Departi ent of Environmental and Industrial Health

Memorandum

TO: Robert Alexander

FROM: Phillip Plato
DATE: May 31, 1979
RF: Progress Report No. 20, Contract No. NRC-01-77-180, May, 1979

Result.s of Test \#2

To date, 19 of the 59 processors have submitted their reported doses for Test \#2. Tables 2 and 3 show the individual performance of all processors for whom we have results. Table 5 summarizes the performance of the processors for Test $\$ 1$ and Test $\# 2$. Among all the categories tested, 22% were passed in Test \#1 and 31% were passed in Test \#2. Although this reflects changes made my some processors in their data analysis, it apparently does not indicate a significant improvement among all the processors. The most dramatic areas of improvement are Category I (gamma), Category III (low-energy X ray), and Category IV (beta).

Results of Blind Tests

We now have all the results for Tests $\$ 1$ and $\# 2$ that were administered blindly to 7 of the large commercial processors. Table 4 shows the individual performance of the 7 processors. Table 6 summarizes the results of the blind tests.

The blind test results are considerably worse than the results for the open tests. This is probably because there are some signtficant differences in the calibration procedures currently followed by these processors and the procedures required by the HPSSC Standard. This does not mean that the procedures cur ently being used by the processors are inccrrect, only that they are not standardized.

We have questioned each of the 7 blind-tested processors to determine if they knew we were blind testing them. Six replied that they did not know anyone was blind testing them. The 7 th replied that they thought that they were being tested by the utility company through which we were funnelling dosimeters, but that they did not treat the utility's dosimeters

much different than dosimeters from their other customers. So we conclude that our subterfuge was successful.

Reasons for Poor Performance

Toward the end of April , you requested that we determine why the proceseors were not showing a significant improvement in lest \#2 over Test \#1. We agreed that Dr. Hudson and I would visit the large (greater than 10,000 dosimeters per mith) processcrs that supply dosimeters to NRC licensees. These site visits yould enable us to question these major processors on their calibration procedures and, using our electrometer and one of our NBS-calibraced ionization chambers, to check the calibration of their photon sources. By the end of May, we had vi.ited all 8 of the processors that you and we agreed should be visited. \cdots art currently preparing a special report on our site visits and our c aclusions.

Letter of Complaint

During March, we received a copy of a letter that one processor sent to NBS in which they complained that our irradiation procedures were not consistent. This complaint was based on the fact that they were being tested by Battelle Northwest (BNW) in addition to the pilot study conducted by The University of Michigan (UM). The standard deviation among their dosimeters irradiated by BNW was about 10%, whereas the standard deviation among the dosimeters irradiated by UM was about 20%.

During our site visit of this processor, we discovered that the TLDs they were sending to BNW had been carefully screened by their quality concrol department to ensure that only those dosineters with good reproducability were being tested. However, their customer service department was sending us their regular-customer TLDs. Their own in-house data showed that the standard deviations among these two types of dosimeters is expected to be 10% for the screened dosimeters and 20% for the regular-customer dosimeters.

We graciously accepted their apology for having leaped before they looked!

Calibrations

We completed our calibration of our 2 Shonka-Wyckoff ionization chambers that had been sent to NBS for calibration. We are preparing a calibration report whizh we will send to NBS. Since NBS did not send us the calibration factors for these chambers, our report will serve as a quality control check on our calibration abilities.

Suminary
The pilut study is on schedule. We are concentrating our efforts on Task 3, data analysis. The site visits we made during April and May provided us with useful information for Task 3 .

$\mathrm{PP} / \mathrm{mf}$

Table 1. SUMARY OR HPSSC STANDARD PREPARED BY THE UNIVERSITY OF MTC TGAN

For each dosimeter, a performance index is calculated by: $P=\frac{H^{\prime}-H}{H} \quad$ where: $\quad \begin{aligned} H & =\text { delivered quantity } \\ H^{\prime} & =\text { reported quantity }\end{aligned}$

For each depth of each interval, an average performance index, $\overrightarrow{\mathrm{F}}$, and its standard deviation, S, are calculated.

A processor passes a category if, for each depth of each interval:
$|\overline{\mathrm{P}}|+2 \mathrm{~S} \leq 2$
where:

$$
\begin{aligned}
& \text { a: } \quad=0.3 \\
& b: \quad \mathrm{L}=0.3 \text { or } 6 / \sqrt{\text { 可 whichever is Larger }} \\
& \text { c: } \mathrm{L}=0.3 \text { or } 15 / \sqrt{\text { Z }} \text { wh:tchever is larger }
\end{aligned}
$$

Table 4 : PERFORMANCE TESTING OP PERSONNEL. DOETMETRY SEKVICES Sumary of Kesulta for Test $\overline{I 1}$ (firat row) and Test 82 (accoad row)
(B11nd)

Pinceasor	1.) Cantra				11: High-Ewergy X Ray	$\begin{aligned} & \text { 111: Lou-Energy } \\ & \mathrm{X} \text { Kay } \end{aligned}$	1V: Beta		V: Neutron		$\begin{aligned} & \text { VI: Gasuma } \\ & \text { Plus } \times \text { Ray } \end{aligned}$	VII: plus		Cama Beta		V1II: Gamian plus Neutron	
An! Type	10			40	1102520353045	151025		2 S	10	2D	$151025 \sim 3035$					10	215
41 fila	F	F	P	P			P	\%	P	\%		P	P	\%	${ }_{\text {P }}^{\text {P }}$	P	P
	y	F	P	F													
$92+11 \mathrm{~m}$	\%	P	P	\%			P	${ }_{8}^{\text {P }}$	\%	${ }_{F}^{\text {F }}$		\%	${ }_{\text {P }}$	F	${ }_{\text {P }}^{\text {P }}$	p	${ }_{F}{ }^{\text {F }}$
	E	p	P	P													
4) 14 lm	\%	P	\%	${ }^{r}$			P	${ }_{8}$	P	${ }_{\text {F }}$		P	P	F	${ }_{7}^{\text {\% }}$	P	${ }^{\mathrm{P}}$
	F	P	P	F			P										
9. Filum	Y	\%	P	${ }^{\text {r }}$			P	F	F	${ }_{8}{ }^{\text {r }}$		P	P	${ }^{\mathrm{F}}$	F	\%	\%
	F	9	7	F			P	7									
45 T10	F	P	P	P			P	P	\%	${ }^{\text {P }}$		P	P	${ }_{\text {P }}^{\text {P }}$	\%	P	\%
	${ }^{7}$	P	P	F			P	p	\%	F							
90.30 .0	P	P	P	P			P	F	7	F		P	P	P	P	P	\%
	P	F	P	r			P	F	P	F		P	P	P	P	P	P
9) Film	v	F	Y	${ }^{\prime}$			F	\%	\%	F		F	P	$\stackrel{F}{\text { F }}$	\%	,	*
	E	F	F	P			F	F	F	F		8	P				F

 participation in a particular category. For each category, a processor must pasn each depth of each interval in order to pasa the category,

Table 5. Summary of all intervals and categories passed for the open tests of Tests \#1 and \#2

Tai le 6. Summary of all intervals and categories passed for the $\mathrm{bli} . \mathrm{D}^{*}$ tests of Tests \#1 and \#2

