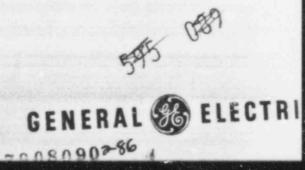
NEDO-24057-2 79NED263 CLASS I JUNE 1979


.

LICENSING TOPICAL REPORT

ASSESSMENT OF REACTOR INTERNALS VIBRATION IN BWR/4 AND BWR/5 PLANTS (AMENDMENT NO. 2)

594145

R. E. HUTCHINGS D. G. UMBLE

NEDO-24057-2 79NED263 Class I June 1979

LICENSING TOPICAL REPORT

ASSESSMENT OF REACTOR INTERNALS VIBRATION

IN

BWR/4 AND BWR/5 PLANTS (Amendment No. 2)

R. E. Hutchings

D. G. Umble

Approved:

L. K. Liu, Manager Reactor Vibration Analysis and Instrumentation

Approved: J. B. Carr, Manager Reactor Servicing and Auxiliaries Design

504146

NUCLEAR ENERGY ENGINEERING DIVISION • GENERAL ELECTRIC COMPANY SAN JOSE, CALIFORNIA 95125

DISCLAIMER OF RESPONSIBILITY

This document was prepared by or for the General Electric Company. Neither the General Electric Company nor any of the contributors to this document:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information disclosed in this document may not infringe privately owned rights; or
- B. Assumes any responsibility for liability or damage of any kind which may result from the use of any information disclosed in this document.

NEDO-24057-2

TABLE OF CONTENTS

				Page
	ABST	RACT		ix
1.	INTR	ODUCTION		1-1
2.	SUMM	ARY		2-1
3.	DECO	RIPTION OF INTERNALS		3-1
5.	DESC	AIFTION OF INTERNAL		· · · · · · · · · · · · · · · · · · ·
4.	TEST	DESCRIPTION		4-1
		Test Scope		4-1
		Sensor Types and Lo	ocations	4-1
		Test Conditions		4-2
	4.4	Data Acquisition Sy	stem	4-3
5.	RESU	LTS OF VIBRATION ME.	SUREMENTS	5-1
	5.1	Shroud and Shroud I	lead Motion	5-1
	5.2	Jet Pump Assembly M	lotion	5-1
	5.3	Jet Pump Riser Brad	e Leaf Motion	5-2
	5.4	Feedwater Sparger	libration Motion	5-2
	5.5	Core AP/Liquid Con	trol Line Vibration Motion	5-3
6.	ANAL			6~1
	6.1	Test Acceptance Cr	lteria	6-1
	6.2	Data Analysis Metho	ods	6-1
a.				
7.		USSION		7-1
	7.1	BWR/5 Vibration Me		7-1
	7.2	BWR/5 Confirmatory	Tests	7-1
8.	CONC	LUSIONS		8-1
9.	REFE	RENCES		9-1
			iii/iv	594148

LIST OF ILLUSTRATIONS

Figure	Title	Page
3-1	Location of Instrumented Components	3-3
4-1	Strain Gage Locations on Jet Pump Riser Braces	4-8
4-2	Jet Pump Vane Sensor Locations	4-9
4-3	Strain Gage Locations on Feedwater Spargers	4-10
4-4	Strain Gage Locations on Core AP/Liquid Control Line	4-11
4-5	Accelerometer Locations on Upper Bolt Guide Ring	4-12
4-6	Block Diagram of Strain Gage Instrumentation	4-13
4-7	Block Diagram of Accelerometer Instrumentation	4-13

LIST OF TABLES

Table	Title	Page
4-1	Reactor Internals Vibration Program for BWR/4 and 5	4-5
4-2	Tokai-2 Sensor Locations	4-6
5-1	Results of Preoperational Testing	5-4
5-2	Results of Precritical Testing	5-6
5-3	Results of Intermediate Load Line Testing	5-8
54	Results of 100% Load Line Testing	5-9

ABSTRACT

This second amendment to the General Electric Company Licensing Topical Report NEDE-24057-P, "Assessment of Reactor Internals Vibration in BWR/4 and BWR/5 Flants", is to document a summary of results of the Tokai-2 "istrumented Reactor Internals Vibration Testing Program.

Tokai-2 is a 251-in. BWR/5 plant. All results are shown to be within acceptable limits.

1. INTRODUCTION

Vibration of reactor internals was monitored during pre-operational and startup testing at the Japan Atomic Power Company's Tokai-2 Flant. This testing occurred from October 12, 1977 to July 12, 1978.

Tokai-2 is a General Electric Company BWR/5 of 251-in. vessel diameter containing 764 fuel assemblies.

2. SUMMARY

Section 3 of this report contains a brief description of the BWR reactor internals including differences between BWR/4 and BWR/5 plants. Section 4 describes the vibration test program conducted at Tokai-2. This includes a description of sensor types and locations and a definition of the various test conditions. Section 5 presents a summary of the vibration measurement program results for Tokai-2. General vibration characteristics of the various components and assemblies are discussed, and measured vibration amplitudes are compared with test acceptance criteria. Section 6 describes the data analysis method used in the evaluation of test results and the analytical basis for the test acceptance criteria. Application of the test results is discussed in Section 7.

The key conclusions in Section 8 are summarized as follows:

- The test results demonstrate the adequacy of BWR/5 251-in. vessel size internals with respect to vibration.
- All quantitative measurements were found to be within acceptable limits.
- 3. The BWR/5 jet pump design, which differs from the BWR/4 jet pump design, showed vibration amplitudes within acceptable limits and exhibited vibration characteristics similar to that observed in other BVR plants.

