NUREG/CR-0690 LA-7725-MS Informal Report R4

SOLA-DF: A Solution Algorithm for

Nonequilibrium Two-Phase Flow

C. W. Hirt N. C. Romero M. D. Torrey J. R. Travis

12055 5031837 2 CN US NRC SECY PUBLIC DOCUMENT ROOM BRANCH CHIEF HST LOBBY WASHINGTON DC 20555

> Manuscript submitted: February 1979 Date published: June 1979

Prepared for Division of Nuclear Reactor Safety Research US Nuclear Regulatory Commission Washington, DC 20555

NRC FIN No. A-7027

UNITED STATES DEPARTMENT OF ENERGY CONTRACT W/305 ENG 38

CONTENTS

÷

532 205

	ABSTR	ABSTRACT					
	I.	INTRODUCTION					
	II.	EQUATIONS AND CONSTITUTIVE RELATIONS					
		 A. Equations of Motion B. Void Fraction C. Equation of State D. Vapor and Liquid Internal Energies E. Relative Velocity F. Phase Transitions G. Pipe Friction 	4 6 7 8 10 13				
	III.	NUMERICAL SOLUTION METHOD	14				
		 A. Mesh Construction B. Solution Algorithm Explicit Updating of Velocities Implicit Pressure Calculation Updating of Remaining Variables C. Boundary Conditions Rigid Free-Slip Rigid No-Slip Continuative Outflow Periodic Constant Pressure D. Internal Obstacles E. Variable Time Steps 	15 15 21 24 29 29 29 30 30 30 31 32 32				
	IV.	INPUT DATA, COMMON VARIABLES, AND SUBROUTINES AND GRAPHICS OUTPUT	33				
		A. Input Data B. COMMCM Variables C. Subroutines and Graphics Output	33 38 42				
1	V.	EXAMPLE PROBLEM	42				
1	VI.	SUMMARY					
ł	ACKNOW	LEDGMENTS	61				
-	REFERE	NCES	62				
2	PPENDI	IX: FORTRAN IV Listing of the SOLA-DF Code	64				

iv'

SOLA-DF: A COLUTION ALGORITHM FOR NONEQUILIBRIUM TWO-PHASE FLOW

by

C. W. Hirt, N. C. Romero, M. D. Torrey, and J. R. Travis

ABSTRACT

A numerical solution algorithm, SOLA-DF, is presented for the solution of gas-liquid mixture dynamics in two space dimensions and time. The two-phase system is described by a set of mixture equations plus a relation describing the relative flow of one phase with respect to the other. In addition, the algorithm contains models to represent the interphase exchange rates of mass, momentum, and energy for watersteam mixtures.

I. INTRODUCTION

Fluid dynamic problems involving multiphase mixtures occur in abundance in nearly all branches of engineering and technology. Yet the ability to theoretically study these flows in more than one space dimension and with time-dependent behavior has only recently evolved.^{1,2} For many applications it is unnecessary to solve complete sets of mass, momentum, and energy conservation equations for each phase.³ For example, when the two phases are moving together, a mixture momentum equation can replace the individual momentum equations, or if the phases are in thermodynamic equilibrium, it is unnecessary to keep two energy equations. When small deviations are expected from equilibrium or equal phase velocities, it is possible to introduce correction terms into the mixture equations without having to increase the number of equations. It is the latter approach that is considered in this report.

In the next section a theoretical formulation is described for a two-phase mixture using one variation of the so-called "drift-flux" approximation.

These equations are formulated for two-dimensional planar or axisymmetric coordinate systems. All constitutive relations and equations of state are relatively simple models designed for water-steam mixtures. These relations have been used successfully for many important applications arising in nuclear reactor safety studies.⁵ They should not, however, be used indiscriminately. For other applications, consideration should always be given to their suitability for the temperature-pressure ranges of interest and to the possibility that additional physical processes may be needed in the basic theoretical description. In any case, it is emphasized that the constitutive relations used in this report may be easily changed without alt ~ing the basic numerical solution algorithm that forms the heart of the SOLA-DF code.

The solution algorithm used in SOLA-DF has evolved from algorithms used in earlier codes in the SOLA series. The original SOLA code⁶ was designed for problems involving a single, incompressible fluid in a fixed region. The SOLA-SURF code⁶ is an extended form of SOLA that allows for the inclusion of free surfaces. SOLA-ICE,⁷ the third member of the family, was designed to handle single-component, com⁷ . Le fluids. An implicit solution method is used in SOLA-ICE so that, in addition to shock and rarefaction dominated flows, it can also treat very low speed (incompressible) fluid flows. All of these SOLA codes are available from the National Energy Software Center, 9700 South Cass Avenue, Argonne, Illinois 60439.

Ine SOLA-DF code is a direct descendent of SOLA-ICE. It utilizes finitedifference approximations with respect to a mesh of equal rectangular cells covering the flow region of interest. A semi-implicit formulation is available as a user option so that large time steps can be used in many circumstances to reduce problem run times.

The solution algorithm also has an option for one-dimensional computations. In this case the mesh is limited to one column of cells, and derivatives of dependent variables normal to this column are automatically suppressed by the setting of a large mesh-interval in the normal direction. Futhermore, for onedimensional computations of flow in pipes there is an option for a two-phase flow pipe friction model.

In addition, SOLA-DF is formulated with a variable, denoted by A, representing the "thickness" of a mesh cell. That is, in a one-dimensional computation the volume of a cell of length by is Aby. In two-dimensional computations the volume of a cell of width by and height by is Abxby. The presence

532 207

of the A quantity provides SOLA-DF with many useful features. For example, in one-dimensional appplications a variable A can be used to model nozzles or other pipe area changes. If A increases as the square of the distance from the bottom of the mesh column there the equations reduce to a one-dimensional spherical system that could be used to study spherical bubbles or explosive flashing processes.

In two-dimensional applications a variable A may be used to represent flow through a two-dimensional duct of slowly varying this ness. The use of zero values of A in selected mesh cells provides a convenient means of including internal obstacles in the flow region. In particular, a cell with A = 0 will allow no flow across its boundaries. Axisymmetric coordinates are generated by having A increase linearly with distance from the axis. In the present version of SOLA-DF the A-quantity must be constant in time. However, it would not be difficult to introduce time-dependent corrections so that flows in flexible pipes and ducts might be modeled.⁸

In constructing SOLA-DF some consideration has been given to providing subroutines for most of the important or controversial constitutive relations and for the equations of state for each phase. Thus, changes in these quantities can be made with relative ease. Although the code was developed on a CDC-7600 computer, ANSI-Standard FORTRAN has been used throughout to facilitate its use on other computers. This does not apply, however, to the output subroutines used in the code for graphic display purposes. A list of these subroutines and their functions is provided in Section IV for those users who have access to graphic display systems and wish to convert them to their system routines. All calls to graphic output routines can be avoided by inputing a plot time larger than the requested problem time.

A sample problem is discussed in Section V to illustrate the type of results that may be obtained with the SOLA-DF code. The results of this test problem are presented in detail so that new users may check that their codes are running correctly.

A listing of the code and its subroutines are provided in the Appendix.

Two SOLA codes,^{5,8} which were referenced above, offer complementary capabilities to SOLA-DF and deserve an expanded explanation. A variation of SOLA-DF is contained in SOLA-LOOP, which is a one-dimensional network code.⁵ The SOLA-LOOP program is designed to handle systems of one-dimensional components

532 208 3

coupled together through junctions. Variable time steps may be used in different components, and provisions are available for defining trips, breaks, valves, and other transient features. SOLA-FLX consists of SOLA-DF coupled to a threedimensional shell code.⁸ This combination may be used for problems involving coupled fluid-structure interactions in which the structure is a cylindrical shell. Following the basic procedure used in SOLA-FLX, other types of structure models could be coupled to SOLA-DF.

II. EQUATIONS AND CONSTITUTIVE RELATIONS

The drift-flux equations describing the dynamics of two-phase fluid mixtures have been cast in many forms.⁹ In the present case we choose as dependent variables the mixture density ρ , the macroscopic vapor density ρ_v , (vapor mass per unit volume of mixture) the center-of-mass velocity $\underline{u} = (u,v)$, and the mixture specific internal energy I. Important auxiliary variables are the void fraction θ , the relative velocity between phases $\underline{u}_r = (u_r, v_r)$, and the mixture pressure p.

A. Equations of Motion

In terms of the chosen dependent variables, the basic two-dimensional drift-flux equations used in SOLA-DF are

the continuity equations,

$$\frac{\partial \rho}{\partial t} + \frac{1}{A} \left(\frac{\partial A \rho u}{\partial x} + \frac{\partial A \rho v}{\partial y} \right) = 0$$
 (2.1)

$$\frac{\partial \rho_{v}}{\partial t} + \frac{1}{A} \left[\frac{\partial}{\partial x} A \left(\rho_{v} u + \frac{\rho_{v} \rho_{\ell}}{\rho} u_{r} \right) + \frac{\partial}{\partial y} A \left(\rho_{v} v + \frac{\rho_{v} \rho_{\ell}}{\rho} v_{r} \right) \right] = \Gamma \quad ; \qquad (2.2)$$

the momentum equations,

$$\frac{\partial \rho u}{\partial t} + \frac{1}{A} \left[\frac{\partial}{\partial x} A \left(\rho u^2 + \frac{\rho_v \rho_\lambda}{\rho} u_r^2 \right) + \frac{\partial}{\partial y} A \left(\rho u v + \frac{\rho_v \rho_\lambda}{\rho} u_r v_r \right) \right]$$
$$= -\frac{\partial \rho}{\partial x} + \rho g_x + f_{visx}$$

532 209

$$\frac{\partial \rho v}{\partial t} + \frac{1}{A} \left[\frac{\partial}{\partial x} A \left(\rho u v + \frac{\rho_v \rho_z}{\rho} u_r v_r \right) + \frac{\partial}{\partial y} A \left(\rho v^2 + \frac{\rho_v \rho_z}{\rho} v_r^2 \right) \right]$$

= $-\frac{\partial p}{\partial y} + \rho g_y + f_{visy}$; (2.3)

and the internal energy equation,

$$\frac{\partial \rho I}{\partial t} + \frac{1}{A} \left\{ \frac{\partial}{\partial x} A \left[\rho I u + \frac{\rho_{v} \rho_{\chi}}{\rho} (I_{v} - I_{\chi}) u_{r} \right] + \frac{\partial}{\partial y} A \left[\rho I v + \frac{\rho_{v} \rho_{\chi}}{\rho} (I_{v} - I_{\chi}) v_{r} \right] \right\}$$

$$= -\frac{p}{A} \left\{ \frac{\partial}{\partial x} A \left[u + \frac{\rho_{v} \rho_{\chi}}{\rho} \left(\frac{1}{\rho_{v}^{0}} - \frac{1}{\rho_{\chi}^{0}} \right) u_{r} \right] + \frac{\partial}{\partial y} A \left[v + \frac{\rho_{v} \rho_{\chi}}{\rho} \left(\frac{1}{\rho_{v}^{0}} - \frac{1}{\rho_{\chi}^{0}} \right) u_{r} \right] - \frac{\partial}{\partial y} A \left[v + \frac{\rho_{v} \rho_{\chi}}{\rho} \left(\frac{1}{\rho_{v}^{0}} - \frac{1}{\rho_{\chi}^{0}} \right) u_{r} \right] + K \left(u_{r}^{2} + v_{r}^{2} \right) + J_{vis} \quad (2.4)$$

In these equations, the independent variables are time t and coordinates x,y. The exchange functions for mass and momentum are Γ and K, respectively. Subscripts v and & refer to properties in the vapor and liquid states while a superscript zero refers to microscopic quantities. The gravitational acceleration is denoted by $\underline{g} = (\underline{g}_v, \underline{g}_v)$.

The quantity A is the time-independent "thickness" of the flow channel. That is, A $\Delta x \Delta y$ is the volume associated with an area Δx wide and Δy high. In addition to representing variable area ducts, we may use suitably defined A values to represent cylindrical coordinates (A = x, the circumferential area per unit azimuthal angle) or obstacle regions (A = 0).

To complete these equations a variety of constitutive relations must be defined. It is in the definition of these relations that considerable caution must be exercised. The choices made are governed by the applications for which the code is intended. The best choices are those that can be tested against suitable experimental data. Even with careful testing, however, the prejudices of different researchers often lead to different constitutive relations. In the following we describe one set of simple constitutive models that have been used

5

506-614

in the initial development of the SOLA-DF, SOLA-FLX, and SOLA-LOOP codes. These models should not, therefore, be taken as invariant features of these codes. Instead, the codes are to be thought of as skeletons offering numerical solution algorithus that will work with a variety of constitutive relations.

B. Void Fraction

The volume of vapor per unit volume of mixture, that is, the void fraction $\boldsymbol{\theta}$ is defined through the relation

$$\theta = \left(\rho_{\mathcal{I}}^{\circ} - \rho + \rho_{v}\right) / \rho_{\mathcal{I}}^{\circ} \quad .$$
(2.5)

C. Equation of State

In the present formulation of SOLA-DF the equation of state is assumed to be a relation that gives pressure as a function of density and internal energy. Although fits to steam table data could be inserted in the equation-of-state subroutine, for developmental purposes we have chosen to use a much simpler approach. When the void fraction is below a small, predetermined value, $\theta < \theta_c$, (typically $\theta_c \approx 0.005$) the fluid is assumed to be a pure liquid with the equation of state

 $p = p_o + a^2 \left(\rho - \rho_{\hat{\lambda}}^o \right) \quad , \quad$

where a is a representative speed of sound in the liquid phase and p_0 is chosen (see Eq. 2.6) to ensure pressure continuity between the pure liquid and two-phase states when $\theta = \theta_c$. In the two-phase region, $\theta > \theta_c$, the mixture pressure is equal to that of the vapor and is given by the polytropic gas equation,

$$p = (\gamma - 1) \rho_v^0 I_v$$
.

532 211

In the code these equations are combined into the single equation

$$p = (\gamma - 1) \rho_{v} I_{v} / \theta^{*} + a^{2} \rho_{\ell}^{0} (\theta^{*} - \theta) , \qquad (2.6)$$

where $\theta^* = \begin{cases} \theta \cdot if \ \theta \geq \theta_c \\ \theta_c \ if \ \theta < \theta_c \end{cases}$.

For saturated conditions we have found that $\gamma = 1.07$ and $a^2 \approx 10^4$ cm²/ms² ofter reasonable approximations for many reactor safety problems.

D. Vapor and Liquid Internal Energies

In the equation of state and in the relative velocity convection terms in the internal energy equation, it is necessary to have separate values for vapor and liquid internal energies. Because the basic dependent energy variable is the mixture internal energy, a separate prescription must be given for unfolding the individual phase energies. Two prescriptions have been used. In one the phases are assumed to be at equal temperatures. In the other, the vapor phase is assumed to be saturated. For many applications there is little difference between the two assumptions, because the large heat content of the more massive liquid phase keeps the liquid temperature nearly the same in either case.

To implement either of these assumptions we approximate the temperature dependence of the internal energies as

$$I_{v} = E_{v} + C_{v}(T_{v} - T_{o})$$

$$I_{\lambda} = E_{\lambda} + C_{\lambda}(T_{\lambda} - T_{o}) ,$$
(2.7)

where E_v and E_{l} are saturated internal energies at temperature T_o and C_v and C_l are constants chosen to fit the steam table versus T curves in the temperature range of interest. For example, in the system of units g, cm, ms, K the

532 212'

values $E_y = 2.506 \times 10^4$, $E_g = 0.4174 \times 10^4$, $C_y = 6.67$ and $C_g = 44.34$ are good approximations for temperatures up to about T = 550 K.

With these definitions, and assuming equal phase temperatures, the mixture .emperature can be computed from the mixture internal energy as the solution of the linear equation,

$$\rho I = \rho_{v} I_{v} + \rho_{\ell} I_{\ell}$$
 (2.8)

When the vapor is assumed to be saturated its temperature and pressure are related by

$$T_{..} = 255.2 + 117.8 p^{0.223}$$
, (2.9)

where in this expression p must be in bars and T in kelvins. Knowing the vapor temperature it is then an easy task to compute the separate liquid and vapor internal energies and liquid temperature using Eqs. (2.7) and (2.8). E. Relative Velocity

'n equation of motion for the relative velocity can be derived from equations describing a complete two-fluid model, 10^{10} given by

$$\frac{\partial u_{r}}{\partial t} + \frac{1}{2} \frac{\partial}{\partial x} \left\{ u_{r} \left[2u + \frac{u_{r}}{\rho} \left(\rho_{\chi} - \rho_{v} \right) \right] \right\} + v_{v} \frac{\partial u_{v}}{\partial y} - v_{\chi} \frac{\partial u_{\chi}}{\partial y} - \left[\frac{1}{\rho_{\chi}^{0}} - \frac{1}{\rho_{v}^{0}} \right] \frac{\partial \rho}{\partial x} - \kappa \frac{\rho}{\rho_{v} \rho_{\chi}^{0}} u_{r}$$

$$\begin{split} \frac{\partial \mathbf{v}_{\mathbf{r}}}{\partial t} &+ \frac{1}{2} \frac{\partial}{\partial y} \left| \mathbf{v}_{\mathbf{r}} \left[2\mathbf{v} + \frac{\mathbf{v}_{\mathbf{r}}}{\rho} \left(\rho_{\chi} - \rho_{\mathbf{v}} \right) \right] \right| + \mathbf{u}_{\mathbf{v}} \frac{\partial \mathbf{v}_{\mathbf{v}}}{\partial \mathbf{x}} - \mathbf{u}_{\chi} \frac{\partial \mathbf{v}_{\chi}}{\partial \mathbf{x}} \\ &= \left(\frac{1}{\rho_{\chi}^{o}} - \frac{1}{\rho_{\mathbf{v}}^{o}} \right) \frac{\partial p}{\partial y} - \mathbf{K} \frac{\rho}{\rho_{\mathbf{v}} \rho_{\chi}} \mathbf{v}_{\mathbf{r}} \quad , \end{split}$$

(2,10)

532 213

where $u_r = u_v - u_\ell$, $v_r = v_v - v_\ell$,

$$u = \frac{\rho_v u_v + \rho_\ell u_\ell}{\rho} , \quad v = \frac{\rho_v v_v + \rho_\ell v_\ell}{\rho}$$

and K is the interfacial friction coefficient.

The current version of SOLA-DF neglects all but the temporal term on the left side of Eq. 2.10. Assuming the vapor is a dispersed phase of small bubbles when θ is small, or the liquid is a dispersed phase of small droplets when θ is large, we can estimate K from the drag or an individual bubble (or droplet) times the number of bubbles (droplets) per unit volume, N. The result is

$$K = \frac{\rho S}{8\theta_1} \left[C_d \left| \frac{u}{-r} \right| + \frac{12\nu}{r_o} \right] , \qquad (2.11)$$

where

$$\theta_1 = \theta, v = v_{\ell} (1-\theta)^{-2.5}$$
 for $\theta \le 1/2$

 $\rm C_d$ is a drag coefficient (generally of order unity), S is the cross-sectional area per unit volume of bubbles (droplets) with radius r ,

$$S = \begin{cases} \frac{3\theta}{4r_b} \text{ and } r_o = r_b & \text{if } \theta \le 1/2 \\ \\ \frac{3(1-\theta)}{4r_d} & \text{and } r_o = r_d & \text{if } \theta > 1/2 \\ \end{cases}, \qquad (2.12)$$

and v is the kinematic viscosity. The average radius is related to the number density by the expressions

$$r_{\rm b} = \left(\frac{3\theta}{4\pi N}\right)^{1/3} \quad \text{for } \theta \le 1/2$$

$$r_{\rm d} = \left[\frac{3(1-\theta)}{4\pi N}\right]^{1/3} \quad \text{for } \theta > 1/2 \quad .$$
(2.13)

The bubble number N is often assumed to be a constant independent of space and time. This, of course, is an approximation that will not work when preferential nucleating sites are desired. Although N must be estimated for each calculation, as described in the next section, a locally variable N car sometimes be estimated in terms of a critical Weber number.

F. Phase Transitions

The form of the phase change model embodied in Γ is crucial if nonequilibrium effects are to be correctly predicted. The model we describe here is still under development and is not yet sophist ated enough to be used as a predictive tool without some adjustment. Nevertneless, this model has proven useful in numerous applications and its presentation here illustrates the types of considerations necessary in the development of such models.

Defining q as the interfacial heat flux, a simple energy balance shows that

$$\Gamma = \frac{qZ}{\lambda}$$

where λ is the latent heat of vaporization and interfacial area Z is related to the bubble radius, r, according to Z = $3\theta/r$. The heat flux can be further defined as

532 215

$$q = k(T_{\chi} - T_{g})/\ell$$
,

where T_s is the saturation temperature and k_{ℓ} is the thermal conductivity of the liquid whose bulk temperature is T_{ℓ} . The length ℓ characterizes the thickruss of the thermal boundary layer over which the liquid temperature changes from its interior, bulk value, T_{ℓ} , to the value T_s assumed to exist at the twophase interface. Thus,

$$\Gamma = \frac{k_{g}(T_{g} - T_{s})Z}{\lambda \ell} \qquad (2.14)$$

For a single, nontranslating bubble growing in an infinite fluid region, it has been shown¹¹ that $l = l_c$, where

$$\ell_{c} = r \left[\frac{6}{\pi} \frac{\rho_{\ell}^{o}}{\rho_{v}^{o}} \frac{C_{\ell} |T_{\ell} - T_{s}|}{\lambda} \right]^{-1}$$

In this expression r is the instantaneous bubble addius, which is defined later.

When the bubbles are translating with respect to the surrounding liquid with speed, U, then $\ell = \ell_u$, and Moalem and Sideman¹² give the general expression

$$\ell_u = r \left(\frac{\pi}{\operatorname{Re}_b \operatorname{Pr}} \right)^{\frac{1}{2}}$$

where $\operatorname{Re}_{b} = 2rU \rho_{\ell}^{o}/\mu_{\ell}$ is the bubble Reynolds number, $\operatorname{Pr} = C_{\ell}\mu_{\ell}/k_{\ell}$ is the liquid Prandtl number, and μ_{ℓ} is the liquid shear viscosity. As the relative speed U increases, the length ℓ_{u} rapidly decreases below the value of ℓ_{c} , which represents stripping away of the thermal boundary layer by relative flow. In an attempt to smoothly combine both these effects, we have defined ℓ as the reciprocal average of these limiting characteristic lengths,

$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$

(2.15)

Equation (2.14) with & defined by the above equation is a vapor generation rate that includes both finite heat conduction and relative velocity effects. However, the model still requires the definition of r and U.

If we know the number of bubbles per unit volume, then we can calculate the average bubble radius by Eq. (2.13) and use r=r. Unfortunately, the number bubbles generally does not remain constant in a dynamic flow environment secause bubbles larger than a certain size will break up. The maximum stable bubble radius r can be estimated in terms of a critical Webcr number W_c,

$$\mathbf{r}_{w} = \frac{\sigma W_{c}}{2\rho_{o}^{o} U^{2}} , \qquad (2.16)$$

where σ is the interfacial surface tension. The value of W is often taken as 4 for turbulent flow conditions.¹³ Thus, we define r as equal to the minimum of r_{o} and r_{w} and reserve N as an input parameter that defines the initial number of nucleating sites per unit volume (or more correctly, the minimum number of bubbles).

Finally, the relative speed U could simply be set equal to the magnitude of the average relative speed $|\underline{u}_r|$ between phases, but this would not account for local turbulent fluctuations that have been averaged out in the definition of \underline{u}_r . Fluctuations in \underline{u}_r can locally strip away the individual bubble thermal boundary layers and break up large bubbles. To account for such local effects we define

$$\mathbf{U} = \left| \underline{\mathbf{u}}_{T} \right| + \beta \left| \underline{\mathbf{u}} \right| , \qquad (2.17)$$

where \underline{u} is the mass averaged mixture velocity and β is a parameter. The β torm accounts for turbulent fluctuations. We might expect β to have a magnitude of 0.1 or less because large turbulent velocity fluctuations are often observed to have magnitudes as large as 10% of the mean velocities. In general, the best value of β must be determined by comparisons with experimental data. 532 217

Again, it should be stressed that the vapor generation rate described above is preliminary and needs to be critically tested against a wide variety of situations before it can be recommended for general use. Nevertheless, this model does embrace, as special cases, the models used by many other investigators and it has produced good results in several different applications.

G. Pipe Friction

In one-dimensional applications involving flow in pipes it is desirable to have a model for pipe wall friction. SOLA-DF contains a subroutine, PFRIC for this purpose. This subroutine is only called when the one-dimensional option (DIM = 1) is set in the input data list, and only when the pipe radius, RPIPE, is initialized to a nonzero value.

Flow losses arising from wall friction affect the momentum and energy of the flow through the terms f_{vis} and W_{vis} in Eqs. (2.3) and (2.4), respectively. The pipe friction model f_{vis} contained in PFRIC is based on the Armand two-phase flow friction multiplier and uses the Colebrook approximation for the single-phase friction factor

$$f_{vis} = -\frac{f}{R} \frac{\rho}{\rho_{o}^{o}} (1-\psi)^{2} \phi_{TP} - \rho_{g}^{o} u^{2} . \qquad (2.18)$$

Here the friction coefficient f depends on the relative roughness (k/R) and the Reynolds number Re = $2uR/v_{\sigma}$,

$$f = a + b Re$$
,

(2.19)

where

$$a = 0.026 (k/2)^{0.223} + 0.133 (k/2R)$$
,

 $b = 22.0 (k/2R)^{0.44}$

532 218 13

$$c = 1.62 (k/2R)^{0.134}$$

and R is the hydraulic radius. The quantity $\boldsymbol{\varphi}_{TP}$ is a two-phase friction multiplier

$$\phi_{\rm TP}^2 = (1-\theta)^{-1.75}$$

and ψ accounts for the effects of relative velocity

$$\psi = \rho_v [1 + (\rho - \rho_v) u_r / \rho u]^2 / \rho$$

The value of W_{vis} is determined from the rate of change of the fluid kinetic energy associated with the f_{vis} flow loss.

III. NUMERICAL SOLUTION METHOD

Numerous schemes can be devised to numerically solve the equations outlined in the previous section. Different schemes will have varying degrees of accuracy, numerical stability, programming simplicity, flexibility for change, and computational efficiency. Unfortunately, these desirable craits are often mutually exclusive. For example, the use of implicit difference equations to achieve unconditional numerical stabilit, can also result in poor accuracy and generally requires more complex programming and more computer memory. Because different applications require different mixtures of the desirable features, the choice of an optimum solution algorithm can rarely be made. Thus, the choice of a numerical solution procedure generally requires a balance to be made primarily between programming simplicity and the flexibility for future evolution versus stability, accuracy, and computational speed. Inevitably, the choice rests on the particular experience and prejudices of the developer.

In the SOLA-DF code an attempt has been made to keep the programming simple and to use a limited implicitness. In all cases, point relaxation methods have been retained in place of direct solvers for coupled sets of equations.

Although point relaxation methods are generally recognized as simple, but inferious of direct methods for linear equation systems, this is not necessarily the case for nonlinear equations where iterative methods must be used anyway. The point relaxation method permits considerable latitude for adding new features, changing boundary conditions, varying time steps, and making other gross changes in the basic code to adapt it to new applications.

Additionally, the code has been written in a modular form consisting of numerous subroutines that isolate individual logical and physical processes. This structure makes the present code particularly easy to modify and extend for new applications.

A. Mesh Construction

The finite-difference mesh used for numerical solution of the above equations consists of rectangular cells of width δx and height δy . The part of the mesh that contains fluid is composed of IBAR cells in the x-direction, labeled with the index i, and JBAR cells in the y-direction, labeled with the index j. This region is surrounded by a single layer of fictitious cells so that the complete mesh is IMAX = IBAR + 2 by JMAX = JEAR + 2 cells (see Fig. 1). The dependent variables are located within a cell as shown in Fig. 2: x-directed velocities at the middle of the vertical sides, y-directed velocities at the middle of the horizontal sides, and all other variables at the cell center.

Finite-difference subscripting used in the computer code is based on the convention that (i,j) refers to the <u>center</u> of the cell labeled by (i,j) or to the <u>right</u> or <u>top</u> boundary of the cell in the case of velocities, which are located at those cell boundaries.

B. Solution Algorithm

A time cycle of calculation is broken down into four tasks. First, the momentum equations, Eq. (2.3), are advanced explicitly using the previous cycle values for evaluating all contributions. Next an iteration is undertaken to replace the pressure used in the first task with advanced time values. An iteration is needed because the advanced pressures depend on the velocities being calculated. This part of the cycle contains the main implicitness of the numerical scheme. The pressure iteration permits sound waves to propagate more than one mesh cell per cycle. In fact, this scheme is a variant of the ICE technique, ¹⁴ which may be used for very low speed (incompressible) flows as well as for high-speed flows containing shock waves and rarefactions. The third

532 220

Fig. 2. Arrangement of finite difference variables in a typical mesh cell.

task in a cycle is to update all other dependent variables. Finally, the fourth task consists of darm occput, time step controls, and bookkeeping operations.

For a purely explicit calculation, the iteration making up the second task may be omitted by setting the input number IMP equal to zero.

1. Explicit Updating of Velocities. Before int oducing finite difference approximations for the momentum equation, Eq. (2.3), i is first written in the equivalent differential form,

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho A} \frac{\partial}{\partial x} \left(\frac{A\rho_v \rho_{\chi}}{\rho} u_r^2 \right) + v \frac{\partial u}{\partial y} + \frac{1}{\rho A} \frac{\partial}{\partial y} \left(\frac{A\rho_v \rho_{\chi}}{\rho} u_r^v v_r \right)$$
$$= -\frac{1}{\rho} \frac{\partial p}{\partial x} + g_x + \frac{1}{\rho} f_{visx}$$

$$\frac{\partial \mathbf{v}}{\partial \mathbf{r}} + \mathbf{u} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \frac{1}{\rho A} \frac{\partial}{\partial \mathbf{x}} \left(\frac{A \rho_{\mathbf{v}} \rho_{\boldsymbol{\chi}}}{\rho} \mathbf{u}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \right) + \mathbf{v} \frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \frac{1}{\rho A} \frac{\partial}{\partial \mathbf{y}} \left(\frac{A \rho_{\mathbf{v}} \rho_{\boldsymbol{\chi}}}{\rho} \mathbf{v}_{\mathbf{r}}^{2} \right)$$
$$= -\frac{1}{\rho} \frac{\partial p}{\partial \mathbf{y}} + \mathbf{g}_{\mathbf{y}} + \frac{1}{\rho} \mathbf{f}_{\mathbf{visy}} \quad . \tag{3.1}$$

This form is a carryover from previous codes in the SOLA series. Its advantage is that u^{n+1} and v^{n+1} are calculated directly rather than $(\rho u)^{n+1}$ and $(\rho v)^{n+1}$. The disadvantage of this equation is that it is not in conservation form so we do not get rigorous consectation of momentum in the difference approximation. When percentage changes in dependent variables from one cell to the next are not large this nonconservation form of the momentum equations should not cause any problems. In general, it would probably be a good idea to monitor the total momentum of the system in order to have a check on the cacuracy of Eq. (3.1), but this has not been included in the present version of the code. The difference equations used to approximate Eq. (3.1) are

$$\begin{split} \widetilde{u}_{i,j} &= u_{i,j} + \delta t \left[\frac{2(p_{i,j} - p_{i+1,j})}{\delta x(\rho_{i,j} + \rho_{i+1,j})} + f_{visx_{i,j}} - FUX - FUY - FDU \right] \\ &+ f_{visx_{i,j}} - FUX - FUY - FDU \\ \widetilde{v}_{i,j} &= v_{i,j} + \delta t \left[\frac{2(p_{i,j} - p_{i,j+1})}{\delta y(\rho_{i,j} + \rho_{i,j+1})} + f_{visy_{i,j}} - FVX - FVY - FDV \right], \end{split}$$

(3, 2)

where $\tilde{u}_{i,j}$ and $\tilde{v}_{i,j}$ are the explicit guesses for $u_{i,j}^{n+1}$ and $v_{i,j}^{n+1}$, respectively. In all cases, the boundary values of cell-centered quantities will be defined by linear interpolation, as for ρ used above, unless otherwise noted. The indexing in this equation looks uncentered but recall from Fig. 2 that $u_{i,j}$ and $v_{i,j}$ refer to the velocities at the boundary between cells i and i+1 and j and j+1, respectively. The convective fluxes are defined as 5.32 222

$$FUX = \frac{1}{2\delta x} [u_{i,j}(u_{i+1,j} - u_{i-1,j}) - \alpha |u_{i,j}| (u_{i+1,j} - 2u_{i,j} + u_{i-1,j})]$$

$$FUY = \frac{1}{8\delta y} [(v_{i,j} + v_{i+1,j} + v_{i,j-1} + v_{i+1,j-1})(u_{i,j+1} - u_{i,j-1}) - \alpha |v_{i,j} + v_{i+1,j-1} + v_{i+1,j-1}|(u_{i,j+1} - 2u_{i,j} + u_{i,j-1})]$$

The parameter α appearing in the convective fluxes is used to give a variable amount of upstream differencing. When α is zero the approximations reduce to the usual centered differenced form; however, this is known to result in an unstable algorithm.¹⁵ When α is unity the approximations are the so-called donor cell or fully upstream (or upwind) difference expressions, which are stable provided fluid does not convect through more than one mesh cell in one time step. In general, numerical stability 's expected (see Ref. 15) when α is chosen such that

$$\alpha > \max\left[\frac{u\delta t}{\delta x}, \frac{v\delta t}{\delta y}, \frac{\rho_v \rho_{\ell} u_r \delta t}{\rho^2 \delta x}, \frac{\rho_v \rho_{\ell} v_r \delta t}{\rho^2 x}\right].$$

The remaining flux terms are

$$\begin{aligned} \text{FDU} &= \frac{1}{A_{\text{R}}} \left\{ \frac{1}{\delta x} \left[(\text{RUR}) \left(u_{r_{1,j}} + u_{r_{1+1,j}} \right) + \alpha \right] (\text{RUR}) \left[\left(u_{r_{1,j}} - u_{r_{1+1,j}} \right) \right] \right. \\ &- (\text{RUL}) \left(u_{r_{i-1,j}} + u_{r_{i,j}} \right) - \alpha \left[(\text{RUL}) \left[\left(u_{r_{i-1,j}} - u_{r_{i,j}} \right) \right] \right] \\ &+ \frac{1}{\delta y} \left[(\text{VDT}) (\text{RUC} \quad \text{RUT}) + \alpha \left[(\text{VDT}) \right] (\text{RUC} - \text{RUT}) - (\text{VDB}) (\text{RUB} + \text{RUC}) \right] \\ &- \alpha \left[(\text{VDB}) \right] (\text{RUB} - \text{RUC}) \right] \left\{ / (\rho_{i,j} + \rho_{i+1,j}) \right\}, \end{aligned}$$

