid base stress distribution by a factor
of two to three in the described case.

5. There is a reasonable agreement between the theoretical and experimental
relative variations of the resonant amplitudes and of the resonani frequencies
with the embedment in the case of the undisturbed soil. With the backfill the
increase in resonant frequencies is much smaller than predicted. The variations
of resonant amplitudes are in better agreement.

6. The resonant (maximum) amplitude reduction s essentially independent
of the mass, while the corresponding frequency ratio is mass dependent,
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APPENDIX i—~STIFFNESS AND DAMPING PARAMETERS

Stiffness and damping parameters presented in Tables | and 2 were obtained
from Eqs. 3,6, and 7 by curve fitting to facilitate the calculations. Their accuracy
1s sufficient. Functions f,; were taken “om Bycroft (Ref. ¢) for half-space
reactions and from Warburton (Ref. 20) for stratum reactions by mechanical
reproduction. (The sign convention of these writers have been maintained in
this paper.) Some of the parameters are also plotted in Fig. 2. More data on
stratum reactions can be found in Refs. 10 and 11. The constant parameters
can be adjusted according to the frequency range of interest.
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APPENDIX Il —NOTATION
The following symbols are used in this paper:

A=w,m/ime) = nondimensional displacement amplitude;
A _ = nondimensional resonant (maximum) amplitude of displace-
ment of embedded footing;
a_ = nondimensional frequency ai resonant (maximum) amplitude
of embedded footing;
a,= rywV p/G = nondimensional frequency;
B =1~ v/4b,= Lysmer's modified mass ratio;
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b, = m/pr, = dimensionless mass ratio;
C, = half-space (stratum) stiffnes:
- C, = frequency independent half
! meter;
C, = half-space (stratum) dampin;
C, = constant related to C,;
¢ = dampirg constant for embed
D = damping ratio;
¢ = eccentricity of unbalanced
f,.f; = components of Reissner's di
: vibration;
! G = shear modulus of soil beneat
G, = shear modulus of backfill (si
8, = weight of unbalanced rotatin
H = total thickness of stratum;
he= thickness of stratum under {
i = \V =1 = imaginary unit;
k = stiffness (spring) constant fo
k(8) = stiffness with embedment 8,
I = depth of embedment of footi
m = mass of footing;
m, = unbalanced rotating mass;
N.(1) = verticai dynamic reaction alo
15( 1) = excitation force;
P, = excitation force amplitude;
R, = resonant (maximum) amplitu
with embedment §/resonant
R, = resonant frequency ratio = r
ment 8/resonant frequengy ¢
R (1) = vertical dynamic reaction at
ro = radius of cylindrical footing:
. or rectangular footing (see R
§,.S, = frequency dependent stiffne:
to embedment;
§, = trequency independent (cons
embedment;
§, = constant related 10 S,;
5(7) = vertical side dynamic reactio
t = lime;
w(t) = vertical displacement of rigid
w = complex amplitude of vertica
w _ = real resonant (maximum) am,
w, = real amplitude of vibration;
2 = vertical coordinate,
A = H/r, = relative thickness of stratum.
8 = 1/r, = embedment ratio;
m = p,/p = density ratio;
v = Poisson's ratio;
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are used in this paper:

imensional displacement amplitude;

imersional resonant (maximum) amplitude of displace-

' of embedded footing:

limensional (requency at resonant (maximum) amplitude

nbedded footing:
!imeasional {requency;
=ner’s modified mass ratio;
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b, = m/pr, = dimensionless mass ratio;

C, = hal'-space (stratum) stiffness parameter;
C, = frequency independent half-space (stratum) stiffness para-
meter;
C, = kalf-space (stratum) damping parameter,
C, = constant related to C,;
¢ = damping constant for embedded footing;
D = damping ratin;
¢ = eccentricity of unbalanced rotating masses;
f..1; = components of Reissner's displacement function for vertical
vibration;
G = shear modulus of soil beneath footing;
G, = shear modulus of backfill (side layer);
8, = Weight of unbalanced rotating mass m_;
H = total thickness of stratum;
h = thickness of stratum under footing base;
i= V=1 = imaginary unit;
k = stiffness (spring) constant for embedded footing-
k(3) = stiffness with embedment &,
| = depth of embedment of {ooting;
m = mass of footing;
m, = unbalanced rotating mass;
N (1) = vertical dynamic reaction along embedd:d footing sides;
1) = excitation force;
P, = excitation force amplitude;
R, = resonant (maximum) amplitude ratio = resonant amplitude
with embedment §/resonant amplitude of surface footing;
R, = resonant frequency ratio = resonant frequency with embed-
ment 8/resonant {requency of surface footing,
R, (1) = vertical dynamic reaction at base of {ooting;
r, = radius of cylindrical footing; also equivalent radius of square
or rectangular fooung (see Ref. 17, p. 347);
§,.5, = frequency dependent stiffness and damping parameters due
to embedment;
3 , = frequency independent (constant) stiffness parameier due to
embedment;
8, = constant related to S,;
#(1) = vertical side dynamic reaction per unit depth of embedment;
t= time;
w(t) = vertical displacement of rigid footing at time r;
w = complex amplitude of vertical displacement;
w_ = real resonant (maximum) amplitude;
w, = real amplitude of vibration;
¢ = vertical coordinate;
A = H/r, = relative thickness of stratum;
8§ = |/r, = embedment ratio;
n = p,/p = density ratio;
v = Poisson’s ratio;
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p = mass density of elastic half-space (soil);

p, = mass density of side layer (backfill);

¢ = phase angle;

w = circular frequency of excitation;
w, = resonant circular frequency (at maximum amplitudes); and
w, = natural circular frequency.

L ——————
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Bearing Capacity Theory from Expe

By A. Verghese Chummar

INTE"DUCTION

The plastic equilibrium theories on bearing capaci
on failure surfaces either assumed or derived fro
The failure surfaces observed in the experiments ¢
soils by Selig and McKee (10), Verghese (12) and
the shape of the faiure surfaces adopted in thec
given in Fig. 1 between some of the observed ar
reveals a marked discrepancy. The existing theorie
bearing capacity fairly accurately until it was esta
long footings, the plane strain conditions prevail an
& under plane strain is about 1.1 times the valug «
Fig. 2 gives the experimental values of the beann
against plane-strain values of dand the N values g
theories. The comparison clearly indicates that t
accurately the bearing capacity of long footings. 4
herein to determine the actual shape of the failu
bearing capacity theory based on that surface. |
data, the present study is restricted to the cas¢
cohesionless soils.

FAILURE SURFACE

The shape of the failure surfaceis determined fro’
by different research workers by deducing 3 patt
the observed ones.

Note —Discussion open until May 1, 1973 To ext
a wricten request must be filed with the Editor of Tex
paper 1s part of the copyrighted Journal of the Soil Me:
Proceedings of the American Society of Civil Engincer
1972 Manuscript was submitted for review for possible

'Lect., Dept. of Civ. Engrg., Indian Inst. of Tech . b
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DYNAMIC ANALYSIS OF EMBEDDED STRUCTURES

E. KAUSEL

Sione & Websis Enpincering Corporanon.
P.0. Box 2325, Bosion, Massachuserrs ¥2107, U.S.A.

R. V. WHITMAN

Depariment of Cndl Enpineering. Massachusers [nsniute of Technoiogy,
Cambndge, Massachusens 01119, U.S.A.

F. ELSABEE
Stone & Websier Engineering Corporanon, Cherry Hill. New Jersey, USA.

J.P. MORRAY
DS Nuclear Inc.. 220 Moargomery Sweer, San Francasco, Califorma Mi104. U.S.A.

SUMMARY

The paper presents simplified rules to account for embedment and soil layenng in the
soil-structure interaction prohiem, to be used in dynamic analyses. The relationship be-
tween the spring method, and a direct solution (in which both soil and struciure are
modeled with finiie elements and linzar members) is first presented. It is shown that for
consistency of the results with the (wo solution mathwls the spnng method shouid be per-
formed in the following throe steps:

1. Determination of the motion of the massless foundation (having the same shape as
the actual one) when subjected 1o the same input motion as the direct solution. For
an embedded foundation it will yield, in general, both translatons and rotations.

2. Determination of the frequency dependant subgrade stiffness for the relevant degrees
of freedom. This step vields the so-cailed “soil spnngs™.

3. Computations of the response of the real structure supporied on frequency dependent
soil springs and subjected at the base of these spnings to the motion computed in siep
1

The first two steps require, in general, finite element methods, which would make the
procedure not attractive. It is shown in the paper, however, that excelient approximations
can be obtained. on the basis of 1-dimensional wave propagation theory for the solution
of step 1, and correction factors modifying for embedment the corresponding sonngs of
a surface footing on a layered stratum, for the solu.1on of step 2. Use of these rulss not
only provides remarkable agreement with the results obtained from a full finite element
analysis, but results in substanuial suvings of compute execution and storage require-
ments. This frees the engincer 1o perform extensive stud.es, varying the input properties
over a wide range 10 account for uncertaintics, in particiziar with respect to the soil pro-

perties.

SMRRT U?‘-{Mnu
San Francis o Poqust 1977
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1. wetl

Significant efforts have been directed in Feca. vyears to formulate ensineering solutions
to be problens of vibration of foundations and sefenic rosponse of buildings, The problem s
of . etal taterest in the seimmic analysis and design of masaive buildinms such as nuclear
contalinment structures.

Butlding foundations, and muclear feactors in particular, are weuslly buried to sowe
extent beneath the surface of the ground. This embedment has in sanv cases considerahle

effect on the dynamic Fesponse of the structure, both {a teras of relative fresuency comtents

and saplitude of the resulting wotions. Because of the complicated boundary conditions that
®ust be satisfied in & theoretical formulation, rigorous analytical solutions for embedd ed

foundaticns are nonexistent at present, Rence, numertcal (finite element), experimental and
approximate analytical techniques are currencly being used

to provide a solution to the
probles st hand for these complicated geomecries.

An svareness of the effects asnociated
with emsbedment, coupled vith the availability of numerizal solutions and the lack of rigorous

solutions, has been the basis {n recest times for discrediting the spring method a3 a tool for
acalyses, particularly in the suclear pover industry. The detractlion of the soring msethod has
been argued by some researchers on the basis of conparisons between the classical half space
sethod, and more involved finite tlement solutions. Many of these comparisons are not sean-
ingful, since they vere based on insppropriate values for doth the "spring constant™ and the
"support motion.” in fac., the #pring method and finite slement solutions can be shown to be
mathematically equivalent; 1f they are classified as different, it is becsuse of inconsisten~
cies o their implementastion,

It is the purpose of this paper to show the relationship between a more general spring
wathod, and the solutions provided by direct fiaite element procedures, and to present
practical rules for uee in dynamic analysise,

2, Tae banie Suoerposition theorem

Raferring to Piv, 1, assume that the general equations of motion of & structure-
foundation systes sre ,iven by the matrix equacion
Miccterren 1
whare N,C.K, are the svates sass, damping and etiffness ®acrices; U and Y are the sbsoluce
and relative displacement vith Fespect to <ome genersl ground reference *vaten. The solution
of this equation 1s equivalent to the solution of the two matrix equations
u,i!xodlon‘-o 2)
LR R ; )]
Vomte U) - 1, + Uge DUy ¢ Y2, and BeMy + 3. M) excludes the mass of the structure, while

Ny excludes the mase of the soil, U. is some generalized ground Rotion vector. The equiva~

lemce of 2) with 1) t» denonstrated by simple additionm. Ia Za. 2, the response of the aane-

lest structure te found firet, and will be referred to as the kinematic {nteraction. The
——tl oDleraction,

results of this step are then used (n Zq. 3) which shall define

the inercial interaction, and
—— Nleraction,
which is solved by application of f'ceitious

inertia forcas applied to the structure alome.
In the solution of the second step, it is irre’evant whether the soil {s wodylled with
fiatite il-u. oF squivalently, with o (far-coupled) satrix of stiffness functions wodelling

the subgrade, and defined at the soil-structure loterface. my., stiffness functions can be
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renarded as resulting from & dynasic condensation of all the degrees of freedom in the soil
(s frequency domain salution is implied),

Tor the particular situatica vhere the combination foundation-structure is very rigid, it
bacomes legitimsta to replace the matrix of stiffness functions by the overall vertical, tor-
sional, rocking and swaying stiffness functions, i.s., by frequency dependent “snrinas” and
dashpots.” Por this case, the nodal displacements at the foundation-soil interface are
Linearly dependent and, at most, six degrees of freedom are neaded to describe the wotion of
the foundation. 12 also follows that the solution of the kinematic {nteraction phase is com=
pletely defined by the rotations and translations of the sassless structure, which moves as &
rigid body, Hence, one can replace the massless structure in Eq. 2) by & rinid massless
foundation, subjected to the same p wund excitation as the original system.