3. DESCRIPTION OF INTERNALS

Figure 3-1 shows the BWR reactor internals and the locations of instrumented components at Tokai-2. A comparison of BWR/4 and BWR/5 reactor internals design is as follows:

- (1) <u>The shroud and shroud head assembly</u> includes the steam separator and standpipe assemblies, which are attached to each other and to the shroud head. Steam separators are of the same design in all BWR/4 and BWR/5 plants.
- (2) <u>The fuel assemblies</u> are supported vertically by the fuel support castings and control rod guide tubes and laterally by the shroud through the core plate and the top guide. The same standard fuel design is used in BWR/4 and BWR/5 plants.
- (3) <u>The jet pump assemblies</u> each consists of a riser pipe and two jet pumps. Support points are at the inlet nozzle, the riser brace, and the shroud support plate. The BWR/5 jet pump design differs from the BWR/4 design, including the use of a 5-hole nozzle.
- (4) <u>The control rod guide tubes</u> provide vertical support to the fuel assemblies and are, in turn, supported by the control rod housings, the stub tubes, and the bottom head. These are of the same design in all BWR/4 and BWR/5 plants. The design of the A pressure/liquid control line is different for BWR/5 plants.
- (5) <u>The incore housing, guide tube, and stabilizer assembly</u> the housings extend up through the bottom head and are welded to the guide tubes which extend up to the core plate. The incore guide tubes are attached to each other at approximately midspan by stabilizer bars. This design is also common to BWR/4 and BWR/5 plants.

- (6) <u>The incore instrument tubes</u> extend up through the incore housings and guide tubes and between the fuel channels in the eore region. These are the same for BWR/4 and BWR/5 plants.
- (7) <u>The feedwater spargers</u> supported at the inlet thermal sleeve and at each end of the header. Feedwater sparger attachment methods include welded, interference fit and triple thermal sleeve designs (see Table 4-1).

594155

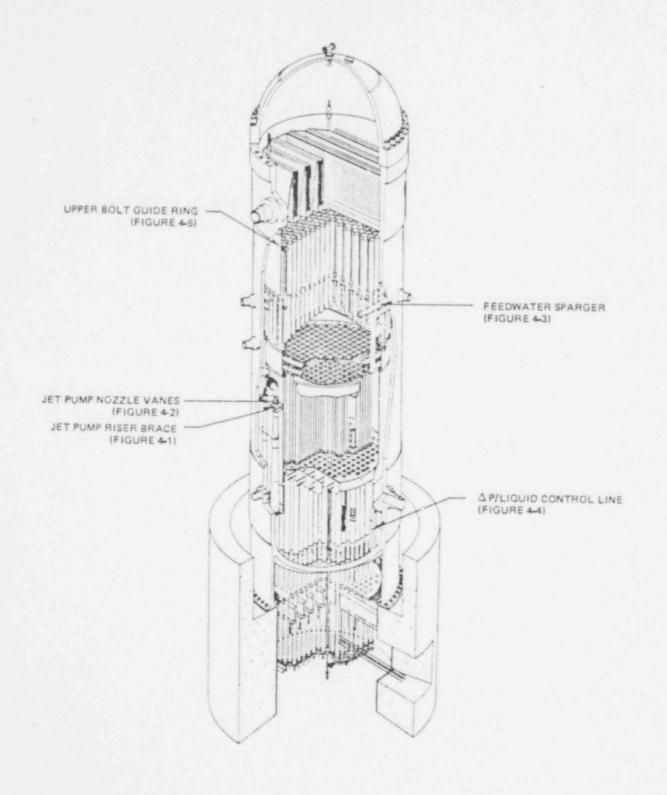
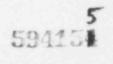



Figure 3-1. Locations of Instrumented Components

4. TEST DESCRIPTION

4.1 TEST SCOPE

Table 4-1 is an updated summary of the internals vibration test program for BWR/4 and BWR/5 plants. This table describes the components which are instrumented and the tests and measurements which are performed.

For Tokai-2, the test scope was as follows:

251-BWR/5 Prototype (Tokai-2)

Shroud Head Assembly Jet Pump Assemblies Feedwar in Spargers (Welded) AP and Liquid Control Line

Section 7 discusses future vibration program test plans outlined in Table 4-1.

4.2 SENSOR TYPES AND LOCATIONS

Vibration measurement sensors used at Tokai-2 were strain gages and accelerometers. In addition, photocell sensors were used as recirculation pump speed indicators.

Table 4-2 summarizes the location of internal vibration instrumentation sensors installed at Tokai-2. Sensor numbers are prefixed by A for accelerometer and S for strain gages.

The strain gages, which were manufactured by Ailtech (Model SG 125), consist of a nickel-chrome alloy filament in a Type-321 stainless steel tube of 0.040-in.

diameter, with an integral flange for spot welding. The effective gage length is one inch. The strain gages were used to measure the dynamic strain in the following components:

- Jet Pump Riser Braces the Tokai-2 installation is shown in Figure 4-1.
- (2) <u>Jet Pump Nozzle Vanes</u> the Tokai-2 installation is shown in Figure 4-2.
- (3) <u>Feedwater Sparger</u> Figure 4-3 shows the as-installed sensor locations for the Tokai-2 spargers.
- (4) <u>Differential Pressure and Liquid Control Line</u> Figure 4-4 shows the sensor locations for Tokai-2.