532 223

$$\begin{split} \text{FVX} &= \frac{1}{85\text{x}} \left[\left(u_{i-1,j+1} + u_{i,j+1} + u_{i-1,j} + u_{i,j} \right) \left(v_{i+1,j} + v_{i-1,j} \right) \right] \\ &- \alpha \left[u_{i-1,j+1} + u_{i,j+1} + u_{i-1,j} + u_{i,j} \right] \left(v_{i+1,j} - 2v_{i,j} \right) \right] \\ &+ v_{i-1,j} \right] \\ &+ v_{i,j-1} \right] \\ &+ v_{i,j-1} \right] \\ &+ v_{i,j-1} \right] \\ &+ v_{i,j+1} \bigg) \\ &+ \alpha \left[\left(\text{UDR} \right) \left(\text{RVC} + \text{RVR} \right) + \alpha \left| \left(\text{UDR} \right) \right| \left(\text{RVC} - \text{RVR} \right) - \left(\text{UDL} \right) \left(\text{RVL} + \text{RVC} \right) \\ &- \alpha \left[\text{UDL} \right] \left(\text{RVL} - \text{RVC} \right) \right] \\ &+ \frac{1}{\delta y} \left[\left[\text{RVT} \left(v_{r_{i,j}} + v_{r_{i,j+1}} \right) + \alpha \left| \left(\text{RVT} \right) \right| \right] \left(v_{r_{i,j}} \\ &- v_{r_{i,j+1}} \right) \\ &- \left(\text{RVB} \right) \left(v_{r_{i,j-1}} + v_{r_{i,j}} \right) \\ &- \alpha \left[(\text{RVB} \right] \left(v_{r_{i,j-1}} + v_{r_{i,j}} \right) \\ &- v_{r_{i,j}} \right) \bigg] \bigg) \Big| \left((v_{i,j} + v_{i,j+1} \right) \\ &+ v_{i,j+1} \right) \\ &+ v_{i,j} \bigg) \right]$$

where

$$\begin{split} \mathbf{A}_{\mathrm{R}} &= \frac{2}{A_{i,j}} \frac{\mathbf{A}_{i+1,j}}{\mathbf{A}_{i,j} + \mathbf{A}_{i+1,j}}, \\ \mathbf{RUR} &= \frac{\mathbf{O}_{\mathbf{v}_{i+1,j}} \mathbf{O}_{i+1,j}}{\mathbf{O}_{i+1,j}} \frac{\left(\mathbf{u}_{\mathbf{r}_{i,j}} + \mathbf{u}_{\mathbf{r}_{i+1,j}}\right)}{2} \mathbf{A}_{i+1,j}, \\ \mathbf{RUR} &= \frac{\mathbf{O}_{\mathbf{v}_{i,j}} \mathbf{O}_{k_{i,j}}}{\mathbf{O}_{i,j}} \frac{\mathbf{O}_{k_{i,j}}}{\mathbf{O}_{i,j}} \frac{\left(\mathbf{u}_{\mathbf{r}_{i-1,j}} + \mathbf{u}_{\mathbf{r}_{i,j}}\right)}{2} \mathbf{A}_{i,j}, \\ \mathbf{RUL} &= \frac{\mathbf{O}_{\mathbf{v}_{i,j}} \mathbf{O}_{k_{i,j}}}{\mathbf{O}_{i,j}} \frac{\mathbf{O}_{k_{i,j}}}{2} \frac{\left(\mathbf{u}_{\mathbf{r}_{i-1,j}} + \mathbf{u}_{\mathbf{r}_{i,j}}\right)}{2} \mathbf{A}_{i,j}, \\ \mathbf{VDT} &= \frac{\left(\mathbf{v}_{\mathbf{r}_{i,j}} + \mathbf{v}_{\mathbf{r}_{i+1,j}}\right)}{2} \left(\frac{\mathbf{A}_{i,j} \mathbf{A}_{i,j+1}}{\mathbf{A}_{i,j} + \mathbf{A}_{i+1,j} + \frac{\mathbf{A}_{i+1,j} \mathbf{A}_{i+1,j+1}}{\mathbf{A}_{i+1,j} + \mathbf{A}_{i+1,j} + \mathbf{A}_{i+1,j+1}}\right) \end{split}$$

532 224

$$\begin{split} & \text{RUC} = \frac{u_{\mathbf{r}_{4,1}}}{2} \left(\frac{\rho_{\mathbf{v}_{4,1}} + \rho_{\mathbf{v}_{4,1}}}{\rho_{\mathbf{i},\mathbf{j}}} + \frac{\rho_{\mathbf{v}_{4+1,1}} + \rho_{\mathbf{v}_{4+1,1}}}{\rho_{\mathbf{i}+1,\mathbf{j}}} \right) \quad, \\ & \text{RUT} = \frac{u_{\mathbf{r}_{4,1}+1}}{2} \left(\frac{\rho_{\mathbf{v}_{4,1}+1} + \rho_{\mathbf{v}_{4,1}+1}}{\rho_{\mathbf{i},\mathbf{j}+1}} + \frac{\rho_{\mathbf{v}_{4+1,1}+1} + \rho_{\mathbf{v}_{4+1,1}+1}}{\rho_{\mathbf{i}+1,\mathbf{j}+1}} \right) \quad, \\ & \text{RUB} = \frac{\left(v_{\mathbf{r}_{4,1}+1} + \frac{v_{\mathbf{i}+1}}{2} + \frac{1}{2}\right) \left(\frac{\rho_{\mathbf{v}_{4,1}+1}}{\rho_{\mathbf{i},\mathbf{j}+1}} + \frac{\rho_{\mathbf{v}_{4+1,1}+1}}{\rho_{\mathbf{i}+1,\mathbf{j}+1}} + \frac{A_{\mathbf{i}+1,\mathbf{i}}}{A_{\mathbf{i}+1,\mathbf{j}+1}} \right) \right) , \\ & \text{RUB} = \frac{\left(v_{\mathbf{r}_{4,1}+1} + \frac{v_{\mathbf{v}_{4,1}+1}}{2} + \frac{\rho_{\mathbf{v}_{4,1}+1}}{\rho_{\mathbf{i}+1,\mathbf{j}+1}} + \frac{A_{\mathbf{i}+1,\mathbf{i}+1}}{A_{\mathbf{i}+1,\mathbf{j}+1}} \right) , \\ & \text{RUB} = \frac{u_{\mathbf{r}_{4,1}} + e_{\mathbf{v}_{4,1}+1}}{2} + \left(\rho_{\mathbf{v}_{4,1}+1} + \frac{\rho_{\mathbf{v}_{4+1,1}+1}}{\rho_{\mathbf{i}+1,\mathbf{j}+1}} + \frac{A_{\mathbf{i}+1,\mathbf{i}+1}}{A_{\mathbf{i}+1,\mathbf{j}+1}} \right) , \\ & \text{RUB} = \frac{u_{\mathbf{r}_{4,1}} + e_{\mathbf{v}_{4,1}+1}}{2} + \left(\rho_{\mathbf{v}_{4,1}+1} + \frac{\rho_{\mathbf{v}_{4+1,1}+1}}{\rho_{\mathbf{i}+1,\mathbf{j}+1}} + \frac{A_{\mathbf{i}+1,\mathbf{i}+1}}{A_{\mathbf{i}+1,\mathbf{j}+1}} \right) , \\ & \text{A}_{\mathbf{T}} = \frac{2}{A_{\mathbf{i},\mathbf{i}}} + \frac{A_{\mathbf{i},\mathbf{i}+1}}{2} + \frac{A_{\mathbf{i}+1,\mathbf{i}+1}}{\rho_{\mathbf{i}+1,\mathbf{j}+1}} + \frac{A_{\mathbf{i}+1,\mathbf{i}+1,\mathbf{j}+1}}{\rho_{\mathbf{i}+1,\mathbf{j}+1}} \right) , \\ & \text{RUB} = \frac{\left(u_{\mathbf{r}_{4,1}} + u_{\mathbf{r}_{4,1}+1}} \right)}{2} \left(\frac{A_{\mathbf{i},\mathbf{i}} + A_{\mathbf{i}+1,\mathbf{i}}}{P_{\mathbf{i},\mathbf{j}+1}} + \frac{A_{\mathbf{i},\mathbf{i}+1}}{A_{\mathbf{i}+1,\mathbf{j}+1}} \right) , \\ & \text{RVC} = \frac{v_{\mathbf{r}_{4,1}}}{2} \left(\frac{\rho_{\mathbf{v}_{4,1}} - \frac{\rho_{\mathbf{i}+1,\mathbf{i}}}{\rho_{\mathbf{i}+1,\mathbf{j}}} + \frac{\rho_{\mathbf{v}_{4,1}+1}}{\rho_{\mathbf{i}+1,\mathbf{j}+1}}} \right) , \\ & \text{UDL} = \frac{\left(u_{\mathbf{r}_{4,1,\mathbf{i}}} + u_{\mathbf{r}_{4,1}+1}\right)}{2} \left(\frac{A_{\mathbf{i},\mathbf{i}} + A_{\mathbf{i}+1,\mathbf{i}+1}}{A_{\mathbf{i}+1,\mathbf{j}+1}} + \frac{A_{\mathbf{i},\mathbf{i}+1}}{A_{\mathbf{i},\mathbf{j}+1}} + \frac{A_{\mathbf{i}+1,\mathbf{i}+1}}{A_{\mathbf{i}+1,\mathbf{j}+1}} \right) , \\ & \text{RVL} = \frac{v_{\mathbf{r}_{4,1}}}}{2} \left(\frac{\rho_{\mathbf{v}_{4,1}} + \frac{\rho_{\mathbf{i}}}{A_{\mathbf{i}+1,\mathbf{i}+1}}}{\rho_{\mathbf{i}-1,\mathbf{i}}} + \frac{\rho_{\mathbf{v}_{4,1}+1}}{\rho_{\mathbf{i}-1,\mathbf{i}+1}}} \right) , \\ & \text{RVL} = \frac{v_{\mathbf{r}_{4,1}}}{2} \left(\frac{\rho_{\mathbf{v}_{4,1}} + \frac{\rho_{\mathbf{i}}}{A_{\mathbf{i}+1,\mathbf{i}+1}}}{\rho_{\mathbf{i}-1,\mathbf{i}+1}} + \frac{\rho_{\mathbf{v}_{4,1}+1}}{\rho_{\mathbf{i}-1,\mathbf{i}+1}}} \right) , \\ & \text{RVL} = \frac{v_{\mathbf{r}_{4,1}}}{2} \left(\frac{\rho_{\mathbf{v}_{4,1}} + \frac{\rho_{\mathbf{i}}}{A_{\mathbf{i}+1,\mathbf{i}+1}}}{\rho_{\mathbf{i$$

532 225

$$RVT = \frac{\rho_{v_{i,j+1}} \rho_{2}}{\rho_{i,j+1}} \left(\frac{(v_{r_{i,j}} + v_{r_{i,j+1}})}{2} \right)_{A_{i,j+1}}, \text{ and}$$

$$RVB = \frac{\rho_{v_{i,j}} \rho_{l_{i,j}}}{\rho_{i,j}} \left(\frac{v_{r_{i,j-1}} + v_{r_{i,j}}}{2} \right)_{A_{i,j}}$$

For the cell boundary areas, we do not use a linearly interpolated value, but instead, prefer a combined geometric and arithmetic average, e.g.,

$$A_{i,j+i_{5}} = \frac{2 A_{i,j} A_{i,j+1}}{(A_{i,j} + A_{i,j+1})}$$

This choice has the convenient feature that $A_{i,j+k_2}$ vanishes when either $A_{i,j}$ or $A_{i,j+1}$ is zero.

2. Implicit Pressure Calculation. In this part of the calculational cycle the n level pressures appearing in Eq. (3.2) are to be replaced by approximations for the n+1 level pressures. This is done by solving for the pressure in each cell that satisfies the implicit equation

 $F = p - f(\bar{\rho}, \bar{\rho}_{y}, \bar{I}) = 0$, (3.3)

532 226

where $f(\bar{\rho}_{},\,\bar{\rho}_{}_{_{\rm V}},\,\bar{I})$ is the equation of state evaluated using

$$\vec{\rho} = \rho^{n} / (1 + D) ,$$

$$\vec{\rho}_{v} = \rho_{v}^{n} / (1 + D) ,$$

$$\overline{I} = I^n - \frac{p^n}{p^n} D , \qquad (3.4)$$

and D is an approximation to cell volume change per unit volume,

$$D = \frac{\delta t}{A} \left[\frac{\partial}{\partial x} (Au) + \frac{\partial}{\partial y} (Av) \right]$$

$$= \frac{\delta t}{A} \left[\frac{1}{\delta x} (A_{i+\frac{1}{2},j} u_{i,j} - A_{i-\frac{1}{2},j} u_{i-1,j}) + \frac{1}{\delta y} (A_{i,j+\frac{1}{2}} v_{i,j} - A_{i,j-\frac{1}{2}} v_{i,j-1}) \right]^{*} .$$
(3.5)

The n+1 level velocities must be used in evaluating D; that is,

$$u_{i,j}^{n+1} = \widetilde{u}_{i,j} - \frac{2\delta t}{(o_{i+1,j}+o_{i,j})} (p_{i+1,j} - p_{i+1,j}^n - p_{i,j} + p_{i,j}^n) , \quad (3.6)$$

and

$$v_{i,j}^{n+1} = v_{i,j} - \frac{2\delta t}{(\rho_{i,j+1} + \rho_{i,j})} \quad (p_{i,j+1} - p_{i,j+1}^n - p_{i,j} + p_{i,j}^n) \quad . \quad (3.7)$$

Because the n+1 level velocities depend on p the implicit nature of Eq. (3.3) is obvious. The pressure that satisfies Eqs. (3.3)-(3.7) is not quite p^{n+1} , because convective fluxes are omitted from the estimates of the new densities $\overline{0}$, $\overline{\rho}_v$, and energy $\overline{1}$. It would be equal to p^{n+1} if the remainder of the equations were in Lagrangian form. The difference is not significant, however, because the iteration is always trying to drive p to its equation-of-state value every cycle. In this sense p is a stored variable and is not identically equal to the equation-of-state value unless the iterations are omitted and an explicit

532 227

calculation is used. It is important to note that densities and energies are not actually changed during the iteration, because Eq. (3.4) is only used to estimate the new values. To obtain a solution of Eqs. (3.3)-(3.7) a local Newton-Raphson procedure is followed. For this purpose an estimate is needed for $\partial F/\partial p$ in each celi. In SOLA-DF, first guesses for these values are computed by a numerical differentiation. This is done at the beginning of each cycle and the values stored. Once the iteration has started, new values are computed and stored after each iteration. In summary, the following steps are performed for a single cell (i,j):

- a. compute D according to Eq. (3.5) using the most updated values of u and v from Eqs. (3.6) and (3.7),
- b. compute $\overline{\rho}$, $\overline{\rho}$, and \overline{I} from Eq. (3.4),
- c. evaluate the equation-of-state function and calculate $\delta p = F/\partial F/\partial p$),
- d. replace $p_{i,j}$ by $p_{i,j} + \delta p_{i,j}$, and $u_{i,j}$, $u_{i-1,j}$, $v_{i,j}$, and $v_{i,j-1}$ by

$$u_{i,j} = u_{i,j} + \frac{2 \,\delta t \,\delta p}{\delta x (\rho_{i,j} + \rho_{i+1,j})}$$

$$u_{i-1,j} = u_{i-1,j} - \frac{2 \, \delta t \, \delta p}{\delta x (\rho_{i-1,j} + \rho_{i,j})}$$

$$v_{i,j} = v_{i,j} + \frac{2 \, \delta t \, \delta p}{\delta y (\rho_{i,j} + \rho_{i,j+1})}$$

and

$$v_{i,j-1} = v_{i,j-1} - \frac{2 \, \delta t \, \delta p}{\delta y(\rho_{i,j-1} + \rho_{i,j})}$$

This iteration process is continued until all cells satisfy the convergence test

$$\left| \begin{array}{c} p - f(\overline{p}, \overline{p_y}, \overline{t}) \\ p + f(\overline{p}, \overline{p_y}, \overline{t}) \end{array} \right| < \varepsilon \quad , \qquad \qquad 532 \quad 228$$

where ε is typically equal to 0.001.

<u>3. Updating of Remaining Variables</u>. After the implicit portion of the cycle has been completed new time values for the remaining variables are readily computed. The mixture density changes only by convection,

$$\rho_{i,j}^{n+1} = \rho_{i,j} - \frac{\delta t}{A_{i,j}} \left\{ \frac{1}{\delta x} \left[A_{i+\frac{1}{2},j} \left(\rho u \right)_{i+\frac{1}{2},j} - A_{i-\frac{1}{2},j} \left(\rho u \right)_{i-\frac{1}{2},j} \right] + \frac{1}{\delta y} \left[A_{i,j+\frac{1}{2}} \left(\rho v \right)_{i,j+\frac{1}{2}} - A_{i,j-\frac{1}{2}} \left(\rho v \right)_{i,j-\frac{1}{2}} \right] \right\},$$
(3.8)

where

and

24

$$(\rho u)_{i+i_{2},j} = \frac{1}{2} \left[u_{i,j}(\rho_{i,j} + \rho_{i+1,j}) + \alpha | u_{i,j} | (\rho_{i,j} - \rho_{i+1,j}) \right] ,$$

$$(\rho u)_{i-i_{2},j} = \frac{1}{2} \left[u_{i-1,j}(\rho_{i-1,j} + \rho_{i,j}) + \alpha | u_{i-1,j} | (\rho_{i-1,j} - \rho_{i,j}) \right] ,$$

$$(\rho v)_{i,j+i_{2}} = \frac{1}{2} \left[v_{i,j}(\rho_{i,j} + \rho_{i,j+1}) + \alpha | v_{i,j} | (\rho_{i,j} - \rho_{i,j+1}) \right] ,$$

$$(\rho v)_{i,j-i_{2}} = \frac{1}{2} \left[v_{i,j-1}(\rho_{i,j} + \rho_{i,j-1}) + \alpha | v_{i,j-1} | (\rho_{i,j} - \rho_{i,j-1}) \right] .$$

Quantities on the right side of Eq. (3.8) are evaluated using n level values for ρ and the available n+1 level values of u.

The mixture energy equation is next approximated by

$$I_{i,j}^{n+1} = \frac{\sigma_{i,j} I_{i,j}}{\sigma_{i,j}^{n+1}} + \frac{\delta t}{\sigma_{i,j}^{n+1}} \left(-FU - FV - FWK + \frac{1}{4} \kappa_{i,j} \left[\left(u_{r_{i,j}} + u_{r_{i-1,j}} \right)^2 + \left(v_{r_{i,j}} + v_{r_{i,j-1}} \right)^2 \right] + \left(w_{vis_{i,j}} \right) \right], (3.9)$$

$$= 532 \quad 22^{\circ}$$

where

$$\begin{split} \mathrm{FU} &= \frac{1}{\mathrm{A}_{\mathbf{i},\mathbf{j}}} \int_{0}^{\delta_{\mathbf{X}}} \left\langle \mathrm{A}_{\mathbf{i}+\mathbf{i}_{2},\mathbf{j}} \left[\left(\rho \mathrm{Iu}\right)_{\mathbf{i}+\mathbf{i}_{2},\mathbf{j}} + \left(\frac{\rho_{\mathbf{v}}\rho_{\hat{\mathcal{X}}}}{\rho} \left(\mathrm{I}_{\mathbf{v}} - \mathrm{I}_{\hat{\mathcal{X}}} \right) \mathrm{u}_{\mathbf{r}} \right)_{\mathbf{i}+\mathbf{i}_{2},\mathbf{j}} \right] \right] \\ &- \mathrm{A}_{\mathbf{i}-\mathbf{i}_{2},\mathbf{j}} \left[\left(\rho \mathrm{Iu}\right)_{\mathbf{i}-\mathbf{i}_{2},\mathbf{j}} + \left(\frac{\rho_{\mathbf{v}}\rho_{\hat{\mathcal{X}}}}{\rho} \left(\mathrm{I}_{\mathbf{v}} - \mathrm{I}_{\hat{\mathcal{X}}} \right) \mathrm{u}_{\mathbf{r}} \right)_{\mathbf{i}-\mathbf{i}_{2},\mathbf{j}} \right] \right\} , \\ \mathrm{FV} &= \frac{1}{\mathrm{A}_{\mathbf{i},\mathbf{j}}} \int_{0}^{\delta_{\mathbf{v}}} \left\langle \mathrm{A}_{\mathbf{i},\mathbf{j}+\mathbf{i}_{2}} \left[\left(\rho \mathrm{Iv}\right)_{\mathbf{i},\mathbf{j}+\mathbf{i}_{2}} + \left(\frac{\rho_{\mathbf{v}}\rho_{\hat{\mathcal{X}}}}{\rho} \left(\mathrm{I}_{\mathbf{v}} - \mathrm{I}_{\hat{\mathcal{X}}} \right) \mathrm{v}_{\mathbf{r}} \right)_{\mathbf{i},\mathbf{j}+\mathbf{i}_{2}} \right] \\ &- \mathrm{A}_{\mathbf{i},\mathbf{j}-\mathbf{i}_{2}} \left[\left(\rho \mathrm{Iv}\right)_{\mathbf{i},\mathbf{j}-\mathbf{i}_{2}} + \left(\frac{\rho_{\mathbf{v}}\rho_{\hat{\mathcal{X}}}}{\rho} \left(\mathrm{I}_{\mathbf{v}} - \mathrm{I}_{\hat{\mathcal{X}}} \right) \mathrm{v}_{\mathbf{r}} \right)_{\mathbf{i},\mathbf{j}-\mathbf{i}_{2}} \right] \right\} . \end{split}$$

For this formulation the boundary convective fluxes are approximated by

$$\begin{split} \left[(\rho I u)_{i+i_{2},j} + \left(\frac{\rho_{v} \rho_{\ell}}{\rho} (I_{v} - I_{\ell}) u_{r} \right) \right]_{i+i_{2},j} \\ &= \frac{1}{2} \left\{ u_{i,j} \left[(\rho I)_{i,j} + (\rho I)_{i+1,j} \right] + \alpha |u_{i,j}| \left[(\rho I)_{i,j} \right] \\ &- (\rho I)_{i+1,j} \right] + u_{\tau_{i,j}} \left[\left(\frac{\rho_{v} \rho_{\ell}}{\rho} (I_{v} - I_{\ell}) \right)_{i,j} \right] \\ &+ \left(\frac{\rho_{v} \rho_{\ell}}{\rho} (I_{v} - I_{\ell}) \right)_{i+1,j} \right] \\ &+ \alpha |u_{r_{i,j}}| \left[\left(\frac{\rho_{v} \rho_{\ell}}{\rho} (I_{v} - I_{\ell}) \right)_{i,j} - \left(\frac{\rho_{v} \rho_{\ell}}{\rho} (I_{v} - I_{\ell}) \right)_{i+1,j} \right] \right] \end{split}$$

532 230

and similarly for
$$\left[\left(\rho I u\right)_{i=\frac{1}{2},j} + \left(\frac{\rho_{v}\rho_{\ell}}{\rho} \left(I_{v} - I_{\ell}\right)u_{r}\right)_{i=\frac{1}{2},j}\right]$$
,
 $\left[\left(\rho I v\right)_{i,j+\frac{1}{2}} + \left(\frac{\rho_{v}\rho_{\ell}}{\rho} \left(I_{v} - I_{\ell}\right)v_{r}\right)_{i,j+\frac{1}{2}}\right]$, and $\left[\left(\rho T v\right)_{i,j-\frac{1}{2}} + \left(\frac{\rho_{v}\rho_{\ell}}{\rho} \left(I_{v} - I_{\ell}\right)v_{r}\right)_{i,j-\frac{1}{2}}\right]$.

The pressure work term in Eq. (3.9) is approximated as

$$FWK = \frac{P_{i,j}}{A_{i,j}} \left\{ \frac{1}{\delta x} \left[A_{i+\frac{1}{2},j} \left(u_{i,j} + \frac{\rho_{v_{i+\frac{1}{2},j}} \rho_{\ell_{i+\frac{1}{2},j}}}{\rho_{i+\frac{1}{2},j}} \left(\frac{1}{\rho_{v_{i+\frac{1}{2},j}}^{o}} \right) - \frac{1}{\rho_{\ell_{i+\frac{1}{2},j}}^{o}} \right) u_{r_{i,j}} \right\} - A_{i-\frac{1}{2},j} \left(u_{i-1,j} \right)$$

$$+\frac{\rho_{v_{1}-i_{2},j}}{\rho_{i-i_{2},j}}\left(\frac{1}{\rho_{v_{1}-i_{2},j}^{\circ}}-\frac{1}{\rho_{\ell_{1}-i_{2},j}^{\circ}}\right) u_{r_{1}-1,j}\right)$$

$$+ \frac{1}{\delta y} \left[A_{i,j+i_{2}} \left(v_{i,j} + \frac{\rho_{v_{i,j+i_{2}}} \rho_{i,j+i_{2}}}{\rho_{i,j+i_{2}}} \left(\frac{1}{\rho_{v_{i,j+i_{2}}}^{o}} - \frac{1}{\rho_{i,j+i_{2}}^{o}} \right) v_{r_{i,j}} \right) - A_{i,j-i_{2}} \left(v_{i,j-1} \right) \right]$$

$$\frac{\rho_{v_{i,j-\frac{1}{2}}}\rho_{1,j-\frac{1}{2}}}{\rho_{i,j-\frac{1}{2}}} \left(\frac{1}{\rho_{v_{i,j-\frac{1}{2}}}^{\circ}} - \frac{1}{\rho_{\ell_{i,j-\frac{1}{2}}}^{\circ}} \right) v_{t_{i,j-1}} \right)$$

Quantities on the right side of Eq. (3.9) are evaluated using n level values for ρ , ρ_v , and I while n+1 lovel values are used for $u_{i,j}$, $p_{i,j}$, and the overall divisor $\rho_{i,j}$. Finally, the vapor density is updated as

$$(\rho_v)_{i,j}^{n+1} = (\rho_v)_{i,j} + \delta t [- FRU + \Gamma_{i,j}] ,$$
 (3.10)

where

$$FRU = \frac{1}{A_{i,j}} \left\{ \frac{1}{\delta x} \left[A_{i+\frac{1}{2},j}(\rho_v u_v)_{i+\frac{1}{2},j} - A_{i-\frac{1}{2},j}(\rho_v u_v)_{i-\frac{1}{2},j} \right] + \frac{1}{\delta y} \left[A_{i,j+\frac{1}{2}}(\rho_v v_v)_{i,j+\frac{1}{2}} - A_{i,j-\frac{1}{2}}(\rho_v v_v)_{i,j-\frac{1}{2}} \right] \right\}$$

and

$$\begin{split} \rho_{v} u_{v} \rangle_{i+i_{2},j} &= \frac{1}{2} \left\{ (u_{v})_{i,j} \left[(\rho_{v})_{i,j} + (\rho_{v})_{i+1,j} \right] \right. \\ &+ \alpha |u_{v}|_{i,j} \left[(\rho_{v})_{i,j} - (\rho_{v})_{i+1,j} \right] \right\} \ . \end{split}$$

The $i-\frac{1}{2}$ boundary flux is obtained by replacing i with i-1 in the above expression. In a similar fashion,

$$\begin{pmatrix} \circ_{v} v_{v} \\ v v_{v} \end{pmatrix}_{i, j+i_{2}} = \frac{1}{2} \left\{ \begin{pmatrix} v_{v} \\ v \end{pmatrix}_{i, j} \left[\begin{pmatrix} \circ_{v} \\ v \end{pmatrix}_{i, j} + \begin{pmatrix} \circ_{v} \\ v \end{pmatrix}_{i, j+1} \right] \right.$$
$$+ \left. \alpha \left| v_{v} \right|_{i, j} \left[\begin{pmatrix} \circ_{v} \\ v \end{pmatrix}_{i, j} - \begin{pmatrix} \circ_{v} \\ v \end{pmatrix}_{i, j+1} \right] \right]$$

where the $j-\frac{1}{2}$ boundary flux is obtained by replacing j with j-l in the above equation. The vapor velocities used in these expressions are defined as

 $\left(u_{v} \right)_{i,j} \stackrel{:}{=} u_{i,j} + \left(\rho_{\lambda} \right)_{i+\lambda_{2},j} \left(u_{r} \right)_{i,j} / \rho_{i+\lambda_{2},j} ,$

with a corresponding expression for the $i-\frac{1}{2}$ boundary obtained by replacing i with i-1, and

 $\left(\mathbf{v}_{\mathbf{v}} \right)_{\mathbf{i},\mathbf{j}} = \mathbf{v}_{\mathbf{i},\mathbf{j}} + \left(\boldsymbol{\rho}_{\boldsymbol{\lambda}} \right)_{\mathbf{i},\mathbf{j}} \left(\mathbf{v}_{\mathbf{r}} \right)_{\mathbf{i},\mathbf{j}} / \boldsymbol{\rho}_{\mathbf{i}+\mathbf{\lambda}_{\mathbf{n}},\mathbf{j}}$

with a corresponding expression for the $j-\frac{1}{2}$ boundary obtained by replacing j with j-1.

Some care must be taken with the way the vapor source term I, is approximated. When the mixture is not at equilibrium and the relax tion rate is fast, I can be large. Under such circumstances Eq. (3.10) may be numerically unstable. To avoid this the densities in Γ should be evaluated at level n+1. For general formulations of F it is usually necessary to use an iterative technique to solve Eq. (3.10). Such an iteration is provided in subroutine PHCHR for the Γ given by Eq. (2.14). There is, however, another more serious problem that can arise when phase transitions are important. Because the effect of Γ is included at the end of a cycle of calculation, its influence on the pressure, and hence the dynamics, is not accounted for in the implicit pressure iteration. This means that some inaccuracies can be introduced in the propagation of compression and rarefaction waves when significant phase change occurs during a single time step. In addition, a large phase change may also drive the equation-of-state pressure far from the value arrived at in the pressure iteration; so that excessive iterations may be required to solve the implicit equation in the next time cycle. In extreme cases the iteration may not even converge. The above problem can be eliminated by using sufficiently small time increments, ot, but in some cases this may lead to long computing times. A better solution that has been utilized recently in the multidimensional code K-FIX (see Ref. 2) is to incorporate the F into the implicit portion of the cycle. Basically, the idea is to include I in

532 233

Eq. (3.4) for the estimated new time vapor density. Since this more complicated formulation is not in SOLA-DF, the user should check his results for time step dependence (accuracy) by performing a smaller time step calculation when necessary.

Thermodynamic equilibrium calculations can be achieved by using a large phase change rate or by replacing the vapor density equat. It a calculation of the saturated vapor density and using an equilibrium equation of state. The latter procedure is often preferable because it effectively puts Γ into the pressure iteration.

C. Boundary Conditions

Various types of boundary conditions may be used at the ends and sides of the computational mesh. Prescribed velocities or prescribed pressures together with densities and temperatures may be used to represent inlet and exit conditions. For example, a guillotine break in a pipe of a reactor system can be represented by assigning the ambient pressure in the containment structure to the end of the mesh.

These boundary conditions are easily imposed by setting appropriate values of the dependent variables in the fictitious cells surrounding the mesh. Five kinds of boundary conditions have been specifically built into the code: (1) rigid free-slip, (2) rigid no-slip, (3) continuative outflow, (4) periodic, and (5) constant pressure. As an example of how to trea these boundary conditions, consider the left boundary.

1. Rigid Free-Slip. The normal velocity component must be zero and the tangential velocity component must have no normal gradient, i.e.,

 $\begin{bmatrix} u_{1,j} = 0 \\ \\ v_{1,j} \\ v_{2,j} \end{bmatrix}$ for all j.

The variables p, p, and I are treated the same as v.

 <u>Rigid No-Slip</u>. The normal velocity component must be zero and the tangential velocity component at the wall must also be zero, i.e.,

532 234

$$u_{1,j} = 0$$

 $v_{1,j} = -v_{2,j}$ for all j.

The variables p, p, and I are treated the same as for a free-slip boundary.

For both of the above rigid boundary conditions, the designated conditions are imposed after each pass through the mesh during the pressure iteration.

3. Continuative Outflow. Continuative or outflow boundaries always pose a problem for low-speed calculations, because whatever prescription is chosen it can potentially affect the entire flow field upstream. What is needed is a prescription that permits fluid to flow out of the mesh with a minimum of upstream influence. In this code we have used a continuative boundary condition that involves setting, for the left boundary, for example,

$$v_{1,j} = v_{2,j}$$
 for all j.
 $v_{1,j} = v_{2,j}$

These conditions, however, are only imposed after applying the complete momentum equations (3.2) and not after each pass through the mesh during the pressure iteration. During the iteration the normal boundary velocities can vary with the changes in pressure, as any interior velocity component. The treatment of ρ , p, and I is the same as (u,v).

<u>4. Periodic</u>. For periodic boundary conditions in the x-direction, the left and right boundaries must be set to reflect the periodicity. This is easiest when the period length is chosen equal to $(IBAR-1)\delta x$. Then the boundar condition for the fictitious cells on the left are

$$\begin{array}{c} u_{1,j} = u_{IBAR,j} \\ v_{1,j} = v_{IBAR,j} \\ \rho_{1,j} = \rho_{IBAR,j} \\ p_{1,j} = p_{IBAR,j} \\ I_{1,j} = \tau_{IBAR,j} \end{array}$$
 for all j.

and on the right

In this case these conditions are imposed after applying Eqs. (3.2) and after each pressure iteration.

5. Constant Pressure. When constant pressure is prescribed at a boundary, the fluid must stream freely into or out of the specified pressure region, i.e.,

532 236

$$\begin{array}{c} p_{1,j} = p_{2,j} = p_{bc} \\ u_{1,j} = u_{2,j} \\ v_{1,j} = v_{2,j} \end{array} \right\} \text{ for all } j.$$

The variables 2 and I are treated the same as v.

Boundary conditions similar to those for the left wall are used at the right, top, and bottom boundaries of the mesh. Of course, the normal and tangential velocities at the top and bottom boundaries are v and u, respectively.

For convenience, the SOLA-DF code has been written so that any of the above boundary conditions can be automatically imposed by setting input numbers. The appropriate input number for the left wall is designated WL, where

WL = { 1, rigid free-slip left wall 2, rigid no-slip left wall 3, continuative outflow left wall 4, periodic in x (provided WR = 4) 5. constant pressure left wall.