Also, & wore careful examination of Fq. J will show that the solution Y7 can be regarded
a9 & vector of displacements relative to a fictitious support, while the rigid body translia-~
tions and rotacions of the massless foundation in FEq. I are the equivalent suppert motion.

Provided that the assumption of rigid foundacion is pertinent, it {s, therefore, valid to
bresk the solution into three steps: (also sue Pix, 2)

1. detemmination of the motion of the wessless rigid foundation, when subjacted o the
sane input motion as the total solution, This is the solutiom of Eg. 2), Tor an
embedded foundation, it will yield, in general, both translations sad rotations.

1, detarmination of the frequency dependent subgrade stiffnesses for the relevant

degreas of freedom. This step yvields the so-called seil “eprings.”

3. computation of the response of the real structure supporied on frequency dependent
Sail springs, and subjected at the tas: of these springe to the motion computed in a).
Motice that the only approximation involved in this approach concerns the deformability

of the structural foundation, 1If this foundation were rigid, the solution of this procedure

should be fdentical to that of the direct (or one-pass) aporoach (assuming, of course,
conaiatent definitions of the motion and the same numerical procedures).

The superposition principle is valid only Ucr a linear system. While the modulus and
dsaning of the soil are strain-dependent, studiss (6) have shown that most of the nonlinearity
‘tcurs as a result of the sarthquake motion, and not as & result of soil-structure intersction.
Tius, the soil properties comsistent with the levels of strain in the free flald (i.e., defore
the structure has beet built) say be used in steps 1 and 2 without further modification to
sccount for the additional strains imposed by tha structure,

The first two steps require, in general, finite element methods, and thus it might appear
that the J-step sethod has no advantage as compared to comsidering both kinematic and inertial
intaraction together in a single step. However, ressonable arproximations can be obtained on
the bastis of one<d imensional vave propagation thaory for the selutiom of step 1, and correc-
tion factors sodifying for embedment the corresponding springs of & surface footing on &
layered scratum for the solution of step 2., Use of these rules not onlv provides remarkable
ftreement with the results obtained “rom & full finite elenent analveis, but results in
Substantial savin & of computer sxecution and storape requirements. Thie frees the eng'neer
1o parform extensi-. studies wvarving the Input properties cwer a wide range te account for
Wcortaiaties, in particular with respect to the soil properties. Also, deviations from axial
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Sysnetry may ba introduced fae( the model of *he structure in step 3} (vhich seans
slonal “spring™ and "dashpot™ must be *valuated in step 2) end the sffect of changes in the

that & tor.

Wasr and sciffoees of the Structure be evaluated vithout having to rerun as entire analyety,
3 T & Solution for Cireular Zabedded Poundations

The solutions Presented in the folloving sections have been obtained with * threed ing,.
*lonal axisymetric finite element formulacion, A fundamental feature of the program used (,
the exact Tepresentation of the model Souadary which separvtes the flaite alement region froe
the semi-infinite Continuum (the free field), This conststent enersy tranmmitting boundary
Vas developed for the plane strain case by Waas and Lysmer (11), (7), and Vas extended to the
three-dimenstonal case by the first sucher @), ), 5). 1a tssence, 1t can ba regarded «“

@ virtual extension of the finite tlement mesh to iafinity, and can be placed withoye lows of
accuracy imedtiately nexe to the foundactom,

Ia the following Section, 1t will be Sstumed that the motion wvhich the ground experiences

before any Structure (or hypotherical nasslows foundation) has been buile, can be dascribed by
®eans of one—dinensiinal vave Propagation theory, The control wotion, f.0., the specified
earthquake record, wi 1 be assumed to take place at the free urface in the "free field.”
Motioos az other Peints in the free fiald can be obtained by the s0=c
Procéss, which makes use Of one~dimensional Vave -propogation theory,

3.1 Aporoximstions £0 the Finematic Intericeion

1@ third author iovest.gated the kinematic tn sractton problem in & parsmetric ostudy
(8), wiing a »fee of embedsent ratios £/n and stratum racios K/R, covering a range of values

&nd proposed rules to approximate che kineaatie
intersction,

alled "decom olut ton"

Referring to Pig. 3, & omie harsonic displacement
deconvolved to bedrock, Uiing the fintte element progr
functions 4.9 for the displac

VRS specified at the free surface, and

e, frequemcy dependent tranefer
ment and rotation of the sannless !o\-uttoa. relative to the
ROtion at the free furface, were determined, Sistlarly, the frequency denpandent transfer

functions for the displacement in the free flald at the elevation of the foundation, and for
the pseudorotasion of the free fileld

. Ay Ly
l' (n) Tl—'—

vere computed. Typical resules are found tn Pig, 4. The transfer functions U and uy,

hen compared for & range of embedsent and stratum dapth values, and rules teo
fpproximete theas functions were Suggested (8), Slaplified version of these rules (s gliven
below,

Let 7 (0) be the Pourier trensfors of the scceleration
fleld (ia moet Cakan, the destgn earthouaks),
rigid foundat ton Are then given approximately b

At the free surface in the free

The translation and rotation of the Rassless,
Y
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P [ 0.257 (ocon § . /M) 4 01,

ke v [ oasmm ] 8t ey

(4 te positive clockwvise)

whers IFT stands for Inverse Fourier Transformation; fy ie tha fundamental shear beas
frequency of the enbedment region (for uniform soil properties in the embedment resiom, this
valus Lo given by £, = Cy/AE with Cq beling the shear vave velocity, and E the depth of embed-
sect, The expression is square brackets describes an approximation to the transfer functions
for the translstion and rotation of the massless foundstion,
fy» ®@cos 0= 1; 1t follows that no kinematic intersction taker place for this csse.

The procedurs described yields satisfactory resulis for & vide ranse of &  ‘ment ratiow,
see for instance FPig. 5. "2 should be noted, however, that the roti:ilonal comoonent is sensi~
tive to the lateral »~.i conditions, and particularly to the flexibilitv of the latersl walls,
For flaxible sidevalls, the sctual rotation is significantly smaller, and in the extreme case
of vo sidevalls, the rotation even changes sign! Nevertheleas, he contribution of the
rotational component to the response of the structure is in wnet cases not very significant.
Tor nuclear containsent structures, the affect of the rotational component on the structural
response is ~f the order of 15-20 percent.

3.2 Approximations for the Stiffness Punctions

As with the kinematic {nteraction, the values of the suberade stiffness functions
(lapedance functions) depend only on the geometric configuration of the foundation and on
the properties of the founding soil. These fumctions can be evaluated using snalytical,
experinentil, or numerical methods.

The rasulta presented in this paper are based on parsmetric studies performed bv the
fourth writer to determine approxinste expressions for stiffness functioms of circular,
enbedded foundations (1). VYor each particular geometry, the static values were evaluated with
two or three seshes (s fine, & stendard, and & coarse mesh), and the resulcs weres corrected
for mash size ervor in & manner similar to that described in Ref, &, The study wvas limited to
the coupled horizonmtal translation and rotation (rocking-swaving) of the ristd, circular,
abedded Toundation in a % wtr
telationship can be written

Por surface footines, £ = O,

Por this particular case, the furce disnlacement

{l‘ J T Tad ) w

nt (Fyx%s | 9.

where 7 = the horizontal force; M = the rocking moment; and u, #, are the correspond. x dis-
placements (rotations). The slements Kex, K . Kgg of the stiffness matrix denend on he
frequancy ofexcitation 2 of the forces (moments). Since these forces and the resulting Jie=
placements are generally not in phase vith sach othar, these slements are comnlex functions of
frequency, Each stiffness function is of the form K° (1 + 218) (k + fage), where K° {s the
static stiffoass, 8 & measure of the internal damning in the soll (of a hvsteretic nature),
L= ZT, and o, ts the dimensionless freeuency On/c,+ (0 (s the circular frequency of the mo~

tion and excitation,® the radius of the foundatios siab,and Oy a referance shear vave velocity,)
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k and ¢ are frequency dependent coefficients sormalized with respect to the statfc stiffsess.
Tha coufficlent ¢ is related to the energy loss by rediation,

Usiag the prograsm described sarlier, the dynamic stiffness functions vere computed for a
renge of smbadmant and stracum depth ratios, and written as descrided siove as:

&.l.'ﬂuOl‘..C", 1+ 218)
l.‘°l°.‘0u"~'.-‘n’ 1+ 218)
Bgd = K%y (py + tay . €39) (14 248

Analysis of the results obtained provided then the following approximations to the statie
values l‘.. KOs K9gs mnd to the dynamic stiffness coefficients kype K2, €31s €120 €331

Static Values:
Pacimasibacibacid

Cu® O G - 0.09) (4 ts posttive clockwise)

3
l‘“‘r'?;.—.)ﬂ*f%) (102.5)(100.71,!.-)

In these formulas, G = the shear sodulus of soll underneath the mat; R = the radics of the
foundation, I = the depth of ebeduent, B = the depth to bedrock, and v = Polsecn’s ratie.

Dynanic Stiffoess Confficienta:

ke 22 Balf spuce solution (l.a., Ref. 10)

"% e
jo.'..—.-l for l.‘i-i - ay

‘-
Raif space solution for 8 2,
% sse.
..,.._.2 for ..‘riE: l.z
o

Ralf space soluticm for G ey,

kyy = Ejpe ey = 1

whare 8 {s the 1.lernal (hysteratic) demping fa the soil; Cp and C, are the dilatational vave

wlocities, in the subgrade; 451 &nd a,; are the (nondimensionsl) fundamental shear beam aad
dilatation frequanciees of the Stratum, as defined sbawe,

Except for the stiffness confficient k11, which displays & somevhat vavy nature, the
Suggested approximation for the stiffness and dampiog cosfficients provide ressomable sub-
Stitstes for the trus fumetioss. It can be obeerved that the radiation damping coefficients
., €3 are larger for the smbedded case than for the surface footing; thersfore, the suggested
Procadure should give conservative results for an smbedded structura.

e e,
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spect to the static sciffoess.

1 functions wers cowputed for a
weribed above as:

)]
8
18)

wroxinations to the static
mes kyye Rp2e €qq0 €320 €23
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140.05)
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4, Seil-Structure Intersction Problem .
Ouce the input motion and the base impedances are known, the last step is reduced to &

simple dynamic analysis of & sultidegres of freedom system. The "stiffness” end "damping”
terms can be added directly to the corresponding terms for the structure in & sclution in the
fresuency domain. A time domain solutien, and & wodal solutiom in particular (9), offer &
simpler physical interpretation of the results. They require, however, frequancy independ ant
stiffness and damping coefficiencs, and for the latter, in addition the existence of normal
wodes.

A oumber of comp ‘{ve studies indicate that it {s wore important to reproduce correctly
the static stiffnesses .aan thair complete frequency variation, It {s also worth aoticing
that the incresse in stiffnese dus to embedment is very sensitive to the properties of the
latersl soll, vhich may be disturbed. Considering, in addition, the uncertainties in the sofil
properties and ite nonlinear behavior, it is clear that engineering judgment 1s needed in the
selection of the most appropriste model, and that parametric studies, varving the assunad
conditions vithin reascnable limits, are advisable, This, of course, is ecually true whether
the snalysis is carvind out im a single step (one-pass we hod) or in three steps as suggested
hare.

