Brown®゙Root.Inc. port office Box Three. Houston, Teas 77001

79-NL-203
August 1, 1979

```
Mr. L. G. Hulman
Chief of Hydrology & Meteorology Section
Nuclear Regulatory Commission
Washington, D.C. }2055
Dear Mr. Human:
We have a cOpy of "GENERIC EMERGENCY COOLING POND ANALYSIS" by J. E. Edinger, et al. prepared for the Commission under contract no. AT (11-1)-2224
```

```
Ne have found that the friction factor as defined in the equations (4.7)
```

Ne have found that the friction factor as defined in the equations (4.7)
and (4.8b) of the manual are incorrect. Since, there were no references
and (4.8b) of the manual are incorrect. Since, there were no references
For the section titled "The Friction Factor, 6" (pg. 42 of the manual),
For the section titled "The Friction Factor, 6" (pg. 42 of the manual),
we are attaching a derivation of the friction factor as defined in "OPEN
we are attaching a derivation of the friction factor as defined in "OPEN
CHANNEL HYDRAULICS" by V. T. Chow, Ph.D. (McGraw Hil1 - 1959).
CHANNEL HYDRAULICS" by V. T. Chow, Ph.D. (McGraw Hil1 - 1959).
The friction factor is an input to the Metmin code to estimate thermal
The friction factor is an input to the Metmin code to estimate thermal
transport diffusivity parameter for use in the Hyeta code. We made
transport diffusivity parameter for use in the Hyeta code. We made
computer runs using Metmin. The friction factcrs were varied to assess
computer runs using Metmin. The friction factcrs were varied to assess
the impact on the Metmin results. The results indicated no change except
the impact on the Metmin results. The results indicated no change except
for the thermal transport diffusivity parameter.
for the thermal transport diffusivity parameter.
If you have any questions, please contact S. P. N. Singh, phone (713) -
If you have any questions, please contact S. P. N. Singh, phone (713) -
676-7818.

```
676-7818.
```

Very truly yours,
BROWN \& ROOT, INC.
A. N. Geisier
A. H. Geisler, Manager Nuclear Licensing

AHG/SPNS/vh
CC: M. J. Meyer
P. S. Jordan
F. H. Pomes
G. S. Millas

ATTACHMENT I

The Friction Factor, 6 :
(Ref. OPEN CHANNEL HYDRAULICS, V. T. Chow, Ph.D.
McGraw Hill Book Company - 1959)
The equation for the friction factor is written as

$$
6=\frac{8 q R S}{\sqrt{2}}
$$

where

```
R = hydraulic radius (ft)
S = energy gradient (hf/L
V = velocity (ft/sec)
# = gravitational const (ft/ sec}\mp@subsup{}{}{2}
```

The well known Manning Fo,mula is written as

$$
V=\frac{1.49}{7} R^{2 / 3} s^{1 / 2}
$$

where $n=$ coefficient of . achress (Manning's)
The Chézy Formula is usually expressed as follows:
$V=C_{h} \sqrt{R S}$
$C_{h}=$ factor of flow resistance, called Chezy's C
Comparing the Chezy Formula with Manning's Formula

$$
C_{h}=\frac{1.49}{n} \quad R^{1 / 6}
$$

This «quation provides a relationship between Chezy's C and Manning's n. From Chézy's Formula

$$
c_{n}^{2}=\frac{v^{2}}{R S}
$$

The friction factor 6 can now be written in terms of C_{h}

$$
f=\frac{8 g}{C h^{2}}
$$

Relationship of C_{n} and n provides another relationship of

$$
f=\frac{8 g \quad n^{2}}{(1.49)^{2} R^{1 / 3}}
$$

where $R=0 / 4$ ($D=$ hydraulic diameter)

$$
f=\frac{8 x(4)^{1 / 3} n^{2}}{(1.49)^{2} 01 / 3}
$$