Similar input numbers are used for the right boundary (WR), top boundary (WT), and bottom boundary (WB). Clearly, when periodic conditions are desired in a given direction, both boundaries in that direction must be assigned wall numbers of 4.

D. Internal Obstacles

To increase the usefulness of the basic code, internal obstacles may be inserted within the fluid region. Internal obstacles with rigid boundary conditions can be taken into account by simply setting $A_{i,j} = 0.0$ for the desired obstacle cell. The code is equipped to handle these simple obstacles by means of the INPUT stream; however, if a more complex internal obstacle treatment is desired, the user must provide additional coding at the end of the boundary condition routine BC.

E. Variable Time Steps

SOLA-DF contains provisions that allow the use of different time steps of integration. The time steps are determined by numerical stability requirements and other user-specified conditions. For numerical stability the time step is limited by the flux criterion that $u\delta t/\delta x \leq 1/4$, $u_r \delta t/\delta x \leq 1/4$, $v\delta t/\delta y \leq 1/4$, and $v_r \delta t/\delta x \leq 1/4$. The minimum time step determined according to this criterion is then increased or decreased by 1%. The direction of this adjustment is deter-

532 237

mined by the relative ease of the previous time integration of the system. If fewer than five system iterations were required, the time step is increased, otherwise it is decreased. The time step determined by the above methods is never allowed to be greater than the user-specified maximum time step DELTMX.

IV. INPUT DATA, COMMON VARIABLES, AND SUBROUTINES AND GRAPHICS OUTPUT

The input data, COMMON variables, and subroutines and FORTRAN functions in SOLA-DF are listed and described in this section. While the input quantities are tabulated and defined separately, they also uppear in the COMMON variable lists and are identified there simply as an input quanity. These descriptions of the input and COMMON variables are necessarily brief but hopefully will assist in relating the methodology, described in Sec. III, to its implementation in the code. The units the code was written for are g, cm, ms, K with pressure in bars.

A. Input Data

DEFAULT	FORTRAN	ALGEBRAIC	
VALUE	SYMBOL	SIMBOL	DEFINITION
1.0	ALPHA	α	Parameter that determines the
			amount of upstream differencing
			in the convective flux terms.
			Equal to one gives full donor
			cell differencing.
1.234×10^4	ASQ	a ²	Square of the speed of sound
			for the liquid phase.
104	BUBN	N	Representative bubble (or
			droplet) number density per
			cm ³ , used in phase change and
			interfacial friction model.
0.50	CDG	Cd	Drag coefficient used in the
			interfacial friction model.

44.34	CHL	c ₂	Coefficient of the linear term in the liquid internal energy function.
6.67	СНУ	C _v	Similar to CHL but for the vapor energy function.
1.0	CYL	-	Define coordinate system; cylindrical (CYL = 1.0) and Cartesian (CYL = 0.0).
1.0 × 10 ⁻⁴	DELT	δt	Starting time step for the calculation in ms.
1.0 × 10 ³	D II. TMX	St max	Maximum time step in ms.
1.0	DELX	ôx	Cell length in cm - radial length in cylindrical coordinates.
1.0	DELY	у	Cell length in cm - axial length in cylindrical coordinates.
0.0	DFVEL	-	Program control parameter that determines whether the rela- tive velocity is to be calcu- lated (DFVEL = 1.) or set to zero (DFVEL = 0.)
2.0	DIM	-	Problem dimension: (DIM = 2.0) is a two-dimensional problem and (DIM = 1.0) is a one-di- dimensional problem.
4.174×10^{3} .	ECL	E ₂	Contant in the liquid internal energy function.

34
2.506 × 10 ⁴	ECV	E _v	Similar to ECL but for the vapor energy function.
1.6 × 10 ⁻⁶	EDL	-	Ratio of the thermal conduc- tivity to the specific heat for the liquid.
1.6 × 10 ⁻⁷	EDV	-	Ratio of the thermal conduc- tivity to the specific heat for the vapor.
1.76 × 10 ⁴	ELHT	λ	Latent heat of vaporization.
0.001	EPSI	ε	Pressure iteration convergence test parameter.
1.0	ETEM	-	The liquid and vapor phases are maintained at equal temperatures if ETEM = 1.0 whereas if ETEM = 0.0 the vapor temperature is maintained equal to the saturat- tion temperature at the local pressure.
0.07	GAM1	(y-1)	Parameter in the equation of state.
0.0	GX	g _x	Gravitational acceleration in the x - or r-direction.
0.0	GY	gy	Gravitational acceleration in the y- or z-direction.
10.0	IBAR	-	Number of active computa- tional cells in the x- or r=direction.

1.0	IMP	-	Program control parameter whose values determines whether an im- plicit (IMP = 1) or explicit (IMP = 0) solution method is utilized.
10.0	JBAR		Number of active computational cells in the y- or z-direction.
NØ NAME	NAME	.='	80-character problem name.
1.0	OMG	-	Relaxation parameter for the calculation of δp in the pressure iteration. A value of OMG = 1.7 often improves the rate of convergences for low Mach number flows.
0.0	PBC	-	Constant pressure boundary condition in bars.
1.0	РНСЧ	-	Parameter whose value determines whether phase change is computed (PHCH = 1) or omitted (PHCH = 0).
1.0	PIN	-	Initial pressure condition in bars.
6 1	PLIDT	-	Time intervals between plots in ms.
0.1	PRTDT	-	Time intervals between prints in ms.
0.0	RADIUS	-	Inner radius of an annulus in cm.
0.0	RG	k	Pipe wall roughness.

0.958	ROL	ρ _l	Microscopic density of the liquid in g/cm ³ .	
0.0	RPIPE	-	Pipe radius in cm.	
.0008	SGWN	-	Product of the liquid surface tension and the critical Weber number.	
373.0	TC	To	Reference temperature for liquid and vapor internal energy functions in K.	
0.001	THC	θ _c	Void fraction below which the fluid is treated as pure liquid.	
0.0	THIN	-	Initial void fraction condition.	
373.0	TIN	-	Initial temperature condition in K.	
10 ⁴	TWFIN	-	Time when the problem is com- plete in ms.	
0.	UI	-	Initial u velocity in cm/ms.	
2.0	VELMX	-	Normalizing velocity for velocity plots in cm/ms.	
0.	VI	-	Initial v velocity in cm/ms.	
3.0 × 10 ⁻⁶	VISL	ve	Kinematic viscosity of the liquid.	
2 × 10 ⁻⁴	visv 532	242	Kinematic viscosity of the vapor.	37

1.0	WB		Parameter that specifies the
			boundary condition for the
			bottom boundary.
1.0	WL	+	Parameter that specifies the
			boundary condition for the
			left boundary.
1.0	WR		Parameter that specifies the
			boundary condition for the
			right boundary.
1.0	WT	-	Parameter that specifies the
			boundary condition for the

Following the NAMELIST data INPUT, the user has the option of defining rigid interior obstacles. If no interior obstacles are going to be defined, one blank card must follow the NAMELIST data INPUT defined above.

First Card After NAMELIST INPUT: NØ (Format I5)

NØ = Number of interior obstacles. If NØ ≠ 0, NØ additional cards are read; i.e., there is one card defining each obstacle.

top boundary.

NO Cards Following the Above Card: IBØB, IEØB, JBØB, JEØB, (Format 415)

- $IB\emptyset B$ = total number of δx cells, including the fictitious boundary cells, to the left side of the obstacle.
- IEØB = total number of &x cells, including the fictitious boundary cells, to the right side of the obstacle.
- $JBØB = total number of \delta y cells, including the fictitious boundary cells, to the bottom side of the obstacle.$
- JEØB = total number of ôy cells, including the fictitious boundary cells, to the top side of the obstacle.
- B. COMMON Variables

38

	FORTRAN	ALGEBRAIC		
	SYMBOL	SYMBOL		DEFINITION
ASQ		a ²	Inpac quantity	
CDG		C _d	Input quantity	

CHL	C ₂	Input quantity
CHV	C _V	Input quantity
CYL		Input quantity
DELT	δt	Input quantity
DELTMX	ôt max	Input quantity
DELX	δx	Input quantity
DELY	δy	Input quantity
DFVEL	-	Input quantity
DIM	-	Input quantity
ECL	Eg	Input quantity
ECV	E	Input quantity
EDL	-	Input quantity
EDV	-	Input quantity
EIL	-	Initial total energy of the liquid state
EIV	-	Initial total energy of the vapor state
EI2	-	Initial total energy of the two-phase mixture
ELHT	λ	Input quantity
EPSI	ε	Input quantity
ET	- 1232-1	Total energy
ETEM	-	Input quantity
ETEM1		1.0 - ETEM
FLG		Iteration logic control flag
GAM1	(y-1)	Input quantity
II		Indexing variable
IMAX	- 10.000	Total number of cells in the x-direction (in-
		cluding fictitious cells)
IM1	-	IMAX - 1
IM2		IMAX - 2
IPL	-	Index of the first cell in the x-direction
		whose centered quantities are computed
IPR	- 10.00	Index of the last cell in the x-direction
		whose centered quantities are computed
ITER		Counter for the number of iterations between
		junctions and components to achieve conver-
		gence during one system time step
JJ	si .	Indexing variable

532 244

JMAX	-	Total number of cells in the y-direction (in-
		cluding fictitious cells)
JM1		JMAX - 1
JM2	방송 같이 한	JMAX - 2
JPB	많은 소송 영향	Index of the first cell in the y-direction
		whose centered quantities are computed
JPT	*	Index of the last cell in the y-direction
		whose centered quantities are computed
ØMG		Input quantity
PBC	-	Input quantity
PIN .	-	Input quantity
PMAX	-	Temporary pressure var able
PNV	-	4/3 π N
PT	-	Temporary pressure variable
RDX	$1/\delta x$	Reciprocal óx
RDY	1/ôy	Reciprocal by
RG	k	Input quantity
RØIL	-	Initial total density of the liquid state
RØIV	-	Initial total density of the vapor state
RØI2	-	Init' . total density of the two-phase mix-
		ture
RØL	ρ°2	Input quantity
RØT	-	Temporary total density variable
RPIPE	-	Pipe radius in cm
RVIL	-	Initial vapor density in the liquid state
RVIV	-	Initial vapor density in the vapor state
RVI2	-	Initial vapor density in the two-phase mix-
		ture
RVT	-	Temporary total vapor density variable
SGWN	-	Input quantity
TC	T	Input quantity
THC	θ	Input quantity
THC1	-	1.0 - 0
THIN	-	Input quantity
THIM	-	Temporary void fraction variable
TH1	-	Temporary void fraction variable

VISL	Ve	Input quantity
VISV	v	Input quantity
WB	-	Input quantity
WL		Input quantity
WR		Input quantity
WT		Input quantity
A(I,J)		Thickness of a mesh cell
BETA(I,J)	(27/3p) ⁻¹ i,j	Recriprocal derivative of the pressure func-
	n+1	tion
E(I,J)	I,j	Time n+1 specific internal energy
EN(I,J)	I ⁿ	Time n specific internal energy
ITITLE(K)	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Two-word array used by LASL plotting package
NAME(K)	-	Input quantity
P(I,J)	Pit	Pressure
Q(I,J)	- ''	Two-dimensional array used by LASL plotting
		package
QL(K)		One-dimensional used to set up plotting
RØ(I,J)	p ⁿ⁺¹ . i,j	Time n+1 mixture densities
RØN(I,J)	ρ ⁿ i,j	Time n mixture densities
RV(I,J)	$(\rho_v)_{i,j}^{n+1}$	Time n+1 macroscoric vapor density
RVN(I,J)	$(\rho_v)_{i,j}^n$	Time n macroscopic vapor density
U(I,J)	un+1 ui,j	Time n+1 center-of-mass velocity in the x-
	- 11	direction
UD(I,J)	$(u_r)_{i,j}^{n+1}$	Time n+1 relative or drift velocity in the x-
		direction
UN(I,J)	uni, j	Time n center-of-mass velocity in the x-direc-
		tion
V(I,J)	u ⁿ⁺¹ i,j	Time n+1 center-of-mass velocity in the y-direc-
		tion
VD(I,J)	$(u_r)_{i,j}^{n+1}$	Time n+1 relative or drift velocity in the y-
		direction
VN(I,J)	u ⁿ i,j	Time n center-of-mass velocity in the y-direc-
		tion

532 246

XC(K)	-	One-dimensional array used by LASL plotting
		package
YC(K)	-	One-dimensional array used by LASL plotting
		package
C. Subro	utines and Graphi	cs Output
BC	Implements	specified boundary conditions.
DRIFT	Calculates	the relative velocity between phases.

EØS	Calculates	the	equation	of	state.
DEDIC	A. A				

** HL U	carcurates	the	errects	OI	pipe	friction.
PHCHR	Calculator	the	phase al			

LIGHA	carculates	the	pnase	change	rate

PITER Determines the n+1 pressure and velocities by an iterative procedure.
TSTEP Calculates the variable time stop and the iteration

EP Calculates the variable time step and the iteration parameter BETA(I,J).

Installations without graphics capabilities should delete lines SOLADF.613 thru SOLADF.698. to eliminate film writing and plotting commands. Installations with graphics should have routines equivalent to those listed below. A brief description of their function is included.

In addition the FORTRAN WRITE(N,XX) has special meaning under LASL operating systems. Its use results in printed data being sent automatically to the system graphics file.

ROUTINE

COMMENTS

CONTRJBProduce contour plotsCONVRTConvert problem coordinates to plotting coordinates	
CONVRT Convert problem coordinates to plotting coordinates	
	rdinates
DRV Draw a vector	
FRAME Draw a frame	
LINCNT Position film line counter	
SPLOT Standard plotting routine	

V. EXAMPLE PROBLEM

To verify the proper implementation of the SOLA-DF code on a users computing system, the following example problem is included. A schematic of the problem geometry is shown in Fig. 3. A two-phase equilibrium mixture of steam and water (void fraction = 0.329, temperature = 557.1 K, and pressure = 68.0

42

Fig. 3. Schematic of the computing mesh for the example problem.

bars) flows through a nozzle before exiting into a region of constant pressure = 10.0 bars. The flow, which begins from rest, is calculated until a steady state is achieved. The input data that specifies the problem is presented in Table I. The second part of this table shows a listing of the A(I,J) array, which in this case (cylindrical coordinates) merely represents the radial distance from the center line to the center of the mesh cell. Note that obstacle cells set A(I,J) = 0. The data that crecifies the initial states in the computational mesh is printed in Table II as the CYCLE = 0, TIME = 0 solution. The solution after 1000 time steps or 1s is given in Table JUI to provide the user with the transient solution check. The steady state solution is 4000 time steps or 4s and is given in Table IV. Velocity vector plots are presented at 1s and 4s in Figs. 4 and 5, respectively.

VI. SUMMARY

A description has been presented of a new computer program, SOLA-DF, for the solution of transient, one- and two-dimensional, two-phase flows. The onedimensional formulation includes a variable area treatment. The fluid dynamics is described by a nonequilibrium, drift-flux formulation of the fluid conservation laws. An effort has been made to use relatively simple numerical solution procedures and modular programming in order to provide a framework that can be easily modified and adapted to different kinds of flow problems. In addition, a limited amount of implicitness is used to relax excessively restrictive time step limitations encountered in purely explicit integration methods. Even though the SOLA-DF code has a simple structure its flexibility offers capabilities for treating a wide range of two-phase flow problems.

532 243

TABLE I

EXAMPLE PROBLEM INPUT DATA

SOLA-OF EXAMPLE PROBLEM 01/20/79

ALPHA=	1.00000E+00
ASQ=	1.12470E+04
BUBN=	1.00000E+02
CDG=	5.00000E-01
CHL .	4.43400.001
CHV=	6.570COE+00
CYL-	1.000000E+00
DELT=	4.00000E-03
DEL THOK -	1.00000E-03
DELX=	2.20027E-01
DELY-	4.81753E-01
DFVEL .	0.
DIM-	2.00000E+00
ECL .	4.17400E+03
ECV=	2.50000E+04
EDL -	1.46600E-06
EDV=	6.00000E-07
ELH7=	1.75000E+04
EPSI=	1.00000E-04
ETEM=	1.00000E+00
GAMI =	7.00000E-02
GX=	0.
GY=	0.
IBAR=	10
IMP=	1.00000E+00
JBAR*	30
OPG+	1.00000E+00
P9C+	1.00000E+01
PHCH+	1.00000E+00
PIN	6.80000£+01
PL TOT =	1.00000E+00
PRTDT=	1.00000E+00
RADIUS=	0.
R0+	3.66000E-03
ROL =	7.419COE-01
RFIPE .	0.
SGHN=	8.00000E-04
TC=	3.73000E+02
THC *	5.00000E-03
THINH	3.290002-01
TIN=	5.57100F+02
THE IN.	1.00000E+01
UI=	0.
VELMOK *	S:000000E+00
I	0.
VISL.	2.50000E-06
VISV=	1.23000E-04
HB*	5
HL-	1
Ru	1
HT=	5

÷

.

TABLE I (con't)

APEN	ARRAY										
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43€+00	1.65E+00	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.432+00	1.65E+00	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.7€-01	9.90E-01	1.21E+00	1.43E+00	1.65E+00	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.215+00	1.43E+00	1.65E+00	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43€+00	1.65E+00	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.908-01	1.21E+00	1.43E+00	1.65E+00	0.	0.	٥.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.212+00	1.43E+00	1.65E+00	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43E+00	1.65E+00	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43E+00	1.65E+00	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.216+00	1.43E+00	1.85E+00	0.	0.	0.
0.	1.10E-01	3.30E-01	3.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43E+00	1.65E+00	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	0.	0.	0.	0.	0.	0.	0.
σ.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	0.	0.	0.	0.	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	0.	0.	0.	0.	0.	0.	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	0.	0.	0.	0.	0.	0.	0.
σ.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.908-01	1.21E+00	1.4至+00	1. ==E+00	1.87E+00	2.09E+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43€+00	1.55£+00	1.872+00	2.09E+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.432+00	1.65E+00	1.97E+00	2.09E+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43E+00	1.65E+0G	1.87E+00	5.09£+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43E+00	1.65E+00	1.87E+00	2.09E+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43€+00	1.65E+00	1.87E+00	2.09€+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.4至+00	1.65E+00	1.87E+00	5.09E+00	Ο.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.902-01	1.21E+00	1.432+00	1.65E+00	1.87E+00	2.09E+00	0.
0.	1.10E-01	3.308-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43至+00	1.65E+00	1.87E+00	2.09E+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.906-01	1.21E+00	1.432+00	1.65E+00		5.09E+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43至+00	1.65E+00	1.87E+00	5.03E+00	0.
σ.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21€+00	1.43€+00	1.65E+00	1.87E+00	5.09E+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43E+00	1.55E+00	1.97E+00	5.09E+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.906-01	1.21E+00	1.43E+00	1.65E+00	1.87E+00	2.09E+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43E+00	1.65E+00	1.87E+00	2.09E+00	0.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43E+00	1.65E+00	1.87E+00	2.09€+00	Ο.
0.	1.10E-01	3.30E-01	5.50E-01	7.70E-01	9.90E-01	1.21E+00	1.43E+00	1.65E+00	1.87E+00	2.09€+00	0.

TABLE II

POOR WILLINGHL EXAMPLE PROBLEM INITIAL DATA

ITER=	0	TIME .	0.	CYCLE .	0 DELT=	4.00000E-03 F=	C.	F1= 6.80000£+01
1	J		U	V	P	RO	TH	TEM
5	5	0.	0	(6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
3	2	0.	0		6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
4	2	0.	0	(5.80000E+01	5.099738-01	3.290002-01	5.57053 +02
5	2	0.			6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
6	2	0	0		5.80000E+01	5.099735-01	3.29000E-01	5.570532+02
7	2	0.	0		6.80000E+01	5.099735-01	3.29000E-01	5.5705 +02
8	2	0	0		6.80000E+01	5.099735-01	3.29000E-01	5.570532+02
9	2	0	0		5.80000E+01	5 099735-01	3.29000E-01	5.570530+02
10	2	0	0		6 80000E+01	5.099735-01	3.29000E-01	5.57053£+02
11	2	0	0		F 80000E+01	5.09973 -01	3.29000E-01	5. 57053 +02
2	7	0			6 80000E+01	5 099775-01	3.29000E-01	5.57053 +02
7	7	0	0		6 80000E+01	5 099775-01	3 29000E-01	5.57057 +02
	3	0	0		5 90000E+01	5 000775-01	3.29000E-01	5 570575+02
5	3	0			6 80000E+01	5 099775-01	3 290005-01	5 57057 +02
6	3	0	0		6 60000E+01	5 0997 7 -01	3 290005-01	5 570575+02
7	7	0			E 90000E+01	5 099775-01	3 290005-01	5 570575+02
0	2	0.			5.00000E+01	5.000775-01	3 200005-01	5 570575+02
0	7	0.			6 90000E+01	5.000775-01	3 20/1:05-01	5 570575+02
10	7	0.			6.00000000000	5.099735-01	3.200000-01	5 570535+02
10	3	0.	0	*	6.00000E+01	5.033732-01	3 290000-01	5.570536+02
2		0.			5.00000E+01	5.033732-01	7 200000-01	5.570532+02
C 7		0.			6.00000E+01	5.099732-01	3.290000-01	5.57053E+02
	- 2	0.	0		6.00000E+01	5.099732-01	3.290005-01	5.570536+02
2	- 2 -	0.	0		6.80000E+01	5.099736-01	3.290002-01	5.570535+02
2		0.	0		6.80000E+01	5.099732-01	3.290002-01	5.570532*02
0	1.1	0.	0		5.80000E+01	5.099736-01	3.290000-01	5.570536+02
6		0.	0	*	6.00000000000	5.099736-01	3.290000-01	5.570532-02
8		0.	0	*	6.80000E+01	5.039736-01	3.29000. 01	5.570536+02
9		0.	0	* • •	5.80000£+01	5.099/3E-01	3.290002-01	5.570526+02
10	2	0.	0		5.80000E+01	5.099736-01	3.290002-01	5.57053£+02
11	-	0.	U U		6.80000E+01	5.099732-01	3.29000E-01	5.570534.402
2	2	0.	0		5.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
3	2	0.	0	•	6.80000E+01	5.099732-01	3.29000E-01	5.57053E+02
4	5	0.	0		5.80000E+01	5.099736-01	3.29000E-01	5.5705.92+02
5	2	0.	0		6.80000E+01	5.09973E-01	3.290008-01	5.570556+02
ь	5	0.	0	•	6.80000E+01	5.09573E-01	3.29000E-01	5.570535+02
/	2	0.	0		5.90000E+01	1.09973E-01	3.29000E-01	5.570532.02
8	0	0.	0		6.800COE+01	5.09973E-01	3.29000E-01	5.57053£+02
9	2	0.	0	8	6.80000E+01	5.09973E-01	3.29000E-01	5.57053£+02
10	5	0.	0		6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
11	5	0.	0.		6.80000E+01	5.099738-01	3.29000E-01	5.57053£+02
2	6	0.	0		5.80000E+01	5.099732-01	3.29000E-01	5.5705.92+02
3	6	0.	0		6.80000E+01	5.09973E-01	3.29000E-01	5.37053E+02
4	6	0.	0		6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
5	6	С.	0		6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
6	6	0.	0		6.800002+01	5.09973E-01	3.590006-01	5.570538+02
7	6	0.	0		5.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
8	6	0.	0		5.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
9	6	0.	0.	6	6.80000E+01	5.099732-01	3.29000E-01	5.57053E+02
10	5	Ο.	0		6.80000E+01	5.09973E-01	3.29000E-01	5.57053€+02
11	6	0.	0.		6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
5	7	0.	0.		6.80J00E+01	5.09973E-01	3.29000E-01	5.57053E+02
3	7	0.	0.		6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
4	7	0.	0.		5.80000E+01	5.09973E-01	3.290008-01	5.57053E+02
5	7	Ο.	0.		5.80000E+01	5.09973E-01	3.290008-01	5.5705.E+02
5	7	0.	0.		5.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
7	7	0.	0.		6.80000E+01	5.09973E-01	3.290002-01	5.5705CE+02
8	7	0.	0.		6.80000E+01	5.099732-01	3.29000E-01	5.570532+02
9	7	0.	0.		5.80000E+01	5.09973E-01	3.29000E-01	5.570538+02

532 251

			-	an ABBI	
		PORCE			
		- 第.5首長肥	NEX BEE		11 200
	TABLE II (con t)		1 52 Bi Martin in mar	
	5 80000F+01	5.099732-01	3.29000E-01	5.5705至+02	
0	6.80000E+01	5.099732-01	3.29000E-01	5.570532+02	
0	6 80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0	5 80000E+01	5.09973E-01	3.29000E-01	5.570532+02	
0	6 80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0	5.80000E+01	5.09973E-01	3.29000E-01	5.570532+02	
0	6.80000E+01	5.09973E-01	3.290008-01	5.570532+02	
0	6.80000E+01	5.09573E-01	3.29000E-01	5.57053E+02	
0	6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02	
0	6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0	6.800008+01	5.09973E-01	3.29000E-01	5.57053E+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0.	5.80000E+01	5.09973E-01	3.29000E-01	5.570532+02	
0.	6.80000E+01	5.09973E-01	3.23000E-01	5.570532+02	
0.	5.80000E+01	5.09973E-01	3.29000E-01	5.570532+02	
0.	6.80000E+01	5.09973E-01	3.290008-01	5.570532+02	
0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0.	6.800002+01	5.099732-01	3.29000E-01	5.570532+02	
0.	5.80000E+01	5.09973E-01	3.290002-01	5.57053E+02	
0.	6.80000E+01	5.059732-01	3.290002-01	5.570532+02	
0.	6.80000E+01	5.099732-01	3.29000E-01	5.570532+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0.	6.80000E+01	5.09973E-01	3.290002-01	5.57053E+02	
Ο.	6.80000E+01	5.09973E-01	3.290002-01	5.57053E+02	
0.	6.80000E+01	5.09973E-01	3.290002-01	5.570532+02	
0.	6.80000E+0;	5.09973E-01	3.290002-01	5 570532+02	
 0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
 Ο.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0.	6.80000E+01	5.09973E-01	3.23000E-01	5.57053E+02	
0.	6.800002+01	5.09973E-01	3.290002-01	3.570532+02	
Ο.	6.80000E+01	5.09973E-01	3.290002-01	5.57053E+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570538+02	
0.	6.80000E+01	5.09973E-01	3.290008-01	5.57053E+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
Ο.	5.80000E+01	5.09973E-01	3.29000E-01	5.570532+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570532 +02	
0.	6.80000E+01	5.09973E-01	3.290002-01	5.570530+02	
0.	6.80000E+01	5.099738-01	3.29000E-01	5.57053£+02	
0.	6.80000E+01	5.099738-01	3.29000E-01	5.570532+02	
0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	
0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02	

0.

0.

Ŭ.

0 0

12 21

S

S

3 50

θ

7 5

S

CI 1

1 10

ã

-

532 252

3.29000E-01

3.29000E-01

3.29000E-01

3.29000E-01

3.290008-01

3.29000E-01

3.29000E-01

3.29000E-01

3.29000E-01

3.290002-01

3.29000E-01

3.29000E-01

3.29000E-01

3.29000E-01

3.29000E-01

5.09973E-01

5.09973E-01

5.09973E-01

5.09973E-01

5.09973E-01

5.09973E-01

5.09973E-01

5.09973E-01

5.09973E-01

5.099732-01

5.09973E-01

5.09973E-01

5.099732-01

5.09973E-01

5.09973E-01

6 90000E -01

6 80000E+01

6.80000E+01

6.80000E+01

6.80000E+01

5.80000E+01

6.80000E+01

6.80000E+01

6.8000CE+01

6.80000E+01

6.80000E+01

6.80000E+01

5.80000E+01

6.80000E+01

6.90000E+01

5.570532+02

5.570530+02

5.970538+02

5.570532+02

5.57053E+02

5.570532.02

5.570532+02

5.57053E+02

5.57053E+02

5.570532+02

5.570532+02

5.07053E+02

5.570532+02

5.57053E+02

5.57053E+02

5	14	0.	0.	6.80000E+01	5.099732-01	3.29000E-01	5.57053E+02
3	14	0.	0.	5.80000E+01	5.09973E-01	3.290002-01	5.570532+02
4	19	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
5	14	0.	0.	5.80000E+01	5.09973E-01	3.290008-01	5.570538+02
6	14	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
7	14	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
8	14	0.	0.	5.80000E+01	5.099732-01	3.29000E-01	5.570538+02
9	14.	0.	0	6.80000E+01	5.099732-01	3.29000E-01	5.57053E+02
10	14	0	0	5 B0000E+01	5.099775-01	3.29000E-01	5.570538+02
11	14	0	0	6.80000E+01	5.09973E-01	3.29000E-01	5.57053£+02
2	15	0	0	5.80000E+01	5.099738-01	3. 29000E+01	5.570538+02
3	15	0	0	5. 80000E+01	5.099775-01	3.29000E-01	5.570532+02
14	15	0	0	6.80000E+01	5 099775-01	3 29000E-01	5 57053E+02
E .	15	0	0	5 80000E+01	5 099775-01	3 290005-01	5 570535+02
6	15	0	0	E 80000E+01	5 099775-01	3 290005-01	5. 570575+02
7	15	0	0	E 00000E+01	5 000775-01	7 200005-01	5 57053C+02
6	16	0	0.	6.000002+01	5.000775-01	7 200005-01	5.570536-02
0	16	0.	0.	E 00000E+01	5.03373C-01	7 2000005-01	6 67067C -02
10	15	0.	0.	6.0000000.401	5,059736-01	7 200000-01	5.570536*02 6 570575.03
1.0	15	0.	0.	6.0000000-01	5.039736-01	3.200000-01	5.57053E+02
11	10	0.	0.	6.80000E+01	D. U39/3E-U1	3.230002-01	0.07003£*06
6	10	0.	0.	6.00000E+01	3.099/36-01	3.230002-01	0.07000E+02
2	10	0.	0.	6.80000E+01	5.099736-01	3.030002-01	5.570536*06
7	10	0.	Q.	5.80000E+01	5.099736-01	3.290006-01	5.570538.*02
5	10	0.	0.	6.80000E+01	5.099732-01	3.290002-01	5.57053E+02
0	10	0.	0.	6.80000E+01	5.099/32-01	3.29000E-01	5.570536+02
7	10	0.	0.	6.80000E+01	5.099732-01	3.29000E-01	5.57053E+02
8	10	0.	0.	5.80000E+01	5.0997.52-01	3.290002-01	5.570538+02
9	16	Q.	0.	6.80000E+01	5.09973E-01	3.290008-01	5.570538+02
10	16	0.	0.	6.80000E+01	5.09973£~01	3.29000E-01	5.570538+02
11	16	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570538+02
5	17	Q.	0.	6.80000E+01	5.09973E-01	3 29000E-01	5.570532+02
3	17	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.570538+08
14	17	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570536+02
5	17	0.	0.	5.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
6	17	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
7	17	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
8	17	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
9	17	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
10	17	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
11	17	σ.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
2	18	0.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.570532+02
3	18	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
4	18	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570538+02
5	18	0.	0.	6.80000E+01	5.099732-01	3.290006-01	5.57053E+02
6	18	0.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
7	18	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.570536+02
8	18	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
9	18	0.	0	6.80000E+01	5.099778-01	3.29000E-01	5.570578.02
10	18	0	0.	5.80000E+01	5.099735-01	3.290006-01	5.570532+02
ET.	18	0.	0.	6.80000F+01	5 099775-01	3. 29000E-01	5 570575-02
2	19	0	0	5 80000E+01	5.099775-01	3 290005-01	5 570535+02
2	10	0	0	5 80000E+01	5 100775-01	3 290005-01	5 570575.00
1	10	0	0	5 90000E+01	5 100735-01	3 200005-01	E E70575.00
-	10	0	0	6.900002+01	6 000775-01	3,200000-01	5 570525-05
20	10	0	0.	6.8000000-01	5.000775-01	3 200000-01	5 570535 * 02
10	10	0.	0.	6.000000.001	5.000775-01	3.000000-01	G. G. (03.)
~	10	0.	0.	6.80000E*01	5.053136-01	7 200005-01	
0	19	0.	0.	6.80000E+01	5.053/36-01	3.290002-01	2.3/UD32+UL
9	13	0.	0.	5.80000£+01	5.0337.56.*01	3.230008-01	5-57053E+0a
10		0.		6.800002+01	5.03973E-01	3.530005-01	5.57053E+02
11	19	0.	Q.	6.80000E+01	5.099738-01	3.29000E-01	5.570532+02
5	50	0.	0.	6.80000E+0)	5.09973E-01	3.290006-01	5.570538+02
3	20	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02