The spring sethod has the advantage of being less time-con uning vhen spproximations are
ssed for the kinematic intersction probles, It allows, therefors, wore parametric studies,
and the accuracy of each step is subject to better comtrol. 0f parti. lar importance is the
possibility {n this method to make use of symsetry or cylindrical conditions if the foundation
seets these requirements even if the structure does sot (vhich is & frequenat situation). The
coupling between the corresponding terms will come ia naturally in the third step. Froe &
practical standpoint, the procedures has &n additional advantage when the design msotion is
specified by a brosd band response spectrum n :t tailored to the soil conditions at the site.
1f the direct approzch is spplied to such a case, demmplification of certain frequency compo~
sents vith depth resulting from the use of one single vave pattern (1.0., verticall? propags~
ting vaves) may lead to unconservative estimates for the sotions of the structure., Under such
conditions, \: msy be better to regard the design wotion as an "averaze”™ motion in the
vicinity of the structure, and to use it directly as input to Step I,
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TOK ' IONAL AND COUPLED VIBRATIONS OF
EMBEDDED FOOTINGS

R
M. NOVAK®
Faculty of Engineering Science, The University of Wesiern Ontario, London, Ontario, Canada
AND
K. SACHS

AEG-Telefunken, Frankfurt, Germany

SUMMARY

An approximaie analytical solution is presented for torsional vibrations of footings partially embedded into a
semi-infinite medium or a stratum. Simple formulas derived for pure torsional motion make it possible to apply
a correction for the effect of embedment to the known solutions of surface footings. The solution completes an
approach to the anaiysis of all modes of footing vibrations, including the coupled modes. The approach to coupled
modes is illustraled by the solution of coupled response invoiving horizontal translation, rocking and torsion.
Formulas are presented for st.Tness and damping coefficients that can be used in the analysis of embedded footings
or structures supported by such footings.

Field experiments were conducted with concrete footings featuring circular, square and rectangular bases and
variable embedment depths. The experimental resuits were compared with theoretical predictions of pure
torsional vibrations.

INTRODUCTION

This paper complements an approach to the analysis of embedded footing vibration which related t > pure
vertical, horizontal and rocking modes' ' and coupled horizortal and rocking modss.* Pure torsional
. .sponse is treated herein as well as response in a coupled mode involving torsional, horizontal and rocking
somponents.

Tnere is experimental evidence that the dynamic response of footings can be considerably affected by
their partial embedment beneath the surface of the soil.!* 132 However, a rigorous analytical solution of this
effect is very difficult and finite element solutions appear the most promising approach to this problem.11. %

The approximate analytical solution presented in this paper offers advantages of simplicity, the possi%lity
1o solve any number of degrees of freedom, and great versatility, thereby making it possible to consider
layering and to introduce the dynamic soil reactions into the analysis of structures resting on embedded
footings.

The solution assumes a rigid cylindrical footing, linear isotropic elasticity and a perfect bond between
the footing and the soil. The total dynamic reaction of soil i composed of a reaction acting in the footing
base and on the footing vertical sides. The base reaction isderi. ' from an elastic half-space which is assumed
to model the soil under the footing base. The side reaction is ¢ -ived as a reaction of an independent layer
overlying the half-space. As well, this overlying layer is considered to be composed of a series of infinitesimally
thin independent layers which facilitates the analysis of more complicated vibration modes involving non-

niform displacements of footing sides. Such assumptions were first adopted by Baranov;? however, he did
pot consider the torsional modes analyzed herein. ==

* Professor.
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12 M. NOVAK AND K. SACHS

The assumptions are approximate, primarily because the compatibility condition between the soil under
ihe base and the overlying layer is satisfied only at the footing and very far from it. Nevertheless, the same
theoretical approach to embedment yielded a reasonable agreement with the finite element solution for
vertical vibration'® and considerably improved the agreement between the theory and experiments for
coupled harizontal and rocking vibration.* Thus, it appears useful to obtain some information on the tor-
sional response of embedded footings too because large differences were observed between the strict elastic
theory and experiments with suiface footings.” Finally, the approach presented offers a way of applying an
approximate correction for embedment to the already numerous so! utions for surface footings. ' & 7810161

SIDE REACTIONS OF THE LAYER
Firstly, dynamic reactions will be determined acting on the footing sides if the cylindrical body performs

harmonic torsional oscillations with frequency w around its vertical axis.
With the omission of body forces and with the notation according to Love, the equations of motion of

elastic media in cylindncal co-ordinats , are

2d 206w bwy, Fu )
(ROF-—=F T =

| A . tw, .0 &
.sza)m-za—;‘;-na%- p-é-;; )
éA 262 Wiw, &Ew

(A+ZG)5-Z----'-5;(M,)+—’-87.-,.&T }

in which relative volum* change:
1év ow

| ¢
i AL T A

anrs components of rotational vector.
11w ac) )
- z(rﬁ Zz

e -3)

w, - 1(1_._6(“) l?u\'

* 2\r ér rééb) ]

With pure torsional vibration of the layer around the vertical axis, both vertical and radial components
of the motion vanish, 1.¢.

wir,8,1)=0, wu(r,6,1)=0 4)
and the equations of motion, equztions (1), reduce to
(/\+ZG);‘.-§;+GL’%—G’%+G;¥-p%: )
With the boundary condition along the circumference of the cylinder: f
wrg, 0,1) = rg {oe' (6)
the solution to equation (5) can be sought in the form: .
v = R(r)D(f)e'~ M.

‘

Substitution of equation (7) into equation (5) yields
. . 3 S
R R (pw '._‘)__M-.G@ ®)
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VIBRATIONS OF EMBEDDED FOOTINGS 13

This equation can be split into two ordinary differential equations for R(r) and ®(8)

N X
0 $ b (k8 =]) =
’ R+rk+(k -1 &)
10°
- -;.‘F-"' (lO)
in which
puwt G
’-— T - -
foly: P an
Solution to equation (10) is
D = A, cosnalf+ B, sinnab (12)

Motion v is independent of angle @ which, with respect to equation (7), requires that in (12) n = 0 and thus
=4,

Equation (9) now takes the form:
PR +rR 4+ &'r*~1)R=0 (13)
The solution to this equation is
R = CH{V(kr)+ DH® (kr) (14)
inwhich H;', H{¥ = Hankel functions of the first order, first and second kind, respectively; C, D =constants
to be determined.
From the asymptotic form of Hankel functions (see, e.g. Reference S, p. 616) it can be seen that with

excitation coming from the body (outward travelling waves) only the function H;* comes into consideration
and thus C = 0. From equations (7), (12) and (14) motion

o= AHY (kr)e'~ (15)

in which 4 = a consta it given by the boundary condition, equation (6). Comparison of equations (6) and
(15) yrelds, with r = r, and kr, = g,, the constant A = {,r,/H ¥ (a;). Thus, motion at a distance r

H«c:.: - o (16)

in which the dimensionless frequency, g, = ryw J(p/G).
The torsional stiffness of the layer is obtained from the stresses along the circumference of the cylinder.
From general formulas, o, = ¢, = 7,, = 0 and circumferential shear

LA G(E—:-g) (17)

Integration of moment r,r,, along the circumference of the C)lmdcr yields the relation between the total
dynamic torsional reaction N of a Jayer of thackness ! and cylinder motion {ye'*:

Ndt) = =276 i~ .., (a‘) 1o HiY (a) = 2H¥ (a,)] Lo &'~ (18)
or split into real and imaginary parts:
Nlr) = Gr3l(Sp, +iSgy) et (19)
in which
o+ Y, Y, .
Sa= 217(2- Llirj’!{—‘) (20)
and
4
eI o

-~ o - - o -~ -t
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e T B e i d‘ o e .:"’.—.. b - . - LN e o g - - ‘~'“”‘jt."‘ s
e - ~ o o Sy <& . » ~ : L P
.ov'__,..-hx.‘ - ,.‘ _;,-_’o"'m,,- il S e N, N el -

— o - k. L= ) ey T Al
-y - e
< - 5 . 4 . . - -
= ~ - B
2 -




14 M. NOVAK AND K. SACHS

Here. J,(a,). Jy(a,) are Bessel functions of the first kind of order zero and one respectively, and Yy(ayp), Yy(ap)
are Bessel functions of the second kind of order zero and one.

unction SA!\as a meaning of a_[_requencv dependent stiffness arameter while S;q represents 3 frequency
dependent ]ampjp’iﬁa_umtter.’ﬂ\ese“;ia}amre?s'ir?'sﬁo’wn a5 Tunctions of a, in Figure 1. In Appendix 1,
approximate pelynomial expressions are piven which can faci'itate the computatic s.
%
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STIFFNESS AND DAMPING PARAMETERS S_ AND C
~ o

] LS 20
DIMENSIONLESS FREQUENCY &, ¢ wr Vp/G

Figure 1. Suffness parameters Sy, Cyy and damping parameters S, Cyy for side layer, half-space and strata with relative
thickness A/r = 05 and | (A/r = oo denotes haif space)

0 Qs

PURE TORSIONAL VIBRATIONS OF EMBEDDED FOOTINGS
The equation of torsional oscillations { of an embedded cylindrical footing about the vertical axis of
symmetry is .
I § = Md1)= Re(t)= Nilo) (22)
in which J; = mass moment of inertia of footing about vertical axis Z, M(1) = moment of excitation,
R1) = torsional reaction of soil in footing base and N1) = torsional reaction of layer adjacent to footing

vertical sides.
The base reaction may be written in terms of displacement functions and [y (taken, eg from

References 6 or 16):

R(S) = ‘6’37;17/; {1) = GrACa +iCe) §(1) @)

in which stiffness parameter C;, and damping parameter Cpy are

ol
Cn - m. C

The side reaction is, according to equation (19),
N‘(l)-G,r:l(S‘,+iSn) i; (23)

fn
= ——— (24
&= 7h+/h ;
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VIBRATIONS OF EMBEDDED FOOTINGS 15

in which G, = shear modulus of the side layer and S, , are given by equations (20) and (21). Substitution
of equatinns (23) and (25) into equation (22) provides the differential equation of motion:

G, 1 G,/
I t(:)wrg[c,, +Z ;;sn + i(c‘,+3 ’-.s‘,)] §(r) = M(0) (26)
With complex excitalion:
M(1) = Mye'™ = M(cos wi+,'sin wl) 27

in which M, = the real moment amplitude and w = excitation frequency, the particular solution describing
the steady-state motion 1s {(1) = { e** in which {, = complex displacement amplitude.
The real part of the motion is

L) = L cos(wt+¢) (28)
With the notation of the frequency dependent stiffness (spring) constant:
G, 1
and the frequency dependent damping constant:
Gr3/( G, !

the real amplitude of torsional vibration

yik ™ l( Wi+ (¢ w)?] k( Vil = (w/wp)' + ‘D"&k‘"f'“‘o)’}

(31)
and the phase shifi:

Crw
é=-atan ——u
In equation (31) natural undamped frequency w, and damping ratio D are
Wo - \"(k“!,‘). D‘ = C‘/ZI‘WQ (32)

The natural undamped frequency of an embedded footing must be determined by a trial and error approack
as it appears in k; too. Equations (31) and (32) are formally equal to those of a single degree of freedom
system (Voigt model). Often the dimensionless amplitude A, = {,Gr3/M., is useful. This dimensicnless
amplitude depends only on inertia ratio B; and g, as can be seen.

In many practical problems the excitation is due to rotation of an unbalanced mass m, with the eccentricity
e, acting at a distance r, from the axis of the footing. The excitation n.oment amplitude is M, = m, e, 7, w*
and a dimensionless rotation amplitude may be introduced, A, = {,I;/(m, e,7.).