Vibration of the shroud head and steam separator assembly was measured using Validyne variable reluctance accelerometers located on the upper bolt guide ring. Figure 4-5 gives the guide ring sensor locations. The sensitive axis of the accelerometers is in the tangential direction. The specified frequency response of these sensors is 0 to 50 Hz. They are used in conjunction with a double integrator to provide the dynamic displacement response from 2 to 50 Hz.

Recirculation pump speeds, which have been found to correlate with vibration frequency in some cases, were measured with two photocell and tamp assemblies which sense changes in light caused by black marks on the pump-motor coupling. Electrical pulses are produced and recorded once per revolution. The frequency of the pulses is the pump rotational speed.

4.3 TEST CONDITIONS

At Tokai-2, vibration measurements were made during preoperational, precritical, and power operational test conditions. Data were recorded during preoperational testing from October 12 to October 15, 1977. Precritical testing, following fuel loading, began January 27 and ended January 29, 1978. Vibration data were taken at various flow rates during preoperational and precritical testing. Operational testing included 75% load line testing on May 9, 1978 and 100% load line testing from June 6 to July 12, 1978.

During operational testing, vibration measurements were made at various flow rates while keeping the rod pattern at 75% and 100% power configurations. Operating condition during each test period included steady-state balanced flow, unbalanced flow, single loop operation, and transient tests consisting of one-pump and two-pump trips from rated flow conditions.

4.4 DATA ACQUISITION SYSTEM

8

The vibration measurement system is composed of the transducers, the signal conditioning units, magnetic tape recorders, and chart recorders. Figures 4-6 and 4-7 are block diagrams of the strain gage and accelerometer systems.

Strain gages are used either singly or in pairs, to form a quarter or balf of a Wheatstone bridge circuit. Excitation is provided at 5V and 3kHz. The modulated 3kHz signal is converted to \pm 1 Vdc for \pm 100 microstrain (ue) by the demodulator. The oscillator and demodulator are Validyne models MC 1-20 and CD-19, respectively.

A 3kHz excitation voltage is provided to the accelerometer by the special balance unit. A linear amplifier and double integrator is used to convert the accelerometer output to displacement units. These Validyne Model AM49 units have a frequency response of 2 Hz to 5 kHz.

The demodulated signals are recorded on tape and chart recorders. The 14-channel FM tape recorders, operated at 15 inches per second, have a center frequency of 27 kHz and an information frequency range of zero to 5 kHz. The 6-channel brush chart recorders have channel widths of 40 mm with 50 divisions per channel. The frequency response of the pen is 40 Nz at full scale and 100 Hz at 10 divisions. Data can also be recorded on a high-speed 6-channel oscillograph recorder (Honeywell model 1858, 0 to 5 kHz).

594158

4-3

System calibration procedures provide an overall sensitivity of 0.0005 inch (1/2 mil) per chart division for the double-integrated accelerometer output, and 5 up per chart division for the strain gages. The tape recorder input sensitivity is 0.010 inch per volt for the accelerometers and 100 up per volt for strain gages.

Table 4-1

REACTOR INTERNALS VIBRATION PROCRAM FOR BWR 4 AND 5 PLANTS

ENTERNALS DESIGN COMMANDERLISS Core and Shroud Structure

Jut Pumpa

Loss C. Come

	100
	-21
	167
780	
22	
5	2
8	ê.
53	ê,
2553	÷.
TEST	ê.
TEST	£.
TEST	£.
R 78.53	10.0
W 78.53	s. Te
PUT 78.53	ts. Te
PU 78.57	ts Te
1001 7ES1	ots Te
1001 7ES1	uts Te
TICH TEST	ents Te
TICH TEST	wats. Te
ATTON TEST	- 22
WILLER TEST	- 22
RATION TEST	- 22
MATLER TEST	sonents. Te
BRATICH TEST	- 22
BRATIES TEST	- 22
TRATICULTEST	noula
FERATION TEST	- 22
VIBRATICS TEST	noula
VIBRATION TEST	noula
VIBRATICS 7EST	noula
VERNITION TEST	noula
VIBRATION TEST	noula
VIBRATION TEST	Compone
VERRATION TEST	noula
VIRKATION TEST	Compone
VIBRATION TEST	Compone
VIBRATICS TEST	Compone
VIBRATICS TEST	Compone
VIBRATICS TEST	tted Compony
VIBRATICS TEST	Compone