532 263

14	20	0	0	6 800005+01	5.099732-01	3.29000E-01	5.570532 +02
-	20	0	0	6.8000005+01	5.099735-01	3.29000E-01	5.57053E+02
2	20	0.	0.	6.000000-01	5 099770-01	3.29000E-01	5.57053E * 02
2	20	0.	0.	6.00000000000	5 099776-01	3.29000E+01	5.57053E+02
1	20	0.	0.	E 60000E-01	5.000735-01	3.290006-01	5.57053E+02
в	20	0.	υ.	6.600002-01	5,090772-01	3 29000F-01	5.57053E+02
9	50	0.	0.	6.800002+01	5.05573C-01	1. 200005-01	5 57053E+02
10	50	0.	0.	6.80000E+01	5.099/36-01	7 200005-01	5 570535 +02
11	50	0.	0	6.80000E+01	2.033/36-01	3.290002-01	5 570575+02
5	51	0.	0.	5.80000E+01	5.09973E-01	3.290002-01	6 670675 .02
3	51	0.	0.	6.80000E+01	5.099736-01	3.290002-01	E E70570-00
14	51	0.	0.	5.80000E+01	5.09973E-01	3.290002-01	0.07000E*0E
5	21	Ο.	0.	6.800005+01	5.09973E-01	3.290000-01	5.070036*00
6	21	0.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.570538+08
7	21	0.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
8	21	0.	0.	6.80000E+01	5.09973F-01	3.29000E-01	5.57053E+02
9	21	0.	0.	6.80000E+01	5.099738-01	3.290002-01	5.570538+02
10	21	0.	<u>o.</u>	6.80000E+01	5.099738-01	3.290008-01	5.57053E+02
11	21	0	0.	5.80000E+01	5.09973E-01	3.290006-01	5.570532+02
2	22	0	0	6.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
2	22	0	0	6 B0000E+01	5,09973E-01	3.290002-01	5.570532+02
2	22	0	0	6.800005+01	5.099732~01	3.290008-01	5.570538+02
-	22		0	5 80000E+01	5.099735-01	3.29000E-01	5.570532+02
3	23		0.	6 000000 +01	5 099735-01	3.29000E-01	5.57053E+02
0	22	0.	0.	6.000002.01	6 000775-01	7 29000F-01	5.570535+02
1.	22	0.	<u>u</u> .	6.600002+01	5.000775-01	3.200002-01	5 570575+02
8	55	0.	0.	5.80000E+01	5.09973C-01	7 200005-01	6 570575+02
9	55	0.	0.	5.80000E+01	D.033/35-01	3.030000-01	6 670670 .02
10	55	0.	Q.,	6.80000E+01	2.033.25-01	3.230002-01	5.570532-00 6.570532-00
11	55	0.	0.	5.80000E+01	5.09973E-01	2.54000E-01	2. 27023L*VC
S	53	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	D. D/UD3E*UZ
3	23	0.	0.	6.80000E+01	5.02973E-01	3.290000-01	5.570531+02
14	23	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
5	23	0.	* Q,	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
6	23	0.	0.	6.80000E+01	5.099732-01	3.29000E-01	5.57053E+02
7	23	0.	0	5.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
8	23	0.	0.	6.80000E+01	5.09973E-01	3.290 JOE -01	5.57053E+02
q	23	0.	0.	6.8000CE+01	5.09973E-01	3.290002-01	5.57053E+02
10	23	0.	0	6.80000E+01	5.09973E-01	3.290006-01	5.570538+02
11	27	0	0	6.80000E+01	5.09973E-01	3.290006-01	5.57053E+02
3	24	0	0	6.80000E+01	5.09973E-01	3.290002-01	5.570536+02
2	24	0.		5 80000E+01	5.099732-01	3 29000E-01	5.670535+02
2	24	0.		6 0000005+01	5 090775-01	3 290008-01	5 57053E+02
-	24	0.		6 0000000-01	5 00077F-01	3 29000E-01	5.57053E+02
3	24	0.	0.		6 000775-01	1 200005-01	5 670675 +02
0	24	ų.		6.00000E-01	6 000775-01	2 200005-01	570535+02
1	24	0.		6.80000E+01	5.033136-01	7 200005-01	E ATOE70.02
8	24	0		5.80000E+01	2.033.05-01	3.690000-01	5 570525-05
3	54	Q.,	0.	5.80000£+01	D. 099 (30-0)	3.030000-01	E E70670-03
10	24	α.	0.	6.80000E =01	5.09973E-01	3.290002-01	30*210015*02
11	24	Ο.	0,	6.50000E+01	5,099732-01	3.29000E-01	5.51053E+0E
5	25	0.	0.	6.90000E+01	5.09973E-01	3.290006~01	5.570535*08
3	25	0.	0.	6. BOGCOE+01	5.09973E-01	3 290006-01	5.57053E+02
-14.	25	0.	0.	A 900000E+01	5.09973E-01	3.29000E-01	5.57053£+32
8	25	0.	0.	6.80000E+01	5.09973E-01	3.290006-01	5.570532+02
a.	245	0.	0.	6.80000E+01	5.09973E-01	3.290005-01	5.570532+32
- 2	26	0	0	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+08
	25	0		5.80000E+01	5.09973E-01	3.290006-01	5.570532+02
0	26	0.		6.800005+01	5.099735-01	3.290005-01	5.670537+02
10	20	0.	0.	6 800005-01	5.099775-01	1 200005-01	5 570522.02
10	20	0.2		E 00000E-01	6 000775-01	7 200000-01	5 570577.00
11	100	0		C. COULUE - 11	8 000775-01	7 200005-01	E ETOE35.00
ŝ	16	0.	8-11-11-11-11-11-11-11-11-11-11-11-11-11	0 000002 *01	0.000/01/01 0.000000	7 000000-01	2 (2 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3	65	Q.,	Q.,	8 30000E+01	0.0000/3L=01	3.830001-01	3 8765 70.00
4	58	0.	Q.,	5.80000E+01	3.039738-01	3 590005-01	3.3.0532.02
0	58	0	Q.	5.80000E+01	5.09973E-01	3.540005-01	310-10535-02

POOR ORIGINAL 532 254

26	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
26	0.	0.	6.80000E +01	5.09973E-01	3.290006-01	5.57053E+02
26	0.	Ó.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
26	0.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.570532+02
26	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
26	0.	0.	6.80000E+01	5.099732-01	3.29000E-01	5.57053E+02
27	0	0.	5.80000E+01	5.099735-01	3 290006-01	5 570535+02
27	0	0	6.80000E+01	5.099735-01	3 290005-01	5 570575+02
27	0	0	6.80000E+01	5 000735-01	3 200005-01	5 570575+02
27	0	0	6 (900005+01	5.000775-01	3.290000-01	5.570536+02
27	6	0	6.00000E+01	5 000775-01	3.220000-01	5.57053C+02
57	0.	0	6.00000E+01	5.003736-01	3.290000-01	5,570536*06 6,670676+02
37	0.	0.	6.00000E+01	5.039736-01	3.290000-01	0.070036*06 E E70670-00
07	0.	0.	0.0000000+01	0.099736-01	3.290002-01	5.57053£*02
27	9.	0.	6.80000£+01	5.09973E-01	3.290008-01	5.570538+02
27	0.	ų.	6.80000£+01	5.099732-01	3.290001-01	5.570538+02
27	0.	0.	8.8000C +01	5.09973E-01	3.29000E-01	5.570538+02
58	0.	α,	5.80000 ,	5.099738-01	3.29000E-01	5.57053E+02
-28	0.	0.	5.80000E+01	5.09973E-01	3 29000E-01	5.57053E+02
58	Q.,	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
58	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570538+02
-28	Q.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
58	Q.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
28	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
85	Ο.	Ο.	6.80000L+01	5.09973E-01	3.290008-01	5.570532+02
28	0.	0.	6.80000E+01	5.09973E-01	3.290008-01	5.57053E+02
28	0.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
29	0.	0.	6.80000E+01	5.09973E-01	3.290008-01	5.570532+02
29	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
29	Ο.	0.	6.80000E+01	5.099735-01	3 29000E-01	5 570535+02
29	0.	ä.	6.80000E+01	5.099735-01	3,290005-01	5.57057F+02
29	Ó.	0.	6.8000000+01	5.090775-01	3 290005-01	5 570535+02
29	0.	0.	6.900005+01	5 000775-01	3 200005-01	5 570675 -00
20	0	0.	6 B00000E+01	5.000775-01	2 200000-01	5.570535-02
29	ň	0	6 00000C+01	5.000775-01	7 000000-01	E E70E70-00
20	Č.	0	6.0000000-01	5.03373E-01	3.030000-01	0.0/UD35*UE
20	0	0	6.00000£*01	0.039/35-01	3.290002-01	0.0/0036*02
20	0	0.	0.80000E+01	U33/3E-01	3.290002-01	5.570532+02
30	0	0.	6.800002.*01	D. 044 (35-01	3.290002-01	5.5/0538.402
20	0	0	6.80C00E+01	5.099736-01	3.290005-01	5.57053E+02
20	Q.	0.	6.80000E+01	5.099732-01	3.29000E+01	5.57053E*02
30	Q.)	u.	6.80000E+01	5.09973E-01	3.290008-01	5.57053E+02
50	0.	0.	6.80000E+31	5.09973E-01	3.29000E-01	5.670532+02
30	0.	0.	5.80000E+01	5.09973E-01	3.290005-01	5.57053E+02
30	0.	0.	6.8000E+01	5.09973E-01	3.290002-01	5.570538+02
30	0.	0.	6.E 200E+01	5.09973E-01	3.290002-01	5.57053E+02
30	0.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.570538+02
30	Q.,	Q.,	6.80000E+01	5.09973E-01	3.29000E-01	5.570538+02
31	0	0	1.000002+01	5.09973E-01	3.290000-01	5.67053E+02
31	0	0.	1.00000E+01	5.099738-01	3.290008-01	5.57053E+02
31	0.	0.	1.00000E+01	5.099732-01	3.290008-01	5.57053E+02
31	а.	Ο.	1.00000E+01	5.099738-01	3.290002-01	5.57053E+02
31	0.	0.	1.00000E+01	5.099735-01	3.290000-01	5.570535+02
31	σ.	0	1.00000E+01	5.099738-01	3.290005-01	5.570575+02
31	0	A	1.00000E+01	5.09973E-01	3.290005-01	5 570575.00
31	Ó.,	0.	1.00000E+01	5.099738-01	3 290005 01	5 570575.02
31	Ö,	0.	1.00000F+01	5.099735-01	3 290005-01	5 570575.02
31	Ó.	Ö.,	1.0000005+01	5 099735-01	3 200000-01	5.570535°UE
	271		LINGARON DI	and a state of the		2 . 2 / U D DC * U C

532 255

07000-0M1.007000-0M1007

A DO F WIN T O D D

TABLE III

EXAMPLE PROBLEM SOLUTION AT CYCLE 1000

ITER=	2	TIME= 1.00000	E+00 CYCLE+	1000 DELT.	1.00000E-03 F=	1.91639€+00	F1= 6.66668E+01
1	J	U	ν,	P	RU	IH DOGGOOT OF	120
5	5	0,	4.93766E-01	. BCCCOE+01	5.09973E-01	3.29000E-01	5.570536+02
3	S	0.	4.923856-01	6.80000E+01	5.09973E-01	3.29000E-01	5.570536+02
4	5	0.	4.90343E-01	6.80000E+01	5.09973E-01	3.29000E-01	5.570536+02
5	5	0.	4.87702E-01	6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
6	5	0.	4.84719E-01	6.80000E+01	5.099738-01	3.29000E-01	5.570536+02
7	S	0.	4.81695E-01	5.80000E+01	5.09973E-01	3.290006-01	5.570532+02
9	S	Ο.	4.78924E-01	6.80000E+01	5.09973E-01	3.29000E-01	5.570536+02
9	53	0.	4.76658E-01	5.80000E+01	5.09973E-01	3.29000E-01	5.570532.+02
10	S	0.	4-75079E-01	6.80000E+01	5.L.973E-01	3.29000E-01	5.570538+02
11	5	0.	4.74294E-01	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
5	3	-3.066177-03	4.96619E-01	6.77802E+01	5.09+30E-01	3.29714E-01	5.57049E+02
3	3	-4.53113E-03	4.85957E-01	6.77904E+01	5.09455E-01	3.29681E-01	5.57049E+02
15	3	-5.86615E-03	4.84971E-01	6.78058E+01	5.09493E-01	3.29631E-01	5.57050E+02
5	3	-6.629832-03	4.83680E-01	6.78260E+01	5.09543E-01	3.29565E-01	5.57050E+02
6	3	-6.725382-03	4.82199E-01	6.79+9+E+01	5.09601E-01	3.294896-01	5.57050E+02
7	3	-6.166318-03	4.80673E-01	6.78737E+01	5.096612-01	3.29410E~01	5.57051E+02
9	3	-5.04665E-03	792528-01	5.7896+E+01	5.09717E-01	3.29336E-01	5.57051E+02
9	3	-3.5!869E-03	78072E-01	6.79154E+01	5.09764E-01	3.29275501	5.57051E+02
10	3	-1.76983E-03	4.77240E-01	6.79299E+01	5.09797E-01	3.29231E-01	5.57051E+02
11	3	0.	4.76819E-01	6.79356£+01	5.09814E-01	3.29209E-01	5.57052E+02
S	4	-4.51694E-03	4.80544E-01	5.76420E+01	5.09087E-01	3.30166E-01	5.57047E+02
3	5	-6.695332-03	4.80647E-01	6.76565E+01	5.09123E-01	3.30119E-01	5.07047E+02
4	4	-0.70129E-03	4.80775E-01	6.76783E+01	5.09177E-01	3.30047E-01	5.57048E+02
5	4	-9.87953E-03	4.80902E-01	8.77074E+01	5.09249E-01	3.293528-01	= 9€+0S
6	4	-1.00729E-02	4.80991E-01	6.77412E+01	5.09333E-01	3.230426-01	5704 RL+02
7	14	-9.28277E-03	4.81023E-01	3.77766E+01	5.094212-01	3.297266-01	5 . 704SE +02
8	14	-7.63261E-03	4.80999E-01	6.78101E+01	5.09504E-01	3.29617E-01	5.570500+02
9	4	-5.34156E-03	4.80939E-01	6.78323E+01	5.09573E-01	3.295256-01	5 572206+02
10	. 6	-2.69320E-03	4.80876E-01	5.785£4E+01	5.09623E-01	3.29460E-01	5.57050€+02
11	4	0.	4.80837E-01	1.79686E+01	5.09648E-01	3.29427E-01	5.57051E+02
5	5	-4.29691E-03	4.79990E-01	6.76052E+01	5.08995E-01	3.30296E-01	5.57047E+02
3	5	-6.42294E-03	80399E-01	5.75172E+01	5.090256-01	3.30247E-01	5.57047E+02
4	5	-8.43373 -03	4.80979E-01	8.76355E+01	5.09070E-01	3.30187E-01	5.570472+02
5	5	-9.69201E-03	4.81690E-01	6.76602E+01	5.09132E-01	3.30107E-01	5.57047E+02
6	5	-1.000962-02	4.82444E-01	6.75892E+01	5.09204E-01	3.30012E-01	5.57048E+02
7	5	-9.34046E-03	4.83153E-01	6.77201E+01	5.092 '0E-01	3.29911E-01	5.57048E+02
8	5	-7.76530E-03	4.83753E-0	6.77496E+01	5.09354E-01	3.29814E-01	5.57049E+02
9	5	-5.48145E-03	4.84208E-0	6.77747E+0	5.09416E-01	3.29733E-01	5.57049E+02
10	5	-2.77987E-03	4.04505E-0	6.77926E+01	5.09460E-01	3.2967+E-01	5.57049€+02
11	5	0.	4.84649E-0	6.78019E+01	5.09483E-01	3.29644E-01	5.57050E+02
5	6	-3.40798E-03	4.81527E-0	6.76329E+0	5.09064E-01	3.301968-01	5.57047E+02
3	6	-5.16127E-03	4.81944E-0	6.75381E+01	5.09077E-01	3.30179E-01	5.57047E+02
14	5	-6.88357E-03	4.82562E-0	6.75461E+0	5.09097E-01	3.30153E-01	5.57047E+02
5	6	-8.05020E-03	4.83363E-0	6.76567E+0	10-325'20.2	3.30118E-01	5.57047E+02
6	6	-8.46348E-03	4.84271E-0	6.76691E+0	5.091.4E-01	3.30077E-01	5.57048E+02
7	6	-8.02967E-03	4.851962-0	5.75822E+0	5.09186-01	3.30035E-01	5.57048E+02
8	6	-6.76578E-03	4.86047E-0	6.76945E+0	5.09217E-01	3.29994E-01	5.57048E+02
9	6	-4.32939E-03	4.967+7E-0	6.77049E+0	5.092432-01	3.29960E-01	5.57048E+02
10	6	-2.46430E-03	4.87236E-0	6.77123E+0	5.092618-01	3.29936E-01	5.570486+02
11	6	0.	4.87482E-0	6.77161E+0	5.092712-01	3.29924E-01	5.57048E+02
2	7	-2.498396-03	4.82576E-0	6.76469E+0	1 5.09099E-01	3.30150E-01	5.57047E+02
3	7	-3.81468E-03	4.829056-0	6.75444E+0	5.090925-01	3.30158E-01	5.57047E+02
	7	-5.135445-03	4.83422E-0	6.75+01E+0	1 5.090826-01	3.30172E-01	5.57047E+02
5	7	-6.06674E-03	4.84140E-0	6.76337E+0	5.090562-01	3.301932-01	5.57047E+02
6	7	-6.44157E-03	4.95015E-0	6.76252E+0	1 5.09045E-01	3.30221E-01	5.57047E+02
7	7	-6.155895-03	4.85970E-0	6.75154E+0	1 5.09021E-01	3.30253E-01	5.57047E+02
	7	-5.2366-5-03	4.369075-0	6.76053E+0	5.089965-01	3.302968-01	5.57047E+02
	-				5 00077E-01	7 707155-01	5 570465+02

POOR ORIGINAL

10	7	~1 92299E-03	4.982996-01	6.75895E+01	5.08956E-01	3.30337E-01	5.570462+02
12	1	0.	4.885872-01	6.75860E+01	5.089488-01	3.30349E-01	5.57046E+02
5	9	-1.783438-03	4.831885-01	6.75756E+01	5.089225-01	3.30383E-01	5.570462+02
3	8	-2 689445-03	4 93291F-01	6.756864+01	5.08904E-01	3.304066-01	5.570466+02
44	8	-3 57002 -03	4 974955-01	6.75571E+01	5.08876E-01	3.30444E-01	5.57046E+02
6	. A	1 15566F -07	H 838045-01	6 754045+01	5.08834E-01	3.304985-01	5.570466+02
6	8	-4 75,2975-07	4 PL 24 PE - 01	6 751915+01	5 087815-01	3 305685-01	5 570456+02
7	ě	-4 121176-03	4.04240E-01	5 74950F+01	5 087215-01	3. 30647E-01	5.57045£+02
8	0	-7 477-26-07	4.04750E-01	6. 74706E+01	5.005505-01	3 307275-01	5 570455+02
ä	0	-3 -00015-03		6 74401E-01	5.0000000-01	3 707075-01	5 570445+02
10	0	-1 266000-07	4.00000E-01	6 707775-01	5.00007E-01	3,307972-01	5 570440-02
1.1	0	-1.20000E-US	4.00c00c-01	6.743336.401	5.000075-01	3.300496-01	5,570445+06 6,570445+06
1	0	L ROMERT AT	4.804362-01	0.740010401	5.0604/2-01	3.300/00-01	5.5.044£+UE
- S-	3	-1.00c00c-03	4.004212-01	0.741302.401	2.000192-01	3.309136-01	D. D7044E+02
- 21	3	-C. 270482-03	4.82228E-01	5.74000£+01	5.08501E-01	3.3093/E-01	5.570446+02
	3	-C.081/96-03	4.819096-01	5.739+0E+01	5.084715-01	3.309766-01	5.570436+02
3	3	-3.18/090-03	4.81680E-01	B. 737.74E+01	5.08428E-01	3.31035E-01	5.570432+02
0	9	-3.1694.5E-03	4.81415E-01	6.73553E+01	5.08373E-01	3.31.05£-01	5.57043E+02
1	3	-2.86107E-03	4.81224E-01	6.73302E+01	5.08310E-01	3.31188E-01	5.570436+02
5	3	-2.319592-03	4.811505-01	6.73045E+01	5.08246E-01	3.312728-01	5.57042E+02
9	Э	-1.61109£-03	4.81091E-01	6.72817E+01	5.08189E-01	3.31348E-01	5.57042E+02
10	9	~8.09873E-04	4.81103E-01	6.72646E+01	5.081468-01	3.314046-01	5.5704.28.+02
11	9	0.	4.81120E-01	6.72557E+01	5.081246-01	3.31433E-01	5.570412+02
5	10	-1.98935E-03	4,79032E-01	8.71927E+01	5.079662-01	3.31640E-01	5.570402+02
3	10	2.842882-03	4.78433E-01	5.71866E+01	5.079518-01	3.316612-01	5.570402+02
6.9	10	-3.52214E-03	4.77567E-01	6.71767E+01	5.079266-01	3.316932-01	5.57040E+02
5	10	-3.76727E-03	4.76476E-01	6.716262+01	5.07890E-01	3.31740E-01	5.570+01+02
6	10	-3.58909E-03	4.752916-01	6.71997E+01	5.078458-01	3.31799€-01	5.57040E+02
7	10	-3.08415E-03	4.74146E-01	6.71243E+01	5.07794E-01	3.318668-01	5.57039E+02
8	10	-2.37720E-03	4.73151E-01	6.71033E+01	5.07742E-01	3.31936E-01	5.57039E+02
9	10	-1.57933E-03	4.72375E-01	6.70844E+01	5.07694E-01	3.319982-01	5.57039E+02
10	10	-7.699020-04	4.71854E-01	6.70702E+01	5.07658E-01	3.320456-01	5.57039E+02
13	10	0.	4.71597E-01	6.705272+01	5.07639E-01	3.32070E-01	5.57038E+02
5	11	-3.30235E-03	4.74266E-01	6.691312+01	5.07263E-01	3.325658-01	5.570368+02
3	11	-4.74546E-03	4.726312-01	6.69094E+01	5.07254E-01	3.325778-01	5.57036E+02
	- 1.1	-5.913932-03	4.70311E-01	6.69028E+01	5.07237E-01	3.32599E-01	5.57036E+02
5	11	-6.36074E-03	4.67432E-01	6.68930E+01	5.07213E-01	3.32632E-01	5.570362+02
6	11	-6.08935£-03	4.64313E-01	5.53801E+01	5.07180E-01	3.326746-01	5.57036E+02
7	4.1	-5.25506E-03	4.61267E-01	6.686532+01	5.07143E-01	3.327246-01	5.57036E+02
8	11	-4.066612-03	4.58563E-01	6.68501L+01	5.07104E-01	3.327746-01	5.57035E+02
9	11	-2.71233E-03	4.56409E-01	6.68365E+01	5.07070E-01	3.32919E-01	5.570356+02
1.0	4.1	-1.325476-03	4.54939E-01	6.582622+01	5.07044E-01	3.32854E-01	5.57035E+02
11	11	0.	4.54207E-01	6.68208E+01	5.07030E-01	3.328725-01	5.570356+02
2	12	-6.87591E-03	4.74470E-01	6.65517E+01	5.063-9E-01	3.33767E-01	5.570318+02
3	12	-9.82204E-03	4.70441E-01	6.65526£+01	5.063525-01	3.337656-01	5 570316+02
14	12	-1.221232-02	4.64742E-01	6.65520E+01	5.06350E-01	3.337675-01	5.570315+02
5	12	-1.31813E-02	4.57719E-01	6.65489£+01	5.063426-01	3.337775-01	5 570315+02
6	12	-1.27450E-02	4.501996-01	6.65434E+01	5 063285-01	3 337965-01	5 570715+02
7	12	-1.116246-02	4.42984E-01	6.65361E+01	5.063096-01	3 338205-01	E 570316+02
8	12	-8.76820F-03	4 767575-01	6 652785+01	5.052995-01	7 778-75-01	5 570705-00
G.	1.2	-5 920355-03	4 319915-01	6.651946+01	5 062675-01	3 338765-01	5 570705+02
10	12	-2 921525-03	4 2990.26-01	6 651104+01	5 16249E-01	7 770016-01	E E70305-00
11	12	0	4 274 205-01	E EE	5.000400-01	7 770155-01	5.57030E+UE
3	17	-1.567 25-02	4 975775-01	5.610+00+01	5.052765-01	7 760775-01	5.57030E*02
2	12	-2 226045-02	062706-01	6 6 1765 01	5.052500-01	3.300330-01	5.570/148+02
2	17	-2 757062-02	- 747655-01	6 612205-01	5.052422-01	3.306246-01	D. D/024E+02
-	1.2	-2 060500-02	4.570600-01	6 6127UE+01	5 05259E-01	3.35009801	D. D7024E+02
1	1.3		+ 3700UL-U1	0.016/46+0)	0.006088-01	2.301915-01	D. D7024E+02
1.0	1.5	-C. 00007/E-112	4.355012-01	0.013136.*01	D.UD2/96-01	3-35176E-01	5.57024E+02
-	13	-2.4/7/3C-02	4.234842-01	0.01338E+01	2.052948-01	3.35169E-01	5.57024E+02
0	13	-1.91/20C-02	4.09991E-01	0.01315£+01	5.05278E-01	3.35177E-01	5.5702+E+02
10	1.5	-1.206441-08	4.001656-01	6.61253£+01	5.052522-01	3.351986~01	5.570248+02
10	1.5	-6.130078-03	3.940488-01	0.01172E+01	5.052418-01	3.352356-01	5.570246+02
11.	13	0.	3.912325-01	6.51114E+01	5.052272-01	3.35245E-01	5.57024E+02

TABLE III (con't)

5	14	-3.554286-02	5.866908-01	6.56253E+01	5.03976E-01	3.36890E-01	5.57017E+02
3	14	-5.15844E-02	5.65247E-01	6.562225+01	5.039688-01	3.36901E-01	5.57017E+02
4	114	-6.429686-02	5.33224E-01	6.562732+01	5.03981E-01	3.35384E-01	5.57017E+02
5	T he	-6 857085-02	4 91757F-01	6 56449F+01	5 04026F-01	3 36824E-01	5.57017E+02
é.	114	-6 44257E-02	4 47870E-01	6 56680E+01	5 040865-01	3. 36746E-01	5.57017E+02
7	14	-5 434505.02	4.47670E-01	6 56061E+01	5 041775-01	3 36684E-01	5.57018E+02
0	115		7.70076-01	6.56001C+01	5 041545-01	3 36656F-01	5 570185+02
0	1.1.4	-9.009090-00	3.799346-01	6.56999C+01	5.041515-01	2 ZEEL 7E-01	5 57018E+02
10	114	-C. DUCCCE-UC	3.000/00-01	6.56563C+01	5 041505-01	7 76640F-01	5 570185+02
10	1.44	-1.220046-02	3.409021-01	6.50904E+01	5.041556-01	7.766575-01	5 570195+02
11	1.4	0.000000.00	3.399/12-01	6.500943C+UI	5.041346-01	7 707245-01	5.570102+02
2	10	-8.0460/E-02	8.31414E-01	6.508942+01	5.025021-01	7 707055-01	E 57000E+02
2	10	-1.200596-01	7.820081-01	0.000000.01	5.025972-01	3.387035-01	5.57000C+02
1	15	-1.53270E-01	7.009/22-01	6.50919€+01	5.020632-01	3.38/106-01	5.570000-02
0	12	-1.633582-01	6.01351E-01	6.51118£+01	D. U2041E-01	3.3804/1-01	5.570036.00
0	15	-1.975c5E-01	4.80000E-01	6.51508E+01	5.027432-01	3.300132-01	5,570036+02
1	15	-1.19251E-01	4.00707E-01	6.51984E+01	5.028576-01	3.383001-01	5.57010E*06
8	15	-8.66769E-02	3.405568-01	5.52454E+01	2.053636-01	3.381854-01	5.57011E+02
3	15	-5.434746-02	3.00008E-01	6.52927E+01	5.03112E-01	3.38027E-01	5.57011E+02
10	15	-51215151-05	2.75526E-01	6.53339£+01	5.032196-01	3.378868-01	5.57012E+02
11	15	0.	2.64383E-01	6.53559€+01	5.03276E-01	3.37811E-01	5.57012E+02
5	16	-1.77715E-01	1.40477E+00	6,44483E+01	5.00896E-01	3.40942E-01	5.56998E+02
3	16	-2.752058-01	1.33491E+00	6.44966E*01	5.01024E-01	3.40774E-01	5.569995+02
4	16	-3.71320E-01	1.188222+00	6.45337E+01	5.01155E-01	3.406458-01	5.57000E+02
5	16	-4.06605E-01	9.06923E-01	6.46006E+01	5.012986~01	3.40413E-01	5.57001E+02
6	16	-3.33136E-01	4.97246E-01	6.46718E+01	5.014862-01	3.40167E-01	5.57002E+02
7	16	-2.513952-01	3.365866-01	6.47470E+01	5.01684E-01	3.399062-01	5.570038+02
8	16	-1.75620E-01	2.46905£-01	6.48309E+01	5.019046-01	3.39616E-01	5.57004E+02
9	16	-1.07817E-01	1.95724E-01	6.49297E+01	5.021632-01	3.39275E-01	5.57006E+02
10	16	-4.920998-02	1.568668-01	6.50361E+01	5.02442E-01	3.38909E-01	5.57008E+02
11	16	0.	1.53717E-01	6.51070E+01	5.025272-01	3.386655-01	5.57009E+02
5	17	-2.986698-01	2.90969E+00	6.33738E+01	4.58711E-01	4.003525-01	5.546892+02
3	17	-5.232416-01	2.96732E+00	6.33641E+01	4.5705+E-01	4.026925.01	5.54585£+02
4	17	-8.41856£-01	2.99763E+00	6.34369£+01	4.58450E-01	4.00740E-01	5.546612+02
5	17	-1.14810E+00	2.64362E+00	6.38362E+01	4 74694E-01	3.7789UE-01	5.55591E+02
6	17	-7.14797E-01	υ.	6.43107E+01	5.00531E-01	3 41423E-01	5.569968+02
7	17	-4.55897E-01	0.	6.45002E+01	5.010326-01	3.40764E-01	5.569998+02
8	17	-2 8958+E-01	0.	6.46219€+01	5.013536-01	3.40341E-01	5.570018+02
9	17	-1.71106E-01	0.	6.47144E+01	5.01597E-01	3.40020E-01	5.570035+02
10	17	-7.752166-02	0.	6.48354E+01	5.019158-01	3.39602E-01	5.57004E+02
11	17	0.	0.	6.493855+01	5.02186E-01	3.392466-01	5.570062+02
5	18	-8.66567E-02	4.27947E+00	5.96560E+01	3.778585-01	5.132525-01	5.49370E+02
3	18	-1.05781E-01	4.30759E+00	5.951486+01	3.759976-01	5.158245-01	5.492365+02
14	18	-6.50200E-02	4.27994E+00	5.92436E+01	3.722535-01	5.209985-01	5 49958E+02
5	18	0.	3.88442E+00	5.875196+01	3.694956-01	5.24701E-01	5.488425+12
6	18	0	0	6.80000E+01	5 099735-01	3 290005-01	5 570535.02
7	18	0	0	6 80000E+01	5.099736-01	3 290005-01	5 570535 •02
19	18	0	0	5 B0000E+01	5 000775-01	3 200005-01	E 570525.00
ä	18	0	0	6 900005.01	6 000775-01	3 200005-01	E ETAETC.00
10	19	0	0	6 0000000-01	5 00077E-01	7 200005-01	E 6706322-02
1.1	10	0		E 00000E+01	5.000775-01	7 5500005-01	E E70670.00
1	10	0 706000-07	E E: 70EF .00	5 55555 - 01	3 : 20000-01	5 057005-01	5.070036*VC
4	10	3 061745 03	5.013000100	5.555626-01	3.175530-01	5.30/30E-01	0.444105*06
	19	E 107005-00	2.00/250 *00	3.33141C*01	3.1/23/5-01	0.90403E-01	D. 443/2+UE
-	10	0.103002-02	5.05*6*2*00	5.540482401	3.1000350-01	0.30103E-01	D. **2022 *U2
2	10	0.	0.300306*00	5. 366665 +01	5.10343E-01	7.3340.55=01	5.442042+02
0	a	0.	0.	0.80000E+01+	5.03373E-01	3.23000E-01	D. D/053E+02
1	13	0.	0.	6.80000£+01	5.033732-01	3.290008-01	0.57053E+08
8	19	0.	0.	0.800002.*01	D. 09973E-01	2.54000E-01	5.57053E+02
9	19	0	0	5.80000E+01	5.099738-01	3.290008-01	5.570532+02
10	19	0.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
11	19	0.	0.	5.80000E+01	5.099732-01	3.290005-01	5.57053E+02
S	50	5.102978-02	7.16563E+00	0.13675E+01	2.681672-01	6.63739E-01	5.392615+02
3	20	7.037896-02	7.20343E+00	5.13P29E+01	2.582562-01	6.635162-01	5.392935+02

532 258 POOR ORIGINAL

TABLE III (con't)