The predicted response depends on functions Cp, 4 substituted into the above formulas. Four typical cases
can be considered: the footing can be embedded in the half-space or in a stratum and surrounded by
undisturbed soil or backfill depending on the type of construction.

Embedment in the half-space

StilTness parameter C;, and damping parameter C;, were computed from equations (24) with displacement
functions f;, , taken from Bycroft.® These parameters are shown in Figure 1 in full lines and are given in
Appendix 1 in a polynomial form to facilitate the computation.

The stiffness increase due to embedment was computed from equation (29) with frequencies g, = 0 and 1
and is compared with the static finite element solution by Kaldjian® in Figure 2. The agreement is quite
reasonable.

Examples of theoretical response curves computed from equation (31) with various relative embedments
§ = [/ry are shown in Figure 3.
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Figure 3. Theoretical response curves of torsional vibrations of footings embedded in elastic half-space (iner. ™Uuo
By = 10, p,/p = 1, quadratic excitation)
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It can be seen that the theory indicates a considerable increase in the resonant frequencies and reduction
in the resonant amphiudes due to embedment.

Weissmann® approximately considered slip in regions of high shear stress and included hysteretic damping
of soil. Functions Cp, 4 derived from his solution are shown in Figure | in dashed lines for both granular
and cohesive soils respectively. These functions considerably deviate from the strictly elastic sclution,
however, but may sometimes yield results closer to reality.

Embedment in a stratum

Embsdment in a stratum can be considered with equal ease. The functions C, and Cy, for two strata
featuring relati- e thicknesses h/r, = 0-5 and | are given in Appendix I and are shown in Figure 1. They were
computed from Bycroft's functions f; 4.*

Base reactions for strata of any thickness can be obtained from Awojobi’s solution.! The corresponding
stiffness and damping parameters are also given in Table Il (Appandix I).

Examples of response curves obtained from equation (31) with Awojobi's base reactions are shown in
Figure 4 for sublayers having relative thicknesses A/ry = 1,2,5 and o. In Figures § and € variations of

300r

200

ApeLigrx
o
o

w
o

-
o

DIMENSIONLESS AMPLITUDE

DIMENSIONLESS FREQUENCY a,

Figure 4. Theoretical response curves of torsional vibrations of footings embedded in strata with A/zg = 1, 2, 5 and .
(Embedment ratios § = 0, 025 and 050, B; = 35, p,/p = 1, quadratic excitation)

resonant (maximum) amplitudes and corresponding resonant frequencies with stratum thickness and
embedment ratio are shown for inertia ratios B; = 2, 4 and 10. These graphs were also calculated with
Awojobi’s base reactions. With 8 = 0 the solution corresponds to that for surface footings, i.e. to that of
Awojob’ or Bycroft according to the base reactions used. There is very little diference between Bycroft's
and Awojobi's solutions with A/r, = oo,

It can be seen from Figures 4-6 that the effect of embedment in a stratum is #ven more pronounced than
with that of embedment in the half-space because of little or no geometric damping generateu through the
base. Figures S and 6 can be used to assess the effects of :mbedmest, inertia ratio and layering.
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Figure 6. Dimensionless resonant frequencies of torsional vibralions of footings embedded in strata for several embedment
ratios & and inertia ratios B = 2, 4 and 10 (By= Ig/pr}. circies indicate finite element solution, Reference 20)

Also plotted in Figures S and 6 arz resonant amplitudes and frequencies obtained for h/ry = 8 by Wass and
Lysmer® using the finite element tzchnique. Their results are shown as circles; arrows indicate with which
analytical curve they compare. The agreement is quite good. (The finite element results shown were inter-
polated to match the parameters B; used here. The differences in resonant frequencies with § = 04 are
of little practical importance as the corresponding response curves are rather flat.)

SIMPLIFIED DESIGN ANALYSIS

The prediction of the respense from the above formula is not difficult; however, the computation can be
considerably simplified if suffness factors Cp, and S ar¢e ggnslde&d‘gconstar_\m‘;cngy independen:)
and damping factors Cgy and S, as proporiional to dimensional frequency ¢, It can be seen from Figure |
the degree to which these assumptions are acceptable. They seem reasonabie and quite adequate for
applica 1ons with respect to all the physical uncertainties involved.

Thus, stiffness parameters can be considered approximately constant, i.e. Cao= ¢ pand Sp = Sn, where
the constants denoted by bars can be readily obtained from Figure | or Appendix 1 in which some suitable
values are given. With constant stiffness parameters Cp and Sy, the frequency independent stiffness constant
is obtained from equation (29). Then, the natural frequency wq can be directly calculated from equation (32).

Proportionality of damping factors to frequency assumes:

in which Cp and S‘, are constants whose values can be again established from Figure | or Appendix I.
Substitution of equations (33) into equation (30) yields the frequency independent damping constant for
torsional vibrations of embedded footings:

= rg,(<pc)[c¢,+ Sor J (2 %)] (34)
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The frequency independent damping ratio is from equations (32) and (29)

o= gig|CavSoin (3 E)) Y (G 57 50) o

in whichinertia ratio B, = J;/pr} For surface footings, equation (35) yields D; = 0-17/{/8; and numerical
resuits close 10 those of Richart and co-workers (Reference 17, p. 226).

With D; obtained, the ‘resonant’ amplitude at natural frequency w, (shightly smaller than the maximum
amplitude) is simply {(wy) = My/(k 2D¢) or with quadratic excitation Lo(wg) = m, e, r /(2D I;). The
maximum amplitude is 1/(! — D}) umes larger.

An example of comparison of response curves computed with variable parameters and with constant
parameters is shown in Figure 7. (C‘ = 0-$ was used for the half-space in this case because it yiclded better
agreement in the frequency range employed.) The agreement appears satisfactory for design purposes.
As even better agreement can be obtained with a mass adjustment.
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Figure 7. Comparison of response curves of torsional vibrations computed with both variable and constant parameters
(B; = 418, backfill with p,/p = 08, GJ/G = 05, quadratic excitation, Bycroft's base reactions)

In practical applications, the effect of embedment may be reduced due to backfill and an imperfect bond
between the footing and the soil. The effect of backfill can be accounted for by considering G,< G and p,<p
in equations (29) and (15). Possible lack of bond between the footing and the soil can be approximately taken
into account by considering Weissmann's base reactions (dashed lines in Figure 1) and intuitively reduced
values of Sm.

COUPLED VIBRATION INVOLVING TORSIONAL, HORIZONTAL
AND ROCKING COMPONENTS

If the centre of gravity of the footing does not lie on the vertical geometric axis of the footing, a coupled
motion in three degrees of freedom is produced by a horizontal force Q, by a moment M, in the horizontal
plane and by a moment in the vertical plane M,. The components of this motion are the horizontal translation
u(1), rotation in the horizontal plane {(r) and rotation in the vertical plane (rocking) ¢(1). This motion can
also be sclved under the same assumptions as introduced for pure torsional vibration.

Consider the centre of gravity the origin of co-ordinates. With the notation according to Figure 8 and
with the omission of product moments of inertia and of coupling between displacements and reactions in
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Figure 8. Notation for coupled vibration of footing in three degrees of freedom involving horizontal translation, rocking

and torsion

the footing base,'®'* the equations of the motion are
mi(1) + rglG(C oy +iC ) + G, 8(S + 1S )] u(t)
+ero[G(C  +iC )+ G, 8(5,,+iSy)] L)

+rif-6E(CusiC+ 6,8 (18-) (Su+iSa)|| w0 = 00)

I, &'(:)wg[c. a(i—'—o) (Su+152)- G (Cu +1c.,)] w(r)
5 2z
+er§[G,6(3—7;)(5“4’1'5“)-G%(C_pm'cn)} Ur)
3‘ " 6’ Z, Z:\ .
+7{G(Cp+iC)+ G, Sp+iS+(3-8543) Sutisw
0 °

+ci—’:(c,,+.'c,)} 9(1) = M)
]

1. {(1) + €r|G(C s +iC) + G, 8(Syy +iS )] (1)
+{er[GIC, +iC )+ G, (5, +i5,)]
+[G, 3 (S +iSp)+ GriCp+iCr))) &1

+er3,{-ci—;(c_,+ic,)+c,a(g5-§-;)(s_,“s,,)] Y1) = M)

(36a)

(36b)

(36¢)

In these equations, C; and S; are the parameters derived above. Parameters C,, S, and C,, S, are
analogous functions relaied to hor:zontal translation v and rocking ¢ and can be found in Reference 4.
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With harmonic excitation in complex form I
Q) = Qpe'™, M,(1) = Myoe'™, M(r) = Me'™ (37 ’
the response is
E(r) = u e () =y’ [(1)= { e~ (38)
in which sybscript ¢ denotes complex amplitudes. Substitution of equations (37) and (38) into equat’ons (36) v
yields for the complex amplitudes of coupled mation:
[k oo = me?) + iwe, Jue + (1 +iwe ) Y+ (ko v iwe ) (=0,
(kg +iwe u + [(kyy =Ty af) +icy g+ (ko +iwey ) (o= Myy (39) 5
in which frequency dependent stiffiness constants: "
‘ $
un = G Cua + 2850
e
ai
by = =G Ct G e~ a8 S
‘o( - 'knm ce
- : 22 s
‘VV-G’:[CV‘+‘-;:) '8Sv‘+ -5(% ;: 8?)5011
\e s 0 (40) pc
Lv, =k, re:
” en
kv{- -G"o[:ccul+'a:8‘:c°i'08)sul] -'klw -
& arc
keg= Grg(C;l '85n+ C,,+Z‘6"S,,) ap
int
k= ek, =k, th:
d
key = kye J 4
and frequency dependent damping constants:
& \
e G"‘(c,,, ] ss,,)
€ = ¢yt To
Gr, G rec
o= =22 Cas G o010 9 Un
wa:
Gr? a2 G, G, (8 2 _:i)\. of
cw-—‘”—"[C“-‘-’—zc,,«o-—a-85n+55(3+’-=-6r-°)uu] exc
(41) 1
Cou™ Cup soil
lab:
Cor ™ -.G"J[ Cu+— &z, ~ ‘r.&)Sd]
t‘. - t.‘
t‘ = C,-
e G, &
. — - S S
e (c, E¥at5Car G55 ) |
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From equations (39), the complex amplitudes u, = u, + iu,, etc. can be obtained with any excitation frequency.

) The real and imaginary parts of the complex amplitudes yieid the real amplitudes:
38) U= Vi +ud), Yo = JWI+¥D, L= J}+D (42)
36) With quadratic exciasion, these amplitudes can be made dimensionless according to the formulas:
m I
- — = L= ——-L
A mu'n“'. . ’"a'-zo*“ 4 ’"n'-’c(, )

39) The natural frequencies can be obtained from equation (39) by setting the right sides and the terms labelled

by 7 equal to 2ero and solving the eigenvalue problem by trial and error.

The reciprocity relations in equations (40) and (41) hold in this approach but need not hold in general
as shown in Reflerences 10 and 19.

An example of the response of embedded footings in three degrees of freedom is shown in Figure 9 for
eccentricity e = ry/3 and for various embedment depths. Dashed lines denoted a, 54 indicate the first, second
&nd third resonances of the surface footing (8 = 0).

The first resonant peak shows clearly in all three components of the motion. )

The second resonant region is dominated by torsion and can hardly be recognized in the translation
component A,.

The third resonant peak is completely suppressed in all three components.

These relations, of course, depend on the properties of the footing. Nevertheless, the example illustrates
) possible importance of the torsional component and the effect of embedment on the response in the three

resonant regions. It can be seen that the response above the second resonance depends very little on the
embedment. With small eccentricities (¢) and medium or low mass ratios the third resonance usually appears
suppressed.

Tne analysis of the coupled response can again be considerably simplified if constant parameters C and §
are introduced as it was shown in the case of pure torsional vibration. The efficiency of such a simplified
approach in two degrees of frecdom was demonstrated in Reference 4. With constant parameters ¢ and §
introduced into equations (40) and (41), frequency independent stiffiness and damping matrices are obtained

that can be readily used in the analysis of any structure supported by embedded or surface footings, as
discussed in Reference 23.