Note

\$108 83,148

			2																						
ameturaaff noisardiV		83	8	1	619	2 3	CEX.	8	60	8			3	6	(1)	(1)					(1)				
Stattup Stattup	1	8	ei a	6.3	6. 3	K 3	8		ĸ	94	9	R 1	96)	8	×	PR					ĸ	ж.	2	e	
Frecritical		8.1	N 9	6.1	6 1	٤.,				×	3	6	14		×.						н. 1	Ni,			
Tenolistregoni Preorest nuistrego	4. 3	6.3	e a	6.3	ĸ.						-	6)	ec.							5	ĸ	ĸ.			
woll Lanoirategoarg noiroegaal bna reel		e 3	K 9	6.3	K.		2	4			* 3	4	-				4	4.3	e i	ж. 1		N I	а.		
inemutieni erol-ni eevul	I.														×					2	×				
alscard) isul				3	e.																				
stagtadi tataubaal			4					1	R. 1	κ.				6.3	×						н.				
bns boñ iotinol in-Cote Cuide lubes	1 3	ĸ										ł	e												
basi buotit	1.1	6. 3	e	-	<. a	1	¢.,	2	<		12	ć,	4 9	Ģ	÷.,						ć.		24		
proates	L *	5 3	•	2	٩.							1				e i									
simi ser	1 *		<.,e	1		6. N		1	c . 3	5		2	¢. 3	ċ	<. P	1				2	18	6	×		
Tatio of Stiven Flow (M)		1 100	1.92	1.14	1.1.1	1.10	1.25	1.16	100. 4	1.25	2.14	100 1			and a	1.92	1.92	1.92	1.42	1.98	2.04	2.64	2.06	2,04	
286/35		. 4		. 8		l le		4		i s	i.			2.	Ξ.										
estanter setanter	16	14	16	2	1	14	14	12	1	1	14.	1	1	2	1	13.0	15.	15.	15.0	15.	16.	91	16.	16.	
sedent at anti-			100	17	1	1	12	112	12	12	12	1.0	1		1	1.6	1.61	9.1	175	9.0	0.6	0.6	0.4	970	
	1		10	1		1				1	1	ł.	17	1			-	-	1	-		. 4	1	11	
tespilid jo digned (xoiqqa) sadoni	1	101	140	101	100	100	100	100	100	3.600	142	287		83	82	18	187	83	87	132	132	132	132	132	
(, sorges) asdoni	6.97	8.8	3	100	0014	100	0.00	100	100	100	25	1110	110	1111	310	110	110	011-	110	13	1.9	19	19	19	
ViladiaV alizadi Dag/Jl	159	142	26.1	0.91	160	1603	0.01	1002	140	140	2018	18.7	(8)	1.8.7	180	187	181	187	181	228	228	228	22.8	228	
(hoise per Noisie)			÷.	÷	ŝ.	÷		-							1	-	-			-8	1		4		
tegikq2 W3 tremiteitä	-	3	į.		*	į,	a.		4			*		1	-	-	j,		-	3			1		
refs gutong phibott	4			١.	1	5			ų.		2				1		10					l,	1		
	200	a.A	1	10	100	0.0	2010	240	346	040	No.	i,	1.a.A.	Nel 4	Ver.	Aes.	Sec	yes	00	ye	0.02	ye	3.6	245	
mmest? lo tedau? stotstage?	1,008	110	130	14.3	121	1631	191	16.7	161	163	163	117	211	210	112	225	225	225	225	225	225	223	225	\$77	
terestd buoid2	145	3.65	165	178	178	1.78	128	178	126	12.5	87.8	202	202	202	207	207	202	201	202	202	202	202	202	282	
[su] lo redmu? sslidmseak	34.08	508	22.2	2440	548	36.0	560	0.95	5600	560	1995	264	264	764	2.67	192	192	764	764	797	264	764	264	76.4	
Becirculation Flor	0.94	53,0	1	17.0	13.3	28.5	17.11	12.0	- 10-	6	2	s,	÷.	-17			q	4	0	~	17	10	10	-	
mil notsetuostoed	1		61.5						77.0	32.0	287.5	102.55	302.5	102.	102.5	100.0	100.0	100.0	100.0	106.5	1/0815	108.5	108.5	1.08.5	
Power, MMr	154	SHEE	1970	2436	2381	24,86	24.16	36.92	24.36	24.36	24.36	3293	1243	3243	3293	3243	1293	3293	3293	3293	3293	329.3	1323	13223	
anil rouber?!	17	9	4	4	4	a.	a.	4		æ	r.	a.	a.	-7	÷.	d.	a.	÷	∂t	10	an.	×.	5	10	
Teresof (1.2.1, 2.1)	183	201	201	218	218	218	218	218	2338	817	91.7	197	157	157	157	152	251	152	251	157	127	252	251	157	0.50
															-										Notes: (1) Test Complete
															pue	and 2	2 5	-						19	2 21
												-	ei.	-	Peach Builton 2 and	1	Hope Creek 1 and	pu							Tes
	Duame Arnold	in.		10.8				-	in .			Brosns Ferry	Browns Ferry	Browns Ferry	ton	0.0		Limerick I and						Plus.	10
	Arca	tres		1.1.		-	-	1.17	dick	100		¥.e	2	The second	Bart.	First O	ree	*	17	ni.		14	2	110	12
	1016	Chinshan	Raffly	Fitzpatrick	Cooper	Ratich	Batch	Brusteer's	Brunswick	Shorteham	Z Linner	NUM	5107	STAR.	6	maquelinona	0. 2	ur1	E Termi	Tokal 2	Lass11e	Lassille	Euto	e 11	1.84
	Des	Cle	B.o.	FIL	Real	Rat	Bat	Bira	Best	Sho	Z 110	8 Lo	Bro	Bro	Pea	2018	Hop	Line .	14	Tok	(inter-	Las	Wantord 2	Mine Mile Point	Note

594160

Interforence Ht
Triple thermal site
Melded.

wherating plant

Table 4-2

TOKAI-2 SENSOR LOCATIONS

Location	Sensor
SHROUD HEAD	
Tangential motion at upper bolt guide ring	A1, A2, A3, A4
JET PUMPS	
Jet Pump Pair 5-6	S25, S26, S27, S28
Jet Pump Pair 9-10	S29, S30, S31, S32
Jet Pump Pair 11-12	\$33, \$34, \$35, \$36
Jet Pump Pair 15-16	\$37, \$38, \$39, \$40
NOZZLE VANES*	
Jet Pump 5	S1, S2, S3
Jet Pump 6	S4, S5, S6
Jet Pump 9	\$7, \$8, \$9
Jet Pump 10	S10, S11, S12
Jet Pump 11	S13, S14, S15
Jet Pump 12	S16, S17, S18
Jet Pump 15	S19, S20, S21
Jet Pump 16	S22, S23, S24
CORE PLATE DIFFERENTIAL PRESSURE AND LIQUID CONTROL LINE	
Тор	S59, S60, S61, S62
Bottom	S63, S64, S65, S66