14.	20	7.645826-02	7.227785+00	5.13135E+01	2.67776E-01	3.64275E-01	5 39230E+02
-	20	0	7 095995+00	5 129155+01	2 674635-01	6 G4682E-01	5.392148+02
÷.	20		7.000000-00	0.100106-01	E 0/00776 - C	7 200006-01	5 570575+02
0	20	0.	U.	5.80000E+01	D.033/36-1.1	3.630000-01	5.576335.°06
7	50	0	0.	5.80000E+01	5.09973E-01	3.290000-01	5.5/0536+02
8	20	0.	0.	6.80000E+01	5.09973F-01	3.290008-01	5.57053E+02
9	20	0	0	6 500005+01	3 099735-01	3,290008-01	5.570538+02
10	20		0.	6 000005-01	5 000775-01	7 200005-01	5 570535+02
1.4	00		0.	6.80000E+01	5.045732-01	3.230002 01	E E70E7E.03
11	50	0.	0.	6.83000E+01	5.099738-01	3.290005-01	5.57053E*02
S	51	1.42057E-01	8.913525+00	4.67900E+01	2.22956E-01	7.24602E-01	5.33480E+02
3	21	2.01133E-01	9.07760E+00	4.57169E+01	2.22351E-01	7.25406E-01	5.33397E+02
14	21	2 077635-01	0 761205-10	4 ASAAR +DI	2 209605-01	7,27257E-01	5.33193E+02
-	13.1	0.0.0000.01	0.007505.00	1. EU0115-01	3 1067-5-01	7 201705-01	5 720015+02
2	C1	. U.	A . BUEDOF + 00	4.042112-01	2.130/46-01	7.691306-01	5. 36 3016 ° 06
0	21	0.	0.	5.80000E+01	5.099736-01	3.290006-01	5.57033E+02
7	- 21	Q	0.	6.80000E+01	5.09973E-01	3.290006-01	5.57053E+02
8	21	0.	0	6.800002+01	5.09973E-01	3.29000E-01	5.570532+02
9	23	0	0	6 800C0E+01	5 099775-01	3 29000F-01	5.570535+02
	2.	0.	0	C. 0000102-01	E 00077E-01	7 200000-01	5 570575+02
10	C 1	U .	0.	6.80000E+01	0.099/36-01	3.230000-01	5.570536.00
11	21	0.	Ο.	5.80000E+01	5.09973E~01	3.290006-01	5.570532+02
2	55	5.273372-01	1.01670E+01	H.18037E+01	1.81109E-01	7.801245-01	5.266546+02
3	55	9.531766-01	1.02501E+01	4.14104E+01	1.782375-01	7.833996-01	5.261245+02
14	23	1 665675+00	1 031706+01	A 067575+01	1 726555-01	7 912145-01	5 250585+02
2		3.000072.00	1.001/06-01	7.003030-01		0.01.7705.01	E 370765-03
3	22	5. 30840£ *UU	1.020845+01	2.31001E+01	1.000106-01	8.043396-01	0.230/0E+U2
6	55	1.11.79E+00	4.36016E+00	3.690696+01	1.620961-01	8.03454E-01	5 256875+02
7	22	H.53H15€-01	2.081425+00	3.69908E+01	1.95101E-01	7.57701E-01	5.34910E+02
8	22	3.19656E-01	1.5-3626+00	3.68766E+01	2.080296-01	7.39707E-01	5.378575+02
ä.	22	0	1 440545+00	3 672735+01	2 079095-01	7 705645-01	5 38290F+02
1.00	2.2	0.	1.440.040.000	C COCCCC - 01	E 000775 01	7 000000 01	E 670575+00
19	CC	0.	Ų.	5.80000£+01	D.033/35-01	3.290002-01	3.3/0336.+02
2.1	55	α.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.5 0538 *02
5	23	7.119712-01	1.08186E+01	3.78987E+01	1.52297E-01	8.177926-01	5.207362+02
3	23	1.17115£+00	1.07827E+01	3.76315E+01	1.50424E-01	8.20208E-01	5.20310E+02
14	37	1 702965.00	1 066995+01	3 720745+01	1 490175-01	Q 277745-01	5 197465+02
	37	3 1 27 1 05 - 00	1.0000000-01	3.103/101	1.488108.01	0.000076 0	E 101705-00
0	6.0	C.13/102+00	1.03/902+01	3.0530ct+01	1.400185-01	9.2043/6-01	0.131/0L*UC
6	53	1.35084E+00	5.77062E+00	3.70332E+01	1.4696.5+0	8.245312-01	5.198338+02
7	23	8.81194E-01	4.505672+00	3.683012+01	1.550901-01	8.13149E-01	5.23419E+02
9	23	4.16199E-01	3.75429€+00	3.641125+01	1.647955-01	7.993876-01	5.27+305+02
ä	37	0	7 570705+00	3 506000 +01	672565-01	7 057065-01	5 297275+02
		8	0.00000000000	5.000002-01		7.301076 01	E ETAETE
10	23	0.	U.	0.80000£+01	D. 023125-01	3-5-90005-01	3.5/0342+02
11	23	.0	0.	6.80000E+01	5.09973E-01	3.290000-01	5.570532+02
E.	24	6.312666-01	1.124416+01	3.52991F+01	1.348255-01	8.403286-01	5.16475E+02
7	24	9.589225-01	1.11623E+01	3.52629€+01	1.34416E-01	8.40869E-01	5.163335+02
G.	3.	1 252065+00	1 101765.01	7 577575.01	1 267115-01	0 404015-01	5 16429E+02
2	24	I.LOLUOL-UU	1.101106-01	3 333372-01	1.347112-01	0.404012-01	0.10-L0L-0L
9	04	1.401415+00	1.0/8615+01	3.003202+0.	1.306/95.01	8.39CD/E-01	D. 100461 *V6
6	24	1.03889€+00	8.39504£+00	3.57654E+01	1.37492E-01	8.35862E-01	5.17268E+02
7	24	5.996312-01	6.73977E+00	3.585588+01	1.39373E-01	6.343255-01	5.181316+02
8	24	2.438125-01	6.103575+00	3.580296+01	1.403366-01	8.329715-01	5.18748E+02
10	3.	0	5 050575 +00	7 500405+01	1 410105-01	9 720765-01	E 101255+02
-	10.7	0.	3.300010-00	5.000735-01		2. 360.00E 01	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
1.6	5.4	U .	0.	5.80000E+01	2 033/25-01	3.590005-01	D-D/UD31+UZ
1.1	Set	Q.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.570538+02
2	25	4.56556E+01	1.181988+01	3.34368E+01	1.23177E-01	8.102372-01	5.132356+02
Z	25	6.67861E-01	1 174785+01	3.352025+01	1.23629F-01	8.546546-01	5.133778+02
1.	344	0 606005-01	1 160000 +01	7 760065+01	1 200505-01	0 575155-01	5 175715.00
-	20	0.000000-01	1.107706-01	2 201 20 01	SETTING OF	0.000100.01	E 120036 00
3	50	1.01/581+00	1.147856+01	3.3814/2+01	1 201005-01	9.019005-01	D 133235+05
6	- 25	8.21457E-01	9.81713E+00	3.410348+01	1. 16979£-01	8.50368E-01	5.14387E+02
7	25	4.96073E-01	8.56974E+00	3.419666+01	1.27733E-01	8.49400E-01	5.147265+02
8	25	2.089055-01	8.072155+00	3 421465+01	1.278-8F-01	8.492305-01	5 149295-02
6	26	d.	7 066007.00	3 422255 -01	1 279615-01	B 402165-01	5 140005-00
1.4	100	0	- 30008c *00	0. *ECCUE*UI	1.0.001C-VI	0.796,0E-VI	0.1400/E*UC
1.0	50	9.4	0.	6.80000E+01	0.044.35-01	2.53000E-01	5.570532+02
11	25	Q.,	0.	6.80000E+01	5.099738-01	3.P9000E+01	5.570532+02
3	25	3.086738-01	1.27509€+01	3.175205+01	1.132512-01	8.67844E-01	5.10201E+02
2	26	4 640105-01	1.270175+01	7 193035.01	1 137002-01	9 672705-01	6 107305-00
	36	6 106100-01	1 067002-01	7 105005-01	147075-01	0.000100.00	C 100000.00
-	20	0.100122-01	1.503005+01	7.13003F.+01	1.143635-01	0.00*122*01	0.1000/6+08
5	26	7.284468-01	1.251048*01	3.81120E+01	1,152868-01	8.652686-01	5.108398+02

POOR ORIGINAL

54

6	25	6.29152E-01	1.13137E+01	3.22459£+01	1.160255-01	8.64329E-01	5.11112E+02
7	35	4.03106E-01	1.038555+01	3.23216E+01	1.16364E-01	8.63896E-01	5.11323E+02
8	26	1.80217E-01	1.00021E+01	3.232756+01	1.16414E-01	8.63851E-01	5.113916+02
9	26	0.	9.90407E+00	3.23513E+01	1.163956-01	8.638712-01	5.114428+02
10	26	0.	Ú.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
11	26	0.	0.	6.800002+01	5.09973E-01	3.290002-01	5.57053E+02
2	27	2.129022-01	1.41400E+01	2.986235+01	1.02983E-01	8.80780E-01	5.06762E+02
3	27	3.30814E-01	1.41081E+01	2.99055E+01	1.032196-01	8.80469E-01	5.068288+02
14	27	4.37235E-01	1.40573E+01	2.99707E+01	1.03564E-01	8.80051E-01	5.069646+02
5	27	5.26643E-01	1.39675E+01	3.006762+01	1.04079E-01	8.79404E-01	5.07145E+02
8	27	4.69815E-01	1.30903E+01	3.01430E+01	1.04440E-01	8.789538-01	5.07305E+02
7	27	3.08514E-01	1.24057E+01	3.018458+01	1.045528-01	8.788228-01	5.074022+02
8	27	1 399208-01	1.21196E+01	3.020525.+01	1.04570E-01	8.78809E-01	5.074566+02
- Gr.	27	0.	1.20430E+01	3 020805+01	1.04543E-01	8.788496-01	5.07470E+02
10	27	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
11	27	Ö.	0.	5.80000E+01	5.099736-01	3.290008-01	5.57053E+02
2	28	1.559526-01	1.619585+01	2.75477E+01	9.11775E-02	8.95514E-01	5.02319E+02
3	28	2.436786-01	1.61750E+01	2.75513E+01	9.122265-02	8.95+602-01	5.023272+02
4	28	3 19094E-01	1.5139+E+01	2.75754E+01	9.13310E-02	8.953236-01	5.023802+02
10	29	3.909696-01	1.607395+01	2.761535+01	9.154965-02	8.95054E-01	5.024601+02
E.	299	3.509418-01	1.542725+01	2 76407E+01	9.162765-02	8.949625-01	5.02517E+02
	28	2 306725-01	1.492775+01	2 765765+01	9.158505-02	8.950225-01	5.025546+02
8	28	1.044088-01	1.47194E+01	2.765776+01	9.15474E-02	8.95081E-01	5.02559E+02
Q.	29	0.	1.45624E+01	2.7665-01	9.151996-02	8.951155-01	5.025805+02
10	28	0	0	6.80000E+01	5.099735-01	3,290005-01	5.57053E+02
14	28	0	n.	6.800005+01	5 099735-01	3 29000E-01	5 570535+02
2	20	1 24 545-01	1.948405+01	2 448845+01	7 677766-02	9.122575-01	4 95008E+02
z	24	1.913116-01	1.946975+01	2 444215+01	7.672105-02	Q 1332. F-01	4 95980F+02
14	20	2 460095 01	1 044425+01	2 447815+01	7 669996-02	9 13748E-01	4 95970E+02
5	29	3 07963 -01	1 939745+0:	2 444 TOF +01	7 672985-02	9 133125-01	4 95986E+02
ž.	20	2 750775-01	1 892505 -0	2 447295+01	7 667265-02	9 17474F-01	4 95964F+02
1	20	1 775605-01	1.056565+01	2 441075+01	7 650115-02	G 176035-01	6 05076F+12
	20	7 956996-02	1.841855+01	2 441085+01	7 641625-02	9 137135-01	4 050215+02
a	20	0	1 977795+01	2 440675+01	7 637765-02	G 137646-01	05015F+02
10	20	n i	0	6 80000E+01	5 000775-01	3 290005-01	5 570535-02
1.1	20	0	0	6 80000E+01	5 00077E-01	7 200005-01	5 570575+02
3	20	1 071796-01	2.597696+01	1 GGL ZOF+01	5 905275-02	G 788785-01	4 REARTE-02
2	20	1.619005-01	2 505865.01	1 902525+01	5 700165-02	0 75050F-01	4 95677E+02
2	70	2 005475-01	2 507165+01	1 531105+01	5 702405-02	0 360206-01	4 05600 - 00
2	20	2 676615-01	0 500075+01	3065+01	6 707715-00	0 760905-01	- 0500000-02
2	20	2 760065-01	2 557055+01	000000001	6 771776-02	0 762705-01	4.000000E-02
2	20	1 500600-01	0 507775+01	1.000300+01	5 766415-02	0 764675×01	4.00490E+02
	20	6 670406-01	2 517015-01	1.0000555+01	5 746605-00	0 XEFOOF	4.05726E.02
0	20	0.000436-06	0.617055-01	1.001062+01	5 74211E-12	9.303030 01	067575.00
	70	2 ·	5-01290C*UI	1.301002701	5. /*CI/E-UC	7 2000005-01	= = = = = = = = = = = = = = = = = = =
1.0	20	Q.	0.	0.00000E+01	5.099735-01	7 2000000-01	E E70575-00
12	30		5 655000-01		5.099 3E-01	5.230000 -01	0.07003E+02
100	21		2.03/02(*01	1.000002.01	5.30130E-UC	0.740100-01	* 000000L*UC
2	21	0.	2.030001-01	1.000002.01	5 057505-07	0 740105-01	- 00180E+Ud
	21	<u>.</u>	C-09310E+01	1.0000000+01	6.007502-02	0 7-08-08-01	4.00136E+08
2	31	0.	C. 3666 /L+01	1.00000000001	5.003006-02	0 75000 -01	4.00100£.02
0	31	0	C. 003800.*01	1.00000E+01	5.5/ 35* 2 6.071 365 37	0.761-02-01	4.85085/.*02
1	31	0	C. DC (/ SE +U1	1.00000E+0	D. 0 / 1202 * 0d	2.20.146-01	4,000 SE+08
E C	51		2.51/012+01	1.0000000+01	2.603036 °C	9.301412-01	4.361812+02
9	31		2.013908-01	1.0000000 +01	5.853511-02	14 TO. 148 -01	4.860831+02
10	31		0.	1.000008+01	0.033/35-01	3.290006-01	5.57053E+02
	- C			. Papers 1, 70 (# 13)	and produce / high card-	A DETAIL OF MALE	Pr. Pr. 7 Pr. 42 + 12

TABLE IV

EXAMPLE PROBLEM SOLUTION AT CYCLE 4000

ITER=	5	TIME . 4.00000E	+00 CYCLE= 400	DELT= 1.	.00000E-03 F=	5.001315+00	FI= 0.030E3E+;;
1	J	U	¥	ρ	RO	TH	164
2	2	0.	8.60350E-01	6.80000E+01	5.09973E-01	3.29000E-01	5.570536+06
3	2	0.	8.60322E-C1	6.80000E+01	5.099732-01	3.29000E-01	5.570532+02
4	2	0.	8.60290E-01	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
	2	0.	8.602298-01	5.30000E+01	5.09973E-01	3.29000E-01	5.570532+02
6	2	0	8.80174E-01	6.80000E+01	5.09973E-01	3.293008-01	5.570532+02
7	à	0	8.60121E-01	6.8000CE+01	5.09973E-01	3.23000E-01	5.57053E+02
	3	0	8.500775-01	6.80000E+01	5.09973E-01	3.29000E-01	5.37053E+02
0	2	0.	8 500475-01	6.90000E+01	5.09973E-01	3.29000E-01	5.5705 E+02
	5	0	9 600215-01	6.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
10	6	0.	0.600115-01	5. 90000E+01	5.09973E-01	3.290008-01	5.570532+02
11	2	0.007005-05	0.0000110-01	5 807295+01	5.10054E-01	3.29894E-01	5.570532+02
e .	3	-2.86363E-05	0.000000-01	6 807235+01	5.10054E-01	3.28893E-01	5.57053E+02
3	3		0.0000000-01	S 00110E+01	5.10054E-01	3.29993£-01	5.57053£+02
4	3	-5.352312-05	0.50000E-01	6 001226+01	5 100545-01	3.299921-01	5.57053E+02
5	3	-5.8/5/82-05	8.399516-01	6.003365+11	- 10055C-01	1.2999925-01	5.57053E+02
6	3	-5.7286.3205	8.598962-01	6.80334E+01	5.10056E-01	3 29991E-01	5.57053E+02
7	3	-5.00591E-05	8.598346-01	0.003376+01	5.10056E-01	3 29990E-01	5.570532+02
8	3	-3.89229E-05	8.597826-01	6.80.340240.	5.10050C-01	3 200000 -01	5 570535+02
9	3	-2.59036E-05	8.59748E-01	6.803421+01	5.1005/E-01	3.200006-01	5 5705 2 +02
10	3	-1.250712-05	8.59720E-01	6.80344E+01	5.1005/2-01	3.000000-01	5.5705TE+02
11	3	0.	8.59708E-01	6.80345£+01	5.10058E-01	3.000000-01	5.57053£+02
5	4	-6.41577E-05	8.59649E-01	6.80674E+01	5.10139£-01	3.28 BCL-01	5.570542+02
3	- 4	-9.44277E-05	8.59614E-01	6.80575E+01	5.10139E-01	3.287812-01	3.37034E+02
4	54	-1.21214E-04	8.59565E-01	6.80676E+01	5.10139E-01	3.297912-01	5.570541+02
5	14	-1.34952E-04	8.59503E-01	6.30679E+01	5.10140E-01	3.28780E-01	5.570546+02
6	44	~1.33856E-04	8.59434E-01	6.806825+01	5.10141E-01	3.28779E-01	5.5705+E+02
7	- 14	-1.19218E-04	8.59366E-01	6.90696E+01	5.10142E-01	3.29778E-01	5.5705+E+02
8	4	-9.44644E-05	8.59306E-01	6.90689E+01	5.10142E-01	3.28777E-01	5.5705+E+02
9	54	-6.38978E-05	8.59257E-01	6.80692E+01	5.10143E-01	3.29776E-01	5.57054E+02
10	14	-3.14454E-	8.59225E-01	6.80694E+01	5.10144E-01	3.29775E-01	5.5705+E+02
11	14	0.	8.59208E-01	6.80695E+01	5.10144E-01	3.29775E-01	5.57054E+C2
2		-1 120565-04	8.591255-01	6.31039E+01	5.10229E-01	3.2966HE-01	5.570E4E+02
	5	-1 655075-04	8.590825-01	6.81038E+01	5.10229E-01	3.29654E-01	5.57054E+02
3		-2 170606-04	9 5901 7E-01	6.81040E+01	5.10229E-01	3.296632-01	5.57054E+02
2	2	-2 406916-04	0.500775-01	6 810415+01	5.102298-01	3.29663E-01	5.57054E+02
2	3	-2.40001E-04	0.500700-01	6 8104 75 +01	5.102305-01	3.296526-01	5.5705+E+02
b	2	-2.42341E-04	0.500356-01	6 910455+01	5 102305-01	3,296616-01	5.57054E+02
7	2	-C. 19841E-04	0.500500-01	6 010470401	5 102305-01	3.295515-01	5.57054E+02
8	2	-1.776432-04	5.00009C-01	0.010472401	5 102715-01	3 296605-01	5.57054E+02
9	5	-1.22319£-04	10- JEBCBC -6	0.01040E+01	5.102316-01	7. 20660E-01	5 570545+02
10	5	-6.095722-05	8.00040E-01	6.910496701	5.102315-01	3.206605-01	5 570545+02
11	5	0.	8.080106-01	6.81000E+01	5.102312-01	7 205446-01	5 570555+02
5	6	-1.98445E-04	8.58731E-01	6.81409£+01	5.103206-01	7 205446-01	5.570555+02
3	6	-2.79094E-04	9.58658E-01	5.81409£+01	5.103206-01	3.280446-01	E E705EF.00
4	6	-3.623346-04	8.58550E-01	6.81408E+01	5.10319£-01	3.280442-01	5.57055C+02
5	6	-4.10865E-04	8.58+09E-01	6.81407E+01	5.10319£-01	3.285446-01	5.57055E+02
6	6	-4.18219E-04	8.58250E-01	8.81406E+01	5.10319E-01	3.28545E-01	5.570556.+02
7	5	-3.8+651E-04	9.58089E-01	6.81404E+01	5.10318E-01	3.28545E-01	5.57055€+02
8	6	-3.15589E-04	8.57941E-01	5.81403E+01	5.10319E-01	3.29546E-01	5.57055E+02
9	6	-2.20412E-04	6.57820E-01	6.81402€+01	5.10318E-01	3.28546E-01	5.57055£ •02
10	6	-1.109672-04	8.57735E-01	5.81401E+01	5.10318E-01	3.28546E-01	5.57055E+02
11	6	0.	8.576925-01	5.81400E+01	5.10317E-01	3.28546E-01	5.57055E+02
2	7	-3. 33556E-04	8.56799E-01	6.81758E+01	5.10408E-01	3.284272-01	5.57055£+02
7	7	-4 955495-04	8.596537-01	6.91756E+01	5.10407E-01	3.294298-01	5.57055£+L
		-6 USTTEE - 04	8 50 TEF - 11	6.817635+01	5.10407E-01	3.29429E-01	5.57055E+02
1	-	-7 74 2275 -04	9 581525-01	6.81759F+01	5.10406E-01	3.28430E-01	5.57055£+02
0	-	-7 507205-04	8 579715-01	5.817575+01	5.10404E-01	3.284326-01	5.57055E+02
8	-	-7.003606-04	B 576055-01	6 817495+01	5.10407-01	3.284746-01	5.57055E+02
7	7	-0.33000E-04	0.070000-01	0.017-00-01	5 104025-01	7. 294 755 -01	5.57055£+02
9	7	-D. /1204E-04	0.5/200C-01	0.017422+01	E 10400E-01	7 204 775-01	5 570655+02

R ORIGINAL

532 261

TABLE IV (con't)

10	7	-2.023822-04	8.56791E-01	6.81734E+01	5.10400E-01	3.28438E-01	5.57055£+02
11	7	0.	8.567062-01	6.817325+01	5.10399E-01	3.284396-01	5.57055E+02
2	8	-6.465146-04	8 599395-01	6.82099£+01	5.10489E-01	3.28320E-01	5.570566+02
2	8	-9 602325-04	8 595145-01	6 820955+01	5.104882-01	3.28321E-01	5.57056E+02
6	8	-1 250365-07	9 500365-01	5 B2090E+01	5 104875-01	3 293235-01	5.570568+02
	0	-1 421025-07	0.000000000	6 9209-5+01	5 104965-01	3 293255-01	5.570565+02
-	0	-1.461056-03	0.004106-01	6.000765+01	5 104062-01	1 293295-01	5 570565+02
0	0	-1.400502-03	8.07/10C-UI	0.000/0C+V1	5.104040-01	7 202716-01	5.570565+02
2		-1.33/801-03	8.57005c-01	5.8CU5/E+U1	5.104816-01	3.003310-01	6 ETOECC.00
8	d	-1.100298-03	8.563538-01	6.82059£+01	5.104796-01	3.283336-01	5.570500-0E
9	0	-7.70210E-04	8,558186-01	5.82052t+01	5.104782-01	3.283306-01	0.070000 +02 5 570565 -00
10	b	-3.884322-04	8.55445E-01	6.82047E+01	5.10475E-01	3.28337E-01	5.57056E+UZ
11	8	0.	8.552588-01	6.82044E+01	5.104768-01	3.28338E-01	5.57056E+02
S	9	-1.352788-03	8.629262-01	6.82399£+01	5.105638-01	3.28223E-01	5.57056E+02
3	9	-2.00217E-03	8.62204E-01	6.823965+01	5.105622-01	3.282246-01	5.57056E+02
4	9	-2.59894E-03	8.61143E-01	6.823912+01	5.105618-01	3.585562-01	5.570562+02
5	9	-2.947348-03	8.59776E-01	6.82384E+01	5.10559E-01	3.282295-01	5.570562+02
6	9	-3.000988-03	8.58236E-01	6.82375E+01	5.10557E-01	3.28231E-01	5.570562+02
7	9	-2.76123E-03	9.56676E-01	6.82367E+01	5.10555E-01	3.282346-01	5.570566+02
8	9	-2.26652E-03	8.55248E-01	6.82359€+01	5.10553E-01	3.282366-01	5.57056E+02
9	g	-1.58371E-03	8.5+0796-01	6.82353E+01	5.105525-01	3.28238E-01	5.570562+02
10	9	-7.976426-04	R 532635-01	6 82349E+01	5.105518-01	3.28240E-01	5.57056E+02
11	ä	0	B 529575-01	6 823475+01	5 10550F-01	3.282405-01	5 570565+02
5	10	-2 020415-07	0.300032-01	6 926706+01	5 105725-01	7 281775-01	5 570565+02
2	10	-2.320112-03	0.001700-01	6.000752-01	5 106716-01	7 201745-01	5 57055C -00
2	10	-4.31312L-US	0.091/02-01	0.000/00-01	5,100310-01	7 201725-01	2,270005 TVE
-	10	-3.300//E-U3	8.00/900-01	0.000/0E*01	5.100c3c-01	3.201305-01	0.01000C*UE
3	10	-5.31365£-03	8.5.5746E-01	6.820638+01	5.105282-01	3.281386-01	D. D/UDEL*Ud
6	10	-6.409166-03	9.60336£-01	6.826556 *01	5.105252-01	3.281412-01	5.570002+02
7	10	-5.88349£-03	8.56515E-01	6.82548E+0]	5.106248-01	3.281432-01	5.570565*02
8	10	-4.821690-03	8.53809€-01	6.826+25+01	5.10623E-01	3.20145E-01	5.570568*02
9	10	-3.36584E-03	8.51284E-01	6.826386+01	5.10622E-01	3.28146E-01	5.570562+02
10	10	-1,69+432-03	8.495322-01	6.82635E+01	5.10621E-01	3.28147E-01	5.570568+02
11	10	Q	8.48650E-01	6.82634E+01	5.106212-01	3.28147E-01	5.57056€+02
5	1.1	-6.4597.E-03	8.902322-01	6.82919£+01	5.10690E-01	3.28056E-01	5.57057E+02
3	11	-9.49851E-03	8.86375E-01	6.82915E+01	5.10690E-01	3.28057E-01	5.570578+02
14	1.1	-1.223686-02	8.90837E-01	6.829116+01	5.10689E-01	3.280586-01	5.57057E+02
5	11	-1.37545£-02	8.73817E-01	6.82907E+01	5.10688E-01	3.220592-01	5.57057E+02
6	11	-1.38794E-02	8.66087E-01	6.82904E+01	5.10687E-01	3.280602-01	5.570575+02
7	11	-1.26701E-02	8 584575-01	6 82901E+01	5 106866-01	3,280515-01	5 570578+02
8	11	-1 033745-02	8 516365-01	6 828995+01	5 106865-01	1 280625-01	A A70875+02
a	1.1	-7 104645-07	9 461695-01	6 828985+01	5 106055 01	7 200625-01	5 57057E+02
10	11	-7 616605-03	B LOLOGE 01	6 000000 +01	5 106052-01	7 200625-01	E ETASTC.AD
1.4	1.1	-3.010402-03	0.464036-01		5.10000E-01	3.200002-01	5 670675.00
1.1	1.2	U	0.700675-01	0.0000000101	5.10000C *UI	3.000000-01	5.07V076*UC
2	10	-1.4/363E-06	9.371306-01	0.030496.401	D.10/232-01	3.23013E-01	0.070076*06
2	10	-C. 149832-UC	9.2/0496-01	5.83058E*01	5.10780E-01	3.280102-01	5.570572*02
4	14	-2.74642E-02	9.1-1585-01	6.83071E+01	5.10728E-01	3.28006E-01	5.57057E+02
5	15	-3.05552E-02	8.97523E-01	6.83087E+01	5.10732E-01	3.28001E-01	5.57057E+02
6	15	-3.049212-02	8.796625-01	6.83104E+01	5.10736E-01	*,27996E+01	5.570578+02
	15	-2.75416E-02	8.625016-01	6.83151E+01	5.10740E-01	\$.27990E-01	5.57057E+02
8	12	-5.556805-05	8.475316-01	6.83136E+01	5.10744E-01	3.279855-01	5.57057E+02
9	15	-1.539610-02	8.35766E-01	6.83147E+01	5.10747E-01	3.279825-01	5.57057E+C
1.0	12	-7.709+4E-03	8.277872-01	6.03155E+01	5.107482-01	3.279795-01	5.67057E+02
11	12	0.	8.23813E-01	6.83156E+01	5.10749E-01	3.27978E-01	5:57057E+02
5	13	-3.479366-02	1.04981E+00	6.829985+01	5.10710E-01	3.280302-01	5.570576+02
3	13	-5.012446-02	1.02506E+00	6.830402+01	5.107205-01	3.290165-01	5.570576+02
14	13	-6.315105-02	9.916725-01	6.830935+01	5.107338-01	3.279995-01	5.570575+02
5	13	-6.907155-02	9.510455-01	6.83157E+01	5.107496-01	3.279795-01	5 570575.00
E	13	-8 76604E-02	9 089957-01	6 832255 .01	5.107665-01	3 279575-01	6 670675.00
1	17	-6 006055-02	8 704465-01	6.832005.01	5 107925-01	3 279365-01	E ETOETE
á	17	-4 707705-00	9 761765-01	6 837-75-01	5 107045-01	7 270175-01	E 670675.00
0	13	-7 075000.00	0.120100-01	6 677025.01	5 10505C-01	7 270075 01	5.0705 1°02
	13	-3.07002E-02	8.13010L-VI	0.0220022.*/1	5 10800E-01	3.2.3035-01	2.0.0000.002
1.0	13	-1.630012-02	7.9/2012-01	0.03*215*01	0.10d1+E-0[3.2 (0932-01	21.2105aF+05
			and the of a local of	and the state of the second	and the second s	A Loss of the loss of the loss of the	THE

2	14	-R 39742F-02	1 324195+00	6 825585+01	F :0602E-01	3.28172E-01	5.57056E+02
7	14	-1 106015-01	1 260455 -00	6 026605+01	5 106206-01	3 291355-01	5.57056E+02
24		-1.100010-01	1.200400+00	6.000000-01	5 106465 -01	7 290625-01	5 57057F+02
-	1	-1.4040/L-UI	1.1/3100*00	0.00019C+01	5.100000-01	7 200200-01	5 570575+02
2	1.4	-1.585106-01	1.069696.+00	6.830042+01	D.10/162-01	3.200202-01	E 570570+00
0	1.4	-1.50513£-01	9.665332-01	6.85201E+01	5.10/602-01	3.2/9046-01	5.570576+06
1	14	-1.298588-01	8.80531E-01	6.83384E+01	5.108056-01	3.279056-01	5.570582+02
8	14	-1.01133E-01	8.13501E-01	6.83532E+01	5.10841E-01	3.27858E-01	5.570582+02
9	14	-6.80485E-02	7.651772-01	6.835+25+01	5.108688-01	3.278225-01	5.570588+02
10	14	-3.35472E-02	7.341722-01	6.83713E+01	5.10885E-01	3.27799E-01	5.570588+02
11	14	0.	7.18932E-01	6.83747E+01	5.10893E-01	3.27789£-01	5.570582+02
5	15	-2.02274E-01	1.98855£+00	6.80798E+01	5.10171E-01	3.28740E-01	5.57054E+02
3	15	-2.90648E-01	1.83340E+00	6.81134E+01	5.102532-01	3.29631E-01	5.570548+02
4	15	-3 559125-01	1 612425+00	6 81502E+01	5.10368E-01	3.28480E-01	5.57055£+02
45	15	-7 727865-01	1 331895+00	6.921975-01	5 105146-01	3 282875-01	5.570565+02
16	15	-7 745545-01	1.057000+00	6 020120+01	5 100655-01	3 29099F-01	5 570575+02
-	1.65	-3.345346-01	0.716606.01	6 07717C-01	5.10000C-01	3.200000.01	5 570575.02
	10	-C. (4014E-UI	8. /1008E-01	0.03317E+U1	5.10/636-01	3.273272-01	5.57057E+0E
8	10	-2.00098801	7.434312-01	5.8368/E+U1	5.108/3£-01	3.278082-01	5.570000.*02
э	15	-1.34534E-01	5.389+6E-01	6.83968E*01	5.10938E-01	3.277302-01	5.570582+02
10	15	-6.52558E-02	6.077778-01	6.84070E+01	5.10973E-01	3.276845-01	5.57059£+02
11	15	0.	5.83021E-01	6.84135E+01	5.10988E-01	3.27664E-01	5.57059€+02
5	16	-4.51145E-01	3.49172E+00	6.73963E+01	5.0 #138-01	3.37824E-01	5.56780E+02
3	16	-6.99359E-01	3.231605+00	6.74947E+01	5.00871E-01	3.33129E-01	5.56950E+02
4	16	-8.91421E-01	2.76253E+00	6.76395E+01	5.08801E-01	3.30570E-01	5.57032E+02
5	16	-9.28325E-01	1.995646+00	6.785888+01	5.096296-01	3.294526-01	5.57050E+02
6	16	-7.41799E-01	1.06570E+00	6.81205E+01	5.10272E-01	3.286066-01	5.57054E+02
7	16	-5 56499F-01	7 295815-01	6 827715+01	1.106555-01	3 281025-01	5.57057E+02
â	16	-7 994456-01	5 704 755 -01	6.837005+01	5 108955-01	3 278005-01	5 570585+02
0	16	-2 470575-01	4 71640E-01	6 042425+01	5.110155-01	3 276205-0	5 570505 -02
10	16	-1 105505-01	7 736252-01	C DUEDIE - 01	E 110075-01	7 276402-01	E E 0505.00
1.92	10	-11140000-01	3./20006-01	0.040CUL+UI	0.110036-01	3.673406-01	2.0.103E*VE
년.	10	D PROPERT AL	3.400362-01	0.84030E+01	5.111116-01	3.2/2036-01	0.0/L05t+Ud
5	17	-7.579938-01	5.35348£+00	5.48306E+01	4.53420E-01	4.082806-01	5.541038+08
3	17	-1.31705€+00	6.38409€+00	6.49595E+01	4.55446E-01	4.25447E-01	5.54221E+02
	17	-2.04419€+00	6.25574E+00	6.51177E+01	4.58848E-01	4.006926-01	5.5-+102+02
5	17	-2.55570E+00	5.202986+00	6.561702+01	4.71831E-01	3.82480E-01	5.531402+02
6	17	-1.58569€+00	0.	6.75804E+01	5.088885-01	3.304332-01	5.570438+02
7	17	-1.00898E+U0	0.	6.813062+01	5.10298E-01	3.285726-01	5.57054E+02
8	17	-6.33448E-01	0.	6.83547E+01	5.108456-01	3.278528-01	5.57058E+02
9	17	~3.68461E-01	0.	6.84518E+01	5.11082E-01	3.275+02-01	5.57059E+02
10	17	-1.66439E-01	0.	6. 84945E+01	5.11187E-01	3.27403E-01	5.57060E+02
11	17	0	0	6.851075+01	5 112265-01	7 27751F-01	5 570605+02
2	19	-2 296775-01	9,097125+00	5 750205+01	2 442146-01	5 507575-01	5 46664F+02
1	10	-2 2200776 01	0.107712-00	5.006000-01	7 700000-01	5.00.05.01	E 4600072-02
2	10		0.017712700	5.09500C*01	3.306436-01	5.70077E-01	0.40000E*0E
3	10	-1.909000-01	8,91700C+00	0.0/08UE*UI	3.217002-01	D. 90/205-01	2.44/2/2*00
2	18	U.	7.783296+00	5.356121-01	3.00781E-01	5.19375E-01	5.46874E+02
2	18	0.	0.	5.80000E+01	5.099738-01	3.29000E-01	5.57053E+02
7	18	α.	0.	6.80000E+01	5.09973E-01	3.290005-01	5.57053E+02
8	18	0.	0.	6.80000E+01	5.09973E-01	3.290005-01	5.570532+02
9	18	0.	0.	6.80000E+01	5.099738-01	3.29000E-01	5.57053E+02
10	18	0.	0.	6.80000E+01	5.09973E-01	3.290008-01	5.57053E+02
11	18	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
2	19	1.53179E-01	1.16846E+01	5.01579€+01	2.5662+6-01	6.79420E-01	5.37943E+02
3	19	2.510995-01	1.163355+01	4.96919E+01	2.5:6666-01	5.861135-01	5.373445+02
14	19	2 919675-01	1.1373-6+01	4.907125+01	2.449015-01	6.952315-01	5. 365025 .02
	10	G.	1 037675.01	4 055405-01	2 7861 (5-0)	7 036805 -01	5 757165.00
10	10	0	1.00000-00101	6 000005-01	5 000775-01	7 200005-01	E 270575.05
1.0	12	0		6.00000C+01	E 000775 01	3 200005-01	0.070032+02
1	10	0.	0.	0.00000E+01	0.000735-01	3.290002-01	5.570532+02
D	13	0.	0.	6.80000£+01	0.033/32-01	5.23000E-01	5.57053E+02
3	19	0.	0.	6.8000UE+01	5.099738-01	3.29000E-01	5.57053E+02
10	19	0.	0.	6.80000E+01	5.099732-01	3.290005-01	5.570532+02
11	19	0.	Q.,	6.80000E+01	5.099738-01	3 290008-01	5.570538+02
5	20	2.887796-01	1.4+952E+01	4.33796E+01	1.93917E-01	7.632996-01	5.289718+02
2	20	3 700005-01	1 449785+01	4 32001E+01	1 322005-01	7 5500.05 .01	a scener.os