COMPARISON WITH EXPERIMENTS

To assess the applicability of the theory to ci-cular footings and also to footings featuring square and
rectangular bases (cross-sections), field experimznts were conducted with three concrete blocks at The
University of Western Ontario. The blocks .ere cast directly into neatly cut excavations. The embedment
was changed by removing the soil in three steps. The effect of backfill was investigated by step-wise backfilling
of the soil. Pure torsional vibrations were excited by means of a torsional mechanica! oscillator with
exchangeable eccentric masses.

1) The soil was a brown, silty clay underlain by a glacial till. The shear modulus and Poisson’s ratio of the
soil were obtained from wave velocities measured in the field. These measurements were compliemented by
laboratory investigations. The following properties of the soil were found:

Bulk density of undisturoed soil = 110 Ib/ft3 (1760 kg/m*)

Bulk density of backfill = 100 Ib/ft* (1602 kg/m?)
Water content of soil = |5 per cent :
Void ratio of undisturbed soil =07 |

Shear modulus of undisturbed soil = 1-13 x 10% [b/ft? (549 kg/cm?) , !
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Figure 9. Example of coupled response of embedded footing in three degrees of freedom (B; = 4 560 =ry3, G, =C,
translation, rocking and torsional components, quadratic excitation)
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The main data on the test footings are given in Table I. The equivalent radii ry for square and rectangular
footings were computed from the equality of polar moments of inertia of the base.

Tabie |
Shape of Base area I %
base ft* (m?) Ibfi*s? ft (m) B
Circular 398 (0-369) 54-5(754) 1-125 (0-343) 865
Square 5:06 (0 469) 776 (10:70) 1-284 (0-391) 650
Rectangular 501 (0464) 93-2(12:88) 1:330 (0-403) 655

A typical example of steady torsional response measured at various embedments is shown in Figure 10.
The foundation base was circular in this case and the excitation intensity was the same for all embedments.
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Figure 10. Measured response curves of cylindrical footing at various embedments (m,e.7, = 000326 Ib f1 s?, undisturbed
soil, B; = 865)

Comparison of Figure 10 with Figure 3 indicates a good qualitative agreement in the major effects of embed-
ment manifested through drastic reduction in resonant amplitudes 2nd large increase in resonant frequencies.
The former effect is primarily due to increased geometric damping while the fatter effect confirms an increase
in stiffness.

With other foundation shapes the changes in response due to embedment were similar to those depicted
in Figure 10. A comparnison of response curves observed with various footings is shown in Figure 11 for
surface footings and for an embedment of one foot. It can be seen that embedment was most efficient with
the rectangular footing. Thus indicates the efficiency with which torque can be transmitted into the surrounding
soil.

The quantitative comparison of theoretical and experimental resonant amplitudes and resonant fr- juen-
cies is somewhat complicated by non-linearity of the response which renders the dimensionless sonant
ampiitudes and frequencies dependent on the excitation intensity as shown in Figures 12 and 13. In Figure 13,
resonant rotations are shown in full lines, resonant {requencies in dashed lines and embedment is indicated
a0 lor2ft
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It appears that there ‘: a trend for both the resonant amplitudes and resonant frequencies to decline with
the increasing intensity of excitation. {The measurements were conducted with increasing intensity of
excitation.) These changes seem to indicate a damping producing slip between the footing and the soil in
regions of high shear stresses as suggested by Whitman®? for surface footings. The theory presented herein
assumes a perfsct bond between the footing and the soil; therefore, the measurements conducted with
minimum excitation intensities are used, for the most part, in further comparisons shown in Figures 14
and 15,

In Figure 14 the theoretical and experimental resonant amplitudes are compared.

Tor surface footings, the experimental amplitudes are considerably smaller than the theoretical ones, in
agreement with observations made by Whitman.* For embedded footings the experimental amplitudes are
larger than the theoretical values; however, the differences are smaller than with surface footings in the case
of undisturbed soil and are quite sma!l for the rectangular footing. For backfill the agreement is very poor.
It can be seen from Figure 14 that there is a region of small embedments (//ry > 0-1-0'5) in which the
theoretical and experimental amplitudes must coincide.

The comparison of theoretical and experimental resonant frequencies is shown in Figure 15. The
experimental resonant frequencies are consistently much lower than the theoretical predictions. The
differences do not diminish with increasing embedment and appear largest for the circular footing. (OF
course, there is a dependence on the rather inaccurate value of the shear modul's.) Nevertheless, it is clear
that the torsional stifTness is much less than the elastic theory predicts.

The experimental frequencies and amplitudes of surface footings reported here are in reasonable ag- .cment
with Fry's experiments and with Weissmann's modified theory ®

It can be concluded that the quantitative agreement between the strictly elastic theory and the exp riments
is, in general, poor, particularly as far as resonant frequencies and the effect of backfill are concerned. These
differences may be attributed to limited capacity of the soil to transmit the torque from the faoting through
shear. It is desirable for any theory to allow for a slip in the regions of high shear stresses. The presented
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theory makes it possible to include such modified soil reactions in the footing base. Such a modification would
bring the theoretical predictions closer to experimental results.

CONCLUSIONS

Embedment produces drastic decrease in rescnant amplitudes and a marked increase in resonant frequencies
of torsional vibrations. These efTects are particularly pronounced for footings embedded in shallow strata with
relative depth h/r, smaller than about 2 where the omission of embedment and internal damping can yield
unrealistically large resonant amplitudes. With embedment taken intc account, layering appears much
less important.

The coupled response involving translation, rocking and torsion is strongly affected by embedment in the
regions of the first and second resonances but depends very little on embedment in the region of the third
resonance where there is usually no appreciable increase in amplitudes.

The approximate analytical solution agrees quite well with the available finite element solutions and
requires very little computing time, and layers with any thickness can be readily considered.

The field experiments show a good gualitative agreement with the theory in the reduction of resonant
amplitudes and in the increase in resonant frequencies due to embedment but the quantitative agreement in
general is poor. Best agreement is found in resonant amplitudes for small embedments and rectangular
footings, worst agreement appears for surface footings, and for circular footings in general.

The real resonant amplitudes are smailer than those theoretically predicted for surface footings and are
larger than predicted for embedded footings. Only for small embedments fair agreement can be expected.

The resonant frequencies are conside ably lower than the predicted values. Also the effect of backfill is in
general much smaller than predicted.

The differences observed can be attributed to the slip in the regions of high shear. The inclusion of this
effect appears necessary in order to improve the reliability of the theoretical predictions of the torsional
response of footings no matter what kind of approach is used.
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APPENDIX I
Stiffness and damping parameters
Stiffness and damping parameters are given in Table 11, calculated from papers indicated. From Awojobi’s
solution,! the parameters can be obtained for any stratum thickness wiith @o>rg/h when the equivalent
dimensiogless frequency is introduced

|
i
]
'
| a, = Jla§-r§/A*%) (44)
f Table 11. Stiffness and damping parameters for torsional vibration
‘ Constant Validity
f Stiffness and damping parameters parameters range .
: Side layer
S = 1258~ 10la, - 59124} S.=124 0<€a,€02
Sc, = 1259 - 18550, - 3-349a} + 5-33503 — 2:7604 + 04954 3, =102 02€4a,€20
| S = 9040} 9 Su=20 9€a,«02
: S‘,-7Sa.—m§:;';-. S =54 02€2,€20 ‘
Half space*
Co = 5333400223, ~ 1:358a} + 0-7434a3 - 0 1414a} Cou=4d) 0€a, €20
Ca= 0-486a} C‘. =07 0€a,%20
Stratum h/ry = 0-5°
- Coy = 678053774, + 045450} - 0-2206a3 Cou= 65 0€a, <25
Coa=0 Coa=0 0ga, 314
| Stratum h/ry = 1-0*
] Cou = 575 -04191a,+ 1:381a3 = 211503 + 0-5927a} Cou=52 0<a, <200
’ Ciu=0 Ciy=0 0<ag,% 157
Coy = =628 +40q, Ca=06 157 €a,<2:00 :
Any stratum thicknesst ’
Ci = 5333~ 1-0678a; + 0 5607a; -0 27154% + 007392 - 0-01094,)* Depends {a.>r.’h
Cry = 075503 = 0 42282} + 0163 1a] - 0-0302a} + 0-00204a}"! on hiry 2,<20
* Derived from Bycroft.* .
t Derived from Awojobi.! a
APPENDIX I
Norarion
A = constant '
A, = function P .
A, = uym/(m,e,) = dimensionless amplitude of horizontal component of coupled vibration » X
A, =l /(m,e,z2,) = dimensionless amplitude of rocking component of coupled motion d o |
Ay = {I;/K = dimensionless amplitude of torsional vibration with quadratic excitation ¥ )

Ay = {,Gr}/ M, = dimensionless amplitude of torsional vibration with constant force amplitude
Aim = {,I;/K = dimensionless resonant (maximum) amplitude of torsional vibration
a, = [a} ~(ry/h)*}! = equi alent dimensionless frequency for strata
a,, = dimensionless resonant frequency (at maximum amplitude)
ay = wry(p/G) (or = wry(p,/G,)) = dimensionless frequency of excitation
B, = function
B, = I,/(pr}) = inertia ratio for torsional vibration
C = inicgration constant
C,.. C.q = elastic half space stiffness and damping parameters for horizontal translation
C,1. C sy = elastic half space stiffness and damping parameters for rocking
Cpy. Cpy = elastic half space (stratum) stiffness and damping parameters for torsional vibration
Co. € = frequency independent elastic balf space (stratum) stifiness aad damping parameters for}
torsional vibration :
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€44 = constant of damping force acting in direction ¢ due to displacement (velocity) in direction j
€; = equivalent damping constant for torsional vibration

- D = integration constant
ois D = damping ratio for torsional vibration
lent € = eccentricity of centre of gravity
(44) €. = eccentrivity of rotating mass

JaSos = components of Reissner's displacement function for torsional vibration
G = shear modulus of elastic medium (soil beneath footing)
G, = shear modulus of side layer (hackfill)
H = height of footing
HM', H{® = Hankel functions of the first order, first or second kind respectively
h = thickness of ¢lastic stratum
Iy = mass moment of inertia of footing about horizontal axis
I; = mass moment of inertia of footing about vertical axis
i=J(=1)
Jou Jy = Bessel functions of first kind of order 0 and | respectively
K = m,e,r, = excitation factor with quadratic excitation
k = constant
k,; = constant of elastic restoring force acting in direction i due to displacement in direction J
k¢ = stiffness (spring) constant for torsional vibration
! = depth of embedment of footing
M, = excitation moment about horizontal axis
M; = excitation moment about vertical axis
M, = amplitude of moment M,
My = amplitude of moment M,
m = mass of footing
m, = unbalanced rotating mass
N = torsional reaction of layer adjacent to footing
Q = horizontal excitation force
Q, = amplitude of horizontal excitation force
r = cylindrical co-ordinate
r. = lever arm of horizontal excitation
7o = radius of footing base; equivalent radius of footing base
R = function of r
R = torsional reaction of soil in footing base
5.1 Sz = ide layer stiffness and damping parameters for horizontal translation
S41. 5,9 = side layer stiffness and damping parameters for rocking
* 84, S5; = side layer stiffness and damping parameters for torsion
o= f;equency independent side layer stiffness and damping parameters for torsion
= ume
4 = complex horizontal displacement of footing, radial displacement of medium
u, = complex amplitude of horizontal displacement
kg = real amplitude of horizontal displacement
¥, 3 = real and imaginary parts of u,
v = horizontal displacement of medium perpendicular to »
X = horizontal axis
¥a: = Bessel functions of second kind of order 0 and 1 respectively
Z = vertical co-ordinate
z. = height of centre of gravity above footing base
2, = height of horizonta! excitation force above ~entre of gravity

for . . ;
w = vertical displacement of medium
/ ;
/
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a = constant

A = relative volume change

8 = /jry = embedment ratio

{ = torsional vibration

{. = {,+ily = complex amplitude of torsional component

L, = real amplitude of torsional vibration

L., Ly = real and imaginary parts of [

n = p,/p = density ratio

8 = cylindrical co-ordinate

A = Lamé’s constant

p = mass density of elastic medium; mass density of undisturbed soil
», = ma:s density of side layer; mass density of backfill

o = normal stress

r = shear stress

@ = function of &

¢ = phase shift

¢ = rocking component of vibration

¢, = ¢, + iy = complex amplitude of rocking component of vibration
¥ = real amplitude of rocking component

¢, 3 = real and imaginary parts of complex amplitude of rocking ¥,
w = circular excitation frequency
w,, = circular frequency at maximum amplitude
wy = natural circular frequency
w, s, = components of rotational vector
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The prediction of the coupled rasponse to horizontal forces is of major importance for the design
of footings exposed.to dy namic effects. The theory of surfuce footings greatly overcstimates the real
response and neelects the fact that tne footings are founded beneath the surface of the ground. /e
partly embeddsd. This latter fuctor considerably arfects the fooung vibrations in (hat it reduces the
resonant amplitudes and increases the resonant frohuencics.