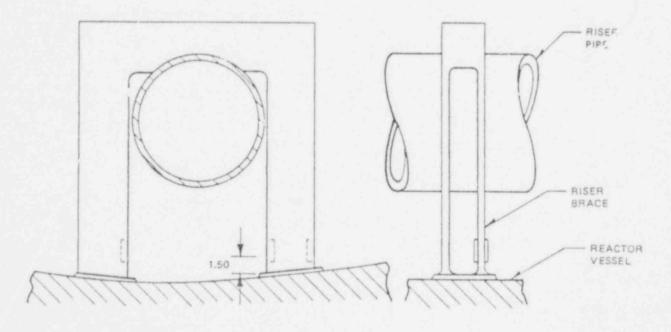
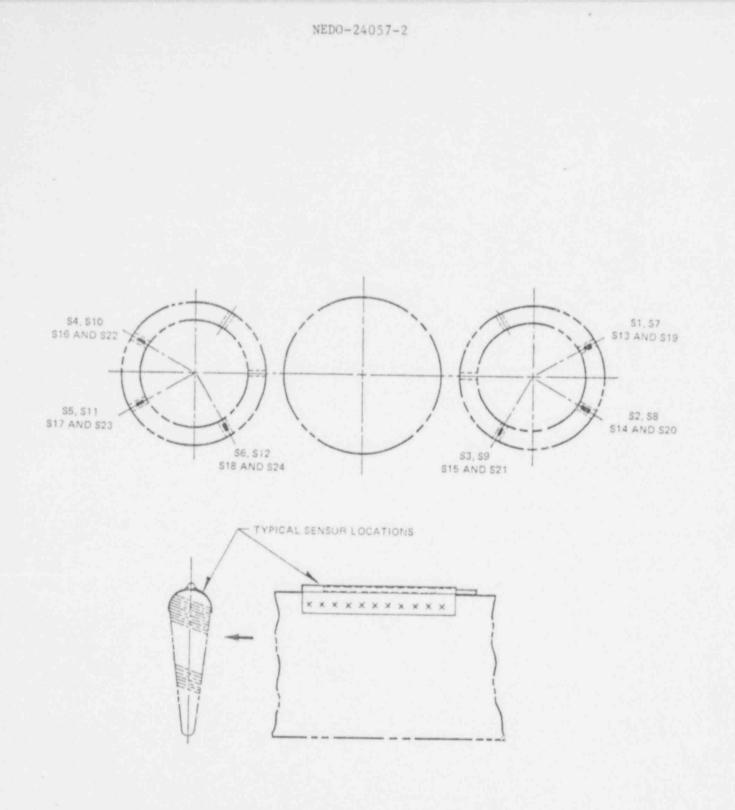

NEDO-24057-2

Table (-2 (Continued)

Location	Sensor						
FEEDWATER SPARGERS							
30° Sparger	S41, S42						
90° Sparger	S43, S44						
150° Sparger	1845, 846, 847, 848 1849, 850, 851, 852						
210° Sparger	S53, S54						
270° Sparger	S55, S56						
320° Sparger	S57, S58						

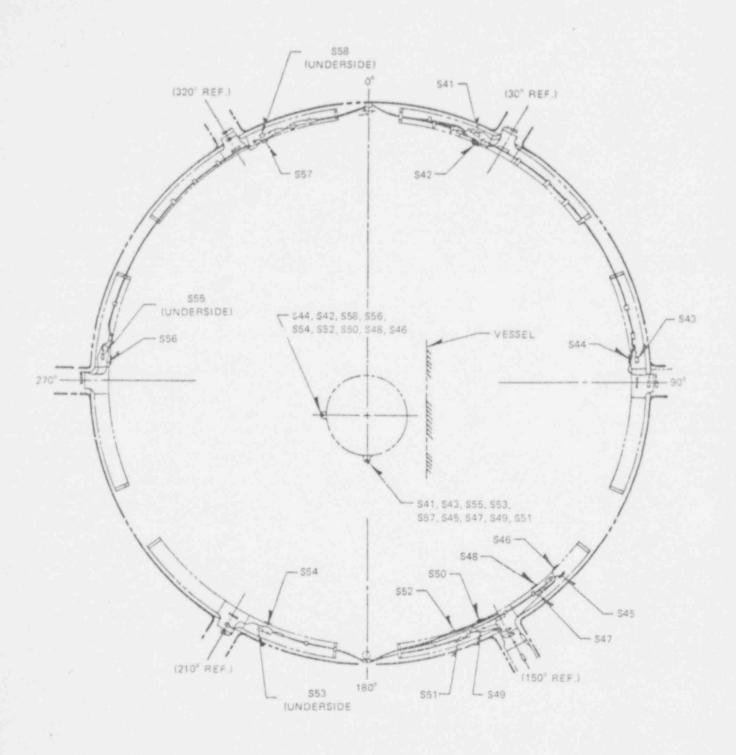
*One sensor on each jet pump nozzle vane is used as a spare.