14	20	7. 477525-01	1 477065+01	4 Z0542E+01	1 906645-01	7.676076-01	5.284096+02
	20	A. 101066-01	1.40000001		1.006605-01	7 6007-6-01	5 000545×00
2	20	u .	1.301392+01	4.300396+01	1.090006-01	7.003346-01	5.200.076.02
D	50	0.	Ο.	6.80000E+01	2.033136-01	2.54000E-01	2.2/03% +02
7	50	0.	0	5.80000E+01	5.09973E-01	3.58000E-01	5.570532+02
8	50	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
9	20	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
10	20	0.	0	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
11	20	0.		5 80000E+01	5 099775-01	3.29000E-01	5.570535+02
2	21	W. WORRDE DI		2 663776-01	1 477605-01	B 20020E-01	5 189175+02
0	21	4.43/082-01	1.803/12+01	3.00007001	1,43/302-01	0 202275-01	E 1000FF 000
3	21	6.17451E-01	1.834236+01	3.636 ** *01	1.464612-01	8.3053/2-01	5.104956+02
4	51	6.20887E-01	1.88582E 01	3.60E :E+01	1.406596-01	8.329116-01	2,180045+05
5	21	0	1.97540E+01	3.576645+01	1.386326-01	8.35527E-01	5.17570E+02
8	21	ð.	0.	6.80000E+01	5.09973E-01	3.290002-01	5.570538+02
7	21	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
8	21	0.	0.	6.80000E+01	5.09973E 01	3.29000E-01	5.57053E+02
ä	21	0	0	6.90000E+01	5.09973E-01	3.29000E-01	5.57053E+02
10	21	0	0.	6.000002-01	5 000775-01	3 20000E-01	5 570575+02
10	<i>C</i> 1		0.	D. DUUL JE +01	D.03373E-01	3.000000-01	E E70575-02
11	21	Q.	U.	6.80000E+01	5.099732-01	3.090000-01	5.570536*06
2	55	1.256668.+00	2.213285+01	2.87475E+01	9.87755E-02	8.861332-01	5.053136+02
3	55	2.3671BE+00	2.25679€+01	2.78733E+01	9.45504E-02	8.91407E-01	5.039511+02
34	55	4.57561E+00	2.3:896£+01	2.613515+01	8.65452E-02	9.01342E-01	5.007928+02
5	22	1.02996E+01	2.37741E+01	2.23095E+01	7.04360E-02	9.21085E-01	4.93457E+02
6	22	7.746485+00	1.441616+01	1.51804E+01	4.195875-02	9.545956-01	4.76931E+02
7	22	7 10440E+00	B 65747E.00	1 514865+01	7 007455-02	9 570405-01	4 742405+02
â	22	6 670070-01	L E220LE+00	1.55.555.01	u naci 75 -00	0.550005-01	4 744115+02
0	20	0.0090/12-01	4.322042400	1.004000-01	4.000100-00	0.500074C-01	4.744) (E-UE
3	22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.336915+00	1.009398+01	4.102048-02	A.228005-01	4.74004E+02
10	22	0.	0.	5.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
11	55	Q.,	Ο,	5.8000CE+01	5.09973E-01	3.29000E-01	5.57053E+02
5	23	2.3225£+00	2.62111E+01	2.13930E+01	6.45713E-02	9.28150E-01	4.89967E+02
3	23	4.22336£+00	2.65567E+01	2.03163E+01	6.02615E-02	9.333232-01	4.87445E+02
4	23	7.10971E+00	2.586585+01	1.865965+01	5 393295-02	9.40978E-01	4.83321E+02
5	27	1.071716+01	2 672696+01	1 621685+01	4 46514F-02	9 51770F-01	4 754805+02
E.	27	9 281475+00	2 005105.01	1. 10002305+01	7 775600 .00	6 602015-01	- FOROTE-02
-	37	U 216105-00	1 450007-01	1.740646401	3.736306-06	G FORDER OI	7.030306716
1	20	4.213102-00	1.408802.401	1.510636+0.	3.8/4002-02	3-28000E-01	4. 1150AF+05
8	23	1.56/6/2+00	9.023876 00	1.55917E+01	4.02822E-02	9.56865E-01	4.72578E+02
9	53	0	4.482562-00	1.56789€+01	4.07186E-02	9.56337E-01	4.732146+02
10	23	0.	0	6.80000E+01	5.099732-01	3.29000E-01	5.57053E+02
11	53	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
S	24	3.08280E+00	2.97059E+01	1.56798E+01	4 24743E-02	9.542772-01	4.74476E+02
3	24	5.16599€+00	2.97585£+01	1.488925+01	3.97070E-02	9.57476E-01	4.72007E+02
4	24	7.490255+00	2 953425+01	: 40:572+01	7 662615-02	9 810155-01	4 69031E+02
5	24	8.795106+00	2 964675+01	1 727775+01	7 767706-00	0 647055-01	4.65010E-02
	100	C 1000000 -00	2.007030-01	1.363336-01	3.30/332-00	3.073032-01	4.000100*UC
2	-	0.40CUOC+00	C. 40030C+01	1.308005.*01	3.400345-02	9.039021-01	4.00C/0C+VC
1	24	3.022000.+00	1.800305.+01	1.4/29/2+01	3.7590HE-02	9.001/8E-01	4.09083E+05
8	54	1.498256+00	1.24857E+01	1.52849E+01	3.920546-02	9.58119E-01	4.713885+02
9	24	Ο.	7.56585E+00	1.54151E+01	3.984885-02	9.57336E-01	4.72403E+02
10	24	0.	0.	6.800C0E+01	5.099776-01	3.29000E-01	5.57053E+02
11	24	0.	0.	6.80000E+01	5 099732-01	3.290002-01	5.57053E+02
2	25	3 145665+00	3.199975+01	1,193316+01	2.980285-02	9.88743E-01	4 614175+02
7	25	4 760625+00	3 167275+01	161795+01	2 872905-02	0 600405-01	4 60060E+02
- E	36	E 07127E+00	7 0000000000	1 166010+01	0 070015-00	0.7000000	
12	- 6-0	3.37(1)/E=UU	3.000000.+0	1.100715701	C.03621C-UC	9.704052-01	- 2020 /E+08
0	00	5. /6222E+00	2.95089£+01	1,1938/E+01	6.916435-76	3.9351 F-01	4.004305+05
6	20	3.966568+00	2.565038+01	1.312358+01	3.53355E-05	9.65848E-01	4.64370E+02
- 7	55	2.378120+00	2.046272+01	1.42013E+01	3.579472-02	9.619925-01	4.68155E+02
8	26	1.13793E+00	1.500852+01	1,466168+01	3.734045-02	9.60223E-01	4.69829E+02
9	25	0.	1.015386+01	1.47770E+01	3.809776-02	9.59259E-01	4.71403E+02
10	25	α.	0.	6.80000E+01	5.09973E-01	3.29000F-01	5.570575+02
1.1	25	0	0	6 800005+01	5 099775-01	3 200005-01	6 670975 00
	20	2 751275-00	7 565577.01	0.0000000-01	2 767706-03	0 755000 01	U. 570-35-102
0	20	2.301230*00	0.2000/L*U1	3.304302.400	2 2020/05-02	0.700388.001	4.029172402
3	20	3.130582.+00	3.19377E+01	1.016545.*01	C. 395915-05	9. /52 /8E-01	4.53329E+02
14	20	3.337428+00	3.096865+01	1.064655+01	2.52423E-02	9.73830E-01	4.55221E+02
5	26	2.72666E+00	2.968915+01	1.159+9E+01	2.781986-02	9.70973E-01	4.587+5E+02

532 264

RICIN

TABLE IV (con't)

6	26	1.909876+00	2.65044E+01	1.278435+01	3.13681E-02	9.67002E-01	4.03183E+0L
7	26	1.34063E+00	2.19+08E+01	1.35614E+01	3.38370E-02	9.64215E-01	4.66039£+02
8	26	7.30983E-01	1.69420E+01	1.388462+01	3.48997E-02	9.63007E-01	4.67253E+02
ä	26	0	1.239196+01	1.39929€+01	3.534862-02	9.624688-01	4.680362+02
10	26	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.57053E+02
11	26	0.	0.	6.80000E+01	5.099738-01	3 29000E-01	5.57053E+02
2	27	9.75137E-01	3 179326+01	9.53500E+00	S0-316002.S	9.77387E-01	4.5024+6+02
Z	27	1.03747E+00	3.120375+01	9.965432+00	2.31305£-02	(J. 76159E-01	4.52019E+02
4	27	8.491596-01	3.05162E+01	1.06821E+01	2.511146-02	9.73976E-01	4.55013E+02
5	27	5.82177E-01	2.971665+01	1.15948E+01	2.775056-02	9.710532-01	4.586288+02
6	27	5.856465-01	2.708685+01	1.24002E+01	3.024422-02	9.682656-01	4.61819E+02
7	27	6.21527E-01	2.30276E+01	1.28617E+01	3.170522-02	9.666246-01	4.635916+02
8	27	4 2570BE-01	1.847965+01	1.30689E+01	3.235486-02	9.658888-01	4.644182+02
9	27	0.	1.42768E+01	1.314412+01	3.262246-02	9.65573E-01	4.648865+02
10	27	0.	0.	6.80000E-01	5.09973E-01	3.290002-01	5.57053E+02
11	27	0.	0.	5.80000E+01	5.09973E-01	3.290002-01	5.57053E+02
2	28	-2.28070E-01	3.07341E+01	1.01167E+01	2.335622-02	9.75919E-01	4.523302+02
3	28	-4.4499EE-01	3.04749E+01	1.05239€+01	2.451478-02	3.74644E-01	4.540892+02
Le.	28	-5.84845E-01	3.02319E+01	1.10467E+01	2.607568-02	9.72914E-01	4.56359E+02
5	28	-4.47151E-01	2.981986+01	1.15781E+01	2.772185-02	9.71082E-01	4.58625E+02
6	29	-6.869252-02	2.758612+01	1.196338+01	2.896246-02	9.696968+01	4.60257E+02
7	28	2,179166-01	2.39+95£+01	1.21886£+01	2.965718-02	9.689205-01	4.61:55E+02
8	28	2.364432-01	1.979925+01	1.23052E+01	2.999335-02	9.685452-01	4.615802+02
a	29	0.	1.591872+01	1.23509E+01	3.01441E-02	9.683632-01	4.619342+02
10	29	0.	0.	6.80000E+01	5.099732-01	3.290008-01	5.570538+02
11	293	0.	0.	6.90000E+01	5.09973E-0:	3.290002-01	5.570532+02
~	29	-7.08758E-01	3.047788+01	1.09105£+01	2.553646-02	9.735202-01	4.55650E+02
3	29	-9.32277E-01	3.04627E+01	1.10781E+01	2.60872E-02	9.729106-01	4.56377E+02
14	29	-9.63059E-01	3.048162+01	1.125702+01	2.670916-09	9.722126-01	4.57246E+02
15	29	-6.700828-01	3.02427E+01	1.140568+01	2.724625-02	9.71611E-01	4.57975E+02
5	29	-2.349532-01	2.824325+01	1.149525+01	2.75807E-02	9.71236E-01	4.58449E+02
7	29	8.074526-02	2.491966+01	1.15509E+01	2.7760+E-02	9.71035E-01	4.58730E+02
8	29	1.571632-01	2.10938E+01	1.15930E+01	2.78633E-02	9.709255-01	4.588488+02
ğ	29	0.	1.74947E+01	1.161445+01	2.792002-02	9.708556-01	4.59034E+02
10	29	0.	0.	6.80000E+01	5.09973E-01	3.29000E-01	5.570532+02
11	29	0.	0.	6.80000E+01	5 9973E-01	3.29000E-01	5.570532+02
2	30	-6.55800E-01	3.18081E+01	1.11120E+01	2 _2380E-02	9.72745E-01	4.56647E+02
2	35	-8.05014E-01	3.17675E+01	1.10893E+01	2.623588-02	9.727432-01	¥.56612€+02
4	30	-7.74254E-01	3.17273E+01	1.10440E+01	2.618432-02	9.727925-01	¥.56529€+02
5	30	-4.93386E-01	3.13943E+01	1.09803E+01	2.606965-02	9.72915E-01	4.56377E+02
6	30	-1.352816-01	2.94113E+01	1.032222 + 01	2.593245-02	9.730662-01	4.561762+02
2	30	1.129938-01	2.62255£+01	1.089325+01	2.58+2+2-02	9 73166E-01	4.560848+02
8	30	1.63176E-01	2.261746+01	1.088332+01	2.380102-02	9.73213E-01	4.560382+02
9	30	0.	1.92560E+01	1.087988+01	2.578712-02	9.732265-01	4.56071E+02
10	30	0.	0.	5.90000E+01	5.09973E-01	3.29000E-U1	5.57053E+02
11	30	0.	0.	6.80000E+01	5.09973E~01	3.290002-01	5.57053E+02
2	31	0.	3.18081E+01	1.00000E+01	2.62316E-02	9.727526-01	4.566388+02
3	31	0.	3.17675E+01	1.00000E+01	2.622912-02	9.72750E-01	4.56608E+02
4	31	0.	3.17273E+01	1.000000 +01	2.617748-02	9.728008-01	H. 56520E+02
5	31	0.	3.13943E+01	1.000000 +01	2.606202-02	9.729246-01	4.56357E+02
6	31	0.	2.941136+01	1.00000E+01	2.592655-02	9.7307+E-01	4.56165E+02
7	31	0.	2.62255€+01	1.000002+01	2.583555-02	9.73174E-01	4.560666+02
2	31	0.	2.261746+01	1.00000E+01	2.579202-02	9.732232-01	4.560265+02
ã	31	0 .	1.926602+01	1.000000 +01	2.577778-02	9.732376-01	¥.56052E+02
10	31	α.	σ.	1.00000E+01	5.099732-01	3.290002-01	5.57053E+02
1.6	21	0	n	1 000005+01	5.099738-01	3.29000E-01	5.570535+02

532 265

Fig. 4. Velocity vector plot of cycle 1000 for the example problem.

Fig. 5. Velocity vector plot of cycle 4000 for the example problem.

532 266

ACKNOWLEDGMENTS

The authors have profited greatly from discussions with all their colleagues. They especially thank W. C. Rivard for his issistance with the preparation of this report. In addition, they wish to thank the members of

the Analysis Branch of the U. S. Nuclear Regulatory Commission, Division of Reactor Safety Research, for their interest, critical comments, and financial support.

REFERENCES

- F. H. Harlow and A. A. Amsden, "Numerical Calculation of Multiphase Fluid Flow," J. Comput. Phys. <u>17</u>, 19 (1975).
- W. C. Rivard and M. D. Torrey, "K-FIX: A Computer Program for Transient, Two-Dimensional, Two-Fluid Flow," Los Alamos Scientific Laboratory report LA-NUREG-6623 (1977).
- 3. G. B. Wallis, One Dimensional Two-Phase Flow, McGraw-Hill (1969).
- N. Zuber, "Flow Excursions and Oscillations in Boiling Two-Phase Flow Systems with Heat Addition," Sym. Two-Phase Flow Dynamics, E.U.R. 4288e, 1071 (1967).
- C. W. Hirt, T. A. Ol'phant, W. C. Rivard, N. C. Romero, and M. D. Torrey, "SOLA-LOOP: A Non-Equilibrium, Drift-Flux Code for Two-Phase Flow in Networks," manuscript in preparation.
- C. W. Hirt, B. D. Nichols, and N. C. Romero, "SOLA A Numerical Solution Algorithm for Transient Fluid Flows," Los Alamos Scientific Laboratory report LA-5852 (1975) and "SOLA - A Numerical Solution Algorithm for Transient Fluid Flows - Addendum," Los Alamos Scientific Laboratory report LA-5852, Add. (1976).
- L. D. Cloutman, C. W. Hirt, and N. C. Romero, "SOLA-ICE: A Numerical Solution Algorithm for Transient Compressible Fluid Flows," Los Alamos Scientific Laboratory report LA-6236 (1976).
- C. W. Hirt, J. K. Dienes, and L. R. Stein, "SOLA-FLX: A Solution Algorithm for "luid-Structure Interactions of Cylindrical Shells," manuscript in preparation.
- M. Ishii, <u>Thermo-Fluid Dynamic Theory of Two-Phase Flow</u>, (collection de la Direction des Etudes et Recherches d'Electricite de France, Eyrolles, Paris 1975).
- J. R. Travis, F. H. Harlow, and A. A. Amsden, "Numerical Calculation of Two-Phase Flows," Nuc. Sci. and Eng. 61, 1 (1976).
- T. G. Theofanous, T. Bohrer, M. Chen, and P. D. Patel, "Universal Solutions for Bubble Growth and the Influence of Microlayers, 15th Nat. Heat Transfer Conf., Paper 15, San Francisco, CA (August 1975).
- D. Moalem and S. Sideman, "The Effect of Motion on Bubble Collapse," Int. J. Heat and Mass Transfer 16, 2321 (1973).

- G. B. Wallis, H. J. Richter, and J. T. Kuo, "The Separated Flow Model for Two-Phase Flow," Electric Power Research Institute report NP-275, 88 (1976).
- F. H. Harlow and A. A. Amsden, "A Numerical Fluid Dynamics Calculation Method for All Flow Speeds," J. Comput. Phys. <u>8</u>, 197 (1971).
- C. W. Hirt, "Heuristic Theory for Finite-Difference Equations," J. Comput. Phys. <u>2</u>, 339 (1968).

APPENDIX

FORTRAN IV Listing of the SOLA-DF Code LASL Code: LP#-0772

532 269

+COM	DECK . COMDK									COMDK	3
C										COMDK	5
	COMMON /	SOL 1 /								COMDK	3
	1A (27.	821.	BET	A127.821.	Ε	(27,82),	EN	(27.8	21.	COMDIN	14
	SITITLE	(2)	NAM	E (10).	P	(27,82),	Q	(27.8	21.	COMDK	5
	301 (821.	RO	(27.82).	RON	(27.82).	RV	127.8	21.	COMDK	Ð
	48VN (27.	821	U	(27,82).	UD	(27,82).	UN	(27.9	21.	COMDK	7
	5V 127.	82).	VD	(27,82).	VN	(27,82).	XC	12	71.	COMDK	8
	6YC (821								COMDK	9
C										COMOK	10
	COMMON /	501.2 /								COMOK	11
	1450.	CDG.		CHL.	CHV.	CYL.	0	ELT.	DELTMX.	COMDK	12
	2DELX.	DELY.		ECL.	ECV.	EDL.	E	DV.	EIL.	COMDK	13
	3EIV.	E12.		ELHT.	EPSI.	ET.	E	TEM.	ETEM1,	COMDK	19
	HFLG.	GAM1 .		11.	IMAX.	IMI.		M2.	IPL.	COMDK	15
	SIPR.	ITER.		JJ.	MAX.	JMI .		M2.	JPB.	COMOK	16
	SUPT.	OMG.		PBC.	PIN.	PMAX,	F	PNV.	PT.	COMDK	17
	7RDX.	RDY.		RG.	ROIL .	ROIV.	F	.5109	ROL .	COMDK	16
	BROT.	RPIPE		RVIL.	RVIV.	RV12.		RVT.	SCHAN.	COMDK	19
	erc.	THC.		THC1.	THIN.	THTM.		гні,	VISL.	COMDK	20
	IVISV.	WB.		WL.	WR.	WT				COMDK	21
Ċ.										COMOK	25
	INTEGER	CYCLE.	WB.	WL. WR. V	4T					COMDK	23
	REAL IM	P. LONG	. NU	A. NUC						COMOK	24
Ċ										COMOK	25

POOK ORIGINAL

* DE	ECK, SOLADF						SOLACE	1
	PROGRA : S	SOLALINPUT,	TAPE 10= INPUT	OUTPUT, TAP	E9=OUTPUT)		SOL ADF	2
*C/	ALL COMDK						SOL ADF	3
C							SOLADE	· · ·
	DIMENSION	ZC(10)					SOLADE	5
C							SOL ADF	6
	EVCAL (X)	ECV+CHV+IX	-TC1				SOLADE	7
	ELCAL (X)	ECL+CHL . IX	-TCI				SOLADE	8
	SATT(X)=2	255.2+117.8	•X••0.223				SOLADE	9
	SATP(X)=	((X-255.2)/	117.81**4.48	9			SOLADE	10
C							SOL ADF	11
	NAMEL IST	/ SOLDA /					SOLADE	12
	IALPHA.	ASQ.	BUBN.	CDG.	CHL.	CHV,	SOLADE	13
	SCAL '	DELT.	DEL TMX ,	DELX.	DELY.	DEVEL .	SOLADE	14
	3DIM,	ECL,	ECV.	EDL.	EDV.	EL.HT.	SOLADE	15
	HEPSI.	ETEM.	GAMI .	GX,	GY.	IBAR,	SOLADE	16
	51MP,	JEAR,	NAME .	OMG.	PBC,	PHCH,	SOLADE	17
	LOIN.	PLIDT.	PRIDT.	RADIUS.	RG,	ROL,	SOLADE	18
	7R. TIPE.	SGWN,	TC,	THC,	THIN,	TIN,	SOLADY	19
	BTHA IN.	01.	VELMX.	VI.	VISL.	V15V,	SOLAD	20
	SMB,	WL.	WPC.	HI .			SOLAD*	21
-	~ ~ ~			CTODACCC			SULAUF	22
ç	22MU 001	THE UATA A	NU CUNSTANT	STUMAUES			SULAUF	C3
	1 1/1-1	, 30010					COL AUT	
	1 ATT	27					SOLADE	26
	2 YOU 11-0	· = /					SOLADE	27
	00 7 1+1	82					SOLADE	29
	3 YC(1)=0						SCLADE	29
10	5 1611/-01						SOLADE	30
č	SET DEFAL	LT VALLES					SOLADE	31
	Series 1 Market 1 Market						SOLADE	20
~	AL PHA=1						SOL ADF	22
	ASQ=1.23	+E+4					SOLADE	Zie
	BUBN=1.E	*14					SOL ADF	35
	CDG=0.5						SOLADE	36
	CHL=44.3	- 11 L					SOLADE	37
	CHV=6.67						SOLADE	38
	CYL=1.0						SOL ADF	39
	OFVEL = 1	0.0					SOLADE	40
	DEL T=1.08	E -4					SOLADE	41
	DELTMX=1	. CE - 3				V.M.	SOLADE	48
	DELX=1.0				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.000	SOL ADF	43
	DELY=1.0					9.8	SOLADE	
	0.5=MIQ				(B)	and a second	SOL ADF	45
	ECL=4.17	4E+3			. Ca	0.	SOLADE	46
	ECV=2.50	6E +4			0.00	1	SOL ADF	47
	EDL = 1.6E	-6			1.000		SOL ADF	48
	EDV#1.6E	-7			1		SOL ADF	49
	ELHT=1.78	6E +4			to and		SOLADE	50
	EPS1=0.00	01		1 m			SOL ADF	51
	ETEM=1.0			63			SOLADE	5 <i>2</i>
	GAM1=0.0	7		AT 3	1		SOLADE	53
	GX = 0.0			1 4 M	(1997) - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997		SOL ADF	Ei.
	GY # 0.0			Carl and			SOLACE	55
	184R=10		100	18 M			SOLADE	56
	[MP=1.0		5	139			SOL ADF	57
	JBAR=10			1.			SOLADE	Sa

532 270

NAME (1) = 10H +NO NAME +	SO ADE	59
OMG=1.0	SOLADE	60
P9C=1.0	SOLADE	61
Philip 1	50,405	63
PIN=1 0	500.00	6.7
C TOT-O 1	SULAU	03
PLIDIEU.I	SULAU	64
PRIDI=0.1	SOLADE	65
RADIUS = 0.0	SOLADE	66
RG = 0.0	SOLADE	67
ROL = 0.558	SOLADE	68
HPIPE = 0.0	SOLADE	69
SCHIN=8.0E-4	SOLADE	70
TC=373.0	SOLADE	71
THC=0.001	SOLADE	72
THIN = 0.0	SOLADE	73
TIN=373 0	SOLADE	74
THEINEL FAL		75
	SCL AUF	75
	SULAUF	10
VELMX=2.0	SULAUF	27
V1 = 0.0	SOLADE	78
V15L=3.0E-6	SOLADE	79
VISV=2.CE~4	SOLADE	80
WB=1	SOLADF	81
WL=1	SOLAOF	82
WR=1	SOLADE	83
WT=1	SOLADE	84
	SOLADE	DF.
READ AND WRITE INITIAL INPUT DATA	COL ADS	86
	COL ADS	67
READ(10 SOLDA)		00
NEAD (10 TONION)	SULAD	00
USITE O COLL CHANE (I LAL LOL	SULAUF	83
WRITE(9,901) INARELLI, I=1,101	SULACE	90
HRITE (9,985) ALMMA	SOLADE	91
WRITE(9,1015) ASQ	SOLADE	95
WRITE(9,1050) BUBN	SOLADE	93
WRITE(9,1055) CDG	SOLADE	94
WRITE(9,1090) CHL	SOLADE	95
WRITE(9,1085) CHV	SOLADE	96
WRITE(9.930) CYL	SOLADE	97
WRITE(9,920) DELT	SOL ACE	98
WRITE(9,890) DELTMX	SOLADE	90
WRITE (9,910) DELX	500, 400	100
WRITE (9 915) DELY	COL ADE	100
WRITEIG INTOL DEVEL		101
LOTTERS CON DIM	SULAUF	102
	SOLADF	103
SHITE IS, ITOUT ELL	SOLADE	104
WHITEIS, IUSDI ECV	SOLADE	1.05
WRITE (9,1115) EUL	SOLAL	106
WRITE(9,1110) EDV	SOLADE	107
WRITE (9,1120) ELHT	SOLADE	108
WRITE(9,935) EPSI	SOLADE	109
WRITE (9,1025) ETEM	SCLADE	110
HRITE(9.1010) GAM!	50,407	113
WRITE(9,940) GX	COL ALF	1.1.1
WRITE (9, 945) 6Y	504.40¥	110
	SULAD	113
ARTICIS, 5007 10AR	SOL AOF	114
WHITE 19, TUEUL IMP	SOLADE	115
WRITE(9,905) JBAR	SOLADE	116
DUUD	ADIANA	
(二) 「「「」」」」 「「「」「」「」「」「」「」「」」	我的新说有这句母亲的 是是是	- 2
	· · · · · · · · · · · · · · · · · · ·	2 6
		h fair

000

C

66

Contraction of the second of the second		S/T ADF	11.
WRITE (9,980) OMG		SOLADE	118
WRITE (9,1028) PBC		SOLADE	119
HRITE (9,1035) PHCH		SCI ADE	120
WRITE (9.1130) PIN		SUL AUF	1.21
HRITE(9.975) PLTOT		SULAU	123
WRITE (9.970) PRIDT		SULAUF	100
RITE (9,1125) RADIUS		SOLAD	123
W(ITE(9,1070) RG		SOLAD	1000
WRITE (9,1045) ROL		SOLADE	100
WRITE (9,1065) RPIPE		SOLADE	100
WRITE (9, 1060) SGWN		SOLADE	127
WRITE (9,1105) TC		SOLADE	150
WRITE (9,1040) THC		SOLADE	129
WRITE (9, 1140) THIN		SOLADE	130
WRITE (9, 1135) TIN		SOLADE	131
WRITE (9,965) THEIN		SOLADE	132
LEITE (9.950) UI		SOLADE	133
WEITEIG GERI VELMX		SOLADE	134
LEITEIG GEEL VI		SOLADE	135
LEITEIG 10801 VIS		SOLADE	136
LOITE Q 10751 VISU		SOLADE	137
LETTE (0 1005) LE		SOLADE	138
LICITE (O OGA) LA		SOLADE	139
UD11510 0051 UD		SOLADE	140
HEITE (9, 1000) HT		SOLADE	1 4 1
ARTICIS, TOUCH AT	19512 51	SOL ADF	142
DEG FORMATTION, TOH DET THY	10512 51	SOL ADF	143
BO FORMATTION, TOH DELTINA	151	SOL ADF	144
DOE CODENTITON, TON TONNE	151	SOL ADF	145
SUS FORMATION, ICH SCARE	10512 51	SOL ADF	146
GIG FORMATTION, ICH DELAS	10012 61	SOL ADF	147
STO FORMATION, ICH DELT-	10012 61	SOLADE	148
SEU FORMATTION, TOM DELTA	10010 61	SCLADY	149
930 FORMATTION, IUM CTL-	10010 51	SOLADE	150
935 FORMATTION, TOH EPSI-	IPEIE.D	SOLADE	151
940 FORMATTINX, IUM OAR	10010 61	SOLADE	152
945 FORMATITUX, TUH UT=	IPEIC.D	SOLADE	153
950 FORMATLIUX, 10H UI=	IPEICO/	SC ADE	154
955 FORMATCIUX, ICH VI*	IPELE.DI	SCI ACE	155
960 FORMATIIOX, IOH VELMX=	, IFE 12.51	SOLADE	156
965 FORMATCIOX, 10H THEIN=	, IFE16.57	SOL ADE	157
970 FORMATIIOX, 10H PRIDI=	. IPEIC.DI	SOL ADE	150
975 FORMATIIOX, 10H PLIDI=	, IPE12.5)	SOL NOT	150
980 FORMATIIOX, 10H OMG=	, 1PE12.51	SUL AUX	103
985 FORMATIIOX, 10H ALPHA=	, IPE 12.5)	SUL AUF	100
990 FORMAT(10X, 10H	,151	SULAUT	101
995 FORMATIIOX, 10H WR=	.15)	SUL PUT	1 De
1000 FORMATIIOX, ICH WT=	.15/	30- AU*	10.5
1005 FORMATIIOX, 10H WB=	,15)	SOL AD*	164
1010 FORMAT(10X, 10H GAMI=	.1PE12.5)	SOLADE	165
1015 FORMATCIOX. 10H ASQ=	.1PE12.51	SOLADE	166
1020 FORMATIIOX. 10H IMP=	, 1PE12.5)	SOL ADF	167
1025 FORMATILOX. 10H ETEM=	, 1PE12.5)	SOL ADF	168
1028 FORMATIIOX, 10H PBC=	,1PE12.5)	SOLADE	169
1030 FORMATILOX, 10H DEVEL-	, IPE12.5)	SOLADE	170
1035 FORMATILIOX. 10H PHCH-	, IPE 12.5)	SOLADE	171
UNO FORMATILOX, 10H THC-	,1PE12.51	SOLADE	172
1045 FORMATILON, 10H BOLS	.1PE12.51	SOL ADF	173
OBD FORMATILIDX 10H BURNS	,1PE12.5)	SOLADE	174
1000 Contractions Contraction	6.70 275		

1055 FORMAT(10X, 10H CDG= ,1PE12.5)	SOLADF	175
1060 FORMAT(10X, 10H SUHN= ,1PE12.5)	SOLADE	176
1065 FORMAT(10X, 10H RPIPE= ,1PE12.5)	SOLADE	177
1070 FORMAT(10X, 10H RG= ,1PE12.5)	SOLADE	178
1075 FORMAT(10X, 10H VISV= ,1PE12.5)	SOLADE	179
1080 FORMAT(10X, 10H VISL* ,1PE12.5)	SOLADE	180
1085 FORMAT(10X, 10H CHV= ,1PE12.5)	SOLADE	161
1090 FORMAT(10X, 10H CHL* ,1PE12.5)	SOLADE	182
1095 FORMAT(10X, 10H ECV= ,1PE12.5)	SOLADF	183
1100 FORMAT(10X, 10H ECL= ,1PE12.5)	SOLADE	184
1105 FORMAT(10X, 10H TC* , 1PE12.5)	SOLADE	185
1110 FORMAT(10X, 10H EDV= ,1PE12.5)	SOLADE	186
1115 FORMAT(10X, 10H EDL= ,1PE12.5)	SOLADE	187
1120 FORMAT(10X, 10H ELHT= ,1PE12.5)	SOLADF	188
1125 FORMAT(10X, 10H RADIUS= ,1PE12.5)	SOLADE	189
1130 FORMAT(10X, 10H PIN= ,1PE12.5)	SC' ADF	190
1135 FORMAT(10X, 10H TIN= ,1PE12.5)	SOLADF	191
1140 FORMAT(IOX, IDH THIN= , IPE12.5)	SOLADF	192
5 FORMAT(6X,1H1,7X,1HJ,12X,2HUD,17X,2HVD,18X,2HRV)	SOLADE	193
10 FORMAT(5X, 12, 5X, 12, 5X, 19E12, 5, 6X, E12, 5, 6X, E12, 5)	SOLADE	194
35 FORMAT(IHI)	SOLADE	195
SULFORMATICHI, IUAIU, //)	SOLADE	196
44 FORMATION, METCLE , 15,8X,4HIDE , IMETELS,8X,4HIZE ,ETELS,	SOLADE	197
	SU ADF	198
TO FORMATTING DAY DUTE 10010 7 by CLOVALES 101	5 AUF	199
TO FORMATION, DUAL OF THE LOS THE LOS THE THE THE THE SHOLL THE SH	AUF	200
1/ FUNDATION, INT, AN, INU, ICA (NU, ICA, INY, I/A, INP, 14A, CHRU, 14A, CHIN,	SCAUP COLADE	201
LAR FORMATIEN 12 TY 12 EV 10012 E TY 012 E TY 012 E TY 012 E	SOLADE	202
15X F12 51	SOLADE	205
49 FORMATION RHITERS 15 TY RHTIMES IDEID 5 TY THAYALES IN	SOL ADE	205
14X, SHEELT= F12, 5, 4X, 34F= F12, 5, 4X, 44F1= F12, 5)	SOLADE	205
C COMPUTE CONSTANT TERMS	SOLADE	207
IMAX* IBAH+2	SOL ADE	208
JAX = JAR+2	SOLADE	209
[H]=[MAX-1	SOLADE	210
I-XAMU=1HU	SOL ADE	211
S-XAML+SML	SOLADE	212
IM2*IMAX-2	SOLADE	213
RDX=1.0/DELX	SOLADE	214
RDY=1.0/DELY	SOLADE	215
C CONTOUR PLOT, SETTING UP VARIABLE VALUES	SOLADE	216
XC(1)=0.0	SOLADE	217
D0 15 1+2, [M]	SOLADE	218
XC(1)=DELX*(FLOAT(1)-1.5)	SOLADE	219
15 CONTINUE	SOLADE	220
NNX=-[BAR	SOLADE	221
YC(1)=0.0	SOLADE	555
00 20 J=2, JH1	SOLADE	223
YC(J) = DELY*(FLOAT(J) - 1.5)	SOLADE	224
20 CONTINUE	SOLADE	225
NNY =- JEAR	SOLADE	226
NZX*27	SOLADE	227
N (Y*82	SOLADE	558
Nr. #10	SOLADE	559
2/mv=-1.0	SOLADE	230
2MX=-1.0	SOLADE	231
DLZ=0.0	SOLADE	535
8		
the second s		-77
		212
	5.5	6