An approximate analytical solution was deseloped in this paper and the theoretical response curves
were compared with field experiments. Closed form formulas were obtained that are simplz enough to
be dircctly used in design. The approximats anaivtical solution is'betier able to predict the coupled re-
sponse of embedded footings than that of surface foctings. The response is usually domnated by
the first resonant peak with the second resonant peak entirely suppressed. The darived formulas for
equivaleat st:¥nesses and damping coetlicients due 10 sou can be introduced into the solution of any
structure.

La prédiction de la réponse combinée a des forces horizontdles est d'importance majeure pour e
calcul des empatteinents soumis & des erforts dvnamigues. La théorie des empattements de surface
surestime la reponse recile et neglige le fuit qus los empattenzents sont plucés sous la surfuce Jdu sol.
i.e. ils sont particllement enfouis. Ce Gerner facteur ativete consicérablement les vibrations de l'em-
pattemert en réduisant les ampiitudes de résondnue 2t ¢n augnientant lours frequences.

Une solution analytigue spprovimating est ¢eveloppee duns oot articie et les courkss théoriouss de
réponse sont compardes aves des mesures stfestuces sur le terrain. On obtient des formules finics qut
sont assez simples pour étre utilisées directement dans fe ¢alcul Jes fondations. Cette colutien analy-
tique approximative est meilleure pour predire i reponse combinge des empatreinents enfous que
ceile des empattements e surface. Le comporternent est hobitucilement gouseras par la premicre
pointe de résonance alors Gue fa sesonde pointe disparait compictenent. Pour ierir compte du sol
autour de la fondation, on propose des formules aves des cocriicients de rigidicé et d'amortissement
équivaients, formules qui peusent servir & la solution Ces calculs pour n'importe quelie structure.
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Introduction

It has been recognized for maany years that
,the vibrations of footings can be greatly
affected by thieir partial embedment into the
soil. Nevertheless, very lintle gquantitative
intormation s available because of the
difficulties associated with a rigorous theore-
tical solution and with the generalization of
experimental  findings  Uncoupled  vibration
of ¢cmbedded fooungs was selved by Lysmer
and Kuhlemeyer 11969, 1971), wwho investigat-
ed verticai motion using the finre element
method. Novak and Beredugo (1971) huve
presented approximate formulas for verucai.
horizontal, and rockiry vibrations. Coupled
horizontal and rockine vinvation of embedded
footings. most intportant in design of maching
foundauvions, nucizar power planis. ete., was

Canadan Geotuvhinaal Jouraal 9, 657 (1972

first investigated by Baranov (1967). who
formulated an approximate analvtical solu-
tion: however, he prescnied numerical results
only for pure rocking. Tajimi (1969) analvzed
the response of a structure partially embedded
in an elastic stratum and attached at its base
to a rigid half space underlying the clastic
stratum.

In this paper. an approximate *heory is
used based on the assuraption that the dyna-
mic reactions in the footing base arc egual
to those of an elastic half space and that the
reacticns asting on the footing sides are
¢qual to those of an overlying independent
elastic laver. This approach. emploved first
by Baranov (1967), is extended here to vield
closed form formulas and graphs that can be
direc:ly used for design purposes. Also, the
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effect of backfiil is incorporated. The major
advantages of this approach are uts relative
simplicity and great versatlity. The known
solutions for coupled mouon of surface
footings (Richart ¢r al. 1970; Ratay 1971)

are a special case of the more general approach

presented herein.

To provide more experimental data. field
tests were conducted with concrete blocks
subjected to horizontal excitation. The block
bases were cither square or rectangular in
accordance with shapes most often used in
practice. The reported test results are com-
pared with the theoretcal solution in order
to assess the validity of the theory.

Equations of Motion

With the notation given in Fig. |, the equa-
tions of vibration of a foouing ir coupled
horizontal transiation wtr) and rotation w(r)
about a horizontal axis passing through the
center of gravity are:

\ mii(r) = Qi) — R(1) — N (1)

mo
' Iyti) = M{1) — R;(,) _— ‘\:;(”

in which m = total mass of footing, / = mass
moment of inertia about a horizontal axis
passing through the center of gravity. R (1)
= honzontal reaction at the footing base.
N{1) = resultant horizontal reaction acting
on embedded surfaces (sides) of fooung.
Ry(#) = reacuive moment of forces acting at
footing base about center of gravity. N (1) =
reactive moment of forces acting on footing
sides about center of gravity and ¢ = time.
The dots represent differentiauion with respect
to time. Qir) = horizontal exciting force

acting at height z. If MV, (1) = exciung mo-
ment, the total moment of excitaiion is:
(2] M) = 0z, + MJn

No rigorous ecxpressions for roactions R
and N are known: however. they can be ap-

proximately deseribed if the following as-
sumptions are adopted:

(i) the footing is of cylindrical shape,

(if) the reactions in the base arc the same
as those of a surface footing and thus can be
taken from the solutions of the elasuc half-
space or stratum, and

(iii} the side reactions are produced by an
independent layer lying above the lesel of
the footing base.

For this layer, various assumptions can
be made. If it is assumed that the layer is
composed of independent infiritesimally thin
layers, then the side reactions derived by
Baranov (1967) can be used. Baranov's
original solution can be extended to yield
formulas, directly applicable in foundation
design and analysis, and to involve the effect
of soil layering, backfill, and various stress
distributions.

In accepting the aSsumptions (if) and (i),
the compatability condition is satistied only
at the footing and far from it. Despite this,
the comparison with experiments and with
finite element solutions for vertical motion
(Novak and Beredugo 1972) and torsion
indicates that the approximate theory yields
quite reasonable results.
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Fic. . Mathematwal model of embedded footing
in coupled motion.

With the above assuniptions, the soil reactions can be formulated as follows.
The horizontal and monicat reactions in the footing base are:

(3

} R() = GrpC,, + i C,)) lilr) — =, pli)]

l Ry(t) = Gr) (Cyy + iCy) wlt) = Gr(C,, + iC,,) [ulnz, = zlpln)]

|
. 8
3}
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in which

14

[ = b
g eEn

s
| T

Here, G = shear modulus, r, = base radius. i = V=1, f,

sionless frequency a, = o,V p » G and Poisson’s ratio v. ¢ = frequency of excitation and p =

mass density of the medium below the base. Funcuons £ can be found. ¢.g. in Bycroft (1956)

or Luco and Westmann (1971) and are used here with the original signs.
The horizontal and moment side reactions car be writien as

4

1
+Z(

~

o
5~

{51 < ‘\'V(') = Gx’g"‘:[(s»'l + Sy + (3"

v

!
Nt = Gr S, + iS,,:)|—uu) - (-.,~

-~

a2

-
e

r

Y (S, + iS,) u (:){»

in which G, = shear modulus of the overlying layer.

and ! = embedment depth.

Functions §; arc independent of v and are

(6]
Sy,

W la,)

- )v(l] o
*

=1
%)(S.u + iS.))]V(”

-—

47

= displaceinent functions of dimen-

6 = [l'r, = relative embedment

g

J
Sgy = [l - a, ECA

2

JMa) + Ve,

"I:( aa)

+ Yla)Y(a)
+ Y¥a,)

In Eq. [6] /,(¢,) and Y («,) are Bessel functions of the first and second kinds. respectively. of

order n.

Functions S,, and S,, depend on Poisson’s ratio v and arc the real and imaginary parts of

the complex function:

(7] Sta,v) = G[S,la,.v) + iS,(a.v)]

= G,

Here. ¢ = (1 — 29)'2(1 = v,

u

|
—= H® (a)H* (x,) + H? (x )]}

X, = a,qand I

order n. Baranov evaluated lum.hons S, and S,
Eq. [7) simplifics. For several other values of ¢ ‘these parameters were computed from Eq. [7]

1)

= {a)

q
II;!' (a) HD (x) + HY

, only for Poisson’s ratio »

(x,) H* (a,)

= Hankel functions of the second Kiad of

= (0.5 with which
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and approximated by polynomials. The results are given in Appendix | together with poly-
nomial descriptions of othcr parameters € and S to facilitate the computation. The para-
meters are shown in Fig.

Substitution of Egs. [3] and (5] into Eq. [1] yields the differen.tial equations of coupled vibra-
tion of embedded fooungs:

C miilr) + r[GIC,, +iC,) + G&S,, + iS,)]utn ,
|
+ r.[ - Gz (C, + iC,) + 0,6(~2—-I— :,)(S.. + iS.,)]w(l) = Qn

(8]

gin + r;'[c,a‘(-;— - i‘)(S,. +iS) - G A (C + iC,,)]u(t)
r, r

—_—_

- -1

} a? z s
+ r)%a (Cor + iCy) + GB [(s,. + iSy,) + (-3— -8 = 4 —-)

-2

- (C + iC‘.,)iw(l) = M(1)

L (S.l + is-l)] * G

With complex excitation

Q1) = Qexplicr) = Qcos wt + isinwt) -
19

M)y = Mexp (iear) = M, (cos ext + i sin i)

in which @, and M/ dre real excitation amplitudes, the particular solutions describing the
steady state motions are.

w(r) = u, exp (iwr)
(10]

p(l) = w, exp (lwl)

where «, and v, are complex displacement am.plitudes. Substitution of Egs. [IC) into Egs.
[8] provides the following equations for the complex amplitudes of coupled motion:

[h,, = me?) + iese Ju, + livey + hgy, = Q,
(1] ;
((hys — 1 0A) + ieeggly, + livey + kglu, = M,
2 '
”j; $4p 10
.gf. "Sgz (029)
ot
“ 8
1
L
!,rc;:ra:- s

e

OO'D‘JJ JAGS 0% 0T 0B8RI 10 1Y g 1Y 14 18

DIVENSONESS FREQUENCY o,4w7, 770

Fic. 2. Halfspace sutfpess and dumping puameters Gy (dashed lines) and Baranoy's layer stiffncss and
damping parameters S0 (ull fines). (Possan’s atio shown in parenthesis)
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in which frequency dependent stiffness constants

]

ku - G’c (C-l + —Ga"— é Sul)

fo

G 3

kg = —Gr, [.-,c.,' - -%!- 3 ( - —;1) s_,]
.
~

and frequency dependent damping constants

¢y = -—G‘;’_ (c,, + —g.'—as_,)
Gr! z \ G, G, & =2
r“-T[Q, +(T)C.3+—G—JS¢,+—G—J(T+*T
(13] ¢ . .
1
- = _%i [:ccnl * —gl‘ d (:: o TI) Sul]
& \

&\ G, G, a2 22 2
(12] J kig = Gr [G. +(-) Ca+— S + —-6(—— e -,—)
° e

481

S-l’]

Eqgs. [11] are formaily equal to the equations of motion of a two-degrees-oi-frecdom sysiem
and therefore, & ., k;y. and &, are the frequency dependent spring constants. and ¢ .
€yy. and ¢y are the frequency dependent damping coeflicients. Thus. further solution does

not represent any difficulties.