TYPICAL	SENSOR CONNECTIONS
\$25	BENDING BRIDGE
\$27	CONNECTION
\$26	SWITCHABLE BRIDGE
\$28	CONNECTION



	22
\$25, S	\$29, \$33, \$37
	- Ja
\$27, \$31, \$35, \$39	\$26, \$30, \$34, \$38

NOTE: SXX DENOTES STRAIN GAGE LOCATION


Figure 4-1. Strain Gage Locations on Jet Pump Riser Braces

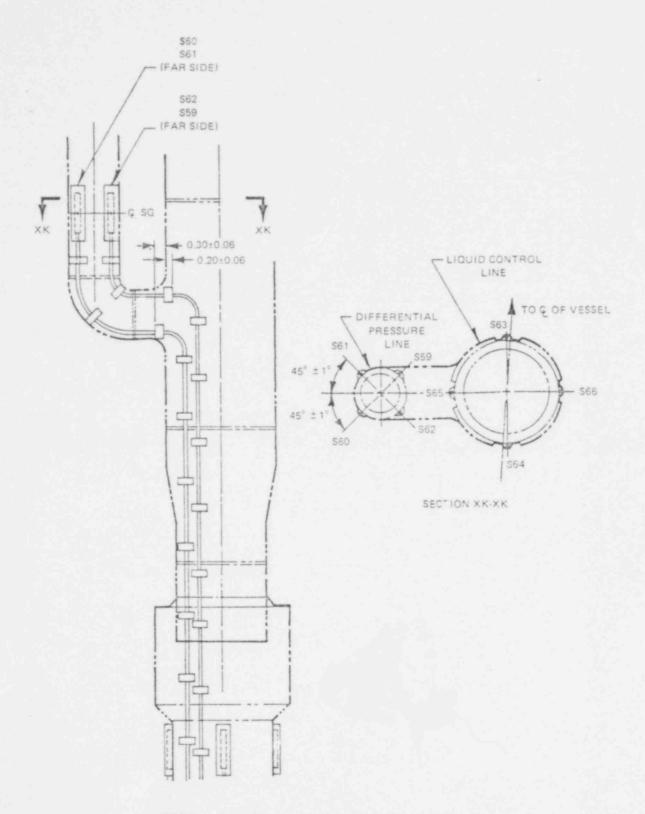

NOTE: Sxx DENOTES STRAIN GAGE LOCATIONS.

Figure 4-2. Jet Pump Vane Sensor Locations

594164

NOTE: Sxx DENOTES STRAIN GAGE LOCATIONS. Figure 4-3. Strain Gage Locations on Feedwater Spargers

NOTE: Sxx DENOTES STRAIN GAGE LOCATIONS.