	ZC=1.0	SOL ADF	233
	DMPX=DELX+(FLOAT([BAR))	SOL ADF	234
	DMPY=DELY + (FLOAT (JBAR))	SOL ADF	235
	ICRD=0.0	SOLADE	236
	NTITLE=:0	SOL ADF	237
	XLABEL=1HX	SOL ADF	238
	YLABEL = 1 HY	SOL AOF	239
	NXLBL=1	SOL ADF	240
	NYLBL=1	SOL ADF	241
	LONG=IBAR *DELX.	SOLADE	242
	HIGH=JBAR +DELY	SOL ADF	243
	IYB~916	SOL ADY	244
	IF (LONG.LE. (1.13556+HIGH) GO TO 30	SOLADE	2.5
	1 XL = 0	SOLADE	246
	1XR=1022	SOLADE	247
	1YT=916-HIGH+1022/LONG	SOLADE	248
	GO TO 33	SOLADE	549
30	X=LONG+150/HIGH	SOLADE	250
	1×L=511+X	SOL ADF	251
	1XR=511+X	SOL ADF	555
	141=10	SOL ADF	253
33	CONTINUE	SOLAD	204
	VELMXI=AMINI (DELX.DELY)/VELMX	SOL ADF	200
	INTITALIZE NOTERICAL CONSTANTS	SULAU	005
	TLPI T-0	SULAD	2507
	T=0	SUL AUE	250
	ITER=0	SOLADE	200
	CYCLESO	SOLADE	261
	NEX=0	SOLADE	262
	19.=2	SOLADE	26.3
	IF (WL.EQ.5) 1PL=3	SOLADE	264
	[PR=1/1]	SOLADE	265
	IF (WR.EQ.5) [PR=1M1-1	SOLADE	266
	JP8=2	SOLADE	267
	IF (WB.EQ.5) UP8=3	SOL ADF	268
	JPT=JM1	SOLADE	269
	IF (WT.EQ.5) JPT=JM1-1	SOLADE	270
	INITIALIZE PHYSICAL CONSTANTS	SOL ADF	271
	IF(D1M.LT.1.5)DELX=1.0E+10	SOLADE	272
	ETEM1=1.0-ETEM	SOLADE	273
	THC1=1.0-THC	SOL ADF	274
	PNV=BUBN*4.1828	SOL ADF	275
	TC2=2.0*TC	SOLADE	276
	INITIALIZE AREAS	SOLADE	277
	DO 53 J=1.JMAX	SOLADE	278
	DO 53 1=1.,MAX	SOLADE	279
	A(1, J)=1.0-CYL+CYL+(RADIUS+DELX+(FLOAT(1)-1.5))	SOLADE	580
	IF(1.EQ.1.AND.WL.LT.3)A(1.J)=0.0	SOL ADF	581
	17 (1.20.10AX.AND.WR.LT.3)A(1.J)=0.0	SOLADE	585
	TELEC MAY AND UT IT THE HEAD	SOLADE	683
	I TOLEU, UTAA, AND WILLISTA TUUTEU U	SOLADE	254
03	DEFINE OPECIAL AREAS	SULAD	500
		SULADE	000
210	ECEMATINES	SCL ADF	281
-10	15 NO LE 0160 TO 216	SC LOC	200
	00 215 K*L.NO	SCL AUF	203
	and show the state	John Mart	0.30

POOR ORIGINAL 532 274

69

		READ(10,210) 1808, 1808, JB08, JE08	SOL ADF	291
		D0 211 J=JBL3, JEC2	SOL ADF	292
		00 211 1*1908,1208	SOL ADF	293
	211	A(1,J)=0.0	SOL ADF	294
	215	CONTINUE	SOL ADF	295
	216	CONTINUE	SOL ADF	296
		WRITE (9,220)	SOL ADE	297
	550	FORMAT(1H1,12H AREA ADRAY)	SOL ADF	296
		00 230 J=1, JMAX	SOL ADF	299
		U=JMAX+1-J	SOLADE	300
	230	WRITE (9,225) (A(1, U), 131, 1MAX)	SOL ADE	301
	225	FORMAT(1H ,12(1X,1PE9.2))	SOLADE	302
		HRITE(9,235)	SOLADE	303
	235	FORMATIINI	SOL ADF	304
C		INITIALIZE VARIABLES	SOLADE	305
		D0 36 J=1, JMAX	SOL ADF	306
		DO 56 1+1, IMAX	SOL ADF	307
		U(1,J)=U1	SOLADE	308
		1V*(L, 1)*	SOLADE	309
		UD(1,J)=VD(1,J)=0.0	SOLADE	310
		IF (THIN.LT. THC) GO TO 38	SOLADE	311
		IF (THIN.LT.THCI)GO TO 36	SOL ADF	312
C		WAPOR STATE (P,T)	SOLADE	313
		THETHIN	SOL ADF	314
		EVT-EVCAL (TIN)	SOLADE	315
		RV(1, J) = RV1V = TH+PIN/(GAM1+EVT)	SOLADE	316
		RO(1, J)=RO(V=RV(1, J)+(1.0-TH)*ROL	SOL ADF	317
		E(1, J)=EIV=(RV(1, J)=EVT+(RO(1, J)=RV(1, J))=ELCAL(TIN))/	SOL ADF	318
	1	RO(1,J)	SOLADE	319
		GO TO 40	SOL ADF	320
	36	CONTINUE	SOL ADF	321
		TSAT=SATT(PIN)	SOL NOF	355
		EVSAT=EVCAL (TSAT)	SOLADE	323
		IFITHIN.LT.THCICO TO 38	SOL ADF	3:4
C		SATURATED STATE (P, TH)	SOL ADF	325
		RV12=RV(1,J) =THIN+PIN/IGAM1+EVSAT)	SOLADE	356
		R012=R0(1,J)=RV(1,J)+(1.0-THIN)*R0L	SOL ADF	327
		E12=E(1,J)=(RV(1,J)*EVSAT+(1,0-THIN)*ROL*ELCAL(TSAT))/RO(1,J)	SOLADE	328
		GO TO 40	SOLADE	329
	38	CONTINUE	SOL ADF	330
C		LIQUID STATE (P,T)	SOL ADF	331
		EVSAT*EVCAL (TIN)	SOLADE	332
		PSAT*SATP(TIN)	SOL ADF	333
		RV(1,J) #RV1L *THC+PSAT/(GAM1+EVSAT)	SOL ADF	334
		TH*(PSAT-PIN)/(ASQ*ROL)+THC	SOL ADF	335
		R0(1,J)*R01L*RV(1,J)*(1,D-TH)*R0L	SOL ADF	336
		E(1,J)=EIL=(RV(1,J)*EVSAT+(1.0-TH)*ROL*ELCAL(TIN))/RO(1,J)	SOLADE	337
	40	CONTINUE	SOL ADF	338
		ET = E(1,J)	SOL ADF	339
		ROT=RO(1,J)	SOLADE	340
		RVT=RV(1,J)	SOL ADF	341
		11#1	SOL ADF	342
			SOL ADF	343
		CALL EOS	SOL ADF	344
		P(1,J)*PT	SOLADE	345
	56	CONTINUE	SOLADE	346
		CALL BC	SOLADE	347
		00 10 502	SOLATE	348

532 275
2	CTADT OVE	SOLADE	349
1	FOR CONTINUE	SOL ADF	350
	DE CONTINUE	SOLADE	351
	TER=0	SOLADE	352
	PLUS-IPP	SOL ADF	353
	COMPLET TEMPERARY II AND V	SOL NOF	35++
Ċ.	COPPOIE TEMPERANT O NO T	SOLADE	355
		SOL ADF	356
	00 70 1=2.141	SOL ADF	357
		SOL ADF	358
	AU8=2.0*A(1.0)*A(1+1.0)	SOLADE	359
		SOL ADF	360
	AUGRETATI, JITATITI, JITAGO	SULADE	361
		SOL ADF	362
	-ALPHA ABSIDNET, STRUCTURE 1, 0 + VN(1, J-1) + VN(1+1, J-1))	SOLADE	363
		SOLADE	364
	(*(UNI1, J*))*UNI1, J*17)	SOLADE	365
	2-ALPHATABOLVNIT, STUNITELS (1 1-1))	SOLADE	366
	3*(UN(1, U+1)=2.U-UN(1+1, U)*(A(1, J)*A(1, J+1)/(A(1, J)*A(1, J+1))*	SOLADE	367
	VD[=0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	SOLADE	368
	TA([+1,J)*A([+1,J+1))*(A([,J)*A([,J-1))/(A([,J)*	SOLADE	369
	(1 + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	SOLADE	370
	1A(1, J-())+A((+1, J)+(PON(1+1, J)-PVN(1+1, J))/90 (1+1, J)	SOLADE	371
		SOLADE	372
	Dis -0 Expusit ()+(PON(1,J)-PVN(1,J))/RON(1,J)+(UD(1-1,J)+UD(1,J))	SOLADE	373
	HOLEU.D. HVN. I. STANDART IST ANALYSIS ANALYSIS	SOL ADF	374
	DIC-0 5410(1, 1)+(RVN(1, J)+(RON(1, J)-RVN(1, J))/RON(1, J)+RVN(1+1, J)+	SOLADE	37
	1/00/(1+1_1)-PVN(1+1_1)/PON(1+1_J))	SOL ADF	376
	DUT-0 5+10(1 1+1)+(PVN(1 1+1)+(RON(1 J+1)-RVN(1 J+1))/RON(1 J+1)+	SOL ADF	377
	TRUN(1+1_1+1)*(RON(1+1_3+1)+RVN(1+1_J+1))/RON(1+1_J+1))	SOL ADF	378
	RE-0 5+10(1, J-1)+(RVN(1, J-1)+(RON(1, J-1)-RVN(1, J-1))/RON(1, J-1)+	SOLADE	279
	180N(1+1, J-1, *(RON(1+1, J-1)-RVN(1+1, J-1))/RON(1+1, J-1))	SOL ADF	380
	ETX = AL ER+ (RDX+(RLR+(UD(1,J)+UD(1+1,J))+ALPHA+ABS(RUR)+(UD(1,J)-	SOLADE	38!
	100(1+1, J))-R(L*(UD(1-1, J)+UD(1, J))-ALPHA*ABS(RUL)*(UD(1-1, J)-	SOLADE	387
	RUC - RUT + ROY + (VDT + (RUC + RUT) + AL PHA + ABS (VDT) + (RUC - RUT) -	SOL ADF	383
	3VDR+(RUB+R(K)-ALPHA+ABS(VDB)+(RUB-RUC)))/(RO(1,J)+RO(1+1,J))	SOL ADF	394
	V15X=0.0	SOL ADF	385
	U(1,J)=UN(1,J)+DELT+(2.0+(P(1,J)-P(1+1,J))+RDX/(RO(1,J)+RO(1+1,J))	SOLADE	386
	1+GX-FUX-FUY+VISX-FOU)	GOL ADF	387
	60 CONTINUE	SOL ADF	388
	V(1, J)=0,0	SOLADE	389
	AVB=2.0*A(1, J)*A(1, J+1)	SOLADE	390
	1F (AVB.EQ. 0.0)00 TO 65	SOL ADF	391
	AVBR=(A(1,J)+A(1,J+1))/AVB	SOLADE	395
	FVX=R0X/8.0*((UN(1-1,J+1)+UN(1,J+1)+UN(1-1,J)+UN(1,J))*	SOLADE	393
	1(VN(1+1,J)-VN(1-1,J))=	SOLADE	394
	2AL PHA*ABS(UN(1-1, J+1)+UN(1, J+1)+UN(1-1, J)+UN(1, J))*	SOLADE	395
	3(VN(1+1, J)-2, 0*VN(1, J)+VN(1-1, J)))	SOL ADF	396
	FVY=0.5*RDY*(VN(1,J)*(VN(1,J+1)-VN(1,J-1))-	SOL ADE	397
	1AL PHA*ABS(VN(1, J))*(VN(1, J+1)-2.0*VN(1, J)+VN(1, J-1)))	SOL ADF	398
	UDR=0.5*(UD(1,J)+UD(1,J+1))*(A(1,J)*A(1+1,J)/(A(1,J)*A(1+1,J))	SOL ADF	399
	1+A(1,J+1)*A(J+1,J+1)/(A(1,J+1)*A(J+1)))	SOLADF	400
	UDL=0.5*(UD(1-1,J)+UD(1-1,J+1))*(A(1,J)*A(1-1,J)/(A(1,J)*A(1-1,J))	SOL ADF	401
	1+A(1,J+1)+A(1-1,J+1)/(A(1,J+1)+A(1-1,J+1)))	SOLADE	402
	RVT=0.5*RVN(1,J+1)*(R0N(1,J+1)-RVN(1,J+1))/R0N(1,J+1)*(VD(1,J)*	SOL ADF	403
	IVD(1,J+1))*A(1,J+1)	SOL ADF	404
	RVB=0.5+RVN(1,J)+(RON(1,J)-RVN(1,J))/RON(1,J)+(VD(1,J-1)+VD(1,J))	SOLADE	405
	1*A(1,J)	SOL ADF	406
		2.11	0
		/ See	71

RVF	=0.5*VD(1+1,J)*(RVN(1+1,J)*(RON(1+1,J)-RVN(1+1,J))/RON(1+1,J)*	SOL ADF	+07
IRVN	([+].J+1)*(RON([+],J+1)-RVN([+],J+1))/RON([+],J+1))	SOL ADF	908
RVC	#0.5*VD(1,J)*(RVN(1,J)*(R0N(1,J)-RVN(1,J))/R0N(1,J)+RVN(1,J+1)*	SOL ADF	409
1 (80	N(1, J+11-RVN(1, J+111/RON(1, J+11)	SOL ADF	410
RVL	=0.5*VD(1-1,J)*(RVN(1-1,J)*(RON(1-1,J)-RVN(1-1,J))/RON(1-1,J)*	SOL ADF	911
1RVN	<pre>i(1-1, J+1)*(RON(1-1, J+1)-RVN(1-1, J+1))/RON(1-1, J+1))</pre>	SOLADE	412
FDV	=AVBR*(RDX*(UDR*(RVC+RVR)+ALPHA*ABS(UDR)*(RVC-RVR)-UDL*(RVL+RVC	SOL ADF	413
1)-4	LPHA*ABS(UOL)*(RVL-RVC))+RDY*(RVT*(VD(1,J)+VD(1,J*1))*	SOL ADF	414
SALF	HA*ABS(RVT)*(VD(1,J)-VD(1,J+1))-RVB*(VD(1,J-1)*VD(1,J))-	SOL ADF	415
3ALF	HA*ABS(RVB)*(VD(1,J-1)-VD(1,J)))/(RON(1,J)+RON(1,J+1))	SOLADE	416
VIS	Y=0.0	SOLADE	417
VC	.J)=VN(1,J)+OELT+(2.0+(P(1,J)+P(1,J+1))+ROY/(RO(1,J)+RO(1,J+1))	SOL ADF	418
1+G1	-FVX-FVY+VISY-FDV)	SOLADE	419
65 COM	ITINE	SOLADE	450
C ADD	PIPE FRICTION	SOLADE	421
16.1	RP1FE.EQ.0.0.0R.DIM.GT.1.5)G0 TO 70	SOLADE	422
11*		SOLADE	423
501		SOLADE	424
CAL		SOLADE	460
10 000		SOLADE	460
DED COX		SUL AUF	467
C 440	CONVEDGENCE REEN REACLED	SULAUF COLADE	400
15		SOLADE	420
LTE	P=1TEP+1	SOL ADE	421
151	TER LT 50100 TO 255	SOLADE	472
NED	NEX+1	SOL ADE	433
IF (NEX.LT.1000) GO TO 400	SOL ADE	434
T=1	00000000.0	SOL ADF	435
60	TO 502	SOL ADF	436
C COM	PUTE UPDATED CELL VELOCITIES U.V	SOL ADF	437
255 COM	TINUE	SOL ADF	438
CAL	L PITER	SOLADE	439
CAL	L BC	SOLADE	440
GO	TO 250	SOLADE	Lyin 3
400 COM	TINJE	SOLADE	442
C COM	PUTE UPDATED QUANTITIES RO. E.RV	SOL ADF	443
00	4500 J=2.JM1	SOLADE	توتوتو
00	4500 1=2.IM1	SOLADE	445
1F (A(1,J).EQ.0.0100 TO 4500	SOLADE	446
ABR	(=2.0*A(1,J)*A(1+1,J)/(A(1,J)*A((+1,J)))	SOLADE	447
ABL	=2.0*A(1,,*A(1-1,.J)/(A(1,J)*A(1-1,J))	SOL AOF	448
ABT	=2.0*A(1,U)*A(1,U+1)/(A(1,U)*A(1,U+1))	SOLADE	449
ABE	((1-U.1)A*(1,.1)A)/(1-U.1)A*(0.5=	SOL ADF	450
C DEM	S'TY EQUATION	SOLADE	451
ULP	=U(1,J)+UD(1,J)*(RVN(1,J)+RVN(1+1,J))/(RON(1,J)+RON(1+1,J))	SOLADE	452
ULL	#U(]+1,J)+UD(1+1,J)*(RVN(1+1,J)*RVN(1,J))/(RON(1+1,J)*RON(1,J))	SOLADE	453
UL T	=V(1,J)+VD(1,J)*(RVN(1,J)+RVN(1,J*1))/(RON(1,J)+RON(1,J+1))	SOLADE	454
UL E	<pre>W([,J+1)=VD([,J+1)*(RVN([,J+1)*RVN([,J))/(RON([,J+1)*RON(1,J)))</pre>	SOLADE	455
UVP	=U(1,J)+UD(1,J)*(RON(1,J)+RON(1+1,J)=RVN(1,J)=RVN(1+1,J))/	SOLADE	456
1 (RC	N([,J]*RON(]*1,J))	SOL ADF	457
UVL	#U(1-1,J)+UD(1+1,J)+(RON(1-1,J)+RON(1,J)+FVN(1-1,J)+RVN(1,J))/	SOL ADF	458
1 (RC	N(1+1,J)+RON(1,J1)	SOLADE	459
UV1	=V([,U)*VD([,U)*(RON([,U)*RON([,U*1)*RVN([,U)*RVN([,U*1))/	SOLADE	460
1.180	N(1, U)*#UN(1, U*1))	SOL ADF	461
UVE	=V([,J=])+V0([,J=])*(HON([,J=1)+RON([,J)-RVN([,J=1)+RVN([,J))/	SOLADE	+62
1 LEG	N11, J-11+#ON(1, J).	SOLADE	463
FLA	*IULR*(HUNCL, J)*HVNL, 'I*HUNCL*1, J)*RVN([*1, J))*ALPHA*ABS(ULR)*	SOLADF .	464

PAN

72

532 277

1(RON(1, J)=RVN(1, J)=RON(1+1, J)+RVN(1+1, J)))*ABR	"X.L ALF	400
FLL=14L*(RON(1+1,J)=RVN(1+1,J)+RON(1,J)=RVN(1,J)+ALPHA*ABS(JLL)*	SOL ADF	400
TIPONITET DEPUNITET DEPONIT DEPONIT DEPONIT	SOL ADF	467
FIT=118 T+(PONIT_D-PUNIT_D+PONIT_J+1)-RUNIT_J+1)+ALPHA*ABS(ULT)*	SOL ADF	468
1180N(1,1)-RUN(1,1)-RON(1,1+11+RVN(1,1+11))*ABT	SOLADE	469
ELE-111 8+(PON(1, J-1)-RVN(1, J-1)+RON(1, J)-RVN(1, J)1+ALPHA+AES(ULB)*	SOL ADF	470
1 PONT 1-11-PUNIT -11-PONT J+RVN(1, J)11*ABB	SOL ADF	971-
EVD=11VD+(EVN(1,1)+EVN(1+1,1))+ALPHA*ABS(UVR)*(RVN(1,J)-	SOL ADF	+72
	SOL ADF	473
EVA = (174 + (DVA)(1-1, 1)+PVN(1, 1))+ALPHA+ABS(UVL)+(RVN(1-1, J)+	SOL ADE	te 7he
	SOL ADF	475
EVT = (INT + (PVN(1, 1) + PVN(1, 1+11) + AL PHA + APS(UVT) + (RVN(1, J) -	SOL ADF	+76
	SOL ADF	477
EVD-(100+(PVN(1,1-1)+PVN(1,1))+4LPMA*ABS(UVB)*(RVN(1,J-1)-	SOLADE	478
	SOL ADF	479
IPONTE DO	SOL ADF	480
POLL N=POWLT N=D A+DELT+((FLR+EVR-FLL-EVL)+RDX+(FLT+EVT+FLB-	SOLADE	481
	SOL ADF	482
ENERGY EQUATION	SOLADE	483
	SOL ADF	484
POED-POWI [+] [] +F2: [+]])	SOLADE	485
POEL=PON(1-1, 1) +EN(1-1, J)	SOLADE	486
POET = PON(1, 1+1)+EN(1, 1+1)	SOLADE	487
POED-PON(1, J-1) (EN(1, J-1))	SOLADE	4.00
ICIETEM OT O 5100 TO 425	SOLADE	+89
TUC-CATT(D(1, 1))	SOL ADF	990
TUD-CATT/D(1+1.))]	SOL ADF	F81
TV4 = 14TT(D(1=1, 1))	SOL ADF	492
TUT C TT(D(1, 1-1))	SOL ADF	493
TUD-CA T(D(1))	SOL ADF	494
	SOL ADF	495
THE THE TO A DEC PONIT IN FELL PUNIT IN FIELY-ECLIN/ (RON(1, J) *CHL+	SOL ADF	1.96
	SOL ADF	+97
TVD-TO-(DOED-DON(1+1.))*FCL-RVN(1+1.J)*(ECV-ECL))/(RON(1+1.J)*	SOLADE	498
	SOLADE	+99
TH -TO- (DOD - DON(1+1,)) +FCL-RVN(1+1, J) + (ECV-ECL))/(RON(1+1, J) *	SOLADE	500
	SOL ADF	501
TUT-TO+ (DOET-DON(1 1+11+FC1 -RVN(1, J+1)*(ECV-ECL))/(RON(1, J+1)*	SOL ADF	502
VOLA - DUNIT (+1)+(CHV-CH4))	SOL ADF	503
TUP-TC+IPACR-PONIT I-11+FCL -RVN(1.J-11+FCV-ECL1)/(RON(1.J-11+	SOL ADF	504
	SOLADE	505
LOD TANTING	SOL ADF	506
HOU CONTINUE IN FURAL (TVC)	SOL ADF	507
OF VERVIAL LIFEVER (IVE)	SOL ADF	508
OF A - PUBLICAL USEVCAL (TVL)	SOLADE	509
HEYLERVILLED FORAL TVT	SOLADE	510
HEVIERVINI LITEVING (TVR)	SOL ADF	511
HE VERRYNN , JUT / LYDAL (1907	SOLADE	512
HELLEROEU-REVE	SOL ADF	513
HELMANDER THE VIOLANT AND A STATE OF A STATE	SOL ADE	514
HELL HOLL HE VL	SOLADE	515
MELLISHUE ITHEYI	SOLADE	516
TOCO-D. E. (UND. (DEVC-DEVD) + A) PHA + ARS(UVR) + (REVC-REVR)	SOLADE	517
HEREU.D. TUVR THE PULLAR BUILT RI + (REL C-RELR) I * ABR	SOLADE	518
THE A REAL AND A REAL	SOLADE	519
THELED, DELOVE THE EFFECT OF APPLICATION	SOL ADE	5.80
THELL HALL TALFTA ADDIVEL PRANADS (LIVT) + (REVC-REVT) +ULT (RELC+	SOLAOF	521
HE FOUND TO THE REPORT OF THE ART	SOL ADF	5.22
RELII*ALPHA ABSIN INTELL ALL AD		

ċ

c

POOR ORIGINAL

FREB=0.5+(UVB+(REVE+REVC)+++PHA+ABS(UVB)+(REVB-REVC)+ULB+(RELB+	SOL ADF	523
IRELC) + ALPHA + ABS(ULB) + (RELB-RELC)) + ABB	SOL ADF	524+
FEL=(RDX+(FRER-FR)+RDY+(FRET-FREB))/A(1,J)	SOL ADF	525
FPW=-P(1, J)*((ABR*U(1, J)-ABL*U(1-1, J))*ROX*(ABT*V(1, J)-	SOL ADF	526
1AB8+V(1, J-11)+RDY): A(1, J)	SOL ADF	527
TH= (ROL+RVN(1, J)-RON(1, J))/ROL	SOLADE	529
TH=AMAX1(TH,THC)	SOLADE	529
TH=AMINI(TH,THCI)	SOL ADF	530
THI=TH	SOLADE	531
IFITHLOT 0.5)THISLO-THI	SOLADE	532
440 R9=(TH1, ANV) **0. 333	SOL AC "	533
CKN=0 5+CDG+((LD)1,)+LD(1-())++2+(VD(1,)+VD(1,)+2)++0.5	SOL AL	534
1+12 0+VISV/PR	SOL ADF	535
FRIGHT 25+000+10 275+101/201+110/1 11+10/1-1 11+2+100(1 3)+	SOL ADE	536
	SOLADE	537
EPOD(1)+(((DVN(1))+DVN(1+1))+D(N(1))+D(N(1+1))+	SOL ADE	538
15 0+00 1/00 +5 01-000/11 0+000/1+1 01/(000/11 0+000/1+1 0))*	SOLADE	539
1420+	SOLADE	540
1404	SOLADE	541
	SOL ADE	542
SHOLT-THVILL-LOTHNICLOTTHON T-LOTHONICLOTTOCIC-TOC	SOL ADE	Eu Z
STAGLI/DELX+	COL ADE	644
ATTIKVNTT, JI+KVNTT, J+LI-HUNIT, J+HUNIT, J+HUNIT, J+TI+E, U-HULI/TE, U-HULI	COLADE	6.6
5-TRANTI, JI+RANTI, J+TITATRONTI, JI+RONTI, J+TITI+ADIT, J-ABI	COL AUF	040
5-((RVN(1,J=1)	SUL AUT	240
5+RVN([,J])=	SUL AUF	04 /
SRON([,J=1)=RON(1,J)+2.0*RCL)/(2.0*RCL)=(RVN(1,J=1)*HVN(1,J))/	2 AU3	248
7(RON(1, J-1)+RON(1, J)))*VD(1, J-1)*ABB)/DELY)/A(1, J)	SULADE	249
ENERGY DIFFUSION	SOLADE	220
TEM=EN(1,J)	SOLADE	551
TEMR=EN(1+1,J)	SOL ADF	552
TEML=EN 1-1.J)	SOLADE	553
TEMT=EN(1.J+))	SOLADE	554
TEMB=EN(1,J-1)	SOLADE	555
THR=(ROL+RVN(1+1,J)-RON(1+1,J))/ROL	SOLADE	556
THR=AMAX1(THR,THC)	SOLAOF	557
THR=AMINI(THR,THCI)	SOLADE	558
THL = (ROL +RVN(1-1, J) -RON(1-1, J) 1/ROL	SOL ADF	659
THL #AMAX1 (THL, THC)	SOL ADF	560
THL=AMINI(THL,THC))	SOLADE	561
THT+(ROL+RVN(1, J+1)-RON(1, J+1))/ROL	SOL ADF	562
THT=AMAX1(THT,THC)	SOLADE	563
THT=AMIN1(THT_THC1)	SOL ADE	56-
THR= (R0L+RVN11_1-11-R0N11_1-11)/R0L	SOLAOF	565
THE AMAYI (THE THE)	SOL ADE	566
	SOL ADE	687
EVEN E*(EDU*(TU-TUE)+EDU*(2 0-TU-TUE))*AGD	50.05	660
EXALU, 0 * 1507 * 110 * 10 * 10 * 10 0 - TU TU TU TU TU TU	0.0.00	560
	COLUMN T	503
EKL+0.5*IEUV*IIM+IMLI*EUL*IC.U*IM*IML)/*ABL	200 AUT	570
EKB=0.5*(EDV*(TH+THE)*EDL*(2.0-TH-THE))*ABB	SULAUX COLOR	271
DIFE=(RDX*RDX*(EKR*)TEMR+TEMI-EKL*(TEM-TEML))	SULAUT	2.4
+RDY*RDY*(EKT*(TEMT*TEM)+EKB*(TEM*TEMB)) //ALL.J)	SOLAD	573
UPDATE ENERGY	SOLADE	574
E(1,J)=(ROEC+OELT*(-FEC+FDIS+FDP+DIFE+FPW))/RO(1,J)	SOL ADF	575
VAPOR DENSITY EQUATION	SOLADF	576
RV(1,J)=RVN(1,J)=DELT*0.5*((FVR+FVL)*RDX*(FVT+FVB)*	SOLAOF	577
IROY)/A(1,U)	SOLAOF	578
RV(1, J) #AMIN1(RV(1, J), RO(1, J))	SOLADE	579
RV(1,J)=AMAX1(RV(1,J),0.01	50, 40F	580
Kuun	532	279

532 279

74

c .	PHASE CHANGE	SOLADE	581
C	15 (PHCH I T 0 5100 TO 4500	SOLADE	582
		SOLADE	583
	lia.	SOLADE	584
	CALL PHCHR	SOLADE	585
4500	CONTINUE	SOLADE	500
1000	CALL BC	SOLADE	587
4600	CONTINUE	SOLADE	568
C	COMPUTE DRIFT VELOCITY	SOLADE	589
	1F (DEVEL.LT.0.5)GO TO 502	SOLADE	590
	CALL DRIFT	SOLADE	591
500	CONTINUE	SOLADS	592
	CALL BC	SOLADE	593
502	CONTINUE	SOLADE	594
C	PRINT AND PLOT	SOLADE	595
	IF(T.GT.0.)GO TO 503	SOLADE	596
	CALL LINCNT(1)	SOLADE	597
	WRITE(12,45)	SOLADE	598
503	CONTINUE	SOLADE	599
С	DEFINE OUTPUT QUANTITY F AND FI	SOLADF	600
	F=0.0	SOLAD	601
	1NZ*4	SOLADE	602
	J≈20	SOLADE	603
	DO 505 .*2.5	SOLADF	604
505	F=F+RO(1,J)*V(1,J)*(FLOAT(1)-1.5)	SOLADE	605
	F=2.0+F/INZ++2	SOLADF	603
	F1=0.34264*P(5,11)+0.65736*P(5,12)	SOLADE	607
	WRITE(9,49)ITER, T, CYCLE, DELT, F, F1	SOLADE	608
	IF(CYCLE.LE.0)GO TO 510	SOLADE	609
	IF(T.LT.TWPLT)GO TO 560	SOLADE	610
	TWPLT = TWPLT+PLTOT	SOLADE	611
510	CONTINUE	SOLADE	612
С	FILM LONG PRINT	SOLADE	613
	CALL ADV(1)	SOLAD	614
	CALL LINCNT(3)	SOLADE	610
	WRITE(12,49)ITER, T, CYCLE, DELT, F, F1	SOLADE	610
	CALL LINCNT(4)	SOLADE	617
	WRITE(12,47)	SOLADE	010
	DO 525 J=2,JM1	SULAUF	619
	DO 525 1*2,IM1	SULAUF	620
	TH=(ROL-RO(I,J)+RV(I,J))/ROL	SULAUT	622
	D*RDY*(U(1,J)-U(1-1,J))+RDY*(V(1,J)-V(1,J-1))+CYL*(U(1,J)	SOLADE	627
	1+U(1-1,J))/(2.*DELX*(FLOAT(1)-1.5))	SOLADE	634
	TSAT=SATT(P(I,J))	SOLADE	625
	EVT=EVCAL(TSAT)*ETEMI+ECV*ETEM	SOLADE	620
	TEM*TC+(RO(1,J)*(E(1,J)-ECL)-RV(1,J)*(EV)-ECL))/(RV(1,J)*(CHV*	SOLADE	627
	IETEM-CHL)+RO(1,J)*CHL)	SOLADE	629
	WRITE(12,48) (1,0,0(1,0),V(1,0),P(1,0),R0(1,0),(H,1EH)	SOLADE	620
525	CONTINUE	SOLADF	670
	CALL ADV(1)	SOLADE	631
	UALL LINUNI(S)	SOLADE	673
	WRITE(12,49) TER, T, GTOLE, DELT, F, FT	SOLADE	637
	CALL LINUNI(4)	SOLADE	674
	WHIE(12,3)	SOLADE	675
		SOL ADE	676
		SOL ADE	637
	MATILIE, 10/11, 0, 00(1,0), 0(1,0), RY(1,0))	SOL ADE	639
365	CONTINUE .		250