Ca'culation of Vibration Amplitudes

Forced Vibration
Constant ferce excitation is considered first. Note

g M,

a = Agy — lep — —2. Koy
o
M,
a = (fgy - T )
o
“4] J /;1 -« I‘.u — H.’L‘)z - -"‘70— ‘_“

o
By = (e, = v
bl

& = il = (ikyy + Iy, 4 ey = Aot 4 (ko kg = k2g)

\ &) = *“"‘;v’ -+ I‘-”)(.).l + ((‘,\rl\\»‘v’ 2 ‘.v'»"/‘n o 2‘.!6"'1&')("

v e -

;a2 A
. 1 X )
-~— —— - p— v — - b*&—-.-,

3
- e

—— —p— ——— .+ +—
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Then, the complex vibration amplitudes are from Egs. [11],

‘a:
Q‘ & + ig, ic,
(15)
- H ’l + ipl
- l‘z
or
2 aé + a . a8 — a&,
Uy =uy +iu, = Q, l‘: + ‘Kz + iQ —!;l;—'*'—?;_
[16]

Bie, <+ Be, B, — B,
V'V|+’V2'M'—"+—-‘T-+IV P

The real vibration amplitudes u, and y, from Egs. [16] are

~.-~/lr.'+ui-Q/ B '

“7] + &

' - ; /Bt + B} Bt + Bi
~ \/ H - . I

. s V + o

When the motion is excited by a moment alone, Q. = Oand Egs. [17) simplify to:

= M
u, o\ Pr ‘z
(18]
(ke = mely + ¢ o}
= A L vy
1 "\/ & + &
The phase anzles are:
u, & = a
¢, = Arc tan —- = —Arc tan [ & &,
“ at; + at,

t19)

¢, = Arc tan X = —Arc tan pie, — /)‘c,
i 4 ﬂ]cl - ﬂt,

and the real motion of the center of gravity is:

u(t) = u, cos (cs + @)
(20}

wir) = w, cos (et + o)

As in the case of uncoupled modes, dimensionless amplitudes 4 = u Gr,/Q, and A; =
w,Gri' M, may be introduced to facilitate the presentation and analysis of the results.

Frrqmnu variahle CXettation, often encountered in practical cases. can be ecasily introduced
into the above formulae, Assume a frequency varisble horizontal excitation, caused by an
unbalanced rotating mass mi. acting at a height =, above the center of gravity. Then, in [qs,

(14]-{20]:

s
. 3.5

-
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21} Q = m, e R, M, = m, etz and -—g-‘— -z,
°

in which ¢ = rotating mass eccentricity.
dimensionless vibration amplitudes are, in 1 ¢ case of frequency variable excitation
. am'meand Ay = y I mez,

From Egs. [17] and [18). the complete response of embedded footings in coupied motion can
be computed directly and relatively easily. With the use of approximate expressions for the side
reactions § given in Appendix |. the computation becomes even simpler.

The uncoupled modes of vibration (Novak and Beredugo 1971) and the known solutions of
surface footings (Richart ¢f al. 1970: Ratay 1971) are special cases of the solution described.

It may be noted that an alternative direct calculation may be used in which the complex
amplitudes w_and w, are scparated into their real and imaginary parts beforehand. This ap-
proach leads to four simultaneous equations with real coetficients: however, the computing
requires more time.

From the motion of the center of gravity. the horizontal and vertical components of the
motion experienced by the surface (edges) of the footing can be computed. The upper edge of
the footing experiences vertical amplitude w, and horizental amplitude u, that are:

w, = ry,
(22)
u, = u, + (H = )y,

(In the last formula, the phase difference 1s neglected between w and v.)

Natural Frequencies and Modes :

In addition to the computation of the complete response. the natural undamped frequencies
and medes of free vibraticas can be of interest and are useful in the direct resonant amphiude
calculation described later herein. -

The equations for the natural frequencies and modes follow from Egs. (11] by putting the
damping coeflicients . ¢y. and ¢y as well as Q, and M, equal to zero, which yiclds, in

v

terms of real amplitudes.
k., — mei? k, u,
(23) . ’ S N
K key = 1] v, J

The two natural undamped frequencies ¢, and ¢, are found from the condition that the de-
terminant of the coeflicients must be equal to zero, which yields:

/ 2 2

b I ‘ I\ 2 l l\ A k L
24 ol . % aim ; 24 A0 ST . . e
(24] i 2( m % 1 ) =3\ 4( n ] T Tl

From this equation. two natural undamped frequencies can be found by a trial and error
procedure because coctlicients A are frequency Cependent according to Egs. [12). With these
two natural frequencies oy (j = 1.2) the two vibration modes {(cigenvectors) are, from Eqgs.

[23]):

(25) ) o chele) | kgto) -
v. ) Ak fen) — me; —k olex)

with j = | or 2. (These equations provide a quick check of . With correct values of ¢,
both equations give the same results),

§4° 26
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The first mode represents . ... n about a center |
mode the rotation takes place about a point lving
modes actually have a mearing of radii of rotatio

Examples of Theoretical Response Curves

ying under the footing base. In the second
above the center of gravity (Fig. 3). The
n.

Several examples of theoretical response curves computed from Egs. [17] with quadratic

excilation according to Egs. [21) are plotted in Figs.

.QLC

FiG. 3. Modes of free
80+

PIMENSIONLESS  AMPLITUDE A, «—

o2

4-6.

-

vibrations,

o2 o3 o4 o5
DIMENSIONLESS FREQUENCY

Fic. 4 Theoretival response curves for horizontal transiation

=0, 8 =40 0y = 4 33, vanous embedments),

iy

o8 ? 08
%G “row_Jpro

of footing in coupled motion (7 = 1.0,

———— - a—
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FiG. & Theoretical response curves for rocking component of coupled motion (7 = 1.0, 8, = 8.0, . L = $.70,
various embedments): ¥ )

In these figures the horizontal transiation and rocking components are plotted for various
relative embedments o = /7. The mass parameters used are shown in both the standard h, .
and modified B, ; shapes (Richart er al. 1970). The modified mass parameters arc shown here
to reduce the dependence of the results on Poissen’s ratio. Two sets of mass paramcters were
used to indicate their effects on the character of the response. Figures 4 and § illustrate the
steady response of footings embedded in undisturbed soil. Figure 6 illustrates the effects of
backfill. The properties of backfill G. p. were introduced using an approximate cxpression
(Beredugo 1971) G, G = (p, p)'. Thus, ratio 4 = p, p = | denotes embedment in undisturbed
soil.

Several conclusions can be drawn from Figs. 4-6'. The response of embedded footings is
dominated by the first resonance peak. which is thus of major importance. (For surface footngs
this was also observed by Ratay (1971). The response in the rezion of the second resonance
is, in general. much less pronounced and docs not vary too much with embedment.

e —.

1S¢e also Fig. 9.
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In most practical cases, the second resonant peak is entirely suppressed: it can only be re-
cognized in the rocking components with very hich mass ratios (Fig. §).

The increase in the first resonant frequency and the decrease in the corresponding resonant
amplu.de due to embedment are quite drastic. Both of these effects are smaller in the case of
backfill.

The variations of the resonant amplitudes and resonant frequencies with relative embedmen:
and mass ratios arc further illustrated in Figs. 7 and 8. Resonant amplitude ratio R, and reso-
nant frequency ratio R, represent the relative variations of resonant amplitudes and trequencies
duc to embedment related to amplitudes and frequencies of a surface footing. These figures
apply exactly just for the parameters used in the computing: however, they indicate the trends
to be expected in any particular case. Further parameter studies revealed that the resonant

parison with pure rocking and horizontal translation funcoupled motions) indicates that
coupling increases the resonant horizontal amplitudes and decreases the rocking amplitudes

and resonant frequencies. (Similar observations were made with surface footings by Ratay
1971).

Simplified Design Analysis
The calculation of natural frequencies. vibration modes and amplhitudes of forced oscillations
from the above formulas can be considerably simplitied if the suiTness parameters C, and S,
arc assumed to be constant and if the damping parameters C.. §,are assumed to be proportional

8o
: V*00,0,°42.7,0,°2313
60 '...ov"‘.’o
¢ L7, %108, 2441, *112
Mz, 20
40
20

.'-f";—.-v

X

o
o

b
o

-
(+]

ODIMENSIONLESS AMPLITUDE A

10 | \L‘ »

o4 25 o6 o7 o8 c.9 (Bl <]
OIMENSIONLESS FREQUENCY e, *wr, /pt5

FiG. 6. Theoretical response cunves for honizontal translation in coupled motion of footing (backfill with »
0.75, B; - 8.0, 8, = 8.70).
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Fio. 8. Theoreticul resonant  friequency rano vy, embedment for footing . coupled motion.
to dimensionless frequency @, It can be seen from Fig. 2 that these assumptions are quite accept-

abie for practical applications except for some side reactions at very fow frequencies. Thus,
stiffness parameters can be considered approximately constant:
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(26] c.c - Fw cﬂ o Eh- Sa = S-... Sy = gﬂ

and with these values the stiffness constants, given by Eqs. [12). become frequency independent.
The damping parameters in Eqs. [13] can be approximately taken as:

QM c, - Fu‘v C; = ?h".- S = .u"ﬂ S¢r = Eh"a

The parameters denoted by bars are constants. Their suitable values are given in Tables | and
2 in Apperndix 1. .

Substitution of Egs. [27] into Egs. [13] yields the frequency independent damping constants
for embedded footings: .

{ - I8 G, &
f" - V? 2 C ' ) —_ n2
g P 'c( w T 0\] P G S-)
] e
(28] «
=8 2 .2 - .
| (54 -0 2) s
1 ' -
|
~ -7 _ 2 Py G)‘ | C
l Cw = -‘/PG ri Ca + o\/T G (-c ) 2') Su!]

With frequency independent stiffness and
damping parameters, the calculation of vi-
bration ar:plitudes is as follows: (/) with
values of C, and S, taken from Tables | and
2 (or read from Fig. 2) sufiness constants
are obtained frem Egs. [I12] and the 1wo
natural frequencies from Eq. [24): (/) damping

coefficients are cc vputed from Egs. [2¥]

with C, and §, taken from Tables | and 2. and
a.ff, and ¢ obrtamed from Egs. [14] for
any excitauon frequency of interest. Substitu-
tion of these values into Egs. [17] vields the
amplitudes of horizental translation and
rotation at the center of gravity. Egs. [22
give the motions of footing edges.

Very ofien only the amplitudes at the first
resonance with s, need 1o be found because
these resonant vibrations cause freguent
dificuitics. (The amplitudes at v, afe slightly
smaller than the maximum).

Examples of response curves computed with
constant parameters are shown i Fig. 9.
The agreement with the resules obtomed with
vanable parameters s sausfuctory for em-

bedded footings. . ui surface footings. the
constant parameters given in Tables | and
2 yield smaller resonant amplitudes. This is
desirable for reasons discussed in the next
section, (If desired, a perfect fit can also be
obtained or surface tootings by the proper
choice of constant parameters).

The eilect of embedment may be reduced
by an imperfect bond between the footing
and the soil and by backiill. These effects can
be accounted for by considering G, < G and
2. < pin Egs. [12] and [28].

The choice of equivalent radius r, for
rectangular footings is rather uncertain. Some
indications of the possible differences are
mentioned in ihe next paragraph.