Figure 4-4. Strain Gage Locations on Core AP Liquid Control Line

4-11

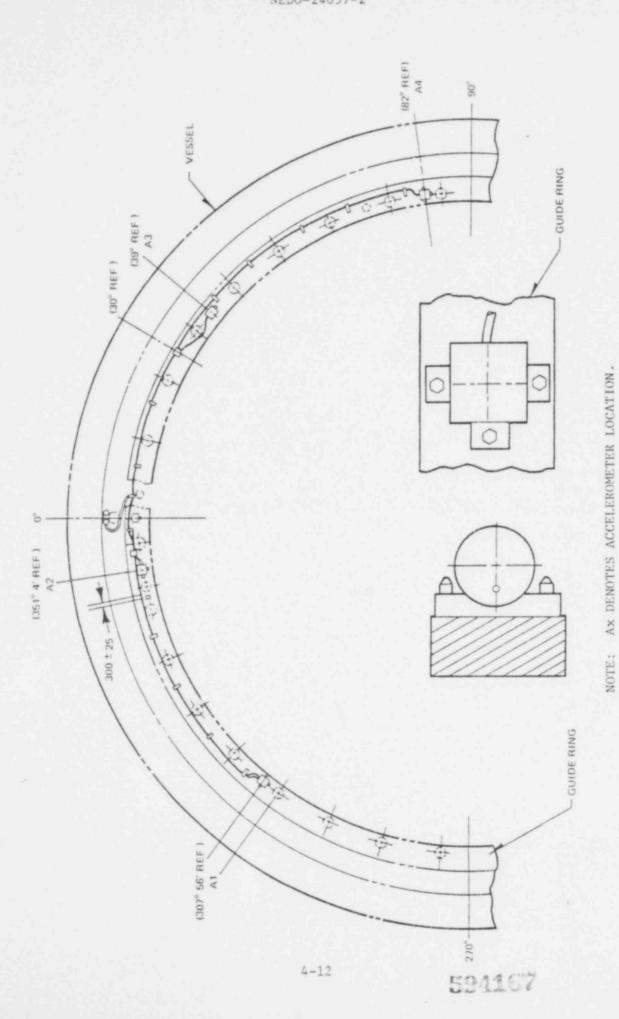


Figure 4-5. Accelerometer Locations on Upper Bolt Guide Ring

NEDO-24057-2

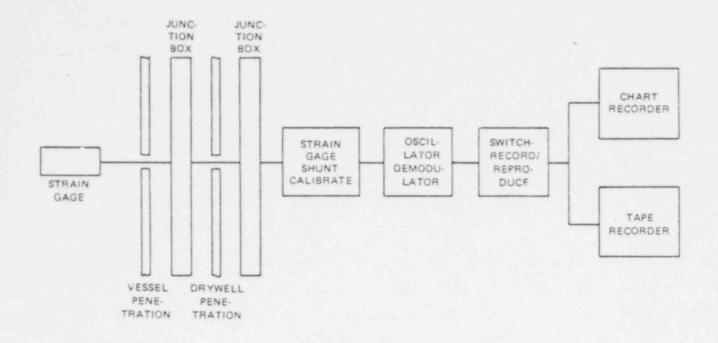


Figure 4-6. Block Diagram of Strain Gage Instrumentation

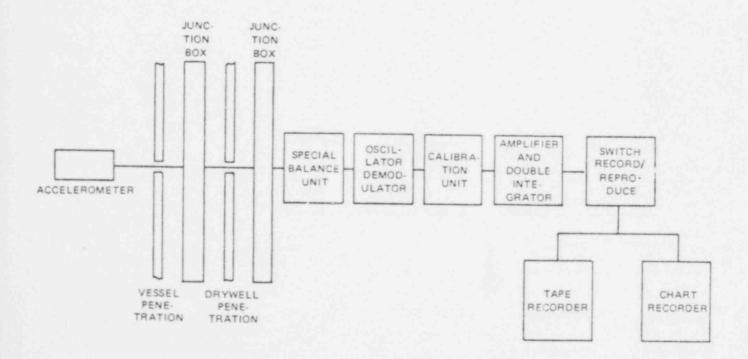


Figure 4-7. Block Diagram of Accelerometer Instrumentation

4-13/4-14

5. RESULTS OF VIBRATION MEASUREMENTS

The following subsections give the results of vibration test measurements taken at Tokai-2 during preoperational and startup testing. Since preoperational testing and precritical testing are for assessing the vibration adequacy of the internals and their proper installation, only the maximum flow test condition is reported, although all the test conditions are analyzed. No transient amplitudes are reported, since none exceeded balanced or single pump operation.

5.1 SHROUD AND SHROUD HEAD MOTION

During preoperational and precritical testing, rotational motion of the water flowing through the steam separators excites the upper bolt guide ring to which the accelerometers are attached. The excitation results in a lateral and torsional motion to the separator assembly proportional to flow. The allowable amplitude is calculated assuming shroud and separator lateral motion only. Thus, the comparison of shroud motion during preoperational and precritical testing is not valid. The allowable displacement for the torsional mode of a similar separator was calculated to be _____. For the observed motion the more conservative lateral motion criterion was used.

The significant results of the shroud-separator assembly motion are given in Tables 5-1 to 5-4. The shroud motion reached a maximum of _____ of the allow-able during preoperational testing, and during power operation.

5.2 JET PUMP ASSEMBLY MOTION

Jet pump motion measured by sensors on riser pipe braces indicated vibration in three modes at frequencies of ______. The strain levels reached a maximum of _____ of criteria ______ during pre-operational testing. During 75% load line testing, a maximum of _____ of criteria was reached ______. of criteria ______

was measured during 100% load line power testing.

*General Electric Company proprietary information has been deleted.

NED0-24057-2

The Tokai-2 jet pump motion at low flow averaged higher than a similar sized BWR/4 plant. However, at maximum flow the percents of allowable were comparable. The sensors on the riser brace show frequencies higher than _____, and are covered in Section 5.3.

Tables 5-1 through 5-4 give the most significant vibration strain measurements for the jet pump sensors.

Strain gages were mounted on jet pump nozzle vanes to measure jet pump motion. Very low amplitudes were measured. During overall testing, a maximum amplitude of _____ was observed at the recirculation pump vane passing frequency.

5.3 JET PUMP RISER BRACE LEAF MOTION

Strain gages are mounted on the jet pump riser braces primarily to measure the motion of the jet pump assembly, but they also measure the motion of the jet pump riser brace leaf. The riser brace leaf frequencies range from

for the first mode to _____ for the third mode. The riser brace leaf also responds significantly to those recirculation pump vane passing frequencies corresponding to 5, 10 and 15 times the pump speeds. The brace responds readily to the first vane passing frequency (five times pump speed or _____ and reached ____ of the allowable strain amplitude during 100% load line testing.

Tables 5-1 through 5-4 give the maximum observed amplitudes with frequency and percent of the criteria for the jet pump leaves.

5.4 FEEDWATER SPARGER VIBRATION MOTION (\$41-\$58)

The feedwater sparger showed very little motion. The maximum strain measured was ______ (first vane passing frequency). This is less than _____ of the criteria.

5-2

5.5 CORE AP/LIQUID CONTROL LINE VIBRATION MOTION (\$59-\$66)

The maximum vibration measurement observed on the AP/liquid control line was

Table 5-1 RESULTS OF PPFOPERATIONAL TESTING (General Electric Company Proprietary)

594172

Table 5-1 (Continued)

Table 5-2 RESULTS OF PRECRITICAL TESTING (General Electric Company Proprietary)

1

Table 5-2 (Continued)

Ports a a parties

Table 5-3 RESULTS OF 75% LOAD LINE TESTING (General Electric Company Proprietary)

Table 5-4

RESULTS OF 100% LOAD LINE TESTING (General Electric Company Proprietary)

6. ANALYSIS

6.1 TEST ACCEPTANCE CRITERIA

The test acceptance criteria for Tokai-2 is the same as used for BWR/4 plants. This is as described in Section 6.1 of NEDE-24057-P.

6.2 DATA ANALYSIS METHODS

Vibration amplitudes are determined by direct measurement from chart records. Frequency spectra are used to determine the test condition at which the maximum amplitude for each mode occurs. The chart record is then analyzed to find the maximum peak-to-peak amplitudes, which are then compared to the criteria. This analysis method is conservative in that the criteria are based on the assumption of vibration at a constant sustained amplitude, whereas actual vibration amplitudes are generally random and seldom reach the maximum recorded values.