с	VELOCITY VECTOR PLOT	SOL ADF	639
	CALL ADV(1)	SOL ADF	640
	CALL DGA(IXL. IXR. IYT. IYB. 0. LONG. HIGH. 0.)	SOLADE	641
	CALL FRAME(IXL.IXR.IYT.IYB)	SOLADE	642
	CALL FRAME (IXL. IXR. IYT. IYB)	SOLADE	643
	CALL LINCNT(61)	SOLADE	644
	WRITE(12.45)	SOLADE	645
	CALL LINCNT(61)	SOLADE	646
	WRITE(12.46)T.CYCLE	SOLADE	647
	DO 530 J=2.JM1	SOLADE	648
	DO 530 1=2.1M1	SOLADE	649
	XCC=DELX*(FLOAT(1)-1.5)	SOLADE	650
	YCC=DELY*(FLOAT(J)-1.5)	SOLADE	651
	UVEC=(U(1-1.J)+U(1.J))+0.5+VELMX1+XCC	SOLADE	652
	VVEC=(V(1,J-1)+V(1,J))*0.5*VELMX1+YCC	SOL ADF	653
	CALL CONVETIUVEC. LUVEC. D., LONG. IXL. IXR)	SOLADE	654
	CALL CONVET(VVEC.JVVEC.HIGH.D., IYT.IYB)	SOLADE	655
	CALL CONVRTIXCC, IXCC, 0., LONG, IXL, IXR)	SOLAUF	656
	CALL CONVRTINCC, JYCC, HIGH, 0., IYT, IYB)	SOLADE	657
	CALL DRV(IXCC, JYCC, IUVEC, JVVEC)	SOLADE	658
530	CONTINUE	SOLADF	659
С	CONTOURS PLOT STARTS	SOLADE	660
	NCO=0	SOLAD	661
532	NCO=NCO+1	SOLADA	bbc
	DO 545 1=1.IM1	SOLAUF	001
	DO 545 J=1.JML	SULAUF	004
	GO TO(533,534,535,536,537,560),NCO	SULAUF	000
533	5 Q(1,J)=RO(1+1,J+1)	SULAUF	000
	GO TO 540	SULAUF	00/
534	• Q(1,J)=E(1+1,J+1)	SULAUF	600
- ⁻	GO TO 540	SULAUF	670
535	5 Q(1,J)=P(1+1,J+1)	COLADE	671
	GO TO 540	SOL ADE	672
536	5 Q(1,J1=HV(1+1,J*1)	SOLADE	677
		SOLADE	674
23	(Q(1,J)*(HOL+HV11+1,J+1)-HO(1+1,J+1)/HOL	SCH ADE	675
240		SOLADE	676
242	CONTINUE.	SOL ADE	677
	UNITE LINUNITOTI	SOL ADE	678
		SCLADE	679
	LOITE LENT CVC E	SOLADE	680
	00 TO (EET EEL EEE EEE EET NCO	SOL ADF	681
==		SOLAOF	583
10° 10° 1	NO TO FER	SOLADE	683
CE.	. ITITERITERE CONTOUR	SOLADE	684
	AA TA 559	SOLADE	685
255	SUTTICE TITE ON TOUR	SOLADE	686
10.000	00 TC 559	SOL ADF	687
	STITIE(1)=10HRV CONTOUR	SOLADE	688
1.1	00 TO 559	SOLADE	689
5.5	TITITLE(1)=9HVOID FRAC	SOLADE	690
550	R CONTINUE	SOLADE	691
	1F(1BAR.GT.1)GO TO 5601	SOLADE	692
	CALL SPLOT(1, JBAR, YCI2), QL(2), 42, 1)	SOL ADF	693
	GO TO 532	SOL ADF	694
560	CONTINUE	SOL ADF	695
	CALL CONTRUBIXCIEL, NNX, YC(2), NNY, Q, NZX, NZY, NC, ZMN, ZMX, DLZ, ZC,	SOLAOF	696

76

532 281

	IDMPX, DMPY, 'GRD, ITITLE, NTITLE, XLABEL, NXLBL, YLABEL, NYLBL)	SOLADE	697
	GO TO 532	SOLADE	638
	560 CONTINUE	SOLADE	699
C	LONG PRINT	SOLADE	700
	IF(CYCLE.LE.0) GO TO 565	SUL ADF	701
	IF (T.LT.THPRT) GO TO 580	SOLADE	202
	TWPRT*TWPRT+PRTGT	SOLADE	703
	565 CONTINUE	SOLADE	704
	WRITE(9,35)	SOLADE	705
	WRITE (9, 49) ITER, T. CYCLE, DELT, F. F1	SOLADE	706
	WRITE(9,47)	SOL. DF	707
	DO 575 J=2, JM1	SOLADE	708
	DO 575 1=2,1M1	SOLADE	709
	TH=(ROL-RO(1,J)+RV(1,J))/ROL	SOLADE	710
	TSAT=SATT(P(1,J))	SOLADE	711
	EVT=EVCAL(TSAT)*ETEMI+ECV*ETEM	SOLADE	712
	TEM=1C +(RO(1,J)*(E(1,J)-ECL)-RV(1,J)*(EVT-ECL))/(RV(1,J)*(CHV*	SOLADE	713
	IETEM-CHL)+RO(I,J)*CHL)	SOLADE	714
	WRITE(9,48)(1,J,U(1,J),V(1,J),P(1,J),RO(1,J),TH,TEM)	SOLADE	715
	575 CONTINUE	SOLADE	716
C	SET THE ADVANCE TIME QUA CONTES INTO OLD ARRAYS	SOLADE	717
	580 CONTINUE	SOLADE	718
	DO 600 J=1, JMAX	SOLADE	719
	DO 600 1=1,1MAX	SOLADE	720
	UN(1,J)=U(1,J)	SOLADF	721
	VN(1,J)*V(1,J)	SOLADE	252
	RON(I,J)=ROT=RO(I,J)	SOLADE	723
	RVN(I,J)=RVT=RV(I,J)	SOLADE	724
	EN(1,J)=ET=E(1,J)	SOLADE	725
	IF(IMP.GT.0.5)GO TO 600	SOLADE	726
	11=1	SCLADE	727
	ل*لل	SOLADE	728
	CALL EOS	SOLADE	729
	P(1,J)=PT	SOLADE	730
	600 CONTINUE	SOI ADF	731
C	ADJUST TIME STEP	SOLADE	732
	CALL TSTEP	SOLADE	733
C	ADVANCE TIME T=T+DELT	SOLADE	734
	IF(T.GT.THFIN)GO TO 350	SOLADE	735
	T=T+DELT	SOLADE	736
	CYCLE=CYCLE+1	SOLADE	737
	GO TO 59	SOLADE	738
	650 CALL EXIT(1)	SOLADE	739
	END	SCLADE	740

	SUBROUTINE BC		SOLADE	741
*CALL	COMDK		SOLADE	742
С	SET BOUNDARY CONDITION		SOLADE	743
	EVCAL (X) =ECV+CHV+ (X-TC)		SOLADE	744
	ELCAL (X) =ECL+CHL + (X-TC)		SOLADE	745
	SATT(X)=255.2+117.8+X++0.223		SOLADE	746
	SATP(X)=((X-255.2)/117.8)**4.48		SOLADE	747
	DO 140 J=2.JH1		5 LADE	749
		ODICINAL		
	POUK	OWIGHNER	532	772

R0(1,J)=R0(2,J)	SOL ADF	749
RV(1,J)=RV(2,J)	SOL ADF	75.0
P(1,J)=P(2,J)	SOL ADF	. 51
E(1,J)=E(2,J)	SOL ADF	152
RO(IMAX, J) *RO(IM1, J)	SOL AOF	753
RV(IMAX, J)=RV(IMI, J)	SOL ADE	754
P(IMAX, J)=P(IM1, J)	ST ADE	755
E(IMAX, J) = E(IM), J)	SOLADE	79.6
GO TO (102,104,106,108,106) W	SOL ADE	~
102 U(1,J)=0.0	SOL ADE	75.3
V(1,J)=V(2,J)	SOL ADE	750
GO TO 111	SOL ADE	750
104 U(1,J)=0.0	SCI ADC	760
V(1, J) = -V(2, J)	SCI ADE	761
GO TO 111	SOLADE	700
106 1F(W. FO.5)P(2 .11=PR	SOLADE	703
IF LITER GT O AND FLG GT DICO TO LIL	SULAUF	704
U(1,J)=U(2,J)	SULAU	765
V(1,.))=V(2,.))	SULAD	766
GO TO 111	SOLADA	767
108 U(1, 1)=U(1M2, 1)	SOLADY	758
V(1,1)=V(1MD)	SOLADE	769
	SOL ADF	770
	SOL ADF	771
	SOL ADF	772
	SOL ADF	773
	SOLADE	774
	SOL ADF	775
122 11/141 11-0 0	SOLADE	776
	SOLADE	777
V(IMAX, J)=V(IM1, J)	SOLADE	778
	SOL ADF	779
	SOLADE	780
V(IMAX, J)=-V(IMI, J)	SOLADE	781
	SOLADE	782
100 IF (MR.EQ.5)P(IMI,J)=P8C	SOLADE	783
IF (ITER.GT.D.AND.FLG.GT.D)GO TO 140	SOLADE	784
U(1M1, J)*U(1M2, J)*((1M2-1)/(1M1-1)*CYL+(1.0-CYL))	SOLADE	785
V(IMAX,J)≈V(IM1,J)	SOLADE	786
GO TO 140	SOLADE	787
128 U([M],J)=U(2,J)	SOLADE	788
V([MAX,J)=V(3,J]	SOLADE	789
RO(IMAX,J)=RO(3,J)	SOLADE	790
RV(IMAX, JI=RV(3, J)	SOL ADF	791
P(1MAX, J) *P(3, J)	SOLADE	792
E(IMAX, J)=E(3, J)	SOL ADF	793
140 CONTINUE	SOL ADE	794
00 180 1=2,1M1	SOL ADE	795
RO(1,1)=RO(1,2)	SOL ADE	796
RV(1,1)=RV(1,2)	SOL ADE	797
P(1,1)=P(1,2)	SOL ADE	700
E(1,1)*(1,2)	SOLADE	700
RO(1, JMAX) = RO(1, JM1)	SOLADE	000
RV(1.JMAX)=RV(1.JM1)	SOLADE	000
P(1, JMAX)=P(1, JM1)	SULADE	801
E(1, JMAX)=E(1, JM))	SULAUF	802
GO TO (15" 154, 156, 158, 156) .WT	SULAD	803
152 V(1, JM1)=0.0	SULADE	804
U(1, MAX)=U(1, 1)	SOL ADE	805
	SOLADE	806
	532.20	12 -
	JJL 60	h set

		CO TO 151	SOLADE	807
	154	V(1 M1)=0 0	SOLADE	808
	1.54		SOLADE	809
			SOLADE	810
	186	ICUT CO SUDUL MIL-DOC	SOLADE	811
	1.30	IF LITER OT D AND FLG OT DIGO TO 161	SOLADE	615
		VIT MIL-VIT MO	SOL ADF	813
			SOLADE	814
		OT TO LET	SOL / DF	815
			SOL ADF	816
	1.28		SOL ADF	817
		011, JHAX1=011, 31	SOLADE	818
		DULL MAXI-DULL 21	SOLADE	819
		RV(1, JRAX)=RV(1, 3)	SOL ADF	820 *
		P(1, UTAX)=P(1, 3)	SOL ADF	821
		E(1, JTAX)=E(1, 5)	SOLADE	855
	101	00 10 101 00 TO (172 174 176 178 176) LP	SOLADE	823
	101		SOLADE	824
	1/6		SOLADE	825
			SOL ADF	826
	1711		SOLADE	827
	1.74		SOLADE	828
			SOLADE	629
	1 7702	15/10 50 510(1 2)=PRC	SOLADE	830
	1.10	IF LITER GT O AND FLG GT DIGO TO 180	SOLADE	831
			SOLADE	832
		V(1,1)=V(1,2)	SOLADE	833
			SOL ADF	834
	170	V(1))=V(1, M2)	SOLADE	835
	1.10		SOLADE	836
		DO(1, 1)=DO(1, M2)	SOLADE	837
			SOLADE	838
		D(1 1)=D(1 M2)	SOLADE	839
		F(1,1)-F(1,M2)	SOLADE	840
	100	CONTINE	SOLADE	841
	100	CONTINCE	SOL ADF	842
	1 DC	SPECIAL POINDARY CONDITION	SOL ADF	843
1			SOL ADF	844
		P(1 2)=PIN	SOLADE	845
		11(1,2)=0.0	SOL ADF	846
			SOLADE	847
		IFITHIN IT THEI GO TO 38	SOL ADF	848
		F(THIN LT THCL) GO TO 36	SOL ADF	849
		RV(1 2)=RVIV	SOLADE	850
		PO(1,2)=801V	SOL ADF	851
		F(1,2)=FIV	SOLADE	852
		60 TO 188	SOLADE	853
	35	RVII 21=RV12	SOLADE	854
	~~~	R0(1,2)=R0[2	SOLADE	855
		F(1,2)=E12	SOLADE	856
		GO TO 188	SOLADE	857
	7.9	RV(1,2)=RV1L	SOLADE	858
	30	BOLL 21=BOLL	SOLADE	859
		F(1,2)=F(L	SOL ADF	860
	199	CONTINUE	SOLADE	961
	100	RETIRN	SOLADE	962
		END	SOLADE	963

POOR ORIGINAL 532 284



SUBROUTINE DRIFT	50.475	OF.
*CALL COMOK	St. ADE	965
C CALCULATE RELATIVE OR DRIFT VELOCITY	SOLADE	966
EVCAL(X)=ECV+CHV+(X-TC)	SOLADE	867
ELCAL(X)=ECL+CHL * (X-TC)	SCLADE	969
SATT(X)=255.2+117.8+X++0.223	SOLADE	860
SATP(X)=((X-255.2)/117.8) **4.48	SCLADE	870
00 5000 J=2.JM1	SOLADE	871
DO 5000 1=2.IMI	SOLADE	872
IF (A(1, J) EQ. 0.0) 30 TO 5000	SOL ADE	873
TH=(ROL-RO(1,J)+RV(1,J))/ROL	S. I ADE	874
IF (TH. GT. THC. AND. TH. LT. THCI ) GO TO 4700	SOL ADE	875
UO(1,J) = VO(1,J) = 0.0	SOL ADE	876
GO TO 5000	SOL ADE	877
4700 CONTINUE	SOL ADE	878
THISTH	SOL ADE	879
IF (THI.GT.0.5)THI=1.0-THI	SOLADE	BBD
4800 HB=(TH1/PNV) **0.333	SOL ADE	RR 1
UON=UO(1,d)	SOLADE	882
VUN=VU(I,J)	SOL ADF	883
ARLA=3.0*TH1/RB	SOL ADF	884
NUCEVIS.	SOLADE	885
TELLEL, GLU, STNUC VISV	SOL ADF	886
NUA=NUC/(.U-THI)**2.5	SOLADE	887
1000-0611*(1.0/H0L-2.0*TH/(RV(1,J)+RV(1+1,J)))*RDX*(P(1+1,J)	- SOLADE	888
IF(A)(A) IN FOLD DUPD DIE	SOLADE	889
	SOLADE	890
1P(1-1)	- SOLADE	891
	SOLADE	892
	SOLADE	893
KPM=DELT+0 2E+102E+102E+10	SOLADE	894
1(R0(1, U+PO(1+1, D-PV(1, U)+R0(1+1, J))**2/((RV(1, J)+RV(1+1)))	.JII SOLADE	895
VKPM=DELT+0 DE+ADEA+(D011 10 D011 10 D011)	SOLADE	896
1(R0(1, 1)+R0(1, 1+1)-RV(1, 1) PK(1, J+1))**2/((RV(1, J)+RV(1, J	+1)1* SOLADE	897
4950 LDMT=LDM	SOLADE	898
LKPELKPM+100041 DH+12 CANIA DD1 (FU)	SOLADE	899
VKP=VKPM+1CDG+1DM+12 G+NUA/REJ/IMI	SOL ADF	900
UD(1) = D(1	SOL ADF	901
1*UD(1, J1**2/10M)	·CDG SOLADF	902
VO(I_J)=VD(I_D=VD(I_D)VD(D))	SOL ADF	903
1*VD(1_J)**2/UPM)	*CDG SOL OF	904
UDM=+(UD)) U++2+VD/1 D++D1++0 E-1 DE-10	SOL ADF	905
IF (ABS) (UDMT+LDM) / UDMT+LDM1+LCT D D1+CT	SOLADE	906
5000 CONTINUE	SOLADE	907
RETURN	SOLADE	908
END	SOLADE	909
	SOLADE	910

------

SUBROUTINE EOS

* * * * * /////

c EQUATION OF STATE ROUTINE EVCAL (X) =ECV+CHV+(X-TC) ELCAL (X) =ECL+CHL+(X-TC) POOR ORIGINAL 
 SOLADF
 911

 SOLADF
 912

 SOLADF
 913

 SOLADF
 913

 SOLADF
 914

 SOLADF
 915

532

285

16 10

	SATT(X)=255.2+117.8+X++0.223	SOLADE	916
	SATP(X)=((X-255.2)/117.8)**4.48	SOL ADF	917
	TH=THTM=(ROL+RVT-ROT)/ROL	SOL ADF	918
	IF (TH.LT.THC) THTM+THC	SOL ADF	919
	ETEMT=ETEM	SOL ADE	920
	IF (TH.GT.THCI)ETEMT=1.0	SOL ADE	921
	TEM=TC+(ROT+(ET-ECL)-RVT+(ECV-ECL))/(RVT+(CHV-CHL)+ROT+CHL)	SOL ADE	922
	IF (ETEMT.LT.0.5) TEM=255.2	SOL ADE	923
	PT=PTT=GAM1+RVT+(ECV+CHV+(TEM -TC))/THTM+ASQ+ROL+(THTM-TH)	SOL ADE	924
	IF (ETEMT. GT. 0.5) GO TO 6300	SOLADE	9.75
	PCC=117.8+GAM1+RVT+CHV/THTM	SOLADE	9.26
	PT=PTT+2.0*(0.223*PCC)**1.287	SOL ADE	927
6560	PTG≈PT	SOL ADF	928
	PTA=PCC+PTG++0.223	SOL ADF	929
	PT=PTG+(PTT+PTA-PTG)/(1.0-0.223*PTA/PTG)	SOL ADF	930
	IF (ABS((PT-PTG)/(PT+PTG)).GT.0.01)GO TO 6260	SOL ADE	931
	PT=AMAX1(PT,0.0)	SOL ADF	932
	IF(PT.GT.0.0)G0 TC 6300	SOLADE	933
	WRITE(9,6200)	SOL ADF	934
0053	FORMAT(5X,1HJ,12X,2HF(,12X,3HROT,17X,3HRVT,17X,2HET)	SOL ADF	935
	WRITE(9,6263)11, J.), PT, ROT, RVT, ET	SOL ADE	936
6563	FORMAT(6X,213,5X,1PE12,5,6X,E12,5,6X,E12,5,6X,E12,5)	SOL ADF	937
6300	CONTINUE	SOLADE	938
	RETURN	SOLADE	939
	END	500 .05	04.0

	SUBROUTINE PERIC	501 105	
*CALL	COMOK	SOL AUF	241
C	PIPE FRICTION POLITINE	SULAUF	340
		SULAD	3+3
		SOL ADF	- 344
		SOL ADF	945
	SATI (A)=255.2+117.8*X*U.223	SOLADE	946
	SALP(X)=((X-255.2)/1(7.8)**4.48	SOLADE	947
	[4]]	SOL ADF	948
	J=JJ	SOLADE	949
	VAI=ABS(V(L,J))	SOLADE	950
	IF (VAL.LT.EPSI)GO TO 60	SOLADE	951
	TH=TH1=(ROL+RV(1,J)-RO(1,J))/ROL	SOL ADF	952
	IF (TH.LT.THC)TH#THC	SOL ADF	953
	IF(TH.OT.THCI)TH=THCI	SOL AC'	954
	CHI=RV(1,J)/RO(1,J)*(1.0+(RO(1,J)-RV(1,J))/RO(1,J)*VD(1,J)/V(1,J))	SOLADE	955
	REN=2.0*RPIPE*ABS(V(I,J))/VISL	SOL ADF	956
	RGR=0.5*RG/RPIPE	SOL ADF	957
	FLA=0.026*RGR**0.225+0.133*RGR	SOL ADF	958
	FLB=22.0*RGR**0.44	SOL ADF	959
	FLC=1.62*RGR**0.134	SOL ADE	960
	FLC2=(FLA+FLB/REN**FLC)	SOLADE	961
	PHIS=1.0/(1.0-TH)**1.75	SOL ADF	962

81

	FLC=FLC2+(R0(1,J)/R0L)+(1.0-CH1)++2.0/RPIPE+PHIS	SOL ADF	963
	+LCT=2.0-DELT+FLC	SOLADE	964
	V(1,J)=SIGN(1.0,V(1,J))*(-1.0+(1.0+2.0*FLCT*VA1)**0.5)/FLCT	SO. ADF	965
	EE=0.25*(VA1**2-V(1,J)**2)	SCL ADF	966
	E(1,J)=E(1,J)+EE	SOL ADF	967
	E(1, J+1) = E(1, J+1) + EE	SOLADE	968
0	CONTINUE	SOLADE	969
	RETURN	SOL ADF	970
	END	SUL ADF	971

	SUBROUTINE PHOHR	SOLADE	972
+CALL	COMDK	SOL ADE	973
С	PHASE CHANGE ROUTINE	SOL ADF	974
	EVCAL (X) =ECV+CHV+ (X-TC)	SOL ADF	975
	ELCAL(X)=ECL+CHL+(X-TC)	SOL ADF	976
	SATT(X)=255.2+117.8*X**0.223	SOLADE	977
	SATP(X)=((X-255.2)/117.8) **4.48	SOL ADF	978
	[*]]	SOLADE	979
	UL≈L	SOL ADF	980
	RVT=RV0=RV(1,J)	SOLADE	981
	ROT=RO(1,J)	SOL ADF	382
	ET=E(1,J)	SOLADE	983
	TH1=TH=(ROL-ROT+RVO)/ROL	SOLADE	984
	IF(TH.LT.THC.OR.TH.GT.THCI)G0 TO 5000	SOLADE	985
	IF(TH.GT.0.5)TH1=1.0-TH	SOLADE	996
	VAVE=0.5*((U(1,J)+U(i=1,J))**2+	SOL ADF	987
	1(V(1,J)+V(1,J-1))**2)**0.5	SOL ADF	968
	VD#VE=0.5*((UD(1,J)+UD(1+1,J))**2+(VD(1,J)+VD(1,J-1))**2)**0.5	SOLADE	989
	VTB=VDAVE+0.1*VAVE	SOLADE	990
4410	RB=(TH1/PNV)**0.333	SOLADE	991
	RBW=SUWN/(ROT*VTB**2+1.0E-10)	SOLADE	992
	RB=AMINI (RB, RBW)	SOL ADF	993
	AREA=3.0 * THI/RB	SOLADE	994
	TVAP=SATT(P(1,J))	SOLADE	995
	EVT=EVCAL(TVAP)*ETEMI+ECV*ETEM	SOL ADF	996
	TLQ=TC+(ROT*ET-RVO*EVT-(ROT-RVO)*ECL)/(RVC*CH,*ETEM+(ROT-RVO)*CHL)	SOLADE	997
	TLQ=AMAX1(TLQ.256.0)	SOL ADF	996
	PSAT=SATP(TLQ)	SOL ADF	333
	EVSAT=EVCAL(TLQ)	SOLADE	1000
	RSAT=TH*PSAT/(GAM1*EVSAT)	SOLADE	1001
	IVSL=0	SOL ADF	1002
	RBETA=1.0E-5*R0L	SOLADE	1003
	IRVI=0	SCLADE	1004
	RTOT=(RSAT+RVO)/2.0	SOLADE	1005
	RET=ROT*(ET-ECL)	SOLADE	1006
	RCH=ROT *CHL	SOLADE	1007
	CEC=CHV*ETEM-CHL	SOL ADF	1008
C	START ITERATION	SOL ADF	1009
1415	CONTINUE	SOL ADF	1010
	RVT=RV(I,J)	SOLADE	1011
		SOL ADF	1015
		SOL ADF	1013
	CALL EOS	50 405	1.00.0

	TVAP=SATT(PT)	SOL ADF	1015
	EVTM=EVCAL (TVAP) *ETEM1 +ECV *ETEM-ECL	SOLADE	1016
	TLQ=TC+(RET-RVT+EVTM)/(RCH+RVT+CEC)	SOL ADF	1017
	ELTBL=(1.0+1.91*ROL*TH/RTOT*CHL/ELHT*ABS(TLQ-TVAP)	SOLADE	1018
	1+(0.637*VTB*R9*ROL/EDL)**0.5)/R9	SOLADE	1019
	RATE=DELT*(ELTBL*AREA/ELHT*ECL*CHL*(TLQ-TVAP))*100.0	SOLADE	10201
	RVEQ=RVT-RVO-RATE	SOLADE	1021
	IF (ABS(RVEQ/RTOT).LT.0.001)60 TO 5000	SOLADE	1022
	IRVT=[RVT+]	SOL ADF	1023
	IF(IPVT.GT.25)G0 TO 5000	SOLADE	1024
	IF(IRV: LQ.I)SRH=SIGN(I.O.RVEQ)	SOLADE	1025
	IF (1VSL . EC 1) GO TO 4418	SOL ADF	1026
	IF (RVEQ.GE.L.0)GO TO 4415	SOLADE	1027
	SEEK BOUNDS	SCLAD"	1028
	FMN=RVEQ	SOL ADF	6201
	RVMN=RV(1,J)	SOLADE	1030
	IF (SRH.GE.0.0) IVSL=1	SOLADE	1031
	RV(1, J)=AMINI(RVT+RBETA, ROT)	SOL ADF	1032
	IF(IVSL.EQ.1)RV(1,J)=0.5*(RVMN+RVMX)	SOL ADF	1033
	RBETA=2.0*RBETA	SOLADE	1034
	GO TO 4412	SOLADE	1035
4415	FMX=RVEQ	SOLADE	1038
	RVMX=RV(1,J)	SOLADE	1037
	IF (SRH.LT.0.0) [VSL=]	SOLADE	1038
	RV(1,J)=AMAX1(RVT-RBETA,0.0)	SOLADE	1039
	IF(IVSL.EQ.1)RV(1,J)=0.5*(RVMN+RVMX)	SOL ACT	1040
	RRETA=2.0*RBETA	SOLADE	1041
	TO 4412	SOL ADF	1042
4 G	" NTINE	SOL ADF	1043
	INVERCE BOUNDS	SOLADE	1044
	1+ (RVEQ.LT.0.0)60 TO 4422	SOL ADF	1045
	+ VTP=RVT-RVEQ+ (RVMX-RVT) / (FMX-RVEQ)	SOLADE	1046
	FN: "RVEQ	SOLADE	1047
	RVMX=RVT	SOLADE	1048
	RV(1,J)=RVTP	SOLADE	1049
	IF (RVTP.LT.RVMN) RV(1,J)=0.5*(RVMN+RVMX)	SOL ADF	1050
	GO TO 4412	SOLADE	1051
+455	RVIP=RVI-RVEQ+(RVI-RVMN)/(RVEQ-FMN)	SOLADE	1052
	FMN=RVEQ	SOL ADF	1053
	RVMV=RVT	SOL ADF	1054
	RV(1,J)=RVTP	SOLADE	1055
	IFIRVTP.GT.RVMX)RV(1.J)=0 5*(RVMN+RVMX)	SOLADE	1056
	CO TO 4412	SOLADE	1057
5000	CONTINUE	SOLADE	1058
	RETURN	SOL ADE	1059
	END	SOLADE	1060

	SUBROUTINE PITER	SOL ADF	106
C	PRESSURE ITERATION ROUTINE	SOL ADF	105
*CALL	COMDK	SOLADE	106
	EVCAL(X)=ECV+CHV+(X-TC)	SOL ADF	1054
	ELCAL(X)=ECL+CHL+(X-TC)	SOL ADF	106
	SATT(X)=255.2+117.8+X++0.223	SOL ADF	106



		and a second second	TROUGH AND
	SATP(X)=((X-255.2)/117 8) **4.48	SQL AD	.0e
	FLG=0.0	SOL ADF	1068
	DO 300 J=JPB, JPT	SOLADE	1069
	00 300 1=1PL.1PR	SOLADE	1070
	IF (A(1, J) .EQ.0.0)00 TO 300	SOL ADF	1071
	ABR=2.0*A(1,1)*A(1+1,1)/(A(1,1)*A(1+1,1))	SOL ADF	1072
	AR = 2 0 • 4(1 1) • 4(1 - 1 1) / (4(1 1) • 4(1 - 1 1))	SOL ADE	1073
	APT-2 OFALL DEALL INTERACT DEALL INTER	SOL ATE	1014
	ADI-E.U.A.I., U.A.I., UTLIVIALI, UTALI, UTALI, UTLIVIALI, UTLIVIAL	COL ADE	1075
	ADD = C. U*A(1,	500.405	1070
	PMAX=AMAX1(PMAX,P(1,J))	SULALF	10/0
	SM=-1.0E+10	SUL ALF	1077
	ICT=0	SOL ADF	1078
	XMX=1.0E+10	SOL ADF	1079
	XMN=0.0	SOL ADF	1080
	P88=0.0	SOLADE	1081
260	P8=P(1,J)	SOLADE	1082
	D=(RDX*(ARR*U(1,J)+ARL*U(1-1,J))+ROY*(ART* V(1,J)-	SOL ADE	1083
	LAPD+V/L (=111)+DELT/ALL II	SOLADE	1084
	MAXY-CAUL 1140011 11400	SCI ADE	1005
		SOLADE	1000
	U=AMINI (U, DMAX)	SULAUF	1080
	U=AMAX1(U,-U.99)	SULAU	1087
	ROT#RON(1.J1/(1.0*D)	SOLADE	1088
	RVI=RV(1,U)/(1.0+D)	SOLADE	1089
	ET=EN(1,J)-P(1,J) •D/RO(1,J)	SOLADE	1090
	[ ] = ]	SOL ADF	1091
	ل≖لل	SOLADE	1092
	CALL EOS	SOLADE	1093
	S=PB-PT	SOL ADE	1094
	FUCT NE DIRETAUL USER-PREIVIS-SMI	SOL ADE	1095
	D/1 11-DD_DFTX/1 11+C	SOX ADE	1006
		SANC	1030
	17 15 102 . 0 10 10 202	SKA, AUF	1091
	XWM#HR	SOLAD	1098
	(F(P(1,J),GE,XMX)P(1,J)=0.5*(XMN*XMX)	SOL ADF	1099
	00 TO 266	SOL ADF	1100
592	XMX=PB	SOLADE	1101
	IF(P(1,J),LE,XMN)P(1,J)=0.5*(XMN+XMX)	SOLADE	1102
266	CONTINUE	SOLADE	1103
	DELP=P(1,J)-PR	SOLADE	1104
	FLARGERER DI LE EPGI+PMAYILET= 00	SOL ADE	1105
		SCI ACE	1105
		Sec all	1100
	UTLUTEULLUTELUTELUTEUX UELP/LEULLT.JJFRUILT.JJ	SULAU	1107
4712	1 (ABL.EG.0.0100 TO 272	SOLAD	1108
	U(1-1,J)=U(1-1,J)-2.0*DELT*RDX*DELP/(R0(1-1,J)*R0(1,J))	SOLADE	1109
515	IF (ABB.EQ.0.0)00 TO 274	SOLADE	1110
	V(1,J-1)=V(1,J-1)-2.0+DELT+RDY+DELP/(R0(1,J-1)+R0(1,J))	SOLADE	1111
274	IF (ABT.EQ.0.0100 TO 276	SOLADE	1112
	V11.J1=V11.J1+2.0*DELT*RDY*DELP/(R011.J)-R011.J+111	SOL ADF	1113
276	CONTINUE	SCI ADE	1114
	CM-C	COL ADE	1116
	000+00	500 405	1110
		SULAUF	1110
	LUTATUT.	SOL ADF	1117
	IFTICT.01.10100 TO 300	SOLADE	1118
	FLG=1.0	SOLADE	1119
	CC TO 260	SOLADE	1120
300	CONTINUE	SOLADE	1121
	RETURN	FOLACE	1122
	END	SCI ACE	1127
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.18.2

34

		COL ADS	11.04
	SUBROUTINE ISTEP	SCI ADE	11.76
CALL	LUTLK	SOL ADE	11.26
0	VARIABLE TIME STEP AND TTERATION PARAMETER MOUTINE	COL ADE	1127
	EVCAL(X)=EUV+CHV*(X-TC)	SOL ADE	1129
	ELLAL(X)=EUL+UHL+(X-10)	SOL ADE	1120
	5A11(X)=255.2+117.8*X**0.225	SUL ADE	1170
	SATP(X)=((X-255.2)/11/.8)**4.48	SOL ALT	1171
	DUMX=DVMX=1.0E-10	SOL ADE	1170
	00 615 1=2,101	SUC ADE	1177
	00 615 J=2.JMI -	SOL ADE	1130
	UM=ABS(UUT,J)	SULADE	11.75
	VUM=ABS(VU(1,J))	SULAUF	1175
	UPTHEABS(U(1,J))	SUL ADF	1120
	VITISABSTVTT.JTT	SOL AUF	1170
e.e.	DUMX=AMAXI(DUMX,UDM,UMM)	SOLADE	11.20
010	DIVMX=AMAXI(UVMX,VUM,VMM)	SOL ADE	1123
		SOLADE	1140
		SOLADE	11113
		SOL AUF	11145
		SOLADE	1 1 4 2
	UELIUEUEIIEUMI	SULAUF	1144
	DEL (FARTNI (DEL TO, DEL X/DURY, DEL Y/DYRX)	SOL ADE	1146
~	DELISAMINI (DELI, DELIMA)	SULAUF	1140
Ç.	HELAXATION FACTOR	SOL ADF	11140
	DO BEO IFIPL, IPH	SUCAUF	1140
		SOLADE	1170
	IF (ALL, J) .EU.U.U.UUU TO DEU	SUL AUF	1100
	ETECT.J	SULACE	1101
	RUTERULT	SUL AUF	1100
	RVIERVII,UT	SUL AUF	1102
		SOLADE	1104
		SOLADF	1100
	CALL EUS	SOLADE	1120
	PIU-PI	SOL ADE	1160
		SULAUF	1150
	ORA4.U*DELT*HDX*DELP/(HOLL.D/*HOLL*L.D//TALL.D//TALL.D/*ALL*L.D/	SOL ADE	1109
		COL ADE	1100
		SOL ADE	1101
	UL=-4.U*UELL*HUK*UELP/(HUT*I,U/#HUTI)/ATT,U/#TT,U/#TT/J/	SOLADE	1100
		SOL ADE	1100
	IFIA(I=I,J).EU.U.U/UL=U.U	SOLADE	1104
	VIE4.0*DELI*HDY*DELEVIHUIL.0I*HUIL.0I*HIII*AIL.0I*AIL.0*II/	SULADE	1100
	TRAILUT A LUT FO D CUVT-D C	SOL ADE	1100
	TETALL, UTIL, EU. U. U. VITTU. U	SOLADE	1101
	VBE-4.0*DELI*ADI*DELE/(ADII.0*I)*ADII.0/)*ATI.0/*ATI.0*I/	COLACE	1100
		SOLAUP	1103
	DT_DCLT+(DDV+(ID_1)+1_DDV+(VT_VD))/4/1	SOLADE	1170
	DIFUELTINGX TORTOLITRUITIVITYC//ALL.U/	COLADE	11.01
	HUI-HUII.0//11.0/01/	COLLADE	176
		SCLADF	1113
		DCL ALF	1.2.14
		SULAUF	113
		SUL ALF	11.6

532 290 85

DISTRIBUTION

...

Copies

US Nuclear Regulatory	Commission, R4	283
Technical Information	Center	2
Los Alamos Scientific	Laboratory	50

GUS, Government Printing Office: 1979 - 677-013/124

87 532 291