Comparison with Fxperiments

Relutively few experiments have been con-
ducted with embedded Tooungs subjected 1o
horizontal excitation despue ihe fact that thi
15 the case of major pracucal imporiance.
To provide more data, a series of field tests
has been curried out at The Universuy of
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Fic. 10. Comparison of theorstical and measured response curves for horizontal transiation in coupled motion

of square footing /undisturbed soil. eg, = 1.71 Ib-in.).
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Western Ontario with two concrete blocks,
one having a square base, the other featuring
a rectangular base with a side ratio of 2/1.
The base area was 512(0.465 m?)in both cases.
The blocks were cast directly into neatly cut
excavations. The embedment depth was chang-
ed by removing the soil in several steps. The
effect of embedment into backfill was investi-
gated by stepwise backfilling of the soil and
by tamping to two different densities. The
subsoil was composed of about 5ft (I.5m)
of brown, silty clay underlain by a glacial ull
of considerable thickness. Shear modulus
of undisturbed soil was found to be 6.6 X
10° Ibf! (320 kgcem?) and Poisson's
ratio was 0.38. Further details can be found
in Beredugo (1971) and Novak and Beredugo
(1971).

The comparison of the theory with the
experiments is complicated by distinct non-

DIMENSIONLESS RESONANT AMPLITUDE ‘_...'.!3-.,‘
-
)
<

linearities. This ef"~ct is accepted as a scatter
in resonant frequencies and amplitudes in
this paper. (Some other ways of dealing with
nonlinearities observed in experiments are
described in Novak (1971). Another diffi-

culty is to choose an equivalent radius r,
for rectangular embedded footings vibrating

in a coupled mode.

Figures 10-15 indicate the suitability of
the theory and the differences in response of
the rectazeular footings in the two major
directions.

Figure 10 shows the comparison of theoreti-
cal and measured response curves of a
squaré footing. The equivalent raius r, =
1.26 ft (0. 38 m) was derived from the equality
of footing bases. In Figs. i' and 12 the first
resonant amplitudes and frequencies are
compared. It can be seen that the resonant
amplitudes are predicted much better for

EIELD TESTS
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Fic. t1. Comparison of theorctical and measured resonant amplitudes for horizontal translation in coupled

motion (undisturbed soil, square footing, » = 0.38, A, = |5 48, by = 18.50)
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Fic. 12. Comparison of theoretical and measured Tesc=*™ frequencies in coupled motion (7 = 1.0..

square footing, » = 0 38, b, = 15 48, by =~ 18.50)

the embeddec footings than for the surface
ones. This important observation probably
=an be attributed 1o the overwhelming eflect
of geometric damping with embedded foot-
ings. The first resonant amplitudes of sur-
face footings seem considzrably overestimated
“because the geometric damping is very small
and the hysteretic damping is omitted in
the theory. The prediction of resonant fre-
quencies appears quile reasonable too. Rec-
tongular foorings also show a better agree-
ment in resonant ampiitudes in the case of
embedment (Fig. 13). The choice of equivalent
radii for embedded rectangular footings is,
of course, questionable. Figures 14 and 15

give some idea about the differences in re-
sponse in both major directions. Smaller
amplitudes in the direction of the longer axis
can be recognized despite the scatter due to
nonlinearity (Fig. 14), while a somewhat
smaller relative increase in stiffness due to
embedment can be seen in the same direction
(Fig. 15).

Until better guidelines are found it seems
that the equivalent ratios for reciangular
footings can be derived from equality of base
areas for translation constants A, and ¢,
in Eqs. (12) and [13], and from equality of
base moments of inertia for the other con-
stants. Useful data on rectangular surface
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— APPROFIMATE THEORY
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Fic. 13 Comparison of theoretical and measured resporse cunes for rocking in coupled motion of recianguiar

‘ooting (indisturbed soil, cg, = 1.71 Ib-in.).

footings were derived by Kobon er al. (1971)
and may be helpful together with the intui-
tion of the designer. Equivalent base radii
for surface footings can be found in Richart
et al. (1970).

Summary and’ Conclusions

Coupled forced vibration in horizontal
translaiion and rocking of partially embedded
rigid footings was invesiigated both theoreti-
cally and experimenially.

An approximate amalytica' solution was
used to derive directly usable formulas and
graghs, information about embedment into
backfill and relations beiwezn uncoupled and
coupled motions. The major advantages of

this approach are its simplicity. the ease with
which parameters can be changed and the
ability to consider layering and to introduce
the soil reactions into the solution of any
structure.

Field experiments were carried out with
concrete embedded footings subjected to
horizontal excitation. The theoretical and
experimental results were compared.

The major findings can be summarized
as follows:

(1) The response is usually dominated by
the first resonant peak and the second reso-
nant peak is entirely suppressed. Despite this,
the omissior. of coupling leads to consider-
able errors in both resonant frequencies and
amplitudes.
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Fic. 14, Variation of measured horizontal resonant amplitude with embedment for rectangular footing in
coupled motion (undisturbed soil, g, = 0.85 and 1.71 Iban)

(2) WHHM
response in ihal il increases ihe l2s0dpt

{requencigs andseduces ihe Jesonanl i
plitudes. This effect is much more pronounced
in coupled motion than in vertical transla-

uon.

(3) Backfill reduces the effect of embed-
ment. This can be accounted for in the
theory.

(4) The approximate theory is better able
to predict the coupled response of embedded
footings than of surface footings, The theory
of surface footings considerably overestimates
the resonant amplitudes.

(5) Equivalent frequency independent
damping and stiffnesses were derived for
design purposes. They facilitate the prediction
of resonant frequencies and amplitudes from
closed form formulas.
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Appendix I. - Stifiness and Damping Parameters C and S

To facilitate the computation. the sutfness and dam

imated by the expression. g
The elastic half space for
Functions § for the layer

iven below. Their accuracy s sufficient for
muias for C were computed with Bycroft's

were calculated from general equations derived by Baranov (1967).

ping functions C and S were approx-

practical appiications.
(1956) functions f, ,

- ——
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In all formulas dimensionless frequency a, = wr,\/;TG-. Constant parameters C and § can be
used in frequency range 0 < o, < 2. The parameter S, exhibits pronounced variations with a,
for Poisson's ratio v % 0.43.

Horizontal translation
89.09a,
. Car = 45N -C.O”I.-.-‘-.—;—l’—.“ Cat = 4.30
0.0 0<a,<£2.0
0.1345q, .
Cay = 2.336a, = =750y Cuz = 2.70
: 10. 3%a, c
; Car = 5.333 — | 5840, ~ ‘—.:—‘-Ts‘z Cat = 5.10
' 0.5 0<a,<2.0
0.174ts, =
Cuz = 2.923a, - ;.-——-TT'.’" Cer = 3.15
A\
Rotation cbout horizontal axis (rocking) -
ied Cy, = 2.684 = 0.19%2a, - 1.729} ~ | 485a} ~ 0. 4881} — 0.03498a’ Cyy = 2.50
0.0 0<a,<1.5 _
; Cy, = 0.00802%, — 0.01583a} ~ 0.203%a} — 1.202a5 — | 44845 + 0.449148 Cyy = 0.43
:‘( Tasee 2
: P ————————
tia: ) Vahdity Censtant
oc. v Side layer funcuons range parameters
nse Horizontal transiation
97, § 3.60%,
- 13 o ———
L Sui = 0.2328a, - TG eg 0.2€a, 1.5
an. ) S:; - ’w
of 0.0 St = 190.%3%, ~ 36300’ — 3948a’ — 1934a) — 34880 0<a,€0.2
- 0.8652a, g
!1. S,y =~ 7.3%q, ~ m—." 0<g,€1.5 S = 8.2
& TS S 1.474 — 4119, ~ 4.3200 - 2.087a} — 0.362a? 0.1<a,<2.0 B
. - Su = 4.00
,6' 0.25 Su = —1.468 Va, - 5,662 a, 0<a,<0.2
) 41 590, =
- , Sur = 0.8 * oot 0<a,<1.5 Su: = 9.10
m- g - PSR S UuRR—." = -
r'd Sut = 2.824 - 4,776, — 5.539a) - 2.44%) ~ 0.394a} 0.2<€a,$2.0 .
on S = 4.10
- 4 wl
‘ 04 Su = —1.79Va, 659Va, 0<a,£0.7
56.5%a, '3
S, = 0.96a, - ry g 0<a,<1.5 S = 10.60
- - -
s Rotation ahout @ horizontal axis (rockine)
g Sy, = 3.142 - 0.4215a, ~ 4.2093 - 7 163a; ~ 4.667a% - 1.093a] Séy = 1.50
b ;-‘ : 0<a,<1.5 )
. e S, 0.014da,  3.263a — 4.177a) -- 1 64dal — 0 154240 S¢; — 1.80
( I’ v} ? .
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Appendix II. - Notation

m
me
m
me

1
me:,
i
mes,
wr,V p/G -= dimensionless excitation frequer:y
dimensionless resonant frequency (at maxizaum amplitude)
b,(7-8v)32(1-v) = modified mass ratio for horizontal vibration
3by(1-v)/8 = modified mass ratio for rocking motion
m/pr} = mass ratio for horizontal vibration.
I'pr,* = mass ratio for rocking motion
elastic half space stiffness and damping parameters for horizontal translation
frequency independent ha!f space stiffness and damping parameters for horizontal
translation
elastic half space stiffness and damping parameters for rocking
frequency independent half space stiffness and damping parameters for rocking
equivalent damping constant for horizontal component of coupled motion
equivalent “cross™ damping constant for coupled motion
equivaleAt damping constant for rocking in coupled motion
eccentricity of rotating mass
comporents of Reissner’s displacement function for horizontal vibration
components of Reissner’s displacement function for rocking
shear modulus of elastic half space: shear modulus of undisturbed soil beneath
foouing
shear modulus of side layers; shear modulus of backfill
acceleration of gravity
me = weight of rotating mass
height of footing
Hankel function of the second kind of ordern = J, — i¥,
thickness of elastic stratum
mass moment of inertia about horizontal axis passing through center of gravity
V=i
Bessel functions of first “ind of orders 0. 1. and Z respectively
equivalent spring constant for horizontal component of coupled motion
equivalent “cross™ spring constants for coupled motion
equivalent spring constant for rocking component of coupled motion
length of fooung
depth of embedment of footing
amplitude of excitation moment
excitation moment about horizontal axis
mass of footing; mass of footing and oscillator
unbalanced rotating mass
horizontal side reaction due 10 embedment in coupled motion

u, = dimensionless amplitude of horizontal vibration

4, = dimensionless resonant (maximum) amplitude of horizontal vibration

v, = dimensionless angular amplitude of rocking

‘¥w = dimensionless resonant (maximum) amplitude of rocking
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reactive torque due to embedment in coupled motion

amplitude of horizontal excitation force

horizontal excitation force

(1 = 2v) 21 — v) = function of Poisson’s ratio

resonant amplitude ratio (relative decrease in resonant amplitude)
resonant frequency ratio (relative increase in resonant frequency)
korizontal reaction in the footing base

half space reactive torque in coupled motion

radius of cylindrical footing: equivalent radius of rectangular footing
Baranov's rigidity parameters

side layer sufiness and damping parameters for horizontal translat.on
side layer stiffness and damping parameiers for rocking

frequency independent side layer stiffness and damping parameters for transiation

frequency independent side layer stiffness and dampire parameters for rocking
tme

u, +iu, = complex amplitude of horizontal displacement

resonant (maximum) amplitude of horizontal displacement

rez2l amplitude of horizontal displacement

real and imaginary parts of complex amplitude v,

korizontal displacement

a,v/'q parameter d:pending on © and v

height of horizontal excitation force abc.e base of footing

height of center of gravity above footing base

Bessel functiens of the seccnd kind of order n

height of hurizontal exciting force above center of gravity

l'r, = embedment ratio

p,p = density ratio

Poisson’s ratio

circular excitation frequency

frequency at maximum amplitude

j* undamped natural frequency

first and second undamped natural frequency

phase angles

w, +iy, = complex amplitude of angular (rocking) displacement
reasonant amplitude of angular displacement

real amplitude of angular displacement

real and imaginary parts of v,

angular displacement

mass density of elastic half space. mass density of undisturbed soil
mass density of side layer; mass density of backfill

B} —
f'lr/‘ o |