7. DISCUSSION

7.1 BWR/5 VIBRATION MEASUREMENTS

BWR/5 vibration measurement tests, in addition to Tokai-2 (a 251-in. size BWR/5), are planned for Zimmer (a 218-in. size BWR/5) and the first 201-in. size BWR/5 to start up. These tests will consist primarily of jet pump instrumentation with other sensors used to provide information for modal identification. The test conditions will be the same as performed at Tokai-2 and will include a preoperational flow test and inspection, preoperational vibration measurements, precritical vibration measurements, and startup vibration measurements.

Due to a difference in jet pump adaptor design, LaSalle-1 (a 251-in. size BWR/5) will have an instrumented jet pump vibration program. The test conditions are summarized in Table 4-1.

7.2 BWR/5 CONFIRMATORY TESTS

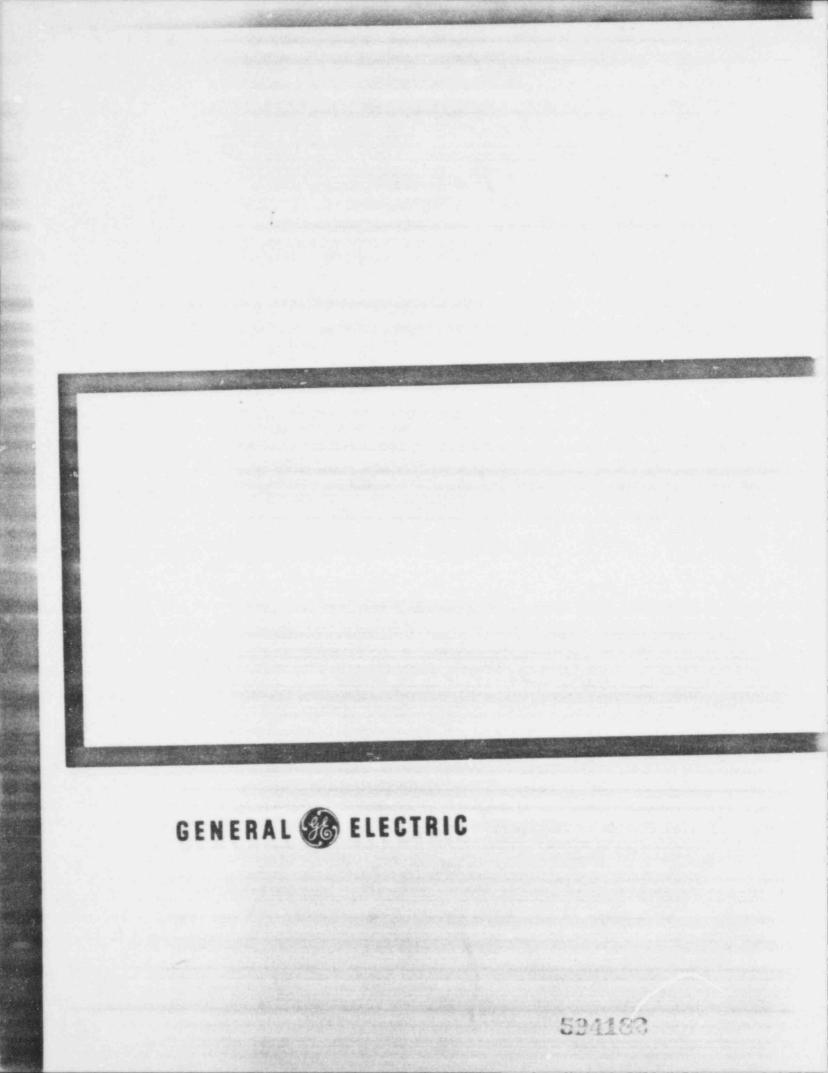
Hanford-2 (a 251-in. size BWR/5) will have a minimum instrumented confirmatory vibration test during startup and will not have a preoperational flow test and inspection. Two jet pump riser braces and the shroud head upper guide ring will be instrumented.

A preoperational flow test and inspection will be performed in LaSalle-2 and Nine Mile Point-2 in accordance with provisions of Regulatory Guide 1.20 for nonprototype, Category 1 plants. Test conditions and inspection procedures will be as described in Subsection 7.2.2 and 7.4 of NEDE-24057-P.

8. CONCLUSIONS

Test results show that vibration amplitudes of the jet pump and shroud head assembly are within acceptable limits and showed vibration characteristics similar to those observed in other boiling water reactor (BWR) plants. The maximum amplitude of jet pump vibration reached _____ of the allowable during power operation. The riser pipe brace leaf vibrated at _____ of the criteria during normal operation.

During power testing, the shroud and shroud head assembly vibration amplitudes did not exceed _____ of the criteria and performed as expected.


The jet pump vane sensors, feedwater sparger and core $\Delta P/liquid$ control line vibration sensors did not show significant vibration amplitudes. This indicates that the design of these structures is sufficient to withstand flow induced vibrations.

The test results demonstrate the adequacy of the BWR/5 251-in, vessel size internals with respect to vibration.

594180

9. REFERENCES

- Assessment of Reactor Internals Vibration in BWR/4 and BWR/5 Plants, General Electric Company, NEDE-24057-P (Company Proprietary), November 1977.
- 2. Tokai-2 Reactor Internals Vibration Measurements, General Electric Company, NEDE-25091 (Company Proprietary), December 1978.

